1
|
Sussmilch FC, Maierhofer T, Herrmann J, Voss LJ, Lind C, Messerer M, Müller HM, Bünner MS, Ache P, Mayer KFX, Becker D, Roelfsema MRG, Geiger D, Schultz J, Hedrich R. Gaining or cutting SLAC: the evolution of plant guard cell signalling pathways. THE NEW PHYTOLOGIST 2024. [PMID: 39370767 DOI: 10.1111/nph.20172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024]
Abstract
The evolution of adjustable stomatal pores, enabling CO2 acquisition, was one of the most significant events in the development of life on land. Here, we investigate how the guard cell signalling pathways that regulate stomatal movements evolved. We compare fern and angiosperm guard cell transcriptomes and physiological responses, and examine the functionality of ion channels from diverse plant species. We find that, despite conserved expression in guard cells, fern anion channels from the SLAC/SLAH family are not activated by the same abscisic acid (ABA) pathways that provoke stomatal closure in angiosperms. Accordingly, we find an insensitivity of fern stomata to ABA. Moreover, our analysis points to a complex evolutionary history, featuring multiple gains and/or losses of SLAC activation mechanisms, as these channels were recruited to a role in stomatal closure. Our results show that the guard cells of flowering and nonflowering plants share similar core features, with lineage-specific and ecological niche-related adaptations, likely underlying differences in behaviour.
Collapse
Affiliation(s)
- Frances C Sussmilch
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, 7001, TAS, Australia
| | - Tobias Maierhofer
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
| | - Johannes Herrmann
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
| | - Lena J Voss
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
| | - Christof Lind
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
| | - Maxim Messerer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Heike M Müller
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
| | - Maria S Bünner
- Department of Bioinformatics, Biozentrum, University of Würzburg, Am Hubland, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, Würzburg, D-97074, Germany
- Center for Computational and Theoretical Biology, University of Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, Würzburg, D-97074, Germany
| | - Peter Ache
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Alte Akademie 8, Freising, 85354, Germany
| | - Dirk Becker
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
| | - M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
| | - Dietmar Geiger
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
| | - Jörg Schultz
- Department of Bioinformatics, Biozentrum, University of Würzburg, Am Hubland, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, Würzburg, D-97074, Germany
- Center for Computational and Theoretical Biology, University of Würzburg, Klara-Oppenheimer-Weg 32, Campus Hubland Nord, Würzburg, D-97074, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Platz 2, Würzburg, D-97082, Germany
- College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Song J, Yan J, Sun B, Chen B, Zhu X, Wei H, Bao Z, Ma F, Zhang W, Yang H. Abscisic acid regulates Cl - efflux via the ABI5-ZAT10-SLAH3 module in chloride-stressed Malus hupehensis. HORTICULTURE RESEARCH 2024; 11:uhae200. [PMID: 39257543 PMCID: PMC11387005 DOI: 10.1093/hr/uhae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/11/2024] [Indexed: 09/12/2024]
Abstract
The overload of Cl- typically causes cell damage and death in plants, especially in Cl--sensitive crops. Abscisic acid (ABA) is a stress-induced phytohormone that can alleviate chloride stress by reducing Cl- accumulation; however, the mechanism is not clear. Here, we found that the application of ABA elevated Cl- efflux from roots and reduced membrane damage and cell death in chloride-stressed Malus hupehensis. MhSLAH3, a homolog of the slow anion channel from M. hupehensis, encoded a channel controlling Cl- efflux and was induced by both chloride and ABA. MhSLAH3 overexpression accelerated Cl- efflux, which enhanced the tolerance of M. hupehensis to chloride stress, and retarded chloride-induced cell death. However, the suppression of MhSLAH3 partially offset the acceleration effect of ABA on Cl- efflux. MhZAT10L was then identified as a C2H2-type transcription factor upstream of MhSLAH3, repressing MhSLAH3 transcription under chloride stress. The suppression of MhZAT10L accelerated Cl- efflux by releasing suppressed MhSLAH3, but MhZAT10L overexpression counteracted the effects of ABA on Cl- efflux. MhABI5 promoted Cl- efflux mediated by MhSLAH3 due to induction by ABA and transcriptional repression of MhZAT10L, but this function of MhABI5 was reversed by MhZAT10L overexpression. The suppression of MhABI5 diminished the positive effects of ABA on Cl- efflux and retarding cell death. Thus, ABA repressed MhZAT10L transcription by activating MhABI5, further releasing MhSLAH3 to accelerate Cl- efflux. These findings provide a new evidence of ABA regulation of Cl- efflux.
Collapse
Affiliation(s)
- Jianfei Song
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai'an, 271018, Shandong, China
| | - Junhong Yan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai'an, 271018, Shandong, China
| | - Baozhen Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai'an, 271018, Shandong, China
| | - Bing Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai'an, 271018, Shandong, China
| | - Xiaoyue Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai'an, 271018, Shandong, China
| | - Hongcai Wei
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai'an, 271018, Shandong, China
| | - Zhilong Bao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Fangfang Ma
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Weiwei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai'an, 271018, Shandong, China
| | - Hongqiang Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai'an, 271018, Shandong, China
| |
Collapse
|
3
|
Li J, Xu CQ, Song LY, Guo ZJ, Zhang LD, Tang HC, Wang JC, Song SW, Liu JW, Zhong YH, Chi BJ, Zhu XY, Zheng HL. Integrative analysis of transcriptome and metabolome reveal the differential tolerance mechanisms to low and high salinity in the roots of facultative halophyte Avicennia marina. TREE PHYSIOLOGY 2024; 44:tpae082. [PMID: 38976033 DOI: 10.1093/treephys/tpae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Mangroves perform a crucial ecological role along the tropical and subtropical coastal intertidal zone where salinity fluctuation occurs frequently. However, the differential responses of mangrove plant at the combined transcriptome and metabolome level to variable salinity are not well documented. In this study, we used Avicennia marina (Forssk.) Vierh., a pioneer species of mangrove wetlands and one of the most salt-tolerant mangroves, to investigate the differential salt tolerance mechanisms under low and high salinity using inductively coupled plasma-mass spectrometry, transcriptomic and metabolomic analysis. The results showed that HAK8 was up-regulated and transported K+ into the roots under low salinity. However, under high salinity, AKT1 and NHX2 were strongly induced, which indicated the transport of K+ and Na+ compartmentalization to maintain ion homeostasis. In addition, A. marina tolerates low salinity by up-regulating ABA signaling pathway and accumulating more mannitol, unsaturated fatty acids, amino acids' and L-ascorbic acid in the roots. Under high salinity, A. marina undergoes a more drastic metabolic network rearrangement in the roots, such as more L-ascorbic acid and oxiglutatione were up-regulated, while carbohydrates, lipids and amino acids were down-regulated in the roots, and, finally, glycolysis and TCA cycle were promoted to provide more energy to improve salt tolerance. Our findings suggest that the major salt tolerance traits in A. marina can be attributed to complex regulatory and signaling mechanisms, and show significant differences between low and high salinity.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Chao-Qun Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030000, China
| | - Han-Chen Tang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Ji-Cheng Wang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Shi-Wei Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Jing-Wen Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - You-Hui Zhong
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Bing-Jie Chi
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Xue-Yi Zhu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
4
|
Thiruvengadam R, Venkidasamy B, Easwaran M, Chi HY, Thiruvengadam M, Kim SH. Dynamic interplay of reactive oxygen and nitrogen species (ROS and RNS) in plant resilience: unveiling the signaling pathways and metabolic responses to biotic and abiotic stresses. PLANT CELL REPORTS 2024; 43:198. [PMID: 39023775 DOI: 10.1007/s00299-024-03281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
KEY MESSAGE Plants respond to environmental challenges by producing reactive species such as ROS and RNS, which play critical roles in signaling pathways that lead to adaptation and survival strategies. Understanding these pathways, as well as their detection methods and effects on plant development and metabolism, provides insight into increasing crop tolerance to combined stresses. Plants encounter various environmental stresses (abiotic and biotic) that affect plant growth and development. Plants sense biotic and abiotic stresses by producing different molecules, including reactive species, that act as signaling molecules and stimulate secondary messengers and subsequent gene transcription. Reactive oxygen and nitrogen species (ROS and RNS) are produced in both physiological and pathological conditions in the plasma membranes, chloroplasts, mitochondria, and endoplasmic reticulum. Various techniques, including spectroscopy, chromatography, and fluorescence methods, are used to detect highly reactive, short-half-life ROS and RNS either directly or indirectly. In this review, we highlight the roles of ROS and RNS in seed germination, root development, senescence, mineral nutrition, and post-harvest control. In addition, we provide information on the specialized metabolism involved in plant growth and development. Secondary metabolites, including alkaloids, flavonoids, and terpenoids, are produced in low concentrations in plants for signaling and metabolism. Strategies for improving crop performance under combined drought and pathogen stress conditions are discussed in this review.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, Chennai, 600077, India
| | - Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, Chennai, 600077, India
| | - Hee Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea.
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Rajappa S, Krishnamurthy P, Huang H, Yu D, Friml J, Xu J, Kumar PP. The translocation of a chloride channel from the Golgi to the plasma membrane helps plants adapt to salt stress. Nat Commun 2024; 15:3978. [PMID: 38729926 PMCID: PMC11087495 DOI: 10.1038/s41467-024-48234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
A key mechanism employed by plants to adapt to salinity stress involves maintaining ion homeostasis via the actions of ion transporters. While the function of cation transporters in maintaining ion homeostasis in plants has been extensively studied, little is known about the roles of their anion counterparts in this process. Here, we describe a mechanism of salt adaptation in plants. We characterized the chloride channel (CLC) gene AtCLCf, whose expression is regulated by WRKY transcription factor under salt stress in Arabidopsis thaliana. Loss-of-function atclcf seedlings show increased sensitivity to salt, whereas AtCLCf overexpression confers enhanced resistance to salt stress. Salt stress induces the translocation of GFP-AtCLCf fusion protein to the plasma membrane (PM). Blocking AtCLCf translocation using the exocytosis inhibitor brefeldin-A or mutating the small GTPase gene AtRABA1b/BEX5 (RAS GENES FROM RAT BRAINA1b homolog) increases salt sensitivity in plants. Electrophysiology and liposome-based assays confirm the Cl-/H+ antiport function of AtCLCf. Therefore, we have uncovered a mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of AtCLCf to the PM, thus facilitating Cl- removal at the roots, and increasing the plant's salinity tolerance.
Collapse
Affiliation(s)
- Sivamathini Rajappa
- Department of Biological Sciences and Research Centre on Sustainable Urban Farming, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Pannaga Krishnamurthy
- Department of Biological Sciences and Research Centre on Sustainable Urban Farming, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
- NUS Environmental Research Institute, National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Hua Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Electrophysiology Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore: Level 5, Centre for Life Sciences, 28 Medical Drive, Singapore, 117456, Singapore
- Cardiovascular Diseases Program, National University of Singapore, 14 Medical Drive, MD6, #08-01, Singapore, 117599, Singapore
| | - Dejie Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Electrophysiology Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore: Level 5, Centre for Life Sciences, 28 Medical Drive, Singapore, 117456, Singapore
- Cardiovascular Diseases Program, National University of Singapore, 14 Medical Drive, MD6, #08-01, Singapore, 117599, Singapore
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria) Am Campus 1, 3400, Klosterneuburg, Austria
| | - Jian Xu
- Department of Plant Systems Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Huygens Building, Heyendaalseweg 135, 6500 AJ, Nijmegen, The Netherlands
| | - Prakash P Kumar
- Department of Biological Sciences and Research Centre on Sustainable Urban Farming, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- NUS Environmental Research Institute, National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore.
| |
Collapse
|
6
|
Li S, Wei L, Gao Q, Xu M, Wang Y, Lin Z, Holford P, Chen ZH, Zhang L. Molecular and phylogenetic evidence of parallel expansion of anion channels in plants. PLANT PHYSIOLOGY 2024; 194:2533-2548. [PMID: 38142233 DOI: 10.1093/plphys/kiad687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023]
Abstract
Aluminum-activated malate transporters (ALMTs) and slow anion channels (SLACs) are important in various physiological processes in plants, including stomatal regulation, nutrient uptake, and in response to abiotic stress such as aluminum toxicity. To understand their evolutionary history and functional divergence, we conducted phylogenetic and expression analyses of ALMTs and SLACs in green plants. Our findings from phylogenetic studies indicate that ALMTs and SLACs may have originated from green algae and red algae, respectively. The ALMTs of early land plants and charophytes formed a monophyletic clade consisting of three subgroups. A single duplication event of ALMTs was identified in vascular plants and subsequent duplications into six clades occurred in angiosperms, including an identified clade, 1-1. The ALMTs experienced gene number losses in clades 1-1 and 2-1 and expansions in clades 1-2 and 2-2b. Interestingly, the expansion of clade 1-2 was also associated with higher expression levels compared to genes in clades that experienced apparent loss. SLACs first diversified in bryophytes, followed by duplication in vascular plants, giving rise to three distinct clades (I, II, and III), and clade II potentially associated with stomatal control in seed plants. SLACs show losses in clades II and III without substantial expansion in clade I. Additionally, ALMT clade 2-2 and SLAC clade III contain genes specifically expressed in reproductive organs and roots in angiosperms, lycophytes, and mosses, indicating neofunctionalization. In summary, our study demonstrates the evolutionary complexity of ALMTs and SLACs, highlighting their crucial role in the adaptation and diversification of vascular plants.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Lanlan Wei
- College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiang Gao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Min Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St.Louis, MO 63104, USA
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Liangsheng Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| |
Collapse
|
7
|
Yuan D, Wu X, Jiang X, Gong B, Gao H. Types of Membrane Transporters and the Mechanisms of Interaction between Them and Reactive Oxygen Species in Plants. Antioxidants (Basel) 2024; 13:221. [PMID: 38397819 PMCID: PMC10886204 DOI: 10.3390/antiox13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Membrane transporters are proteins that mediate the entry and exit of substances through the plasma membrane and organellar membranes and are capable of recognizing and binding to specific substances, thereby facilitating substance transport. Membrane transporters are divided into different types, e.g., ion transporters, sugar transporters, amino acid transporters, and aquaporins, based on the substances they transport. These membrane transporters inhibit reactive oxygen species (ROS) generation through ion regulation, sugar and amino acid transport, hormone induction, and other mechanisms. They can also promote enzymatic and nonenzymatic reactions in plants, activate antioxidant enzyme activity, and promote ROS scavenging. Moreover, membrane transporters can transport plant growth regulators, solute proteins, redox potential regulators, and other substances involved in ROS metabolism through corresponding metabolic pathways, ultimately achieving ROS homeostasis in plants. In turn, ROS, as signaling molecules, can affect the activity of membrane transporters under abiotic stress through collaboration with ions and involvement in hormone metabolic pathways. The research described in this review provides a theoretical basis for improving plant stress resistance, promoting plant growth and development, and breeding high-quality plant varieties.
Collapse
Affiliation(s)
| | | | | | | | - Hongbo Gao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (D.Y.); (X.W.); (X.J.); (B.G.)
| |
Collapse
|
8
|
Yang Z, Qiao Y, Konakalla NC, Strøbech E, Harris P, Peschel G, Agler-Rosenbaum M, Weber T, Andreasson E, Ding L. Streptomyces alleviate abiotic stress in plant by producing pteridic acids. Nat Commun 2023; 14:7398. [PMID: 37968347 PMCID: PMC10652019 DOI: 10.1038/s41467-023-43177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
Soil microbiota can confer fitness advantages to plants and increase crop resilience to drought and other abiotic stressors. However, there is little evidence on the mechanisms correlating a microbial trait with plant abiotic stress tolerance. Here, we report that Streptomyces effectively alleviate drought and salinity stress by producing spiroketal polyketide pteridic acid H (1) and its isomer F (2), both of which promote root growth in Arabidopsis at a concentration of 1.3 nM under abiotic stress. Transcriptomics profiles show increased expression of multiple stress responsive genes in Arabidopsis seedlings after pteridic acids treatment. We confirm in vivo a bifunctional biosynthetic gene cluster for pteridic acids and antimicrobial elaiophylin production. We propose it is mainly disseminated by vertical transmission and is geographically distributed in various environments. This discovery reveals a perspective for understanding plant-Streptomyces interactions and provides a promising approach for utilising beneficial Streptomyces and their secondary metabolites in agriculture to mitigate the detrimental effects of climate change.
Collapse
Affiliation(s)
- Zhijie Yang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | - Yijun Qiao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | - Naga Charan Konakalla
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, SE-230 53, Alnarp, Sweden
| | - Emil Strøbech
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Søltofts Plads, Building 206, 2800 Kgs, Lyngby, Denmark
| | - Gundela Peschel
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Miriam Agler-Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, Denmark
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, SE-230 53, Alnarp, Sweden
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
9
|
Dutta D. Interplay between membrane proteins and membrane protein-lipid pertaining to plant salinity stress. Cell Biochem Funct 2023. [PMID: 37158622 DOI: 10.1002/cbf.3798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
High salinity in agricultural lands is one of the predominant issues limiting agricultural yields. Plants have developed several mechanisms to withstand salinity stress, but the mechanisms are not effective enough for most crops to prevent and persist the salinity stress. Plant salt tolerance pathways involve membrane proteins that have a crucial role in sensing and mitigating salinity stress. Due to a strategic location interfacing two distinct cellular environments, membrane proteins can be considered checkpoints to the salt tolerance pathways in plants. Related membrane proteins functions include ion homeostasis, osmosensing or ion sensing, signal transduction, redox homeostasis, and small molecule transport. Therefore, modulating plant membrane proteins' function, expression, and distribution can improve plant salt tolerance. This review discusses the membrane protein-protein and protein-lipid interactions related to plant salinity stress. It will also highlight the finding of membrane protein-lipid interactions from the context of recent structural evidence. Finally, the importance of membrane protein-protein and protein-lipid interaction is discussed, and a future perspective on studying the membrane protein-protein and protein-lipid interactions to develop strategies for improving salinity tolerance is proposed.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
10
|
Banik S, Dutta D. Membrane Proteins in Plant Salinity Stress Perception, Sensing, and Response. J Membr Biol 2023; 256:109-124. [PMID: 36757456 DOI: 10.1007/s00232-023-00279-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Plants have several mechanisms to endure salinity stress. The degree of salt tolerance varies significantly among different terrestrial crops. Proteins at the plant's cell wall and membrane mediate different physiological roles owing to their critical positioning between two distinct environments. A specific membrane protein is responsible for a single type of activity, such as a specific group of ion transport or a similar group of small molecule binding to exert multiple cellular effects. During salinity stress in plants, membrane protein functions: ion homeostasis, signal transduction, redox homeostasis, and solute transport are essential for stress perception, signaling, and recovery. Therefore, comprehensive knowledge about plant membrane proteins is essential to modulate crop salinity tolerance. This review gives a detailed overview of the membrane proteins involved in plant salinity stress highlighting the recent findings. Also, it discusses the role of solute transporters, accessory polypeptides, and proteins in salinity tolerance. Finally, some aspects of membrane proteins are discussed with potential applications to developing salt tolerance in crops.
Collapse
Affiliation(s)
- Sanhita Banik
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
11
|
Carillo P, Rouphael Y. Nitrate Uptake and Use Efficiency: Pros and Cons of Chloride Interference in the Vegetable Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:899522. [PMID: 35783949 PMCID: PMC9244799 DOI: 10.3389/fpls.2022.899522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/20/2022] [Indexed: 05/29/2023]
Abstract
Over the past five decades, nitrogen (N) fertilization has been an essential tool for boosting crop productivity in agricultural systems. To avoid N pollution while preserving the crop yields and profit margins for farmers, the scientific community is searching for eco-sustainable strategies aimed at increasing plants' nitrogen use efficiency (NUE). The present article provides a refined definition of the NUE based on the two important physiological factors (N-uptake and N-utilization efficiency). The diverse molecular and physiological mechanisms underlying the processes of N assimilation, translocation, transport, accumulation, and reallocation are revisited and critically discussed. The review concludes by examining the N uptake and NUE in tandem with chloride stress and eustress, the latter being a new approach toward enhancing productivity and functional quality of the horticultural crops, particularly facilitated by soilless cultivation.
Collapse
Affiliation(s)
- Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Cope JE, Norton GJ, George TS, Newton AC. Evaluating Variation in Germination and Growth of Landraces of Barley ( Hordeum vulgare L.) Under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:863069. [PMID: 35783948 PMCID: PMC9245355 DOI: 10.3389/fpls.2022.863069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Ongoing climate change is resulting in increasing areas of salinity affected soils, rising saline groundwater and droughts resulting in irrigation with brackish water. This leads to increased salinity stress in crops that are already grown on marginal agricultural lands, such as barley. Tolerance to salinity stress is limited in the elite barley cultivar pools, but landraces of barley hold potential sources of tolerance due to their continuous selection on marginal lands. This study analyzed 140 heritage cultivars and landrace lines of barley, including 37 Scottish Bere lines that were selected from coastal regions, to screen for tolerance to salinity stress. Tolerance to salinity stress was screened by looking at the germination speed and the early root growth during germination, and the pre-maturity biomass accumulation during early growth stages. Results showed that most lines increased germination time, and decreased shoot biomass and early root growth with greater salinity stress. Elite cultivars showed increased response to the salinity, compared to the landrace lines. Individual Bere and landrace lines showed little to no effect of increased salinity in one or more experiments, one line showed high salinity tolerance in all experiments-Bere 49 A 27 Shetland. A Genome Wide Association Screening identified a number of genomic regions associated with increased tolerance to salinity stress. Two chromosomal regions were found, one associated with shoot biomass on 5HL, and another associated with early root growth, in each of the salinities, on 3HS. Within these regions a number of promising candidate genes were identified. Further analysis of these new regions and candidate genes should be undertaken, along with field trials, to identify targets for future breeding for salinity tolerance.
Collapse
Affiliation(s)
- Jonathan E. Cope
- The James Hutton Institute, Dundee, United Kingdom
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gareth J. Norton
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | |
Collapse
|
13
|
Kashtoh H, Baek KH. Structural and Functional Insights into the Role of Guard Cell Ion Channels in Abiotic Stress-Induced Stomatal Closure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122774. [PMID: 34961246 PMCID: PMC8707303 DOI: 10.3390/plants10122774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
A stomatal pore is formed by a pair of specialized guard cells and serves as a major gateway for water transpiration and atmospheric CO2 influx for photosynthesis in plants. These pores must be tightly controlled, as inadequate CO2 intake and excessive water loss are devastating for plants. When the plants are exposed to extreme weather conditions such as high CO2 levels, O3, low air humidity, and drought, the turgor pressure of the guard cells exhibits an appropriate response against these stresses, which leads to stomatal closure. This phenomenon involves a complex network of ion channels and their regulation. It is well-established that the turgor pressure of guard cells is regulated by ions transportation across the membrane, such as anions and potassium ions. In this review, the guard cell ion channels are discussed, highlighting the structure and functions of key ion channels; the SLAC1 anion channel and KAT1 potassium channel, and their regulatory components, emphasizing their significance in guard cell response to various stimuli.
Collapse
|
14
|
Basu S, Roychoudhury A. Transcript profiling of stress-responsive genes and metabolic changes during salinity in indica and japonica rice exhibit distinct varietal difference. PHYSIOLOGIA PLANTARUM 2021; 173:1434-1447. [PMID: 33905541 DOI: 10.1111/ppl.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
In the present study, we carried out comprehensive transcript profiling of diverse genes under salinity (200 mM NaCl) at different time points, accompanied by certain biochemical alterations of the indica (IR-64 and Pokkali) and japonica (Nipponbare and M-202) rice. The higher susceptibility of Nipponbare and IR-64 was reflected by lower relative water content, chlorophyll loss, higher malondialdehyde content, and accumulation of H2 O2 , and reduced nitrate reductase activity, compared to M-202 and Pokkali, where such changes were less pronounced. Enhanced levels of anthocyanins and reduced glutathione, together with elevated phenylalanine ammonia lyase activity, mainly conferred protection to Nipponbare and IR-64, while metabolites like phenolics, flavonoids, proline, and polyamines were more induced in M-202 and Pokkali. Varietal differences in the expression pattern of diverse groups of genes during different durations (6, 24, and 48 h) of stress were striking. A gene showing early induction for a particular variety exhibited a delayed induction in another variety or a gradually decreased expression with treatment time. Pokkali was clearly identified as the salt-tolerant genotype among the examined varieties based on increased antioxidant potential and enhanced expression of genes encoding for PAL, CHS, and membrane transporters like SOS3, NHX-1, and HKT-1. The results presented in this work provide insight into the complex varying regulation patterns for different genes across the investigated rice varieties in providing salt tolerance and highlights distinct differences in expression patterns between susceptible and tolerant indica and japonica rice.
Collapse
|
15
|
A Low Level of NaCl Stimulates Plant Growth by Improving Carbon and Sulfur Assimilation in Arabidopsis thaliana. PLANTS 2021; 10:plants10102138. [PMID: 34685947 PMCID: PMC8541631 DOI: 10.3390/plants10102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/03/2022]
Abstract
High-salinity stress represses plant growth by inhibiting various metabolic processes. In contrast to the well-studied mechanisms mediating tolerance to high levels of salt, the effects of low levels of salts have not been well studied. In this study, we examined the growth of Arabidopsis thaliana plants under different NaCl concentrations. Interestingly, both shoot and root biomass increased in the presence of 5 mM NaCl, whereas more than 10 mM NaCl decreased plant biomass. To clarify the biological mechanism by which a low level of NaCl stimulated plant growth, we analyzed element accumulation in plants grown under different NaCl concentrations. In addition to the Na and Cl contents, C, S, Zn, and Cu contents were increased under 5 mM NaCl in shoots; this was not observed at higher NaCl concentrations. Adverse effects of high salinity, such as decreased levels of nitrate, phosphate, sulfate, and some cations, did not occur in the presence of 5 mM NaCl. An increase in C was possibly attributed to increased photosynthesis supported by Cl, Zn, and Cu, which also increased in shoots after NaCl application. Salt stress-responsive gene expression was enhanced under 20 mM NaCl but not at lower doses. Among the S metabolites analyzed, cysteine (Cys) was increased by 5 mM NaCl, suggesting that S assimilation was promoted by this dose of NaCl. These results indicate the usefulness of NaCl for plant growth stimulation.
Collapse
|
16
|
Beathard C, Mooney S, Al-Saharin R, Goyer A, Hellmann H. Characterization of Arabidopsis thaliana R2R3 S23 MYB Transcription Factors as Novel Targets of the Ubiquitin Proteasome-Pathway and Regulators of Salt Stress and Abscisic Acid Response. FRONTIERS IN PLANT SCIENCE 2021; 12:629208. [PMID: 34489986 PMCID: PMC8417012 DOI: 10.3389/fpls.2021.629208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/30/2021] [Indexed: 05/27/2023]
Abstract
Rapid response to environmental changes and abiotic stress to coordinate developmental programs is critical for plants. To accomplish this, plants use the ubiquitin proteasome pathway as a flexible and efficient mechanism to control protein stability and to direct cellular reactions. Here, we show that all three members of the R2R3 S23 MYB transcription factor subfamily, MYB1, MYB25, and MYB109, are degraded by the 26S proteasome, likely facilitated by a CUL3-based E3 ligase that uses MATH-BTB/POZ proteins as substrate adaptors. A detailed description of MYB1, MYB25, and MYB109 expression shows their nuclear localization and specific tissue specific expression patterns. It further demonstrates that elevated expression of MYB25 reduces sensitivities toward abscisic acid, osmotic and salt stress in Arabidopsis, while downregulation of all S23 members results in hypersensitivities. Transcriptional profiling in root and shoot of seedlings overexpressing MYB25 shows that the transcription factor widely affects cellular stress pathways related to biotic and abiotic stress control. Overall, the work extends our knowledge on proteins targeted by CUL3-based E3 ligases that use MATH-BTB/POZ proteins as substrate adaptors and provides first information on all members of the MYB S23 subfamily.
Collapse
Affiliation(s)
- Chase Beathard
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Sutton Mooney
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Raed Al-Saharin
- School of Biological Sciences, Washington State University, Pullman, WA, United States
- Department of Applied Biology, Tafila Technical University, At-Tafilah, Jordan
| | - Aymeric Goyer
- Department of Botany and Plant Pathology, Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, United States
| | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
17
|
Yu PF, Li YW, Zou LJ, Liu BL, Xiang L, Zhao HM, Li H, Cai QY, Hou XW, Mo CH, Wong MH, Li QX. Variety-Selective Rhizospheric Activation, Uptake, and Subcellular Distribution of Perfluorooctanesulfonate (PFOS) in Lettuce ( Lactuca sativa L.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8730-8741. [PMID: 34169723 DOI: 10.1021/acs.est.1c01175] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perfluorooctanesulfonate (PFOS) as an accumulative emerging persistent organic pollutant in crops poses severe threats to human health. Lettuce varieties that accumulate a lower amount of PFOS (low-accumulating crop variety, LACV) have been identified, but the regarding mechanisms remain unsolved. Here, rhizospheric activation, uptake, translocation, and compartmentalization of PFOS in LACV were investigated in comparison with those of high-accumulating crop variety (HACV) in terms of rhizospheric forms, transporters, and subcellular distributions of PFOS. The enhanced PFOS desorption from the rhizosphere soils by dissolved organic matter from root exudates was observed with weaker effect in LACV than in HACV. PFOS root uptake was controlled by a transporter-mediated passive process in which low activities of aquaporins and rapid-type anion channels were corrected with low expression levels of PIPs (PIP1-1 and PIP2-2) and ALMTs (ALMT10 and ALMT13) genes in LACV roots. Higher PFOS proportions in root cell walls and trophoplasts caused lower root-to-shoot transport in LACV. The ability to cope with PFOS toxicity to shoot cells was poorer in LACV relative to HACV since PFOS proportions were higher in chloroplasts but lower in vacuoles. Our findings provide novel insights into PFOS accumulation in lettuce and further understanding of multiprocess mechanisms of LACV.
Collapse
Affiliation(s)
- Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Long-Jun Zou
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Xue-Wen Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Ming Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- Consortium on Environment, Health, Education and Research (CHEER), The Education University of Hong Kong, Hong Kong, P. R. China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
18
|
Zhang H, Jin J, Xu G, Li Z, Zhai N, Zheng Q, Lv H, Liu P, Jin L, Chen Q, Cao P, Zhou H. Reconstruction of the full-length transcriptome of cigar tobacco without a reference genome and characterization of anion channel/transporter transcripts. BMC PLANT BIOLOGY 2021; 21:299. [PMID: 34187357 PMCID: PMC8240255 DOI: 10.1186/s12870-021-03091-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cigar wrapper leaves are the most important raw material of cigars. Studying the genomic information of cigar tobacco is conducive to improving cigar quality from the perspective of genetic breeding. However, no reference genome or full-length transcripts at the genome-wide scale have been reported for cigar tobacco. In particular, anion channels/transporters are of high interest for their potential application in regulating the chloride content of cigar tobacco growing on coastal lands, which usually results in relatively high Cl- accumulation, which is unfavorable. Here, the PacBio platform and NGS technology were combined to generate a full-length transcriptome of cigar tobacco used for cigar wrappers. RESULTS High-quality RNA isolated from the roots, leaves and stems of cigar tobacco were subjected to both the PacBio platform and NGS. From PacBio, a total of 11,652,432 subreads (19-Gb) were generated, with an average read length of 1,608 bp. After corrections were performed in conjunction with the NGS reads, we ultimately identified 1,695,064 open reading frames including 21,486 full-length ORFs and 7,342 genes encoding transcription factors from 55 TF families, together with 2,230 genes encoding long non-coding RNAs. Members of gene families related to anion channels/transporters, including members of the SLAC and CLC families, were identified and characterized. CONCLUSIONS The full-length transcriptome of cigar tobacco was obtained, annotated, and analyzed, providing a valuable genetic resource for future studies in cigar tobacco.
Collapse
Affiliation(s)
- Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, 450000 Zhengzhou, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, 450000 Zhengzhou, China
| | - Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, 450000 Zhengzhou, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, 450000 Zhengzhou, China
| | - Niu Zhai
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, 450000 Zhengzhou, China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, 450000 Zhengzhou, China
| | - Hongkun Lv
- Haikou Cigar Research Institute of China National Tobacco Corporation, Hainan Province 570000 Haikou, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, 450000 Zhengzhou, China
| | - Lifeng Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, 450000 Zhengzhou, China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, 450000 Zhengzhou, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, 450000 Zhengzhou, China
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, 450000 Zhengzhou, China
| |
Collapse
|
19
|
Sagervanshi A, Naeem A, Geilfus CM, Kaiser H, Mühling KH. One-time abscisic acid priming induces long-term salinity resistance in Vicia faba: Changes in key transcripts, metabolites, and ionic relations. PHYSIOLOGIA PLANTARUM 2021; 172:146-161. [PMID: 33314239 DOI: 10.1111/ppl.13315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Abscisic acid (ABA) priming is known to enhance plant growth and survival under salinity. However, the mechanisms mediating this long-term acclimatization to salt stress are still obscure. Specifically, the long-term transcriptional changes and their effects on ion relations were never investigated. This motivated us to study the long-term (8 days) effect of one-time 24 h root priming treatment with 10 μM ABA on transcription levels of relevant regulated key genes, osmotically relevant metabolites, and ionic concentrations in Vicia faba grown under 50 mM NaCl salinity. The novelty of this study is that we could demonstrate long-term effects of a one-time ABA application. ABA-priming was found to prevent the salt-induced decline in root and shoot dry matter, improved photosynthesis, and inhibited terminal wilting of plants. It substantially increased the mRNA level of AAPK and 14-3-3 ABA inducible kinases and ion transporters (PM H+ -ATPase, VFK1, KUP7, SOS1, and CLC1). These ABA-induced transcriptional changes went along with altered tissue ion patterns. Primed plants accumulated less Na+ and Cl- but more K+ , Ca2+ , Zn2+ , Fe2+ , Mn2+ , NO3 - , and SO4 2- . Priming changed the composition pattern of organic osmolytes under salinity, with glucose and fructose being dominant in unprimed, whereas sucrose was dominant in the primed plants. We conclude that one-time ABA priming mitigates salt stress in Vicia faba by persistently changing transcription patterns of key genes, stabilizing the ionic and osmotic balance, and improving photosynthesis and growth.
Collapse
Affiliation(s)
- Amit Sagervanshi
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Asif Naeem
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Christoph-Martin Geilfus
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
- Division of Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - Hartmut Kaiser
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| | - Karl H Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Kiel, Germany
| |
Collapse
|
20
|
Nan Y, Xie Y, Atif A, Wang X, Zhang Y, Tian H, Gao Y. Identification and Expression Analysis of SLAC/ SLAH Gene Family in Brassica napus L. Int J Mol Sci 2021; 22:ijms22094671. [PMID: 33925116 PMCID: PMC8125795 DOI: 10.3390/ijms22094671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022] Open
Abstract
Slow type anion channels (SLAC/SLAHs) play important roles during anion transport, growth and development, abiotic stress responses and hormone responses in plants. However, there is few report on SLAC/SLAHs in rapeseed (Brassica napus). Genome-wide identification and expression analysis of SLAC/SLAH gene family members were performed in B. napus. A total of 23 SLAC/SLAH genes were identified in B. napus. Based on the structural characteristics and phylogenetic analysis of these members, the SLAC/SLAHs could be classified into three main groups. Transcriptome data demonstrated that BnSLAH3 genes were detected in various tissues of the rapeseed and could be up-regulated by low nitrate treatment in roots. BnSLAC/SLAHs were exclusively localized on the plasma membrane in transient expression of tobacco leaves. These results will increase our understanding of the evolution and expression of the SLAC/SLAHs and provide evidence for further research of biological functions of candidates in B. napus.
Collapse
Affiliation(s)
- Yunyou Nan
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China; (Y.N.); (Y.X.); (A.A.); (X.W.)
| | - Yuyu Xie
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China; (Y.N.); (Y.X.); (A.A.); (X.W.)
| | - Ayub Atif
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China; (Y.N.); (Y.X.); (A.A.); (X.W.)
| | - Xiaojun Wang
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China; (Y.N.); (Y.X.); (A.A.); (X.W.)
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, China;
| | - Hui Tian
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China; (Y.N.); (Y.X.); (A.A.); (X.W.)
- Correspondence: (H.T.); (Y.G.)
| | - Yajun Gao
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China; (Y.N.); (Y.X.); (A.A.); (X.W.)
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
- Correspondence: (H.T.); (Y.G.)
| |
Collapse
|
21
|
Zhao C, Chavan S, He X, Zhou M, Cazzonelli CI, Chen ZH, Tissue DT, Ghannoum O. Smart glass impacts stomatal sensitivity of greenhouse Capsicum through altered light. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3235-3248. [PMID: 33484266 DOI: 10.1093/jxb/erab028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Optical films that alter light transmittance may reduce energy consumption in high-tech greenhouses, but their impact on crop physiology remains unclear. We compared the stomatal responses of Capsicum plants grown hydroponically under control glass (70% diffuse light) or the smart glass (SG) film ULR-80, which blocked >50% of short-wave radiation and ~9% of photosynthetically active radiation (PAR). SG had no significant effects on steady-state (gs) or maximal (gmax) stomatal conductance. In contrast, SG reduced stomatal pore size and sensitivity to exogenous abscisic acid (ABA), thereby increasing rates of leaf water loss, guard cell K+ and Cl- efflux, and Ca2+ influx. SG induced faster stomatal closing and opening rates on transition between low (100 µmol m-2 s-1) and high PAR (1500 µmol m-2 s-1), which compromised water use efficiency relative to control plants. The fraction of blue light (0% or 10%) did not affect gs in either treatment. Increased expression of stomatal closure and photoreceptor genes in epidermal peels of SG plants is consistent with fast stomatal responses to light changes. In conclusion, stomatal responses of Capsicum to SG were more affected by changes in light intensity than spectral quality, and re-engineering of the SG should maximize PAR transmission, and hence CO2 assimilation.
Collapse
Affiliation(s)
- Chenchen Zhao
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- School of Science, Western Sydney University, Penrith, NSW 2753, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, 7250, Australia
| | - Sachin Chavan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- National Vegetable Protected Cropping Centre, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Xin He
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- National Vegetable Protected Cropping Centre, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS, 7250, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- National Vegetable Protected Cropping Centre, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Zhong-Hua Chen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- School of Science, Western Sydney University, Penrith, NSW 2753, Australia
- National Vegetable Protected Cropping Centre, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- National Vegetable Protected Cropping Centre, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- National Vegetable Protected Cropping Centre, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australia
| |
Collapse
|
22
|
Qu Y, Guan R, Bose J, Henderson SW, Wege S, Qiu L, Gilliham M. Soybean CHX-type ion transport protein GmSALT3 confers leaf Na + exclusion via a root derived mechanism, and Cl - exclusion via a shoot derived process. PLANT, CELL & ENVIRONMENT 2021; 44:856-869. [PMID: 33190315 DOI: 10.1111/pce.13947] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Soybean (Glycine max) yields are threatened by multiple stresses including soil salinity. GmSALT3 (a cation-proton exchanger protein) confers net shoot exclusion for both Na+ and Cl- and improves salt tolerance of soybean; however, how the ER-localized GmSALT3 achieves this is unknown. Here, GmSALT3's function was investigated in heterologous systems and near isogenic lines that contained the full-length GmSALT3 (NIL-T; salt-tolerant) or a truncated transcript Gmsalt3 (NIL-S; salt-sensitive). GmSALT3 restored growth of K+ -uptake-defective Escherichia coli and contributed towards net influx and accumulation of Na+ , K+ and Cl- in Xenopus laevis oocytes, while Gmsalt3 was non-functional. Time-course analysis of NILs confirmed shoot Cl- exclusion occurs distinctly from Na+ exclusion. Grafting showed that shoot Na+ exclusion occurs via a root xylem-based mechanism; in contrast, NIL-T plants exhibited significantly greater Cl- content in both the stem xylem and phloem sap compared to NIL-S, indicating that shoot Cl- exclusion likely depends upon novel phloem-based Cl- recirculation. NIL-T shoots grafted on NIL-S roots contained low shoot Cl- , which confirmed that Cl- recirculation is dependent on the presence of GmSALT3 in shoots. Overall, these findings provide new insights on GmSALT3's impact on salinity tolerance and reveal a novel mechanism for shoot Cl- exclusion in plants.
Collapse
Affiliation(s)
- Yue Qu
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Rongxia Guan
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jayakumar Bose
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Sam W Henderson
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Stefanie Wege
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| |
Collapse
|
23
|
Linking diverse salinity responses of 14 almond rootstocks with physiological, biochemical, and genetic determinants. Sci Rep 2020; 10:21087. [PMID: 33273661 PMCID: PMC7712888 DOI: 10.1038/s41598-020-78036-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/13/2020] [Indexed: 01/13/2023] Open
Abstract
Fourteen commercial almond rootstocks were tested under five types of irrigation waters to understand the genetic, physiological, and biochemical bases of salt-tolerance mechanisms. Treatments included control (T1) and four saline water treatments dominant in sodium-sulfate (T2), sodium-chloride (T3), sodium-chloride/sulfate (T4), and calcium/magnesium-chloride/sulfate (T5). T3 caused the highest reduction in survival rate and trunk diameter, followed by T4 and T2, indicating that Na and, to a lesser extent, Cl were the most toxic ions to almond rootstocks. Peach hybrid (Empyrean 1) and peach-almond hybrids (Cornerstone, Bright’s Hybrid 5, and BB 106) were the most tolerant to salinity. Rootstock’s performance under salinity correlated highly with its leaf Na and Cl concentrations, indicating that Na+ and Cl- exclusion is crucial for salinity tolerance in Prunus. Photosynthetic rate correlated with trunk diameter and proline leaf ratio (T3/T1) significantly correlated with the exclusion of Na+ and Cl-, which directly affected the survival rate. Expression analyses of 23 genes involved in salinity stress revealed that the expression differences among genotypes were closely associated with their performance under salinity. Our genetic, molecular, and biochemical analyses allowed us to characterize rootstocks based on component traits of the salt-tolerance mechanisms, which may facilitate the development of highly salt-tolerant rootstocks.
Collapse
|
24
|
Neang S, de Ocampo M, Egdane JA, Platten JD, Ismail AM, Seki M, Suzuki Y, Skoulding NS, Kano-Nakata M, Yamauchi A, Mitsuya S. A GWAS approach to find SNPs associated with salt removal in rice leaf sheath. ANNALS OF BOTANY 2020; 126:1193-1202. [PMID: 33009812 PMCID: PMC7684702 DOI: 10.1093/aob/mcaa139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/02/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS The ability for salt removal at the leaf sheath level is considered to be one of the major mechanisms associated with salt tolerance in rice. Thus, understanding the genetic control of the salt removal capacity in leaf sheaths will help improve the molecular breeding of salt-tolerant rice varieties and speed up future varietal development to increase productivity in salt-affected areas. We report a genome-wide association study (GWAS) conducted to find single nucleotide polymorphisms (SNPs) associated with salt removal in leaf sheaths of rice. METHODS In this study, 296 accessions of a rice (Oryza sativa) diversity panel were used to identify salt removal-related traits and conduct GWAS using 36 901 SNPs. The sheath:blade ratio of Na+ and Cl- concentrations was used to determine the salt removal ability in leaf sheaths. Candidate genes were further narrowed via Gene Ontology and RNA-seq analysis to those whose putative function was likely to be associated with salt transport and were up-regulated in response to salt stress. KEY RESULTS For the association signals of the Na+ sheath:blade ratio, significant SNPs were found only in the indica sub-population on chromosome 5. Within candidate genes found in the GWAS study, five genes were upregulated and eight genes were downregulated in the internal leaf sheath tissues in the presence of salt stress. CONCLUSIONS These GWAS data imply that rice accessions in the indica variety group are the main source of genes and alleles associated with Na+ removal in leaf sheaths of rice under salt stress.
Collapse
Affiliation(s)
- Sarin Neang
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | | | - James A Egdane
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | | | | | - Masahide Seki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Japan
| | | | - Mana Kano-Nakata
- International Center for Research and Education in Agriculture, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
25
|
Neang S, Goto I, Skoulding NS, Cartagena JA, Kano-Nakata M, Yamauchi A, Mitsuya S. Tissue-specific expression analysis of Na + and Cl - transporter genes associated with salt removal ability in rice leaf sheath. BMC PLANT BIOLOGY 2020; 20:502. [PMID: 33143652 PMCID: PMC7607675 DOI: 10.1186/s12870-020-02718-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/25/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND A significant mechanism of salt-tolerance in rice is the ability to remove Na+ and Cl- in the leaf sheath, which limits the entry of these toxic ions into the leaf blade. The leaf sheath removes Na+ mainly in the basal parts, and Cl- mainly in the apical parts. These ions are unloaded from the xylem vessels in the peripheral part and sequestered into the fundamental parenchyma cells at the central part of the leaf sheath. RESULTS This study aimed to identify associated Na+ and Cl- transporter genes with this salt removal ability in the leaf sheath of rice variety FL 478. From 21 known candidate Na+ and Cl- transporter rice genes, we determined the salt responsiveness of the expression of these genes in the basal and apical parts, where Na+ or Cl- ions were highly accumulated under salinity. We also compared the expression levels of these transporter genes between the peripheral and central parts of leaf sheaths. The expression of 8 Na+ transporter genes and 3 Cl- transporter genes was up-regulated in the basal and apical parts of leaf sheaths under salinity. Within these genes, OsHKT1;5 and OsSLAH1 were expressed highly in the peripheral part, indicating the involvement of these genes in Na+ and Cl- unloading from xylem vessels. OsNHX2, OsNHX3, OsNPF2.4 were expressed highly in the central part, which suggests that these genes may function in sequestration of Na+ and Cl- in fundamental parenchyma cells in the central part of leaf sheaths under salinity. Furthermore, high expression levels of 4 candidate genes under salinity were associated with the genotypic variation of salt removal ability in the leaf sheath. CONCLUSIONS These results indicate that the salt removal ability in rice leaf sheath may be regulated by expressing various Na+ or Cl- transporter genes tissue-specifically in peripheral and central parts. Moreover, some genes were identified as candidates whose expression levels were associated with the genotypic variation of salt removal ability in the leaf sheath. These findings will enhance the understanding of the molecular mechanism of salt removal ability in rice leaf sheath, which is useful for breeding salt-tolerant rice varieties.
Collapse
Affiliation(s)
- Sarin Neang
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Itsuki Goto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | | - Joyce A Cartagena
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Mana Kano-Nakata
- International Center for Research and Education in Agriculture, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
26
|
Qiu J, McGaughey SA, Groszmann M, Tyerman SD, Byrt CS. Phosphorylation influences water and ion channel function of AtPIP2;1. PLANT, CELL & ENVIRONMENT 2020; 43:2428-2442. [PMID: 32678928 DOI: 10.1111/pce.13851] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 05/24/2023]
Abstract
The phosphorylation state of two serine residues within the C-terminal domain of AtPIP2;1 (S280, S283) regulates its plasma membrane localization in response to salt and osmotic stress. Here, we investigated whether the phosphorylation state of S280 and S283 also influence AtPIP2;1 facilitated water and cation transport. A series of single and double S280 and S283 phosphomimic and phosphonull AtPIP2;1 mutants were tested in heterologous systems. In Xenopus laevis oocytes, phosphomimic mutants AtPIP2;1 S280D, S283D, and S280D/S283D had significantly greater ion conductance for Na+ and K+ , whereas the S280A single phosphonull mutant had greater water permeability. We observed a phosphorylation-dependent inverse relationship between AtPIP2;1 water and ion transport with a 10-fold change in both. The results revealed that phosphorylation of S280 and S283 influences the preferential facilitation of ion or water transport by AtPIP2;1. The results also hint that other regulatory sites play roles that are yet to be elucidated. Expression of the AtPIP2;1 phosphorylation mutants in Saccharomyces cerevisiae confirmed that phosphorylation influences plasma membrane localization, and revealed higher Na+ accumulation for S280A and S283D mutants. Collectively, the results show that phosphorylation in the C-terminal domain of AtPIP2;1 influences its subcellular localization and cation transport capacity.
Collapse
Affiliation(s)
- Jiaen Qiu
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Samantha A McGaughey
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australia
| | - Michael Groszmann
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australia
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Caitlin S Byrt
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australia
| |
Collapse
|
27
|
Lanthanum Prolongs Vase Life of Cut Tulip Flowers by Increasing Water Consumption and Concentrations of Sugars, Proteins and Chlorophylls. Sci Rep 2020; 10:4209. [PMID: 32144390 PMCID: PMC7060203 DOI: 10.1038/s41598-020-61200-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/27/2020] [Indexed: 11/08/2022] Open
Abstract
We evaluated the effect of separately adding two sources of lanthanum (La), LaCl3 and La(NO3)3 × 6H2O at a concentration of 40 µM each, to the preservative solution of 15 cut tulip flower varieties. Ascorbic acid (AsA; 0.2 g/L) was used as a reference solution, while distilled water was used as control. The variety Laura Fygi recorded the longest vase life with 13 days. The highest water consumption per gram of stem fresh biomass weight (FBW) (2.5 mL) was observed in the variety Violet Beauty, whereas the lowest (1.098 mL) was recorded in Pink Impression. At the end of the vase life period, higher concentrations of total soluble sugars in petals and total soluble proteins in leaves were recorded in La-treated stems, compared to the AsA treatment and the control. Additionally, La(NO3)3 × 6H2O supply increased the fresh weight of stems in vase and prolonged vase life. Moreover, this treatment resulted in the highest foliar concentration of chlorophylls at the end of vase life. Therefore, La increases tulip flower vase life as a consequence of improving the concentrations of some vital biomolecules.
Collapse
|
28
|
Saito S, Uozumi N. Calcium-Regulated Phosphorylation Systems Controlling Uptake and Balance of Plant Nutrients. FRONTIERS IN PLANT SCIENCE 2020; 11:44. [PMID: 32117382 PMCID: PMC7026023 DOI: 10.3389/fpls.2020.00044] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/14/2020] [Indexed: 05/18/2023]
Abstract
Essential elements taken up from the soil and distributed throughout the whole plant play diverse roles in different tissues. Cations and anions contribute to maintenance of intracellular osmolarity and the formation of membrane potential, while nitrate, ammonium, and sulfate are incorporated into amino acids and other organic compounds. In contrast to these ion species, calcium concentrations are usually kept low in the cytosol and calcium displays unique behavior as a cytosolic signaling molecule. Various environmental stresses stimulate increases in the cytosolic calcium concentration, leading to activation of calcium-regulated protein kinases and downstream signaling pathways. In this review, we summarize the stress responsive regulation of nutrient uptake and balancing by two types of calcium-regulated phosphorylation systems: CPK and CBL-CIPK. CPK is a family of protein kinases activated by calcium. CBL is a group of calcium sensor proteins that interact with CIPK kinases, which phosphorylate their downstream targets. In Arabidopsis, quite a few ion transport systems are regulated by CPKs or CBL-CIPK complexes, including channels/transporters that mediate transport of potassium (KAT1, KAT2, GORK, AKT1, AKT2, HAK5, SPIK), sodium (SOS1), ammonium (AMT1;1, AMT1;2), nitrate and chloride (SLAC1, SLAH2, SLAH3, NRT1.1, NRT2.4, NRT2.5), and proton (AHA2, V-ATPase). CPKs and CBL-CIPKs also play a role in C/N nutrient response and in acquisition of magnesium and iron. This functional regulation by calcium-dependent phosphorylation systems ensures the growth of plants and enables them to acquire tolerance against various environmental stresses. Calcium serves as the key factor for the regulation of membrane transport systems.
Collapse
Affiliation(s)
- Shunya Saito
- *Correspondence: Shunya Saito, ; Nobuyuki Uozumi,
| | | |
Collapse
|
29
|
Cui YN, Wang FZ, Yang CH, Yuan JZ, Guo H, Zhang JL, Wang SM, Ma Q. Transcriptomic Profiling Identifies Candidate Genes Involved in the Salt Tolerance of the Xerophyte Pugionium cornutum. Genes (Basel) 2019; 10:genes10121039. [PMID: 31842449 PMCID: PMC6947847 DOI: 10.3390/genes10121039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 01/22/2023] Open
Abstract
The xerophyte Pugionium cornutum adapts to salt stress by accumulating inorganic ions (e.g., Cl−) for osmotic adjustment and enhancing the activity of antioxidant enzymes, but the associated molecular basis remains unclear. In this study, we first found that P. cornutum could also maintain cell membrane stability due to its prominent ROS-scavenging ability and exhibits efficient carbon assimilation capacity under salt stress. Then, the candidate genes associated with the important physiological traits of the salt tolerance of P. cornutum were identified through transcriptomic analysis. The results showed that after 50 mM NaCl treatment for 6 or 24 h, multiple genes encoding proteins facilitating Cl− accumulation and NO3− homeostasis, as well as the transport of other major inorganic osmoticums, were significantly upregulated in roots and shoots, which should be favorable for enhancing osmotic adjustment capacity and maintaining the uptake and transport of nutrient elements; a large number of genes related to ROS-scavenging pathways were also significantly upregulated, which might be beneficial for mitigating salt-induced oxidative damage to the cells. Meanwhile, many genes encoding components of the photosynthetic electron transport pathway and carbon fixation enzymes were significantly upregulated in shoots, possibly resulting in high carbon assimilation efficiency in P. cornutum. Additionally, numerous salt-inducible transcription factor genes that probably regulate the abovementioned processes were found. This work lays a preliminary foundation for clarifying the molecular mechanism underlying the adaptation of xerophytes to harsh environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qing Ma
- Correspondence: ; Tel.: +86-931-8913447
| |
Collapse
|
30
|
Colmenero-Flores JM, Franco-Navarro JD, Cubero-Font P, Peinado-Torrubia P, Rosales MA. Chloride as a Beneficial Macronutrient in Higher Plants: New Roles and Regulation. Int J Mol Sci 2019; 20:E4686. [PMID: 31546641 PMCID: PMC6801462 DOI: 10.3390/ijms20194686] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022] Open
Abstract
Chloride (Cl-) has traditionally been considered a micronutrient largely excluded by plants due to its ubiquity and abundance in nature, its antagonism with nitrate (NO3-), and its toxicity when accumulated at high concentrations. In recent years, there has been a paradigm shift in this regard since Cl- has gone from being considered a harmful ion, accidentally absorbed through NO3- transporters, to being considered a beneficial macronutrient whose transport is finely regulated by plants. As a beneficial macronutrient, Cl- determines increased fresh and dry biomass, greater leaf expansion, increased elongation of leaf and root cells, improved water relations, higher mesophyll diffusion to CO2, and better water- and nitrogen-use efficiency. While optimal growth of plants requires the synchronic supply of both Cl- and NO3- molecules, the NO3-/Cl- plant selectivity varies between species and varieties, and in the same plant it can be modified by environmental cues such as water deficit or salinity. Recently, new genes encoding transporters mediating Cl- influx (ZmNPF6.4 and ZmNPF6.6), Cl- efflux (AtSLAH3 and AtSLAH1), and Cl- compartmentalization (AtDTX33, AtDTX35, AtALMT4, and GsCLC2) have been identified and characterized. These transporters have proven to be highly relevant for nutrition, long-distance transport and compartmentalization of Cl-, as well as for cell turgor regulation and stress tolerance in plants.
Collapse
Affiliation(s)
- José M Colmenero-Flores
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
| | - Juan D Franco-Navarro
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
| | - Paloma Cubero-Font
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
- Biochimie et physiologie Moléculaire des Plantes (BPMP), Univ Montpellier, CNRS, INRA, SupAgro, 2 place P. Viala, 34060 Montpellier, France.
| | - Procopio Peinado-Torrubia
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
| | - Miguel A Rosales
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Avda Reina Mercedes 10, 41012 Sevilla, Spain.
| |
Collapse
|
31
|
Neang S, de Ocampo M, Egdane JA, Platten JD, Ismail AM, Skoulding NS, Kano-Nakata M, Yamauchi A, Mitsuya S. Fundamental parenchyma cells are involved in Na + and Cl - removal ability in rice leaf sheath. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:743-755. [PMID: 31046903 DOI: 10.1071/fp18318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Salt sensitivity in rice plants is associated with the accumulated amount of Na+ and Cl- in shoots and, more significantly, in photosynthetic tissues. Therefore, salt removal ability at the leaf sheath level is an important mechanism of salt tolerance. In the present study we attempted to determine whether rice leaf sheaths excluded Cl- as well as Na+, and to identify the tissues that were involved in the removal ability of both ions. In two rice genotypes, salt-tolerant FL478 and -sensitive IR29, leaf sheaths excluded Na+ and Cl- under NaCl treatment as estimated using their sheath:blade ratios. The sheath:blade ratio of Na+ but not of Cl-, was increased by NaCl treatment. Under NaCl treatment, Na+ concentration was higher in the basal leaf sheath, whereas Cl- concentration was higher in the middle and tip parts. At the tissue level, fundamental parenchyma cells of leaf sheaths retained the highest amounts of Na and Cl when treated with high amount of NaCl. These results imply that the leaf sheath potentially functions to remove excess Na+ and Cl- from xylem vessels in different locations along the axis, with the fundamental parenchyma cells of leaf sheaths being involved in over-accumulation of both Na+ and Cl-.
Collapse
Affiliation(s)
- Sarin Neang
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Marjorie de Ocampo
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - James A Egdane
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - John D Platten
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - Abdelbagi M Ismail
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - Nicola S Skoulding
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Mana Kano-Nakata
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, 464-8601, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan; and Corresponding author.
| |
Collapse
|
32
|
Ueda M, Ishimaru Y, Takeuchi Y, Muraoka Y. Plant nyctinasty - who will decode the 'Rosetta Stone'? THE NEW PHYTOLOGIST 2019; 223:107-112. [PMID: 30697767 DOI: 10.1111/nph.15717] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 01/19/2019] [Indexed: 05/28/2023]
Abstract
Nyctinasty is the circadian rhythmic nastic movement of leguminous plants in response to the onset of darkness, a unique and intriguing phenomenon that has attracted attention for centuries. The movement itself is caused by the asymmetric volume change of motor cells between the adaxial and abaxial sides of the leaflet. Recently, we identified the ion channels responsible for the volume change of motor cells during the leaf-opening process of Samanea saman; the asymmetric expression of SsSLAH1, which is under the control of SsCCA1, was found to play a key role in this process. Here, we summarize the history of the study of nyctinasty, our current results and several insights for further study.
Collapse
Affiliation(s)
- Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Yasuhiro Ishimaru
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Yusuke Takeuchi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Yuki Muraoka
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
33
|
Chen G, Wang L, Chen Q, Qi K, Yin H, Cao P, Tang C, Wu X, Zhang S, Wang P, Wu J. PbrSLAH3 is a nitrate-selective anion channel which is modulated by calcium-dependent protein kinase 32 in pear. BMC PLANT BIOLOGY 2019; 19:190. [PMID: 31068146 PMCID: PMC6507222 DOI: 10.1186/s12870-019-1813-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/30/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND The functional characteristics of SLAC/SLAH family members isolated from Arabidopsis thaliana, poplar, barley and rice have been comprehensively investigated. However, there are no reports regarding SLAC/SLAH family genes from Rosaceae plants. RESULTS In this study, the function of PbrSLAH3, which is predominately expressed in pear (Pyrus bretschneideri) root, was investigated. PbrSLAH3 can rescue the ammonium toxicity phenomenon of slah3 mutant plants under high-ammonium/low-nitrate conditions. In addition, yeast two-hybrid and bimolecular fluorescence complementation assays confirmed that PbrSLAH3 interacts with PbrCPK32. Moreover, when PbrSLAH3 was co-expressed with either the Arabidopsis calcium-dependent protein kinase (CPK) 21 or PbrCPK32 in Xenopus oocytes, yellow fluorescence was emitted from the oocytes and typical anion currents were recorded in the presence of extracellular NO3-. However, when PbrSLAH3 alone was injected, no yellow fluorescence or anion currents were recorded, suggesting that anion channel PbrSLAH3 activity was controlled through phosphorylation. Finally, electrophysiological and transgene results showed that PbrSLAH3 was more permeable to NO3- than Cl-. CONCLUSION We suggest that PbrSLAH3 crossing-talk with PbrCPK32 probably participate in transporting of nitrate nutrition in pear root.
Collapse
Affiliation(s)
- Guodong Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, China
| | - Li Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, China
| | - Qian Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, China
| | - Kaijie Qi
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, China
| | - Hao Yin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, China
| | - Peng Cao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, China
| | - Chao Tang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, China
| | - Xiao Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, China
| | - Peng Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, China
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, China
| |
Collapse
|
34
|
Wei P, Che B, Shen L, Cui Y, Wu S, Cheng C, Liu F, Li MW, Yu B, Lam HM. Identification and functional characterization of the chloride channel gene, GsCLC-c2 from wild soybean. BMC PLANT BIOLOGY 2019; 19:121. [PMID: 30935372 PMCID: PMC6444504 DOI: 10.1186/s12870-019-1732-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/19/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND The anionic toxicity of plants under salt stress is mainly caused by chloride (Cl-). Thus Cl- influx, transport and their regulatory mechanisms should be one of the most important aspects of plant salt tolerance studies, but are often sidelined by the focus on sodium (Na+) toxicity and its associated adaptations. Plant chloride channels (CLCs) are transport proteins for anions including Cl- and nitrate (NO3-), and are critical for nutrition uptake and transport, adjustment of cellular turgor, stomatal movement, signal transduction, and Cl- and NO3- homeostasis under salt stress. RESULTS Among the eight soybean CLC genes, the tonoplast-localized c2 has uniquely different transcriptional patterns between cultivated soybean N23674 and wild soybean BB52. Using soybean hairy root transformation, we found that GsCLC-c2 over-expression contributed to Cl- and NO3- homeostasis, and therefore conferred salt tolerance, through increasing the accumulation of Cl- in the roots, thereby reducing their transportation to the shoots where most of the cellular damages occur. Also, by keeping relatively high levels of NO3- in the aerial part of the plant, GsCLC-c2 could reduce the Cl-/NO3- ratio. Wild type GsCLC-c2, but not its mutants (S184P, E227V and E294G) with mutations in the conserved domains, is able to complement Saccharomyces cerevisiae △gef1 Cl- sensitive phenotype. Using two-electrode voltage clamp on Xenopus laevis oocytes injected with GsCLC-c2 cRNA, we found that GsCLC-c2 transports both Cl- and NO3- with slightly different affinity, and the affinity toward Cl- was pH-independent. CONCLUSION This study revealed that the expression of GsCLC-c2 is induced by NaCl-stress in the root of wild soybean. The tonoplast localized GsCLC-c2 transports Cl- with a higher affinity than NO3- in a pH-independent fashion. GsCLC-c2 probably alleviates salt stress in planta through the sequestration of excess Cl- into the vacuoles of root cells and thus preventing Cl- from entering the shoots where it could result in cellular damages.
Collapse
Affiliation(s)
- Peipei Wei
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Benning Che
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Like Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yiqing Cui
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shengyan Wu
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Cong Cheng
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Feng Liu
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Bingjun Yu
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
35
|
Wu H, Li Z. The Importance of Cl - Exclusion and Vacuolar Cl - Sequestration: Revisiting the Role of Cl - Transport in Plant Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:1418. [PMID: 31781141 PMCID: PMC6857526 DOI: 10.3389/fpls.2019.01418] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/11/2019] [Indexed: 05/20/2023]
Abstract
Salinity threatens agricultural production systems across the globe. While the major focus of plant researchers working in the field of salinity stress tolerance has always been on sodium and potassium, the transport patterns and physiological roles of Cl- in plant salt stress responses are studied much less. In recent years, the role of Cl- in plant salinity stress tolerance has been revisited and has received more attention. This review attempts to address the gap in knowledge of the role of Cl- transport in plant salinity stress tolerance. Cl- transport, Cl- exclusion, vacuolar Cl- sequestration, the specificity of mechanisms employed in different plant species to control shoot Cl- accumulation, and the identity of channels and transporters involved in Cl- transport in salt stressed plants are discussed. The importance of the electrochemical gradient across the tonoplast, for vacuolar Cl- sequestration, is highlighted. The toxicity of Cl- from CaCl2 is briefly reviewed separately to that of Cl- from NaCl.
Collapse
Affiliation(s)
- Honghong Wu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
- *Correspondence: Honghong Wu, ; Zhaohu Li,
| | - Zhaohu Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Honghong Wu, ; Zhaohu Li,
| |
Collapse
|
36
|
Nieves-Cordones M, García-Sánchez F, Pérez-Pérez JG, Colmenero-Flores JM, Rubio F, Rosales MA. Coping With Water Shortage: An Update on the Role of K +, Cl -, and Water Membrane Transport Mechanisms on Drought Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:1619. [PMID: 31921262 PMCID: PMC6934057 DOI: 10.3389/fpls.2019.01619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/18/2019] [Indexed: 05/21/2023]
Abstract
Drought is now recognized as the abiotic stress that causes most problems in agriculture, mainly due to the strong water demand from intensive culture and the effects of climate change, especially in arid/semi-arid areas. When plants suffer from water deficit (WD), a plethora of negative physiological alterations such as cell turgor loss, reduction of CO2 net assimilation rate, oxidative stress damage, and nutritional imbalances, among others, can lead to a decrease in the yield production and loss of commercial quality. Nutritional imbalances in plants grown under drought stress occur by decreasing water uptake and leaf transpiration, combined by alteration of nutrient uptake and long-distance transport processes. Plants try to counteract these effects by activating drought resistance mechanisms. Correct accumulation of salts and water constitutes an important portion of these mechanisms, in particular of those related to the cell osmotic adjustment and function of stomata. In recent years, molecular insights into the regulation of K+, Cl-, and water transport under drought have been gained. Therefore, this article brings an update on this topic. Moreover, agronomical practices that ameliorate drought symptoms of crops by improving nutrient homeostasis will also be presented.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura–CSIC, Murcia, Spain
- *Correspondence: Manuel Nieves-Cordones,
| | - Francisco García-Sánchez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura–CSIC, Murcia, Spain
| | - Juan G. Pérez-Pérez
- Centro para el Desarrollo de la Agricultura Sostenible (CDAS), Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Jose M. Colmenero-Flores
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Sevilla, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura–CSIC, Murcia, Spain
| | - Miguel A. Rosales
- Instituto de Recursos Naturales y Agrobiología, Spanish National Research Council (CSIC), Sevilla, Spain
| |
Collapse
|
37
|
Duan X, Yu Y, Duanmu H, Chen C, Sun X, Cao L, Li Q, Ding X, Liu B, Zhu Y. GsSLAH3, a Glycine soja slow type anion channel homolog, positively modulates plant bicarbonate stress tolerance. PHYSIOLOGIA PLANTARUM 2018; 164:145-162. [PMID: 29243826 DOI: 10.1111/ppl.12683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Alkaline stress is a major form of abiotic stress that severely inhibits plant growth and development, thus restricting crop productivity. However, little is known about how plants respond to alkali. In this study, a slow-type anion channel homolog 3 gene, GsSLAH3, was isolated and functionally characterized. Bioinformatics analysis showed that the GsSLAH3 protein contains 10 transmembrane helices. Consistently, GsSLAH3 was found to locate on plasma membrane by transient expression in onion epidermal cells. In wild soybeans, GsSLAH3 expression was induced by NaHCO3 treatment, suggesting its involvement in plant response to alkaline stress. Ectopic expression of GsSLAH3 in yeast increased sensitivity to alkali treatment. Dramatically, overexpression of GsSLAH3 in Arabidopsis thaliana enhanced alkaline tolerance during the germination, seedling and adult stages. More interestingly, we found that transgenic lines also improved plant tolerance to KHCO3 rather than high pH treatment. A nitrate content analysis of Arabidopsis shoots showed that GsSLAH3 overexpressing lines accumulated more NO3- than wild-type. In summary, our data suggest that GsSLAH3 is a positive alkali responsive gene that increases bicarbonate resistance specifically.
Collapse
Affiliation(s)
- Xiangbo Duan
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Huizi Duanmu
- College of Life Science, Heilongjiang University, Harbin 150030, China
| | - Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoli Sun
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg S-413 90, Sweden
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
38
|
Chen G, Li X, Qiao X, Li J, Wang L, Kou X, Wu X, Wang G, Yin H, Wang P, Zhang S, Wu J. Genome-wide survey and expression analysis of the SLAC/SLAH gene family in pear (Pyrus bretschneideri) and other members of the Rosaceae. Genomics 2018; 111:1097-1107. [PMID: 31533901 DOI: 10.1016/j.ygeno.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/11/2018] [Accepted: 07/05/2018] [Indexed: 01/08/2023]
Abstract
S-type anion channels, which play important roles in plant anion (such as nitrate and chloride) transport, growth and development, abiotic stress responses and hormone signaling. However, there is far less information about this family in Rosaceae species. We performed a genome-wide analysis and identified SLAC/SLAH gene family members in pear (Pyrus bretschneideri) and four other species of Rosaceae. A total of 21 SLAC/SLAH genes were identified from the five Rosaceae species. Based on the structural characteristics and a phylogenetic analysis of these genes, the SLAC/SLAH gene family could be classified into three main groups. Transcriptome data demonstrated that PbrSLAC/SLAH genes were detected in all parts of the pear. PbrSLAC/SLAH genes were only located on the plasma membrane in transient expression experiments in Arabidopsis protoplasts cells. These results provide valuable information that increases our understanding of the evolution, expression and functions of the SLAC/SLAH gene family in higher plants.
Collapse
Affiliation(s)
- Guodong Chen
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolong Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaming Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobing Kou
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoming Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Juyou Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
39
|
Oikawa T, Ishimaru Y, Munemasa S, Takeuchi Y, Washiyama K, Hamamoto S, Yoshikawa N, Mutara Y, Uozumi N, Ueda M. Ion Channels Regulate Nyctinastic Leaf Opening in Samanea saman. Curr Biol 2018; 28:2230-2238.e7. [PMID: 29983317 DOI: 10.1016/j.cub.2018.05.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023]
Abstract
The circadian leaf opening and closing (nyctinasty) of Fabaceae has attracted scientists' attention since the era of Charles Darwin. Nyctinastic movement is triggered by the alternate swelling and shrinking of motor cells at the base of the leaf. This, in turn, is facilitated by changing osmotic pressures brought about by ion flow through anion and potassium ion channels. However, key regulatory ion channels and molecular mechanisms remain largely unknown. Here, we identify three key ion channels in mimosoid tree Samanea saman: the slow-type anion channels, SsSLAH1 and SsSLAH3, and the Shaker-type potassium channel, SPORK2. We show that cell-specific circadian expression of SsSLAH1 plays a key role in nyctinastic leaf opening. In addition, SsSLAH1 co-expressed with SsSLAH3 in flexor (abaxial) motor cells promoted leaf opening. We confirm the importance of SLAH1 in leaf movement using SLAH1-impaired Glycine max. Identification of this "master player" advances our molecular understanding of nyctinasty.
Collapse
Affiliation(s)
- Takaya Oikawa
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuhiro Ishimaru
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yusuke Takeuchi
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Kento Washiyama
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Shin Hamamoto
- Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Nobuyuki Yoshikawa
- Faculty of Agriculture, Iwate University, 3-18-8, Ueda, Morioka 020-8550, Japan
| | - Yoshiyuki Mutara
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Nobuyuki Uozumi
- Graduate School of Engineering, Tohoku University, 6-6-07, Aobayama, Aoba-ku, Sendai 980-8579, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan; Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
40
|
Geilfus CM. Chloride: from Nutrient to Toxicant. PLANT & CELL PHYSIOLOGY 2018; 59:877-886. [PMID: 29660029 DOI: 10.1093/pcp/pcy071] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/05/2018] [Indexed: 05/25/2023]
Abstract
In salinized soils in which chloride (Cl-) is the dominant salt anion, growth of plants that tolerate only low concentrations of salt (glycophytes) is disturbed by Cl- toxicity. Chlorotic discolorations precede necrotic lesions, causing yield reductions. Little is known about the effects of Cl- toxicity on these dysfunctions. A lack of understanding exists regarding (i) the molecular and physiological mechanisms that lead to Cl--induced damage and (ii) the adaptive aspects of induced tolerance to Cl- salinity. Here, mechanistic explanations for the Cl--induced stress responses are proposed and novel ideas and strategies by which glycophytic plants avoid the excessive accumulation of Cl- are reviewed. New experiments are suggested to test the proposed hypotheses. Cl- salinity constrains global food security and thus we urgently need more research into the causes and consequences of Cl- salinity.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 1, D-14195 Berlin, Germany
| |
Collapse
|
41
|
Abstract
The evolution of land plants from algae is an age-old question in biology. The entire terrestrial flora stems from a grade of algae, the streptophyte algae. Recent phylogenomic studies have pinpointed the Zygnematophyceae as the modern-day streptophyte algal lineage that is most closely related to the algal land plant ancestor. Here, we provide insight into the biology of this ancestor that might have aided in its conquest of land. Specifically, we uncover the existence of stress-signaling pathways and the potential for intimate plastid-nucleus communication. Plastids act as environmental sensors in land plants; our data suggest that this feature was present in a common ancestor they shared with streptophyte algae. Streptophytes are unique among photosynthetic eukaryotes in having conquered land. As the ancestors of land plants, streptophyte algae are hypothesized to have possessed exaptations to the environmental stressors encountered during the transition to terrestrial life. Many of these stressors, including high irradiance and drought, are linked to plastid biology. We have investigated global gene expression patterns across all six major streptophyte algal lineages, analyzing a total of around 46,000 genes assembled from a little more than 1.64 billion sequence reads from six organisms under three growth conditions. Our results show that streptophyte algae respond to cold and high light stress via expression of hallmark genes used by land plants (embryophytes) during stress–response signaling and downstream responses. Among the strongest differentially regulated genes were those associated with plastid biology. We observed that among streptophyte algae, those most closely related to land plants, especially Zygnema, invest the largest fraction of their transcriptional budget in plastid-targeted proteins and possess an array of land plant-type plastid-nucleus communication genes. Streptophyte algae more closely related to land plants also appear most similar to land plants in their capacity to respond to plastid stressors. Support for this notion comes from the detection of a canonical abscisic acid receptor of the PYRABACTIN RESISTANCE (PYR/PYL/RCAR) family in Zygnema, the first found outside the land plant lineage. We conclude that a fine-tuned response toward terrestrial plastid stressors was among the exaptations that allowed streptophytes to colonize the terrestrial habitat on a global scale.
Collapse
|
42
|
Mahajan MM, Goyal E, Singh AK, Gaikwad K, Kanika K. Transcriptome dynamics provide insights into long-term salinity stress tolerance in Triticum aestivum cv. Kharchia Local. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:128-139. [PMID: 29102901 DOI: 10.1016/j.plaphy.2017.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 05/13/2023]
Abstract
Kharchia Local, a wheat (Triticum aestivum) cultivar, is native to the saline-sodic soils of Pali district, Rajasthan, India and well known for its salinity stress tolerance. In the present study, we performed transcriptome sequencing to compare genome wide differential expression pattern between flag leaves of salinity stressed (15 EC) and control plants at anthesis stage. The 63.9 million paired end raw reads were assembled into 74,106 unigenes, of which, 3197 unigenes were found to be differentially expressed. Functional annotation analysis revealed the upregulation of genes associated with various biological processes including signal transduction, phytohormones signaling, osmoregulation, flavonoid biosynthesis, ion transport and ROS homeostasis. Expression pattern of fourteen differentially expressed genes was validated using qRT-PCR and was found to be consistent with the results of the transcriptome sequencing. Present study is the primary report on transcriptome profiling of Kharchia Local flag leaf under long-term salinity stress at anthesis stage. In conclusion, the data generated in this study can improve our knowledge in understanding the molecular mechanism of salinity stress tolerance. It will also serve as a valuable genomic resource in wheat breeding programs.
Collapse
Affiliation(s)
- Mahesh M Mahajan
- ICAR-Indian Agricultural Research Institute, New Delhi, India; Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, 110012, India
| | - Etika Goyal
- Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, 110012, India
| | - Amit K Singh
- Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, 110012, India
| | - Kishor Gaikwad
- Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, 110012, India
| | - Kumar Kanika
- Biotechnology and Climate Change Laboratory, ICAR-NRC on Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
43
|
Hedrich R, Geiger D. Biology of SLAC1-type anion channels - from nutrient uptake to stomatal closure. THE NEW PHYTOLOGIST 2017; 216:46-61. [PMID: 28722226 DOI: 10.1111/nph.14685] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/25/2017] [Indexed: 05/22/2023]
Abstract
Contents 46 I. 46 II. 47 III. 50 IV. 53 V. 56 VI. 57 58 58 References 58 SUMMARY: Stomatal guard cells control leaf CO2 intake and concomitant water loss to the atmosphere. When photosynthetic CO2 assimilation is limited and the ratio of CO2 intake to transpiration becomes suboptimal, guard cells, sensing the rise in CO2 concentration in the substomatal cavity, deflate and the stomata close. Screens for mutants that do not close in response to experimentally imposed high CO2 atmospheres identified the guard cell-expressed Slowly activating anion channel, SLAC1, as the key player in the regulation of stomatal closure. SLAC1 evolved, though, before the emergence of guard cells. In Arabidopsis, SLAC1 is the founder member of a family of anion channels, which comprises four homologues. SLAC1 and SLAH3 mediate chloride and nitrate transport in guard cells, while SLAH1, SLAH2 and SLAH3 are engaged in root nitrate and chloride acquisition, and anion translocation to the shoot. The signal transduction pathways involved in CO2 , water stress and nutrient-sensing activate SLAC/SLAH via distinct protein kinase/phosphatase pairs. In this review, we discuss the role that SLAC/SLAH channels play in guard cell closure, on the one hand, and in the root-shoot continuum on the other, along with the molecular basis of the channels' anion selectivity and gating.
Collapse
Affiliation(s)
- Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, 97082, Germany
| | - Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, Wuerzburg, 97082, Germany
| |
Collapse
|
44
|
Murphy A. Plant membranes and border control. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3037-3040. [PMID: 28899083 PMCID: PMC5853494 DOI: 10.1093/jxb/erx229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
45
|
Wege S, Gilliham M, Henderson SW. Chloride: not simply a 'cheap osmoticum', but a beneficial plant macronutrient. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3057-3069. [PMID: 28379459 DOI: 10.1093/jxb/erx050] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
At macronutrient levels, chloride has positive effects on plant growth, which are distinct from its function in photosynthesis..
Collapse
Affiliation(s)
- Stefanie Wege
- Australian Research Council Centre of Excellence in Plant Energy Biology & The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Precinct, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology & The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Precinct, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Sam W Henderson
- Australian Research Council Centre of Excellence in Plant Energy Biology & The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Precinct, PMB1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
46
|
Ismail AM, Horie T. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:405-434. [PMID: 28226230 DOI: 10.1146/annurev-arplant-042916-040936] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salt stress reduces land and water productivity and contributes to poverty and food insecurity. Increased salinization caused by human practices and climate change is progressively reducing agriculture productivity despite escalating calls for more food. Plant responses to salt stress are well understood, involving numerous critical processes that are each controlled by multiple genes. Knowledge of the critical mechanisms controlling salt uptake and exclusion from functioning tissues, signaling of salt stress, and the arsenal of protective metabolites is advancing. However, little progress has been made in developing salt-tolerant varieties of crop species using standard (but slow) breeding approaches. The genetic diversity available within cultivated crops and their wild relatives provides rich sources for trait and gene discovery that has yet to be sufficiently utilized. Transforming this knowledge into modern approaches using genomics and molecular tools for precision breeding will accelerate the development of tolerant cultivars and help sustain food production.
Collapse
Affiliation(s)
- Abdelbagi M Ismail
- Genetics and Biotechnology Division, International Rice Research Institute, Manila 1301, Philippines;
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan;
| |
Collapse
|
47
|
Li B, Tester M, Gilliham M. Chloride on the Move. TRENDS IN PLANT SCIENCE 2017; 22:236-248. [PMID: 28081935 DOI: 10.1016/j.tplants.2016.12.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/21/2016] [Accepted: 12/11/2016] [Indexed: 05/20/2023]
Abstract
Chloride (Cl-) is an essential plant nutrient but under saline conditions it can accumulate to toxic levels in leaves; limiting this accumulation improves the salt tolerance of some crops. The rate-limiting step for this process - the transfer of Cl- from root symplast to xylem apoplast, which can antagonize delivery of the macronutrient nitrate (NO3-) to shoots - is regulated by abscisic acid (ABA) and is multigenic. Until recently the molecular mechanisms underpinning this salt-tolerance trait were poorly defined. We discuss here how recent advances highlight the role of newly identified transport proteins, some that directly transfer Cl- into the xylem, and others that act on endomembranes in 'gatekeeper' cell types in the root stele to control root-to-shoot delivery of Cl-.
Collapse
Affiliation(s)
- Bo Li
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Matthew Gilliham
- Plant Transport and Signalling Group, Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
48
|
Li B, Qiu J, Jayakannan M, Xu B, Li Y, Mayo GM, Tester M, Gilliham M, Roy SJ. AtNPF2.5 Modulates Chloride (Cl -) Efflux from Roots of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:2013. [PMID: 28111585 PMCID: PMC5216686 DOI: 10.3389/fpls.2016.02013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/19/2016] [Indexed: 05/18/2023]
Abstract
The accumulation of high concentrations of chloride (Cl-) in leaves can adversely affect plant growth. When comparing different varieties of the same Cl- sensitive plant species those that exclude relatively more Cl- from their shoots tend to perform better under saline conditions; however, the molecular mechanisms involved in maintaining low shoot Cl- remain largely undefined. Recently, it was shown that the NRT1/PTR Family 2.4 protein (NPF2.4) loads Cl- into the root xylem, which affects the accumulation of Cl- in Arabidopsis shoots. Here we characterize NPF2.5, which is the closest homolog to NPF2.4 sharing 83.2% identity at the amino acid level. NPF2.5 is predominantly expressed in root cortical cells and its transcription is induced by salt. Functional characterisation of NPF2.5 via its heterologous expression in yeast (Saccharomyces cerevisiae) and Xenopus laevis oocytes indicated that NPF2.5 is likely to encode a Cl- permeable transporter. Arabidopsis npf2.5 T-DNA knockout mutant plants exhibited a significantly lower Cl- efflux from roots, and a greater Cl- accumulation in shoots compared to salt-treated Col-0 wild-type plants. At the same time, [Formula: see text] content in the shoot remained unaffected. Accumulation of Cl- in the shoot increased following (1) amiRNA-induced knockdown of NPF2.5 transcript abundance in the root, and (2) constitutive over-expression of NPF2.5. We suggest that both these findings are consistent with a role for NPF2.5 in modulating Cl- transport. Based on these results, we propose that NPF2.5 functions as a pathway for Cl- efflux from the root, contributing to exclusion of Cl- from the shoot of Arabidopsis.
Collapse
Affiliation(s)
- Bo Li
- Australian Centre for Plant Functional GenomicsAdelaide, SA, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Jiaen Qiu
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy BiologyAdelaide, SA, Australia
| | - Maheswari Jayakannan
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy BiologyAdelaide, SA, Australia
| | - Bo Xu
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy BiologyAdelaide, SA, Australia
| | - Yuan Li
- Australian Centre for Plant Functional GenomicsAdelaide, SA, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
| | - Gwenda M. Mayo
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
| | - Mark Tester
- Australian Centre for Plant Functional GenomicsAdelaide, SA, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
- ARC Centre of Excellence in Plant Energy BiologyAdelaide, SA, Australia
- *Correspondence: Matthew Gilliham
| | - Stuart J. Roy
- Australian Centre for Plant Functional GenomicsAdelaide, SA, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of AdelaideAdelaide, SA, Australia
- Stuart J. Roy
| |
Collapse
|