1
|
Guo D, Li J, Liu P, Wang Y, Cao N, Fang X, Wang T, Dong J. The jasmonate pathway promotes nodule symbiosis and suppresses host plant defense in Medicago truncatula. MOLECULAR PLANT 2024; 17:1183-1203. [PMID: 38859588 DOI: 10.1016/j.molp.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/28/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Root nodule symbiosis (RNS) between legumes and rhizobia is a major source of nitrogen in agricultural systems. Effective symbiosis requires precise regulation of plant defense responses. The role of the defense hormone jasmonic acid (JA) in the immune response has been extensively studied. Current research shows that JA can play either a positive or negative regulatory role in RNS depending on its concentration, but the molecular mechanisms remain to be elucidated. In this study, we found that inoculation with the rhizobia Sm1021 induces the JA pathway in Medicago truncatula, and blocking the JA pathway significantly reduces the number of infection threads. Mutations in the MtMYC2 gene, which encodes a JA signaling master transcription factor, significantly inhibited rhizobia infection, terminal differentiation, and symbiotic cell formation. Combining RNA sequencing and chromatin immunoprecipitation sequencing, we discovered that MtMYC2 regulates the expression of nodule-specific MtDNF2, MtNAD1, and MtSymCRK to suppress host defense, while it activates MtDNF1 expression to regulate the maturation of MtNCRs, which in turn promotes bacteroid formation. More importantly, MtMYC2 participates in symbiotic signal transduction by promoting the expression of MtIPD3. Notably, the MtMYC2-MtIPD3 transcriptional regulatory module is specifically present in legumes, and the Mtmyc2 mutants are susceptible to the infection by the pathogen Rhizoctonia solani. Collectively, these findings reveal the molecular mechanisms of how the JA pathway regulates RNS, broadening our understanding of the roles of JA in plant-microbe interactions.
Collapse
Affiliation(s)
- Da Guo
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingrui Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuzhan Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Na Cao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangling Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Mesny F, Hacquard S, Thomma BPHJ. Co-evolution within the plant holobiont drives host performance. EMBO Rep 2023; 24:e57455. [PMID: 37471099 PMCID: PMC10481671 DOI: 10.15252/embr.202357455] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Plants interact with a diversity of microorganisms that influence their growth and resilience, and they can therefore be considered as ecological entities, namely "plant holobionts," rather than as singular organisms. In a plant holobiont, the assembly of above- and belowground microbiota is ruled by host, microbial, and environmental factors. Upon microorganism perception, plants activate immune signaling resulting in the secretion of factors that modulate microbiota composition. Additionally, metabolic interdependencies and antagonism between microbes are driving forces for community assemblies. We argue that complex plant-microbe and intermicrobial interactions have been selected for during evolution and may promote the survival and fitness of plants and their associated microorganisms as holobionts. As part of this process, plants evolved metabolite-mediated strategies to selectively recruit beneficial microorganisms in their microbiota. Some of these microbiota members show host-adaptation, from which mutualism may rapidly arise. In the holobiont, microbiota members also co-evolved antagonistic activities that restrict proliferation of microbes with high pathogenic potential and can therefore prevent disease development. Co-evolution within holobionts thus ultimately drives plant performance.
Collapse
Affiliation(s)
- Fantin Mesny
- Institute for Plant SciencesUniversity of CologneCologneGermany
| | - Stéphane Hacquard
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| | - Bart PHJ Thomma
- Institute for Plant SciencesUniversity of CologneCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| |
Collapse
|
3
|
Helliwell EE, Lafayette P, Kronmiller BN, Arredondo F, Duquette M, Co A, Vega-Arreguin J, Porter SS, Borrego EJ, Kolomiets MV, Parrott WA, Tyler BM. Transgenic Soybeans Expressing Phosphatidylinositol-3-Phosphate-Binding Proteins Show Enhanced Resistance Against the Oomycete Pathogen Phytophthora sojae. Front Microbiol 2022; 13:923281. [PMID: 35783378 PMCID: PMC9243418 DOI: 10.3389/fmicb.2022.923281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Oomycete and fungal pathogens cause billions of dollars of damage to crops worldwide annually. Therefore, there remains a need for broad-spectrum resistance genes, especially ones that target pathogens but do not interfere with colonization by beneficial microbes. Motivated by evidence suggesting that phosphatidylinositol-3-phosphate (PI3P) may be involved in the delivery of some oomycete and fungal virulence effector proteins, we created stable transgenic soybean plants that express and secrete two different PI3P-binding proteins, GmPH1 and VAM7, in an effort to interfere with effector delivery and confer resistance. Soybean plants expressing the two PI3P-binding proteins exhibited reduced infection by the oomycete pathogen Phytophthora sojae compared to control lines. Measurements of nodulation by nitrogen-fixing mutualistic bacterium Bradyrhizobium japonicum, which does not produce PI3P, revealed that the two lines with the highest levels of GmPH1 transcripts exhibited reductions in nodulation and in benefits from nodulation. Transcriptome and plant hormone measurements were made of soybean lines with the highest transcript levels of GmPH1 and VAM7, as well as controls, following P. sojae- or mock-inoculation. The results revealed increased levels of infection-associated transcripts in the transgenic lines, compared to controls, even prior to P. sojae infection, suggesting that the plants were primed for increased defense. The lines with reduced nodulation exhibited elevated levels of jasmonate-isoleucine and of transcripts of a JAR1 ortholog encoding jasmonate-isoleucine synthetase. However, lines expressing VAM7 transgenes exhibited normal nodulation and no increases in jasmonate-isoleucine. Overall, together with previously published data from cacao and from P. sojae transformants, the data suggest that secretion of PI3P-binding proteins may confer disease resistance through a variety of mechanisms.
Collapse
Affiliation(s)
- Emily E. Helliwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
- *Correspondence: Emily E. Helliwell,
| | - Peter Lafayette
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Brent N. Kronmiller
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Felipe Arredondo
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Madeleine Duquette
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Anna Co
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Julio Vega-Arreguin
- Escuela Nacional de Estudios Superiores – León, Universidad Nacional Autónoma de México, León, Mexico
| | - Stephanie S. Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - Eli J. Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Wayne A. Parrott
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Brett M. Tyler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
4
|
Wang D, Dong W, Murray J, Wang E. Innovation and appropriation in mycorrhizal and rhizobial Symbioses. THE PLANT CELL 2022; 34:1573-1599. [PMID: 35157080 PMCID: PMC9048890 DOI: 10.1093/plcell/koac039] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 05/20/2023]
Abstract
Most land plants benefit from endosymbiotic interactions with mycorrhizal fungi, including legumes and some nonlegumes that also interact with endosymbiotic nitrogen (N)-fixing bacteria to form nodules. In addition to these helpful interactions, plants are continuously exposed to would-be pathogenic microbes: discriminating between friends and foes is a major determinant of plant survival. Recent breakthroughs have revealed how some key signals from pathogens and symbionts are distinguished. Once this checkpoint has been passed and a compatible symbiont is recognized, the plant coordinates the sequential development of two types of specialized structures in the host. The first serves to mediate infection, and the second, which appears later, serves as sophisticated intracellular nutrient exchange interfaces. The overlap in both the signaling pathways and downstream infection components of these symbioses reflects their evolutionary relatedness and the common requirements of these two interactions. However, the different outputs of the symbioses, phosphate uptake versus N fixation, require fundamentally different components and physical environments and necessitated the recruitment of different master regulators, NODULE INCEPTION-LIKE PROTEINS, and PHOSPHATE STARVATION RESPONSES, for nodulation and mycorrhization, respectively.
Collapse
Affiliation(s)
- Dapeng Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wentao Dong
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Ertao Wang
- Authors for correspondence: (E.W) and (J.M.)
| |
Collapse
|
5
|
Menéndez AB, Ruiz OA. Stress-regulated elements in Lotus spp., as a possible starting point to understand signalling networks and stress adaptation in legumes. PeerJ 2021; 9:e12110. [PMID: 34909267 PMCID: PMC8641479 DOI: 10.7717/peerj.12110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/14/2021] [Indexed: 11/20/2022] Open
Abstract
Although legumes are of primary economic importance for human and livestock consumption, the information regarding signalling networks during plant stress response in this group is very scarce. Lotus japonicus is a major experimental model within the Leguminosae family, whereas L. corniculatus and L. tenuis are frequent components of natural and agricultural ecosystems worldwide. These species display differences in their perception and response to diverse stresses, even at the genotype level, whereby they have been used in many studies aimed at achieving a better understanding of the plant stress-response mechanisms. However, we are far from the identification of key components of their stress-response signalling network, a previous step for implementing transgenic and editing tools to develop legume stress-resilient genotypes, with higher crop yield and quality. In this review we scope a body of literature, highlighting what is currently known on the stress-regulated signalling elements so far reported in Lotus spp. Our work includes a comprehensive review of transcription factors chaperones, redox signals and proteins of unknown function. In addition, we revised strigolactones and genes regulating phytochelatins and hormone metabolism, due to their involvement as intermediates in several physiological signalling networks. This work was intended for a broad readership in the fields of physiology, metabolism, plant nutrition, genetics and signal transduction. Our results suggest that Lotus species provide a valuable information platform for the study of specific protein-protein (PPI) interactions, as a starting point to unravel signalling networks underlying plant acclimatation to bacterial and abiotic stressors in legumes. Furthermore, some Lotus species may be a source of genes whose regulation improves stress tolerance and growth when introduced ectopically in other plant species.
Collapse
Affiliation(s)
- Ana B Menéndez
- Departamento de Biodiversidad y Biología Experimental. Facultad de Ciencias Exactas y Naturales., Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Overseas, Argentina.,Instituto de Micología y Botánica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Overseas, Argentina
| | - Oscar Adolfo Ruiz
- Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Buenos Aires, Argentina
| |
Collapse
|
6
|
Pervent M, Lambert I, Tauzin M, Karouani A, Nigg M, Jardinaud MF, Severac D, Colella S, Martin-Magniette ML, Lepetit M. Systemic control of nodule formation by plant nitrogen demand requires autoregulation-dependent and independent mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7942-7956. [PMID: 34427647 DOI: 10.1093/jxb/erab374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
In legumes interacting with rhizobia, the formation of symbiotic organs involved in the acquisition of atmospheric nitrogen gas (N2) is dependent on the plant nitrogen (N) demand. We used Medicago truncatula plants cultivated in split-root systems to discriminate between responses to local and systemic N signaling. We evidenced a strong control of nodule formation by systemic N signaling but obtained no clear evidence of a local control by mineral nitrogen. Systemic signaling of the plant N demand controls numerous transcripts involved in root transcriptome reprogramming associated with early rhizobia interaction and nodule formation. SUPER NUMERIC NODULES (SUNN) has an important role in this control, but we found that major systemic N signaling responses remained active in the sunn mutant. Genes involved in the activation of nitrogen fixation are regulated by systemic N signaling in the mutant, explaining why its hypernodulation phenotype is not associated with higher nitrogen fixation of the whole plant. We show that the control of transcriptome reprogramming of nodule formation by systemic N signaling requires other pathway(s) that parallel the SUNN/CLE (CLAVATA3/EMBRYO SURROUNDING REGION-LIKE PEPTIDES) pathway.
Collapse
Affiliation(s)
- Marjorie Pervent
- Laboratoire des Symbioses Tropicales et Méditérranéennes INRAE, IRD, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Ilana Lambert
- Laboratoire des Symbioses Tropicales et Méditérranéennes INRAE, IRD, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Marc Tauzin
- Laboratoire des Symbioses Tropicales et Méditérranéennes INRAE, IRD, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Alicia Karouani
- Laboratoire des Symbioses Tropicales et Méditérranéennes INRAE, IRD, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Martha Nigg
- Laboratoire des Symbioses Tropicales et Méditérranéennes INRAE, IRD, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Marie-Françoise Jardinaud
- Laboratoire des Interactions Plantes Microorganismes INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Dany Severac
- MGX, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Stefano Colella
- Laboratoire des Symbioses Tropicales et Méditérranéennes INRAE, IRD, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Marie-Laure Martin-Magniette
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
- UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, Paris, France
| | - Marc Lepetit
- Laboratoire des Symbioses Tropicales et Méditérranéennes INRAE, IRD, CIRAD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia-Antipolis, France
| |
Collapse
|
7
|
Riah N, de Lajudie P, Béna G, Heulin K, Djekoun A. Variability in symbiotic efficiency with respect to the growth of pea and lentil inoculated with various rhizobial genotypes originating from sub-humid and semi-arid regions of eastern Algeria. Symbiosis 2021. [DOI: 10.1007/s13199-021-00821-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Huo H, Wang X, Liu Y, Chen J, Wei G. A Nod factor- and type III secretion system-dependent manner for Robinia pseudoacacia to establish symbiosis with Mesorhizobium amorphae CCNWGS0123. TREE PHYSIOLOGY 2021; 41:817-835. [PMID: 33219377 DOI: 10.1093/treephys/tpaa160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
Under nitrogen-limiting conditions, symbiotic nodulation promotes the growth of legume plants via the fixation of atmospheric nitrogen to ammonia by rhizobia in root nodules. The rhizobial Nod factor (NF) and type III secretion system (T3SS) are two key signaling pathways for establishing the legume-rhizobium symbiosis. However, whether NF signaling is involved in the nodulation of Robinia pseudoacacia and Mesorhizobium amorphae CCNWGS0123, and its symbiotic differences compared with T3SS signaling remain unclear. Therefore, to elucidate the function of NF signaling in nodulation, we mutated nodC in M. amorphae CCNWGS0123, which aborted NF synthesis. Compared with the plants inoculated with the wild type strain, the plants inoculated with the NF-deficient strain exhibited shorter shoots with etiolated leaves. These phenotypic characteristics were similar to those of the plants inoculated with the T3SS-deficient strain, which served as a Nod- (non-effective nodulation) control. The plants inoculated with both the NF- and T3SS-deficient strains formed massive root hair swellings, but no normal infection threads were detected. Sections of the nodules showed that inoculation with the NF- and T3SS-deficient strains induced small, white bumps without any rhizobia inside. Analyzing the accumulation of 6 plant hormones and the expression of 10 plant genes indicated that the NF- and T3SS-deficient strains activated plant defense reactions while suppressing plant symbiotic signaling during the perception and nodulation processes. The requirement for NF signaling appeared to be conserved in two other leguminous trees that can establish symbiosis with M. amorphae CCNWGS0123. In contrast, the function of the T3SS might differ among species, even within the same subfamily (Faboideae). Overall, this work demonstrated that nodulation of R. pseudoacacia and M. amorphae CCNWGS0123 was both NF and T3SS dependent.
Collapse
Affiliation(s)
- Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Xinye Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Yao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water conservation, Northwest A&F University, 26 Xinong Road, Yangling 712100, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
9
|
Shoot Extracts from Two Low Nodulation Mutants Significantly Reduce Nodule Number in Pea. PLANTS 2020; 9:plants9111505. [PMID: 33172149 PMCID: PMC7694783 DOI: 10.3390/plants9111505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 01/25/2023]
Abstract
E107 and E132 are pea mutants that nodulate poorly. Because they have a shoot-controlled nodulation phenotype, we asked if their mutated genes were implicated in the autoregulation of nodulation (AON), a mechanism which consists of two systemic circuits, the positive CEP/CRA2 and the negative CLE/SUNN, coordinated via NIN and miR2111. We further characterized the mutants’ phenotype by studying nodule distribution and nodulation efficiency. E107 was similar to wild-type (WT) in its nodule distribution, but E132 had an extended nodulation zone with nodules forming distally on its lateral roots. Moreover, we tested whether their shoots produced a compound inhibitory to nodulation. We made ethyl-acetate extracts of roots and shoots of both mutants and WT, which we applied to rhizobia-inoculated WT seedlings and to pure rhizobial cultures. Whereas free-living bacteria were unaffected by any of the extracts, WT treated with shoot extracts from either inoculated mutant had fewer nodules than that of control. E107 and E132 shoot extracts led to a 50% and a 35% reduction in nodule number, respectively. We propose that E107 and E132 belong to a new sub-class of AON mutants, i.e., hypo-nodulators, and that their respective gene products are acting in the AON descending branch, upstream of TML signaling.
Collapse
|
10
|
Shakir S, Zaidi SSEA, de Vries FT, Mansoor S. Plant Genetic Networks Shaping Phyllosphere Microbial Community. Trends Genet 2020; 37:306-316. [PMID: 33036802 DOI: 10.1016/j.tig.2020.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
Phyllosphere microbial communities inhabit the aerial plant parts, such as leaves and flowers, where they form complex molecular interactions with the host plant. Contrary to the relatively well-studied rhizosphere microbiome, scientists are just starting to understand, and potentially utilize, the phyllosphere microbiome. In this article, we summarize the recent studies that have provided novel insights into the mechanism of the host genotype shaping the phyllosphere microbiome and the possibility to select a stable and well-adapted microbiome. We also discuss the most pressing gaps in our knowledge and identify the most promising research directions and tools for understanding the assembly and function of phyllosphere microbiomes - this understanding is necessary if we are to harness phyllosphere microbiomes for improving plant growth and health in managed systems.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Syed Shan-E-Ali Zaidi
- Plant Genetics, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Franciska T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.
| |
Collapse
|
11
|
Lambert I, Pervent M, Le Queré A, Clément G, Tauzin M, Severac D, Benezech C, Tillard P, Martin-Magniette ML, Colella S, Lepetit M. Responses of mature symbiotic nodules to the whole-plant systemic nitrogen signaling. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5039-5052. [PMID: 32386062 PMCID: PMC7410188 DOI: 10.1093/jxb/eraa221] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/30/2020] [Indexed: 05/26/2023]
Abstract
In symbiotic root nodules of legumes, terminally differentiated rhizobia fix atmospheric N2 producing an NH4+ influx that is assimilated by the plant. The plant, in return, provides photosynthates that fuel the symbiotic nitrogen acquisition. Mechanisms responsible for the adjustment of the symbiotic capacity to the plant N demand remain poorly understood. We have investigated the role of systemic signaling of whole-plant N demand on the mature N2-fixing nodules of the model symbiotic association Medicago truncatula/Sinorhizobium using split-root systems. The whole-plant N-satiety signaling rapidly triggers reductions of both N2 fixation and allocation of sugars to the nodule. These responses are associated with the induction of nodule senescence and the activation of plant defenses against microbes, as well as variations in sugars transport and nodule metabolism. The whole-plant N-deficit responses mirror these changes: a rapid increase of sucrose allocation in response to N-deficit is associated with a stimulation of nodule functioning and development resulting in nodule expansion in the long term. Physiological, transcriptomic, and metabolomic data together provide evidence for strong integration of symbiotic nodules into whole-plant nitrogen demand by systemic signaling and suggest roles for sugar allocation and hormones in the signaling mechanisms.
Collapse
Affiliation(s)
- Ilana Lambert
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Marjorie Pervent
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Antoine Le Queré
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marc Tauzin
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Dany Severac
- MGX, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Claire Benezech
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Pascal Tillard
- Biologie et Physiologie Moléculaire des Plantes, INRAE, CNRS, SupAgro, Univ. Montpellier, Montpellier, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Univ. Evry, CNRS, INRAE, Orsay, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, Orsay, France
- UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, Paris, France
| | - Stefano Colella
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Marc Lepetit
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| |
Collapse
|
12
|
Agtuca BJ, Stopka SA, Evans S, Samarah L, Liu Y, Xu D, Stacey MG, Koppenaal DW, Paša-Tolić L, Anderton CR, Vertes A, Stacey G. Metabolomic profiling of wild-type and mutant soybean root nodules using laser-ablation electrospray ionization mass spectrometry reveals altered metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1937-1958. [PMID: 32410239 DOI: 10.1111/tpj.14815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 05/18/2023]
Abstract
The establishment of the nitrogen-fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization-mass spectrometry (LAESI-MS) for in situ metabolic profiling of wild-type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl-acyl carrier protein desaturase (sacpd-c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+ ) and ineffective (nifH mutant, fix- ) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd-c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI-MS for high-throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.
Collapse
Affiliation(s)
- Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Sterling Evans
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Laith Samarah
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Yang Liu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Minviluz G Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
13
|
Liu H, Brettell LE, Qiu Z, Singh BK. Microbiome-Mediated Stress Resistance in Plants. TRENDS IN PLANT SCIENCE 2020; 25:733-743. [PMID: 32345569 DOI: 10.1016/j.tplants.2020.03.014] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 05/18/2023]
Abstract
Plants are subjected to diverse biotic and abiotic stresses in life. These can induce changes in transcriptomics and metabolomics, resulting in changes to root and leaf exudates and, in turn, altering the plant-associated microbial community. Emerging evidence demonstrates that changes, especially the increased abundance of commensal microbes following stresses, can be beneficial for plant survival and act as a legacy, enhancing offspring fitness. However, outstanding questions remain regarding the microbial role in plant defense, many of which may now be answered utilizing a novel synthetic community approach. In this article, building on our current understanding on stress-induced changes in plant microbiomes, we propose a 'DefenseBiome' concept that informs the design and construction of beneficial microbial synthetic communities for improving fundamental understanding of plant-microbial interactions and the development of plant probiotics.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | - Laura E Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | - Zhiguang Qiu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2753, Australia; Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW 2753, Australia.
| |
Collapse
|
14
|
Genome-Wide Identification of the CrRLK1L Subfamily and Comparative Analysis of Its Role in the Legume-Rhizobia Symbiosis. Genes (Basel) 2020; 11:genes11070793. [PMID: 32674446 PMCID: PMC7397338 DOI: 10.3390/genes11070793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
The plant receptor-like-kinase subfamily CrRLK1L has been widely studied, and CrRLK1Ls have been described as crucial regulators in many processes in Arabidopsis thaliana (L.), Heynh. Little is known, however, about the functions of these proteins in other plant species, including potential roles in symbiotic nodulation. We performed a phylogenetic analysis of CrRLK1L subfamily receptors of 57 different plant species and identified 1050 CrRLK1L proteins, clustered into 11 clades. This analysis revealed that the CrRLK1L subfamily probably arose in plants during the transition from chlorophytes to embryophytes and has undergone several duplication events during its evolution. Among the CrRLK1Ls of legumes and A. thaliana, protein structure, gene structure, and expression patterns were highly conserved. Some legume CrRLK1L genes were active in nodules. A detailed analysis of eight nodule-expressed genes in Phaseolus vulgaris L. showed that these genes were differentially expressed in roots at different stages of the symbiotic process. These data suggest that CrRLK1Ls are both conserved and underwent diversification in a wide group of plants, and shed light on the roles of these genes in legume–rhizobia symbiosis.
Collapse
|
15
|
Saad MM, Eida AA, Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3878-3901. [PMID: 32157287 PMCID: PMC7450670 DOI: 10.1093/jxb/eraa111] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/09/2020] [Indexed: 05/05/2023]
Abstract
Plants are now recognized as metaorganisms which are composed of a host plant associated with a multitude of microbes that provide the host plant with a variety of essential functions to adapt to the local environment. Recent research showed the remarkable importance and range of microbial partners for enhancing the growth and health of plants. However, plant-microbe holobionts are influenced by many different factors, generating complex interactive systems. In this review, we summarize insights from this emerging field, highlighting the factors that contribute to the recruitment, selection, enrichment, and dynamic interactions of plant-associated microbiota. We then propose a roadmap for synthetic community application with the aim of establishing sustainable agricultural systems that use microbial communities to enhance the productivity and health of plants independently of chemical fertilizers and pesticides. Considering global warming and climate change, we suggest that desert plants can serve as a suitable pool of potentially beneficial microbes to maintain plant growth under abiotic stress conditions. Finally, we propose a framework for advancing the application of microbial inoculants in agriculture.
Collapse
Affiliation(s)
- Maged M Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette Cedex, France
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Abstract
The phytohormone jasmonate (JA) modulates various defense and developmental responses of plants, and is implied in the integration of multiple environmental signals. Given its centrality in regulating plant physiology according to external stimuli, JA influences the establishment of interactions between plant roots and beneficial bacteria or fungi. In many cases, moderate JA signaling promotes the onset of mutualism, while massive JA signaling inhibits it. The output also depends on the compatibility between microbe and host plant and on nutritional or environmental cues. Also, JA biosynthesis and perception participate in the systemic regulation of mutualistic interactions and in microbe-induced resistance to biotic and abiotic stress. Here, we review our current knowledge of the role of JA biosynthesis, signaling, and responses during mutualistic root-microbe interactions.
Collapse
Affiliation(s)
- Veronica Basso
- Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Champenoux, France
| | - Claire Veneault-Fourrey
- Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Champenoux, France.
| |
Collapse
|
17
|
Soba D, Zhou B, Arrese-Igor C, Munné-Bosch S, Aranjuelo I. Physiological, Hormonal and Metabolic Responses of two Alfalfa Cultivars with Contrasting Responses to Drought. Int J Mol Sci 2019; 20:E5099. [PMID: 31618819 PMCID: PMC6829892 DOI: 10.3390/ijms20205099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022] Open
Abstract
Alfalfa (Medicago sativa L.) is frequently constrained by environmental conditions such as drought. Within this context, it is crucial to identify the physiological and metabolic traits conferring a better performance under stressful conditions. In the current study, two alfalfa cultivars (San Isidro and Zhong Mu) with different physiological strategies were selected and subjected to water limitation conditions. Together with the physiological analyses, we proceeded to characterize the isotopic, hormone, and metabolic profiles of the different plants. According to physiological and isotopic data, Zhong Mu has a water-saver strategy, reducing water lost by closing its stomata but fixing less carbon by photosynthesis, and therefore limiting its growth under water-stressed conditions. In contrast, San Isidro has enhanced root growth to replace the water lost through transpiration due to its more open stomata, thus maintaining its biomass. Zhong Mu nodules were less able to maintain nodule N2 fixing activity (matching plant nitrogen (N) demand). Our data suggest that this cultivar-specific performance is linked to Asn accumulation and its consequent N-feedback nitrogenase inhibition. Additionally, we observed a hormonal reorchestration in both cultivars under drought. Therefore, our results showed an intra-specific response to drought at physiological and metabolic levels in the two alfalfa cultivars studied.
Collapse
Affiliation(s)
- David Soba
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, 31006 Mutilva, Spain.
| | - Bangwei Zhou
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China.
| | - Cesar Arrese-Igor
- Department of Sciences, Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, E-31006 Pamplona, Spain.
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, 31006 Mutilva, Spain.
| |
Collapse
|
18
|
Ullah I, Magdy M, Wang L, Liu M, Li X. Genome-wide identification and evolutionary analysis of TGA transcription factors in soybean. Sci Rep 2019; 9:11186. [PMID: 31371739 PMCID: PMC6672012 DOI: 10.1038/s41598-019-47316-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/27/2019] [Indexed: 01/29/2023] Open
Abstract
The gain of function in genes and gene families is a continuous process and is a key factor in understanding gene and genome evolution in plants. TGACG-Binding (TGA) transcription factors (TFs) have long been known for their essential roles in plant defence in Arabidopsis, but their roles in legume symbiosis are yet to be explored. Here, we identified a total of 25 TGA (named GmTGA1-GmTGA25) genes in soybean. Through phylogenetic analysis, we discovered a clade of GmTGA proteins that appear to be legume-specific. Among them, two GmTGAs were unique by possessing the autophagy sequence in their proteins, while the third one was an orphan gene in soybean. GmTGAs were structurally different from AtTGAs, and their expression patterns also differed with the dominant expression of AtTGAs and GmTGAs in aerial and underground parts, respectively. Moreover, twenty-five GmTGAs showed a strong correlation among the gene expression in roots, nodules, and root hairs. The qRT-PCR analysis results revealed that among 15 tested GmTGAs, six were induced and four were suppressed by rhizobia inoculation, while 11 of these GmTGAs were induced by high nitrate. Our findings suggested the important roles of GmTGAs in symbiotic nodulation and in response to nitrogen availability in soybean.
Collapse
Affiliation(s)
- Ihteram Ullah
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Agriculture Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Mahmoud Magdy
- Key laboratory of horticulture, plant biology, Huazhong Agricultural University, Wuhan, China
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Lixiang Wang
- State Key Laboratory of Agriculture Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
- School of biological and chemical engineering, Panzhihua University, Panzhihua, China
| | - Mengyu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xia Li
- State Key Laboratory of Agriculture Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
19
|
Roy Choudhury S, Johns SM, Pandey S. A convenient, soil-free method for the production of root nodules in soybean to study the effects of exogenous additives. PLANT DIRECT 2019; 3:e00135. [PMID: 31245773 PMCID: PMC6589526 DOI: 10.1002/pld3.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 05/16/2023]
Abstract
Legumes develop root nodules that harbor endosymbiotic bacteria, rhizobia. These rhizobia convert nitrogen to ammonia by biological nitrogen fixation. A thorough understanding of the biological nitrogen fixation in legumes and its regulation is key to develop sustainable agriculture. It is well known that plant hormones affect nodule formation; however, most studies are limited to model legumes due to their suitability for in vitro, plate-based assays. Specifically, it is almost impossible to measure the effects of exogenous hormones or other additives during nodule development in crop legumes such as soybean as they have huge root system in soil. To circumvent this issue, the present research develops suitable media and growth conditions for efficient nodule development under in vitro, soil-free conditions in an important legume crop, soybean. Moreover, we also evaluate the effects of all major phytohormones on soybean nodule development under identical growing conditions. Phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) had an overall inhibitory effect and those such as gibberellic acid (GA) or brassinosteroids (BRs) had an overall positive effect on nodule formation. This versatile, inexpensive, scalable, and simple protocol provides several advantages over previously established methods. It is extremely time- and resource-efficient, does not require special training or equipment, and produces highly reproducible results. The approach is expandable to other large legumes as well as for other exogenous additives.
Collapse
Affiliation(s)
| | | | - Sona Pandey
- Donald Danforth Plant Science CenterSt. LouisMissouri
| |
Collapse
|
20
|
Rodrigues-Corrêa KCDS, Honda MDH, Borthakur D, Fett-Neto AG. Mimosine accumulation in Leucaena leucocephala in response to stress signaling molecules and acute UV exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:432-440. [PMID: 30482504 DOI: 10.1016/j.plaphy.2018.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 05/14/2023]
Abstract
Mimosine is a non-protein amino acid of Fabaceae, such as Leucaena spp. and Mimosa spp. Several relevant biological activities have been described for this molecule, including cell cycle blocker, anticancer, antifungal, antimicrobial, herbivore deterrent and allelopathic activities, raising increased economic interest in its production. In addition, information on mimosine dynamics in planta remains limited. In order to address this topic and propose strategies to increase mimosine production aiming at economic uses, the effects of several stress-related elicitors of secondary metabolism and UV acute exposure were examined on mimosine accumulation in growth room-cultivated seedlings of Leucaena leucocephala spp. glabrata. Mimosine concentration was not significantly affected by 10 ppm salicylic acid (SA) treatment, but increased in roots and shoots of seedlings treated with 84 ppm jasmonic acid (JA) and 10 ppm Ethephon (an ethylene-releasing compound), and in shoots treated with UV-C radiation. Quantification of mimosine amidohydrolase (mimosinase) gene expression showed that ethephon yielded variable effect over time, whereas JA and UV-C did not show significant impact. Considering the strong induction of mimosine accumulation by acute UV-C exposure, additional in situ ROS localization, as well as in vitro antioxidant assays were performed, suggesting that, akin to several secondary metabolites, mimosine may be involved in general oxidative stress modulation, acting as a hydrogen peroxide and superoxide anion quencher.
Collapse
Affiliation(s)
- Kelly Cristine da Silva Rodrigues-Corrêa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box CP 15005, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil; Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA.
| | - Michael D H Honda
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA.
| | - Dulal Borthakur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA.
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), P.O. Box CP 15005, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
21
|
Martín-Rodríguez JÁ, Leija A, Formey D, Hernández G. The MicroRNA319d/TCP10 Node Regulates the Common Bean - Rhizobia Nitrogen-Fixing Symbiosis. FRONTIERS IN PLANT SCIENCE 2018; 9:1175. [PMID: 30147704 PMCID: PMC6095992 DOI: 10.3389/fpls.2018.01175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/23/2018] [Indexed: 05/30/2023]
Abstract
Micro-RNAs from legume plants are emerging as relevant regulators of the rhizobia nitrogen-fixing symbiosis. In this work we functionally characterized the role of the node conformed by micro-RNA319 (miR319) - TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factor in the common bean (Phaseolus vulgaris) - Rhizobium tropici symbiosis. The miR319d, one of nine miR319 isoforms from common bean, was highly expressed in root and nodules from inoculated plants as compared to roots from fertilized plants. The miR319d targets TCP10 (Phvul.005G067950), identified by degradome analysis, whose expression showed a negative correlation with miR319d expression. The phenotypic analysis of R. tropici-inoculated composite plants with transgenic roots/nodules overexpressing or silencing the function of miR319d demonstrated the relevant role of the miR319d/TCP10 node in the common bean rhizobia symbiosis. Increased miR319d resulted in reduced root length/width ratio, increased rhizobial infection evidenced by more deformed root hairs and infection threads, and decreased nodule formation and nitrogenase activity per plant. In addition, these plants with lower TCP10 levels showed decreased expression level of the jasmonic acid (JA) biosynthetic gene: LOX2. The transcription of LOX2 by TCPs has been demonstrated for Arabidopsis and in several plants LOX2 level and JA content have been associate with TCP levels. On this basis, we propose that in roots/nodules of inoculated common bean plants TCP10 could be the transcriptional regulator of LOX2 and the miR319d/TCP10 node could affect nodulation through JA signaling. However, given the complexity of nodulation, the participation of other signaling pathways in the phenotypes observed cannot be ruled out.
Collapse
|
22
|
Liu H, Zhang C, Yang J, Yu N, Wang E. Hormone modulation of legume-rhizobial symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:632-648. [PMID: 29578639 DOI: 10.1111/jipb.12653] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 05/16/2023]
Abstract
Leguminous plants can establish symbiotic associations with diazotropic rhizobia to form nitrogen-fixating nodules, which are classified as determinate or indeterminate based on the persistence of nodule meristem. The formation of nitrogen-fixing nodules requires coordinating rhizobial infection and root nodule organogenesis. The formation of an infection thread and the extent of nodule formation are largely under plant control, but vary with environmental conditions and the physiological state of the host plants. Many achievements in these two areas have been made in recent decades. Phytohormone signaling pathways have gradually emerged as important regulators of root nodule symbiosis. Cytokinin, strigolactones (SLs) and local accumulation of auxin can promote nodule development. Ethylene, jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA) all negatively regulate infection thread formation and nodule development. However, salicylic acid (SA) and brassinosteroids (BRs) have different effects on the formation of these two nodule types. Some peptide hormones are also involved in nodulation. This review summarizes recent findings on the roles of these plant hormones in legume-rhizobial symbiosis, and we propose that DELLA proteins may function as a node to integrate plant hormones to regulate nodulation.
Collapse
Affiliation(s)
- Huan Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
23
|
Bastías DA, Alejandra Martínez-Ghersa M, Newman JA, Card SD, Mace WJ, Gundel PE. The plant hormone salicylic acid interacts with the mechanism of anti-herbivory conferred by fungal endophytes in grasses. PLANT, CELL & ENVIRONMENT 2018; 41:395-405. [PMID: 29194664 DOI: 10.1111/pce.13102] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
The plant hormone salicylic acid (SA) is recognized as an effective defence against biotrophic pathogens, but its role as regulator of beneficial plant symbionts has received little attention. We studied the relationship between the SA hormone and leaf fungal endophytes on herbivore defences in symbiotic grasses. We hypothesize that the SA exposure suppresses the endophyte reducing the fungal-produced alkaloids. Because of the role that alkaloids play in anti-herbivore defences, any reduction in their production should make host plants more susceptible to herbivores. Lolium multiflorum plants symbiotic and nonsymbiotic with the endophyte Epichloë occultans were exposed to SA followed by a challenge with the aphid Rhopalosiphum padi. We measured the level of plant resistance to aphids, and the defences conferred by endophytes and host plants. Symbiotic plants had lower concentrations of SA than did the nonsymbiotic counterparts. Consistent with our prediction, the hormonal treatment reduced the concentration of loline alkaloids (i.e., N-formyllolines and N-acetylnorlolines) and consequently decreased the endophyte-conferred resistance against aphids. Our study highlights the importance of the interaction between the plant immune system and endophytes for the stability of the defensive mutualism. Our results indicate that the SA plays a critical role in regulating the endophyte-conferred resistance against herbivores.
Collapse
Affiliation(s)
- Daniel A Bastías
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - M Alejandra Martínez-Ghersa
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| | - Jonathan A Newman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Stuart D Card
- Forage Science, AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Wade J Mace
- Forage Science, AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Pedro E Gundel
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
| |
Collapse
|
24
|
Allene oxide synthase, allene oxide cyclase and jasmonic acid levels in Lotus japonicus nodules. PLoS One 2018; 13:e0190884. [PMID: 29304107 PMCID: PMC5755929 DOI: 10.1371/journal.pone.0190884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022] Open
Abstract
Jasmonic acid (JA), its derivatives and its precursor cis-12-oxo phytodienoic acid (OPDA) form a group of phytohormones, the jasmonates, representing signal molecules involved in plant stress responses, in the defense against pathogens as well as in development. Elevated levels of JA have been shown to play a role in arbuscular mycorrhiza and in the induction of nitrogen-fixing root nodules. In this study, the gene families of two committed enzymes of the JA biosynthetic pathway, allene oxide synthase (AOS) and allene oxide cyclase (AOC), were characterized in the determinate nodule-forming model legume Lotus japonicus JA levels were to be analysed in the course of nodulation. Since in all L. japonicus organs examined, JA levels increased upon mechanical disturbance and wounding, an aeroponic culture system was established to allow for a quick harvest, followed by the analysis of JA levels in whole root and shoot systems. Nodulated plants were compared with non-nodulated plants grown on nitrate or ammonium as N source, respectively, over a five week-period. JA levels turned out to be more or less stable independently of the growth conditions. However, L. japonicus nodules formed on aeroponically grown plants often showed patches of cells with reduced bacteroid density, presumably a stress symptom. Immunolocalization using a heterologous antibody showed that the vascular systems of these nodules also seemed to contain less AOC protein than those of nodules of plants grown in perlite/vermiculite. Hence, aeroponically grown L. japonicus plants are likely to be habituated to stress which could have affected JA levels.
Collapse
|
25
|
Rehman NU, Ali M, Ahmad MZ, Liang G, Zhao J. Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max). Microb Pathog 2018; 114:420-430. [PMID: 29191709 DOI: 10.1016/j.micpath.2017.11.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022]
Abstract
Strigolactones (SLs) play an important role in controlling root growth, shoot branching, and plant-symbionts interaction. Despite the importance, the components of SL biosynthesis and signaling have not been unequivocally explored in soybean. Here we identified the putative components of SL synthesis enzymes GmMAX1a and GmMAX4a with tissue expression patterns and were apparently regulated by rhizobia infection and changed during nodule development. GmMAX1a and GmMAX4a were further characterized in soybean nodulation with knockdown transgenic hairy roots. GmMAX1a and GmMAX4a knockdown lines exhibit decreased nodule number and expression levels of several nodulation genes required for nodule development. Hormone analysis showed that GmMAX1a and GmMAX4a knockdown hairy roots had increased physiological level of ABA and JA but significantly decreased auxin content. This study not only revealed the conservation of SL biosynthesis but also showed close interactions between SL and other hormone signaling in controlling plant development and legume-rhizobia interaction.
Collapse
Affiliation(s)
- Naveed Ur Rehman
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Mohammed Ali
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Muhammad Zulfiqar Ahmad
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, China; State Key Lab of Tea Plant Biology and Utilization, Anhui Agricultural University, China
| | - Guo Liang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, China.
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, China; State Key Lab of Tea Plant Biology and Utilization, Anhui Agricultural University, China.
| |
Collapse
|
26
|
Haq BUI, Ahmad MZ, ur Rehman N, Wang J, Li P, Li D, Zhao J. Functional characterization of soybean strigolactone biosynthesis and signaling genes in Arabidopsis MAX mutants and GmMAX3 in soybean nodulation. BMC PLANT BIOLOGY 2017; 17:259. [PMID: 29268717 PMCID: PMC5740752 DOI: 10.1186/s12870-017-1182-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/22/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Strigolactones (SLs) play important roles in controlling root growth, shoot branching, and plant-symbionts interaction. Despite the importance, the components of SL biosynthesis and signaling have not been unequivocally explored in soybean. RESULTS Here we identified the putative components of SL synthetic enzymes and signaling proteins in soybean genome. Soybean genome contains conserved MORE AXILLARY BRANCHING (MAX) orthologs, GmMAX1s, GmMAX2s, GmMAX3s, and GmMAX4s. The tissue expression patterns are coincident with SL synthesis in roots and signaling in other tissues under normal conditions. GmMAX1a, GmMAX2a, GmMAX3b, and GmMAX4a expression in their Arabidopsis orthologs' mutants not only restored most characteristic phenotypes, such as shoot branching and shoot height, leaf shape, primary root length, and root hair growth, but also restored the significantly changed hormone contents, such as reduced JA and ABA contents in all mutant leaves, but increased auxin levels in atmax1, atmax3 and atmax4 mutants. Overexpression of these GmMAXs also altered the hormone contents in wild-type Arabidopsis. GmMAX3b was further characterized in soybean nodulation with overexpression and knockdown transgenic hairy roots. GmMAX3b overexpression (GmMAX3b-OE) lines exhibited increased nodule number while GmMAX3b knockdown (GmMAX3b-KD) decreased the nodule number in transgenic hairy roots. The expression levels of several key nodulation genes were also altered in GmMAX3b transgenic hairy roots. GmMAX3b overexpression hairy roots had reduced ABA, but increased JA levels, with no significantly changed auxin content, while the contrast changes were observed in GmMAX3b-KD lines. Global gene expression in GmMAX3b-OE or GmMAX3b-KD hairy roots also revealed that altered expression of GmMAX3b in soybean hairy roots changed several subsets of genes involved in hormone biosynthesis and signaling and transcriptional regulation of nodulation processes. CONCLUSIONS This study not only revealed the conservation of SL biosynthesis and signaling in soybean, but also showed possible interactions between SL and other hormone synthesis and signaling during controlling plant development and soybean nodulation. GmMAX3b-mediated SL biosynthesis and signaling may be involved in soybean nodulation by affecting both root hair formation and its interaction with rhizobia.
Collapse
Affiliation(s)
- Basir UI Haq
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075 China
| | - Muhammad Zulfiqar Ahmad
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Naveed ur Rehman
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075 China
| | - Junjie Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075 China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075 China
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430075 China
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
27
|
Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Front Microbiol 2017; 8:2552. [PMID: 29312235 PMCID: PMC5742157 DOI: 10.3389/fmicb.2017.02552] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/08/2017] [Indexed: 02/05/2023] Open
Abstract
One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only 'passengers' with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as 'gatekeepers' to screen soil bacteria from the rhizosphere and rhizoplane. This typically results in root endophytic microbiome dominated by Proteobacteria, Actinobacteria and to a lesser extent Bacteroidetes and Firmicutes, but Acidobacteria and Gemmatimonadetes being almost depleted. A synthesis of available data suggest that motility, plant cell-wall degradation ability and reactive oxygen species scavenging seem to be crucial traits for successful endophytic colonization and establishment of bacteria. Recent studies provide solid evidence that these bacteria serve host functions such as improving of plant nutrients through acquisition of nutrients from soil and nitrogen fixation in leaves. Additionally, some endophytes can engage 'priming' plants which elicit a faster and stronger plant defense once pathogens attack. Due to these plant growth-promoting effects, endophytic bacteria are being widely explored for their use in the improvement of crop performance. Updating the insights into the mechanism of endophytic bacterial colonization and interactions with plants is an important step in potentially manipulating endophytic bacteria/microbiome for viable strategies to improve agricultural production.
Collapse
Affiliation(s)
- Hongwei Liu
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lilia C. Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Mark Crawford
- Department of Natural Resources and Mines, Toowoomba, QLD, Australia
| | - Eugenie Singh
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul G. Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Peer M. Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
28
|
|
29
|
Jasmonic acid signalling and the plant holobiont. Curr Opin Microbiol 2017; 37:42-47. [PMID: 28437665 DOI: 10.1016/j.mib.2017.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/22/2017] [Indexed: 01/14/2023]
Abstract
The plant holobiont - which is the plant and its associated microbiome - is increasingly viewed as an evolving entity. Some interacting microbes that compose the microbiome assist plants in combating pathogens and herbivorous insects. However, knowledge of the factors that influence the microbiome in the context of defence signalling pathways is still in its infancy. Recent research reported that changes in jasmonic acid (JA) and salicylic acid signalling affects the root microbiome of Arabidopsis thaliana. This review aims to present the hypothesis that the JA pathway represents a novel mechanism for microbiome engineering for improved holobiont fitness in agricultural systems.
Collapse
|
30
|
Rudikovskaya EG, Akimova GP, Rudikovskii AV, Katysheva NB, Dudareva LV. Content of salicylic and jasmonic acids in pea roots (Pisum sativum L.) at the initial stage of symbiotic or pathogenic interaction with bacteria of the family Rhizobiaceae. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Liu H, Carvalhais LC, Schenk PM, Dennis PG. Effects of jasmonic acid signalling on the wheat microbiome differ between body sites. Sci Rep 2017; 7:41766. [PMID: 28134326 PMCID: PMC5278374 DOI: 10.1038/srep41766] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/28/2016] [Indexed: 11/28/2022] Open
Abstract
Jasmonic acid (JA) signalling helps plants to defend themselves against necrotrophic pathogens and herbivorous insects and has been shown to influence the root microbiome of Arabidopsis thaliana. In this study, we determined whether JA signalling influences the diversity and functioning of the wheat (Triticum aestivum) microbiome and whether these effects are specific to particular parts of the plant. Activation of the JA pathway was achieved via exogenous application of methyl jasmonate and was confirmed by significant increases in the abundance of 10 JA-signalling-related gene transcripts. Phylogenetic marker gene sequencing revealed that JA signalling reduced the diversity and changed the composition of root endophytic but not shoot endophytic or rhizosphere bacterial communities. The total enzymatic activity and substrate utilisation profiles of rhizosphere bacterial communities were not affected by JA signalling. Our findings indicate that the effects of JA signalling on the wheat microbiome are specific to individual plant compartments.
Collapse
Affiliation(s)
- Hongwei Liu
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lilia C Carvalhais
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Paul G Dennis
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
32
|
Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Front Microbiol 2017. [PMID: 29312235 DOI: 10.1016/j.apsoil.2011.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only 'passengers' with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as 'gatekeepers' to screen soil bacteria from the rhizosphere and rhizoplane. This typically results in root endophytic microbiome dominated by Proteobacteria, Actinobacteria and to a lesser extent Bacteroidetes and Firmicutes, but Acidobacteria and Gemmatimonadetes being almost depleted. A synthesis of available data suggest that motility, plant cell-wall degradation ability and reactive oxygen species scavenging seem to be crucial traits for successful endophytic colonization and establishment of bacteria. Recent studies provide solid evidence that these bacteria serve host functions such as improving of plant nutrients through acquisition of nutrients from soil and nitrogen fixation in leaves. Additionally, some endophytes can engage 'priming' plants which elicit a faster and stronger plant defense once pathogens attack. Due to these plant growth-promoting effects, endophytic bacteria are being widely explored for their use in the improvement of crop performance. Updating the insights into the mechanism of endophytic bacterial colonization and interactions with plants is an important step in potentially manipulating endophytic bacteria/microbiome for viable strategies to improve agricultural production.
Collapse
Affiliation(s)
- Hongwei Liu
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Lilia C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Mark Crawford
- Department of Natural Resources and Mines, Toowoomba, QLD, Australia
| | - Eugenie Singh
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
33
|
Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S. Jasmonates: Multifunctional Roles in Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:813. [PMID: 27379115 PMCID: PMC4908892 DOI: 10.3389/fpls.2016.00813] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) [Jasmonic acid (JA) and methyl jasmonates (MeJAs)] are known to take part in various physiological processes. Exogenous application of JAs so far tested on different plants under abiotic stresses particularly salinity, drought, and temperature (low/high) conditions have proved effective in improving plant stress tolerance. However, its extent of effectiveness entirely depends on the type of plant species tested or its concentration. The effects of introgression or silencing of different JA- and Me-JA-related genes have been summarized in this review, which have shown a substantial role in improving crop yield and quality in different plants under stress or non-stress conditions. Regulation of JAs synthesis is impaired in stressed as well as unstressed plant cells/tissues, which is believed to be associated with a variety of metabolic events including signal transduction. Although, mitogen activated protein kinases (MAPKs) are important components of JA signaling and biosynthesis pathways, nitric oxide, ROS, calcium, ABA, ethylene, and salicylic acid are also important mediators of plant growth and development during JA signal transduction and synthesis. The exploration of other signaling molecules can be beneficial to examine the details of underlying molecular mechanisms of JA signal transduction. Much work is to be done in near future to find the proper answers of the questions like action of JA related metabolites, and identification of universal JA receptors etc. Complete signaling pathways involving MAPKs, CDPK, TGA, SIPK, WIPK, and WRKY transcription factors are yet to be investigated to understand the complete mechanism of action of JAs.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, S.P. CollegeSrinagar, India
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Management, Faculty of Forestry, Universiti Putra MalaysiaSelangor, Malaysia
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and TechnologyIslamabad, Pakistan
| | - Subzar A. Sheikh
- Department of Botany, Govt. Degree College (Boys), AnantnagAnantnag, India
| | - Nudrat A. Akram
- Department of Botany, GC University FaisalabadFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - A. M. Kazi
- Department of Botany, University of SargodhaSargodha, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
34
|
Li Y, Xu M, Wang N, Li Y. A JAZ Protein in Astragalus sinicus Interacts with a Leghemoglobin through the TIFY Domain and Is Involved in Nodule Development and Nitrogen Fixation. PLoS One 2015; 10:e0139964. [PMID: 26460857 PMCID: PMC4603794 DOI: 10.1371/journal.pone.0139964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/20/2015] [Indexed: 11/18/2022] Open
Abstract
Leghemoglobins (Lbs) play an important role in legumes-rhizobia symbiosis. Lbs bind O2 and protect nitrogenase activity from damage by O2 in nodules, therefore, they are regarded as a marker of active nitrogen fixation in nodules. Additionally, Lbs are involved in the nitric oxide (NO) signaling pathway, acting as a NO scavenger during nodule development and nitrogen fixation. However, regulators responsible for Lb expression and modulation of Lb activity have not been characterized. In our previous work, a Jasmonate-Zim-domain (JAZ) protein interacting with a Lb (AsB2510) in Astragalus sinicus was identified and designated AsJAZ1. In this study, the interaction between AsJAZ1 and AsB2510 was verified using a yeast two-hybrid system and in vitro Glutathione S-transferase (GST) pull-down assays, resulting in identification of the interaction domain as a TIFY (previously known as zinc-finger protein expressed in inflorescence meristem, ZIM) domain. TIFY domain is named after the most conserved amino acids within the domain. Bimolecular fluorescence complementation (BiFC) was used to confirm the interaction between AsJAZ1 and AsB2510 in tobacco cells, demonstrating that AsJAZ1-AsB2510 interaction was localized to the cell membrane and cytoplasm. Furthermore, the expression patterns and the symbiotic phenotypes of AsJAZ1 were investigated. Knockdown of AsJAZ1 expression via RNA interference led to decreased number of nodules, abnormal development of bacteroids, accumulation of poly-x-hydroxybutyrate (PHB) and loss of nitrogenase activity. Taken together, our results suggest that AsJAZ1 interacts with AsB2510 and participates in nodule development and nitrogen fixation. Our results provide novel insights into the functions of Lbs or JAZ proteins during legume-rhizobia symbiosis.
Collapse
Affiliation(s)
- Yixing Li
- Guangxi Experiment Centre of Science and Technology, Guangxi University, Nanning 530004, People’s Republic of China
- College of Animal Science and Technology, Guangxi University, Nanning 530004, People’s Republic of China
| | - Meng Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Ning Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| |
Collapse
|
35
|
Sugiyama A, Fukuda S, Takanashi K, Yoshioka M, Yoshioka H, Narusaka Y, Narusaka M, Kojima M, Sakakibara H, Shitan N, Sato S, Tabata S, Kawaguchi M, Yazaki K. Molecular Characterization of LjABCG1, an ATP-Binding Cassette Protein in Lotus japonicus. PLoS One 2015; 10:e0139127. [PMID: 26418593 PMCID: PMC4587964 DOI: 10.1371/journal.pone.0139127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022] Open
Abstract
LjABCG1, a full-size ABCG subfamily of ATP-binding cassette proteins of a model legume, Lotus japonicus, was reported as a gene highly expressed during the early stages of nodulation, but have not been characterized in detail. In this study we showed that the induction of LjABCG1 expression was remarkable by methyl jasmonate treatment, and reporter gene experiments indicated that LjABCG1 was strongly expressed in the nodule parenchyma and cell layers adjacent to the root vascular tissue toward the nodule. LjABCG1 was suggested to be localized at the plasma membrane based on the fractionation of microsomal membranes as well as separation via aqueous two-phase partitioning. The physiological functions of LjABCG1 in symbiosis and pathogenesis were analyzed in homologous and heterologous systems. LjABCG1 knock-down L. japonicus plants did not show clear phenotypic differences in nodule formation, and not in defense against Pseudomonas syringae, either. In contrast, when LjABCG1 was expressed in the Arabidopsis pdr8-1 mutant, the penetration frequency of Phytophthora infestans, a potato late blight pathogen, was significantly reduced in LjABCG1/pdr8-1 than in pdr8-1 plants. This finding indicated that LjABCG1, at least partially, complemented the phenotype of pdr8 in Arabidopsis, suggesting the multiple roles of this protein in plant-microbe interactions.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Shoju Fukuda
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Kojiro Takanashi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Miki Yoshioka
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Hirofumi Yoshioka
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshihiro Narusaka
- Research Institute for Biological Sciences, Okayama, 7549-1, Yoshikawa, Kaga-gun, Okayama, 716-1241, Japan
| | - Mari Narusaka
- Research Institute for Biological Sciences, Okayama, 7549-1, Yoshikawa, Kaga-gun, Okayama, 716-1241, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Nobukazu Shitan
- Laboratory of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan; Kazusa DNA Research Institute, 2-6-7, Kazusa-Kamatari, Kisarazu, Chiba, 292-0812, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7, Kazusa-Kamatari, Kisarazu, Chiba, 292-0812, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| |
Collapse
|
36
|
Wang C, Yu H, Zhang Z, Yu L, Xu X, Hong Z, Luo L. Phytosulfokine Is Involved in Positive Regulation of Lotus japonicus Nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:847-55. [PMID: 25775272 DOI: 10.1094/mpmi-02-15-0032-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phytosulfokine (PSK) is a tyrosine-sulfated peptide that is widely distributed in plants, participating in cell proliferation, differentiation, and innate immunity. The potential role of PSK in nodulation in legumes has not been reported. In this work, five PSK precursor genes were identified in Lotus japonicas, designated as LjPSK1 to LjPSK5. Three of them (LjPSK1, LjPSK4, and LjPSK5) were found to be expressed in nitrogen-fixing root nodules. LjPSK1 and LjPSK4 were not induced at the early stage of nodulation. Interestingly, while the expression of LjPSK4 was also found in spontaneous nodules without rhizobial colonization, LjPSK1 was not induced in these pseudo nodules. Promoter-β-glucuronidase analysis revealed that LjPSK1 was highly expressed in enlarged symbiotic cells of nodules. Exogenous addition of 1 1M synthetic PSK peptide resulted in increased nodule numbers per plant. Consistently, the number of mature nodules but not the events of rhizobial infection and nodule initiation was increased by overexpressing LjPSK1 in transgenic hairy roots, in which the expression of jasmonate-responsive genes was found to be repressed. These results suggest that PSK is a new peptide signal that regulates nodulation in legumes, probably through cross-talking with other phytohormones.
Collapse
Affiliation(s)
- Chao Wang
- 1 Shanghai Key Lab of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- 2 State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- 3 State Key Lab of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Haixiang Yu
- 2 State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongming Zhang
- 2 State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangliang Yu
- 1 Shanghai Key Lab of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaoshu Xu
- 3 State Key Lab of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zonglie Hong
- 4 Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844, U.S.A
| | - Li Luo
- 1 Shanghai Key Lab of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
37
|
Saha S, DasGupta M. Does SUNN-SYMRK Crosstalk occur in Medicago truncatula for regulating nodule organogenesis? PLANT SIGNALING & BEHAVIOR 2015; 10:e1028703. [PMID: 25893374 PMCID: PMC4883944 DOI: 10.1080/15592324.2015.1028703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recently we reported that overexpression of intracellular kinase domain of Symbiosis Receptor Kinase (SYMRK-kd) hyperactivated spontaneous nodulation in Medicago truncatula indicating the importance of SYMRK ectodomain in restricting nodule number. To clarify whether sunn and sickle pathways were overcome by SYMRK-kd for hyperactivation of nodule organogenesis, we overexpressed SYMRK-kd in these mutants and analyzed for spontaneous nodulation in absence of rhizobia. Spontaneous nodulation in skl/SYMRK-kd roots was 2-fold higher than A17/SYMRK-kd roots indicating nodule organogenesis induced by SYMRK-kd to be ethylene sensitive. Intriguingly, sunn/SYMRK-kd roots failed to generate any spontaneous nodule which directly indicate the LRR-RLK SUNN to have a role in SYMRK-kd mediated nodule development under non-symbiotic conditions. We hypothesize a crosstalk between SUNN and SYMRK receptors for activation as well as restriction of nodule development.
Collapse
Affiliation(s)
- Sudip Saha
- Department of Biochemistry; University of Calcutta; Kolkata, India
| | - Maitrayee DasGupta
- Department of Biochemistry; University of Calcutta; Kolkata, India
- Correspondence to: Maitrayee DasGupta;
| |
Collapse
|
38
|
Yang Y, Sun T, Xu L, Pi E, Wang S, Wang H, Shen C. Genome-wide identification of CAMTA gene family members in Medicago truncatula and their expression during root nodule symbiosis and hormone treatments. FRONTIERS IN PLANT SCIENCE 2015; 6:459. [PMID: 26150823 PMCID: PMC4472986 DOI: 10.3389/fpls.2015.00459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/08/2015] [Indexed: 05/06/2023]
Abstract
Calmodulin-binding transcription activators (CAMTAs) are well-characterized calmodulin-binding transcription factors in the plant kingdom. Previous work shows that CAMTAs play important roles in various biological processes including disease resistance, herbivore attack response, and abiotic stress tolerance. However, studies that address the function of CAMTAs during the establishment of symbiosis between legumes and rhizobia are still lacking. This study undertook comprehensive identification and analysis of CAMTA genes using the latest updated M. truncatula genome. All the MtCAMTA genes were expressed in a tissues-specific manner and were responsive to environmental stress-related hormones. The expression profiling of MtCAMTA genes during the early phase of Sinorhizobium meliloti infection was also analyzed. Our data showed that the expression of most MtCAMTA genes was suppressed in roots by S. meliloti infection. The responsiveness of MtCAMTAs to S. meliloti infection indicated that they may function as calcium-regulated transcription factors in the early nodulation signaling pathway. In addition, bioinformatics analysis showed that CAMTA binding sites existed in the promoter regions of various early rhizobial infection response genes, suggesting possible MtCAMTAs-regulated downstream candidate genes during the early phase of S. meliloti infection. Taken together, these results provide basic information about MtCAMTAs in the model legume M. truncatula, and the involvement of MtCAMTAs in nodule organogenesis. This information furthers our understanding of MtCAMTA protein functions in M. truncatula and opens new avenues for continued research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chenjia Shen
- *Correspondence: Chenjia Shen, College of Life and Environmental Sciences, Hangzhou Normal University, 16 Xuelin Street, Hangzhou 310036, China
| |
Collapse
|
39
|
Khan MIR, Trivellini A, Fatma M, Masood A, Francini A, Iqbal N, Ferrante A, Khan NA. Role of ethylene in responses of plants to nitrogen availability. FRONTIERS IN PLANT SCIENCE 2015; 6:927. [PMID: 26579172 PMCID: PMC4626634 DOI: 10.3389/fpls.2015.00927] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/14/2015] [Indexed: 05/05/2023]
Abstract
Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological processes such as leaf gas exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signaling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signaling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase NUE and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.
Collapse
Affiliation(s)
- M. I. R. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | - Mehar Fatma
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Asim Masood
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | | | - Noushina Iqbal
- Department of Botany, Jamia Hamdard University New Delhi, India
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di MilanoMilan, Italy
| | - Nafees A. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
- *Correspondence: Nafees A. Khan,
| |
Collapse
|
40
|
Ferguson BJ, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 2014; 40:770-90. [PMID: 25052910 DOI: 10.1007/s10886-014-0472-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/16/2022]
Abstract
The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed 'autoregulation of nodulation'. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone-related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and competition of rhizobia in the soil. It also will be interesting to explore the interaction of hormonal signalling pathways between rhizobia and plant pathogens.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agricultural and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | | |
Collapse
|
41
|
Miyaji T, Yamagami A, Kume N, Sakuta M, Osada H, Asami T, Arimoto Y, Nakano T. Brassinosteroid-related transcription factor BIL1/BZR1 increases plant resistance to insect feeding. Biosci Biotechnol Biochem 2014; 78:960-8. [PMID: 25036120 DOI: 10.1080/09168451.2014.910093] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The plant steroid hormones brassinosteroids (BRs) play important roles in plant growth and responses to stresses. The up-regulation of pathogen resistance by BR signaling has been analyzed, but the relationship between BR and insect herbivores remains largely unclear. BIL1/BZR1 is a BR master transcription factor known to be involved in the regulation of plant development through work conducted on a gain of function mutation. Here, we analyzed the function of BIL1/BZR1 in response to insect feeding and demonstrated that resistance against thrip feeding was increased in the bil1-1D/bzr1-1D mutant compared to wild-type. We generated Lotus japonicus transgenic plants that over-express the Arabidopsis bil1/bzr1 mutant, Lj-bil1/bzr1-OX. The Lj-bil1/bzr1-OX plants showed increased resistance to thrip feeding. The expression levels of the jasmoninc acid (JA)-inducible VSP genes were increased in both Arabidopsis bil1-1D/bzr1-1D mutants and L. japonicus Lj-bil1/bzr1-OX plants. The resistance to thrip feeding caused by the BIL1/BZR1 gene may involve JA signaling.
Collapse
|
42
|
Goto DB, Miyazawa H, Mar JC, Sato M. Not to be suppressed? Rethinking the host response at a root-parasite interface. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 213:9-17. [PMID: 24157203 DOI: 10.1016/j.plantsci.2013.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 05/11/2023]
Abstract
Root-knot nematodes are highly efficient plant parasites that establish permanent feeding sites within host roots. The initiation of this feeding site is critical for parasitic success and requires an interaction with multiple signaling pathways involved in plant development and environmental response. Resistance against root-knot nematodes is relatively rare amongst their broad host range and they remain a major threat to agriculture. The development of effective and sustainable control strategies depends on understanding how host signaling pathways are manipulated during invasion of susceptible hosts. It is generally understood that root-knot nematodes either suppress host defense signaling during infestation or are able to avoid detection altogether, explaining their profound success as parasites. However, when compared to the depth of knowledge from other well-studied pathogen interactions, the published data on host responses to root-knot nematode infestation do not yet provide convincing support for this hypothesis and alternative explanations also exist. It is equally possible that defense-like signaling responses are actually induced and required during the early stages of root-knot nematode infestation. We describe how defense-signaling is highly context-dependent and that caution is necessary when interpreting transcriptional responses in the absence of appropriate control data or stringent validation of gene annotation. Further hypothesis-driven studies on host defense-like responses are required to account for these limitations and advance our understanding of root-knot nematode parasitism of plants.
Collapse
Affiliation(s)
- Derek B Goto
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; School of Veterinary and Life Sciences, Murdoch University, Perth, WA 6150, Australia.
| | | | | | | |
Collapse
|
43
|
Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. ANNALS OF BOTANY 2013; 111:1021-58. [PMID: 23558912 PMCID: PMC3662512 DOI: 10.1093/aob/mct067] [Citation(s) in RCA: 1451] [Impact Index Per Article: 131.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development. SCOPE The present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception. CONCLUSIONS The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Collapse
Affiliation(s)
- C Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg, 3, Halle (Saale), Germany.
| | | |
Collapse
|
44
|
cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 2013; 8:e64377. [PMID: 23734198 PMCID: PMC3667139 DOI: 10.1371/journal.pone.0064377] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 11/25/2022] Open
Abstract
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital “in situ”. This digital “in situ” offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.
Collapse
|
45
|
Murakami Y, Yokoyama H, Fukui R, Kawaguchi M. Down-regulation of NSP2 expression in developmentally young regions of Lotus japonicus roots in response to rhizobial inoculation. PLANT & CELL PHYSIOLOGY 2013; 54:518-27. [PMID: 23335614 DOI: 10.1093/pcp/pct008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
During the early 1980s, Bauer and associates reported that nodulation potential in primary roots of soybean seedlings following inoculation with rhizobia was significantly reduced in developmentally younger regions. They suggested that this phenomenon might be due to a fast-acting regulatory mechanism in the host that prevented excessive nodulation. However, the molecular mechanism of this fast-acting regulatory response remains uncertain. Here, we sought to elucidate components of this regulatory mechanism by investigating the expression of the NSP1 and NSP2 genes that encode a GRAS transcription factor required for nodule initiation. First, we confirmed that younger regions of Lotus japonicus roots also show a reduction in nodule numbers in response to Mesorhizobium loti. Then, we compared the expression levels of NSP1 and NSP2 in developmentally younger regions of primary roots. After inoculation with M. loti, expression of NSP1 was transiently induced whereas that of NSP2 was significantly down-regulated 1 d after inoculation. This result implicates that down-regulation of NSP2 might cause a fast-acting regulatory mechanism to prevent further nodulation. Next we overexpressed NSP2 in wild-type plants. Overexpression resulted in the clustering of nodules in the upper region of the root but strong suppression of nodulation in the lower region. In contrast, overexpression of NSP2 in har1 hypernodulating mutants resulted in an increased number of nodule primordia even in the root tip region. These results indicate that HAR1 negatively regulates NSP2-induced excessive nodule formation in the developmentally younger regions of roots.
Collapse
Affiliation(s)
- Yasuhiro Murakami
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, 444-8585 Japan
| | | | | | | |
Collapse
|
46
|
Hayashi S, Gresshoff PM, Ferguson BJ. Systemic Signalling in Legume Nodulation: Nodule Formation and Its Regulation. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Costanzo ME, Andrade A, del Carmen Tordable M, Cassán F, Abdala G. Production and function of jasmonates in nodulated roots of soybean plants inoculated with Bradyrhizobium japonicum. Arch Microbiol 2012; 194:837-45. [PMID: 22547296 DOI: 10.1007/s00203-012-0817-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 02/28/2012] [Accepted: 04/11/2012] [Indexed: 12/18/2022]
Abstract
Little is known regarding production and function of endogenous jasmonates (JAs) in root nodules of soybean plants inoculated with Bradyrhizobium japonicum. We investigated (1) production of jasmonic acid (JA) and 12-oxophytodienoic acid (OPDA) in roots of control and inoculated plants and in isolated nodules; (2) correlations between JAs levels, nodule number, and plant growth during the symbiotic process; and (3) effects of exogenous JA and OPDA on nodule cell number and size. In roots of control plants, JA and OPDA levels reached a maximum at day 18 after inoculation; OPDA level was 1.24 times that of JA. In roots of inoculated plants, OPDA peaked at day 15, whereas JA level did not change appreciably. Shoot dry matter of inoculated plants was higher than that of control at day 21. Chlorophyll a decreased more abruptly in control plants than in inoculated plants, whereas b decreased gradually in both cases. Exogenous JA or OPDA changed number and size of nodule central cells and peripheral cells. Findings from this and previous studies suggest that increased levels of JA and OPDA in control plants are related to senescence induced by nutritional stress. OPDA accumulation in nodulated roots suggests its involvement in "autoregulation of nodulation."
Collapse
Affiliation(s)
- María Emilia Costanzo
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
48
|
Ryu H, Cho H, Choi D, Hwang I. Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Mol Cells 2012; 34:117-26. [PMID: 22820920 PMCID: PMC3887813 DOI: 10.1007/s10059-012-0131-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022] Open
Abstract
Legumes have evolved symbiotic interactions with rhizobial bacteria to efficiently utilize nitrogen. Recent progress in symbiosis has revealed several key components of host plants required for nitrogen-fixing nodule organogenesis, in which complicated metabolic and signaling pathways in the host plant are reprogrammed to generate nodules in the cortex upon perception of the rhizobial Nod factor. Following the recognition of Nod factors, plant hormones are likely to be essential throughout nodule organogenesis for integration of developmental and environmental signaling cues into nodule development. Here, we review the molecular events involved in plant hormonal regulation and signaling cross-talk for nitrogen-fixing nodule development, and discuss how these signaling networks are integrated into Nod factor-mediated signaling during plant-microbe interactions.
Collapse
Affiliation(s)
- Hojin Ryu
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Hyunwoo Cho
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Daeseok Choi
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Ildoo Hwang
- Department of Life Science, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784,
Korea
| |
Collapse
|
49
|
Reid DE, Hayashi S, Lorenc M, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ. Identification of systemic responses in soybean nodulation by xylem sap feeding and complete transcriptome sequencing reveal a novel component of the autoregulation pathway. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:680-9. [PMID: 22624681 DOI: 10.1111/j.1467-7652.2012.00706.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Establishment of the nitrogen-fixing nodulation symbiosis between legumes and rhizobia requires plant-wide reprogramming to allow infection and development of nodules. Nodulation is regulated principally via a mechanism called autoregulation of nodulation (AON). AON is dependent on shoot and root factors and is maintained by the nodulation autoregulation receptor kinase (NARK) in soybean. We developed a bioassay to detect root-derived signalling molecules in xylem sap of soybean plants which may function in AON. The bioassay involves feeding of xylem extracts via the cut hypocotyl of soybean seedlings and monitoring of molecular markers of AON in the leaf. Transcript abundance changes occurring in the leaf in response to feeding were used to determine the biological activity of the extracts. To identify transcript abundance changes that occur during AON, which may also be used in the bioassay, we used an RNA-seq-based transcriptomics approach. We identified changes in the leaves of bioassay plants fed with xylem extracts derived from either Bradyrhizobium japonicum-inoculated or uninoculated plants. Differential expression responses were detected for genes involved in jasmonic acid metabolism, pathogenesis and receptor kinase signalling. We identified an inoculation- and NARK-dependent candidate gene (GmUFD1a) that responds in both the bioassay and intact, inoculated plants. GmUFD1a is a component of the ubiquitin-dependent protein degradation pathway and provides new insight into the molecular responses occurring during AON. It may now also be used in our feeding bioassay as a molecular marker to assist in identifying the factors contributing to the systemic regulation of nodulation.
Collapse
Affiliation(s)
- Dugald E Reid
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Qld, Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Landgraf R, Schaarschmidt S, Hause B. Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms. PLANT, CELL & ENVIRONMENT 2012; 35:1344-57. [PMID: 22329418 DOI: 10.1111/j.1365-3040.2012.02495.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In nature, plants are subject to various stresses that are often accompanied by wounding of the aboveground tissues. As wounding affects plants locally and systemically, we investigated the impact of leaf wounding on interactions of Medicago truncatula with root-colonizing microorganisms, such as the arbuscular mycorrhizal (AM) fungus Glomus intraradices, the pathogenic oomycete Aphanomyces euteiches and the nitrogen-fixing bacterium Sinorhizobium meliloti. To obtain a long-lasting wound response, repeated wounding was performed and resulted in locally and systemically increased jasmonic acid (JA) levels accompanied by the expression of jasmonate-induced genes, among them the genes encoding allene oxide cyclase 1 (MtAOC1) and a putative cell wall-bound invertase (cwINV). After repeated wounding, colonization with the AM fungus was increased, suggesting a role of jasmonates as positive regulators of mycorrhization, whereas the interaction with the rhizobacterium was not affected. In contrast, wounded plants appeared to be less susceptible to pathogens which might be caused by JA-induced defence mechanisms. The effects of wounding on mycorrhization and pathogen infection could be partially mimicked by foliar application of JA. In addition to JA itself, the positive effect on mycorrhization might be mediated by systemically induced cwINV, which was previously shown to exhibit a regulatory function on interaction with AM fungi.
Collapse
Affiliation(s)
- Ramona Landgraf
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | | | | |
Collapse
|