1
|
Wu Z, Xie ZP, Cui XX, Sun XB, Zhao FY, Wang N, Li Y, Wang H, Zhang L, Shen J, Chen F, Sun H, He J. HIV and the gut microbiome: future research hotspots and trends. Front Microbiol 2025; 16:1466419. [PMID: 39990153 PMCID: PMC11844347 DOI: 10.3389/fmicb.2025.1466419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Background The use of highly active antiretroviral therapy has transformed AIDS into a chronic infectious disease, but issues of chronic inflammation and immune system activation persist. Modulating the gut microbiome of patients may improve this situation, yet the specific association mechanisms between HIV and the gut microbiome remain unclear. This study aims to explore the research hotspots and trends of the HIV and the gut microbiome, providing direction for future research. Methods We conducted a search of the Web of Science Core Collection database up to April 30, 2024 to retrieve articles related to the relationship between the HIV and the gut microbiome. The scientific achievements and research frontiers in this field were analyzed using CiteSpace, VOSviewer, and Bibliometrix statistical software. Results As of April 30, 2024, a total of 379 articles met the inclusion criteria. The number of publications in this field peaked in 2023, and the number of articles published after 2020 declined. The country with the highest number of publications was the United States (184 articles), and the institution with the most publications was the University of Colorado (USA) (21 articles). The author with the most publications was Routy Jean-Pierre (Canada) (14 articles). High-frequency keywords, aside from the key terms, included "HIV," "inflammation," "immune activation," "gut microbiota," and "translocation." Keyword burst results indicated that short-chain fatty acids, T cells and obesity might become the focus of future research. Conclusion The research hotspots in this field should prioritize examining the role of the primary gut microbiome metabolite, short-chain fatty acids, in reducing immune system activation and inflammation. Another emerging area of interest could be the investigation into the annual increase in obesity rates within this field. Furthermore, understanding the metabolic mechanisms of short-chain fatty acids in T cells is essential. Additionally, multi-omics analysis holds potential.
Collapse
Affiliation(s)
- Zhen Wu
- Medical School of Shihezi University, Shihezi, China
| | - Zhan-Peng Xie
- Medical School of Shihezi University, Shihezi, China
| | - Xin-Xin Cui
- Medical School of Shihezi University, Shihezi, China
| | - Xiang-Bin Sun
- Medical School of Shihezi University, Shihezi, China
| | - Fang-Yi Zhao
- Medical School of Shihezi University, Shihezi, China
| | - Nuo Wang
- Medical School of Shihezi University, Shihezi, China
| | - Yu Li
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Haixia Wang
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Li Zhang
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| | - Jing Shen
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Fulei Chen
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Haogang Sun
- School of Medicine, First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Jia He
- Medical School of Shihezi University, Shihezi, China
- Department of Preventive Medicine, Medical School of Shihezi University, Shihezi, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, The Xinjiang Production and Construction Corps, Ürümqi, China
| |
Collapse
|
2
|
Alhusayen R, Dienes S, Lam M, Alavi A, Alikhan A, Aleshin M, Bahashwan E, Daveluy S, Goldfarb N, Garg A, Gulliver W, Jaleel T, Kimball AB, Kirchhof MG, Kirby J, Lenczowski J, Lev-Tov H, Lowes MA, Lara-Corrales I, Micheletti R, Okun M, Orenstein L, Poelman S, Piguet V, Porter M, Resnik B, Sibbald C, Shi V, Sayed C, Wong SM, Zaenglein A, Veillette H, Hsiao JL, Naik HB. North American clinical practice guidelines for the medical management of hidradenitis suppurativa in special patient populations. J Am Acad Dermatol 2024:S0190-9622(24)03395-4. [PMID: 39725212 DOI: 10.1016/j.jaad.2024.11.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) affects different patient populations that require unique considerations in their management. However, no HS guidelines for these populations exist. OBJECTIVE To provide evidence-based consensus recommendations for patients with HS in 7 special patient populations: (i) pregnancy, (ii) breastfeeding, (iii) pediatrics, (iv) malignancy, (v) tuberculosis infection, (vi) hepatitis B or C infection, and (vii) HIV disease. METHODS Recommendations were developed using the Grading of Recommendations Assessment, Development, and Evaluation system to ascertain level of evidence and selected through a modified Delphi consensus process. RESULTS One hundred eighteen expert consensus statements are provided for the management of patients with HS across these 7 special patient populations.
Collapse
Affiliation(s)
- Raed Alhusayen
- Sunnybrook Research Institute, Toronto, Ontario, Canada; Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Serena Dienes
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Megan Lam
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Afsaneh Alavi
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota
| | - Ali Alikhan
- Sutter Medical Foundation, Sacramento, California
| | - Maria Aleshin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Emad Bahashwan
- Division of Dermatology, Faculty of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Steve Daveluy
- Department of Dermatology, Wayne State University School of Medicine, Detroit, Michigan
| | - Noah Goldfarb
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
| | - Amit Garg
- Department of Dermatology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Wayne Gulliver
- Department of Dermatology, Memorial University of Newfoundland, St. John's, Canada
| | - Tarannum Jaleel
- Department of Dermatology, Duke University School of Medicine, Durham, North Carolina
| | - Alexa B Kimball
- Clinical Laboratory for Epidemiology and Applied Research in Skin (CLEARS), Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Department of Dermatology, Harvard Medical School, Boston, Massachusetts
| | - Mark G Kirchhof
- Division of Dermatology, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Division of Dermatology, Department of Medicine, Ottawa Hospital, Ottawa, Ontario, Canada
| | - Joslyn Kirby
- Incyte Corporation, Wilmington, Delaware; Department of Dermatology, Penn State Health, Hershey, Pennsylvania
| | | | - Hadar Lev-Tov
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Michelle A Lowes
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Irene Lara-Corrales
- Division of Dermatology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robert Micheletti
- Departments of Dermatology and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Lauren Orenstein
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Susan Poelman
- Division of Dermatology, University of Calgary and Beacon Dermatology, Calgary, Alberta, Canada
| | - Vincent Piguet
- Division of Dermatology, Department of Medicine, University of Toronto and Women's College Hospital, Toronto, Ontario, Canada
| | - Martina Porter
- Department of Dermatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Barry Resnik
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida; Resnik Skin Institute, Miami, Florida
| | - Cathryn Sibbald
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Dermatology, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vivian Shi
- Department of Dermatology, University of Washington, Seattle, Washington
| | - Christopher Sayed
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Se Mang Wong
- Department of Dermatology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea Zaenglein
- Department of Dermatology, Penn State Health, Hershey, Pennsylvania; Penn State Children's Hospital, Hershey, Pennsylvania
| | - Helene Veillette
- Division of Dermatology, Department of Medicine, CHU de Québec-Université Laval, Québec, Canada
| | - Jennifer L Hsiao
- Department of Dermatology, University of Southern California, Los Angeles, California
| | - Haley B Naik
- Department of Dermatology, University of California, San Francisco, California
| |
Collapse
|
3
|
Fert A, Richard J, Raymond Marchand L, Planas D, Routy JP, Chomont N, Finzi A, Ancuta P. Metformin facilitates viral reservoir reactivation and their recognition by anti-HIV-1 envelope antibodies. iScience 2024; 27:110670. [PMID: 39252967 PMCID: PMC11381840 DOI: 10.1016/j.isci.2024.110670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/27/2024] [Accepted: 08/01/2024] [Indexed: 09/11/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) positively regulates multiple steps of the HIV-1 replication cycle. We previously reported that a 12-week supplementation of antiretroviral therapy (ART) with metformin, an indirect mTOR inhibitor used in type-2 diabetes treatment, reduced mTOR activation and HIV transcription in colon-infiltrating CD4+ T cells, together with systemic inflammation in nondiabetic people with HIV-1 (PWH). Herein, we investigated the antiviral mechanisms of metformin. In a viral outgrowth assay performed with CD4+ T cells from ART-treated PWH, and upon infection in vitro with replication-competent and VSV-G-pseudotyped HIV-1, metformin decreased virion release, but increased the frequency of productively infected CD4lowHIV-p24+ T cells. These observations coincided with increased BST2/tetherin (HIV release inhibitor) and Bcl-2 (pro-survival factor) expression, and improved recognition of productively infected T cells by HIV-1 envelope antibodies. Thus, metformin exerts pleiotropic effects on post-integration steps of the HIV-1 replication cycle and may be used to accelerate viral reservoir decay in ART-treated PWH.
Collapse
Affiliation(s)
- Augustine Fert
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jonathan Richard
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Delphine Planas
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Nicolas Chomont
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Andrés Finzi
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Petronela Ancuta
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
4
|
Rezaei S, Timani KA, He JJ. Metformin Treatment Leads to Increased HIV Transcription and Gene Expression through Increased CREB Phosphorylation and Recruitment to the HIV LTR Promoter. Aging Dis 2024; 15:831-850. [PMID: 37450926 PMCID: PMC10917544 DOI: 10.14336/ad.2023.0705] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Antiretroviral therapy has effectively suppressed HIV infection and replication and prolonged the lifespan of HIV-infected individuals. In the meantime, various complications including type 2 diabetes associated with the long-term antiviral therapy have shown steady increases. Metformin has been the front-line anti-hyperglycemic drug of choice and the most widely prescribed medication for the treatment of type 2 diabetes. However, little is known about the effects of Metformin on HIV infection and replication. In this study, we showed that Metformin treatment enhanced HIV gene expression and transcription in HIV-transfected 293T and HIV-infected Jurkat and human PBMC. Moreover, we demonstrated that Metformin treatment resulted in increased CREB expression and phosphorylation, and TBP expression. Furthermore, we showed that Metformin treatment increased the recruitment of phosphorylated CREB and TBP to the HIV LTR promoter. Lastly, we showed that inhibition of CREB phosphorylation/activation significantly abrogated Metformin-enhanced HIV gene expression. Taken together, these results demonstrated that Metformin treatment increased HIV transcription, gene expression, and production through increased CREB phosphorylation and recruitment to the HIV LTR promoter. These findings may help design the clinical management plan and HIV cure strategy of using Metformin to treat type 2 diabetes, a comorbidity with an increasing prevalence, in people living with HIV.
Collapse
Affiliation(s)
- Sahar Rezaei
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| | - Khalid A Timani
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| | - Johnny J He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| |
Collapse
|
5
|
Mhlanga NL, Netangaheni TR. Interventions for Type 2 Diabetes reduction among older people living with HIV in Harare. S Afr Fam Pract (2004) 2024; 66:e1-e12. [PMID: 38572876 PMCID: PMC11019056 DOI: 10.4102/safp.v66i1.5827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Interventions for Type 2 Diabetes reduction among older people aged more than 50 years living with HIV (PLWH) are pertinent as they face excess risks amid a growing population of ageing PLWH. AIM To describe interventions for Type 2 Diabetes reduction among older people living with HIV in Harare Urban DistrictSetting: The study was conducted in a low socio-economic setting from five primary health care clinics in Harare urban District. METHODS A qualitative multi-method approach was applied using an exploratory descriptive design and an integrative review literature. The exploratory descriptive study collected data from two purposively selected samples; (1) older PLWH and (2) nurses. Whittemore and Knafl's framework was used for the integrative literature review with articles from 2013 to 2023 selected. Data source triangulation was applied using Braun and Clark's content analysis framework. Ethical approval was obtained (14056739_CREC_CHS_2022). RESULTS 23 older PLWH with mean age, 62 years, 9 nurses with an average of 6 years' experience and 12 articles comprised the three data sources. Key themes that emerged were that, screening should include; assessment from a younger age; assessment of HIV and ART-specific risks; diagnostic testing of Type 2 diabetes tests at ART initiation and routinely. Health education should provide information on adequate physical activity parameters and increased consumption of fruits and vegetables. Metformin may be considered as a pharmacological intervention where lifestyle interventions fail. CONCLUSION The proposed interventions suggest measures to reduce Type 2 Diabetes and mitigate excess risks faced by older PLWH.Contribution: Improved screening, health education and pharmacological interventions for older PLWH in primary health care settings enable Type 2 Diabetes reduction.
Collapse
Affiliation(s)
- Nongiwe L Mhlanga
- Department of Health Studies, College of Human Sciences, University of South Africa, Pretoria.
| | | |
Collapse
|
6
|
Ramirez Bustamante CE, Agarwal N, Cox AR, Hartig SM, Lake JE, Balasubramanyam A. Adipose Tissue Dysfunction and Energy Balance Paradigms in People Living With HIV. Endocr Rev 2024; 45:190-209. [PMID: 37556371 PMCID: PMC10911955 DOI: 10.1210/endrev/bnad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Over the past 4 decades, the clinical care of people living with HIV (PLWH) evolved from treatment of acute opportunistic infections to the management of chronic, noncommunicable comorbidities. Concurrently, our understanding of adipose tissue function matured to acknowledge its important endocrine contributions to energy balance. PLWH experience changes in the mass and composition of adipose tissue depots before and after initiating antiretroviral therapy, including regional loss (lipoatrophy), gain (lipohypertrophy), or mixed lipodystrophy. These conditions may coexist with generalized obesity in PLWH and reflect disturbances of energy balance regulation caused by HIV persistence and antiretroviral therapy drugs. Adipocyte hypertrophy characterizes visceral and subcutaneous adipose tissue depot expansion, as well as ectopic lipid deposition that occurs diffusely in the liver, skeletal muscle, and heart. PLWH with excess visceral adipose tissue exhibit adipokine dysregulation coupled with increased insulin resistance, heightening their risk for cardiovascular disease above that of the HIV-negative population. However, conventional therapies are ineffective for the management of cardiometabolic risk in this patient population. Although the knowledge of complex cardiometabolic comorbidities in PLWH continues to expand, significant knowledge gaps remain. Ongoing studies aimed at understanding interorgan communication and energy balance provide insights into metabolic observations in PLWH and reveal potential therapeutic targets. Our review focuses on current knowledge and recent advances in HIV-associated adipose tissue dysfunction, highlights emerging adipokine paradigms, and describes critical mechanistic and clinical insights.
Collapse
Affiliation(s)
- Claudia E Ramirez Bustamante
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neeti Agarwal
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jordan E Lake
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Fert A, Richard J, Marchand LR, Planas D, Routy JP, Chomont N, Finzi A, Ancuta P. Metformin Enhances Antibody-Mediated Recognition of HIV-Infected CD4 + T-Cells by Decreasing Viral Release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580166. [PMID: 38464135 PMCID: PMC10925111 DOI: 10.1101/2024.02.15.580166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The mechanistic target of rapamycin (mTOR) positively regulates multiple steps of the HIV-1 replication cycle. We previously reported that a 12-weeks supplementation of antiretroviral therapy (ART) with metformin, an indirect mTOR inhibitor used in type-2 diabetes treatment, reduced mTOR activation and HIV transcription in colon-infiltrating CD4+ T-cells, together with systemic inflammation in nondiabetic people with HIV-1 (PWH). Herein, we investigated the antiviral mechanisms of metformin. In a viral outgrowth assay performed with CD4+ T-cells from ART-treated PWH, and upon infection in vitro with replication-competent and VSV-G-pseudotyped HIV-1, metformin decreased virion release, but increased the frequency of productively infected CD4lowHIV-p24+ T-cells. These observations coincided with increased BST2/Tetherin (HIV release inhibitor) and Bcl-2 (pro-survival factor) expression, and improved recognition of productively infected T-cells by HIV-1 Envelope antibodies. Thus, metformin exerts pleiotropic effects on post-transcription/translation steps of the HIV-1 replication cycle and may be used to accelerate viral reservoir decay in ART-treated PWH.
Collapse
Affiliation(s)
- Augustine Fert
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Jonathan Richard
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Laurence Raymond Marchand
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Delphine Planas
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Nicolas Chomont
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Andrés Finzi
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Petronela Ancuta
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
- Lead Contact
| |
Collapse
|
8
|
Abdalla AL, Guajardo-Contreras G, Mouland AJ. A Canadian Survey of Research on HIV-1 Latency-Where Are We Now and Where Are We Heading? Viruses 2024; 16:229. [PMID: 38400005 PMCID: PMC10891605 DOI: 10.3390/v16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, almost 40 million people are currently living with HIV-1. The implementation of cART inhibits HIV-1 replication and reduces viremia but fails to eliminate HIV-1 from latently infected cells. These cells are considered viral reservoirs from which HIV-1 rebounds if cART is interrupted. Several efforts have been made to identify these cells and their niches. There has been little success in diminishing the pool of latently infected cells, underscoring the urgency to continue efforts to fully understand how HIV-1 establishes and maintains a latent state. Reactivating HIV-1 expression in these cells using latency-reversing agents (LRAs) has been successful, but only in vitro. This review aims to provide a broad view of HIV-1 latency, highlighting Canadian contributions toward these aims. We will summarize the research efforts conducted in Canadian labs to understand the establishment of latently infected cells and how this informs curative strategies, by reviewing how HIV latency is established, which cells are latently infected, what methodologies have been developed to characterize them, how new compounds are discovered and evaluated as potential LRAs, and what clinical trials aim to reverse latency in people living with HIV (PLWH).
Collapse
Affiliation(s)
- Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
9
|
Zaongo SD, Chen Y. Metformin may be a viable adjunctive therapeutic option to potentially enhance immune reconstitution in HIV-positive immunological non-responders. Chin Med J (Engl) 2023; 136:2147-2155. [PMID: 37247620 PMCID: PMC10508460 DOI: 10.1097/cm9.0000000000002493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 05/31/2023] Open
Abstract
ABSTRACT Incomplete immune reconstitution remains a global challenge for human immunodeficiency virus (HIV) treatment in the present era of potent antiretroviral therapy (ART), especially for those individuals referred to as immunological non-responders (INRs), who exhibit dramatically low CD4 + T-cell counts despite the use of effective antiretroviral therapy, with long-term inhibition of viral replication. In this review, we provide a critical overview of the concept of ART-treated HIV-positive immunological non-response, and also explain the known mechanisms which could potentially account for the emergence of immunological non-response in some HIV-infected individuals treated with appropriate and effective ART. We found that immune cell exhaustion, combined with chronic inflammation and the HIV-associated dysbiosis syndrome, may represent strategic aspects of the immune response that may be fundamental to incomplete immune recovery. Interestingly, we noted from the literature that metformin exhibits properties and characteristics that may potentially be useful to specifically target immune cell exhaustion, chronic inflammation, and HIV-associated gut dysbiosis syndrome, mechanisms which are now recognized for their critically important complicity in HIV disease-related incomplete immune recovery. In light of evidence discussed in this review, it can be seen that metformin may be of particularly favorable use if utilized as adjunctive treatment in INRs to potentially enhance immune reconstitution. The approach described herein may represent a promising area of therapeutic intervention, aiding in significantly reducing the risk of HIV disease progression and mortality in a particularly vulnerable subgroup of HIV-positive individuals.
Collapse
Affiliation(s)
| | - Yaokai Chen
- Division of Infectious diseases, Chongqing Public Health Medical Center, Chongqing 400036, China
| |
Collapse
|
10
|
Routy JP, Isnard S. An army marches on its stomach: immunometabolic dysregulation in persons with HIV. AIDS 2023; 37:1171-1173. [PMID: 37139654 DOI: 10.1097/qad.0000000000003558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Jean-Pierre Routy
- McGill University Health Centre - Research Institute
- Chronic Viral Illness Service
- Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Stephane Isnard
- McGill University Health Centre - Research Institute
- Chronic Viral Illness Service
| |
Collapse
|
11
|
Isnard S, Royston L, Scott SC, Mabanga T, Lin J, Fombuena B, Bu S, Berini CA, Goldberg MS, Finkelman M, Brouillette MJ, Fellows LK, Mayo NE, Routy JP. Translocation of bacterial LPS is associated with self-reported cognitive abilities in men living with HIV receiving antiretroviral therapy. AIDS Res Ther 2023; 20:30. [PMID: 37202809 DOI: 10.1186/s12981-023-00525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Gut damage allows translocation of bacterial lipopolysaccharide (LPS) and fungal β-D-glucan (BDG) into the blood. This microbial translocation contributes to systemic inflammation and risk of non-AIDS comorbidities in people living with HIV, including those receiving antiretroviral therapy (ART). We assessed whether markers of gut damage and microbial translocation were associated with cognition in ART-treated PLWH. METHODS Eighty ART-treated men living with HIV from the Positive Brain Health Now Canadian cohort were included. Brief cognitive ability measure (B-CAM) and 20-item patient deficit questionnaire (PDQ) were administered to all participants. Three groups were selected based on their B-CAM levels. We excluded participants who received proton pump inhibitors or antiacids in the past 3 months. Cannabis users were also excluded. Plasma levels of intestinal fatty acid binding protein (I-FABP), regenerating islet-derived protein 3 α (REG3α), and lipopolysaccharides (LPS = were quantified by ELISA, while 1-3-β-D-glucan BDG) levels were assessed using the Fungitell assay. Univariable, multivariable, and splines analyses were performed. RESULTS Plasma levels of I-FABP, REG3α, LPS and BDG were not different between groups of low, intermediate and high B-CAM levels. However, LPS and REG3α levels were higher in participants with PDQ higher than the median. Multivariable analyses showed that LPS association with PDQ, but not B-CAM, was independent of age and level of education. I-FABP, REG3α, and BDG levels were not associated with B-CAM nor PDQ levels in multivariable analyses. CONCLUSION In this well characterized cohort of ART-treated men living with HIV, bacterial but not fungal translocation was associated with presence of cognitive difficulties. These results need replication in larger samples.
Collapse
Affiliation(s)
- Stéphane Isnard
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - Léna Royston
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Susan C Scott
- Division of Clinical Epidemiology, Center for Outcomes Research and Evaluation, McGill University Health Centre (MUHC), Montreal, Canada
| | - Tsoarello Mabanga
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - John Lin
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Brandon Fombuena
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Simeng Bu
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Carolina A Berini
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | | | | | - Marie-Josée Brouillette
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Lesley K Fellows
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Nancy E Mayo
- Division of Clinical Epidemiology, Center for Outcomes Research and Evaluation, McGill University Health Centre (MUHC), Montreal, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada
- Department of Medicine, Division of Geriatrics, McGill University, Montreal, Canada
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, 1001 Boulevard Décarie, Montreal, QC, H4A 3J1, Canada.
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
12
|
Jamal R, Messaoudene M, de Figuieredo M, Routy B. Future indications and clinical management for fecal microbiota transplantation (FMT) in immuno-oncology. Semin Immunol 2023; 67:101754. [PMID: 37003055 DOI: 10.1016/j.smim.2023.101754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 04/01/2023]
Abstract
The gut microbiota has rapidly emerged as one of the "hallmarks of cancers" and a key contributor to cancer immunotherapy. Metagenomics profiling has established the link between microbiota compositions and immune checkpoint inhibitors response and toxicity, while murine experiments demonstrating the synergistic benefits of microbiota modification with immune checkpoint inhibitors (ICIs) pave a clear path for translation. Fecal microbiota transplantation (FMT) is one of the most effective treatments for patients with Clostridioides difficile, but its utility in other disease contexts has been limited. Nonetheless, promising data from the first trials combining FMT with ICIs have provided strong clinical rationale to pursue this strategy as a novel therapeutic avenue. In addition to the safety considerations surrounding new and emerging pathogens potentially transmissible by FMT, several other challenges must be overcome in order to validate the use of FMT as a therapeutic option in oncology. In this review, we will explore how the lessons learned from FMT in other specialties will help shape the design and development of FMT in the immuno-oncology arena.
Collapse
|
13
|
(5R)-5-hydroxytriptolide for HIV immunological non-responders receiving ART: a randomized, double-blinded, placebo-controlled phase II study. THE LANCET REGIONAL HEALTH - WESTERN PACIFIC 2023. [DOI: 10.1016/j.lanwpc.2023.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
14
|
MacCann R, Landay AL, Mallon PWG. HIV and comorbidities - the importance of gut inflammation and the kynurenine pathway. Curr Opin HIV AIDS 2023; 18:102-110. [PMID: 36722199 PMCID: PMC7614535 DOI: 10.1097/coh.0000000000000782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review alterations in microbiota composition, diversity, and functional features in the context of chronic inflammation and comorbidities associated with HIV infection. RECENT FINDINGS The gut microbiome is an important mediator of host immunity, and disruption of gut homeostasis can contribute to both systemic inflammation and immune activation. Ageing and HIV share features of intestinal damage, microbial translocation and alterations in bacterial composition that contribute to a proinflammatory state and development of age-related comorbidities. One such inflammatory pathway reviewed is the nicotinamide adenine dinucleotide (NAD+) producing kynurenine pathway (KP). Kynurenine metabolites regulate many biological processes including host-microbiome communication, immunity and oxidative stress and the KP in turn is influenced by the microbiome environment. Age-associated decline in NAD+ is implicated as a driving factor in many age-associated diseases, including those seen in people with HIV (PWH). Recent studies have shown that KP can influence metabolic changes in PWH, including increased abdominal adiposity and cardiovascular disease. Furthermore, KP activity increases with age in the general population, but it is elevated in PWH at all ages compared to age-matched controls. Host or microbiome-mediated targeting of this pathway has merits to increase healthy longevity and has potential therapeutic applications in PWH. SUMMARY As a growing proportion of PWH age, many face increased risks of developing age-related comorbidities. Chronic inflammation, a pillar of geroscience, the science of ageing and of age-related disease, is influenced by the gut microbiome and its metabolites. Combined, these contribute to a systemic inflammatory signature. Advances in geroscience-based approaches and therapeutics offer a novel paradigm for addressing age-related diseases and chronic inflammation in HIV infection. Whether targeted inhibition of KP activity alleviates pathological conditions or promotes successful ageing in PWH remains to be determined.
Collapse
Affiliation(s)
- Rachel MacCann
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin
- St Vincents University Hospital, Elm Park, Dublin 4, Ireland
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin
- St Vincents University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
15
|
Castillo-Rozas G, Lopez MN, Soto-Rifo R, Vidal R, Cortes CP. Enteropathy and gut dysbiosis as obstacles to achieve immune recovery in undetectable people with HIV: a clinical view of evidence, successes, and projections. AIDS 2023; 37:367-378. [PMID: 36695354 DOI: 10.1097/qad.0000000000003450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Immune performance following antiretroviral therapy initiation varies among patients. Despite achieving viral undetectability, a subgroup of patients fails to restore CD4+ T-cell counts during follow-up, which exposes them to non-AIDS defining comorbidities and increased mortality. Unfortunately, its mechanisms are incompletely understood, and no specific treatment is available. In this review, we address some of the pathophysiological aspects of the poor immune response from a translational perspective, with emphasis in the interaction between gut microbiome, intestinal epithelial dysfunction, and immune system, and we also discuss some studies attempting to improve immune performance by intervening in this vicious cycle.
Collapse
Affiliation(s)
- Gabriel Castillo-Rozas
- Molecular and Cellular Virology Laboratory, Virology Program
- Cancer Regulation and Immunoediting Laboratory, Immunology Program
- Center for HIV/AIDS Integral Research -CHAIR, Universidad de Chile, Santiago
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Mercedes N Lopez
- Cancer Regulation and Immunoediting Laboratory, Immunology Program
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program
- Center for HIV/AIDS Integral Research -CHAIR, Universidad de Chile, Santiago
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Roberto Vidal
- Microbiology and Mycology Program, Institute of Biomedical Sciences
| | - Claudia P Cortes
- Internal Medicine Department, Faculty of Medicine, Universidad de Chile
- Center for HIV/AIDS Integral Research -CHAIR, Universidad de Chile, Santiago
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
16
|
Royston L, Isnard S, Berini CA, Bu S, Lakatos PL, Bessissow T, Chomont N, Klein M, Lebouché B, de Pokomandy A, Kronfli N, Costiniuk CT, Thomas R, Tremblay C, Boivin G, Routy JP. Influence of letermovir treatment on gut inflammation in people living with HIV on antiretroviral therapy: protocol of the open-label controlled randomised CIAO study. BMJ Open 2023; 13:e067640. [PMID: 36690406 PMCID: PMC9872486 DOI: 10.1136/bmjopen-2022-067640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/08/2022] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Chronic cytomegalovirus (CMV) infection is very frequent in people living with HIV (PLWH). High anti-CMV IgG titres, which may be linked to transient CMV replication, have been associated with earlier mortality, CD8 T-cell expansion, lower CD4/CD8 ratio and increased T-cell senescence. We previously showed that anti-CMV IgG titres correlated with gut permeability in PLWH on antiretroviral therapy (ART), which was associated with microbial translocation, systemic inflammation and non-infectious/non-AIDS comorbidities. Letermovir, a novel anti-CMV drug with a good safety profile, was recently approved for anti-CMV prophylaxis in allogeneic haematopoietic stem cell transplant recipients. A drastic and selective reduction of both low-grade replication and clinically significant CMV infections, combined with an improved immune reconstitution have been reported. In vitro, letermovir prevented CMV-induced epithelial disruption in intestinal tissues. Based on these findings, we aim to assess whether letermovir could inhibit CMV subclinical replication in CMV-seropositive PLWH receiving ART and, in turn, decrease CMV-associated gut damage and inflammation. METHOD AND ANALYSIS We will conduct a multi-centre, open-label, randomised, controlled clinical trial, including a total of 60 CMV-seropositive ART-treated PLWH for at least 3 years, with a viral load <50 copies/mL and CD4+ count >400 cells/µL. Forty participants will be randomised to receive letermovir for 14 weeks and 20 participants will receive standard of care (ART) alone. Plasma, pheripheral blood mononuclear cells (PBMCs), and stool samples will be collected. Colon biopsies will be collected in an optional substudy. We will assess the effect of letermovir on gut damage, microbial translocation, inflammation and HIV reservoir size. ETHICS AND DISSEMINATION The study was approved by Health Canada and the Research Ethics Boards of the McGill University Health Centre (MUHC-REB, protocol number: MP37-2022-8295). Results will be made available through publications in open access peer-reviewed journals and through the CIHR/CTN website. TRIAL REGISTRATION NUMBER NCT05362916.
Collapse
Affiliation(s)
- Léna Royston
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Canadian HIV Trials Network, Canadian Institutes of Health Research, Vancouver, BC, Canada
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Canadian HIV Trials Network, Canadian Institutes of Health Research, Vancouver, BC, Canada
| | - Carolina A Berini
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Simeng Bu
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Peter L Lakatos
- Division of Gastroenterology, McGill University Health Centre, Montreal, QC, Canada
| | - Talat Bessissow
- Division of Gastroenterology, McGill University Health Centre, Montreal, QC, Canada
| | - Nicolas Chomont
- Department de Microbiologie, Maladies Infectieuses et Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montreal, Montreal, QC, Canada
| | - Marina Klein
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Canadian HIV Trials Network, Canadian Institutes of Health Research, Vancouver, BC, Canada
| | - Bertrand Lebouché
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Family Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Alexandra de Pokomandy
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Department of Family Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Nadine Kronfli
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Cecilia T Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Canadian HIV Trials Network, Canadian Institutes of Health Research, Vancouver, BC, Canada
| | | | - Cécile Tremblay
- Department de Microbiologie, Maladies Infectieuses et Immunologie, Centre de Recherche du Centre Hospitalier de l'Université de Montreal, Montreal, QC, Canada
| | - Guy Boivin
- Division of Pediatrics, Faculty of Medicine, Laval University, Quebec city, QC, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
17
|
Nojima I, Wada J. Metformin and Its Immune-Mediated Effects in Various Diseases. Int J Mol Sci 2023; 24:ijms24010755. [PMID: 36614197 PMCID: PMC9821749 DOI: 10.3390/ijms24010755] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Metformin has been a long-standing prescribed drug for treatment of type 2 diabetes (T2D) and its beneficial effects on virus infection, autoimmune diseases, aging and cancers are also recognized. Metformin modulates the differentiation and activation of various immune-mediated cells such as CD4+ and CD+8 T cells. The activation of adenosine 5'-monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin complex 1 (mTORC1) pathway may be involved in this process. Recent studies using Extracellular Flux Analyzer demonstrated that metformin alters the activities of glycolysis, oxidative phosphorylation (OXPHOS), lipid oxidation, and glutaminolysis, which tightly link to the modulation of cytokine production in CD4+ and CD+8 T cells in various disease states, such as virus infection, autoimmune diseases, aging and cancers.
Collapse
Affiliation(s)
| | - Jun Wada
- Correspondence: ; Tel.: +81-86-235-7232; FAX: +81-86-222-5214
| |
Collapse
|
18
|
Ha R, Keynan Y, Rueda ZV. Increased susceptibility to pneumonia due to tumour necrosis factor inhibition and prospective immune system rescue via immunotherapy. Front Cell Infect Microbiol 2022; 12:980868. [PMID: 36159650 PMCID: PMC9489861 DOI: 10.3389/fcimb.2022.980868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Immunomodulators such as tumour necrosis factor (TNF) inhibitors are used to treat autoimmune conditions by reducing the magnitude of the innate immune response. Dampened innate responses pose an increased risk of new infections by opportunistic pathogens and reactivation of pre-existing latent infections. The alteration in immune response predisposes to increased severity of infections. TNF inhibitors are used to treat autoimmune conditions such as rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, transplant recipients, and inflammatory bowel disease. The efficacies of immunomodulators are shown to be varied, even among those that target the same pathways. Monoclonal antibody-based TNF inhibitors have been shown to induce stronger immunosuppression when compared to their receptor-based counterparts. The variability in activity also translates to differences in risk for infection, moreover, parallel, or sequential use of immunosuppressive drugs and corticosteroids makes it difficult to accurately attribute the risk of infection to a single immunomodulatory drug. Among recipients of TNF inhibitors, Mycobacterium tuberculosis has been shown to be responsible for 12.5-59% of all infections; Pneumocystis jirovecii has been responsible for 20% of all non-viral infections; and Legionella pneumophila infections occur at 13-21 times the rate of the general population. This review will outline the mechanism of immune modulation caused by TNF inhibitors and how they predispose to infection with a focus on Mycobacterium tuberculosis, Legionella pneumophila, and Pneumocystis jirovecii. This review will then explore and evaluate how other immunomodulators and host-directed treatments influence these infections and the severity of the resulting infection to mitigate or treat TNF inhibitor-associated infections alongside antibiotics.
Collapse
Affiliation(s)
- Ryan Ha
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Community-Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellin, Colombia
| |
Collapse
|
19
|
Butterfield TR, Hanna DB, Kaplan RC, Xue X, Kizer JR, Durkin HG, Kassaye SG, Nowicki M, Tien PC, Topper ET, Floris-Moore MA, Titanji K, Fischl MA, Heath S, Palmer CS, Landay AL, Anzinger JJ. Elevated CD4 + T-cell glucose metabolism in HIV+ women with diabetes mellitus. AIDS 2022; 36:1327-1336. [PMID: 35727147 PMCID: PMC9329261 DOI: 10.1097/qad.0000000000003272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Immune dysfunction and chronic inflammation are characteristic of HIV infection and diabetes mellitus, with CD4 + T-cell metabolism implicated in the pathogenesis of each disease. However, there is limited information on CD4 + T-cell metabolism in HIV+ persons with diabetes mellitus. We examined CD4 + T-cell glucose metabolism in HIV+ women with and without diabetes mellitus. DESIGN A case-control study was used to compare CD4 + T-cell glucose metabolism in women with HIV with or without diabetes mellitus. METHODS Nondiabetic (HIV+DM-, N = 20) or type 2 diabetic HIV+ women with (HIV+DM+, N = 16) or without (HIV+DMTx+, N = 18) antidiabetic treatment were identified from the WIHS and matched for age, race/ethnicity, smoking status and CD4 + cell count. CD4 + T-cell immunometabolism was examined by flow cytometry, microfluidic qRT-PCR of metabolic genes, and Seahorse extracellular flux analysis of stimulated CD4 + T cells. RESULTS HIV+DM+ displayed a significantly elevated proportion of CD4 + T cells expressing the immunometabolic marker GLUT1 compared with HIV+DMTx+ and HIV+DM- ( P = 0.04 and P = 0.01, respectively). Relative expression of genes encoding key enzymes for glucose metabolism pathways were elevated in CD4 + T cells of HIV+DM+ compared with HIV+DMTx+ and HIV+DM-. T-cell receptor (TCR)-activated CD4 + T cells from HIV+DM+ showed elevated glycolysis and oxidative phosphorylation compared with HIV+DM-. CONCLUSION CD4 + T cells from HIV+DM+ have elevated glucose metabolism. Treatment of diabetes mellitus among women with HIV may partially correct CD4 + T-cell metabolic dysfunction.
Collapse
Affiliation(s)
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System
- Departments of Medicine, Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Helen G Durkin
- Department of Pathology, SUNY Downstate Medical Center, New York, New York
| | - Seble G Kassaye
- Division of Infectious Diseases, Georgetown University Medical Center, Washington, DC
| | - Marek Nowicki
- Department of Medicine, University of Southern California, Los Angeles
| | - Phyllis C Tien
- Department of Medicine, University of California, San Francisco, California
| | - Elizabeth T Topper
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Michelle A Floris-Moore
- Division of Infectious Disease, Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| | - Kehmia Titanji
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Margaret A Fischl
- Division of Infectious Diseases, University of Miami, Miami, Florida
| | - Sonya Heath
- Division of Infectious Diseases, Department of Medicine, University of Alabama, Birmingham, Alabama
| | - Clovis S Palmer
- Tulane National Primate Research Center, Covington
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Joshua J Anzinger
- Department of Microbiology, University of the West Indies - Mona, Kingston
- Global Virus Network, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Ahmed DS, Isnard S, Berini C, Lin J, Routy JP, Royston L. Coping With Stress: The Mitokine GDF-15 as a Biomarker of COVID-19 Severity. Front Immunol 2022; 13:820350. [PMID: 35251002 PMCID: PMC8888851 DOI: 10.3389/fimmu.2022.820350] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a transforming growth factor (TGF)-β superfamily cytokine that plays a central role in metabolism regulation. Produced in response to mitochondrial stress, tissue damage or hypoxia, this cytokine has emerged as one of the strongest predictors of disease severity during inflammatory conditions, cancers and infections. Reports suggest that GDF-15 plays a tissue protective role via sympathetic and metabolic adaptation in the context of mitochondrial damage, although the exact mechanisms involved remain uncertain. In this review, we discuss the emergence of GDF-15 as a distinctive marker of viral infection severity, especially in the context of COVID-19. We will critically review the role of GDF-15 as an inflammation-induced mediator of disease tolerance, through metabolic and immune reprogramming. Finally, we discuss potential mechanisms of GDF-15 elevation during COVID-19 cytokine storm and its limitations. Altogether, this cytokine seems to be involved in disease tolerance to viral infections including SARS-CoV-2, paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Darakhshan Sohail Ahmed
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Stéphane Isnard
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - Carolina Berini
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - John Lin
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Léna Royston
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada.,Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
21
|
Montano M, Landay A, Perkins M, Holstad M, Pallikkuth S, Pahwa S. HIV and Aging in the Era of ART and COVID-19: Symposium Overview. J Acquir Immune Defic Syndr 2022; 89:S3-S9. [PMID: 35015739 PMCID: PMC8751291 DOI: 10.1097/qai.0000000000002837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Monty Montano
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Boston Pepper Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- HU CFAR HIV and Aging SWG, Harvard Medical School, Cambridge, MA
| | - Alan Landay
- Microbial Pathogens and Immunity, Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Molly Perkins
- Division of General and Geriatric Medicine, Wesley Woods Health Center, Emory University School of Medicine, Atlanta, GA
| | - Marcia Holstad
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL; and
- Department of Microbiology and Immunology, Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL; and
- Department of Microbiology and Immunology, Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
22
|
Isnard S, Fombuena B, Ouyang J, Royston L, Lin J, Bu S, Sheehan N, Lakatos PL, Bessissow T, Chomont N, Klein M, Lebouché B, Costiniuk CT, Routy B, Marette A, Routy JP. Camu Camu effects on microbial translocation and systemic immune activation in ART-treated people living with HIV: protocol of the single-arm non-randomised Camu Camu prebiotic pilot study (CIHR/CTN PT032). BMJ Open 2022; 12:e053081. [PMID: 35039291 PMCID: PMC8765027 DOI: 10.1136/bmjopen-2021-053081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/12/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Despite the success of antiretroviral therapy (ART) in transforming HIV disease into a chronic infection, people living with HIV (PLWH) remain at risk for various non-AIDS inflammatory comorbidities. Risk of non-AIDS comorbidities is associated with gut dysbiosis, epithelial gut damage and subsequent microbial translocation, and increased activation of both circulating CD4+ and CD8+ T-cells. Therefore, in addition to ART, novel gut microbiota-modulating therapies could aid in reducing inflammation and immune activation, gut damage, and microbial translocation. Among various gut-modulation strategies under investigation, the Amazonian fruit Camu Camu (CC) presents itself as a prebiotic candidate based on its anti-inflammatory and antioxidant properties in animal models and tobacco smokers. METHOD AND ANALYSIS A total of 22 PLWH on ART for more than 2 years, with a viral load <50 copies/mL, a CD4 +count >200 and a CD4+/CD8 +ratio <1 (suggesting increased inflammation and risk for non-AIDS comorbidities), will be recruited in a single arm, non-randomised, interventional pilot trial. We will assess tolerance and effect of supplementation with CC in ART-treated PLWH on reducing gut damage, microbial translocation, inflammation and HIV latent reservoir by various assays. ETHICS AND DISSEMINATION The Canadian Institutes of Health Research (CIHR)/Canadian HIV Trials Network (CTN) pilot trial protocol CTNPT032 was approved by the Natural and Non-prescription Health Products Directorate of Health Canada and the research ethics board of the McGill university Health Centre committee (number 2020-5903). Results will be made available as free access through publications in peer-reviewed journals and through the CIHR/CTN website. TRIAL REGISTRATION NUMBER NCT04058392.
Collapse
Affiliation(s)
- Stéphane Isnard
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
- Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, British Columbia, Canada
| | - Brandon Fombuena
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jing Ouyang
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
- Chongqing Public Health Medical Center, Chongqing, People's Republic of China
| | - Léna Royston
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
- Canadian HIV Trials Network, Canadian Institutes for Health Research, Vancouver, British Columbia, Canada
| | - John Lin
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Simeng Bu
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Nancy Sheehan
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Peter L Lakatos
- Division of Gastroentrology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Talat Bessissow
- Division of Gastroentrology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Marina Klein
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bertrand Lebouché
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Family Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Cecilia T Costiniuk
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bertrand Routy
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - André Marette
- Insitute of Nutrition and Functional food, Laval University, Quebec City, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Laval University, Quebec city, Quebec, Canada
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre, McGill University Health Centre, Montreal, Quebec, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Jayanama K, Phuphuakrat A, Pongchaikul P, Prombutara P, Nimitphong H, Reutrakul S, Sungkanuparph S. Association between gut microbiota and prediabetes in people living with HIV. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100143. [PMID: 35909623 PMCID: PMC9325897 DOI: 10.1016/j.crmicr.2022.100143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota are known to be associated with various metabolic syndromes. Diversity of gut microbiota decreases in PLWH with prediabetes. Streptococcus and Anaerostignum are more abundant in the prediabetes group. Further study of alteration in gut microbiota on glucose metabolism is warranted.
The prevalence of prediabetes is rapidly increasing in general population and in people living with HIV (PLWH). Gut microbiota play an important role in human health, and dysbiosis is associated with metabolic disorders and HIV infection. Here, we aimed to evaluate the association between gut microbiota and prediabetes in PLWH. A cross-sectional study enrolled 40 PLWH who were receiving antiretroviral therapy and had an undetectable plasma viral load. Twenty participants had prediabetes, and 20 were normoglycemic. Fecal samples were collected from all participants. The gut microbiome profiles were analyzed using 16S rRNA sequencing. Alpha-diversity was significantly lower in PLWH with prediabetes than in those with normoglycemia (p<0.05). A significant difference in beta-diversity was observed between PLWH with prediabetes and PLWH with normoglycemia (p<0.05). Relative abundances of two genera in Firmicutes (Streptococcus and Anaerostignum) were significantly higher in the prediabetes group. In contrast, relative abundances of 13 genera (e.g., Akkermansia spp., Christensenellaceae R7 group) were significantly higher in the normoglycemic group. In conclusion, the diversity of gut microbiota composition decreased in PLWH with prediabetes. The abundances of 15 bacterial taxa in the genus level differed between PLWH with prediabetes and those with normoglycemia. Further studies on the effect of these taxa on glucose metabolism are warranted.
Collapse
|
24
|
Yan J, Ouyang J, Isnard S, Zhou X, Harypursat V, Routy JP, Chen Y. Alcohol Use and Abuse Conspires With HIV Infection to Aggravate Intestinal Dysbiosis and Increase Microbial Translocation in People Living With HIV: A Review. Front Immunol 2021; 12:741658. [PMID: 34975838 PMCID: PMC8718428 DOI: 10.3389/fimmu.2021.741658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiome is an essential so-called human "organ", vital for the induction of innate immunity, for metabolizing nutrients, and for maintenance of the structural integrity of the intestinal barrier. HIV infection adversely influences the richness and diversity of the intestinal microbiome, resulting in structural and functional impairment of the intestinal barrier and an increased intestinal permeability. Pathogens and metabolites may thus cross the "leaky" intestinal barrier and enter the systemic circulation, which is a significant factor accounting for the persistent underlying chronic inflammatory state present in people living with HIV (PLWH). Additionally, alcohol use and abuse has been found to be prevalent in PLWH and has been strongly associated with the incidence and progression of HIV/AIDS. Recently, converging evidence has indicated that the mechanism underlying this phenomenon is related to intestinal microbiome and barrier function through numerous pathways. Alcohol acts as a "partner" with HIV in disrupting microbiome ecology, and thus impairing of the intestinal barrier. Optimizing the microbiome and restoring the integrity of the intestinal barrier is likely to be an effective adjunctive therapeutic strategy for PLWH. We herein critically review the interplay among HIV, alcohol, and the gut barrier, thus setting the scene with regards to development of effective strategies to counteract the dysregulated gut microbiome and the reduction of microbial translocation and inflammation in PLWH.
Collapse
Affiliation(s)
- Jiangyu Yan
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Canadian HIV Trials Network (CTN), Canadian Institutes of Health Research (CIHR), Vancouver, BC, Canada
| | - Xin Zhou
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
25
|
Xia Y, Zhang X, Jiang M, Zhang H, Wang Y, Zhang Y, Seviour R, Kong Y. In vitro co-metabolism of epigallocatechin-3-gallate (EGCG) by the mucin-degrading bacterium Akkermansia muciniphila. PLoS One 2021; 16:e0260757. [PMID: 34855864 PMCID: PMC8638859 DOI: 10.1371/journal.pone.0260757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/17/2021] [Indexed: 01/04/2023] Open
Abstract
Akkermansia muciniphila is a Gram-negative bacterium that resides within the gut mucus layer, and plays an important role in promoting gut barrier integrity, modulating the immune response and inhibiting gut inflammation. Growth stimulation of A. muciniphila by polyphenols including epigallocatechin-3-gallate (EGCG) from difference sources is well-documented. However, no published in vitro culture data on utilization of polyphenols by A. muciniphila are available, and the mechanism of growth-stimulating prebiotic effect of polyphenols on it remains unclear. Here in vitro culture studies have been carried out on the metabolism of EGCG by A. muciniphila in the presence of either mucin or glucose. We found that A. muciniphila did not metabolize EGCG alone but could co-metabolize it together with both these substrates in the presence of mineral salts and amino acids for mucin and protein sources for glucose. Our metabolomic data show that A. muciniphila converts EGCG to gallic acid, epigallocatechin, and (-)-epicatechin through ester hydrolysis. The (-)-epicatechin formed is then further converted to hydroxyhydroquinone. Co-metabolism of A. muciniphila of EGCG together with either mucin or glucose promoted substantially its growth, which serves as a further demonstration of the growth-promoting effect of polyphenols on A. muciniphila and provides an important addition to the currently available proposed mechanisms of polyphenolic prebiotic effects on A. muciniphila.
Collapse
Affiliation(s)
- Yun Xia
- School of Agriculture and Life Science, Kunming University, Kunming, China
| | - Xuxiang Zhang
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mingxin Jiang
- School of Agriculture and Life Science, Kunming University, Kunming, China
| | - Hongbo Zhang
- School of Agriculture and Life Science, Kunming University, Kunming, China
| | - Yinfeng Wang
- School of Agriculture and Life Science, Kunming University, Kunming, China
| | - Yuyu Zhang
- School of Agriculture and Life Science, Kunming University, Kunming, China
| | - Robert Seviour
- Microbiology Department, La Trobe University, Bundoora, Victoria, Australia
| | - Yunhong Kong
- Dianchi Lake Environmental Protection Collaborative Research Center, Kunming University, Kunming, China
| |
Collapse
|
26
|
Royston L, Isnard S, Lin J, Routy JP. Cytomegalovirus as an Uninvited Guest in the Response to Vaccines in People Living with HIV. Viruses 2021; 13:v13071266. [PMID: 34209711 PMCID: PMC8309982 DOI: 10.3390/v13071266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
In stark contrast to the rapid development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an effective human immunodeficiency virus (HIV) vaccine is still lacking. Furthermore, despite virologic suppression and CD4 T-cell count normalization with antiretroviral therapy (ART), people living with HIV (PLWH) still exhibit increased morbidity and mortality compared to the general population. Such differences in health outcomes are related to higher risk behaviors, but also to HIV-related immune activation and viral coinfections. Among these coinfections, cytomegalovirus (CMV) latent infection is a well-known inducer of long-term immune dysregulation. Cytomegalovirus contributes to the persistent immune activation in PLWH receiving ART by directly skewing immune response toward itself, and by increasing immune activation through modification of the gut microbiota and microbial translocation. In addition, through induction of immunosenescence, CMV has been associated with a decreased response to infections and vaccines. This review provides a comprehensive overview of the influence of CMV on the immune system, the mechanisms underlying a reduced response to vaccines, and discuss new therapeutic advances targeting CMV that could be used to improve vaccine response in PLWH.
Collapse
Affiliation(s)
- Léna Royston
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (L.R.); (S.I.); (J.L.)
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Canadian Institutes of Health Research, Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (L.R.); (S.I.); (J.L.)
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Canadian Institutes of Health Research, Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (L.R.); (S.I.); (J.L.)
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (L.R.); (S.I.); (J.L.)
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Division of Hematology, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
27
|
Mezhibovsky E, Knowles KA, He Q, Sui K, Tveter KM, Duran RM, Roopchand DE. Grape Polyphenols Attenuate Diet-Induced Obesity and Hepatic Steatosis in Mice in Association With Reduced Butyrate and Increased Markers of Intestinal Carbohydrate Oxidation. Front Nutr 2021; 8:675267. [PMID: 34195217 PMCID: PMC8238044 DOI: 10.3389/fnut.2021.675267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
A Western Diet (WD) low in fiber but high in fats and sugars contributes to obesity and non-alcoholic fatty liver disease (NAFLD). Supplementation with grape polyphenols (GPs) rich in B-type proanthocyanidins (PACs) can attenuate symptoms of cardiometabolic disease and alter the gut microbiota and its metabolites. We hypothesized that GP-mediated metabolic improvements would correlate with altered microbial metabolites such as short chain fatty acids (SCFAs). To more closely mimic a WD, C57BL/6J male mice were fed a low-fiber diet high in sucrose and butterfat along with 20% sucrose water to represent sugary beverages. This WD was supplemented with 1% GPs (WD-GP) to investigate the impact of GPs on energy balance, SCFA profile, and intestinal metabolism. Compared to WD-fed mice, the WD-GP group had higher lean mass along with lower fat mass, body weight, and hepatic steatosis despite consuming more calories from sucrose water. Indirect and direct calorimetry revealed that reduced adiposity in GP-supplemented mice was likely due to their greater energy expenditure, which resulted in lower energy efficiency compared to WD-fed mice. GP-supplemented mice had higher abundance of Akkermansia muciniphila, a gut microbe reported to increase energy expenditure. Short chain fatty acid measurements in colon content revealed that GP-supplemented mice had lower concentrations of butyrate, a major energy substrate of the distal intestine, and reduced valerate, a putrefactive SCFA. GP-supplementation also resulted in a lower acetate:propionate ratio suggesting reduced hepatic lipogenesis. Considering the higher sucrose consumption and reduced butyrate levels in GP-supplemented mice, we hypothesized that enterocytes would metabolize glucose and fructose as a replacement energy source. Ileal mRNA levels of glucose transporter-2 (GLUT2, SLC2A2) were increased indicating higher glucose and fructose uptake. Expression of ketohexokinase (KHK) was increased in ileum tissue suggesting increased fructolysis. A GP-induced increase in intestinal carbohydrate oxidation was supported by: (1) increased gene expression of duodenal pyruvate dehydrogenase (PDH), (2) a decreased ratio of lactate dehydrogenase a (LDHa): LDHb in jejunum and colon tissues, and (3) decreased duodenal and colonic lactate concentrations. These data indicate that GPs protect against WD-induced obesity and hepatic steatosis by diminishing portal delivery of lipogenic butyrate and sugars due to their increased intestinal utilization.
Collapse
Affiliation(s)
- Esther Mezhibovsky
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
- Department of Nutritional Sciences Graduate Program, Rutgers University, New Brunswick, NJ, United States
| | - Kim A. Knowles
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Qiyue He
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Ke Sui
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Kevin M. Tveter
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Rocio M. Duran
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| | - Diana E. Roopchand
- Department of Food Science and New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), New Brunswick, NJ, United States
| |
Collapse
|
28
|
Erlandson KM, Piggott DA. Frailty and HIV: Moving from Characterization to Intervention. Curr HIV/AIDS Rep 2021; 18:157-175. [PMID: 33817767 PMCID: PMC8193917 DOI: 10.1007/s11904-021-00554-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW While the characteristics associated with frailty in people with HIV (PWH) have been well described, little is known regarding interventions to slow or reverse frailty. Here we review interventions to prevent or treat frailty in the general population and in people with HIV (PWH). RECENT FINDINGS Frailty interventions have primarily relied on nonpharmacologic interventions (e.g., exercise and nutrition). Although few have addressed frailty, many of these therapies have shown benefit on components of frailty including gait speed, strength, and low activity among PWH. When nonpharmacologic interventions are insufficient, pharmacologic interventions may be necessary. Many interventions have been tested in preclinical models, but few have been tested or shown benefit among older adults with or without HIV. Ultimately, pharmacologic and nonpharmacologic interventions have the potential to improve vulnerability that underlies frailty in PWH, though clinical data is currently sparse.
Collapse
Affiliation(s)
- Kristine M Erlandson
- Department of Medicine, Division of Infectious Diseases, University of Colorado-Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO, 80045, USA.
- Department of Epidemiology, Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA.
| | - Damani A Piggott
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| |
Collapse
|
29
|
Isnard S, Lin J, Bu S, Fombuena B, Royston L, Routy JP. Gut Leakage of Fungal-Related Products: Turning Up the Heat for HIV Infection. Front Immunol 2021; 12:656414. [PMID: 33912183 PMCID: PMC8071945 DOI: 10.3389/fimmu.2021.656414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The intestinal epithelial layer serves as a physical and functional barrier between the microbiota in the lumen and immunologically active submucosa. Th17 T-cell function protects the gut epithelium from aggression from microbes and their by-products. Loss of barrier function has been associated with enhanced translocation of microbial products which act as endotoxins, leading to local and systemic immune activation. Whereas the inflammatory role of LPS produced by Gram-negative bacteria has been extensively studied, the role of fungal products such as β-D-glucan remains only partially understood. As HIV infection is characterized by impaired gut Th17 function and increased gut permeability, we critically review mechanisms of immune activation related to fungal translocation in this viral infection. Additionally, we discuss markers of fungal translocation for diagnosis and monitoring of experimental treatment responses. Targeting gut barrier dysfunction and reducing fungal translocation are emerging strategies for the prevention and treatment of HIV-associated inflammation and may prove useful in other inflammatory chronic diseases.
Collapse
Affiliation(s)
- Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Simeng Bu
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Brandon Fombuena
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Léna Royston
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
30
|
Rohr O. Flower power: Locking HIV in the gut with French lilac. EBioMedicine 2021; 66:103299. [PMID: 33774325 PMCID: PMC8024907 DOI: 10.1016/j.ebiom.2021.103299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Olivier Rohr
- Université de Strasbourg, UR 7292, FMTS, IUT Louis Pasteur, Strasbourg, France.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Systemic inflammation increases as a consequence of aging (inflammaging) and contributes to age-related morbidities. Inflammation in people living with HIV is elevated compared with the general population even after prolonged suppression of viremia with anti-retroviral therapy. Mechanisms that contribute to inflammation during aging and in treated HIV disease are potentially interactive, leading to an exaggerated inflammatory phenotype in people with HIV. RECENT FINDINGS Recent studies highlight roles for anti-retroviral therapy, co-infections, immune system alterations, and microbiome perturbations as important contributors to HIV-associated inflammation. These factors likely contribute to increased risk of age-related morbidities in people living with HIV. Understanding mechanisms that exaggerate the inflammaging process in people with HIV may lead to improved intervention strategies, ultimately, extending both lifespan and healthspan.
Collapse
|
32
|
LILAC pilot study: Effects of metformin on mTOR activation and HIV reservoir persistence during antiretroviral therapy. EBioMedicine 2021; 65:103270. [PMID: 33662832 PMCID: PMC7930590 DOI: 10.1016/j.ebiom.2021.103270] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic inflammation and residual HIV transcription persist in people living with HIV (PLWH) receiving antiretroviral therapy (ART), thus increasing the risk of developing non-AIDS co-morbidities. The mechanistic target of rapamycin (mTOR) is a key regulator of cellular metabolism and HIV transcription, and therefore represents an interesting novel therapeutic target. METHODS The LILAC pilot clinical trial, performed on non-diabetic ART-treated PLWH with CD4+/CD8+ T-cell ratios <0.8, evaluated the effects of metformin (12 weeks oral administration; 500-850 mg twice daily), an indirect mTOR inhibitor, on the dynamics of immunological/virological markers and changes in mTOR activation/phosphorylation in blood collected at Baseline, Week 12, and 12 weeks after metformin discontinuation (Week 24) and sigmoid colon biopsies (SCB) collected at Baseline and Week 12. FINDINGS CD4+ T-cell counts, CD4+/CD8+ T-cell ratios, plasma markers of inflammation/gut damage, as well as levels of cell-associated integrated HIV-DNA and HIV-RNA, and transcriptionally-inducible HIV reservoirs, underwent minor variations in the blood in response to metformin. The highest levels of mTOR activation/phosphorylation were observed in SCB at Baseline. Consistently, metformin significantly decreased CD4+ T-cell infiltration in the colon, as well as mTOR activation/phosphorylation, especially in CD4+ T-cells expressing the Th17 marker CCR6. Also, metformin decreased the HIV-RNA/HIV-DNA ratios, a surrogate marker of viral transcription, in colon-infiltrating CD4+ T-cells of 8/13 participants. INTERPRETATION These results are consistent with the fact that metformin preferentially acts on the intestine and that mTOR activation/phosphorylation selectively occurs in colon-infiltrating CCR6+CD4+ T-cells. Future randomized clinical trials should evaluate the benefits of long-term metformin supplementation of ART.
Collapse
|
33
|
Ahmed DS, Isnard S, Lin J, Routy B, Routy JP. GDF15/GFRAL Pathway as a Metabolic Signature for Cachexia in Patients with Cancer. J Cancer 2021; 12:1125-1132. [PMID: 33442410 PMCID: PMC7797663 DOI: 10.7150/jca.50376] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cachexia is a metabolic mutiny that directly reduces life expectancy in chronic conditions such as cancer. The underlying mechanisms associated with cachexia involve inflammation, metabolism, and anorexia. Therefore, the need to identify cachexia biomarkers is warranted to better understand catabolism change and assess various therapeutic interventions. Among inflammatory proteins, growth differentiation factor-15 (GDF15), an atypical transforming growth factor-beta (TGF-β) superfamily member, emerges as a stress-related hormone. In inflammatory conditions, cardiovascular diseases, and cancer, GDF15 is a biomarker for disease outcome. GDF15 is also implicated in energy homeostasis, body weight regulation, and plays a distinct role in cachexia. The recent discovery of its receptor, glial cell line-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL), sheds light on its metabolic function. Herein, we critically review the mechanisms involving GDF15 in cancer cachexia and discuss therapeutic interventions to improve outcomes in people living with cancer.
Collapse
Affiliation(s)
- Darakhshan Sohail Ahmed
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Stéphane Isnard
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- CIHR Canadian HIV Trials Network, Vancouver, BC
| | - John Lin
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Bertrand Routy
- Division of Hémato-oncologie, Centre hospitalier de l'Université de Montréal
- Centre de recherche du Centre hospitalier de l'Université de Montréal
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
34
|
Peng X, Ouyang J, Isnard S, Lin J, Fombuena B, Zhu B, Routy JP. Sharing CD4+ T Cell Loss: When COVID-19 and HIV Collide on Immune System. Front Immunol 2020; 11:596631. [PMID: 33384690 PMCID: PMC7770166 DOI: 10.3389/fimmu.2020.596631] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a distinctive infection characterized by elevated inter-human transmission and presenting from absence of symptoms to severe cytokine storm that can lead to dismal prognosis. Like for HIV, lymphopenia and drastic reduction of CD4+ T cell counts in COVID-19 patients have been linked with poor clinical outcome. As CD4+ T cells play a critical role in orchestrating responses against viral infections, important lessons can be drawn by comparing T cell response in COVID-19 and in HIV infection and by studying HIV-infected patients who became infected by SARS-CoV-2. We critically reviewed host characteristics and hyper-inflammatory response in these two viral infections to have a better insight on the large difference in clinical outcome in persons being infected by SARS-CoV-2. The better understanding of mechanism of T cell dysfunction will contribute to the development of targeted therapy against severe COVID-19 and will help to rationally design vaccine involving T cell response for the long-term control of viral infection.
Collapse
Affiliation(s)
- Xiaorong Peng
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Ouyang
- Chongqing Public Health Medical Center, Chongqing, China
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
| | - Brandon Fombuena
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada.,Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
35
|
Ouyang J, Isnard S, Lin J, Fombuena B, Peng X, Chen Y, Routy JP. GDF-15 as a Weight Watcher for Diabetic and Non-Diabetic People Treated With Metformin. Front Endocrinol (Lausanne) 2020; 11:581839. [PMID: 33312159 PMCID: PMC7708317 DOI: 10.3389/fendo.2020.581839] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Weight gain and obesity are global health concerns contributing to morbidity with increased risks of cardiovascular disease, diabetes, liver steatohepatitis and cancer. Pharmacological therapies or bariatric surgery are often required for those who fail to adhere to diet and lifestyle modifications. Metformin, a widely used antidiabetic agent, seems to have a health benefit beyond its anti-hyperglycemic properties, with few side effects. Emerging evidence shows weight loss to be associated with metformin in both diabetic and non-diabetic individuals. Recently, the growth differentiation factor 15 (GDF-15), a member of the transforming growth factor beta superfamily, has been identified as a key mediator of metformin-induced weight loss. Metformin increases the secretion of GDF-15, which binds exclusively to glial cell-derived neurotrophic factor family receptor alpha-like (GFRAL). This gut-brain cytokine works as a prominent player in reducing food intake and body weight in health and disease, like anorexia nervosa and cancer. Herein, we critically review advances in the understanding of the weight-reducing effects of metformin via the GDF-15 pathway.
Collapse
Affiliation(s)
- Jing Ouyang
- Chongqing Public Health Medical Center, Chongqing, China
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
| | - Brandon Fombuena
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Xiaorong Peng
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yaokai Chen
- Chongqing Public Health Medical Center, Chongqing, China
- *Correspondence: Jean-Pierre Routy, ; Yaokai Chen,
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
- *Correspondence: Jean-Pierre Routy, ; Yaokai Chen,
| |
Collapse
|