1
|
Zhang Y, Sharma D, Liang Y, Downs N, Dolman F, Thorne K, Black IM, Pereira JH, Adams P, Scheller HV, O’Neill M, Urbanowicz B, Mortimer JC. Putative rhamnogalacturonan-II glycosyltransferase identified through callus gene editing which bypasses embryo lethality. PLANT PHYSIOLOGY 2024; 195:2551-2565. [PMID: 38739546 PMCID: PMC11288761 DOI: 10.1093/plphys/kiae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Rhamnogalacturonan II (RG-II) is a structurally complex and conserved domain of the pectin present in the primary cell walls of vascular plants. Borate cross-linking of RG-II is required for plants to grow and develop normally. Mutations that alter RG-II structure also affect cross-linking and are lethal or severely impair growth. Thus, few genes involved in RG-II synthesis have been identified. Here, we developed a method to generate viable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in callus tissue via CRISPR/Cas9-mediated gene editing. We combined this with a candidate gene approach to characterize the male gametophyte defective 2 (MGP2) gene that encodes a putative family GT29 glycosyltransferase. Plants homozygous for this mutation do not survive. We showed that in the callus mutant cell walls, RG-II does not cross-link normally because it lacks 3-deoxy-D-manno-octulosonic acid (Kdo) and thus cannot form the α-L-Rhap-(1→5)-α-D-kdop-(1→sidechain). We suggest that MGP2 encodes an inverting RG-II CMP-β-Kdo transferase (RCKT1). Our discovery provides further insight into the role of sidechains in RG-II dimerization. Our method also provides a viable strategy for further identifying proteins involved in the biosynthesis of RG-II.
Collapse
Affiliation(s)
- Yuan Zhang
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Deepak Sharma
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yan Liang
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nick Downs
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fleur Dolman
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kristen Thorne
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ian M Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jose Henrique Pereira
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Paul Adams
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Malcolm O’Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Fan CY, Yu XF, Liu YJ, Zeng XX, Luo FW, Wang XT, Yang X, Wang XY, Xue X, Yang LJ, Lei T, Jiang MY, Jiang BB, Gao SP, Li X. Methyl jasmonate regulation of pectin polysaccharides in Cosmos bipinnatus roots: A mechanistic insight into alleviating cadmium toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123503. [PMID: 38331243 DOI: 10.1016/j.envpol.2024.123503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Methyl jasmonate (MeJA), a crucial phytohormone, which plays an important role in resistance to Cadmium (Cd) stress. The cell wall (CW) of root system is the main location of Cd and plays a key role in resistance to Cd toxicity. However, the mechanism effect of MeJA on the CW composition and Cd accumulation remain unclear. In this study, the contribution of MeJA in regulating CW structure, pectin composition and Cd accumulation was investigated in Cosmos bipinnatus. Phenotypic results affirm MeJA's significant role in reducing Cd-induced toxicity in C. bipinnatus. Notably, MeJA exerts a dual impact, reducing Cd uptake in roots while increasing Cd accumulation in the CW, particularly bound to pectin. The molecular structure of pectin, mainly uronic acid (UA), correlates positively with Cd content, consistent in HC1 and cellulose, emphasizing UA as pivotal for Cd binding. Furthermore, MeJA modulates pectin methylesterase (PME) activity under Cd stress, influencing pectin's molecular structure and homogalacturonan (HG) content affecting Cd-binding capacity. Chelate-soluble pectin (CSP) within soluble pectins accumulates a substantial Cd proportion, with MeJA regulating both UA content and the minor component 3-deoxy-oct-2-ulosonic acid (Kdo) in CSP. The study delves into the intricate regulation of pectin monosaccharide composition under Cd stress, revealing insights into the CW's physical defense and Cd binding. In summary, this research provides novel insights into MeJA-specific mechanisms alleviating Cd toxicity in C. bipinnatus, shedding light on complex interactions between MeJA, and Cd accumulation in CW pectin polysaccharide.
Collapse
Affiliation(s)
- Chun-Yu Fan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Fang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yu-Jia Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Xuan Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fu-Wen Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xian-Tong Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yu Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao Xue
- Triticeae Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Li-Juan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming-Yan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bei-Bei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Su-Ping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
3
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|
4
|
Signaling at Physical Barriers during Pollen-Pistil Interactions. Int J Mol Sci 2021; 22:ijms222212230. [PMID: 34830110 PMCID: PMC8622735 DOI: 10.3390/ijms222212230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
In angiosperms, double fertilization requires pollen tubes to transport non-motile sperm to distant egg cells housed in a specialized female structure known as the pistil, mediating the ultimate fusion between male and female gametes. During this journey, the pollen tube encounters numerous physical barriers that must be mechanically circumvented, including the penetration of the stigmatic papillae, style, transmitting tract, and synergid cells as well as the ultimate fusion of sperm cells to the egg or central cell. Additionally, the pollen tube must maintain structural integrity in these compact environments, while responding to positional guidance cues that lead the pollen tube to its destination. Here, we discuss the nature of these physical barriers as well as efforts to genetically and cellularly identify the factors that allow pollen tubes to successfully, specifically, and quickly circumnavigate them.
Collapse
|
5
|
Wang C, Hao N, Xia Y, Du Y, Huang K, Wu T. CsKDO is a candidate gene regulating seed germination lethality in cucumber. BREEDING SCIENCE 2021; 71:417-425. [PMID: 34912168 PMCID: PMC8661486 DOI: 10.1270/jsbbs.20149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/18/2021] [Indexed: 06/14/2023]
Abstract
Seed germination plays an important role in the initial stage of plant growth. However, few related studies focused on lethality after seed germination in plants. In this study, we identified an Ethyl methanesulfonate (EMS) mutagenesis mutant Csleth with abnormal seed germination in cucumber (Cucumis sativus L.). The radicle of the Csleth mutant grew slowly and detached from the cotyledon until 14 d after sowing. Genetic analysis showed that the mutant phenotype of Csleth was controlled by a single recessive gene. MutMap+ and Kompetitive Allele Specific PCR (KASP) genotyping results demonstrated that Csa3G104930 encoding 3-deoxy-manno-octulosonate cytidylyltransferase (CsKDO) was the candidate gene of the Csleth mutant. The transition mutation of aspartate occurred in Csa3G104930 co-segregated with the phenotyping data. CsKDO was highly expressed in male flowers in wild type cucumbers. Subcellular localization results showed that CsKDO was located in the nucleus. Overall, these results suggest CsKDO regulates lethality during seed germination in cucumber.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- College of Horticulture and Landscape, Northeast Agricultural
University, 600 Changjiang Road, Harbin 150030,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| | - Ning Hao
- College of Horticulture and Landscape, Northeast Agricultural
University, 600 Changjiang Road, Harbin 150030,
China
| | - Yutong Xia
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| | - Yalin Du
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| | - Ke Huang
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| | - Tao Wu
- College of Horticulture and Landscape, Hunan Agricultural
University, 1 Nongda Road, Changsha 410128,
China
- College of Horticulture and Landscape, Northeast Agricultural
University, 600 Changjiang Road, Harbin 150030,
China
- Engineering Research Center for Horticultural Crop Germplasm Creation and
New Variety Breeding, Ministry of Education, 1 Nongda Road,
Changsha 410128, China
- Key Labortory for Vegetable Biology of Hunan Province,
1 Nongda Road, Changsha 410128, China
| |
Collapse
|
6
|
Barnes WJ, Koj S, Black IM, Archer-Hartmann SA, Azadi P, Urbanowicz BR, Peña MJ, O'Neill MA. Protocols for isolating and characterizing polysaccharides from plant cell walls: a case study using rhamnogalacturonan-II. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:142. [PMID: 34158109 PMCID: PMC8218411 DOI: 10.1186/s13068-021-01992-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/10/2021] [Indexed: 06/10/2023]
Abstract
BACKGROUND In plants, a large diversity of polysaccharides comprise the cell wall. Each major type of plant cell wall polysaccharide, including cellulose, hemicellulose, and pectin, has distinct structures and functions that contribute to wall mechanics and influence plant morphogenesis. In recent years, pectin valorization has attracted much attention due to its expanding roles in biomass deconstruction, food and material science, and environmental remediation. However, pectin utilization has been limited by our incomplete knowledge of its structure. Herein, we present a workflow of principles relevant for the characterization of polysaccharide primary structure using nature's most complex polysaccharide, rhamnogalacturonan-II (RG-II), as a model. RESULTS We outline how to isolate RG-II from celery and duckweed cell walls and from red wine using chemical or enzymatic treatments coupled with size-exclusion chromatography. From there, we applied mass spectrometry (MS)-based techniques to determine the glycosyl residue and linkage compositions of the intact RG-II and derived oligosaccharides including special considerations for labile monosaccharides. In doing so, we demonstrated that in the duckweed Wolffiella repanda the arabinopyranosyl (Arap) residue of side chain B is substituted at O-2 with rhamnose. We used electrospray-MS techniques to identify non-glycosyl modifications including methyl-ethers, methyl-esters, and acetyl-esters on RG-II-derived oligosaccharides. We then showed the utility of proton nuclear magnetic resonance spectroscopy (1H-NMR) to investigate the structure of intact RG-II and to complement the RG-II dimerization studies performed using size-exclusion chromatography. CONCLUSIONS The complexity of pectic polysaccharide structures has hampered efforts aimed at their valorization. In this work, we used RG-II as a model to demonstrate the steps necessary to isolate and characterize polysaccharides using chromatographic, MS, and NMR techniques. The principles can be applied to the characterization of other saccharide structures and will help inform researchers on how saccharide structure relates to functional properties in the future.
Collapse
Affiliation(s)
- William J Barnes
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Sabina Koj
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Ian M Black
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
- The Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, 30602, USA.
| | - Maria J Peña
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
7
|
Hiroguchi A, Sakamoto S, Mitsuda N, Miwa K. Golgi-localized membrane protein AtTMN1/EMP12 functions in the deposition of rhamnogalacturonan II and I for cell growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3611-3629. [PMID: 33587102 PMCID: PMC8096605 DOI: 10.1093/jxb/erab065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/10/2021] [Indexed: 05/20/2023]
Abstract
Appropriate pectin deposition in cell walls is important for cell growth in plants. Rhamnogalacturonan II (RG-II) is a portion of pectic polysaccharides; its borate crosslinking is essential for maintenance of pectic networks. However, the overall process of RG-II synthesis is not fully understood. To identify a novel factor for RG-II deposition or dimerization in cell walls, we screened Arabidopsis mutants with altered boron (B)-dependent growth. The mutants exhibited alleviated disorders of primary root and stem elongation, and fertility under low B, but reduced primary root lengths under sufficient B conditions. Altered primary root elongation was associated with cell elongation changes caused by loss of function in AtTMN1 (Transmembrane Nine 1)/EMP12, which encodes a Golgi-localized membrane protein of unknown function that is conserved among eukaryotes. Mutant leaf and root dry weights were lower than those of wild-type plants, regardless of B conditions. In cell walls, AtTMN1 mutations reduced concentrations of B, RG-II specific 2-keto-3-deoxy monosaccharides, and rhamnose largely derived from rhamnogalacturonan I (RG-I), suggesting reduced RG-II and RG-I. Together, our findings demonstrate that AtTMN1 is required for the deposition of RG-II and RG-I for cell growth and suggest that pectin modulates plant growth under low B conditions.
Collapse
Affiliation(s)
- Akihiko Hiroguchi
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305–8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305–8566, Japan
| | - Kyoko Miwa
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
- Correspondence:
| |
Collapse
|
8
|
Mancuso E, Romanò C, Trattnig N, Gritsch P, Kosma P, Clausen MH. Rhamnogalacturonan II: Chemical Synthesis of a Substructure Including α-2,3-Linked Kdo*. Chemistry 2021; 27:7099-7102. [PMID: 33769639 DOI: 10.1002/chem.202100837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 11/09/2022]
Abstract
The synthesis of a fully deprotected Kdo-containing rhamnogalacturonan II pentasaccharide is described. The strategy relies on the preparation of a suitably protected homogalacturonan tetrasaccharide backbone, through a post-glycosylation oxidation approach, and its stereoselective glycosylation with a Kdo fluoride donor.
Collapse
Affiliation(s)
- Enzo Mancuso
- Department of Chemistry, Center for Nanomedicine and Theranostics, Technical University of Denmark, Kemitorvet 207, 2800, Kgs., Lyngby, Denmark
| | - Cecilia Romanò
- Department of Chemistry, Center for Nanomedicine and Theranostics, Technical University of Denmark, Kemitorvet 207, 2800, Kgs., Lyngby, Denmark
| | - Nino Trattnig
- Department of Chemistry, University of Natural Resources and Life Sciences, 18 Muthgasse, 1190, Vienna, Austria
| | - Philipp Gritsch
- Institute of Applied Synthetic Chemistry TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, 18 Muthgasse, 1190, Vienna, Austria
| | - Mads H Clausen
- Department of Chemistry, Center for Nanomedicine and Theranostics, Technical University of Denmark, Kemitorvet 207, 2800, Kgs., Lyngby, Denmark
| |
Collapse
|
9
|
Flores-Tornero M, Vogler F, Mutwil M, Potěšil D, Ihnatová I, Zdráhal Z, Sprunck S, Dresselhaus T. Transcriptomic and Proteomic Insights into Amborella trichopoda Male Gametophyte Functions. PLANT PHYSIOLOGY 2020; 184:1640-1657. [PMID: 32989009 PMCID: PMC7723084 DOI: 10.1104/pp.20.00837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/16/2020] [Indexed: 05/27/2023]
Abstract
Flowering plants (angiosperms) are characterized by pollen tubes (PTs; male gametophytes) carrying two immobile sperm cells that grow over long distances through the carpel toward the ovules, where double fertilization is executed. It is not understood how these reproductive structures evolved, which genes occur de novo in male gametophytes of angiosperms, and to which extent PT functions are conserved among angiosperms. To contribute to a deeper understanding of the evolution of gametophyte functions, we generated RNA sequencing data from seven reproductive and two vegetative control tissues of the basal angiosperm Amborella trichopoda and complemented these with proteomic data of pollen grains (PGs) and PTs. The eudicot model plant Arabidopsis (Arabidopsis thaliana) served as a reference organism for data analysis, as more than 200 genes have been associated with male gametophyte functions in this species. We describe methods to collect bicellular A. trichopoda PGs, to induce their germination in vitro, and to monitor PT growth and germ cell division. Transcriptomic and proteomic analyses indicate that A. trichopoda PGs are prepared for germination requiring lipids, energy, but likely also reactive oxygen species, while PTs are especially characterized by catabolic/biosynthetic and transport processes including cell wall biosynthesis and gene regulation. Notably, a number of pollen-specific genes were lacking in Arabidopsis, and the number of genes involved in pollen signaling is significantly reduced in A. trichopoda In conclusion, we provide insight into male gametophyte functions of the most basal angiosperm and establish a valuable resource for future studies on the evolution of flowering plants.
Collapse
Affiliation(s)
- María Flores-Tornero
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Frank Vogler
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Ivana Ihnatová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Bucsella B, Hoffmann A, Zollinger M, Stephan F, Pattky M, Daumke R, Heiligtag FJ, Frank B, Bassas-Galia M, Zinn M, Kalman F. Novel RP-HPLC based assay for selective and sensitive endotoxin quantification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4621-4634. [PMID: 32924034 DOI: 10.1039/d0ay00872a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The paper presents a novel instrumental analytical endotoxin quantification assay. It uses common analytical laboratory equipment (HPLC-FLD) and allows quantifying endotoxins (ETs) in different matrices from about 109 EU per mL down to about 40 EU per mL (RSE based). Test results are obtained in concentration units (e.g. ng ET per mL), which can then be converted to commonly used endotoxin units (EU per mL) in case of known pyrogenic activity. During endotoxin hydrolysis, the endotoxin specific rare sugar acid KDO is obtained quantitatively. After that, KDO is stoichiometrically reacted with DMB, which results in a highly fluorescent derivative. The mixture is separated using RP-HPLC followed by KDO-DMB quantification with a fluorescence detector. Based on the KDO content, the endotoxin content in the sample is calculated. The developed assay is economic and has a small error. Its applicability was demonstrated in applied research. ETs were quantified in purified bacterial biopolymers, which were produced by Gram-negative bacteria. Results were compared to LAL results obtained for the same samples. A high correlation was found between the results of both methods. Further, the new assay was utilized with high success during the development of novel endotoxin specific depth filters, which allow efficient, economic and sustainable ET removal during DSP. Those examples demonstrate that the new assay has the potential to complement the animal-based biological LAL pyrogenic quantification tests, which are accepted today by the major health authorities worldwide for the release of commercial pharmaceutical products.
Collapse
Affiliation(s)
- Blanka Bucsella
- University of Zürich, Department of Chemistry, Winterthurerstr. 190, Zürich, CH-8057, Switzerland and HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland.
| | - Anika Hoffmann
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland.
| | - Mathieu Zollinger
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland.
| | - Fabio Stephan
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland. and Lonza AG, Quality Control Biopharma, Rottenstrasse 6, CH-3930 Visp, Switzerland
| | - Martin Pattky
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland. and Lonza AG, Quality Control Biopharma, Rottenstrasse 6, CH-3930 Visp, Switzerland
| | - Ralph Daumke
- FILTROX AG, Moosmühlestr. 6, CH-9001 St. Gallen, Switzerland
| | | | - Brian Frank
- FILTROX AG, Moosmühlestr. 6, CH-9001 St. Gallen, Switzerland
| | - Mònica Bassas-Galia
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland. and FILTROX AG, Moosmühlestr. 6, CH-9001 St. Gallen, Switzerland and Acrostak AG, Stegackerstrasse 14, 8409 Winterthur, Switzerland
| | - Manfred Zinn
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland.
| | - Franka Kalman
- HES-SO Valais (University of Applied Sciences, Sion; Wallis), Institute of Life Technologies, Route du Rawyl 64, CH-1950 Sion 2, Switzerland. and Acrostak AG, Stegackerstrasse 14, 8409 Winterthur, Switzerland
| |
Collapse
|
11
|
O'Neill MA, Black I, Urbanowicz B, Bharadwaj V, Crowley M, Koj S, Peña MJ. Locating Methyl-Etherified and Methyl-Esterified Uronic Acids in the Plant Cell Wall Pectic Polysaccharide Rhamnogalacturonan II. SLAS Technol 2020; 25:329-344. [PMID: 32468908 DOI: 10.1177/2472630320923321] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rhamnogalacturonan II (RG-II) is a structurally complex pectic polysaccharide that exists as a borate ester cross-linked dimer in the cell walls of all vascular plants. The glycosyl sequence of RG-II is largely conserved, but there is evidence that galacturonic acid (GalA) methyl etherification and glucuronic acid (GlcA) methyl esterification vary in the A sidechain across plant species. Methyl esterification of the galacturonan backbone has also been reported but not confirmed. Here we describe a new procedure, utilizing aq. sodium borodeuteride (NaBD4)-reduced RG-II, to identify the methyl esterification status of backbone GalAs. Our data suggest that up to two different GalAs are esterified in the RG-II backbone. We also adapted a procedure based on methanolysis and NaBD4 reduction to identify 3-, 4-, and 3,4-O-methyl GalA in RG-II. These data, together with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF) MS analysis of sidechain A generated from selected RG-IIs and their NaBD4-reduced counterparts, suggest that methyl etherification of the β-linked GalA and methyl esterification of the GlcA are widespread. Nevertheless, the extent of these modifications varies between plant species. Our analysis of the sidechain B glycoforms in RG-II from different dicots and nonpoalean monocots suggests that this sidechain has a minimum structure of an O-acetylated hexasaccharide (Ara-[MeFuc]-Gal-AceA-Rha-Api-). To complement these studies, we provide further evidence showing that dimer formation and stability in vitro is cation and borate dependent. Taken together, our data further refine the primary sequence and sequence variation of RG-II and provide additional insight into dimer stability and factors controlling dimer self-assembly.
Collapse
Affiliation(s)
- Malcolm A O'Neill
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Ian Black
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | | | - Mike Crowley
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Sabina Koj
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Maria J Peña
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Guo J, Yang Z. Exocytosis and endocytosis: coordinating and fine-tuning the polar tip growth domain in pollen tubes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2428-2438. [PMID: 32173729 PMCID: PMC7178420 DOI: 10.1093/jxb/eraa134] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/11/2020] [Indexed: 05/06/2023]
Abstract
Pollen tubes rapidly elongate, penetrate, and navigate through multiple female tissues to reach ovules for sperm delivery by utilizing a specialized form of polar growth known as tip growth. This process requires a battery of cellular activities differentially occurring at the apical growing region of the plasma membrane (PM), such as the differential cellular signaling involving calcium (Ca2+), phospholipids, and ROP-type Rho GTPases, fluctuation of ions and pH, exocytosis and endocytosis, and cell wall construction and remodeling. There is an emerging understanding of how at least some of these activities are coordinated and/or interconnected. The apical active ROP modulates exocytosis to the cell apex for PM and cell wall expansion differentially occurring at the tip. The differentiation of the cell wall involves at least the preferential distribution of deformable pectin polymers to the apex and non-deformable pectin polymers to the shank of pollen tubes, facilitating the apical cell expansion driven by high internal turgor pressure. Recent studies have generated inroads into how the ROP GTPase-based intracellular signaling is coordinated spatiotemporally with the external wall mechanics to maintain the tubular cell shape and how the apical cell wall mechanics are regulated to allow rapid tip growth while maintaining the cell wall integrity under the turgor pressure. Evidence suggests that exocytosis and endocytosis play crucial but distinct roles in this spatiotemporal coordination. In this review, we summarize recent advances in the regulation and coordination of the differential pectin distribution and the apical domain of active ROP by exocytosis and endocytosis in pollen tubes.
Collapse
Affiliation(s)
- Jingzhe Guo
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
- Correspondence:
| |
Collapse
|
13
|
Devani RS, Chirmade T, Sinha S, Bendahmane A, Dholakia BB, Banerjee AK, Banerjee J. Flower bud proteome reveals modulation of sex-biased proteins potentially associated with sex expression and modification in dioecious Coccinia grandis. BMC PLANT BIOLOGY 2019; 19:330. [PMID: 31337343 PMCID: PMC6651928 DOI: 10.1186/s12870-019-1937-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/11/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Dioecy is an important sexual system wherein, male and female flowers are borne on separate unisexual plants. Knowledge of sex-related differences can enhance our understanding in molecular and developmental processes leading to unisexual flower development. Coccinia grandis is a dioecious species belonging to Cucurbitaceae, a family well-known for diverse sexual forms. Male and female plants have 22A + XY and 22A + XX chromosomes, respectively. Previously, we have reported a gynomonoecious form (22A + XX) of C. grandis bearing morphologically hermaphrodite flowers (GyM-H) and female flowers (GyM-F). Also, we have showed that foliar spray of AgNO3 on female plant induces morphologically hermaphrodite bud development (Ag-H) despite the absence of Y-chromosome. RESULTS To identify sex-related differences, total proteomes from male, female, GyM-H and Ag-H flower buds at early and middle stages of development were analysed by label-free proteomics. Protein search against the cucumber protein sequences (Phytozome) as well as in silico translated C. grandis flower bud transcriptome database, resulted in the identification of 2426 and 3385 proteins (FDR ≤ 1%), respectively. The latter database was chosen for further analysis as it led to the detection of higher number of proteins. Identified proteins were annotated using BLAST2GO pipeline. SWATH-MS-based comparative abundance analysis between Female_Early_vs_Male_Early, Ag_Early_vs_Female_Early, GyM-H_Middle_vs_Male_Middle and Ag_Middle_vs_ Male_Middle led to the identification of 650, 1108, 905 and 805 differentially expressed proteins, respectively, at fold change ≥1.5 and P ≤ 0.05. Ethylene biosynthesis-related candidates as highlighted in protein interaction network were upregulated in female buds compared to male buds. AgNO3 treatment on female plant induced proteins related to pollen development in Ag-H buds. Additionally, a few proteins governing pollen germination and tube growth were highly enriched in male buds compared to Ag-H and GyM-H buds. CONCLUSION Overall, current proteomic analysis provides insights in the identification of key proteins governing dioecy and unisexual flower development in cucurbitaceae, the second largest horticultural family in terms of economic importance. Also, our results suggest that the ethylene-mediated stamen inhibition might be conserved in dioecious C. grandis similar to its monoecious cucurbit relatives. Further, male-biased proteins associated with pollen germination and tube growth identified here can help in understanding pollen fertility.
Collapse
Affiliation(s)
- Ravi Suresh Devani
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
- IPS2, INRA, CNRS, University Paris Sud, University of Evry, University of Paris Diderot, University of Paris Saclay, Batiment 630, 91405 Orsay, France
| | - Tejas Chirmade
- Biochemical Science Division National Chemical laboratory (CSIR-NCL), Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sangram Sinha
- Department of Botany, Tripura University, Suryamaninagar, Tripura 799022 India
| | - Abdelhafid Bendahmane
- IPS2, INRA, CNRS, University Paris Sud, University of Evry, University of Paris Diderot, University of Paris Saclay, Batiment 630, 91405 Orsay, France
| | - Bhushan B. Dholakia
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
- Biochemical Science Division National Chemical laboratory (CSIR-NCL), Pune, 411008 India
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar, Tripura 799022 India
| | - Anjan Kumar Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
| | - Jayeeta Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
| |
Collapse
|
14
|
Kan G, Wang X, Jiang J, Zhang C, Chi M, Ju Y, Shi C. Copper stress response in yeast Rhodotorula mucilaginosa AN5 isolated from sea ice, Antarctic. Microbiologyopen 2019; 8:e00657. [PMID: 29926536 PMCID: PMC6436437 DOI: 10.1002/mbo3.657] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/24/2018] [Accepted: 04/26/2018] [Indexed: 12/26/2022] Open
Abstract
Heavy metal pollution in Antarctic is serious by anthropogenic emissions and atmospheric transport. To dissect the heavy metal adaptation mechanisms of sea-ice organisms, a basidiomycetous yeast strain AN5 was isolated and its cellular changes were analyzed. Morphological, physiological, and biochemical characterization indicated that this yeast strain belonged to Rhodotorula mucilaginosa AN5. Heavy metal resistance pattern of Cd > Pb = Mn > Cu > Cr > Hg was observed. Scanning electron microscopic (SEM) results exhibited altered cell surface morphology under the influence of copper metal compared to that with control. The determination of physiological and biochemical changes manifested that progressive copper treatment significantly increased antioxidative reagents content and enzymes activity in the red yeast, which quench the active oxygen species to maintain the intercellular balance of redox state and ensure the cellular fission and growth. Comparative proteomic analysis revealed that, under 2 mM copper stress, 95 protein spots were tested reproducible changes of at least 10-fold in cells. Among 95 protein spots, 43 were elevated and 52 were decreased synthesis. After MALDI TOF MS/MS analysis, 51 differentially expressed proteins were identified successfully and classified into six functional groups, including carbohydrate and energy metabolism, nucleotide and protein metabolism, protein folding, antioxidant system, signaling, and unknown function proteins. Function analysis indicated that carbohydrate and energy metabolism-, nucleotide and protein metabolism-, and protein folding-related proteins played central role to the heavy metal resistance of Antarctic yeast. Generally, the results revealed that the yeast has a great capability to cope with heavy metal stress and activate the physiological and protein mechanisms, which allow more efficient recovery after copper stress. Our studies increase understanding of the molecular resistance mechanism of polar yeast to heavy metal, which will be benefitted for the sea-ice isolates to be a potential candidate for bioremediation of metal-contaminated environments.
Collapse
Affiliation(s)
- Guangfeng Kan
- School of Marine Science and TechnologyHarbin Institute of Technology at WeihaiWeihaiChina
| | - Xiaofei Wang
- School of Marine Science and TechnologyHarbin Institute of Technology at WeihaiWeihaiChina
| | - Jie Jiang
- School of Marine Science and TechnologyHarbin Institute of Technology at WeihaiWeihaiChina
| | - Chengsheng Zhang
- Tobacco Integrated Pest Management of China TobaccoTobacco Research Institute of Chinese Academy of Agricultural ScienceQingdaoChina
| | - Minglei Chi
- School of Marine Science and TechnologyHarbin Institute of Technology at WeihaiWeihaiChina
| | - Yun Ju
- School of Marine Science and TechnologyHarbin Institute of Technology at WeihaiWeihaiChina
| | - Cuijuan Shi
- School of Marine Science and TechnologyHarbin Institute of Technology at WeihaiWeihaiChina
| |
Collapse
|
15
|
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of Cell Wall Polymers in Tip-Growing Land Plant Gametophytes: Composition, Distribution, Functional Aspects and Their Remodeling. FRONTIERS IN PLANT SCIENCE 2019; 10:441. [PMID: 31057570 PMCID: PMC6482432 DOI: 10.3389/fpls.2019.00441] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 05/22/2023]
Abstract
During evolution of land plants, the first colonizing species presented leafy-dominant gametophytes, found in non-vascular plants (bryophytes). Today, bryophytes include liverworts, mosses, and hornworts. In the first seedless vascular plants (lycophytes), the sporophytic stage of life started to be predominant. In the seed producing plants, gymnosperms and angiosperms , the gametophytic stage is restricted to reproduction. In mosses and ferns, the haploid spores germinate and form a protonema, which develops into a leafy gametophyte producing rhizoids for anchorage, water and nutrient uptakes. The basal gymnosperms (cycads and Ginkgo) reproduce by zooidogamy. Their pollen grains develop a multi-branched pollen tube that penetrates the nucellus and releases flagellated sperm cells that swim to the egg cell. The pollen grain of other gymnosperms (conifers and gnetophytes) as well as angiosperms germinates and produces a pollen tube that directly delivers the sperm cells to the ovule (siphonogamy). These different gametophytes, which are short or long-lived structures, share a common tip-growing mode of cell expansion. Tip-growth requires a massive cell wall deposition to promote cell elongation, but also a tight spatial and temporal control of the cell wall remodeling in order to modulate the mechanical properties of the cell wall. The growth rate of these cells is very variable depending on the structure and the species, ranging from very slow (protonemata, rhizoids, and some gymnosperm pollen tubes), to a slow to fast-growth in other gymnosperms and angiosperms. In addition, the structural diversity of the female counterparts in angiosperms (dry, semi-dry vs wet stigmas, short vs long, solid vs hollow styles) will impact the speed and efficiency of sperm delivery. As the evolution and diversity of the cell wall polysaccharides accompanied the diversification of cell wall structural proteins and remodeling enzymes, this review focuses on our current knowledge on the biochemistry, the distribution and remodeling of the main cell wall polymers (including cellulose, hemicelluloses, pectins, callose, arabinogalactan-proteins and extensins), during the tip-expansion of gametophytes from bryophytes, pteridophytes (lycophytes and monilophytes), gymnosperms and the monocot and eudicot angiosperms.
Collapse
|
16
|
Riaz M, Yan L, Wu X, Hussain S, Aziz O, Jiang C. Mechanisms of organic acids and boron induced tolerance of aluminum toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:25-35. [PMID: 30173023 DOI: 10.1016/j.ecoenv.2018.08.087] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 05/24/2023]
Abstract
Aluminum is a major limiting abiotic factor for plant growth and productivity on acidic soils. The primary disorder of aluminum toxicity is the rapid cessation of root elongation. The root apex is the most sensitive part of this organ. Although significant literature evidence and hypothesis exist on aluminum toxicity, the explicit mechanism through which aluminum ceases root growth is still indefinable. The mechanisms of tolerance in plants have been the focus of intense research. Some plant species growing on acidic soils have developed tolerance mechanisms to overcome and mitigate aluminum toxicity, either by avoiding entry of Al3+ into roots (exclusion mechanism) or by being able to counterbalance toxic Al3+ engrossed by the root system (internal tolerance mechanism). Genes belonging to ALMT (Aluminum-activated malate transporter) and MATE (Multidrug and toxin compounds extrusion) have been identified that are involved in the aluminum-activated secretion of organic acids from roots. However, different plant species show different gene expression pattern. On the other hand, boron (B) (indispensable micronutrient) is a promising nutrient in the tolerance to aluminum toxicity. It not only hinders the adsorption of aluminum to the cell wall but also improves plant growth. This review mainly explains the critical roles of organic acid and B-induced tolerance to aluminum by summarizing the mechanisms of ALMT, MATE, internal detoxification, molecular traits and genetic engineering of crops.
Collapse
Affiliation(s)
- Muhammad Riaz
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lei Yan
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiuwen Wu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, 38040 Punjab, Pakistan
| | - Omar Aziz
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
17
|
Sechet J, Htwe S, Urbanowicz B, Agyeman A, Feng W, Ishikawa T, Colomes M, Kumar KS, Kawai‐Yamada M, Dinneny JR, O'Neill MA, Mortimer JC. Suppression of Arabidopsis GGLT1 affects growth by reducing the L-galactose content and borate cross-linking of rhamnogalacturonan-II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1036-1050. [PMID: 30203879 PMCID: PMC6263843 DOI: 10.1111/tpj.14088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 05/16/2023]
Abstract
Boron is a micronutrient that is required for the normal growth and development of vascular plants, but its precise functions remain a subject of debate. One established role for boron is in the cell wall where it forms a diester cross-link between two monomers of the low-abundance pectic polysaccharide rhamnogalacturonan-II (RG-II). The inability of RG-II to properly assemble into a dimer results in the formation of cell walls with abnormal biochemical and biomechanical properties and has a severe impact on plant productivity. Here we describe the effects on RG-II structure and cross-linking and on the growth of plants in which the expression of a GDP-sugar transporter (GONST3/GGLT1) has been reduced. In the GGLT1-silenced plants the amount of L-galactose in side-chain A of RG-II is reduced by up to 50%. This leads to a reduction in the extent of RG-II cross-linking in the cell walls as well as a reduction in the stability of the dimer in the presence of calcium chelators. The silenced plants have a dwarf phenotype, which is rescued by growth in the presence of increased amounts of boric acid. Similar to the mur1 mutant, which also disrupts RG-II cross-linking, GGLT1-silenced plants display a loss of cell wall integrity under salt stress. We conclude that GGLT1 is probably the primary Golgi GDP-L-galactose transporter, and provides GDP-L-galactose for RG-II biosynthesis. We propose that the L-galactose residue is critical for RG-II dimerization and for the stability of the borate cross-link.
Collapse
Affiliation(s)
- Julien Sechet
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
- Present address:
INRAVersailles78000France
| | - Soe Htwe
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research CenterThe University of GeorgiaAthensGA30602USA
| | - Abigail Agyeman
- Complex Carbohydrate Research CenterThe University of GeorgiaAthensGA30602USA
- Present address:
School of PharmacySouth UniversitySavannahGA31406USA
| | - Wei Feng
- Department of Plant BiologyCarnegie Institute for ScienceStanfordCA94305USA
| | - Toshiki Ishikawa
- Graduate School of Science and EngineeringSaitama UniversitySaitama338‐8570Japan
| | - Marianne Colomes
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
- Present address:
NutribioParis75440France
| | - Kavitha Satish Kumar
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Maki Kawai‐Yamada
- Graduate School of Science and EngineeringSaitama UniversitySaitama338‐8570Japan
| | - José R. Dinneny
- Department of Plant BiologyCarnegie Institute for ScienceStanfordCA94305USA
- Department of BiologyStanford UniversityStanfordCA94305USA
| | - Malcolm A. O'Neill
- Complex Carbohydrate Research CenterThe University of GeorgiaAthensGA30602USA
| | - Jenny C. Mortimer
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
18
|
Shtein I, Bar-On B, Popper ZA. Plant and algal structure: from cell walls to biomechanical function. PHYSIOLOGIA PLANTARUM 2018; 164:56-66. [PMID: 29572853 DOI: 10.1111/ppl.12727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/04/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Plant and algal cell walls are complex biomaterials composed of stiff cellulose microfibrils embedded in a soft matrix of polysaccharides, proteins and phenolic compounds. Cell wall composition differs between taxonomic groups and different tissue types (or even at the sub-cellular level) within a plant enabling specific biomechanical properties important for cell/tissue function. Moreover, cell wall composition changes may be induced in response to environmental conditions. Plant structure, habit, morphology and internal anatomy are also dependent on the taxonomic group as well as abiotic and biotic factors. This review aims to examine the complex and incompletely understood interactions of cell wall composition, plant form and biomechanical function.
Collapse
Affiliation(s)
- Ilana Shtein
- Department of Mechanical Engineering, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
- Botany and Plant Science, Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- Eastern Region Research and Development Center, Ariel, Israel
| | - Benny Bar-On
- Department of Mechanical Engineering, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Zoë A Popper
- Botany and Plant Science, Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
19
|
Voxeur A, Soubigou-Taconnat L, Legée F, Sakai K, Antelme S, Durand-Tardif M, Lapierre C, Sibout R. Altered lignification in mur1-1 a mutant deficient in GDP-L-fucose synthesis with reduced RG-II cross linking. PLoS One 2017; 12:e0184820. [PMID: 28961242 PMCID: PMC5621668 DOI: 10.1371/journal.pone.0184820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
In the plant cell wall, boron links two pectic domain rhamnogalacturonan II (RG-II) chains together to form a dimer and thus contributes to the reinforcement of cell adhesion. We studied the mur1-1 mutant of Arabidopsis thaliana which has lost the ability to form GDP-fucose in the shoots and show that the extent of RG-II cross-linking is reduced in the lignified stem of this mutant. Surprisingly, MUR1 mutation induced an enrichment of resistant interunit bonds in lignin and triggered the overexpression of many genes involved in lignified tissue formation and in jasmonic acid signaling. The defect in GDP-fucose synthesis induced a loss of cell adhesion at the interface between stele and cortex, as well as between interfascicular fibers. This led to the formation of regenerative xylem, where tissue detachment occurred, and underlined a loss of resistance to mechanical forces. Similar observations were also made on bor1-3 mutant stems which are altered in boron xylem loading, leading us to suggest that diminished RG-II dimerization is responsible for regenerative xylem formation.
Collapse
Affiliation(s)
- Aline Voxeur
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment, Orsay, France
| | - Frédéric Legée
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Kaori Sakai
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Sébastien Antelme
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Mylène Durand-Tardif
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Richard Sibout
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- * E-mail:
| |
Collapse
|
20
|
Temple H, Saez-Aguayo S, Reyes FC, Orellana A. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters. Glycobiology 2016; 26:913-925. [PMID: 27507902 DOI: 10.1093/glycob/cww054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/24/2016] [Indexed: 12/15/2022] Open
Abstract
The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered.
Collapse
Affiliation(s)
- Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| |
Collapse
|
21
|
Mounet-Gilbert L, Dumont M, Ferrand C, Bournonville C, Monier A, Jorly J, Lemaire-Chamley M, Mori K, Atienza I, Hernould M, Stevens R, Lehner A, Mollet JC, Rothan C, Lerouge P, Baldet P. Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4767-77. [PMID: 27382114 PMCID: PMC4973747 DOI: 10.1093/jxb/erw260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues.
Collapse
Affiliation(s)
- Louise Mounet-Gilbert
- Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Marie Dumont
- Normandy University, Université de Rouen, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, 76821 Mont-Saint-Aignan, France
| | - Carine Ferrand
- Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Céline Bournonville
- Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Antoine Monier
- Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Joana Jorly
- Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Martine Lemaire-Chamley
- Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Kentaro Mori
- Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Isabelle Atienza
- Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Michel Hernould
- Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Rebecca Stevens
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche 1052 Génétique et Amélioration des Fruits et Légumes, Domaine Saint Maurice, 67, Allée des Chênes, CS 60094 F-84143 Montfavet Cedex, France
| | - Arnaud Lehner
- Normandy University, Université de Rouen, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, 76821 Mont-Saint-Aignan, France
| | - Jean Claude Mollet
- Normandy University, Université de Rouen, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, 76821 Mont-Saint-Aignan, France
| | - Christophe Rothan
- Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Patrice Lerouge
- Normandy University, Université de Rouen, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, VASI, 76821 Mont-Saint-Aignan, France
| | - Pierre Baldet
- Institut National de la Recherche Agronomique (INRA), Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon Cedex, France
| |
Collapse
|
22
|
Dumont M, Lehner A, Vauzeilles B, Malassis J, Marchant A, Smyth K, Linclau B, Baron A, Mas Pons J, Anderson CT, Schapman D, Galas L, Mollet JC, Lerouge P. Plant cell wall imaging by metabolic click-mediated labelling of rhamnogalacturonan II using azido 3-deoxy-D-manno-oct-2-ulosonic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:437-47. [PMID: 26676799 DOI: 10.1111/tpj.13104] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 05/10/2023]
Abstract
In plants, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) is a monosaccharide that is only found in the cell wall pectin, rhamnogalacturonan-II (RG-II). Incubation of 4-day-old light-grown Arabidopsis seedlings or tobacco BY-2 cells with 8-azido 8-deoxy Kdo (Kdo-N3 ) followed by coupling to an alkyne-containing fluorescent probe resulted in the specific in muro labelling of RG-II through a copper-catalysed azide-alkyne cycloaddition reaction. CMP-Kdo synthetase inhibition and competition assays showing that Kdo and D-Ara, a precursor of Kdo, but not L-Ara, inhibit incorporation of Kdo-N3 demonstrated that incorporation of Kdo-N3 occurs in RG-II through the endogenous biosynthetic machinery of the cell. Co-localisation of Kdo-N3 labelling with the cellulose-binding dye calcofluor white demonstrated that RG-II exists throughout the primary cell wall. Additionally, after incubating plants with Kdo-N3 and an alkynated derivative of L-fucose that incorporates into rhamnogalacturonan I, co-localised fluorescence was observed in the cell wall in the elongation zone of the root. Finally, pulse labelling experiments demonstrated that metabolic click-mediated labelling with Kdo-N3 provides an efficient method to study the synthesis and redistribution of RG-II during root growth.
Collapse
Affiliation(s)
- Marie Dumont
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Arnaud Lehner
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Boris Vauzeilles
- Institut de Chimie des Substances Naturelles (ICSN) UPR CNRS 2301, 91198, Gif-sur-Yvette, France
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR CNRS 8182, Université de Paris Sud, 91405, Orsay, France
- Click4Tag, Zone Luminy Biotech, Case 922, 163 Avenue de Luminy, 13009, Marseille, France
| | - Julien Malassis
- Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Alan Marchant
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Kevin Smyth
- Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Bruno Linclau
- Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Aurélie Baron
- Institut de Chimie des Substances Naturelles (ICSN) UPR CNRS 2301, 91198, Gif-sur-Yvette, France
| | - Jordi Mas Pons
- Institut de Chimie des Substances Naturelles (ICSN) UPR CNRS 2301, 91198, Gif-sur-Yvette, France
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA, USA
| | - Damien Schapman
- PRIMACEN, IRIB, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Ludovic Galas
- PRIMACEN, IRIB, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Jean-Claude Mollet
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Patrice Lerouge
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| |
Collapse
|
23
|
Dumont M, Lehner A, Bardor M, Burel C, Vauzeilles B, Lerouxel O, Anderson CT, Mollet JC, Lerouge P. Inhibition of fucosylation of cell wall components by 2-fluoro 2-deoxy-L-fucose induces defects in root cell elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1137-51. [PMID: 26565655 DOI: 10.1111/tpj.13071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 05/21/2023]
Abstract
Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2-fluoro 2-l-fucose (2F-Fuc) reduces root growth at micromolar concentrations. The inability of 2F-Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F-Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N-linked glycans is fully inhibited by 10 μm 2F-Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F-Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan-II (RG-II). At low concentrations, 2F-Fuc induced a decrease in RG-II dimerization. Both RG-II dimerization and root growth were partially restored in 2F-Fuc-treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F-Fuc was due to a deficiency of RG-II dimerization. Closer investigation of the 2F-Fuc-induced growth phenotype demonstrated that cell division is not affected by 2F-Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG-II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG-II cross-linking, but that it might also be a signal molecule in the cell wall integrity-sensing mechanism.
Collapse
Affiliation(s)
- Marie Dumont
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Arnaud Lehner
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Muriel Bardor
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Carole Burel
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Boris Vauzeilles
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR CNRS 8182, Université de Paris Sud, 91405, Orsay, France
- Institut de Chimie des Substances Naturelles (ICSN) UPR CNRS 2301, 91198, Gif-sur-Yvette, France
- Click4Tag, Zone Luminy Biotech, Case 922, 163 Avenue de Luminy, 13009, Marseille, France
| | - Olivier Lerouxel
- Centre de Recherches sur les Macromolécules Végétales (CERMAV) - CNRS BP 53, 38041, Grenoble Cedex 9, France
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jean-Claude Mollet
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Patrice Lerouge
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| |
Collapse
|
24
|
Villalobos JA, Yi BR, Wallace IS. 2-Fluoro-L-Fucose Is a Metabolically Incorporated Inhibitor of Plant Cell Wall Polysaccharide Fucosylation. PLoS One 2015; 10:e0139091. [PMID: 26414071 PMCID: PMC4587364 DOI: 10.1371/journal.pone.0139091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/09/2015] [Indexed: 12/29/2022] Open
Abstract
The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc) analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP), suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis.
Collapse
Affiliation(s)
- Jose A. Villalobos
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada, 89557, United States of America
| | - Bo R. Yi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada, 89557, United States of America
| | - Ian S. Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, Nevada, 89557, United States of America
- * E-mail:
| |
Collapse
|
25
|
Nakagawa T, Shimada Y, Pavlova NV, Li SC, Li YT. Cloning and expression of 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase from oyster hepatopancreas†. Glycobiology 2015; 25:1431-40. [PMID: 26362869 DOI: 10.1093/glycob/cwv074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/25/2015] [Indexed: 12/31/2022] Open
Abstract
We have previously reported that oyster hepatopancreas contained three unusual α-ketoside hydrolases: (i) a 3-deoxy-d-manno-oct-2-ulosonic acid α-ketoside hydrolase (α-Kdo-ase), (ii) a 3-deoxy-D-glycero-D-galacto-non-2-ulosonic acid α-ketoside hydrolase and (iii) a bifunctional ketoside hydrolase capable of cleaving both the α-ketosides of Kdn and Neu5Ac (Kdn-sialidase). After completing the purification of Kdn-sialidase, we proceeded to clone the gene encoding this enzyme. Unexpectedly, we found that instead of expressing Kdn-sialidase, our cloned gene expressed α-Kdo-ase activity. The full-length gene, consisting of 1176-bp (392 amino acids, Mr 44,604), expressed an active recombinant α-Kdo-ase (R-α-Kdo-ase) in yeast and CHO-S cells, but not in various Escherichia coli strains. The deduced amino acid sequence contains two Asp boxes (S(277)PDDGKTW and S(328)TDQGKTW) commonly found in sialidases, but is devoid of the signature FRIP-motif of sialidase. The R-α-Kdo-ase effectively hydrolyzed the Kdo in the core-oligosaccharide of the structurally defined lipopolysaccharide (LPS), Re-LPS (Kdo(2)-Lipid A) from Salmonella minnesota R595 and E. coli D31m4. However, Rd-LPS from S. minnesota R7 that contained an extra outer core phosphorylated heptose was only slowly hydrolyzed. The complex type LPS from Neisseria meningitides A1 and M992 that contained extra 5-6 sugar units at the outer core were refractory to R-α-Kdo-ase. This R-α-Kdo-ase should become useful for studying the structure and function of Kdo-containing glycans.
Collapse
Affiliation(s)
- Tetsuto Nakagawa
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yoshimi Shimada
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nadejda V Pavlova
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Su-Chen Li
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yu-Teh Li
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
26
|
Higashiyama T, Takeuchi H. The mechanism and key molecules involved in pollen tube guidance. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:393-413. [PMID: 25621518 DOI: 10.1146/annurev-arplant-043014-115635] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During sexual reproduction of flowering plants, pollen tube guidance by pistil tissue is critical for the delivery of nonmotile sperm cells to female gametes. Multistep controls of pollen tube guidance can be divided into two phases: preovular guidance and ovular guidance. During preovular guidance, various female molecules, including stimulants for pollen germination and pollen tube growth, are provided to support tube growth toward the ovary, where the ovules are located. After entering the ovary, pollen tubes receive directional cues from their respective target ovules, including attractant peptides for precise, species-preferential attraction. Successful pollen tube guidance in the pistil requires not only nutritional and directional controls but also competency controls to make pollen tubes responsive to guidance cues, regulation to terminate growth once a pollen tube arrives at the target, and strategies to stop ovular attraction depending on the fertilization of female gametes.
Collapse
|
27
|
Funakawa H, Miwa K. Synthesis of borate cross-linked rhamnogalacturonan II. FRONTIERS IN PLANT SCIENCE 2015; 6:223. [PMID: 25954281 PMCID: PMC4404806 DOI: 10.3389/fpls.2015.00223] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/21/2015] [Indexed: 05/02/2023]
Abstract
In the present review, we describe current knowledge about synthesis of borate crosslinked rhamnogalacturonan II (RG-II) and it physiological roles. RG-II is a portion of pectic polysaccharide with high complexity, present in primary cell wall. It is composed of homogalacturonan backbone and four distinct side chains (A-D). Borate forms ester bonds with the apiosyl residues of side chain A of two RG-II monomers to generate borate dimerized RG-II, contributing for the formation of networks of pectic polysaccharides. In plant cell walls, more than 90% of RG-II are dimerized by borate under boron (B) sufficient conditions. Borate crosslinking of RG-II in primary cell walls, to our knowledge, is the only experimentally proven molecular function of B, an essential trace-element. Although abundance of RG-II and B is quite small in cell wall polysaccharides, increasing evidence supports that RG-II and its borate crosslinking are critical for plant growth and development. Significant advancement was made recently on the location and the mechanisms of RG-II synthesis and borate cross-linking. Molecular genetic studies have successfully identified key enzymes for RG-II synthesis and regulators including B transporters required for efficient formation of RG-II crosslinking and consequent normal plant growth. The present article focuses recent advances on (i) RG-II polysaccharide synthesis, (ii) occurrence of borate crosslinking and (iii) B transport for borate supply to RG-II. Molecular mechanisms underlying formation of borate RG-II crosslinking and the physiological impacts are discussed.
Collapse
Affiliation(s)
- Hiroya Funakawa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Kyoko Miwa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
- *Correspondence: Kyoko Miwa, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, North-10, West-5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
28
|
Dumont M, Lehner A, Bouton S, Kiefer-Meyer MC, Voxeur A, Pelloux J, Lerouge P, Mollet JC. The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein. ANNALS OF BOTANY 2014; 114:1177-88. [PMID: 24825296 PMCID: PMC4195553 DOI: 10.1093/aob/mcu093] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/01/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Rhamnogalacturonan-II (RG-II) is one of the pectin motifs found in the cell wall of all land plants. It contains sugars such as 2-keto-3-deoxy-d-lyxo-heptulosaric acid (Dha) and 2-keto-3-deoxy-d-manno-octulosonic acid (Kdo), and within the wall RG-II is mostly found as a dimer via a borate diester cross-link. To date, little is known regarding the biosynthesis of this motif. Here, after a brief review of our current knowledge on RG-II structure, biosynthesis and function in plants, this study explores the implications of the presence of a Golgi-localized sialyltransferase-like 2 (SIA2) protein that is possibly involved in the transfer of Dha or Kdo in the RG-II of Arabidopsis thaliana pollen tubes, a fast-growing cell type used as a model for the study of cell elongation. METHODS Two heterozygous mutant lines of arabidopsis (sia2-1+/- and qrt1 × sia2-2+/-) were investigated. sia2-2+/- was in a quartet1 background and the inserted T-DNA contained the reporter gene β-glucuronidase (GUS) under the pollen-specific promoter LAT52. Pollen germination and pollen tube phenotype and growth were analysed both in vitro and in vivo by microscopy. KEY RESULTS Self-pollination of heterozygous lines produced no homozygous plants in the progeny, which may suggest that the mutation could be lethal. Heterozygous mutants displayed a much lower germination rate overall and exhibited a substantial delay in germination (20 h of delay to reach 30 % of pollen grain germination compared with the wild type). In both lines, mutant pollen grains that were able to produce a tube had tubes that were either bursting, abnormal (swollen or dichotomous branching tip) or much shorter compared with wild-type pollen tubes. In vivo, mutant pollen tubes were restricted to the style, whereas the wild-type pollen tubes were detected at the base of the ovary. CONCLUSIONS This study highlights that the mutation in arabidopsis SIA2 encoding a sialyltransferase-like protein that may transfer Dha or Kdo on the RG-II motif has a dramatic effect on the stability of the pollen tube cell wall.
Collapse
Affiliation(s)
- Marie Dumont
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Sophie Bouton
- Laboratoire Biologie des Plantes & Innovation (BIOPI) EA3900, University of Picardie Jules Verne, 80039 Amiens, France
| | - Marie Christine Kiefer-Meyer
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Aline Voxeur
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France Institut Jean-Pierre Bourgin UMR1318 INRA-AgroParisTech, 78026 Versailles Cedex, France
| | - Jérôme Pelloux
- Laboratoire Biologie des Plantes & Innovation (BIOPI) EA3900, University of Picardie Jules Verne, 80039 Amiens, France
| | - Patrice Lerouge
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| | - Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
29
|
Heterologous expression, purification, crystallization and preliminary X-ray diffraction analysis of KDO8P synthase from Arabidopsis thaliana. Protein Expr Purif 2014; 101:133-7. [PMID: 24993790 DOI: 10.1016/j.pep.2014.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/14/2014] [Accepted: 06/21/2014] [Indexed: 11/23/2022]
Abstract
3-Deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8PS) [EC 4.1.2.16] is the first and rate-limiting enzyme in the 3-deoxy-d-manno-octulosonate (KDO) biosynthetic pathway. The enzyme is widely expressed in bacteria and plants. Their well conserved protein sequences imply a similar oligomeric arrangement. However, the reported size exclusion chromatrographic analysis suggested a species-dependent self-assembling. To clarify the discrepancy and explore the self-assembling property of KDO8PS, we expressed and purified the Arabidopsis enzyme in Escherichia coli system. The enzyme was highly purified using a two-step purification strategy including nickel affinity and size exclusion chromatography with an expected pH activity profile. The identity of the purified enzyme was confirmed by Western-blot and mass fingerprints. Further analysis by analytical ultracentrifugation indicated that both bacteria and Arabidopsis enzymes are homotetramer. Furthermore, the purified enzyme from the plant has been crystallized and a complete set of X-ray data to 2.1Å resolution has been collected.
Collapse
|
30
|
Durbak AR, Phillips KA, Pike S, O'Neill MA, Mares J, Gallavotti A, Malcomber ST, Gassmann W, McSteen P. Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. THE PLANT CELL 2014; 26:2978-95. [PMID: 25035406 PMCID: PMC4145126 DOI: 10.1105/tpc.114.125898] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/11/2014] [Accepted: 06/23/2014] [Indexed: 05/18/2023]
Abstract
The element boron (B) is an essential plant micronutrient, and B deficiency results in significant crop losses worldwide. The maize (Zea mays) tassel-less1 (tls1) mutant has defects in vegetative and inflorescence development, comparable to the effects of B deficiency. Positional cloning revealed that tls1 encodes a protein in the aquaporin family co-orthologous to known B channel proteins in other species. Transport assays show that the TLS1 protein facilitates the movement of B and water into Xenopus laevis oocytes. B content is reduced in tls1 mutants, and application of B rescues the mutant phenotype, indicating that the TLS1 protein facilitates the movement of B in planta. B is required to cross-link the pectic polysaccharide rhamnogalacturonan II (RG-II) in the cell wall, and the percentage of RG-II dimers is reduced in tls1 inflorescences, indicating that the defects may result from altered cell wall properties. Plants heterozygous for both tls1 and rotten ear (rte), the proposed B efflux transporter, exhibit a dosage-dependent defect in inflorescence development under B-limited conditions, indicating that both TLS1 and RTE function in the same biological processes. Together, our data provide evidence that TLS1 is a B transport facilitator in maize, highlighting the importance of B homeostasis in meristem function.
Collapse
Affiliation(s)
- Amanda R Durbak
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Kimberly A Phillips
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sharon Pike
- Division of Plant Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Jonathan Mares
- Department of Biological Sciences, California State University, Long Beach, California 90840
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Simon T Malcomber
- Department of Biological Sciences, California State University, Long Beach, California 90840
| | - Walter Gassmann
- Division of Plant Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| | - Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
31
|
Voxeur A, Fry SC. Glycosylinositol phosphorylceramides from Rosa cell cultures are boron-bridged in the plasma membrane and form complexes with rhamnogalacturonan II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:139-49. [PMID: 24804932 PMCID: PMC4230332 DOI: 10.1111/tpj.12547] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/15/2014] [Accepted: 04/28/2014] [Indexed: 05/18/2023]
Abstract
Boron (B) is essential for plant cell-wall structure and membrane functions. Compared with its role in cross-linking the pectic domain rhamnogalacturonan II (RG-II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts, in the membrane requirement for B. Using thin-layer chromatography and mass spectrometry, we first characterized GIPCs from Rosa cell culture. The major GIPC has one hexose residue, one hexuronic acid residue, inositol phosphate, and a ceramide moiety with a C18 trihydroxylated mono-unsaturated long-chain base and a C24 monohydroxylated saturated fatty acid. Disrupting B bridging (by B starvation in vivo or by treatment with cold dilute HCl or with excess borate in vitro) enhanced the GIPCs' extractability. As RG-II is the main B-binding site in plants, we investigated whether it could form a B-centred complex with GIPCs. Using high-voltage paper electrophoresis, we showed that addition of GIPCs decreased the electrophoretic mobility of radiolabelled RG-II, suggesting formation of a GIPC-B-RG-II complex. Last, using polyacrylamide gel electrophoresis, we showed that added GIPCs facilitate RG-II dimerization in vitro. We conclude that B plays a structural role in the plasma membrane. The disruption of membrane components by high borate may account for the phytotoxicity of excess B. Moreover, the in-vitro formation of a GIPC-B-RG-II complex gives the first molecular explanation of the wall-membrane attachment sites observed in vivo. Finally, our results suggest a role for GIPCs in the RG-II dimerization process.
Collapse
Affiliation(s)
- Aline Voxeur
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of EdinburghEdinburgh, EH9 3JH, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of EdinburghEdinburgh, EH9 3JH, UK
| |
Collapse
|
32
|
Chormova D, Messenger DJ, Fry SC. Boron bridging of rhamnogalacturonan-II, monitored by gel electrophoresis, occurs during polysaccharide synthesis and secretion but not post-secretion. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:534-46. [PMID: 24320597 PMCID: PMC4171739 DOI: 10.1111/tpj.12403] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/20/2013] [Accepted: 11/28/2013] [Indexed: 05/02/2023]
Abstract
The cell-wall pectic domain rhamnogalacturonan-II (RG-II) is cross-linked via borate diester bridges, which influence the expansion, thickness and porosity of the wall. Previously, little was known about the mechanism or subcellular site of this cross-linking. Using polyacrylamide gel electrophoresis (PAGE) to separate monomeric from dimeric (boron-bridged) RG-II, we confirmed that Pb(2+) promotes H3 BO3 -dependent dimerisation in vitro. H3 BO3 concentrations as high as 50 mm did not prevent cross-linking. For in-vivo experiments, we successfully cultured 'Paul's Scarlet' rose (Rosa sp.) cells in boron-free medium: their wall-bound pectin contained monomeric RG-II domains but no detectable dimers. Thus pectins containing RG-II domains can be held in the wall other than via boron bridges. Re-addition of H3 BO3 to 3.3 μm triggered a gradual appearance of RG-II dimer over 24 h but without detectable loss of existing monomers, suggesting that only newly synthesised RG-II was amenable to boron bridging. In agreement with this, Rosa cultures whose polysaccharide biosynthetic machinery had been compromised (by carbon starvation, respiratory inhibitors, anaerobiosis, freezing or boiling) lost the ability to generate RG-II dimers. We conclude that RG-II normally becomes boron-bridged during synthesis or secretion but not post-secretion. Supporting this conclusion, exogenous [(3) H]RG-II was neither dimerised in the medium nor cross-linked to existing wall-associated RG-II domains when added to Rosa cultures. In conclusion, in cultured Rosa cells RG-II domains have a brief window of opportunity for boron-bridging intraprotoplasmically or during secretion, but secretion into the apoplast is a point of no return beyond which additional boron-bridging does not readily occur.
Collapse
|
33
|
Tanaka N, Uraguchi S, Fujiwara T. Exogenous Boron supplementation partially rescues fertilization defect of osbor4 mutant. PLANT SIGNALING & BEHAVIOR 2014; 9:28356. [PMID: 24577486 PMCID: PMC4091482 DOI: 10.4161/psb.28356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Arabidopsis thaliana BOR1 is the first boron (B) transporter identified in the living systems. In the rice genome, there are four AtBOR1-like genes, OsBOR1, 2, 3 and 4. We have previously demonstrated that OsBOR4 is a B efflux transporter gene specifically expressed in rice pollen. OsBOR4 heterozygous lines showed abnormal segregation ratio, suggesting the significance of OsBOR4 in rice pollen tube germination/elongation process. To obtain further insights into the mechanisms underlying fertilization defects by osbor4 mutations, we examined if the mutant pollen exhibits morphological changes. The cross section of the pollen of the mutant was similar to those of the wild type. We also determined B concentrations in brown rice of three osbor4 mutants and found that B levels were comparable. These results suggest that osbor4 mutation does not affect B transport to pollen and seeds. We then examined if exogenous B supplementation can rescue segregation defect of osbor4. As reported previously, a OsBOR4 heterozygous lines showed abnormal segregation rate under the normal growth condition in this present study, too. Importantly, this abnormality in segregation was partially rescued by application of six-times higher B concentration to roots, providing further evidence that the fertilization defect of osbor4 is due to the defect in B transport process. Taken together we propose that osbor4 causes defect in B transport process during pollen germination to fertilization.
Collapse
Affiliation(s)
- Nobuhiro Tanaka
- Graduate School of Agricultural and Life Sciences; The University of Tokyo; Yayoi, Tokyo, Japan
- Correspondence to: Nobuhiro Tanaka,
| | - Shimpei Uraguchi
- Graduate School of Agricultural and Life Sciences; The University of Tokyo; Yayoi, Tokyo, Japan
- Department of Plant Physiology; University of Bayreuth; Bayreuth, Germany
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences; The University of Tokyo; Yayoi, Tokyo, Japan
| |
Collapse
|
34
|
Tanaka N, Uraguchi S, Saito A, Kajikawa M, Kasai K, Sato Y, Nagamura Y, Fujiwara T. Roles of pollen-specific boron efflux transporter, OsBOR4, in the rice fertilization process. PLANT & CELL PHYSIOLOGY 2013; 54:2011-9. [PMID: 24068795 DOI: 10.1093/pcp/pct136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana BOR1 was the first boron (B) transporter identified in living systems. There are four AtBOR1-like genes, OsBOR1, 2, 3 and 4, present in the rice genome. We characterized the activity, expression and physiological function of OsBOR4. OsBOR4 is an active efflux transporter of B. Quantitative PCR analysis and OsBOR4 promoter-green fluorescent protein (GFP) fusion revealed that OsBOR4 was both highly and specifically expressed in pollen. We obtained five Tos17 insertion mutants of osbor4. The pollen grains were viable and development of floral organs was normal in the homozygous osbor4 mutants. We observed that in all Tos17 insertion lines tested, the frequency of osbor4 homozygous plants was lower than expected in the progeny of self-fertilized heterozygous plants. These results establish that OsBOR4 is essential for normal reproductive processes. Pollen from osbor4 homozygous plants elongated fewer tubes on wild-type stigmas, and tube elongation of mutant pollen was less efficient compared with the wild-type pollen, suggesting reduced competence of osbor4 mutant pollen. The reduced competence of mutant pollen was further supported by the crosses of independent Tos17-inserted alleles of OsBOR4. Our results suggest that OsBOR4, a boron efflux transporter, is required for normal pollen germination and/or tube elongation.
Collapse
Affiliation(s)
- Nobuhiro Tanaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Smyth KM, Marchant A. Conservation of the 2-keto-3-deoxymanno-octulosonic acid (Kdo) biosynthesis pathway between plants and bacteria. Carbohydr Res 2013; 380:70-5. [DOI: 10.1016/j.carres.2013.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/02/2013] [Accepted: 07/12/2013] [Indexed: 01/22/2023]
|
36
|
Pabst M, Fischl RM, Brecker L, Morelle W, Fauland A, Köfeler H, Altmann F, Léonard R. Rhamnogalacturonan II structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:61-72. [PMID: 23802881 DOI: 10.1111/tpj.12271] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 05/08/2023]
Abstract
A paradigm regarding rhamnogalacturonans II (RGII) is their strictly conserved structure within a given plant. We developed and employed a fast structural characterization method based on chromatography and mass spectrometry, allowing analysis of RGII side chains from microgram amounts of cell wall. We found that RGII structures are much more diverse than so far described. In chain A of wild-type plants, up to 45% of the l-fucose is substituted by l-galactose, a state that is seemingly uncorrelated with RGII dimerization capacity. This led us to completely reinvestigate RGII structures of the Arabidopsis thaliana fucose-deficient mutant mur1, which provided insights into RGII chain A biosynthesis, and suggested that chain A truncation, rather than l-fucose to l-galactose substitution, is responsible for the mur1 dwarf phenotype. Mass spectrometry data for chain A coupled with NMR analysis revealed a high degree of methyl esterification of its glucuronic acid, providing a plausible explanation for the puzzling RGII antibody recognition. The β-galacturonic acid of chain A exhibits up to two methyl etherifications in an organ-specific manner. Combined with variation in the length of side chain B, this gives rise to a family of RGII structures instead of the unique structure described up to now. These findings pave the way for studies on the physiological roles of modulation of RGII composition.
Collapse
Affiliation(s)
- Martin Pabst
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Smyth KM, Mikolajek H, Werner JM, Marchant A. 2β-deoxy-Kdo is an inhibitor of the Arabidopsis thaliana CMP-2-Keto-3-deoxymanno-octulosonic acid synthetase, the enzyme required for activation of Kdo prior to incorporation into rhamnogalacturonan II. MOLECULAR PLANT 2013; 6:981-984. [PMID: 23335734 DOI: 10.1093/mp/sst011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
38
|
Mollet JC, Leroux C, Dardelle F, Lehner A. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth. PLANTS 2013; 2:107-47. [PMID: 27137369 PMCID: PMC4844286 DOI: 10.3390/plants2010107] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 01/01/2023]
Abstract
The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.
Collapse
Affiliation(s)
- Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Christelle Leroux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Flavien Dardelle
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| |
Collapse
|
39
|
Voxeur A, André A, Breton C, Lerouge P. Identification of putative rhamnogalacturonan-II specific glycosyltransferases in Arabidopsis using a combination of bioinformatics approaches. PLoS One 2012; 7:e51129. [PMID: 23272088 PMCID: PMC3522684 DOI: 10.1371/journal.pone.0051129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/31/2012] [Indexed: 01/24/2023] Open
Abstract
Rhamnogalacturonan-II (RG-II) is a complex plant cell wall polysaccharide that is composed of an α(1,4)-linked homogalacturonan backbone substituted with four side chains. It exists in the cell wall in the form of a dimer that is cross-linked by a borate di-ester. Despite its highly complex structure, RG-II is evolutionarily conserved in the plant kingdom suggesting that this polymer has fundamental functions in the primary wall organisation. In this study, we have set up a bioinformatics strategy aimed at identifying putative glycosyltransferases (GTs) involved in RG-II biosynthesis. This strategy is based on the selection of candidate genes encoding type II membrane proteins that are tightly coexpressed in both rice and Arabidopsis with previously characterised genes encoding enzymes involved in the synthesis of RG-II and exhibiting an up-regulation upon isoxaben treatment. This study results in the final selection of 26 putative Arabidopsis GTs, including 10 sequences already classified in the CAZy database. Among these CAZy sequences, the screening protocol allowed the selection of α-galacturonosyltransferases involved in the synthesis of α4-GalA oligogalacturonides present in both homogalacturonans and RG-II, and two sialyltransferase-like sequences previously proposed to be involved in the transfer of Kdo and/or Dha on the pectic backbone of RG-II. In addition, 16 non-CAZy GT sequences were retrieved in the present study. Four of them exhibited a GT-A fold. The remaining sequences harbored a GT-B like fold and a fucosyltransferase signature. Based on homologies with glycosyltransferases of known functions, putative roles in the RG-II biosynthesis are proposed for some GT candidates.
Collapse
Affiliation(s)
- Aline Voxeur
- Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biotechnologique, University of Rouen, Mont-Saint-Aignan, France
| | - Aurélie André
- Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biotechnologique, University of Rouen, Mont-Saint-Aignan, France
| | | | - Patrice Lerouge
- Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biotechnologique, University of Rouen, Mont-Saint-Aignan, France
| |
Collapse
|
40
|
Bar-Peled M, Urbanowicz BR, O’Neill MA. The Synthesis and Origin of the Pectic Polysaccharide Rhamnogalacturonan II - Insights from Nucleotide Sugar Formation and Diversity. FRONTIERS IN PLANT SCIENCE 2012; 3:92. [PMID: 22639675 PMCID: PMC3355719 DOI: 10.3389/fpls.2012.00092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/23/2012] [Indexed: 05/02/2023]
Abstract
There is compelling evidence showing that the structurally complex pectic polysaccharide rhamnogalacturonan II (RG-II) exists in the primary cell wall as a borate cross-linked dimer and that this dimer is required for the assembly of a functional wall and for normal plant growth and development. The results of several studies have also established that RG-II structure and cross-linking is conserved in vascular plants and that RG-II likely appeared early in the evolution of land plants. Two features that distinguish RG-II from other plant polysaccharides are that RG-II is composed of 13 different glycoses linked to each other by up to 22 different glycosidic linkages and that RG-II is the only polysaccharide known to contain both apiose and aceric acid. Thus, one key event in land plant evolution was the emergence of genes encoding nucleotide sugar biosynthetic enzymes that generate the activated forms of apiose and aceric acid required for RG-II synthesis. Many of the genes involved in the generation of the nucleotide sugars used for RG-II synthesis have been functionally characterized. By contrast, only one glycosyltransferase involved in the assembly of RG-II has been identified. Here we provide an overview of the formation of the activated sugars required for RG-II synthesis and point to the possible cellular and metabolic processes that could be involved in assembling and controlling the formation of a borate cross-linked RG-II molecule. We discuss how nucleotide sugar synthesis is compartmentalized and how this may control the flux of precursors to facilitate and regulate the formation of RG-II.
Collapse
Affiliation(s)
- Maor Bar-Peled
- Department of Plant Biology, Complex Carbohydrate Research, The University of GeorgiaAthens, GA, USA
- *Correspondence: Maor Bar-Peled, Department of Plant Biology, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA. e-mail:
| | | | - Malcolm A. O’Neill
- Complex Carbohydrate Research Center, The University of GeorgiaAthens, GA, USA
| |
Collapse
|
41
|
Pectin Rhamnogalacturonan II: On the “Small Stem with Four Branches” in the Primary Cell Walls of Plants. ACTA ACUST UNITED AC 2011. [DOI: 10.1155/2011/964521] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rhamnogalacturonan II (RG-II) is a type of block copolymer of complex pectins that represents a quantitatively minor component of the primary cell walls of land (vascular) plants. The structural composition of RG-II is almost totally sequenced and appears to be remarkably conserved in all tracheophytes so far examined. The backbone of RG-II, released from complex (cell wall) pectins by endo-polygalacturonase (Endo-PG) treatment, has been found to contain up to 15 (1→4)-linked-α-D-GalpA units, some of which carry four well-defined side chains, often referred to as A-, B-, C-, and D-side chains. Nevertheless, the relative locations on the backbone of these four branches, especially the A chain, remain to be ascertained. A combination of different data suggests that neither the terminal nonreducing GalA nor the contiguous GalA unit is likely to be the branching point of the A chain, but probably the ninth GalA residue from the reducing end, assuming a minimum backbone length of 11 (1→4)-linked-α-d-GalpA. The latest reports on RG-II are here highlighted, with a provided update for the macrostructure and array of functionalities.
Collapse
|
42
|
Kobayashi M, Kouzu N, Inami A, Toyooka K, Konishi Y, Matsuoka K, Matoh T. Characterization of Arabidopsis CTP:3-Deoxy-d-manno-2-Octulosonate Cytidylyltransferase (CMP-KDO synthetase), the Enzyme that Activates KDO During Rhamnogalacturonan II Biosynthesis. ACTA ACUST UNITED AC 2011; 52:1832-43. [DOI: 10.1093/pcp/pcr120] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Yapo BM. Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.05.065] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Voxeur A, Gilbert L, Rihouey C, Driouich A, Rothan C, Baldet P, Lerouge P. Silencing of the GDP-d-mannose 3,5-Epimerase Affects the Structure and Cross-linking of the Pectic Polysaccharide Rhamnogalacturonan II and Plant Growth in Tomato. J Biol Chem 2011; 286:8014-8020. [DOI: 10.1074/jbc.m110.198614] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
45
|
Bar-Peled M, O'Neill MA. Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:127-55. [PMID: 21370975 DOI: 10.1146/annurev-arplant-042110-103918] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nucleotide sugars are the universal sugar donors for the formation of polysaccharides, glycoproteins, proteoglycans, glycolipids, and glycosylated secondary metabolites. At least 100 genes encode proteins involved in the formation of nucleotide sugars. These nucleotide sugars are formed using the carbohydrate derived from photosynthesis, the sugar generated by hydrolyzing translocated sucrose, the sugars released from storage carbohydrates, the salvage of sugars from glycoproteins and glycolipids, the recycling of sugars released during primary and secondary cell wall restructuring, and the sugar generated during plant-microbe interactions. Here we emphasize the importance of the salvage of sugars released from glycans for the formation of nucleotide sugars. We also outline how recent studies combining biochemical, genetic, molecular and cellular approaches have led to an increased appreciation of the role nucleotide sugars in all aspects of plant growth and development. Nevertheless, our understanding of these pathways at the single cell level is far from complete.
Collapse
Affiliation(s)
- Maor Bar-Peled
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
46
|
Haarmann R, Ibrahim M, Stevanovic M, Bredemeier R, Schleiff E. The properties of the outer membrane localized Lipid A transporter LptD. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454124. [PMID: 21339611 DOI: 10.1088/0953-8984/22/45/454124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Gram-negative bacteria are surrounded by a cell wall including the outer membrane. The outer membrane is composed of two distinct monolayers where the outer layer contains lipopolysaccharides (LPS) with the non-phospholipid Lipid A as the core. The synthesis of Lipid A is initiated in the cytosol and thereby the molecule has to be transported across the inner and outer membranes. The β-barrel lipopolysaccharide-assembly protein D (LptD) was discovered to be involved in the transfer of Lipid A into the outer membrane of gram-negative bacteria. At present the molecular procedure of lipid transfer across the outer membrane remains unknown. Here we approached the functionality of the transfer system by an electrophysiological analysis of the outer membrane protein from Escherichia coli named ecLptD. In vitro the protein shows cation selectivity and has an estimated pore diameter of about 1.8 nm. Addition of Lipid A induces a transition of the open state to a sub-conductance state with two independent off-rates, which might suggest that LptD is able to bind and transport the molecule in vitro. To generalize our findings with respect to the Lipid A transport system of other gram-negative bacteria we have explored the existence of the proteins involved in this pathway by bioinformatic means. We were able to identify the membrane-inserted components of the Lipid A transport system in all gram-negative bacteria, whereas the periplasmic components appear to be species-specific. The LptD proteins of different bacteria are characterized by their periplasmic N-terminal domain and a C-terminal barrel region. The latter shows distinct sequence properties, particularly in LptD proteins of cyanobacteria, and this specific domain can be found in plant proteins as well. By electrophysiological experiments on LptD from Anabaena sp. PCC 7120 we are able to confirm the functional relation of anaLptD to Lipid A transport.
Collapse
Affiliation(s)
- Raimund Haarmann
- JWGU Frankfurt/Main, Cluster of Excellence Macromolecular Complexes, Center of Membrane Proteomics, Department of Biosciences, Molecular Cell Biology, Max-von-Laue Straße 9, D-60439 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
47
|
Chalabaev S, Kim TH, Ross R, Derian A, Kasper DL. 3-Deoxy-D-manno-octulosonic acid (Kdo) hydrolase identified in Francisella tularensis, Helicobacter pylori, and Legionella pneumophila. J Biol Chem 2010; 285:34330-6. [PMID: 20801884 PMCID: PMC2966046 DOI: 10.1074/jbc.m110.166314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/19/2010] [Indexed: 11/06/2022] Open
Abstract
3-Deoxy-D-manno-octulosonic acid (Kdo) is an eight-carbon sugar ubiquitous in Gram-negative bacterial lipopolysaccharides (LPS). Although its biosynthesis is well described, no protein has yet been identified as a Kdo hydrolase. However, Kdo hydrolase enzymatic activity has been detected in membranes of Helicobacter pylori and Francisella tularensis and may be responsible for the removal of side-chain Kdo from the LPS core saccharides. We now report the identification of genes encoding a Kdo hydrolase in F. tularensis Schu S4 and live vaccine strain strains, in H. pylori 26695 strain and in Legionella pneumophila Philadelphia 1 strain. We have renamed the genes kdhA for keto-deoxyoctulosonate hydrolase A. Deletion of kdhA abolished Kdo hydrolase activity in membranes of F. tularensis live vaccine strain. The F. tularensis kdhA mutant synthesized a core oligosaccharide containing a Kdo disaccharide with one of the Kdo residues being a terminal side chain. This side-chain Kdo monosaccharide was absent in the wild-type core oligosaccharide. Expression in Escherichia coli of recombinant KdhA from F. tularensis, H. pylori, and L. pneumophila resulted in a reduction of membrane-associated side-chain Kdo. The identification of this previously faceless enzyme will accelerate study of the biosynthetic basis and biologic impact for postbiosynthetic LPS structural modification.
Collapse
Affiliation(s)
- Sabina Chalabaev
- From the Department of Microbiology and Molecular Genetics and
- the Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Tae-Hyun Kim
- From the Department of Microbiology and Molecular Genetics and
- the Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Robin Ross
- From the Department of Microbiology and Molecular Genetics and
- the Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Alec Derian
- From the Department of Microbiology and Molecular Genetics and
| | - Dennis L. Kasper
- From the Department of Microbiology and Molecular Genetics and
- the Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
48
|
Wang Z, Wang Z, Shi L, Wang L, Xu F. Proteomic alterations of Brassica napus root in response to boron deficiency. PLANT MOLECULAR BIOLOGY 2010; 74:265-78. [PMID: 20694506 DOI: 10.1007/s11103-010-9671-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/26/2010] [Indexed: 05/02/2023]
Abstract
Boron (B) deficiency is a worldwide problem, and Brassica napus is one of the most sensitive crops to B deficiency. To better understand the B starvation response of Brassica napus, we conducted a comparative proteomic analysis of seedling stage Brassica napus root between B-sufficient and B-limited conditions: 45 differentially expressed proteins were successfully identified by 2-DE coupled with MALDI-TOF/TOF-MS and LTQ-ESI-MS/MS analysis. Among these proteins, 10 were down-regulated and 35 were up-regulated under B-limited condition. Combining GO and KEGG analyses with data from previous reports, proteins were categorized into several functional groups, including antioxidant and detoxification, defense-related proteins, signaling and regulation, carbohydrate and energy metabolism, amino acid and fatty acid metabolism, protein translation and degradation, cell wall structure, and transporter. The genes of selected proteins were analyzed by quantitative RT-PCR. Our results provide novel information for better understanding the physiological and biochemical responses to B deficiency in plants.
Collapse
Affiliation(s)
- Zhifang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | | | | | | | | |
Collapse
|
49
|
Deng Y, Wang W, Li WQ, Xia C, Liao HZ, Zhang XQ, Ye D. MALE GAMETOPHYTE DEFECTIVE 2, encoding a sialyltransferase-like protein, is required for normal pollen germination and pollen tube growth in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:829-43. [PMID: 20738727 DOI: 10.1111/j.1744-7909.2010.00963.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sialyltransferases (SiaTs) exist widely in vertebrates and play important roles in a variety of biological processes. In plants, several genes have also been identified to encode the proteins that share homology with the vertebrate SiaTs. However, very little is known about their functions in plants. Here we report the identification and characterization of a novel Arabidopsis gene, MALE GAMETOPHYTE DEFECTIVE 2 (MGP2) that encodes a sialyltransferase-like protein. MGP2 was expressed in all tissues including pollen grains and pollen tubes. The MGP2 protein was targeted to Golgi apparatus. Knockout of MGP2 significantly inhibited the pollen germination and retarded pollen tube growth in vitro and in vivo, but did not affect female gametophytic functions. These results suggest that the sialyltransferase-like protein MGP2 is important for normal pollen germination and pollen tube growth, giving a novel insight into the biological roles of the sialyltransferase-like proteins in plants.
Collapse
Affiliation(s)
- Yi Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Dardelle F, Lehner A, Ramdani Y, Bardor M, Lerouge P, Driouich A, Mollet JC. Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall. PLANT PHYSIOLOGY 2010; 153:1563-76. [PMID: 20547702 PMCID: PMC2923879 DOI: 10.1104/pp.110.158881] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
During plant sexual reproduction, pollen germination and tube growth require development under tight spatial and temporal control for the proper delivery of the sperm cells to the ovules. Pollen tubes are fast growing tip-polarized cells able to perceive multiple guiding signals emitted by the female organ. Adhesion of pollen tubes via cell wall molecules may be part of the battery of signals. In order to study these processes, we investigated the cell wall characteristics of in vitro-grown Arabidopsis (Arabidopsis thaliana) pollen tubes using a combination of immunocytochemical and biochemical techniques. Results showed a well-defined localization of cell wall epitopes. Low esterified homogalacturonan epitopes were found mostly in the pollen tube wall back from the tip. Xyloglucan and arabinan from rhamnogalacturonan I epitopes were detected along the entire tube within the two wall layers and the outer wall layer, respectively. In contrast, highly esterified homogalacturonan and arabinogalactan protein epitopes were found associated predominantly with the tip region. Chemical analysis of the pollen tube cell wall revealed an important content of arabinosyl residues (43%) originating mostly from (1-->5)-alpha-L-arabinan, the side chains of rhamnogalacturonan I. Finally, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of endo-glucanase-sensitive xyloglucan showed mass spectra with two dominant oligosaccharides (XLXG/XXLG and XXFG), both being mono O-acetylated, and accounting for over 68% of the total ion signals. These findings demonstrate that the Arabidopsis pollen tube wall has its own characteristics compared with other cell types in the Arabidopsis sporophyte. These structural features are discussed in terms of pollen tube cell wall biosynthesis and growth dynamics.
Collapse
|