1
|
Berrocal-Rubio MA, Pawer YDJ, Dinevska M, De Paoli-Iseppi R, Widodo SS, Gleeson J, Rajab N, De Nardo W, Hallab J, Li A, Mantamadiotis T, Clark MB, Wells CA. Discovery of NRG1-VII: the myeloid-derived class of NRG1. BMC Genomics 2024; 25:814. [PMID: 39210279 PMCID: PMC11360300 DOI: 10.1186/s12864-024-10723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The growth factor Neuregulin-1 (NRG1) has pleiotropic roles in proliferation and differentiation of the stem cell niche in different tissues. It has been implicated in gut, brain and muscle development and repair. Six isoform classes of NRG1 and over 28 protein isoforms have been previously described. Here we report a new class of NRG1, designated NRG1-VII to denote that these NRG1 isoforms arise from a myeloid-specific transcriptional start site (TSS) previously uncharacterized. Long-read sequencing was used to identify eight high-confidence NRG1-VII transcripts. These transcripts presented major structural differences from one another, through the use of cassette exons and alternative stop codons. Expression of NRG1-VII was confirmed in primary human monocytes and tissue resident macrophages and induced pluripotent stem cell-derived macrophages (iPSC-derived macrophages). Isoform switching via cassette exon usage and alternate polyadenylation was apparent during monocyte maturation and macrophage differentiation. NRG1-VII is the major class expressed by the myeloid lineage, including tissue-resident macrophages. Analysis of public gene expression data indicates that monocytes and macrophages are a primary source of NRG1. The size and structure of class VII isoforms suggests that they may be more diffusible through tissues than other NRG1 classes. However, the specific roles of class VII variants in tissue homeostasis and repair have not yet been determined.
Collapse
Affiliation(s)
- Miguel A Berrocal-Rubio
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Yair David Joseph Pawer
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Marija Dinevska
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Ricardo De Paoli-Iseppi
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Samuel S Widodo
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Josie Gleeson
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Nadia Rajab
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Will De Nardo
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Jeannette Hallab
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Anran Li
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Michael B Clark
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Christine A Wells
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
2
|
Tang W, Liang P. The identification of retro-DNAs in primate genomes as DNA transposons mobilizing via retrotransposition. F1000Res 2024; 12:255. [PMID: 38915770 PMCID: PMC11195612 DOI: 10.12688/f1000research.130043.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Background Mobile elements (MEs) constitute a major portion of the genome in primates and other higher eukaryotes, and they play important role in genome evolution and gene function. MEs can be divided into two fundamentally different classes: DNA transposons which transpose in the genome in a "cut-and-paste" style, and retrotransposons which propagate in a "copy-and-paste" fashion via a process involving transcription and reverse-transcription. In primate genomes, DNA transposons are mostly dead, while many retrotransposons are still highly active. We report here the identification of a unique group of MEs, which we call "retro-DNAs", for their combined characteristics of these two fundamentally different ME classes. Methods A comparative computational genomic approach was used to analyze the reference genome sequences of 10 primate species consisting of five apes, four monkeys, and marmoset. Results From our analysis, we identified a total of 1,750 retro-DNAs, representing 748 unique insertion events in the genomes of ten primate species including human. These retro-DNAs contain sequences of DNA transposons but lack the terminal inverted repeats (TIRs), the hallmark of DNA transposons. Instead, they show characteristics of retrotransposons, such as polyA tails, longer target-site duplications (TSDs), and the "TT/AAAA" insertion site motif, suggesting the use of the L1-based target- primed reverse transcription (TPRT) mechanism. At least 40% of these retro-DNAs locate into genic regions, presenting potentials for impacting gene function. More interestingly, some retro-DNAs, as well as their parent sites, show certain levels of expression, suggesting that they have the potential to create more retro-DNA copies in the present primate genomes. Conclusions Although small in number, the identification of these retro-DNAs reveals a new mean for propagating DNA transposons in primate genomes without active canonical DNA transposon activity. Our data also suggest that the TPRT machinery may transpose a wider variety of DNA sequences in the genomes.
Collapse
Affiliation(s)
- Wangxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
- Centre of Biotechnology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
3
|
Alvarez-Buylla A, Fischer MT, Moya Garzon MD, Rangel AE, Tapia EE, Tanzo JT, Soh HT, Coloma LA, Long JZ, O'Connell LA. Binding and sequestration of poison frog alkaloids by a plasma globulin. eLife 2023; 12:e85096. [PMID: 38206862 PMCID: PMC10783871 DOI: 10.7554/elife.85096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Alkaloids are important bioactive molecules throughout the natural world, and in many animals they serve as a source of chemical defense against predation. Dendrobatid poison frogs bioaccumulate alkaloids from their diet to make themselves toxic or unpalatable to predators. Despite the proposed roles of plasma proteins as mediators of alkaloid trafficking and bioavailability, the responsible proteins have not been identified. We use chemical approaches to show that a ~50 kDa plasma protein is the principal alkaloid-binding molecule in blood of poison frogs. Proteomic and biochemical studies establish this plasma protein to be a liver-derived alkaloid-binding globulin (ABG) that is a member of the serine-protease inhibitor (serpin) family. In addition to alkaloid-binding activity, ABG sequesters and regulates the bioavailability of 'free' plasma alkaloids in vitro. Unexpectedly, ABG is not related to saxiphilin, albumin, or other known vitamin carriers, but instead exhibits sequence and structural homology to mammalian hormone carriers and amphibian biliverdin-binding proteins. ABG represents a new small molecule binding functionality in serpin proteins, a novel mechanism of plasma alkaloid transport in poison frogs, and more broadly points toward serpins acting as tunable scaffolds for small molecule binding and transport across different organisms.
Collapse
Affiliation(s)
| | | | - Maria Dolores Moya Garzon
- Sarafan ChEM-H, Stanford UniversityStanfordUnited States
- Wu Tsai Institute for Neuroscience, Stanford UniversityStanfordUnited States
- Department of Pathology, Stanford UniversityStanfordUnited States
| | - Alexandra E Rangel
- Wu Tsai Human Performance Alliance, Stanford UniversityStanfordUnited States
| | - Elicio E Tapia
- Department of Radiology, Stanford UniversityStanfordUnited States
| | - Julia T Tanzo
- Sarafan ChEM-H, Stanford UniversityStanfordUnited States
- Wu Tsai Institute for Neuroscience, Stanford UniversityStanfordUnited States
| | - H Tom Soh
- Wu Tsai Human Performance Alliance, Stanford UniversityStanfordUnited States
- Center for Taxonomy and Morphology, Leibniz Institute for the Analysis of Biodiversity ChangeHamburgGermany
- Department of Electrical Engineering, Stanford UniversityStanfordUnited States
| | | | - Jonathan Z Long
- Sarafan ChEM-H, Stanford UniversityStanfordUnited States
- Wu Tsai Institute for Neuroscience, Stanford UniversityStanfordUnited States
- Department of Pathology, Stanford UniversityStanfordUnited States
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación JambatuSan RafaelEcuador
| | - Lauren A O'Connell
- Department of Biology, Stanford UniversityStanfordUnited States
- Wu Tsai Institute for Neuroscience, Stanford UniversityStanfordUnited States
- Stanford Diabetes Research Center, Stanford UniversityStanfordUnited States
| |
Collapse
|
4
|
DeCasien AR, Barton RA, Higham JP. Understanding the human brain: insights from comparative biology. Trends Cogn Sci 2022; 26:432-445. [DOI: 10.1016/j.tics.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023]
|
5
|
Santos-Rodriguez G, Voineagu I, Weatheritt RJ. Evolutionary dynamics of circular RNAs in primates. eLife 2021; 10:e69148. [PMID: 34542404 PMCID: PMC8516421 DOI: 10.7554/elife.69148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Many primate genes produce circular RNAs (circRNAs). However, the extent of circRNA conservation between closely related species remains unclear. By comparing tissue-specific transcriptomes across over 70 million years of primate evolution, we identify that within 3 million years circRNA expression profiles diverged such that they are more related to species identity than organ type. However, our analysis also revealed a subset of circRNAs with conserved neural expression across tens of millions of years of evolution. By comparing to species-specific circRNAs, we identified that the downstream intron of the conserved circRNAs display a dramatic lengthening during evolution due to the insertion of novel retrotransposons. Our work provides comparative analyses of the mechanisms promoting circRNAs to generate increased transcriptomic complexity in primates.
Collapse
Affiliation(s)
- Gabriela Santos-Rodriguez
- EMBL Australia, Garvan Institute of Medical ResearchDarlinghurstAustralia
- St. Vincent Clinical School, University of New South WalesDarlinghurstAustralia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydneyAustralia
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical ResearchDarlinghurstAustralia
- St. Vincent Clinical School, University of New South WalesDarlinghurstAustralia
| |
Collapse
|
6
|
The human ADAM1A gene is affected by the transcriptional readthrough of MAPKAPK5, which may have evolutionary implications. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Moore KJM, Cahill J, Aidelberg G, Aronoff R, Bektaş A, Bezdan D, Butler DJ, Chittur SV, Codyre M, Federici F, Tanner NA, Tighe SW, True R, Ware SB, Wyllie AL, Afshin EE, Bendesky A, Chang CB, Dela Rosa R, Elhaik E, Erickson D, Goldsborough AS, Grills G, Hadasch K, Hayden A, Her SY, Karl JA, Kim CH, Kriegel AJ, Kunstman T, Landau Z, Land K, Langhorst BW, Lindner AB, Mayer BE, McLaughlin LA, McLaughlin MT, Molloy J, Mozsary C, Nadler JL, D'Silva M, Ng D, O'Connor DH, Ongerth JE, Osuolale O, Pinharanda A, Plenker D, Ranjan R, Rosbash M, Rotem A, Segarra J, Schürer S, Sherrill-Mix S, Solo-Gabriele H, To S, Vogt MC, Yu AD, Mason CE. Loop-Mediated Isothermal Amplification Detection of SARS-CoV-2 and Myriad Other Applications. J Biomol Tech 2021; 32:228-275. [PMID: 35136384 PMCID: PMC8802757 DOI: 10.7171/jbt.21-3203-017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.
Collapse
Affiliation(s)
- Keith J M Moore
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | | | - Guy Aidelberg
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
| | - Rachel Aronoff
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
- Action for Genomic Integrity Through Research! (AGiR!), Lausanne, Switzerland
- Association Hackuarium, Lausanne, Switzerland
| | - Ali Bektaş
- Oakland Genomics Center, Oakland, CA 94609, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, 72076 Tübingen, Germany
- Poppy Health, Inc, San Francisco, CA 94158, USA
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital, 72076 Tübingen, Germany
| | - Daniel J Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sridar V Chittur
- Center for Functional Genomics, Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, 12222, USA
| | - Martin Codyre
- GiantLeap Biotechnology Ltd, Wicklow A63 Kv91, Ireland
| | - Fernan Federici
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | | | | | - Randy True
- FloodLAMP Biotechnologies, San Carlos, CA 94070, USA
| | - Sarah B Ware
- Just One Giant Lab, Centre de Recherches Interdisciplinaires (CRI), 75004 Paris, France
- BioBlaze Community Bio Lab, 1800 W Hawthorne Ln, Ste J-1, West Chicago, IL 60185, USA
- Blossom Bio Lab, 1800 W Hawthorne Ln, Ste K-2, West Chicago, IL 60185, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Evan E Afshin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andres Bendesky
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Connie B Chang
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, 59717, USA
| | - Richard Dela Rosa
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | - Eran Elhaik
- Department of Biology, Lund University, Sölvegatan 35, Lund, Sweden
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA
| | | | - George Grills
- Department of Microbiology, University of Pennsylvania, Philadelphia, 19104, USA
| | - Kathrin Hadasch
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Lab3 eV, Labspace Darmstadt, 64295 Darmstadt, Germany
- IANUS Verein für Friedensorientierte Technikgestaltung eV, 64289 Darmstadt, Germany
| | - Andrew Hayden
- Center for Functional Genomics, Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, 12222, USA
| | | | - Julie A Karl
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | | | | | | | - Zeph Landau
- Department of Computer Science, University of California, Berkeley, Berkeley, 94720, USA
| | - Kevin Land
- Mologic, Centre for Advanced Rapid Diagnostics, (CARD), Bedford Technology Park, Thurleigh MK44 2YA, England
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, 0028 Pretoria, South Africa
| | | | - Ariel B Lindner
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Benjamin E Mayer
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Lab3 eV, Labspace Darmstadt, 64295 Darmstadt, Germany
| | | | - Matthew T McLaughlin
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, England
| | - Christopher Mozsary
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jerry L Nadler
- Department of Pharmacology, New York Medical College, Valhalla, 10595, USA
| | - Melinee D'Silva
- Department of Pharmacology, New York Medical College, Valhalla, 10595, USA
| | - David Ng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Madison 53705, USA
| | - Jerry E Ongerth
- University of Wollongong, Environmental Engineering, Wollongong NSW 2522, Australia
| | - Olayinka Osuolale
- Applied Environmental Metagenomics and Infectious Diseases Research (AEMIDR), Department of Biological Sciences, Elizade University, Ilara Mokin, Nigeria
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Dennis Plenker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | | | | | - Scott Sherrill-Mix
- Department of Microbiology, University of Pennsylvania, Philadelphia, 19104, USA
| | | | - Shaina To
- School of Science and Engineering, Ateneo de Manila University, Quezon City 1108, Philippines
| | - Merly C Vogt
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Albert D Yu
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
8
|
Nalamalapu RR, Yue M, Stone AR, Murphy S, Saha MS. The tweety Gene Family: From Embryo to Disease. Front Mol Neurosci 2021; 14:672511. [PMID: 34262434 PMCID: PMC8273234 DOI: 10.3389/fnmol.2021.672511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
The tweety genes encode gated chloride channels that are found in animals, plants, and even simple eukaryotes, signifying their deep evolutionary origin. In vertebrates, the tweety gene family is highly conserved and consists of three members—ttyh1, ttyh2, and ttyh3—that are important for the regulation of cell volume. While research has elucidated potential physiological functions of ttyh1 in neural stem cell maintenance, proliferation, and filopodia formation during neural development, the roles of ttyh2 and ttyh3 are less characterized, though their expression patterns during embryonic and fetal development suggest potential roles in the development of a wide range of tissues including a role in the immune system in response to pathogen-associated molecules. Additionally, members of the tweety gene family have been implicated in various pathologies including cancers, particularly pediatric brain tumors, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Here, we review the current state of research using information from published articles and open-source databases on the tweety gene family with regard to its structure, evolution, expression during development and adulthood, biochemical and cellular functions, and role in human disease. We also identify promising areas for further research to advance our understanding of this important, yet still understudied, family of genes.
Collapse
Affiliation(s)
- Rithvik R Nalamalapu
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Michelle Yue
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Aaron R Stone
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Samantha Murphy
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Margaret S Saha
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
9
|
Feng Y, Xu H, Liu J, Xie N, Gao L, He Y, Yao Y, Lv F, Zhang Y, Lu J, Zhang W, Li CY, Hu X, Yang Z, Xiao RP. Functional and Adaptive Significance of Promoter Mutations That Affect Divergent Myocardial Expressions of TRIM72 in Primates. Mol Biol Evol 2021; 38:2930-2945. [PMID: 33744959 PMCID: PMC8233513 DOI: 10.1093/molbev/msab083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cis-regulatory elements play important roles in tissue-specific gene expression and in the evolution of various phenotypes, and mutations in promoters and enhancers may be responsible for adaptations of species to environments. TRIM72 is a highly conserved protein that is involved in energy metabolism. Its expression in the heart varies considerably in primates, with high levels of expression in Old World monkeys and near absence in hominids. Here, we combine phylogenetic hypothesis testing and experimentation to demonstrate that mutations in promoter are responsible for the differences among primate species in the heart-specific expression of TRIM72. Maximum likelihood estimates of lineage-specific substitution rates under local-clock models show that relative to the evolutionary rate of introns, the rate of promoter was accelerated by 78% in the common ancestor of Old World monkeys, suggesting a role for positive selection in the evolution of the TRIM72 promoter, possibly driven by selective pressure due to changes in cardiac physiology after species divergence. We demonstrate that mutations in the TRIM72 promoter account for the differential myocardial TRIM72 expression of the human and the rhesus macaque. Furthermore, changes in TRIM72 expression alter the expression of genes involved in oxidative phosphorylation, which in turn affects mitochondrial respiration and cardiac energy capacity. On a broader timescale, phylogenetic regression analyses of data from 29 mammalian species show that mammals with high cardiac expression of TRIM72 have high heart rate, suggesting that the expression changes of TRIM72 may be related to differences in the heart physiology of those species.
Collapse
Affiliation(s)
- Yuanqing Feng
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Hongzhan Xu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jinghao Liu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Ning Xie
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Lei Gao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanyun He
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yuan Yao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Fengxiang Lv
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yan Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jian Lu
- Peking-Tsinghua Center for Life Sciences, Beijing, China.,State Key Laboratory of Protein and Plant Gene Research, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Wei Zhang
- Peking-Tsinghua Center for Life Sciences, Beijing, China.,State Key Laboratory of Protein and Plant Gene Research, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Chuan-Yun Li
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xinli Hu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China.,State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
10
|
Human-chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal evolution. Nat Genet 2021; 53:467-476. [PMID: 33731941 PMCID: PMC8038968 DOI: 10.1038/s41588-021-00804-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/26/2021] [Indexed: 01/06/2023]
Abstract
Gene regulatory divergence is thought to play a central role in determining human-specific traits. However, our ability to link divergent regulation to divergent phenotypes is limited. Here, we utilized human-chimpanzee hybrid induced pluripotent stem cells to study gene expression separating these species. The tetraploid hybrid cells allowed us to separate cis- from trans-regulatory effects, and to control for non-genetic confounding factors. We differentiated these cells into cranial neural crest cells (CNCCs), the primary cell type giving rise to the face. We discovered evidence of lineage-specific selection on the hedgehog signaling pathway, including a human-specific 6-fold down-regulation of EVC2 (LIMBIN), a key hedgehog gene. Inducing a similar down-regulation of EVC2 substantially reduced hedgehog signaling output. Mice and humans lacking functional EVC2 show striking phenotypic parallels to human-chimpanzee craniofacial differences, suggesting that the regulatory divergence of hedgehog signaling may have contributed to the unique craniofacial morphology of humans.
Collapse
|
11
|
Bhattacharya A, Jha V, Singhal K, Fatima M, Singh D, Chaturvedi G, Dholakia D, Kutum R, Pandey R, Bakken TE, Seth P, Pillai B, Mukerji M. Multiple Alu Exonization in 3'UTR of a Primate-Specific Isoform of CYP20A1 Creates a Potential miRNA Sponge. Genome Biol Evol 2020; 13:5958120. [PMID: 33434274 PMCID: PMC7802813 DOI: 10.1093/gbe/evaa233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Alu repeats contribute to phylogenetic novelties in conserved regulatory networks in primates. Our study highlights how exonized Alus could nucleate large-scale mRNA-miRNA interactions. Using a functional genomics approach, we characterize a transcript isoform of an orphan gene, CYP20A1 (CYP20A1_Alu-LT) that has exonization of 23 Alus in its 3'UTR. CYP20A1_Alu-LT, confirmed by 3'RACE, is an outlier in length (9 kb 3'UTR) and widely expressed. Using publically available data sets, we demonstrate its expression in higher primates and presence in single nucleus RNA-seq of 15,928 human cortical neurons. miRanda predicts ∼4,700 miRNA recognition elements (MREs) for ∼1,000 miRNAs, primarily originated within these 3'UTR-Alus. CYP20A1_Alu-LT could be a potential multi-miRNA sponge as it harbors ≥10 MREs for 140 miRNAs and has cytosolic localization. We further tested whether expression of CYP20A1_Alu-LT correlates with mRNAs harboring similar MRE targets. RNA-seq with conjoint miRNA-seq analysis was done in primary human neurons where we observed CYP20A1_Alu-LT to be downregulated during heat shock response and upregulated in HIV1-Tat treatment. In total, 380 genes were positively correlated with its expression (significantly downregulated in heat shock and upregulated in Tat) and they harbored MREs for nine expressed miRNAs which were also enriched in CYP20A1_Alu-LT. MREs were significantly enriched in these 380 genes compared with random sets of differentially expressed genes (P = 8.134e-12). Gene ontology suggested involvement of these genes in neuronal development and hemostasis pathways thus proposing a novel component of Alu-miRNA-mediated transcriptional modulation that could govern specific physiological outcomes in higher primates.
Collapse
Affiliation(s)
- Aniket Bhattacharya
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vineet Jha
- Persistent LABS, Persistent Systems Ltd., Pune, Maharashtra, India
| | - Khushboo Singhal
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahar Fatima
- Department of Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Manesar, Haryana, India
| | - Dayanidhi Singh
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gaura Chaturvedi
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dhwani Dholakia
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rintu Kutum
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | | | - Pankaj Seth
- Department of Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Manesar, Haryana, India
| | - Beena Pillai
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mitali Mukerji
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Tang W, Liang P. Alu master copies serve as the drivers of differential SINE transposition in recent primate genomes. Anal Biochem 2020; 606:113825. [PMID: 32712063 DOI: 10.1016/j.ab.2020.113825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022]
Abstract
Alu elements, averaging ~300bp in length, are a family of primate-specific short intersperse nuclear elements (SINEs) with more than one million copies and contributing to ~11% of primate genomes. Despite mostly being shared among primates, our recent study revealed highly differential recent Alu transposition among the genomes of primates from Hominidae and Cercopithecidae families. To understand the underlying mechanism, we analyzed six primate genomes and revealed species- and lineage-specific Alu profile exclusively defined by AluY composition. Among all Alus from the 6 genomes, we identified 5401 Alu master copies with 99% being from the AluY subfamily. The numbers of Alu master copies are positively correlated to the number of AluY elements in the genomes with the baboon genome having the largest number of most recent Alu master copies at high activities, while the crab-eating macaque genome having a low number of Alu master copies with low activity. Furthermore, the expression level of Alu master copies is positively correlated with their transposition activity. Our results support the concept that Alu transposition in primate genomes is driven by a small number of master copies, the number and relative activity of which contribute to the differential Alu transposition in recent primate genomes.
Collapse
Affiliation(s)
- Wanxiangfu Tang
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Ping Liang
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
13
|
Abstract
We report a systematic unbiased analysis of small RNA molecule expression in 11 different tissues of the model organism mouse. We discovered uncharacterized noncoding RNA molecules and identified that ∼30% of total noncoding small RNA transcriptome are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. Distinct distribution patterns of small RNA across the body suggest the existence of tissue-specific mechanisms involved in noncoding RNA processing. Small noncoding RNAs (ncRNAs) play a vital role in a broad range of biological processes both in health and disease. A comprehensive quantitative reference of small ncRNA expression would significantly advance our understanding of ncRNA roles in shaping tissue functions. Here, we systematically profiled the levels of five ncRNA classes (microRNA [miRNA], small nucleolar RNA [snoRNA], small nuclear RNA [snRNA], small Cajal body-specific RNA [scaRNA], and transfer RNA [tRNA] fragments) across 11 mouse tissues by deep sequencing. Using 14 biological replicates spanning both sexes, we identified that ∼30% of small ncRNAs are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. We found that some miRNAs are subject to “arm switching” between healthy tissues and that tRNA fragments are retained within tissues in both a gene- and a tissue-specific manner. Out of 11 profiled tissues, we confirmed that brain contains the largest number of unique small ncRNA transcripts, some of which were previously annotated while others are identified in this study. Furthermore, by combining these findings with single-cell chromatin accessibility (scATAC-seq) data, we were able to connect identified brain-specific ncRNAs with their cell types of origin. These results yield the most comprehensive characterization of specific and ubiquitous small RNAs in individual murine tissues to date, and we expect that these data will be a resource for the further identification of ncRNAs involved in tissue function in health and dysfunction in disease.
Collapse
|
14
|
LRF/ZBTB7A conservation accentuates its potential as a therapeutic target for the hematopoietic disorders. Gene 2020; 760:145020. [PMID: 32755656 DOI: 10.1016/j.gene.2020.145020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
Conserved sequences across species have always provided valuable insights to improve our understanding on the human genome's entity and the interplay among different loci. Lymphoma/leukemia related factor (LRF) is encoded by ZBTB7A gene and belongs to an evolutionarily conserved family of transcription factors, implicated in vital cellular functions. The present data, demonstrating the wide-spread and the high overlap of the LRF/ZBTB7A recognition sites with genomic segments identified as CpG islands in the human genome, suggest that its binding capacity strongly depends on a specific sequence-encoded feature within CpGs. We have previously shown that de-methylation of the CpG island 326 lying in the ZBTB7A gene promoter is associated with impaired pharmacological induction of fetal hemoglobin in β-type hemoglobinopathies patients. Within this context we aimed to investigate the extent of the LRF/ZBTB7A conservation among primates and mouse genome, focusing our interest also on the CpG island flanking the gene's promoter region, in an effort to further establish its epigenetic regulatory role in human hematopoiesis and pharmacological involvement in hematopoietic disorders. Comparative analysis of the human ZBTB7A nucleotide and amino acid sequences and orthologous sequences among non-human primates and mouse, exhibited high conservation scores. Pathway analysis, clearly indicated that LRF/ZBTB7A influences conserved cellular processes. These data in conjunction with the high levels of expression foremost in hematopoietic tissues, highlighted LRF/ZBTB7A as an essential factor operating indisputably during hematopoiesis.
Collapse
|
15
|
Branching out: what omics can tell us about primate evolution. Curr Opin Genet Dev 2020; 62:65-71. [DOI: 10.1016/j.gde.2020.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022]
|
16
|
Jasinska AJ. Resources for functional genomic studies of health and development in nonhuman primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171 Suppl 70:174-194. [PMID: 32221967 DOI: 10.1002/ajpa.24051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/22/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Primates display a wide range of phenotypic variation underlaid by complex genetically regulated mechanisms. The links among DNA sequence, gene function, and phenotype have been of interest from an evolutionary perspective, to understand functional genome evolution and its phenotypic consequences, and from a biomedical perspective to understand the shared and human-specific roots of health and disease. Progress in methods for characterizing genetic, transcriptomic, and DNA methylation (DNAm) variation is driving the rapid development of extensive omics resources, which are now increasingly available from humans as well as a growing number of nonhuman primates (NHPs). The fast growth of large-scale genomic data is driving the emergence of integrated tools and databases, thus facilitating studies of gene functionality across primates. This review describes NHP genomic resources that can aid in exploration of how genes shape primate phenotypes. It focuses on the gene expression trajectories across development in different tissues, the identification of functional genetic variation (including variants deleterious for protein function and regulatory variants modulating gene expression), and DNAm profiles as an emerging tool to understand the process of aging. These resources enable comparative functional genomics approaches to identify species-specific and primate-shared gene functionalities associated with health and development.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Eye on Primates, Los Angeles, California, USA
| |
Collapse
|
17
|
Gaska JM, Parsons L, Balev M, Cirincione A, Wang W, Schwartz RE, Ploss A. Conservation of cell-intrinsic immune responses in diverse nonhuman primate species. Life Sci Alliance 2019; 2:2/5/e201900495. [PMID: 31649152 PMCID: PMC6814850 DOI: 10.26508/lsa.201900495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/03/2023] Open
Abstract
The transcriptomic response of diverse nonhuman primate (NHP) species to poly(I:C) is highly conserved, and this novel RNA sequencing dataset will help improve NHP genome annotations. Differences in immune responses across species can contribute to the varying permissivity of species to the same viral pathogen. Understanding how our closest evolutionary relatives, nonhuman primates (NHPs), confront pathogens and how these responses have evolved over time could shed light on host range barriers, especially for zoonotic infections. Here, we analyzed cell-intrinsic immunity of primary cells from the broadest panel of NHP species interrogated to date, including humans, great apes, and Old and New World monkeys. Our analysis of their transcriptomes after poly(I:C) transfection revealed conservation in the functional consequences of their response. In mapping reads to either the human or the species-specific genomes, we observed that with the current state of NHP annotations, the percent of reads assigned to a genetic feature was largely similar regardless of the method. Together, these data provide a baseline for the cell-intrinsic responses elicited by a potent immune stimulus across multiple NHP donors, including endangered species, and serve as a resource for refining and furthering the existing annotations of NHP genomes.
Collapse
Affiliation(s)
- Jenna M Gaska
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Lance Parsons
- Carl Icahn Laboratory, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Metodi Balev
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ann Cirincione
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Wei Wang
- Carl Icahn Laboratory, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Robert E Schwartz
- Weill Cornell Medical College, Belfer Research Building, New York, NY, USA
| | - Alexander Ploss
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
18
|
Wang L, Xia Y, Chen Y, Dai R, Qiu W, Meng Q, Kuney L, Chen C. Brain Banks Spur New Frontiers in Neuropsychiatric Research and Strategies for Analysis and Validation. GENOMICS, PROTEOMICS & BIOINFORMATICS 2019; 17:402-414. [PMID: 31811942 PMCID: PMC6943778 DOI: 10.1016/j.gpb.2019.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/13/2019] [Accepted: 03/01/2019] [Indexed: 12/27/2022]
Abstract
Neuropsychiatric disorders affect hundreds of millions of patients and families worldwide. To decode the molecular framework of these diseases, many studies use human postmortem brain samples. These studies reveal brain-specific genetic and epigenetic patterns via high-throughput sequencing technologies. Identifying best practices for the collection of postmortem brain samples, analyzing such large amounts of sequencing data, and interpreting these results are critical to advance neuropsychiatry. We provide an overview of human brain banks worldwide, including progress in China, highlighting some well-known projects using human postmortem brain samples to understand molecular regulation in both normal brains and those with neuropsychiatric disorders. Finally, we discuss future research strategies, as well as state-of-the-art statistical and experimental methods that are drawn upon brain bank resources to improve our understanding of the agents of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Le Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; Child Health Institute of New Jersey, Department of Neuroscience, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Yan Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; Psychiatry Department, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Yu Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Rujia Dai
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; Psychiatry Department, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Wenying Qiu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100101, China
| | - Qingtuan Meng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Liz Kuney
- Psychiatry Department, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China.
| |
Collapse
|
19
|
A comprehensive analysis of chimpanzee (Pan troglodytes)-specific LINE-1 retrotransposons. Gene 2019; 693:46-51. [DOI: 10.1016/j.gene.2019.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
|
20
|
Goldman SL, Hassan C, Khunte M, Soldatenko A, Jong Y, Afshinnekoo E, Mason CE. Epigenetic Modifications in Acute Myeloid Leukemia: Prognosis, Treatment, and Heterogeneity. Front Genet 2019; 10:133. [PMID: 30881380 PMCID: PMC6405641 DOI: 10.3389/fgene.2019.00133] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/08/2019] [Indexed: 01/09/2023] Open
Abstract
Leukemia, specifically acute myeloid leukemia (AML), is a common malignancy that can be differentiated into multiple subtypes based on leukemogenic history and etiology. Although genetic aberrations, particularly cytogenetic abnormalities and mutations in known oncogenes, play an integral role in AML development, epigenetic processes have been shown as a significant and sometimes independent dynamic in AML pathophysiology. Here, we summarize how tumors evolve and describe AML through an epigenetic lens, including discussions on recent discoveries that include prognostics from epialleles, changes in RNA function for hematopoietic stem cells and the epitranscriptome, and novel epigenetic treatment options. We further describe the limitations of treatment in the context of the high degree of heterogeneity that characterizes acute myeloid leukemia.
Collapse
Affiliation(s)
- Samantha L Goldman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,University of Maryland, College Park, MD, United States
| | - Ciaran Hassan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Mihir Khunte
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Arielle Soldatenko
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Yunji Jong
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States.,The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
21
|
Chen J, Swofford R, Johnson J, Cummings BB, Rogel N, Lindblad-Toh K, Haerty W, Palma FD, Regev A. A quantitative framework for characterizing the evolutionary history of mammalian gene expression. Genome Res 2018; 29:53-63. [PMID: 30552105 PMCID: PMC6314168 DOI: 10.1101/gr.237636.118] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/27/2018] [Indexed: 01/09/2023]
Abstract
The evolutionary history of a gene helps predict its function and relationship to phenotypic traits. Although sequence conservation is commonly used to decipher gene function and assess medical relevance, methods for functional inference from comparative expression data are lacking. Here, we use RNA-seq across seven tissues from 17 mammalian species to show that expression evolution across mammals is accurately modeled by the Ornstein–Uhlenbeck process, a commonly proposed model of continuous trait evolution. We apply this model to identify expression pathways under neutral, stabilizing, and directional selection. We further demonstrate novel applications of this model to quantify the extent of stabilizing selection on a gene's expression, parameterize the distribution of each gene's optimal expression level, and detect deleterious expression levels in expression data from individual patients. Our work provides a statistical framework for interpreting expression data across species and in disease.
Collapse
Affiliation(s)
- Jenny Chen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Division of Health Science and Technology, MIT, Cambridge, Massachusetts 02139, USA
| | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Beryl B Cummings
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Noga Rogel
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 752 36 Uppsala, Sweden
| | | | - Federica di Palma
- Earlham Institute, Norwich NR4 7UZ, United Kingdom.,Department of Biological and Medical Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Biology and Koch Institute, MIT, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
22
|
Biggar K, Luu B, Wu C, Pifferi F, Perret M, Storey K. Identification of novel and conserved microRNA and their expression in the gray mouse lemur, Microcebus murinus, a primate capable of daily torpor. Gene 2018; 677:332-339. [DOI: 10.1016/j.gene.2018.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/10/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022]
|
23
|
Rotwein P. Similarity and variation in the insulin-like growth factor 2 - H19 locus in primates. Physiol Genomics 2018; 50:425-439. [PMID: 29602297 PMCID: PMC6032289 DOI: 10.1152/physiolgenomics.00030.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023] Open
Abstract
Insulin-like growth factor 2 (IGF2), a small, secreted protein, is critical for fetal and prenatal growth in humans and other mammals. The IGF2 gene and its mouse homolog comprise part of a conserved linkage group that is regulated by parental imprinting, with IGF2/ Igf2 being expressed from the paternal chromosome, and the adjacent H19 gene from the maternal chromosome. By using information extracted from public genomic and gene expression databases, I have now analyzed this locus in nine nonhuman primate species representing over 60 million years of evolutionary divergence from a common progenitor. Both IGF2 and H19 genes and the entire locus have been conserved among these primates. Each primate IGF2 gene except for gibbon and marmoset is composed of 10 exons and contains five potential promoters, each with distinctive 5'-untranslated exons. Similarly, except for marmoset and mouse lemur, H19 consists of six exons and has two promoters. DNA sequence conservation is high, not only in orthologous exons and promoters, but also in a putative imprinting control region located 5' to H19 and in multiple potential distal enhancer elements found 3' to H19. Collectively, these results support the hypothesis that common regulatory processes shaped the IGF2 - H19 locus before the onset of primate speciation more than 85 million years ago. This study also leads to the conclusion that inaccuracies in data presentation in genetic repositories could limit our ability to develop novel insights about roles of individual genes and multigene loci in mammalian physiology and disease.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center , El Paso, Texas
| |
Collapse
|
24
|
Lacey CJ, Doudney K, Bridgman PG, George PM, Mulder RT, Zarifeh JJ, Kimber B, Cadzow MJ, Black MA, Merriman TR, Lehnert K, Bickley VM, Pearson JF, Cameron VA, Kennedy MA. Copy number variants implicate cardiac function and development pathways in earthquake-induced stress cardiomyopathy. Sci Rep 2018; 8:7548. [PMID: 29765130 PMCID: PMC5954162 DOI: 10.1038/s41598-018-25827-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of stress cardiomyopathy (SCM), also known as takotsubo syndrome, is poorly understood. SCM usually occurs sporadically, often in association with a stressful event, but clusters of cases are reported after major natural disasters. There is some evidence that this is a familial condition. We have examined three possible models for an underlying genetic predisposition to SCM. Our primary study cohort consists of 28 women who suffered SCM as a result of two devastating earthquakes that struck the city of Christchurch, New Zealand, in 2010 and 2011. To seek possible underlying genetic factors we carried out exome analysis, genotyping array analysis, and array comparative genomic hybridization on these subjects. The most striking finding was the observation of a markedly elevated rate of rare, heterogeneous copy number variants (CNV) of uncertain clinical significance (in 12/28 subjects). Several of these CNVs impacted on genes of cardiac relevance including RBFOX1, GPC5, KCNRG, CHODL, and GPBP1L1. There is no physical overlap between the CNVs, and the genes they impact do not appear to be functionally related. The recognition that SCM predisposition may be associated with a high rate of rare CNVs offers a novel perspective on this enigmatic condition.
Collapse
Affiliation(s)
- Cameron J Lacey
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand.
| | - Kit Doudney
- Molecular Pathology Laboratory, Canterbury Health Laboratories, Canterbury District Health Board, Christchurch, New Zealand
| | - Paul G Bridgman
- Department of Cardiology, Christchurch Hospital, Christchurch, New Zealand
| | - Peter M George
- Molecular Pathology Laboratory, Canterbury Health Laboratories, Canterbury District Health Board, Christchurch, New Zealand
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Roger T Mulder
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Julie J Zarifeh
- Psychiatric Consultation Service, Christchurch Hospital, Canterbury District Health Board, Christchurch, New Zealand
| | - Bridget Kimber
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Murray J Cadzow
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Vivienne M Bickley
- Molecular Pathology Laboratory, Canterbury Health Laboratories, Canterbury District Health Board, Christchurch, New Zealand
| | - John F Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - Vicky A Cameron
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
25
|
Chou CH, Huang HY, Huang WC, Hsu SD, Hsiao CD, Liu CY, Chen YH, Liu YC, Huang WY, Lee ML, Chen YC, Huang HD. The aquatic animals' transcriptome resource for comparative functional analysis. BMC Genomics 2018; 19:103. [PMID: 29764375 PMCID: PMC5954267 DOI: 10.1186/s12864-018-4463-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Aquatic animals have great economic and ecological importance. Among them, non-model organisms have been studied regarding eco-toxicity, stress biology, and environmental adaptation. Due to recent advances in next-generation sequencing techniques, large amounts of RNA-seq data for aquatic animals are publicly available. However, currently there is no comprehensive resource exist for the analysis, unification, and integration of these datasets. This study utilizes computational approaches to build a new resource of transcriptomic maps for aquatic animals. This aquatic animal transcriptome map database dbATM provides de novo assembly of transcriptome, gene annotation and comparative analysis of more than twenty aquatic organisms without draft genome. Results To improve the assembly quality, three computational tools (Trinity, Oases and SOAPdenovo-Trans) were employed to enhance individual transcriptome assembly, and CAP3 and CD-HIT-EST software were then used to merge these three assembled transcriptomes. In addition, functional annotation analysis provides valuable clues to gene characteristics, including full-length transcript coding regions, conserved domains, gene ontology and KEGG pathways. Furthermore, all aquatic animal genes are essential for comparative genomics tasks such as constructing homologous gene groups and blast databases and phylogenetic analysis. Conclusion In conclusion, we establish a resource for non model organism aquatic animals, which is great economic and ecological importance and provide transcriptomic information including functional annotation and comparative transcriptome analysis. The database is now publically accessible through the URL http://dbATM.mbc.nctu.edu.tw/. Electronic supplementary material The online version of this article (10.1186/s12864-018-4463-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chih-Hung Chou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsi-Yuan Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Wei-Chih Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Sheng-Da Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli, 320, Taiwan
| | - Chia-Yu Liu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Hung Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Chen Liu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Wei-Yun Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Meng-Lin Lee
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yi-Chang Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
26
|
Palesch D, Bosinger SE, Tharp GK, Vanderford TH, Paiardini M, Chahroudi A, Johnson ZP, Kirchhoff F, Hahn BH, Norgren RB, Patel NB, Sodora DL, Dawoud RA, Stewart CB, Seepo SM, Harris RA, Liu Y, Raveendran M, Han Y, English A, Thomas GWC, Hahn MW, Pipes L, Mason CE, Muzny DM, Gibbs RA, Sauter D, Worley K, Rogers J, Silvestri G. Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host. Nature 2018; 553:77-81. [PMID: 29300007 PMCID: PMC5843367 DOI: 10.1038/nature25140] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023]
Abstract
In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia1. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3–4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS.
Collapse
Affiliation(s)
- David Palesch
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Steven E Bosinger
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | - Gregory K Tharp
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Thomas H Vanderford
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Mirko Paiardini
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | - Ann Chahroudi
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | - Zachary P Johnson
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert B Norgren
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska, Medical Center, Omaha, Nebraska 68198, USA
| | - Nirav B Patel
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Donald L Sodora
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | - Reem A Dawoud
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
| | - Caro-Beth Stewart
- Department of Biological Sciences, University at Albany-State University of New York, Albany, New York 12222, USA
| | - Sara M Seepo
- Department of Biological Sciences, University at Albany-State University of New York, Albany, New York 12222, USA
| | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yue Liu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam English
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Gregg W C Thomas
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, Indiana 47405, USA
| | - Matthew W Hahn
- Department of Biology and School of Informatics and Computing, Indiana University, Bloomington, Indiana 47405, USA
| | - Lenore Pipes
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Kim Worley
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| |
Collapse
|
27
|
Lokits AD, Indrischek H, Meiler J, Hamm HE, Stadler PF. Tracing the evolution of the heterotrimeric G protein α subunit in Metazoa. BMC Evol Biol 2018; 18:51. [PMID: 29642851 PMCID: PMC5896119 DOI: 10.1186/s12862-018-1147-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Heterotrimeric G proteins are fundamental signaling proteins composed of three subunits, Gα and a Gβγ dimer. The role of Gα as a molecular switch is critical for transmitting and amplifying intracellular signaling cascades initiated by an activated G protein Coupled Receptor (GPCR). Despite their biochemical and therapeutic importance, the study of G protein evolution has been limited to the scope of a few model organisms. Furthermore, of the five primary Gα subfamilies, the underlying gene structure of only two families has been thoroughly investigated outside of Mammalia evolution. Therefore our understanding of Gα emergence and evolution across phylogeny remains incomplete. RESULTS We have computationally identified the presence and absence of every Gα gene (GNA-) across all major branches of Deuterostomia and evaluated the conservation of the underlying exon-intron structures across these phylogenetic groups. We provide evidence of mutually exclusive exon inclusion through alternative splicing in specific lineages. Variations of splice site conservation and isoforms were found for several paralogs which coincide with conserved, putative motifs of DNA-/RNA-binding proteins. In addition to our curated gene annotations, within Primates, we identified 15 retrotranspositions, many of which have undergone pseudogenization. Most importantly, we find numerous deviations from previous findings regarding the presence and absence of individual GNA- genes, nuanced differences in phyla-specific gene copy numbers, novel paralog duplications and subsequent intron gain and loss events. CONCLUSIONS Our curated annotations allow us to draw more accurate inferences regarding the emergence of all Gα family members across Metazoa and to present a new, updated theory of Gα evolution. Leveraging this, our results are critical for gaining new insights into the co-evolution of the Gα subunit and its many protein binding partners, especially therapeutically relevant G protein - GPCR signaling pathways which radiated in Vertebrata evolution.
Collapse
Affiliation(s)
- A. D. Lokits
- 0000 0001 2264 7217grid.152326.1Neuroscience Program, Vanderbilt University, Nashville, TN USA ,0000 0001 2264 7217grid.152326.1Center for Structural Biology, Vanderbilt University, Nashville, TN USA
| | - H. Indrischek
- 0000 0001 2230 9752grid.9647.cBioinformatics Group, Department of Computer Science, Leipzig University, Leipzig, Germany ,0000 0001 2230 9752grid.9647.cComputational EvoDevo Group, Bioinformatics Department, Leipzig University, Leipzig, Germany
| | - J. Meiler
- 0000 0001 2264 7217grid.152326.1Center for Structural Biology, Vanderbilt University, Nashville, TN USA ,0000 0001 2264 7217grid.152326.1Chemistry Department, Vanderbilt University, Nashville, TN USA
| | - H. E. Hamm
- 0000 0004 1936 9916grid.412807.8Pharmacology Department, Vanderbilt University Medical Center, Nashville, TN USA
| | - P. F. Stadler
- 0000 0001 2230 9752grid.9647.cBioinformatics Group, Department of Computer Science, Leipzig University, Leipzig, Germany ,0000 0001 0674 042Xgrid.5254.6Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg C, Denmark ,0000 0001 2286 1424grid.10420.37Institute for Theoretical Chemistry, University of Vienna, Wien, Austria ,0000 0001 2230 9752grid.9647.cIZBI-Interdisciplinary Center for Bioinformatics and LIFE-Leipzig Research Center for Civilization Diseases and Competence Center for Scalable Data Services and Solutions, University Leipzig, Leipzig, Germany ,grid.419532.8Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany ,0000 0001 1941 1940grid.209665.eSanta Fe Institute, Santa Fe, NM USA
| |
Collapse
|
28
|
Li P, Du L, Li W, Fan Z, Zeng D, Chen H, Zhou L, Yi Y, Yang N, Dou K, Yue B, Li J. Generation and characterization of the blood transcriptome of Macaca thibetana and comparative analysis with M. mulatta. MOLECULAR BIOSYSTEMS 2018; 13:1121-1130. [PMID: 28428989 DOI: 10.1039/c6mb00771f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcriptome profiles provide a large transcript sequence data set for genomic study, particularly in organisms that have no accurate genome data published. The Tibetan macaque (Macaca thibetana) is commonly considered to be an endemic species to China and an important animal in biomedical research in the present day. In the present study, we report the de novo assembly and characterization of the blood transcriptome of the Tibetan macaque from three individuals, and we also sequenced the blood transcriptome of the rhesus macaque (Macaca mulatta) for comparison. Using RNA-seq technology, 138 million sequencing reads of the M. thibetana transcriptome were generated. The assembly included 327 871 transcripts with an N50 of 1571 bp. According to the sequence similarity search, 80 317 (24.5%) transcripts were annotated in the nr protein database. All transcripts from M. thibetana and M. mulatta were functionally classified and compared using GO and KEGG analyses. The two transcriptomes were different in the GO term of nutrient reservoir activity, and in the KEGG subcategories of signaling molecules and interaction, infectious diseases, cell growth and death, and immune system. The transcriptomes in this study would provide a valuable resource for future functional and comparative genomic studies, and even for biological studies of this non-human primate.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N, Ngotho M, Kariuki T, Dkhissi-Benyahya O, Cooper HM, Panda S. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 2018; 359:science.aao0318. [PMID: 29439024 DOI: 10.1126/science.aao0318] [Citation(s) in RCA: 466] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/24/2018] [Indexed: 12/23/2022]
Abstract
Diurnal gene expression patterns underlie time-of-the-day-specific functional specialization of tissues. However, available circadian gene expression atlases of a few organs are largely from nocturnal vertebrates. We report the diurnal transcriptome of 64 tissues, including 22 brain regions, sampled every 2 hours over 24 hours, from the primate Papio anubis (baboon). Genomic transcription was highly rhythmic, with up to 81.7% of protein-coding genes showing daily rhythms in expression. In addition to tissue-specific gene expression, the rhythmic transcriptome imparts another layer of functional specialization. Most ubiquitously expressed genes that participate in essential cellular functions exhibit rhythmic expression in a tissue-specific manner. The peak phases of rhythmic gene expression clustered around dawn and dusk, with a "quiescent period" during early night. Our findings also unveil a different temporal organization of central and peripheral tissues between diurnal and nocturnal animals.
Collapse
Affiliation(s)
- Ludovic S Mure
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010, North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hiep D Le
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010, North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Giorgia Benegiamo
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010, North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Max W Chang
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010, North Torrey Pines Road, La Jolla, CA 92037, USA.,Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Luis Rios
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010, North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ngalla Jillani
- Institute of Primate Research (IPR), National Museums of Kenya, Nairobi, Kenya
| | - Maina Ngotho
- Institute of Primate Research (IPR), National Museums of Kenya, Nairobi, Kenya
| | - Thomas Kariuki
- Institute of Primate Research (IPR), National Museums of Kenya, Nairobi, Kenya
| | - Ouria Dkhissi-Benyahya
- Université Lyon, Universite Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Howard M Cooper
- Université Lyon, Universite Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, 10010, North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Jakka P, Bhargavi B, Namani S, Murugan S, Splitter G, Radhakrishnan G. Cytoplasmic Linker Protein CLIP170 Negatively Regulates TLR4 Signaling by Targeting the TLR Adaptor Protein TIRAP. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:704-714. [PMID: 29222167 PMCID: PMC5760445 DOI: 10.4049/jimmunol.1601559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/05/2017] [Indexed: 02/06/2023]
Abstract
Cytoplasmic linker protein 170 (CLIP170) is a CAP-Gly domain-containing protein that is associated with the plus end of growing microtubules and implicated in various cellular processes, including the regulation of microtubule dynamics, cell migration, and intracellular transport. Our studies revealed a previously unrecognized property and role of CLIP170. We identified CLIP170 as one of the interacting partners of Brucella effector protein TcpB that negatively regulates TLR2 and TLR4 signaling. In this study, we demonstrate that CLIP170 interacts with the TLR2 and TLR4 adaptor protein TIRAP. Furthermore, our studies revealed that CLIP170 induces ubiquitination and subsequent degradation of TIRAP to negatively regulate TLR4-mediated proinflammatory responses. Overexpression of CLIP170 in mouse macrophages suppressed the LPS-induced expression of IL-6 and TNF-α whereas silencing of endogenous CLIP170 potentiated the levels of proinflammatory cytokines. In vivo silencing of CLIP170 in C57BL/6 mice by CLIP170-specific small interfering RNA enhanced LPS-induced IL-6 and TNF-α expression. Furthermore, we found that LPS modulates the expression of CLIP170 in mouse macrophages. Overall, our experimental data suggest that CLIP170 serves as an intrinsic negative regulator of TLR4 signaling that targets TIRAP.
Collapse
Affiliation(s)
- Padmaja Jakka
- National Institute of Animal Biotechnology, Hyderabad, Telangana 500049, India
- Graduate Studies, Manipal University, Manipal, Karnataka 576104, India; and
| | - Bindu Bhargavi
- National Institute of Animal Biotechnology, Hyderabad, Telangana 500049, India
| | - Swapna Namani
- National Institute of Animal Biotechnology, Hyderabad, Telangana 500049, India
| | - Subathra Murugan
- National Institute of Animal Biotechnology, Hyderabad, Telangana 500049, India
| | - Gary Splitter
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | | |
Collapse
|
31
|
Barbash S, Sakmar TP. Brain gene expression signature on primate genomic sequence evolution. Sci Rep 2017; 7:17329. [PMID: 29229931 PMCID: PMC5725417 DOI: 10.1038/s41598-017-17462-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/27/2017] [Indexed: 02/05/2023] Open
Abstract
Considering the overwhelming changes that occurred during primate evolution in brain structure and function, one might expect corresponding changes at the molecular level. Surprisingly, a relatively constrained gene expression pattern is observed in brain compared with other tissues among primates, an observation that calls for reassessment of RNA expression influence on primate genome evolution. We built phylogenetic trees based on genomic sequences of functional genomic regions and tissue-specific RNA expression in eight tissue types for six primate species. Comparisons of the phylogenetic trees from brain tissues revealed that DNA- and RNA-based trees were significantly similar. The similarity was specific for promoter regions and cerebellum and frontal cortex expression, suggesting a major impact of gene regulation in the brain on genome shaping along the primate branch.
Collapse
Affiliation(s)
- Shahar Barbash
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA. .,Department of Neurobiology, Care Sciences and Society, Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 141 57, Huddinge, Sweden.
| |
Collapse
|
32
|
Tan MH, Li Q, Shanmugam R, Piskol R, Kohler J, Young AN, Liu KI, Zhang R, Ramaswami G, Ariyoshi K, Gupte A, Keegan LP, George CX, Ramu A, Huang N, Pollina EA, Leeman DS, Rustighi A, Goh YPS, Chawla A, Del Sal G, Peltz G, Brunet A, Conrad DF, Samuel CE, O'Connell MA, Walkley CR, Nishikura K, Li JB. Dynamic landscape and regulation of RNA editing in mammals. Nature 2017; 550:249-254. [PMID: 29022589 PMCID: PMC5723435 DOI: 10.1038/nature24041] [Citation(s) in RCA: 394] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules. Although many editing sites have recently been discovered, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing.
Collapse
Affiliation(s)
- Meng How Tan
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138672, Singapore
| | - Qin Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Raghuvaran Shanmugam
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138672, Singapore
| | - Robert Piskol
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jennefer Kohler
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Amy N Young
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kaiwen Ivy Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore 138672, Singapore
| | - Rui Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gokul Ramaswami
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Ankita Gupte
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Liam P Keegan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Central European Institute of Technology, Masaryk University, Kamenice, Brno 625 00, Czech Republic
| | - Cyril X George
- Department of Molecular, Cellular and Developmental Biology, University of California-Santa Barbara, Santa Barbara, California 93106, USA
| | - Avinash Ramu
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63108, USA
- Department of Pathology &Immunology, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Ni Huang
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63108, USA
- Department of Pathology &Immunology, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Elizabeth A Pollina
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Dena S Leeman
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alessandra Rustighi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy and National Laboratory CIB (LNCIB), Area Science Park, 34149 Trieste, Italy
| | - Y P Sharon Goh
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, California 94158, USA
| | - Ajay Chawla
- Cardiovascular Research Institute, University of California-San Francisco, San Francisco, California 94158, USA
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy and National Laboratory CIB (LNCIB), Area Science Park, 34149 Trieste, Italy
| | - Gary Peltz
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Donald F Conrad
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63108, USA
- Department of Pathology &Immunology, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | - Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California-Santa Barbara, Santa Barbara, California 93106, USA
| | - Mary A O'Connell
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Central European Institute of Technology, Masaryk University, Kamenice, Brno 625 00, Czech Republic
| | - Carl R Walkley
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | | | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
33
|
Ee Uli J, Yong CSY, Yeap SK, Rovie-Ryan JJ, Mat Isa N, Tan SG, Alitheen NB. RNA sequencing (RNA-Seq) of lymph node, spleen, and thymus transcriptome from wild Peninsular Malaysian cynomolgus macaque ( Macaca fascicularis). PeerJ 2017; 5:e3566. [PMID: 28828235 PMCID: PMC5563440 DOI: 10.7717/peerj.3566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 12/25/2022] Open
Abstract
The cynomolgus macaque (Macaca fascicularis) is an extensively utilised nonhuman primate model for biomedical research due to its biological, behavioural, and genetic similarities to humans. Genomic information of cynomolgus macaque is vital for research in various fields; however, there is presently a shortage of genomic information on the Malaysian cynomolgus macaque. This study aimed to sequence, assemble, annotate, and profile the Peninsular Malaysian cynomolgus macaque transcriptome derived from three tissues (lymph node, spleen, and thymus) using RNA sequencing (RNA-Seq) technology. A total of 174,208,078 paired end 70 base pair sequencing reads were obtained from the Illumina Hi-Seq 2500 sequencer. The overall mapping percentage of the sequencing reads to the M. fascicularis reference genome ranged from 53–63%. Categorisation of expressed genes to Gene Ontology (GO) and KEGG pathway categories revealed that GO terms with the highest number of associated expressed genes include Cellular process, Catalytic activity, and Cell part, while for pathway categorisation, the majority of expressed genes in lymph node, spleen, and thymus fall under the Global overview and maps pathway category, while 266, 221, and 138 genes from lymph node, spleen, and thymus were respectively enriched in the Immune system category. Enriched Immune system pathways include Platelet activation pathway, Antigen processing and presentation, B cell receptor signalling pathway, and Intestinal immune network for IgA production. Differential gene expression analysis among the three tissues revealed 574 differentially expressed genes (DEG) between lymph and spleen, 5402 DEGs between lymph and thymus, and 7008 DEGs between spleen and thymus. Venn diagram analysis of expressed genes revealed a total of 2,630, 253, and 279 tissue-specific genes respectively for lymph node, spleen, and thymus tissues. This is the first time the lymph node, spleen, and thymus transcriptome of the Peninsular Malaysian cynomolgus macaque have been sequenced via RNA-Seq. Novel transcriptomic data will further enrich the present M. fascicularis genomic database and provide future research potentials, including novel transcript discovery, comparative studies, and molecular markers development.
Collapse
Affiliation(s)
- Joey Ee Uli
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Christina Seok Yien Yong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University, Sepang, Selangor, Malaysia
| | - Jeffrine J Rovie-Ryan
- Department of Wildlife and National Parks (DWNP), Ex-Situ Conservation Division, Department of Wildlife and National Parks, Kuala Lumpur, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Soon Guan Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
34
|
Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, Studholme C, Boldenow E, Vornhagen J, Baldessari A, Dighe MK, Thiel J, Merillat S, Armistead B, Tisoncik-Go J, Davis MA, Dewey EC, Fairgrieve MR, Gatenby C, Richards T, Garden GA, Fernandez E, Diamond MS, Juul SE, Grant RF, Kuller L, Shaw DW, Ogle J, Gough GM, Lee W, English C, Hevner RF, Dobyns WB, Gale M, Rajagopal L. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nat Med 2016; 22:1256-1259. [PMID: 27618651 PMCID: PMC5365281 DOI: 10.1038/nm.4193] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/31/2016] [Indexed: 12/15/2022]
Abstract
We describe the development of fetal brain lesions after Zika virus (ZIKV) inoculation in a pregnant pigtail macaque. Periventricular lesions developed within 10 d and evolved asymmetrically in the occipital-parietal lobes. Fetal autopsy revealed ZIKV in the brain and significant cerebral white matter hypoplasia, periventricular white matter gliosis, and axonal and ependymal injury. Our observation of ZIKV-associated fetal brain lesions in a nonhuman primate provides a model for therapeutic evaluation.
Collapse
Affiliation(s)
- Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Jennifer E. Stencel-Baerenwald
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| | - Raj P. Kapur
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Pathology, Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Colin Studholme
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Erica Boldenow
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jay Vornhagen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Audrey Baldessari
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Manjiri K. Dighe
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Jeff Thiel
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Sean Merillat
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Blair Armistead
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Jennifer Tisoncik-Go
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| | - Michael A. Davis
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| | - Elyse C. Dewey
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| | - Marian R. Fairgrieve
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| | - Chris Gatenby
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Todd Richards
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Gwenn A. Garden
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Estefania Fernandez
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sandra E. Juul
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Richard F. Grant
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - LaRene Kuller
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Dennis W.W. Shaw
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
- Department of Radiology, Seattle Children’s Hospital, Seattle, Washington, United States of America
| | - Jason Ogle
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - G. Michael Gough
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Wonsok Lee
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Chris English
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Robert F. Hevner
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States of America
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - William B. Dobyns
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| | - Lakshmi Rajagopal
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
35
|
Pérez-Maya AA, Wallis M, Barrera-Saldaña HA. Structure and evolution of the gorilla and orangutan growth hormone loci. Mamm Genome 2016; 27:511-23. [DOI: 10.1007/s00335-016-9654-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/15/2016] [Indexed: 11/30/2022]
|
36
|
Amir Shaghaghi M, Murphy B, Eck P. The SLC2A14 gene: genomic locus, tissue expression, splice variants, and subcellular localization of the protein. Biochem Cell Biol 2016; 94:331-5. [PMID: 27460888 DOI: 10.1139/bcb-2015-0089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The SLC2A14 gene encodes for GLUT14, an orphan member of the facilitated membrane glucose transporter family, which was originally described to be exclusively expressed in human testis. However, genetic variations in SLC2A14 are associated with chronic diseases such as Alzheimer's disease and Inflammatory Bowel Disease, which cannot be explained by a strictly testicular expression. Therefore we analyzed available information on the SLC2A14 gene to update knowledge of the locus and its encoded products. This report presents an expanded SLC2A14 gene locus and a more diverse tissue expression, concurring with the existing evidence for disease associations. The exon utilization is tissue specific, with major expression in testis. When the 2 major testicular protein isoforms were expressed in mammalian cells, they located to the plasmalemma membrane, providing early evidence that GLUT14 could function as a membrane transporter.
Collapse
Affiliation(s)
- Mandana Amir Shaghaghi
- a Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Brent Murphy
- b Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Eck
- a Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
37
|
Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis. Sci Rep 2015; 5:16894. [PMID: 26586576 PMCID: PMC4653617 DOI: 10.1038/srep16894] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/21/2015] [Indexed: 11/09/2022] Open
Abstract
The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.
Collapse
|
38
|
Lipovich L, Hou ZC, Jia H, Sinkler C, McGowen M, Sterner KN, Weckle A, Sugalski AB, Pipes L, Gatti DL, Mason CE, Sherwood CC, Hof PR, Kuzawa CW, Grossman LI, Goodman M, Wildman DE. High-throughput RNA sequencing reveals structural differences of orthologous brain-expressed genes between western lowland gorillas and humans. J Comp Neurol 2015; 524:288-308. [PMID: 26132897 DOI: 10.1002/cne.23843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
The human brain and human cognitive abilities are strikingly different from those of other great apes despite relatively modest genome sequence divergence. However, little is presently known about the interspecies divergence in gene structure and transcription that might contribute to these phenotypic differences. To date, most comparative studies of gene structure in the brain have examined humans, chimpanzees, and macaque monkeys. To add to this body of knowledge, we analyze here the brain transcriptome of the western lowland gorilla (Gorilla gorilla gorilla), an African great ape species that is phylogenetically closely related to humans, but with a brain that is approximately one-third the size. Manual transcriptome curation from a sample of the planum temporale region of the neocortex revealed 12 protein-coding genes and one noncoding-RNA gene with exons in the gorilla unmatched by public transcriptome data from the orthologous human loci. These interspecies gene structure differences accounted for a total of 134 amino acids in proteins found in the gorilla that were absent from protein products of the orthologous human genes. Proteins varying in structure between human and gorilla were involved in immunity and energy metabolism, suggesting their relevance to phenotypic differences. This gorilla neocortical transcriptome comprises an empirical, not homology- or prediction-driven, resource for orthologous gene comparisons between human and gorilla. These findings provide a unique repository of the sequences and structures of thousands of genes transcribed in the gorilla brain, pointing to candidate genes that may contribute to the traits distinguishing humans from other closely related great apes.
Collapse
Affiliation(s)
- Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201.,Department of Neurology, School of Medicine, Wayne State University, Detroit, Michigan, 48201
| | - Zhuo-Cheng Hou
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201.,Department of Animal Genetics, China Agricultural University, Beijing, China
| | - Hui Jia
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201
| | - Christopher Sinkler
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201
| | - Michael McGowen
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201.,School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Kirstin N Sterner
- Department of Anthropology, University of Oregon, Eugene, Oregon, 97403
| | - Amy Weckle
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, 61801.,Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois, 61801
| | - Amara B Sugalski
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201
| | - Lenore Pipes
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10021
| | - Domenico L Gatti
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, Michigan, 48201.,Cardiovascular Research Institute, School of Medicine, Wayne State University, Detroit, Michigan, 48201
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, 10021
| | - Chet C Sherwood
- Department of Anthropology and the Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, 20052
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029.,New York Consortium in Evolutionary Primatology, New York, New York, 10024
| | | | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201
| | - Morris Goodman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201.,Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, Michigan, 48201
| | - Derek E Wildman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, 61801.,Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois, 61801
| |
Collapse
|
39
|
Roux J, Rosikiewicz M, Robinson-Rechavi M. What to compare and how: Comparative transcriptomics for Evo-Devo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:372-82. [PMID: 25864439 PMCID: PMC4949521 DOI: 10.1002/jez.b.22618] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/19/2015] [Indexed: 12/30/2022]
Abstract
Evolutionary developmental biology has grown historically from the capacity to relate patterns of evolution in anatomy to patterns of evolution of expression of specific genes, whether between very distantly related species, or very closely related species or populations. Scaling up such studies by taking advantage of modern transcriptomics brings promising improvements, allowing us to estimate the overall impact and molecular mechanisms of convergence, constraint or innovation in anatomy and development. But it also presents major challenges, including the computational definitions of anatomical homology and of organ function, the criteria for the comparison of developmental stages, the annotation of transcriptomics data to proper anatomical and developmental terms, and the statistical methods to compare transcriptomic data between species to highlight significant conservation or changes. In this article, we review these challenges, and the ongoing efforts to address them, which are emerging from bioinformatics work on ontologies, evolutionary statistics, and data curation, with a focus on their implementation in the context of the development of our database Bgee (http://bgee.org). J. Exp. Zool. (Mol. Dev. Evol.) 324B: 372–382, 2015. © 2015 The Authors. J. Exp. Zool. (Mol. Dev. Evol.) published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julien Roux
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Marta Rosikiewicz
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
40
|
Wang Y, Chen L, Song N, Lei X. GASS: genome structural annotation for Eukaryotes based on species similarity. BMC Genomics 2015; 16:150. [PMID: 25764973 PMCID: PMC4352269 DOI: 10.1186/s12864-015-1353-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/18/2015] [Indexed: 01/06/2023] Open
Abstract
Background With the development of high-throughput sequencing techniques, more and more genomes were sequenced and assembled. However, annotating a genome’s structure rapidly and expressly remains challenging. Current eukaryotic genome annotations require various, abundant supporting data, such as: species-specific and cross-species protein sequences, ESTs, cDNA and RNA-Seq data. Collecting those data and merging their analytical results to achieve a consistent complete annotation is a complex, time and cost consuming task. Results In our study, we proposed a fast and easy-to-use computational tool: GASS (Genome Annotation based on Species Similarity). It annotates a eukaryotic genome based on only the annotations from another similar species. With aligning the exons’ sequences of an annotated similar species to the un-annotated genome, GASS detects the optimal transcript annotations with a shortest-path model. In our study, GASS was used to achieve the rhesus annotations based on the human annotations. The produced annotations were evaluated by comparing them to the two existing rhesus annotation databases (RefSeq and Ensembl) directly and being aligned with three RNA-Seq data of rhesus. The experiment results showed that more than 65% RefSeq exons and splicing junctions were exactly found by GASS. GASS’s sensitivity was higher than RefSeq’s, and was close to Ensembl’s. GASS had higher specificities than Ensembl at gene, transcript, exon and splicing junction levels. We also found the mis-assemblies of rheMac3 genome, which led to the 2 bp shifts in annotating position on exons’ boundary and then the incomplete splicing canonical sites in Refseq annotations. These detections were further supported by various data sources. Conclusions GASS quickly produces structural genome annotations in sufficient abundance and accuracy. With simple and rapid running of GASS, small labs can create quick views of genome annotations for an un-annotated species, without the necessity to create, collect, analyze and synthesize extra various data sources, or wait several months for the annotations from professional organizations. GASS can be applied to many study occasions, such as the analysis of RNA-Seq datasets from the unannotated species whose genome drafts are available but the annotations are not. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1353-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Wang
- Department of Automation, School of Information Science and Technology, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Lina Chen
- Department of Automation, School of Information Science and Technology, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Nianfeng Song
- Department of Automation, School of Information Science and Technology, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Xiaoye Lei
- Department of Automation, School of Information Science and Technology, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
41
|
Peng X, Thierry-Mieg J, Thierry-Mieg D, Nishida A, Pipes L, Bozinoski M, Thomas MJ, Kelly S, Weiss JM, Raveendran M, Muzny D, Gibbs RA, Rogers J, Schroth GP, Katze MG, Mason CE. Tissue-specific transcriptome sequencing analysis expands the non-human primate reference transcriptome resource (NHPRTR). Nucleic Acids Res 2014; 43:D737-42. [PMID: 25392405 PMCID: PMC4383927 DOI: 10.1093/nar/gku1110] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The non-human primate reference transcriptome resource (NHPRTR, available online at http://nhprtr.org/) aims to generate comprehensive RNA-seq data from a wide variety of non-human primates (NHPs), from lemurs to hominids. In the 2012 Phase I of the NHPRTR project, 19 billion fragments or 3.8 terabases of transcriptome sequences were collected from pools of ∼20 tissues in 15 species and subspecies. Here we describe a major expansion of NHPRTR by adding 10.1 billion fragments of tissue-specific RNA-seq data. For this effort, we selected 11 of the original 15 NHP species and subspecies and constructed total RNA libraries for the same ∼15 tissues in each. The sequence quality is such that 88% of the reads align to human reference sequences, allowing us to compute the full list of expression abundance across all tissues for each species, using the reads mapped to human genes. This update also includes improved transcript annotations derived from RNA-seq data for rhesus and cynomolgus macaques, two of the most commonly used NHP models and additional RNA-seq data compiled from related projects. Together, these comprehensive reference transcriptomes from multiple primates serve as a valuable community resource for genome annotation, gene dynamics and comparative functional analysis.
Collapse
Affiliation(s)
- Xinxia Peng
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA Washington National Primate Research Center, Seattle, WA 98109, USA
| | - Jean Thierry-Mieg
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | - Danielle Thierry-Mieg
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | - Andrew Nishida
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA Washington National Primate Research Center, Seattle, WA 98109, USA
| | - Lenore Pipes
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA Institute for Computational Biology (ICB), Weill Cornell Medical College, New York, NY 10065, USA
| | - Marjan Bozinoski
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA Institute for Computational Biology (ICB), Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthew J Thomas
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA Washington National Primate Research Center, Seattle, WA 98109, USA
| | - Sara Kelly
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA Washington National Primate Research Center, Seattle, WA 98109, USA
| | - Jeffrey M Weiss
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA Washington National Primate Research Center, Seattle, WA 98109, USA
| | | | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA Washington National Primate Research Center, Seattle, WA 98109, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA Institute for Computational Biology (ICB), Weill Cornell Medical College, New York, NY 10065, USA Feil Family Brain and Mind Research Institute (BMRI), Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
42
|
Couger MB, Pipes L, Squina F, Prade R, Siepel A, Palermo R, Katze MG, Mason CE, Blood PD. Enabling large-scale next-generation sequence assembly with Blacklight. CONCURRENCY AND COMPUTATION : PRACTICE & EXPERIENCE 2014; 26:2157-2166. [PMID: 25294974 PMCID: PMC4185199 DOI: 10.1002/cpe.3231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A variety of extremely challenging biological sequence analyses were conducted on the XSEDE large shared memory resource Blacklight, using current bioinformatics tools and encompassing a wide range of scientific applications. These include genomic sequence assembly, very large metagenomic sequence assembly, transcriptome assembly, and sequencing error correction. The data sets used in these analyses included uncategorized fungal species, reference microbial data, very large soil and human gut microbiome sequence data, and primate transcriptomes, composed of both short-read and long-read sequence data. A new parallel command execution program was developed on the Blacklight resource to handle some of these analyses. These results, initially reported previously at XSEDE13 and expanded here, represent significant advances for their respective scientific communities. The breadth and depth of the results achieved demonstrate the ease of use, versatility, and unique capabilities of the Blacklight XSEDE resource for scientific analysis of genomic and transcriptomic sequence data, and the power of these resources, together with XSEDE support, in meeting the most challenging scientific problems.
Collapse
Affiliation(s)
- M Brian Couger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 1110 South Innovation Way. Stillwater, OK, 74078 USA
| | - Lenore Pipes
- Department of Biological Statistics and Computational Biology, Weill Hall, Cornell University, Ithaca, NY, 14850 USA
| | - Fabio Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Centro Nacional de Pesquisa em Energia e Materiais, Campinas-SP, 13083-970, Brazil
| | - Rolf Prade
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 1110 South Innovation Way. Stillwater, OK, 74078 USA
| | - Adam Siepel
- Department of Biological Statistics and Computational Biology, Weill Hall, Cornell University, Ithaca, NY, 14850 USA
| | - Robert Palermo
- Department of Microbiology, University of Washington, Seattle, WA, 98109 USA
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle, WA, 98109 USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Philip D Blood
- Pittsburgh Supercomputing Center, Carnegie Mellon University, 300 S. Craig St. Pittsburgh, PA, 15213 USA
| |
Collapse
|
43
|
Li S, Łabaj PP, Zumbo P, Sykacek P, Shi W, Shi L, Phan J, Wu PY, Wang M, Wang C, Thierry-Mieg D, Thierry-Mieg J, Kreil DP, Mason CE. Detecting and correcting systematic variation in large-scale RNA sequencing data. Nat Biotechnol 2014; 32:888-95. [PMID: 25150837 PMCID: PMC4160374 DOI: 10.1038/nbt.3000] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/28/2014] [Indexed: 01/17/2023]
Abstract
High-throughput RNA sequencing (RNA-seq) enables comprehensive scans of entire transcriptomes, but best practices for analyzing RNA-seq data have not been fully defined, particularly for data collected with multiple sequencing platforms or at multiple sites. Here we used standardized RNA samples with built-in controls to examine sources of error in large-scale RNA-seq studies and their impact on the detection of differentially expressed genes (DEGs). Analysis of variations in guanine-cytosine content, gene coverage, sequencing error rate and insert size allowed identification of decreased reproducibility across sites. Moreover, commonly used methods for normalization (cqn, EDASeq, RUV2, sva, PEER) varied in their ability to remove these systematic biases, depending on sample complexity and initial data quality. Normalization methods that combine data from genes across sites are strongly recommended to identify and remove site-specific effects and can substantially improve RNA-seq studies.
Collapse
Affiliation(s)
- Sheng Li
- 1] Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA. [2] The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA. [3]
| | - Paweł P Łabaj
- 1] Chair of Bioinformatics Research Group, Boku University Vienna, Vienna, Austria. [2]
| | - Paul Zumbo
- 1] Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA. [2] The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA. [3]
| | - Peter Sykacek
- Chair of Bioinformatics Research Group, Boku University Vienna, Vienna, Austria
| | - Wei Shi
- Department of Bioinformatics, WEHI, Melbourne, Australia
| | - Leming Shi
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Schools of Life Sciences and Pharmacy, Fudan University, Shanghai, China
| | - John Phan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Po-Yen Wu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - May Wang
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Charles Wang
- Center for Genomics and Division of Microbiology &Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | | | - Jean Thierry-Mieg
- National Center for Biotechnology Information (NCBI), Bethesda, Maryland, USA
| | - David P Kreil
- 1] Chair of Bioinformatics Research Group, Boku University Vienna, Vienna, Austria. [2] University of Warwick, Coventry, UK
| | - Christopher E Mason
- 1] Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA. [2] The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA. [3] The Feil Family Brain and Mind Research Institute, New York, New York, USA
| |
Collapse
|
44
|
Li S, Tighe SW, Nicolet CM, Grove D, Levy S, Farmerie W, Viale A, Wright C, Schweitzer PA, Gao Y, Kim D, Boland J, Hicks B, Kim R, Chhangawala S, Jafari N, Raghavachari N, Gandara J, Garcia-Reyero N, Hendrickson C, Roberson D, Rosenfeld J, Smith T, Underwood JG, Wang M, Zumbo P, Baldwin DA, Grills GS, Mason CE. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat Biotechnol 2014; 32:915-925. [PMID: 25150835 PMCID: PMC4167418 DOI: 10.1038/nbt.2972] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/01/2014] [Indexed: 01/17/2023]
Abstract
High-throughput RNA sequencing (RNA-seq) greatly expands the potential for genomics discoveries, but the wide variety of platforms, protocols and performance capabilitites has created the need for comprehensive reference data. Here we describe the Association of Biomolecular Resource Facilities next-generation sequencing (ABRF-NGS) study on RNA-seq. We carried out replicate experiments across 15 laboratory sites using reference RNA standards to test four protocols (poly-A-selected, ribo-depleted, size-selected and degraded) on five sequencing platforms (Illumina HiSeq, Life Technologies PGM and Proton, Pacific Biosciences RS and Roche 454). The results show high intraplatform (Spearman rank R > 0.86) and inter-platform (R > 0.83) concordance for expression measures across the deep-count platforms, but highly variable efficiency and cost for splice junction and variant detection between all platforms. For intact RNA, gene expression profiles from rRNA-depletion and poly-A enrichment are similar. In addition, rRNA depletion enables effective analysis of degraded RNA samples. This study provides a broad foundation for cross-platform standardization, evaluation and improvement of RNA-seq.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | - Scott W. Tighe
- Vermont Cancer Center, University of Vermont, Burlington, Vermont, USA
| | - Charles M. Nicolet
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Deborah Grove
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Shawn Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - William Farmerie
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Agnes Viale
- Memorial Sloan-Kettering Cancer Institute, New York, New York, USA
| | - Chris Wright
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, Illinois, USA
| | - Peter A. Schweitzer
- Biotechnology Resource Center, Institute of Biotechnology, Cornell University, Ithaca, New York, USA
| | - Yuan Gao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dewey Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joe Boland
- NIH/NCI/SAIC-Frederick, Gaithersburg, Maryland, USA
| | | | - Ryan Kim
- Genome Center, University of California, Davis, Davis, California, USA
| | - Sagar Chhangawala
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | - Nadereh Jafari
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Jorge Gandara
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | - Natàlia Garcia-Reyero
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, Mississippi, USA
| | | | | | - Jeffrey Rosenfeld
- Division of High Performance and Research Computing, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | - Todd Smith
- PerkinElmer Inc., Seattle, Washington, USA
| | - Jason G. Underwood
- University of Washington, Department of Genome Sciences. Seattle, Washington, USA
| | - May Wang
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | | | - George S. Grills
- Biotechnology Resource Center, Institute of Biotechnology, Cornell University, Ithaca, New York, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
45
|
Falzarano D, de Wit E, Feldmann F, Rasmussen AL, Okumura A, Peng X, Thomas MJ, van Doremalen N, Haddock E, Nagy L, LaCasse R, Liu T, Zhu J, McLellan JS, Scott DP, Katze MG, Feldmann H, Munster VJ. Infection with MERS-CoV causes lethal pneumonia in the common marmoset. PLoS Pathog 2014; 10:e1004250. [PMID: 25144235 PMCID: PMC4140844 DOI: 10.1371/journal.ppat.1004250] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/30/2014] [Indexed: 12/03/2022] Open
Abstract
The availability of a robust disease model is essential for the development of countermeasures for Middle East respiratory syndrome coronavirus (MERS-CoV). While a rhesus macaque model of MERS-CoV has been established, the lack of uniform, severe disease in this model complicates the analysis of countermeasure studies. Modeling of the interaction between the MERS-CoV spike glycoprotein and its receptor dipeptidyl peptidase 4 predicted comparable interaction energies in common marmosets and humans. The suitability of the marmoset as a MERS-CoV model was tested by inoculation via combined intratracheal, intranasal, oral and ocular routes. Most of the marmosets developed a progressive severe pneumonia leading to euthanasia of some animals. Extensive lesions were evident in the lungs of all animals necropsied at different time points post inoculation. Some animals were also viremic; high viral loads were detected in the lungs of all infected animals, and total RNAseq demonstrated the induction of immune and inflammatory pathways. This is the first description of a severe, partially lethal, disease model of MERS-CoV, and as such will have a major impact on the ability to assess the efficacy of vaccines and treatment strategies as well as allowing more detailed pathogenesis studies. The development of vaccines and treatment strategies is aided by robust animal disease models that accurately depict the illness that is observed in humans. Here we describe a new, improved model for MERS-CoV using the common marmoset, whereby the severe, and even lethal, illness that has been observed in many human cases is recapitulated. Prior to the development of this model, the only available animal models for MERS-CoV infection were the rhesus macaque and a mouse model that requires adenovirus-transduced expression of the human version of the protein required for virus entry. The rhesus macaque model more closely mimics the mild to moderate disease observed in some patients—mainly those without significant comorbidities. The increased severity of illness in the common marmoset model is an important advance in the ability to evaluate potential therapeutic agents against MERS-CoV, as discrimination between successfully treated and control animals should be more apparent. In addition, the closer models recapitulate the disease observed in humans, the more likely findings can be eventually translated into use in humans.
Collapse
Affiliation(s)
- Darryl Falzarano
- Disease Modeling and Transmission, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Emmie de Wit
- Disease Modeling and Transmission, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Angela L. Rasmussen
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Atsushi Okumura
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Xinxia Peng
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Matthew J. Thomas
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Neeltje van Doremalen
- Virus Ecology Unit, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Elaine Haddock
- Disease Modeling and Transmission, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Lee Nagy
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Rachel LaCasse
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Tingting Liu
- Department of Immunology and Microbial Science, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jiang Zhu
- Department of Immunology and Microbial Science, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jason S. McLellan
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Heinz Feldmann
- Disease Modeling and Transmission, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (HF); (VJM)
| | - Vincent J. Munster
- Virus Ecology Unit, Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- * E-mail: (HF); (VJM)
| |
Collapse
|
46
|
Kim DS, Wang Y, Oh HJ, Lee K, Hahn Y. Frequent loss and alteration of the MOXD2 gene in catarrhines and whales: a possible connection with the evolution of olfaction. PLoS One 2014; 9:e104085. [PMID: 25102179 PMCID: PMC4125168 DOI: 10.1371/journal.pone.0104085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/08/2014] [Indexed: 11/18/2022] Open
Abstract
The MOXD2 gene encodes a membrane-bound monooxygenase similar to dopamine-β-hydroxylase, and has been proposed to be associated with olfaction. In this study, we analyzed MOXD2 genes from 64 mammalian species, and identified loss-of-function mutations in apes (humans, Sumatran and Bornean orangutans, and five gibbon species from the four major gibbon genera), toothed whales (killer whales, bottlenose dolphins, finless porpoises, baijis, and sperm whales), and baleen whales (minke whales and fin whales). We also identified a shared 13-nt deletion in the last exon of Old World cercopithecine monkeys that results in conversion of a membrane-bound protein to a soluble form. We hypothesize that the frequent inactivation and alteration of MOXD2 genes in catarrhines and whales may be associated with the evolution of olfaction in these clades.
Collapse
Affiliation(s)
- Dong Seon Kim
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Korea
| | - Yao Wang
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Korea
| | - Hye Ji Oh
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Korea
| | - Kangseok Lee
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Korea
| | - Yoonsoo Hahn
- Department of Life Science, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
47
|
Abstract
The field of nonhuman primate genomics is undergoing rapid change and making impressive progress. Exploiting new technologies for DNA sequencing, researchers have generated new whole-genome sequence assemblies for multiple primate species over the past 6 years. In addition, investigations of within-species genetic variation, gene expression and RNA sequences, conservation of non-protein-coding regions of the genome, and other aspects of comparative genomics are moving at an accelerating speed. This progress is opening a wide array of new research opportunities in the analysis of comparative primate genome content and evolution. It also creates new possibilities for the use of nonhuman primates as model organisms in biomedical research. This transition, based on both new technology and the new information being generated in regard to human genetics, provides an important justification for reevaluating the research goals, strategies, and study designs used in primate genetics and genomics.
Collapse
|
48
|
Palermo RE, Tisoncik-Go J, Korth MJ, Katze MG. Old world monkeys and new age science: the evolution of nonhuman primate systems virology. ILAR J 2014; 54:166-80. [PMID: 24174440 DOI: 10.1093/ilar/ilt039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonhuman primate (NHP) biomedical models are critical to our understanding of human health and disease, yet we are still in the early stages of developing sufficient tools to support primate genomic research that allow us to better understand the basis of phenotypic traits in NHP models of disease. A mere 7 years ago, the limited NHP transcriptome profiling that was being performed was done using complementary DNA arrays based on human genome sequences, and the lack of NHP genomic information and immunologic reagents precluded the use of NHPs in functional genomic studies. Since then, significant strides have been made in developing genomics capabilities for NHP research, from the rhesus macaque genome sequencing project to the construction of the first macaque-specific high-density oligonucleotide microarray, paving the way for further resource development and additional primate sequencing projects. Complete published draft genome sequences are now available for the chimpanzee ( Chimpanzee Sequencing Analysis Consortium 2005), bonobo ( Prufer et al. 2012), gorilla ( Scally et al. 2012), and baboon ( Ensembl.org 2013), along with the recently completed draft genomes for the cynomolgus macaque and Chinese rhesus macaque. Against this backdrop of both expanding sequence data and the early application of sequence-derived DNA microarrays tools, we will contextualize the development of these community resources and their application to infectious disease research through a literature review of NHP models of acquired immune deficiency syndrome and models of respiratory virus infection. In particular, we will review the use of -omics approaches in studies of simian immunodeficiency virus and respiratory virus pathogenesis and vaccine development, emphasizing the acute and innate responses and the relationship of these to the course of disease and to the evolution of adaptive immunity.
Collapse
|
49
|
|
50
|
Barrenas F, Palermo RE, Agricola B, Agy MB, Aicher L, Carter V, Flanary L, Green RR, McLain R, Li Q, Lu W, Murnane R, Peng X, Thomas MJ, Weiss JM, Anderson DM, Katze MG. Deep transcriptional sequencing of mucosal challenge compartment from rhesus macaques acutely infected with simian immunodeficiency virus implicates loss of cell adhesion preceding immune activation. J Virol 2014; 88:7962-72. [PMID: 24807713 PMCID: PMC4097788 DOI: 10.1128/jvi.00543-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/25/2014] [Indexed: 12/27/2022] Open
Abstract
Pathology resulting from human immunodeficiency virus (HIV) infection is driven by protracted inflammation; the primary loss of CD4(+) T cells is caused by activation-driven apoptosis. Recent studies of nonhuman primates (NHPs) have suggested that during the acute phase of infection, antiviral mucosal immunity restricts viral replication in the primary infection compartment. These studies imply that HIV achieves systemic infection as a consequence of a failure in host antiviral immunity. Here, we used high-dose intrarectal inoculation of rhesus macaques with simian immunodeficiency virus (SIV) SIVmac251 to examine how the mucosal immune system is overcome by SIV during acute infection. The host response in rectal mucosa was characterized by deep mRNA sequencing (mRNA-seq) at 3 and 12 days postinoculation (dpi) in 4 animals for each time point. While we observed a strong host transcriptional response at 3 dpi, functions relating to antiviral immunity were absent. Instead, we observed a significant number of differentially expressed genes relating to cell adhesion and reorganization of the cytoskeleton. We also observed downregulation of genes encoding members of the claudin family of cell adhesion molecules, which are coexpressed with genes associated with pathology in the colorectal mucosa, and a large number of noncoding transcripts. In contrast, at 12 dpi the differentially expressed genes were enriched in those involved with immune system functions, in particular, functions relating to T cells, B cells, and NK cells. Our findings indicate that host responses that negatively affect mucosal integrity occur before inflammation. Consequently, when inflammation is activated at peak viremia, mucosal integrity is already compromised, potentially enabling rapid tissue damage, driving further inflammation. Importance: The HIV pandemic is one of the major threats to human health, causing over a million deaths per year. Recent studies have suggested that mucosal antiviral immune responses play an important role in preventing systemic infection after exposure to the virus. Yet, despite their potential role in decreasing transmission rates between individuals, these antiviral mechanisms are poorly understood. Here, we carried out the first deep mRNA sequencing analysis of mucosal host responses in the primary infection compartment during acute SIV infection. We found that during acute infection, a significant host response was mounted in the mucosa before inflammation was triggered. Our analysis indicated that the response has a detrimental effect on tissue integrity, causing increased permeability, tissue damage, and recruitment of SIV target cells. These results emphasize the importance of mucosal host responses preceding immune activation in preventing systemic SIV infection.
Collapse
Affiliation(s)
- Fredrik Barrenas
- Department of Microbiology, University of Washington, Seattle, Washington, USA Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Robert E Palermo
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Brian Agricola
- Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Michael B Agy
- Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Lauri Aicher
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Victoria Carter
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Leon Flanary
- Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Richard R Green
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Randy McLain
- Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Wuxun Lu
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Robert Murnane
- Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Xinxia Peng
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Matthew J Thomas
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jeffrey M Weiss
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - David M Anderson
- Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle, Washington, USA Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|