1
|
Tao H, Wu Y, Liu S, Yang S, Xu X. Over-expression of LsEXPA6, a lettuce expansin gene, improves cadmium stress tolerance in transgenic Arabidopsis. Gene 2025; 933:148927. [PMID: 39255860 DOI: 10.1016/j.gene.2024.148927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Cadmium (Cd) is a harmful heavy metal that is highly toxic to plants and animals. Expansins are cell wall proteins inducing cell wall loosening and participate in all plant growth and development processes which are associated with cell wall modifications. We investigated lettuce's expansin gene LsEXPA6 and found that LsEXPA6 overexpression Arabidopsis lines were much more resistant to cadmium stress. Our results revealed that the root system of the expa6 mutant was suppressed under cadmium stress, resulting in shorter plant height, reduced biomass, and a significant increase in cadmium content in the plants compared with wild-type plants, whereas LsEXPA6 overexpression lines had a well-developed root system and reduced cadmium accumulation in the roots and shoots of the plants. The above results indicated that overexpression of LsEXPA6 affected root development and reduced Cd absorption in Arabidopsis. In addition, the higher absorption capacity of nutrients, increased antioxidant enzymes activities, improved chlorophyll and photosynthetic function in the overexpression Arabidopsis plants, supported the Cd stress tolerance mechanism. Taken together, these results provided a new insight on the role of expansin proteins in the tolerance of plants to Cd stress by root cell elongation.
Collapse
Affiliation(s)
- Huifang Tao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yongzhen Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Sixuan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuxue Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoming Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Ouyang Z, Liu B, Li T, Bai T, Teng W. Effects of aluminum on metabolism of reactive oxygen species and reactive nitrogen species in root tips of different Eucalyptus species. BMC PLANT BIOLOGY 2025; 25:55. [PMID: 39810087 PMCID: PMC11730172 DOI: 10.1186/s12870-024-06042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
On acidified soil, the growth of Eucalyptus is seriously restricted by aluminum (Al) stress. Therefore, breeding Eucalyptus species with excellent Al tolerance, developing the genetic potential of species, and improving tolerance to Al stress are important for the sustainable development of artificial Eucalyptus forests. By observing the occurrence and distribution of the main reactive oxygen species (ROS) and reactive nitrogen species (RNS) in root tips of Eucalyptus seedlings under Al stress, this study analyzed change in the growth and physiological indexes of Eucalyptus seedlings under Al stress. The antioxidant enzymes activities of the root tips of different Eucalyptus species induced by Al stress resulted in different ROS and RNS contents, ultimately resulting in differing degrees of membrane lipid peroxidation. In addition to suppressions of root relative elongation and root activity, the accumulations of soluble sugar, soluble protein, and proline can be used as indicators of Al sensitivity in Eucalyptus species. This may be an important determinant of the differences in Al tolerance among Eucalyptus species. The accumulation of ROS and RNS in the roots of E. grandis and E. tereticornis resulted in severe oxidative and nitrification stress. The tolerance of E. urophylla and E. urophylla × E. grandis to Al stress was stronger than that of E. grandis and E. tereticornis. Differences in Al toxicity tolerance were related to long-term selection of the original habitat of the species; moreover, the Al tolerance was hereditary. Eucalyptus urophylla × E. grandis had stronger Al tolerance than its parents, which is indicative of heterosis. These results provide theoretical support for the breeding of tree species in areas with acidic soil.
Collapse
Affiliation(s)
- Zilong Ouyang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
- Nanning Botanical Garden, Nanning, 530002, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Bing Liu
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Tangkan Li
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
- Nanning Botanical Garden, Nanning, 530002, China
| | - Tiandao Bai
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Weichao Teng
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Gam HJ, Adhikari A, Kang Y, Injamum-Ul-Hoque M, Shaffique S, Woo JI, Jeon JR, An BK, Back MY, Kim KY, Kang SM, Lee IJ. Investigating the Allelopathic and Bioherbicidal Potential of Solidago altissima with a Focus on Chemical Signaling in Trifolium repens. PLANTS (BASEL, SWITZERLAND) 2024; 14:96. [PMID: 39795356 PMCID: PMC11723385 DOI: 10.3390/plants14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Invasive weed species exhibit both advantages, such as the potential for allelochemicals in bioherbicide development, and risks, including their threat to crop production. Therefore, this study aims to identify an allelochemical from Solidago altissima, an invasive weed species. The dose-dependent effects of S. altissima shoot and root extracts (SSE, SRE) on the signaling in the forage crop Trifolium repens and germination in various weed species (Echinochloa oryzicola, Cyperus microiria, Alopecurus aequalis, Portulaca oleracea, and Amaranthus retroflexus) were evaluated. The results showed that the T. repens seedlings treated with root extracts exhibited a significant decrease in plant height, dry weight, and chlorophyll content, along with an increase in H2O2 levels. Additionally, antioxidant activities, such as superoxide dismutase, catalase, and peroxidase enzyme activities, were significantly elevated in T. repens treated with SRE. Moreover, SRE treatment significantly inhibited the seed germination of all tested weed species in a concentration-dependent manner. Gas chromatography-mass spectrometry analysis of S. altissima root extract identified a high concentration of methyl kolavenate, a clerodane diterpene predicted to act as a phytotoxic agent. These findings highlight the potential of S. altissima for the development of crop-protective agents while emphasizing its potential risks in agriculture.
Collapse
Affiliation(s)
- Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Yosep Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Ji-In Woo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Jin Ryeol Jeon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Byeong-Kwan An
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Min Young Back
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| | - Ki-Yong Kim
- National Institute of Animal Science, Rural Development Administration (RDA), Cheonan 31000, Republic of Korea;
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (H.-J.G.); (A.A.); (Y.K.); (M.I.-U.-H.); (S.S.); (J.-I.W.); (J.R.J.); (B.-K.A.); (M.Y.B.); (S.-M.K.)
| |
Collapse
|
4
|
Yuan L, Dang J, Zhang J, Wang L, Zheng H, Li G, Li J, Zhou F, Khan A, Zhang Z, Hu X. A glutathione S-transferase regulates lignin biosynthesis and enhances salt tolerance in tomato. PLANT PHYSIOLOGY 2024; 196:2989-3006. [PMID: 39324634 DOI: 10.1093/plphys/kiae504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Salt stress adversely affects the growth and yield of crops. Glutathione S-transferases (GSTs) are involved in plant growth and responses to biotic and abiotic stresses. In this study, 400 mm NaCl stress significantly induced the expression of Glutathione S-transferase U43 (SlGSTU43) in the roots of the wild-type tomato (Solanum lycopersicum L.) plants. Overexpressing SlGSTU43 enhanced the ability of scavenging reactive oxygen species in tomato leaves and roots under NaCl stress, while SlGSTU43 knock-out mutants showed the opposite performance. RNA sequencing analysis revealed that overexpressing SlGSTU43 affected the expression of genes related to lignin biosynthesis. We demonstrated that SlGSTU43 can regulate the lignin content in tomato through its interaction with SlCOMT2, a key enzyme involved in lignin biosynthesis, and promote the growth of tomato plants under NaCl stress. In addition, SlMYB71 and SlWRKY8 interact each other, and can directly bind to the promoter of SlGSTU43 to transcriptionally activate its expression separately or in combination. When SlMYB71 and SlWRKY8 were silenced in tomato plants individually or collectively, the plants were sensitive to NaCl stress, and their GST activities and lignin contents decreased. Our research indicates that SlGSTU43 can enhance salt stress tolerance in tomato by regulating lignin biosynthesis, which is regulated by interacting with SlCOMT2, as well as SlMYB71 and SlWRKY8. This finding broadens our understanding of GST functions.
Collapse
Affiliation(s)
- Luqiao Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Jiao Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Jiayue Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Linyang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Hao Zheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Guobin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| | - Junxiao Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fan Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Zhengda Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Department of Science and Technology of Shaanxi Province, Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, China
| |
Collapse
|
5
|
Ren N, Zhang G, Yang X, Chen J, Ni L, Jiang M. MAPKKK28 functions upstream of the MKK1-MPK1 cascade to regulate abscisic acid responses in rice. PLANT, CELL & ENVIRONMENT 2024; 47:5140-5157. [PMID: 39166350 DOI: 10.1111/pce.15095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
The mitogen-activated protein kinase (MAPK) cascade (MAPKKK-MAPKK-MAPK) plays a critical role in biotic and abiotic stress responses and abscisic acid (ABA) signalling. A previous study has shown that the ABA-activated MKK1-MPK1 cascade is essential in regulating ABA response and stress tolerance in rice. However, the specific MAPKKK upstream of the MKK1-MPK1 cascade in ABA signalling remains unknown. Here, we identified that MAPKKK28, a previously uncharacterized member of the rice MEKK family, is involved in regulating ABA responses, including seed germination, root growth, stomatal closure, and the tolerance to oxidative stress and osmotic stress. We found that MAPKKK28 directly interacts with and phosphorylates MKK1. Further analysis indicated that the activation of both MKK1 and MPK1 depends on MAPKKK28 in ABA signalling. Genetic analysis revealed that MAPKKK28 functions upstream of the MKK1-MPK1 cascade to positively regulate ABA responses and enhance tolerance to oxidative and osmotic stress. These results not only reveal a new complete MAPK cascade in plants but also uncover its importance in ABA signalling.
Collapse
Affiliation(s)
- Ning Ren
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gang Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Xiaokun Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lan Ni
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Anil Kumar S, Kaniganti S, Hima Kumari P, Sudhakar Reddy P, Suravajhala P, P S, Kishor PBK. Functional and biotechnological cues of potassium homeostasis for stress tolerance and plant development. Biotechnol Genet Eng Rev 2024; 40:3527-3570. [PMID: 36469501 DOI: 10.1080/02648725.2022.2143317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022]
Abstract
Potassium (K+) is indispensable for the regulation of a plethora of functions like plant metabolism, growth, development, and abiotic stress responses. K+ is associated with protein synthesis and entangled in the activation of scores of enzymes, stomatal regulation, and photosynthesis. It has multiple transporters and channels that assist in the uptake, efflux, transport within the cell as well as from soil to different tissues, and the grain filling sites. While it is implicated in ion homeostasis during salt stress, it acts as a modulator of stomatal movements during water deficit conditions. K+ is reported to abate the effects of chilling and photooxidative stresses. K+ has been found to ameliorate effectively the co-occurrence of drought and high-temperature stresses. Nutrient deficiency of K+ makes leaves necrotic, leads to diminished photosynthesis, and decreased assimilate utilization highlighting the role it plays in photosynthesis. Notably, K+ is associated with the detoxification of reactive oxygen species (ROS) when plants are exposed to diverse abiotic stress conditions. It is irrefutable now that K+ reduces the activity of NADPH oxidases and at the same time maintains electron transport activity, which helps in mitigating the oxidative stress. K+ as a macronutrient in plant growth, the role of K+ during abiotic stress and the protein phosphatases involved in K+ transport have been reviewed. This review presents a holistic view of the biological functions of K+, its uptake, translocation, signaling, and the critical roles it plays under abiotic stress conditions, plant growth, and development that are being unraveled in recent times.
Collapse
Affiliation(s)
- S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
| | - Sirisha Kaniganti
- Crop transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - P Sudhakar Reddy
- Crop transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - Suprasanna P
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
- Amity Institute of Biotechnology, Amity University Mumbai, Bhatan, Mumbai, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
| |
Collapse
|
7
|
Shahzad M, Peng D, Khan A, Ayyaz A, Askri SMH, Naz S, Huang B, Zhang G. Sufficient manganese supply is necessary for OsNramp5 knockout rice plants to ensure normal growth and less Cd uptake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117386. [PMID: 39579447 DOI: 10.1016/j.ecoenv.2024.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The development of crop cultivars with less Cd uptake in roots and accumulation in shoots is a most efficient and environment-friendly approach to deal with soil Cd contamination. Recently repression of Nramp5 expression or its knockout is commonly recognized to be efficient for reducing Cd accumulation in plants, but such mutant plants suffer from manganese deficiency. In this study, we assessed the efficacy of exogenous Mn addition in mitigating Cd stress in a japonica rice cultivar Xidao 1 (Wild Type, WT) and its OsNramp5 knockout mutant. Exposure to Cd stress resulted in notable low photosynthetic rate, growth inhibition, and high Cd accumulation in rice seedlings. Although the mutant plants contained much lower Cd concentration in both roots and shoots than the WT plants, their growth was significantly inhibited relative to the WT plants under the normal condition. Exogenous application of Mn (40 μM) dramatically reduces root and shoot Cd concentrations and alleviates the toxic effect of Cd stress in both rice types, with the mutant plants demonstrating lower Cd concentration and less Cd toxicity in comparison with WT plants. The alleviation of Cd toxicity by Mn addition was more effective in higher Cd level (1.0 μM) than in lower Cd level (0.1 μM). Mn increases the expression of OsNramp5 and other genes, including OsHMA2, OsHMA3, OsIRT1, and OsIRT2, which encode ion transporters related to Mn uptake and transportation, and meanwhile reduces Cd uptake and accumulation in rice seedlings. In short, the knockout of OsNramp5 results in the significant reduction of Cd uptake, but accompanies with Mn deficiency in rice plants, which can be efficiently overcome through exogenous Mn addition.
Collapse
Affiliation(s)
- Muhammad Shahzad
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Di Peng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Ameer Khan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Ahsan Ayyaz
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Syed Muhammad Hassan Askri
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Shama Naz
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Binbin Huang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China.
| |
Collapse
|
8
|
Su X, Li C, Yu Y, Li L, Wang L, Lu D, Zhao Y, Sun Y, Tan Z, Liang H. Comprehensive Transcriptomic and Physiological Insights into the Response of Root Growth Dynamics During the Germination of Diverse Sesame Varieties to Heat Stress. Curr Issues Mol Biol 2024; 46:13311-13327. [PMID: 39727922 PMCID: PMC11727563 DOI: 10.3390/cimb46120794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Heat stress constitutes a serious threat to sesame (Sesamum indicum L.). Root development during seed germination plays an essential role in plant growth and development. Nevertheless, the regulatory mechanisms underlying heat stress remain poorly understood. In this study, two sesame varieties differing in leaf heat tolerance (Zheng Taizhi 3 (heat-tolerant) and SP19 (heat-sensitive)) have been employed to investigate the impact of heat stress on root growth during germination. The results showed that heat stress significantly reduced the radicle length by 35.71% and 67.02% in Zheng Taizhi 3 and SP19, respectively, while germination rates remained unchanged. In addition, heat stress induced oxidative stress, as evidenced by increased reactive oxygen species (ROS) production, malondialdehyde (MDA) content, and reduced indole-3-acetic acid (IAA) content, accompanied by enhanced antioxidant enzyme activities, including those of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the abscisic acid (ABA) content significantly increased in both varieties. However, the oxidation resistance in the roots of Zheng Taizhi 3 was enhanced compared to that of SP19 under heat stress, while IAA production was maintained and ABA content was reduced. A comparative transcriptome analysis identified 6164 and 6933 differentially expressed genes (DEGs) in Zheng Taizhi 3 and SP19, respectively, with 4346 overlapping DEGs. These DEGs included those related to stress tolerance, such as heat-shock proteins (HSPs), the antioxidant defense system, hormone signal transduction, and the biosynthetic pathway of phenylpropanoid. These findings provide insights into the physiological and molecular mechanisms underlying the adaptation of sesame to heat stress, which could inform breeding strategies for developing heat-tolerant sesame varieties.
Collapse
Affiliation(s)
- Xiaoyu Su
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Chunming Li
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Yongliang Yu
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Lei Li
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Lina Wang
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Dandan Lu
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Yulong Zhao
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Yao Sun
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Zhengwei Tan
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| | - Huizhen Liang
- Institute of Chinese Herbal Medicines, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (X.S.); (C.L.); (Y.Y.); (L.L.); (L.W.); (D.L.); (Y.Z.); (Y.S.)
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Zhengzhou 450002, China
| |
Collapse
|
9
|
Huang J, Huang M, Guan Z, Chen L, Chen J, Lv L, Liu M. Phytotoxicity of HNTs to rice (Oryza sativa L.): Effects on rice growth and development. CHEMOSPHERE 2024; 368:143735. [PMID: 39536831 DOI: 10.1016/j.chemosphere.2024.143735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
The phytotoxicity of halloysite nanotubes (HNTs) to rice (Oryza sativa L.) was evaluated at several stages from germination, seedling growth to spike setting, and the seedling stage was selected to study the effect of HNTs on the growth of rice. Rice was cultured using different concentrations of HNTs dispersions and a blank control group was cultured with deionized water. It was found that HNTs did not affect the germination of rice seeds, and at the seedling stage, the low concentration of HNTs dispersion (0.1 mg mL-1) promoted the growth of rice. This significantly increased the biomass and root system of rice seedlings and also promoted the development of stems and leaves of rice seedlings. However, high concentration of HNTs dispersion (100 mg mL-1) had an inhibitory effect on rice growth, resulting in a significant decrease in rice biomass, causing oxidative damage (increase in H2O2 content and malondialdehyde content, and disruption of cell membrane permeability), and causing a decrease in chlorophyll content in rice. The rice seedlings treated with HNTs were transplanted into the soil, and it was found that all the rice could grow healthily. The growth trend was consistent with the seedling stage, and all groups of rice were able to produce spikes, which indicated that the effect of HNTs on rice was slight. In total, this work displayed the toxicity of HNTs to rice, which lays the foundation for the application of HNTs in agricultural field.
Collapse
Affiliation(s)
- Jiawei Huang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Ming Huang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - ZiYing Guan
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Science, Guangdong Guangzhou, 510640, China
| | - Linhong Chen
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Science, Guangdong Guangzhou, 510640, China.
| | - Lihua Lv
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Science, Guangdong Guangzhou, 510640, China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
10
|
Jin Q, Yang K, Zhang Y, Zhang S, Liu Z, Guan Y, Zhang L, Zhang Y, Wang Q. Physiological and molecular mechanisms of silicon and potassium on mitigating iron-toxicity stress in Panax ginseng. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108975. [PMID: 39084170 DOI: 10.1016/j.plaphy.2024.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Iron plays a crucial role in plant chlorophyll synthesis, respiration, and plant growth. However, excessive iron content can contribute to ginseng poisoning. We previously discovered that the application of silicon (Si) and potassium (K) can mitigate the iron toxicity on ginseng. To elucidate the molecular mechanism of how Si and K alleviate iron toxicity stress in ginseng. We investigated the physiological and transcriptional effects of exogenous Si and K on Panax ginseng. The results suggested that the leaves of ginseng with Si and K addition under iron stress increased antioxidant enzyme activity or secondary metabolite content, such as phenylalanine amino-lyase, polyphenol oxidase, ascorbate peroxidase, total phenols and lignin, by 6.21%-25.94%, 30.12%-309.19%, 32.26%-38.82%, 7.81%-23.66%, and 4.68%-48.42%, respectively. Moreover, Si and K increased the expression of differentially expressed genes (DEGs) associated with resistance to both biotic and abiotic stress, including WRKY (WRKY1, WRKY5, and WRKY65), bHLH (bHLH35, bHLH66, bHLH128, and bHLH149), EREBP, ERF10 and ZIP. Additionally, the amount of DEGs of ginseng by Si and K addition was enriched in metabolic processes, single-organism process pathways, signal transduction, metabolism, synthesis and disease resistance. In conclusion, the utilization of Si and K can potentially reduce the accumulation of iron in ginseng, regulate the expression of iron tolerance genes, and enhance the antioxidant enzyme activity and secondary metabolite production in both leaves and roots, thus alleviating the iron toxicity stress in ginseng.
Collapse
Affiliation(s)
- Qiao Jin
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Kexin Yang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yayu Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China; College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Shuna Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Zhengbo Liu
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yiming Guan
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Linlin Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yue Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Qiuxia Wang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China.
| |
Collapse
|
11
|
Ramzan M, Haider STA, Hussain MB, Ehsan A, Datta R, Alahmadi TA, Ansari MJ, Alharbi SA. Potential of kaempferol and caffeic acid to mitigate salinity stress and improving potato growth. Sci Rep 2024; 14:21657. [PMID: 39294197 PMCID: PMC11410995 DOI: 10.1038/s41598-024-72420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
Salinity stress adversely affects plant growth by disrupting water uptake, inducing ion toxicity, initiating osmotic stress, impairing growth, leaf scorching, and reducing crop yield. To mitigate this issue, the application of kaempferol (KP), caffeic acid (CA), and plant growth-promoting rhizobacteria (PGPR) emerges as a promising technology. Kaempferol, a flavonoid, protects plants from oxidative stress, while caffeic acid, a plant-derived compound, promotes growth by regulating physiological processes. PGPR enhances plant health and productivity through growth promotion, nutrient uptake, and stress mitigation, providing a sustainable solution. However, combining these compounds against drought requires further scientific justification. That's why the current study was conducted using 4 treatments, i.e., 0, 20 µM KP, 30 μM CA, and 20 µM KP + 30 μM CA without and with PGPR (Bacillus altitudinis). There were 4 replications following a completely randomized design. Results showed that 20 µM KP + 30 μM CA with PGPR caused significant enhancement in potato stem length (14.32%), shoot root, and leaf dry weight (16.52%, 11.04%, 67.23%), than the control. The enrichment in potato chlorophyll a, b, and total (31.86%, 46.05%, and 35.52%) was observed over the control, validating the potential of 20 µM KP + 30 μM CA + PGPR. Enhancement in shoot N, P, K, and Ca concentration validated the effective functioning of 20 µM KP + 30 μM CA with PGPR evaluated to control. In conclusion, 20 µM KP + 30 μM CA with PGPR is the recommended amendment to alleviate salinity stress in potatoes.
Collapse
Affiliation(s)
- Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sakeena Tul Ain Haider
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Baqir Hussain
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Punjab, Pakistan
| | - Abdullah Ehsan
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic.
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, 11461, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Song H, Wang M, Shen J, Wang X, Qin C, Wei P, Niu Y, Ren J, Pan X, Liu A. Physiological and transcriptomic profiles reveal key regulatory pathways involved in cold resistance in sunflower seedlings. Genomics 2024; 116:110926. [PMID: 39178997 DOI: 10.1016/j.ygeno.2024.110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
During sunflower growth, cold waves often occur and impede plant growth. Therefore, it is crucial to study the underlying mechanism of cold resistance in sunflowers. In this study, physiological analysis revealed that as cold stress increased, the levels of ROS, malondialdehyde, ascorbic acid, and dehydroascorbic acid and the activities of antioxidant enzymes increased. Transcriptomics further identified 10,903 DEGs between any two treatments. Clustering analysis demonstrated that the expression of MYB44a, MYB44b, MYB12, bZIP2 and bZIP4 continuously upregulated under cold stress. Cold stress can induce ROS accumulation, which interacts with hormone signals to activate cold-responsive transcription factors regulating target genes involved in antioxidant defense, secondary metabolite biosynthesis, starch and sucrose metabolism enhancement for improved cold resistance in sunflowers. Additionally, the response of sunflowers to cold stress may be independent of the CBF pathway. These findings enhance our understanding of cold stress resistance in sunflowers and provide a foundation for genetic breeding.
Collapse
Affiliation(s)
- Huifang Song
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Mingyang Wang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jie Shen
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Xi Wang
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Cheng Qin
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Peipei Wei
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Yaojun Niu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| | - Xiaoxue Pan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences/Chongqing Key Laboratory of Adversity Agriculture, Chongqing 401329, China.
| | - Ake Liu
- Department of Life Sciences, Changzhi University, Changzhi 046011, China.
| |
Collapse
|
13
|
Murcia G, Alonso R, Berli F, Arias L, Bianchimano L, Pontin M, Fontana A, Casal JJ, Piccoli P. Quantitative Proteomics Analysis of ABA- and GA 3-Treated Malbec Berries Reveals Insights into H 2O 2 Scavenging and Anthocyanin Dynamics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2366. [PMID: 39273850 PMCID: PMC11396855 DOI: 10.3390/plants13172366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Abscisic acid (ABA) and gibberellic acid (GA3) are regulators of fruit color and sugar levels, and the application of these hormones is a common practice in commercial vineyards dedicated to the production of table grapes. However, the effects of exogenous ABA and GA3 on wine cultivars remain unclear. We investigated the impact of ABA and GA3 application on Malbec grapevine berries across three developmental stages. We found similar patterns of berry total anthocyanin accumulation induced by both treatments, closely associated with berry H2O2 levels. Quantitative proteomics from berry skins revealed that ABA and GA3 positively modulated antioxidant defense proteins, mitigating H2O2. Consequently, proteins involved in phenylpropanoid biosynthesis were downregulated, leading to decreased anthocyanin content at the almost ripe stage, particularly petunidin-3-G and peonidin-3-G. Additionally, we noted increased levels of the non-anthocyanins E-viniferin and quercetin in the treated berries, which may enhance H2O2 scavenging at the almost ripe stage. Using a linear mixed-effects model, we found statistical significance for fixed effects including the berry H2O2 and sugar contents, demonstrating their roles in anthocyanin accumulation. In conclusion, our findings suggest a common molecular mechanism by which ABA and GA3 influence berry H2O2 content, ultimately impacting anthocyanin dynamics during ripening.
Collapse
Affiliation(s)
- Germán Murcia
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires C1405, Argentina
| | - Rodrigo Alonso
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Federico Berli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Leonardo Arias
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Luciana Bianchimano
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires C1405, Argentina
| | | | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Jorge José Casal
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires C1405, Argentina
- Facultad de Agronomía, CONICET, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, Buenos Aires C1053, Argentina
| | - Patricia Piccoli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| |
Collapse
|
14
|
Li J, Pan T, Xu L, Najeeb U, Farooq MA, Huang Q, Yun X, Liu F, Zhou W. Monitoring of parasite Orobanche cumana using Vis-NIR hyperspectral imaging combining with physio-biochemical parameters on host crop Helianthus annuus. PLANT CELL REPORTS 2024; 43:220. [PMID: 39158724 DOI: 10.1007/s00299-024-03298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
KEY MESSAGE This study provided a non-destructive detection method with Vis-NIR hyperspectral imaging combining with physio-biochemical parameters in Helianthus annuus in response to Orobanche cumana infection that took insights into the monitoring of sunflower weed. Sunflower broomrape (Orobanche cumana Wallr.) is an obligate weed that attaches to the host roots of sunflower (Helianthus annuus L.) leading to a significant reduction in yield worldwide. The emergence of O. cumana shoots after its underground life-cycle causes irreversible damage to the crop. In this study, a fast visual, non-invasive and precise method for monitoring changes in spectral characteristics using visible and near-infrared (Vis-NIR) hyperspectral imaging (HSI) was developed. By combining the bands sensitive to antioxidant enzymes (SOD, GR), non-antioxidant enzymes (GSH, GSH + GSSG), MDA, ROS (O2-, OH-), PAL, and PPO activities obtained from the host leaves, we sought to establish an accurate means of assessing these changes and conducted imaging acquisition using hyperspectral cameras from both infested and non-infested sunflower cultivars, followed by physio-biochemical parameters measurement as well as analyzed the expression of defense related genes. Extreme learning machine (ELM) and convolutional neural network (CNN) models using 3-band images were built to classify infected or non-infected plants in three sunflower cultivars, achieving accuracies of 95.83% and 95.83% for the discrimination of infestation as well as 97.92% and 95.83% of varieties, respectively, indicating the potential of multi-spectral imaging systems for early detection of O. cumana in weed management.
Collapse
Affiliation(s)
- Juanjuan Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Tiantian Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ling Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Ullah Najeeb
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Muhammad Ahsan Farooq
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Qian Huang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Xiaopeng Yun
- Institute of Plant Protection, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot, 010031, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Weijun Zhou
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Kamińska M, Styczynska A, Szakiel A, Pączkowski C, Kućko A. Comprehensive elucidation of the differential physiological kale response to cytokinins under in vitro conditions. BMC PLANT BIOLOGY 2024; 24:674. [PMID: 39004738 PMCID: PMC11247843 DOI: 10.1186/s12870-024-05396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Kale, a versatile cruciferous crop, valued for its pro-health benefits, stress resistance, and potential applications in forage and cosmetics, holds promise for further enhancement of its bioactive compounds through in vitro cultivation methods. Micropropagation techniques use cytokinins (CKs) which are characterized by various proliferative efficiency. Despite the extensive knowledge regarding CKs, there remains a gap in understanding their role in the physiological mechanisms. That is why, here we investigated the effects of three CKs - kinetin (Kin), 6-benzylaminopurine (BAP), and 2-isopentenyladenine (2iP) - on kale physiology, antioxidant status, steroidal metabolism, and membrane integrity under in vitro cultivation. RESULTS Our study revealed that while BAP and 2iP stimulated shoot proliferation, they concurrently diminished pigment levels and photosynthetic efficiency. Heightened metabolic activity in response to all CKs was reflected by increased respiratory rate. Despite the differential burst of ROS, the antioxidant properties of kale were associated with the upregulation of guaiacol peroxidase and the scavenging properties of ascorbate rather than glutathione. Notably, CKs fostered the synthesis of sterols, particularly sitosterol, pivotal for cell proliferation and structure of membranes which are strongly disrupted under the action of BAP and 2iP possibly via pathway related to phospholipase D and lipoxygenase which were upregulated. Intriguingly, both CKs treatment spurred the accumulation of sitostenone, known for its ROS scavenging and therapeutic potential. The differential effects of CKs on brassicasterol levels and brassinosteroid (BRs) receptor suggest potential interactions between CKs and BRs. CONCLUSION Based on the presented results we conclude that the effect evoked by BAP and 2iP in vitro can improve the industrial significance of kale because this treatment makes possible to control proliferation and/or biosynthesis routes of valuable beneficial compounds. Our work offers significant insights into the nuanced effects of CKs on kale physiology and metabolism, illuminating potential avenues for their application in plant biotechnology and medicinal research.
Collapse
Affiliation(s)
- Monika Kamińska
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland.
| | - Agata Styczynska
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences- SGGW (WULS-SGGW), Nowoursynowska 159, Warsaw, 02-776, Poland
| |
Collapse
|
16
|
Liao Y, Ashraf H, Huang S, Ramzan M, Saba R, Baqir M, Salmen SH, Alharbi SA, Hareem M. Unveiling the efficacy of Bacillus faecalis and composted biochar in alleviating arsenic toxicity in maize. BMC PLANT BIOLOGY 2024; 24:660. [PMID: 38987664 PMCID: PMC11238522 DOI: 10.1186/s12870-024-05372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Arsenic (As) contamination is a major environmental pollutant that adversely affects plant physiological processes and can hinder nutrients and water availability. Such conditions ultimately resulted in stunted growth, low yield, and poor plant health. Using rhizobacteria and composted biochar (ECB) can effectively overcome this problem. Rhizobacteria have the potential to enhance plant growth by promoting nutrient uptake, producing growth hormones, and suppressing diseases. Composted biochar can enhance plant growth by improving aeration, water retention, and nutrient cycling. Its porous structure supports beneficial microorganisms, increasing nutrient uptake and resilience to stressors, ultimately boosting yields while sequestering carbon. Therefore, the current study was conducted to investigate the combined effect of previously isolated Bacillus faecalis (B. faecalis) and ECB as amendments on maize cultivated under different As levels (0, 300, 600 mg As/kg soil). Four treatments (control, 0.5% composted biochar (0.5ECB), B. faecalis, and 0.5ECB + B. faecalis) were applied in four replications following a completely randomized design. Results showed that the 0.5ECB + B. faecalis treatment led to a significant rise in maize plant height (~ 99%), shoot length (~ 55%), root length (~ 82%), shoot fresh (~ 87%), and shoot dry weight (~ 96%), root fresh (~ 97%), and dry weight (~ 91%) over the control under 600As stress. There was a notable increase in maize chlorophyll a (~ 99%), chlorophyll b (~ 81%), total chlorophyll (~ 94%), and shoot N, P, and K concentration compared to control under As stress, also showing the potential of 0.5ECB + B. faecalis treatment. Consequently, the findings suggest that applying 0.5ECB + B. faecalis is a strategy for alleviating As stress in maize plants.
Collapse
Affiliation(s)
- Yonghui Liao
- School of Life Science, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Humaira Ashraf
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Shoucheng Huang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan.
| | - Rabia Saba
- Department of Botany, University of Thal Bhakkar, Bhakkar, Punjab, Pakistan
| | - Muhammad Baqir
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, Punjab, Pakistan
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan.
| |
Collapse
|
17
|
Li YM, Zhang HX, Tang XS, Wang Y, Cai ZH, Li B, Xie ZS. Abscisic Acid Induces DNA Methylation Alteration in Genes Related to Berry Ripening and Stress Response in Grape ( Vitis vinifera L). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15027-15039. [PMID: 38886897 DOI: 10.1021/acs.jafc.4c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Abscisic acid (ABA) is a major regulator of nonclimacteric fruit ripening, with its processes involving epigenetic mechanisms. It remains unclear whether DNA methylation is associated with ABA-regulated ripening. In this study, we investigated the patterns of DNA methylation and gene expression following ABA treatment in grape berries by using whole-genome bisulfite sequencing and RNA-sequencing. ABA application changed global DNA methylation in grapes. The hyper-/hypo-differently methylated regions were enriched in defense-related metabolism, degreening processes, or ripening-related metabolic pathways. Many differentially expressed genes showed an alteration in DNA methylation after ABA treatment. Specifically, ten downregulated genes with hypermethylation in promoters were involved in the ripening process, ABA homeostasis/signaling, and stress response. Nine upregulated genes exhibiting hypo-methylation in promoters were related to the ripening process and stress response. These findings demonstrated ABA-induced DNA alteration of ripening related and stress-responsive genes during grape ripening, which provides new insights of the epigenetic regulation of ABA on fruit ripening.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Hong-Xing Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Xuan-Si Tang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Yue Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Zhong-Hui Cai
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Bo Li
- Shandong Academy of Grape, Jinan 250000, China
| | - Zhao-Sen Xie
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
18
|
Yang R, Yang Y, Yuan Y, Zhang B, Liu T, Shao Z, Li Y, Yang P, An J, Cao Y. MsABCG1, ATP-Binding Cassette G transporter from Medicago Sativa, improves drought tolerance in transgenic Nicotiana Tabacum. PHYSIOLOGIA PLANTARUM 2024; 176:e14446. [PMID: 39092508 DOI: 10.1111/ppl.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Drought has a devastating impact, presenting a formidable challenge to agricultural productivity and global food security. Among the numerous ABC transporter proteins found in plants, the ABCG transporters play a crucial role in plant responses to abiotic stress. In Medicago sativa, the function of ABCG transporters remains elusive. Here, we report that MsABCG1, a WBC-type transporter highly conserved in legumes, is critical for the response to drought in alfalfa. MsABCG1 is localized on the plasma membrane, with the highest expression observed in roots under normal conditions, and its expression is induced by drought, NaCl and ABA signalling. In transgenic tobacco, overexpression of MsABCG1 enhanced drought tolerance, evidenced by increased osmotic regulatory substances and reduced lipid peroxidation. Additionally, drought stress resulted in reduced ABA accumulation in tobacco overexpressing MsABCG1, demonstrating that overexpression of MsABCG1 enhanced drought tolerance was not via an ABA-dependent pathway. Furthermore, transgenic tobacco exhibited increased stomatal density and reduced stomatal aperture under drought stress, indicating that MsABCG1 has the potential to participate in stomatal regulation during drought stress. In summary, these findings suggest that MsABCG1 significantly enhances drought tolerance in plants and provides a foundation for developing efficient drought-resistance strategies in crops.
Collapse
Affiliation(s)
- Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yeyan Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yinying Yuan
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Benzhong Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Ting Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Zitong Shao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuanying Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jie An
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Chen X, Han H, Cong Y, Li X, Zhang W, Cui J, Xu W, Pang S, Liu H. Ascorbic Acid Improves Tomato Salt Tolerance by Regulating Ion Homeostasis and Proline Synthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1672. [PMID: 38931104 PMCID: PMC11207900 DOI: 10.3390/plants13121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
In this study, processing tomato (Solanum lycopersicum L.) 'Ligeer 87-5' was hydroponically cultivated under 100 mM NaCl to simulate salt stress. To investigate the impacts on ion homeostasis, osmotic regulation, and redox status in tomato seedlings, different endogenous levels of ascorbic acid (AsA) were established through the foliar application of 0.5 mM AsA (NA treatment), 0.25 mM lycorine (LYC, an inhibitor of AsA synthesis; NL treatment), and a combination of LYC and AsA (NLA treatment). The results demonstrated that exogenous AsA significantly increased the activities and gene expressions of key enzymes (L-galactono-1,4-lactone dehydrogenase (GalLDH) and L-galactose dehydrogenase (GalDH)) involved in AsA synthesis in tomato seedling leaves under NaCl stress and NL treatment, thereby increasing cellular AsA content to maintain its redox status in a reduced state. Additionally, exogenous AsA regulated multiple ion transporters via the SOS pathway and increased the selective absorption of K+, Ca2+, and Mg2+ in the aerial parts, reconstructing ion homeostasis in cells, thereby alleviating ion imbalance caused by salt stress. Exogenous AsA also increased proline dehydrogenase (ProDH) activity and gene expression, while inhibiting the activity and transcription levels of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine-δ-aminotransferase (OAT), thereby reducing excessive proline content in the leaves and alleviating osmotic stress. LYC exacerbated ion imbalance and osmotic stress caused by salt stress, which could be significantly reversed by AsA application. Therefore, exogenous AsA application increased endogenous AsA levels, reestablished ion homeostasis, maintained osmotic balance, effectively alleviated the inhibitory effect of salt stress on tomato seedling growth, and enhanced their salt tolerance.
Collapse
Affiliation(s)
- Xianjun Chen
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
- Key Laboratory of Molecular Breeding and Variety Creation of Horticultural Plants for Mountain Features in Guizhou Province, School of Life and Health Science, Kaili University, Kaili 556011, China
| | - Hongwei Han
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Yundan Cong
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Xuezhen Li
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Wenbo Zhang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Jinxia Cui
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Wei Xu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Shengqun Pang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Huiying Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| |
Collapse
|
20
|
Urbutis M, Vaseva II, Simova-Stoilova L, Todorova D, Pukalskas A, Samuolienė G. Drought Protective Effects of Exogenous ABA and Kinetin on Lettuce: Sugar Content, Antioxidant Enzyme Activity, and Productivity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1641. [PMID: 38931073 PMCID: PMC11207227 DOI: 10.3390/plants13121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Drought is an environmental stressor that significantly impacts plant growth and development. Comprehending the complexity of drought stress and water utilization in the context of plant growth and development holds significant importance for sustainable agriculture. The aim of this study was to evaluate the effect of exogenously applied phytohormones on lettuce (Lactuca sativa L.) sugar content profiles and antioxidant enzyme activity and productivity. Lettuce plants were grown under normal and drought conditions in a growth chamber with a photoperiod of 14/10 h (day/night). Kinetin and abscisic acid were applied separately and in combinations when the second leaf was fully expanded. The results showed that sugar accumulation and productivity of the pretreated plants under drought were significantly higher than the controls. The perspective offered by this work showed that growth-related and stress-related phytohormones significantly influenced plant sugar metabolism, metabolic profiles, and productivity, thus enabling the control of yield and quality.
Collapse
Affiliation(s)
- Martynas Urbutis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Kaunas, Lithuania
| | - Irina I. Vaseva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113 Sofia, Bulgaria (D.T.)
| | - Lyudmila Simova-Stoilova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113 Sofia, Bulgaria (D.T.)
| | - Dessislava Todorova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 21, 1113 Sofia, Bulgaria (D.T.)
| | - Audrius Pukalskas
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Kaunas, Lithuania
| | - Giedrė Samuolienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kauno Str. 30, LT-54333 Kaunas, Lithuania
| |
Collapse
|
21
|
Shahzad K, Danish S, Mubeen S, Dawar K, Fahad S, Hasnain Z, Ansari MJ, Almoallim HS. Minimization of heavy metal toxicity in radish (Raphanus sativus) by strigolactone and biochar. Sci Rep 2024; 14:13616. [PMID: 38871988 DOI: 10.1038/s41598-024-64596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Due to the high solubility of Cd in water, it is considered a potential toxin which can cause cancer in humans. In plants, it is associated with the development of oxidative stress due to the generation of reactive oxygen species. To overcome this issue, the roles of different plant hormones are vital. Strigolactones, one of such natural plant hormones, show promise in alleviating cadmium toxicity by mitigating its harmful effects. Acidified biochar (AB) can also effectively mitigate cadmium toxicity via ion adsorption and pH buffering. However, the combined effects of strigolactone and AB still need in-depth investigations in the context of existing literature. This study aimed to assess the individual and combined impacts of SLs (0 and 25 µM) and AB (0 and 0.75% w/w) on radish growth under Cd toxicity, i.e., 0 and 20 mg Cd/kg soil. Using a fully randomized design (CRD), each treatment was administered in four replicates. In comparison to the control under 20 mg Cd/kg soil contamination, the results showed that 25 µM strigolactone + 0.75% AB significantly improved the following: radish shoot length (~ 17%), root length (~ 47%), plant fresh weight (~ 28%), plant dry weight (~ 96%), chlorophyll a (~ 43%), chlorophyll b (~ 31%), and total chlorophyll (~ 37%). It was also noted that 0.75% AB was more pronounced in decreasing antioxidant activities than 25 µM strigolactone under 20 mg Cd/ kg soil toxicity. However, performing 25 µM strigolactone + 0.75% AB was far better than the sole application of 25 µM strigolactone and 0.75% AB in decreasing antioxidant activities in radish plants. In conclusion, by regulating antioxidant activities, 25 µM strigolactone + 0.75% AB can increase radish growth in cadmium-contaminated soils.
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Soil Science, University College of Dera Murad Jamali, LUAWMS, Dera Murad Jamali, Balochistan, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Sidra Mubeen
- Department of Chemistry, The Women University Multan, Multan, 66000, Pakistan
| | - Khadim Dawar
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Zuhair Hasnain
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), Moradabad, 244001, India
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, 11545, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Shaikhaldein HO, Al-Qurainy F, Nadeem M, Khan S, Tarroum M, Salih AM, Al-Hashimi A. Biosynthesis of copper nanoparticles using Solenostemma argel and their effect on enhancing salt tolerance in barley plants. Sci Rep 2024; 14:12701. [PMID: 38831069 PMCID: PMC11148141 DOI: 10.1038/s41598-024-63641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
The distinctive characteristics of nanoparticles and their potential applications have been given considerable attention by scientists across different fields, particularly agriculture. However, there has been limited effort to assess the impact of copper nanoparticles (CuNPs) in modulating physiological and biochemical processes in response to salt-induced stress. This study aimed to synthesize CuNPs biologically using Solenostemma argel extract and determine their effects on morphophysiological parameters and antioxidant defense system of barley (Hordeum vulgare) under salt stress. The biosynthesized CuNPs were characterized by (UV-vis spectroscopy with Surface Plasmon Resonance at 320 nm, the crystalline nature of the formed NPs was verified via XRD, the FTIR recorded the presence of the functional groups, while TEM was confirmed the shape (spherical) and the sizes (9 to 18 nm) of biosynthesized CuNPs. Seeds of barley plants were grown in plastic pots and exposed to different levels of salt (0, 100 and 200 mM NaCl). Our findings revealed that the supplementation of CuNPs (0, 25 and 50 mg/L) to salinized barley significantly mitigate the negative impacts of salt stress and enhanced the plant growth-related parameters. High salinity level enhanced the oxidative damage by raising the concentrations of osmolytes (soluble protein, soluble sugar, and proline), malondialdehyde (MDA) and hydrogen peroxide (H2O2). In addition, increasing the activities of enzymatic antioxidants, total phenol, and flavonoids. Interestingly, exposing CuNPs on salt-stressed plants enhanced the plant-growth characteristics, photosynthetic pigments, and gas exchange parameters. Furthermore, CuNPs counteracted oxidative damage by lowering the accumulation of osmolytes, H2O2, MDA, total phenol, and flavonoids, while simultaneously enhancing the activities of antioxidant enzymes. In conclusion, the application of biosynthesized CuNPs presents a promising approach and sustainable strategy to enhance plant resistance to salinity stress, surpassing conventional methods in terms of environmental balance.
Collapse
Affiliation(s)
- Hassan O Shaikhaldein
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
| | - Fahad Al-Qurainy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Nadeem
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Salim Khan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed Tarroum
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdalrhaman M Salih
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Li YM, Tang XS, Sun MH, Zhang HX, Xie ZS. Expression and function identification of senescence-associated genes under continuous drought treatment in grapevine ( Vitis vinifera L.) leaves. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:877-891. [PMID: 38974354 PMCID: PMC11222358 DOI: 10.1007/s12298-024-01465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 07/09/2024]
Abstract
Natural leaf senescence is critical for plant fitness. Drought-induced premature leaf senescence affects grape yield and quality. However, reports on the regulatory mechanisms underlying premature leaf senescence under drought stress are limited. In this study, two-year-old potted 'Muscat Hamburg' grape plants were subjected to continuous natural drought treatment until mature leaves exhibited senescence symptoms. Physiological and biochemical indices related to drought stress and senescence were monitored. Transcriptome and transgenic Arabidopsis were used to perform expression analyses and functional identification of drought-induced senescence-associated genes. Twelve days of continuous drought stress was sufficient to cause various physiological disruptions and visible senescence symptoms in mature 'Muscat Hamburg' leaves. These disruptions included malondialdehyde and H2O2 accumulation, and decreased catalase activity and chlorophyll (Chl) levels. Transcriptome analysis revealed that most genes involved in photosynthesis and Chl synthesis were downregulated after 12 d of drought treatment. Three key Chl catabolic genes (SGR, NYC1, and PAO) were significantly upregulated. Overexpression of VvSGR in wild Arabidopsis further confirmed that SGR directly promoted early yellowing of cotyledons and leaves. In addition, drought treatment decreased expression of gibberellic acid signaling repressors (GAI and GAI1) and cytokinin signal components (AHK4, AHK2, RR22, RR9-1, RR9-2, RR6, and RR4) but significantly increased the expression of abscisic acid, jasmonic acid, and salicylic acid signaling components and responsive transcription factors (bZIP40/ABF2, WRKY54/75/70, ANAC019, and MYC2). Moreover, some NAC members (NAC0002, NAC019, and NAC048) may also be drought-induced senescence-associated genes. These results provide extensive information on candidate genes involved in drought-induced senescence in grape leaves. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01465-2.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Xuan-Si Tang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Meng-Hao Sun
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Hong-Xing Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Zhao-Sen Xie
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Adil MF, Sehar S, Ma Z, Tahira K, Askri SMH, El-Sheikh MA, Ahmad A, Zhou F, Zhao P, Shamsi IH. Insights into the alleviation of cadmium toxicity in rice by nano-zinc and Serendipita indica: Modulation of stress-responsive gene expression and antioxidant defense system activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123952. [PMID: 38641035 DOI: 10.1016/j.envpol.2024.123952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
The adversities of cadmium (Cd) contamination are quite distinguished among other heavy metals (HMs), and so is the efficacy of zinc (Zn) nutrition in mitigating Cd toxicity. Rice (Oryza sativa) crop, known for its ability to absorb HMs, inadvertently facilitates the bioaccumulation of Cd, posing a significant risk to both the plant itself and to humans consuming its edible parts, and damaging the environment as well. The use of nanoparticles, such as nano-zinc oxide (nZnO), to improve the nutritional quality of crops and combat the harmful effects of HMs, have gained substantial attention among scientists and farmers. While previous studies have explored the individual effects of nZnO or Serendipita indica (referred to as S.i) on Cd toxicity, the synergistic action of these two agents has not been thoroughly investigated. Therefore, the gift of nature, i.e., S. indica, was incorporated alongside nZnO (50 mg L-1) against Cd stress (15 μM L-1) and their alliance manifested as phenotypic level modifications in two rice genotypes (Heizhan43; Hz43 and Yinni801; Yi801). Antioxidant activities were enhanced, specifically peroxidase (61.5 and 122.5% in Yi801 and Hz43 roots, respectively), leading to a significant decrease in oxidative burst; moreover, Cd translocation was reduced (85% for Yi801 and 65.5% for Hz43 compared to Cd alone treatment). Microstructural study showed a decrease in number of vacuoles and starch granules with ameliorative treatments. Overall, plants treated with nZnO displayed gene expression pattern (particularly of ZIP genes), different from the ones with alone or combined S.i and Cd. Inferentially, the integration of nZnO and S.i holds great promise as an effective strategy for alleviating Cd toxicity in rice plants. By immobilizing Cd ions in the soil and promoting their detoxification, this novel approach contributes to environmental restoration and ensures food safety worldwide.
Collapse
Affiliation(s)
- Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhengxin Ma
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Khajista Tahira
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aqeel Ahmad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fanrui Zhou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Baroi A, Ritu SA, Khan MSU, Uddin MN, Hossain MA, Haque MS. Abscisic acid and glycine betaine-mediated seed and root priming enhance seedling growth and antioxidative defense in wheat under drought. Heliyon 2024; 10:e30598. [PMID: 38742073 PMCID: PMC11089379 DOI: 10.1016/j.heliyon.2024.e30598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
The extent of drought tolerance in the seedlings of three wheat cultivars (WMRI-1, BARI GOM-33 and BARI GOM-21) was investigated by seed and root priming using abscisic acid (ABA) and glycine betaine (GB). The seeds were primed with ABA (10 and 20 μM) and GB (50 and 100 mM) and grown in pots maintaining control (0 % PEG) and drought (10 % PEG) conditions. Under drought, the root and shoot length, root and shoot biomass were significantly increased in ABA and GB primed seedlings than non-primed seedlings in all cultivars. Among the priming agents, either 20 μM ABA or 50 mM GB triggered better seedling growth in all wheat cultivars. These two levels were then applied with the nutrient solution in the hydroponics following four treatments: Control, Drought, Drought + ABA and Drought + GB. The seedling growth significantly declined in drought, while an improved seedling growth was observed in ABA and GB-treated plants in all cultivars. A considerable increase in lipid peroxidation, proline content, total antioxidant capacity and total flavonoid content in roots and leaves were recorded in all drought conditions, while these values were considerably reduced in ABA and GB treatments. Hierarchical clustering heatmap using stress tolerance index (STI) values showed that Drought + ABA and Drought + GB secured higher STI scores suggesting a greater degree of drought tolerance in all cultivars. In conclusion, seed and root priming of ABA and GB enhanced drought tolerance in the wheat seedlings by improving seedling growth and antioxidative defense suggesting a declined state of oxidative damage.
Collapse
Affiliation(s)
- Artho Baroi
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sadia Afroz Ritu
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Shihab Uddine Khan
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Nesar Uddin
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Alamgir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Sabibul Haque
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
26
|
Danish S, Sana S, Hussain MB, Dawar K, Almoallim HS, Ansari MJ, Hareem M, Datta R. Effect of methyl jasmonate and GA3 on canola (Brassica napus L.) growth, antioxidants activity, and nutrient concentration cultivated in salt-affected soils. BMC PLANT BIOLOGY 2024; 24:363. [PMID: 38724910 PMCID: PMC11080209 DOI: 10.1186/s12870-024-05074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.
Collapse
Affiliation(s)
- Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sundas Sana
- Department of Botany, The Islamia University of Bahawalpur, Sub-campus Rahim Yar Khan, Rahim Yar Khan, Pakistan
| | - Muhammad Baqir Hussain
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Punjab, Pakistan
| | - Khadim Dawar
- Department of Soil and Environmental Science, The University of Agriculture, Peshawar, Pakistan
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh, 11545, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan.
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic.
| |
Collapse
|
27
|
Li C, Wang C, Cheng Z, Li Y, Li W. Carotenoid biosynthesis genes LcLCYB, LcLCYE, and LcBCH from wolfberry confer increased carotenoid content and improved salt tolerance in tobacco. Sci Rep 2024; 14:10586. [PMID: 38719951 PMCID: PMC11079049 DOI: 10.1038/s41598-024-60848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene β-cyclase, lycopene ε-cyclase, and β-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene β-cyclase, lycopene ε-cyclase, and β-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.
Collapse
Affiliation(s)
- Chen Li
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China
| | - Caili Wang
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China.
| | - Zhiyang Cheng
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China
| | - Yu Li
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China
| | - Wenjing Li
- College of Life Sciences, Dezhou University, 566 University Road, Dezhou, 253023, Shandong Province, China
| |
Collapse
|
28
|
Zhang Y, Li J, Yu S, Li W, Dou Y, Zhang C. Adenosine triphosphate alleviates high temperature-enhanced glyphosate toxicity in maize seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108550. [PMID: 38555720 DOI: 10.1016/j.plaphy.2024.108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/11/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Extracellular ATP plays a key role in regulating plants stress responses. Here, we aimed to determine whether ATP can alleviate the glyphosate toxicity in maize seedlings under high temperature by regulating antioxidant responses. Foliar spraying with 100 μM glyphosate inhibited the growth of maize seedlings at room temperature (25 °C), leading to an increase in shikimic acid accumulation and oxidative stress (evaluated via lipid peroxidation, free proline, and H2O2 content) in the leaves, all of which were further exacerbated by high temperature (35 °C). The growth inhibition and oxidative stress caused by glyphosate were both alleviated by exogenous ATP. Moreover, the glyphosate-induced antioxidant enzyme activity and antioxidant accumulation were attenuated by high temperature, while ATP treatment reversed this inhibitory effect. Similarly, qPCR data showed that the relative expression levels of antioxidant enzyme-related genes (CAT1, GR1, and γ-ECS) in maize leaves were upregulated by ATP before exposure to GLY. Moreover, high temperature-enhanced GLY residue accumulation in maize leaves was reduced by ATP. ATP-induced detoxification was attenuated through NADPH oxidase (NOX) inhibition. Higher NOX activities and O2•- production were noted in ATP-treated maize leaves compared to controls prior to GLY treatment, indicating that the extracellular ATP-induced alleviation of GLY toxicity was closely associated with NOX-dependent reactive oxygen species signalling. The current findings present a new approach for reducing herbicide toxicity in crops exposed to high temperatures.
Collapse
Affiliation(s)
- Yifei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, 163319, Heilongjiang, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, 163319, Heilongjiang, China.
| | - Jiayu Li
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, 163319, Heilongjiang, China.
| | - Song Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, 163319, Heilongjiang, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, 163319, Heilongjiang, China.
| | - Weiqing Li
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, 163319, Heilongjiang, China.
| | - Yi Dou
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, 163319, Heilongjiang, China.
| | - Chunyu Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing, 163319, Heilongjiang, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, 163319, Heilongjiang, China.
| |
Collapse
|
29
|
Zhang N, Ali S, Huang Q, Yang C, Ali B, Chen W, Zhang K, Ali S, Ulhassan Z, Zhou W. Seed pretreatment with brassinosteroids stimulates sunflower immunity against parasitic weed (Orobanche cumana) infection. PHYSIOLOGIA PLANTARUM 2024; 176:e14324. [PMID: 38705866 DOI: 10.1111/ppl.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/13/2024] [Indexed: 05/07/2024]
Abstract
Broomrape (Orobanche cumana) negatively affects sunflower, causing severe yield losses, and thus, there is a need to control O. cumana infestation. Brassinosteroids (BRs) play key roles in plant growth and provide resilience to weed infection. This study aims to evaluate the mechanisms by which BRs ameliorate O. cumana infection in sunflower (Helianthus annuus). Seeds were pretreated with BRs (1, 10, and 100 nM) and O. cumana inoculation for 4 weeks under soil conditions. O. cumana infection significantly reduced plant growth traits, photosynthesis, endogenous BRs and regulated the plant defence (POX, GST), BRs signalling (BAK1, BSK1 to BSK4) and synthesis (BRI1, BR6OX2) genes. O. cumana also elevated the levels of malondialdehyde (MDA), hydroxyl radical (OH-), hydrogen peroxide (H2O2) and superoxide (O2 •-) in leaves/roots by 77/112, 63/103, 56/97 and 54/89%, as well as caused ultrastructural cellular damages in both leaves and roots. In response, plants activated a few enzymes, superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione but were unable to stimulate the activity of ascorbate peroxidase (APX) and catalase (CAT) enzymes. The addition of BRs (especially at 10 nM) notably recovered the ultrastructural cellular damages, lowered the production of oxidative stress, activated the key enzymatic antioxidants and induced the phenolic and lignin contents. The downregulation in the particular genes by BRs is attributed to the increased resilience of sunflower via a susceptible reaction. In a nutshell, BRs notably enhanced the sunflower resistance to O. cumana infection by escalating the plant immunity responses, inducing systemic acquired resistance, reducing oxidative or cellular damages, and modulating the expression of BR synthesis or signalling genes.
Collapse
Affiliation(s)
- Na Zhang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Skhawat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Qian Huang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Chong Yang
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Pakistan
| | - Weiqi Chen
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Kangni Zhang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Kong W, Huang H, Du W, Jiang Z, Luo Y, Yi D, Yang G, Pang Y. Overexpression of MsNIP2 improves salinity tolerance in Medicago sativa. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154207. [PMID: 38430574 DOI: 10.1016/j.jplph.2024.154207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/04/2024]
Abstract
Alfalfa (Medicago sativa) is one of the most widely cultivated forage crops in the world. However, alfalfa yield and quality are adversely affected by salinity stress. Nodulin 26-like intrinsic proteins (NIPs) play essential roles in water and small molecules transport and response to salt stress. Here, we isolated a salt stress responsive MsNIP2 gene and demonstrated its functions by overexpression in alfalfa. The open reading frame of MsNIP2 is 816 bp in length, and it encodes 272 amino acids. It has six transmembrane domains and two NPA motifs. MsNIP2 showed high identity to other known NIP proteins, and its tertiary model was similar to the crystal structure of OsNIP2-1 (7cjs) tetramer. Subcellular localization analysis showed that MsNIP2 protein fused with green fluorescent protein (GFP) was localized to the plasma membrane. Transgenic alfalfa lines overexpressing MsNIP2 showed significantly higher height and branch number compared with the non-transgenic control. The POD and CAT activity of the transgenic alfalfa lines was significantly increased and their MDA content was notably reduced compared with the control group under the treatment of NaCl. The transgenic lines showed higher capability in scavenging oxygen radicals with lighter NBT staining than the control under salt stress. The transgenic lines showed relative lower water loss rate and electrolyte leakage, but relatively higher Na+ content than the control line under salt stress. The relative expression levels of abiotic-stress-related genes (MsHSP23, MsCOR47, MsATPase, and MsRD2) in three transgenic lines were compared with the control, among them, only the expression of MsCOR47 was up-regulated. Consequently, this study offers a novel perspective for exploring the function of MsNIP2 in improving salt tolerance of alfalfa.
Collapse
Affiliation(s)
- Weiye Kong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China; Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haijun Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenxuan Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhihu Jiang
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yijing Luo
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Dengxia Yi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China.
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
31
|
Li Q, Zhang B, Liu W, Zou H. Strigolactones alleviate the toxicity of polystyrene nanoplastics (PS-NPs) in maize (Zea mays L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170626. [PMID: 38325482 DOI: 10.1016/j.scitotenv.2024.170626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Nanoplastics are widely used across various fields, yet their uptake can potentially exert adverse effects on plant growth and development, ultimately reducing yields. While there is growing awareness of the phytotoxicity caused by nanoplastics, our understanding of effective strategies to prevent nanoplastic accumulation in plants remains limited. This study explores the role of strigolactones (SLs) in mitigating the toxicity of polystyrene nanoplastics (PS-NPs) in Zea mays L. (maize). SLs application markedly inhibited PS-NPs accumulation in maize roots, thus enhancing the root weight, shoot weight and shoot length of maize. Physiological analysis showed that SLs application activated the activities of antioxidant defence enzymes, superoxide dismutase and catalase, to decrease the malondialdehyde content and electrolyte leakage and alleviate the accumulation of H2O2 and O2.- induced by PS-NPs in maize plants. Transcriptomic analyses revealed that SLs application induced transcriptional reprogramming by regulating the expression of genes related to MAPK, plant hormones and plant-pathogen interaction signal pathways in maize treated with PS-NPs. Notably, the expression of genes, such as ZmAUX/IAA and ZmGID1, associated with phytohormones in maize treated with PS-NPs underwent significant changes. In addition, SLs induced metabolic dynamics changes related to amino acid biosynthesis, ABC transporters, cysteine and methionine metabolism in maize treated with PS-NPs. In summary, these results strongly reveal that SLs could serve as a strategy to mitigate the accumulation and alleviate the stress of PS-NPs in maize, which appears to be a potential approach for mitigating the phytotoxicity induced by PS-NPs in maize.
Collapse
Affiliation(s)
- Qiaolu Li
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Binglin Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Weijuan Liu
- College of Agriculture, Yangtze University, Jingzhou 434025, China.
| | - Huawen Zou
- College of Agriculture, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
32
|
Ji J, Zhang J, Wang X, Song W, Ma B, Wang R, Li T, Wang G, Guan C, Gao X. The alleviation of salt stress on rice through increasing photosynthetic capacity, maintaining redox homeostasis and regulating soil enzyme activities by Enterobacter sp. JIV1 assisted with putrescine. Microbiol Res 2024; 280:127590. [PMID: 38142517 DOI: 10.1016/j.micres.2023.127590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The detrimental impact of soil salinization on crop productivity and agricultural economy has garnered significant attention. A rhizosphere bacterium with favorable salt tolerance and plant growth-promoting (PGP) functions was isolated in this work. The bacterium was identified as Enterobacter through 16 S rDNA sequencing analysis and designated as Enterobacter sp. JIV1. Interestingly, the presence of putrescine (Put), which had been shown to contribute in reducing abiotic stress damage to plants, significantly promoted strain JIV1 to generate 1-aminocyclopropane-1-carboxylic (ACC) deaminase, dissolve phosphorus and secrete indole-3-acetic acid (IAA). However, the synergy of plant growth promoting rhizobacteria (PGPR) and Put in improving plant salt resistance has not been extensively studied. In this study, strain JIV1 and exogenous Put effectively mitigated the inhibitory impact of salt stress simulated by 200 mM NaCl on rice (Oryza sativa L.) growth. The chlorophyll accumulation, photosynthetic efficiency and antioxidant capacity of rice were also significantly strengthened. Notably, the combined application of strain JIV1 and Put outperformed individual treatments. Moreover, the co-addition of strain JIV1 and Put increased soil protease and urease activities by 451.97% and 51.70% compared to that of salt treatment group. In general, Put-assisted PGPR JIV1 provides a new perspective on alleviating the salt-induced negative impacts on plants.
Collapse
Affiliation(s)
- Jing Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqi Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xinya Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenju Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Baoying Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Runzhong Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tiange Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Xiaoping Gao
- Fuzhou Planning Design Research Institute, Fuzhou 350108, China.
| |
Collapse
|
33
|
Wang P, Liu WC, Han C, Wang S, Bai MY, Song CP. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:330-367. [PMID: 38116735 DOI: 10.1111/jipb.13601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
Collapse
Affiliation(s)
- Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Situ Wang
- Faculty of Science, McGill University, Montreal, H3B1X8, Canada
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
34
|
Younis U, Danish S, Datta R, Alahmadi TA, Ansari MJ. Sustainable remediation of chromium-contaminated soils: boosting radish growth with deashed biochar and strigolactone. BMC PLANT BIOLOGY 2024; 24:115. [PMID: 38365582 PMCID: PMC10870680 DOI: 10.1186/s12870-024-04791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Chromium (Cr) stress significantly hinders crop production by disrupting nutrient uptake, impairing plant growth, and contaminating soil, posing a substantial threat to agricultural sustainability. The use of deashed biochar (DAB) and strigolactone can be an effective solution to mitigate this issue. Deashed biochar enhances crop production by improving soil structure, water retention, and nutrient availability while mitigating the bioavailability of toxic substances. Strigolactone boosts plant growth by stimulating root growth, branching, shoot formation, and overall plant physiology. Nevertheless, the scientific rationale behind their collective use as an amendment to counter Cr stress remains to be substantiated. Therefore, in this study, a blend of DAB and strigolactone was employed as additives in radish cultivation, both in the absence of Cr stress and under the influence of 200Cr stress. Four treatments, i.e., 0, 20µM Strigolactone, DAB, and 20µM Strigolactone + DAB, were applied in four replications following a completely randomized design. Results demonstrate that 20µM Strigolactone + DAB produced significant improvement in radish shoot length (27.29%), root length (45.60%), plant fresh weight (33.25%), and plant dry weight (78.91%), compared to the control under Cr stress. Significant enrichment in radish chlorophyll a (20.41%), chlorophyll b (58.53%), and total chlorophyll (31.54%) over the control under Cr stress, prove the efficacy of 20µM Strigolactone + DAB treatment. In conclusion, 20µM Strigolactone + DAB is the recommended amendment for mitigating Cr stress in radish. Farmers should consider using Strigolactone + DAB amendments to combat Cr stress and enhance radish growth, contributing to a more resilient agricultural ecosystem.
Collapse
Affiliation(s)
- Uzma Younis
- Botany Department, The Islamia University of Bahawalpur, Sub Campus Rahim Yar Khan, Rahim Yar Khan, Punjab, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic.
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, 11461, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| |
Collapse
|
35
|
Li S, Guo S, Gao X, Wang X, Liu Y, Wang J, Li X, Zhang J, Fu B. Genome-wide identification of B-box zinc finger (BBX) gene family in Medicago sativa and their roles in abiotic stress responses. BMC Genomics 2024; 25:110. [PMID: 38267840 PMCID: PMC10809573 DOI: 10.1186/s12864-024-10036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/21/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND B-box (BBX) family is a class of zinc finger transcription factors (TFs) that play essential roles in regulating plant growth, development, as well as abiotic stress. However, no systematic analysis of BBX genes has yet been conducted in alfalfa (Medica go sativa L.), and their functions have not been elucidated up to now. RESULTS In this study, 28 MsBBX genes were identified from the alfalfa genome, which were clustered into 4 subfamilies according to an evolutionary tree of BBX proteins. Exon-intron structure and conserved motif analysis reflected the evolutionary conservation of MsBBXs in alfalfa. Collinearity analysis showed that segmental duplication promoted the expansion of the MsBBX family. Analysis of cis-regulatory elements suggested that the MsBBX genes possessed many growth/development-, light-, phytohormone-, and abiotic stress-related elements. MsBBX genes were differentially expressed in leaves, flowers, pre-elongated stems, elongated stems, roots and nodules, and most MsBBXs were remarkably induced by drought, salt and various plant growth regulators (ABA, JA, and SA). Further functional verification demonstrated that overexpressing of the MsBBX11 gene clearly promoted salt tolerance in transgenic Arabidopsis by regulating growth and physiological processes of seedlings. CONCLUSIONS This research provides insights into further functional research and regulatory mechanisms of MsBBX family genes under abiotic stress of alfalfa.
Collapse
Affiliation(s)
- Shuxia Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China.
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China.
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, China.
| | - Shuaiqi Guo
- Fujian Xinnong Dazheng Bio-Engineering Co., Ltd, Fuzhou, China
| | - Xueqin Gao
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Xiaotong Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Yaling Liu
- Inner Mongolia Pratacultural Technology Innovation Center Co., Ltd, Hohhot, China
| | - Jing Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Xiaohong Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Jinqing Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China.
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China.
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, China.
| |
Collapse
|
36
|
Zhang Y, He Y, Zhao H, Wang Y, Wu C, Zhao Y, Xue H, Zhu Q, Zhang J, Ou X. The 14-3-3 Protein BdGF14a Increases the Transcriptional Regulation Activity of BdbZIP62 to Confer Drought and Salt Resistance in Tobacco. PLANTS (BASEL, SWITZERLAND) 2024; 13:245. [PMID: 38256798 PMCID: PMC10819667 DOI: 10.3390/plants13020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
BdGF14a, a 14-3-3 gene from Brachypodium distachyon, induced by salt, H2O2, and abscisic acid (ABA), improved tolerance to drought and salt in tobacco, with a higher survival rate and longer roots under these stresses. Additionally, physiological index analyses showed that the heterologous expression of BdGF14a induced higher expression levels of antioxidant enzymes and their activities, leading to lighter DAB and NBT staining, denoting decreased H2O2 content. Additionally, the lower MDA content and ion leakage indicated enhanced cell membrane stability. Moreover, exogenous ABA resulted in shorter roots and a lower stomatal aperture in BdGF14a transgenic plants. BdGF14a interacted with NtABF2 and regulated the expression of stress-related genes. However, adding an ABA biosynthesis inhibitor suppressed most of these changes. Furthermore, similar salt and drought resistance phenotypes and physiological indicators were characterized in tobacco plants expressing BdbZIP62, an ABRE/ABF that interacts with BdGF14a. And Y1H and LUC assays showed that BdGF14a could enhance the transcription regulation activity of NtABF2 and BdbZIP62, targeting NtNECD1 by binding to the ABRE cis-element. Thus, BdGF14a confers resistance to drought and salinity through interaction with BdbZIP62 and enhances its transcriptional regulation activity via an ABA-mediated signaling pathway. Therefore, this work offers novel target genes for breeding salt- and drought-tolerant plants.
Collapse
Affiliation(s)
- Yang Zhang
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang 453003, China; (Y.Z.); (H.X.); (Q.Z.)
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.H.); (H.Z.); (Y.W.); (C.W.)
| | - Yuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.H.); (H.Z.); (Y.W.); (C.W.)
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.H.); (H.Z.); (Y.W.); (C.W.)
| | - Yan Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.H.); (H.Z.); (Y.W.); (C.W.)
| | - Chunlai Wu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (Y.H.); (H.Z.); (Y.W.); (C.W.)
| | - Yuanzeng Zhao
- Henan Institute of Science and Technology, School of Life Sciences, Xinxiang 453003, China;
| | - Hongna Xue
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang 453003, China; (Y.Z.); (H.X.); (Q.Z.)
| | - Qidi Zhu
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang 453003, China; (Y.Z.); (H.X.); (Q.Z.)
| | - Jinlong Zhang
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang 453003, China; (Y.Z.); (H.X.); (Q.Z.)
| | - Xingqi Ou
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang 453003, China; (Y.Z.); (H.X.); (Q.Z.)
| |
Collapse
|
37
|
Hou J, Wan H, Liang K, Cui B, Ma Y, Chen Y, Liu J, Wang Y, Liu X, Zhang J, Wei Z, Liu F. Biochar amendment combined with partial root-zone drying irrigation alleviates salinity stress and improves root morphology and water use efficiency in cotton plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166978. [PMID: 37704141 DOI: 10.1016/j.scitotenv.2023.166978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
An adsorption experiment and a pot experiment were executed in order to explore the mechanisms by which biochar amendment in combination with reduced irrigation affects sodium and potassium uptake, root morphology, water use efficiency, and salinity tolerance of cotton plants. In the adsorption experiment, ten NaCl concentration gradients (0, 50, 100, 150, 200, 250, 300, 350, 400, and 500 mM) were set for testing isotherm adsorption of Na+ by biochar. It was found that the isotherms of Na+ adsorption by wheat straw biochar (WSP) and softwood biochar (SWP) were in accordance with the Langmuir isotherm model, and the Na+ adsorption ability of WSP (55.20 mg g-1) was superior to that of SWP (47.38 mg g-1). The pot experiment consisted three factors, viz., three biochar amendments (no biochar, WSP, and SWP), three irrigation strategies (deficit irrigation, partial root-zone drying irrigation - PRD, full irrigation), and two NaCl concentrations gradients (0 mM and 200 mM). The findings indicated that salinity stress lowered K+ concentration, root length, root surface area, and root volume (RV), but increased Na+ concentration, root average diameter, and root tissue density. However, biochar amendment decreased Na+ concentration, increased K+ concentration, and improved root morphology. In particular, the combination of WSP and PRD increased K+/Na+ ratio, RV, root weight density, root surface area density, water use efficiency, and partial factor productivity under salt stress, which can be a promising strategy to cope with drought and salinity stress in cotton production.
Collapse
Affiliation(s)
- Jingxiang Hou
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heng Wan
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China; Soil Physics and Land Management Group, Wageningen University, P.O. Box 47, Wageningen, 6700 AA, Netherlands
| | - Kehao Liang
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Bingjing Cui
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingying Ma
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Yiting Chen
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark
| | - Jie Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yin Wang
- College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xuezhi Liu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
| | - Jiarui Zhang
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenhua Wei
- College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road 23, 712100 Yangling, Shaanxi, China; Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fulai Liu
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Tåstrup, Denmark.
| |
Collapse
|
38
|
Dey N, Bhattacharjee S. Comparative transcriptomic data confirm the findings of dehydration stress-induced redox biology of indigenous aromatic rice cultivars. 3 Biotech 2023; 13:392. [PMID: 37953831 PMCID: PMC10635969 DOI: 10.1007/s13205-023-03829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
The present work compares the transcriptome data sets of post-imbibitional dehydration stress-raised seedlings of two contrasting indigenous aromatic rice cultivars (Oryza sativa L., Cultivars Jamainadu and Badshabhog) for unfolding genetic regulation of dehydration stress. The result of RNA-seq analysis in Illumina platform in general revealed significant cultivar-specific expression of genes under dehydration stress that substantiate the data of redox metabolic fingerprints (assessed in terms of differential efficacy of ascorbate-glutathione pathway, ROS-antioxidant interaction dynamics and sensitive biomarkers of oxidative stress). Both the cultivars showed a diverse global transcriptomic response under water-deficit condition. Transcripts selected for heatmap generation with proper annotation revealed genes that are significantly expressed and mainly involved in redox functions, signaling, membrane trafficking, replication, protein synthesis, etc. Gene ontology (GO) analysis proposed that dehydration stress in the drought-tolerant cultivar Badshabhog was attributable to the enhanced expression of genes associated with carbon dioxide-concentrating mechanism, peroxysomal biogenesis, protein modification, protein synthesis, mitochondrial electron transport chain functioning, intercellular protein transport, histone demethylation associated with developmental process, regulation of apoptosis, etc. The redox genes that got significantly over-expressed in the IARC Badshabhog vis-à-vis Jamainadu include l-ascorbate oxidase/peroxidase, monothiol glutaredoxin-S1, thioredoxin-like protein AAED1 (chloroplastic), thioredoxin-like protein CXXS1, NADH-dehydrogenase (ubiquinone)-1-beta subcomplex subunit 3-B, NADH-dehydrogenase subunit 6 and K, lipoxygenase 6 isoform-XI, etc. Overall, the results of the RNA-seq analysis led to the identification of cultivar-specific genes, with the cultivar Badshabhog exhibiting significantly greater molecular reprogramming for redox regulation and signaling necessary for combating dehydration stress. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03829-z.
Collapse
Affiliation(s)
- Nivedita Dey
- Plant Physiology and Biochemistry Research Laboratory, UGC Centre for Advanced Study, Department of Botany, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Soumen Bhattacharjee
- Plant Physiology and Biochemistry Research Laboratory, UGC Centre for Advanced Study, Department of Botany, The University of Burdwan, Burdwan, West Bengal 713104 India
| |
Collapse
|
39
|
Li N, Yang L, Chen K, Kang Y, Cao Y, Du H, Mou H, Sun H, Ao T, Chen W. Selenium improves the medicinal safety and quality of Bletilla striata by promoting the fixation of cadmium in root: Pot and field experiments. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132275. [PMID: 37579717 DOI: 10.1016/j.jhazmat.2023.132275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Soil cadmium (Cd) pollution poses a considerable threat to the safe production of traditional Chinese medicine (TCM) in China. The tubers of Bletilla striata, a precious TCM, are widely used to treat various ailments. However, the medicinal safety and quality of tubers are significantly affected by high Cd accumulation. While selenium (Se) is known to reduce Cd concentration in traditional crops, its impact on Cd content in medicinal parts and overall quality remains underexplored. To bridge the gap, a pot experiment and field validation were conducted to determine the effectiveness of foliar Se application. The results revealed that Se effectively counteracted Cd damage. Compared to Cd treatment alone, Se at 1.5 mg L-1 significantly decreased Cd content by 46.33 %, increased the biomass by 21.48 %, and raised the total phenolic, flavonoid, saponin, and polysaccharide contents by 46.31 %, 30.46 %, 27.08 %, and 29.01 %, respectively, in tubers. Furthermore, this study explored the mechanism of Se action. Se facilitated Cd accumulation in root cell walls and soluble fractions, enhanced the synthesis of phytochelatins (PC), and stored them in the form of PC-Cd complexes. These findings have profound implications for the cultivation of TCM, ensuring its safety, and promoting sustainable agricultural practices.
Collapse
Affiliation(s)
- Na Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Li Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China
| | - Kuiwei Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuchen Kang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuan Cao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Hengwei Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China
| | - Haiyan Mou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610065, China.
| | - Hui Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
40
|
Escudero-Feliu J, Lima-Cabello E, Rodríguez de Haro E, Morales-Santana S, Jimenez-Lopez JC. Functional Association between Storage Protein Mobilization and Redox Signaling in Narrow-Leafed Lupin ( Lupinus angustifolius L.) Seed Germination and Seedling Development. Genes (Basel) 2023; 14:1889. [PMID: 37895238 PMCID: PMC10606504 DOI: 10.3390/genes14101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Seed storage mobilization, together with oxidative metabolism, with the ascorbate-glutathione (AsA-GSH) cycle as a crucial signaling and metabolic functional crossroad, is one of the main regulators of the control of cell morphogenesis and division, a fundamental physiological process driving seed germination and seedling growth. This study aims to characterize the cellular changes, composition, and patterns of the protein mobilization and ROS-dependent gene expression of redox metabolism in Lupinus angustifolius L. (narrow-leafed lupin, NLL) cotyledons during seed germination. (2) Methods: We performed gene expression analyses via RT-qPCR for conglutins α (1, 2, and 3), β (1, 2, and 5), γ (1, 2), and δ (2 and 4), including a ubiquitin gene as a control, and for redox metabolism-related genes; GADPH was used as a control gene. A microscopic study was developed on cotyledon samples from different germination stages, including as IMB (imbibition), and 2-5, 7, 9, and 11 DAI (days after imbibition), which were processed for light microscopy. SDS-PAGE and immunocytochemistry assays were performed using an anti-β-conglutin antibody (Agrisera), and an anti-rabbit IgG Daylight 488-conjugated secondary antibody. The controls were made while omitting primary Ab. (3) Results and Discussion: Our results showed that a large amount of seed storage protein (SSP) accumulates in protein bodies (PBs) and mobilizes during germination. Families of conglutins (β and γ) may play important roles as functional and signaling molecules, beyond the storage function, at intermediate steps of the seed germination process. In this regard, metabolic activities are closely associated with the regulation of oxidative homeostasis through AsA-GSH activities (γ-L-Glutamyl-L-cysteine synthetase, NOS, Catalase, Cu/Zn-SOD, GPx, GR, GS, GsT) after the imbibition of NLL mature seeds, metabolism activation, and dormancy breakage, which are key molecular and regulatory signaling pathways with particular importance in morphogenesis and developmental processes. (4) Conclusions: The knowledge generated in this study provides evidence for the functional changes and cellular tightly regulated events occurring in the NLL seed cotyledon, orchestrated by the oxidative-related metabolic machinery involved in seed germination advancement.
Collapse
Affiliation(s)
- Julia Escudero-Feliu
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Elena Lima-Cabello
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Esther Rodríguez de Haro
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
| | - Sonia Morales-Santana
- Proteomic Research Unit, Biosanitary Research Institute of Granada (ibs.Granada), 18012 Granada, Spain;
| | - Jose C. Jimenez-Lopez
- Department of Stress, Development and Signaling in Plants, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), 18008 Granada, Spain; (J.E.-F.); (E.L.-C.); (E.R.d.H.)
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth 6009, Australia
| |
Collapse
|
41
|
Pal B, Bhattacharjee S. Herbal and chemical seed potentiations improve the redox health of aged seeds of indigenous aromatic rice cultivars through regulation of oxidative window, gene expression, and restoration of hormonal homeostasis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1269-1288. [PMID: 38024956 PMCID: PMC10678913 DOI: 10.1007/s12298-023-01375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Previous studies associated with seed potentiation support the critical role of metabolic readjustment in restricting the loss of seed vigor and viability of aged seeds. However, their exact role in the regulation of 'oxidative windows' of potentiated seeds is rarely studied and hence is the subject of the present investigation. Seed potentiation of two contrasting indigenous aromatic rice cultivars, differing in sensitivity towards redox attributes (Oryza sativa L., Cultivars Tulaipanji and Jamainadu), with standardized doses of hydrogen peroxide (20 mM), triadimefon (250 μM), herbal extract (1% aqueous extract of Lantana camara flower) and distilled water before accelerated aging (RH 92% and 41 °C for 24 h) found to have significant impact on redox regulation of aged seeds and improvement of germination phenotypes. The efficacy of integrated RBOH-ascorbate-glutathione/catalase pathway, redox status and other redox fingerprints in the metabolic landscape of potentiated-aged seeds vis-a-vis non-potentiated-aged seeds corroborate the impact of seed potentiation on the regulation of 'oxidative window' of experimental rice seeds. Gene expression analysis of central redox hub enzymes (Osrboh, OsAPx2, OsGRase, OsCatA) strongly substantiates the impact of seed potentiation on transcriptional regulation of genes for redox homeostasis in accelerated aged seeds. The novelty of the current effort is that it suggests a positive nexus between seed potentiation-induced redox regulation and hormonal homeostasis. The efficacy of seed potentiation on the redox regulation of experimental accelerated aged seeds is found to be cultivar-specific and comparatively better in the cultivar Tulaipanji as compared to the cultivar Jamainadu and in the order herbal extract, hydrogen peroxide, hydropriming and triadimefon. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01375-9.
Collapse
Affiliation(s)
- Babita Pal
- Plant Physiology and Biochemistry Research Laboratory, UGC Centre for Advanced Study, Department of Botany, University of Burdwan, Burdwan, West Bengal 713104 India
| | - Soumen Bhattacharjee
- Plant Physiology and Biochemistry Research Laboratory, UGC Centre for Advanced Study, Department of Botany, University of Burdwan, Burdwan, West Bengal 713104 India
| |
Collapse
|
42
|
Cao D, Huang Y, Mei G, Zhang S, Wu H, Zhao T. Spermidine enhances chilling tolerance of kale seeds by modulating ROS and phytohormone metabolism. PLoS One 2023; 18:e0289563. [PMID: 37535595 PMCID: PMC10399780 DOI: 10.1371/journal.pone.0289563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Chilling stress is an important constraint for kale seed germination and seedlings establishment. It is vital to develop an effective approach to enhance kale seed germination ability under chilling stress. The present study reported that spermidine (Spd) could improve seed chilling tolerance in two kale cultivars 'Nagoya' (MGW) and 'Pigeon' (BB) during germination. The results showed that MGW was cold tolerant with a 90.67% germination percentage (GP) under chilling stress, while BB was cold sensitive with a 70.67% GP under chilling stress. Spd content in MGW and BB seeds during seed germination were up-regulated and down-regulated by chilling stress, respectively. Besides, chilling stress apparently decreased the gibberellin (GA) and ethylene (ET) contents, while increased the levels of abscisic acid (ABA) and reactive oxygen species (ROS) in MGW and BB seeds during germination. Exogenous Spd application increased GA, ET contents and decreased ABA content through regulating the gene expressions of metabolic-related enzymes, thus effectively alleviating the low temperature damage on kale seed germination. Besides, Spd significantly increased the activities of superoxide dismutase (SOD) and peroxidase (POD), and reduced the levels of hydrogen peroxide (H2O2) and superoxide anion (O2·-). The present study demonstrated that endogenous Spd metabolism plays an important role in kale seed germination under chilling stress. The effect of exogenous Spd on the metabolism of endogenous Spd, GA, ABA, ET and antioxidant enzymes might be the important reason for promoting the kale seed vigor at low temperature.
Collapse
Affiliation(s)
- Dongdong Cao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yutao Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Gaofu Mei
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sheng Zhang
- Taizhou Agricultural Technology Extension Center, Taizhou, China
| | - Huaping Wu
- Huzhou Keao Seed Co., Ltd., Huzhou, China
| | | |
Collapse
|
43
|
Jiang D, Xu H, Zhang Y, Chen G. Silicon mediated redox homeostasis in the root-apex transition zone of rice plays a key role in aluminum tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107871. [PMID: 37393859 DOI: 10.1016/j.plaphy.2023.107871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
The supply of silicon (Si) mitigates the aluminum (Al) toxicity on plant root growth, while the underlying mechanism remains unknown. Transition zone (TZ) emerges as the Al-toxicity target of plant root apex. The objective of the study was to evaluate the effect of Si on redox homeostasis in root-apex TZ of rice seedlings under Al stress. Si alleviated Al toxicity as revealed by promotion of root elongation and less Al accumulation. In Si-deprived plants, treatment with Al altered the normal distribution of superoxide anion (O2·-) and hydrogen peroxide (H2O2) in root tip. Al induced a significant increase of reactive oxygen species (ROS) in root-apex TZ, resulting in the peroxidation of membrane lipid and loss of plasma membrane integrity in root-apex TZ. However, Si greatly increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and enzymes involved in ascorbate-glutathione (AsA-GSH) cycle in root-apex TZ under Al stress, and enhanced AsA and GSH contents, which reduced ROS and callose contents, thereby reducing malondialdehyde (MDA) content and Evans blue uptake. These results allow to precise the changes of ROS in root-apex TZ after exposure to Al, and the positive role of Si in maintaining redox balance in root-apex TZ.
Collapse
Affiliation(s)
- Dexing Jiang
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, 211222, China; Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Hui Xu
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yafang Zhang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Guoxiang Chen
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
44
|
Talla SK, Sunil B, Rao DE, Rajsheel P, Saini D, Raghavendra AS. Redox basis of photosynthesis inhibition at supra-optimal bicarbonate in mesophyll protoplasts of Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154047. [PMID: 37393886 DOI: 10.1016/j.jplph.2023.154047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
We examined the patterns of photosynthetic O2 evolution at 1 mM (optimal) and 10 mM (supra-optimal) bicarbonate in mesophyll protoplasts of Arabidopsis thaliana. The photosynthetic rate of protoplasts reached the maximum at an optimal concentration of 1 mM bicarbonate and got suppressed at supra-optimal levels of bicarbonate. We examined the basis of such photosynthesis inhibition by mesophyll protoplasts at supra-optimal bicarbonate. The wild-type protoplasts exposed to supra-optimal bicarbonate showed up signs of oxidative stress. Besides the wild-type, two mutants were used: nadp-mdh (deficient in chloroplastic NADP-MDH) and vtc1 (deficient in mitochondrial ascorbate biosynthesis). The protoplasts of the nadp-mdh mutant exhibited a higher photosynthetic rate and greater sensitivity to supra-optimal bicarbonate than the wild-type. The ascorbate-deficient vtc1 mutant had a low photosynthetic rate and no significant inhibition at high bicarbonate. The nadp-mdh mutants had elevated activities, protein, and transcript levels of key antioxidant enzymes. On the other hand, the antioxidant enzyme systems in vtc1 mutants were not much affected at supra-optimal bicarbonate. We propose that the inhibition of photosynthesis at supra-optimal bicarbonate depends on the redox state of mesophyll protoplasts. The robust antioxidant enzyme systems in protoplasts of nadp-mdh mutant might be priming the plants to sustain high photosynthesis at supra-optimal bicarbonate.
Collapse
Affiliation(s)
- Sai Krishna Talla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Bobba Sunil
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Duvvarapu Easwar Rao
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pidakala Rajsheel
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepak Saini
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
45
|
Iqbal A, Mo Z, Pan SG, Qi JY, Hua T, Imran M, Duan M, Gu Q, Yao XB, Tang X. Exogenous TiO 2 Nanoparticles Alleviate Cd Toxicity by Reducing Cd Uptake and Regulating Plant Physiological Activity and Antioxidant Defense Systems in Rice ( Oryza sativa L.). Metabolites 2023; 13:765. [PMID: 37367921 PMCID: PMC10303181 DOI: 10.3390/metabo13060765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Cadmium (Cd) is a potentially hazardous element with significant biological toxicity, negatively affecting plant growth and physio-biochemical metabolism. Thus, it is necessary to examine practical and eco-friendly approaches to reduce Cd toxicity. Titanium dioxide nanoparticles (TiO2-NPs) are growth regulators that help in nutrient uptake and improve plant defense systems against abiotic and biological stress. A pot experiment was performed in the late rice-growing season (July-November) 2022 to explore the role of TiO2-NPs in relieving Cd toxicity on leaf physiological activity, biochemical attributes, and plant antioxidant defense systems of two different fragrant rice cultivars, i.e., Xiangyaxiangzhan (XGZ) and Meixiangzhan-2 (MXZ-2). Both cultivars were cultivated under normal and Cd-stress conditions. Different doses of TiO2-NPs with and without Cd-stress conditions were studied. The treatment combinations were: Cd-, 0 mg/kg CdCl2·2.5 H2O; Cd+, 50 mg/kg CdCl2·2.5 H2O; Cd + NP1, 50 mg/kg Cd + 50 TiO2-NPs mg/L; Cd + NP2, 50 mg/kg Cd + 100 TiO2-NPs mg/L; Cd + NP3, 50 mg/kg Cd + 200 TiO2-NPs mg/L; Cd + NP4, 50 mg/kg Cd + 400 TiO2-NPs mg/L. Our results showed that the Cd stress significantly (p < 0.05) decreased leaf photosynthetic efficiency, stomatal traits, antioxidant enzyme activities, and the expression of their encoding genes and protein content. Moreover, Cd toxicity destabilized plant metabolism owing to greater accretion of hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels at vegetative and reproductive stages. However, TiO2-NPs application improved leaf photosynthetic efficacy, stomatal traits, and protein and antioxidant enzyme activities under Cd toxicity. Application of TiO2-NPs decreased the uptake and accumulation of Cd in plants and levels of H2O2 and MDA, thereby helping to relieve Cd-induced peroxidation damage of leaf membrane lipids by enhancing the activities of different enzymes like ascorbate peroxidase (APX), catalase (CAT), peroxidase (POS), and superoxide dismutase (SOD). Average increases in SOD, APX, CAT, and POS activities of 120.5 and 110.4%, 116.2 and 123.4%, 41.4 and 43.8%, and 36.6 and 34.2% in MXZ-2 and XGZ, respectively, were noted in Cd + NP3 treatment across the growth stages as compared with Cd-stressed plants without NPs. Moreover, the correlation analysis revealed that the leaf net photosynthetic rate is strongly associated with leaf proline and soluble protein content, suggesting that a higher net photosynthetic rate results in higher leaf proline and soluble protein content. Of the treatments, the Cd + NP3 (50 mg/kg Cd + 200 mg/L TiO2-NPs) performed the best for both fragrant rice cultivars under Cd toxicity. Our results showed that TiO2-NPs strengthened rice metabolism through an enhanced antioxidant defense system across the growth stages, thereby improving plant physiological activity and biochemical characteristics under Cd toxicity.
Collapse
Affiliation(s)
- Anas Iqbal
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (A.I.); (T.H.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (A.I.); (T.H.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Sheng-Gang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (A.I.); (T.H.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Jian-Ying Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (A.I.); (T.H.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Tian Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (A.I.); (T.H.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (A.I.); (T.H.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (A.I.); (T.H.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Qichang Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (A.I.); (T.H.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xiang-Bin Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (A.I.); (T.H.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (A.I.); (T.H.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| |
Collapse
|
46
|
You Y, Wang L, Ju C, Wang X, Wang Y. How does phosphorus influence Cd tolerance strategy in arbuscular mycorrhizal - Phragmites australis symbiotic system? JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131318. [PMID: 37011447 DOI: 10.1016/j.jhazmat.2023.131318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
To clarify how phosphorus (P) influences arbuscular mycorrhizal fungi (AMF) interactions with host plants, we measured the effects of variation in environmental P levels and AMF colonization on photosynthesis, element absorption, ultrastructure, antioxidant capacity, and transcription mechanisms in Phragmites australis (P. australis) under cadmium (Cd) stress. AMF maintained photosynthetic stability, element balance, subcellular integrity and enhanced antioxidant capacity by upregulating antioxidant gene expression. Specifically, AMF overcame Cd-induced stomatal limitation, and mycorrhizal dependence peaked in the high Cd-moderate P treatment (156.08%). Antioxidants and compatible solutes responded to P-level changes: the primary driving forces of removing reactive oxygen species (ROS) and maintaining osmotic balance were superoxide dismutase, catalase, and sugars at limited P levels and total polyphenol, flavonoid, peroxidase, and proline at abundant P levels, we refer to this phenomenon as "functional link." AMF and phosphorus enhanced Cd tolerance in P. australis, but the regulation of AMF was P-dependent. Phosphorus prevented increases in total glutathione content and AMF-induced GSH/GSSG ratio (reduced to oxidized glutathione ratio) by inhibiting the expression of assimilatory sulfate reduction and glutathione reductase genes. The AMF-induced flavonoid synthesis pathway was regulated by P, and AMF activated Cd-tolerance mechanisms by inducing P-dependent signaling.
Collapse
Affiliation(s)
- Yongqiang You
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China.
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China.
| | - Chang Ju
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China
| | - Xin Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China
| | - Yujiao Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China
| |
Collapse
|
47
|
Leung HS, Chan LY, Law CH, Li MW, Lam HM. Twenty years of mining salt tolerance genes in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:45. [PMID: 37313223 PMCID: PMC10248715 DOI: 10.1007/s11032-023-01383-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/12/2023] [Indexed: 06/15/2023]
Abstract
Current combined challenges of rising food demand, climate change and farmland degradation exert enormous pressure on agricultural production. Worldwide soil salinization, in particular, necessitates the development of salt-tolerant crops. Soybean, being a globally important produce, has its genetic resources increasingly examined to facilitate crop improvement based on functional genomics. In response to the multifaceted physiological challenge that salt stress imposes, soybean has evolved an array of defences against salinity. These include maintaining cell homeostasis by ion transportation, osmoregulation, and restoring oxidative balance. Other adaptations include cell wall alterations, transcriptomic reprogramming, and efficient signal transduction for detecting and responding to salt stress. Here, we reviewed functionally verified genes that underly different salt tolerance mechanisms employed by soybean in the past two decades, and discussed the strategy in selecting salt tolerance genes for crop improvement. Future studies could adopt an integrated multi-omic approach in characterizing soybean salt tolerance adaptations and put our existing knowledge into practice via omic-assisted breeding and gene editing. This review serves as a guide and inspiration for crop developers in enhancing soybean tolerance against abiotic stresses, thereby fulfilling the role of science in solving real-life problems. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01383-3.
Collapse
Affiliation(s)
- Hoi-Sze Leung
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Long-Yiu Chan
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Cheuk-Hin Law
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000 People’s Republic of China
| |
Collapse
|
48
|
Cui L, Chen Y, Liu J, Zhang Q, Xu L, Yang Z. Spraying Zinc Sulfate to Reveal the Mechanism through the Glutathione Metabolic Pathway Regulates the Cadmium Tolerance of Seashore Paspalum ( Paspalum vaginatum Swartz). PLANTS (BASEL, SWITZERLAND) 2023; 12:1982. [PMID: 37653899 PMCID: PMC10221796 DOI: 10.3390/plants12101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Cadmium (Cd) is considered to be one of the most toxic metals, causing serious harm to plants' growth and humans' health. Therefore, it is necessary to study simple, practical, and environmentally friendly methods to reduce its toxicity. Until now, people have applied zinc sulfate to improve the Cd tolerance of plants. However, related studies have mainly focused on physiological and biochemical aspects, with a lack of in-depth molecular mechanism research. In this study, we sprayed high (40 mM) and low (2.5 mM) concentrations of zinc sulfate on seashore paspalum (Paspalum vaginatum Swartz) plants under 0.5 mM Cd stress. Transcriptome sequencing and physiological indicators were used to reveal the mechanism of Cd tolerance. Compared with the control treatment, we found that zinc sulfate decreased the content of Cd2+ by 57.03-73.39%, and that the transfer coefficient of Cd decreased by 58.91-75.25% in different parts of plants. In addition, our results indicate that the antioxidant capacity of plants was improved, with marked increases in the glutathione content and the activity levels of glutathione reductase (GR), glutathione S-transferase (GST), and other enzymes. Transcriptome sequencing showed that the differentially expressed genes in both the 0.5 Zn and 40 Zn treatments were mainly genes encoding GST. This study suggests that genes encoding GST in the glutathione pathway may play an important role in regulating the Cd tolerance of seashore paspalum. Furthermore, the present study provides a theoretical reference for the regulation mechanism caused by zinc sulfate spraying to improve plants' Cd tolerance.
Collapse
Affiliation(s)
- Liwen Cui
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | - Zhimin Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
49
|
Xiao S, Li D, Tang Z, Wei H, Zhang Y, Yang J, Zhao C, Liu Y, Wang W. Supplementary UV-B Radiation Effects on Photosynthetic Characteristics and Important Secondary Metabolites in Eucommia ulmoides Leaves. Int J Mol Sci 2023; 24:ijms24098168. [PMID: 37175879 PMCID: PMC10178938 DOI: 10.3390/ijms24098168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
To explore the effects of ultraviolet light supplementation on the photosynthetic characteristics and content of secondary metabolites in the leaves of Eucommia ulmoides Oliver (E. ulmoides), the effects of supplementary UV-B (sUV-B) radiation on the medicinally active components of E. ulmoides were comprehensively evaluated. In our study, we selected leaves of five-year-old E. ulmoides seedlings as experimental materials and studied the effect of supplemental ultraviolet-B (sUV-B) radiation on growth, photosynthetic parameters, photosynthetic pigments, fluorescence parameters, and secondary metabolites of E. ulmoides using multivariate analysis. The results showed that the leaf area and the number of branches increased after sUV-B radiation, which indicated that sUV-B radiation was beneficial to the growth of E. ulmoides. The contents of chlorophyll a and chlorophyll b increased by 2.25% and 4.25%, respectively; the net photosynthetic rate increased by 5.17%; the transpiration rate decreased by 35.32%; the actual photosynthetic efficiency increased by 10.64%; the content of the secondary metabolite genipin increased by 12.9%; and the content of chlorogenic acid increased by 75.03%. To identify the genes that may be related to the effects of sUV-B radiation on the growth and development of E. ulmoides leaves and important secondary metabolites, six cDNA libraries were prepared from natural sunlight radiation and sUV-B radiation in E. ulmoides leaves. Comparative analysis of both transcriptome databases revealed a total of 3698 differential expression genes (DEGs), including 1826 up-regulated and 1872 down-regulated genes. According to the KOG database, the up-regulated unigenes were mainly involved in signal transduction mechanisms [T] and cell wall/membrane biogenesis [M]. It is also involved in plant hormone signal transduction and phenylpropanoid biosynthesis metabolic pathways by the KEGG pathway, which might further affect the physiological indices and the content of chlorogenic acid, a secondary metabolite of E. ulmoides. Furthermore, 10 candidate unigenes were randomly selected to examine gene expression using qRT-PCR, and the six libraries exhibited differential expression and were identical to those obtained by sequencing. Thus, the data in this study were helpful in clarifying the reasons for leaf growth after sUV-B radiation. And it was beneficial to improve the active components and utilization rate of E. ulmoides after sUV-B radiation.
Collapse
Affiliation(s)
- Siqiu Xiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dewen Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Hongling Wei
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jing Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chunjian Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ying Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wei Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Institute of Advance Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
50
|
Basit F, Tao J, An J, Song X, Sheteiwy MS, Holford P, Hu J, Jośko I, Guan Y. Nitric oxide and brassinosteroids enhance chromium stress tolerance in Glycine max L. (Merr.) by modulating antioxidative defense and glyoxalase systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51638-51653. [PMID: 36811783 DOI: 10.1007/s11356-023-25901-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Chromium (Cr) contamination of agricultural soils is a major threat to human and plant health worldwide and causes reductions in plant growth and crop yields. 24-epibrassinolide (EBL) and nitric oxide (NO) have been shown to ameliorate the reductions in growth caused by the stresses induced by heavy metals; however, the interactions between EBL and NO on the alleviation of Cr-induced phytotoxicity have been poorly studied. Hence, this study was undertaken to examine any beneficial effects of EBL (0.01 µM) and NO (100 µM), applied alone or in combination, on the mitigation of stress induced by Cr (100 µM) in soybean seedlings. Although EBL and NO applied alone reduced the toxic effects of Cr, the combined treatment had the greatest effect. Mitigation of Cr intoxication occurred via reduced Cr uptake and translocation and by ameliorating reductions in water contents, light-harvesting pigments, and other photosynthetic parameters. In addition, the two hormones increased the activity of enzymatic and non-enzymatic defense mechanisms increasing the scavenging of reactive oxygen species, thereby reducing membrane damage and electrolyte leakage. Furthermore, the hormones reduced the accumulation of the toxic compound, methylglyoxal, by amplifying activities of glyoxalase I and glyoxalase II. Thus, applications of NO and EBL can significantly mitigate Cr-phytotoxicity when cultivating soybean plants in Cr-contaminated soils. However, further more-in depth studies including field investigations parallel with calculations of cost to profit ratios and yield losses are requested to validate the effectiveness of NO and/or EBL for remediation agents in Cr-contaminated soils with using key biomarkers (i.e., oxidative stress, antioxidant defense, and osmoprotectants) involved in the uptake, accumulation, and attenuation of Cr toxicity tested in our study.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ji Tao
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianyu An
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyu Song
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed Salah Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Paul Holford
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China.
- Seed Science Center, The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|