1
|
Tanaka W, Yamauchi T, Tsuda K. Genetic basis controlling rice plant architecture and its modification for breeding. BREEDING SCIENCE 2023; 73:3-45. [PMID: 37168811 PMCID: PMC10165344 DOI: 10.1270/jsbbs.22088] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
The shoot and root system architectures are fundamental for crop productivity. During the history of artificial selection of domestication and post-domestication breeding, the architecture of rice has significantly changed from its wild ancestor to fulfil requirements in agriculture. We review the recent studies on developmental biology in rice by focusing on components determining rice plant architecture; shoot meristems, leaves, tillers, stems, inflorescences and roots. We also highlight natural variations that affected these structures and were utilized in cultivars. Importantly, many core regulators identified from developmental mutants have been utilized in breeding as weak alleles moderately affecting these architectures. Given a surge of functional genomics and genome editing, the genetic mechanisms underlying the rice plant architecture discussed here will provide a theoretical basis to push breeding further forward not only in rice but also in other crops and their wild relatives.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
2
|
Hao N, Cao J, Wang C, Zhu Y, Du Y, Wu T. Understanding the molecular mechanism of leaf morphogenesis in vegetable crops conduces to breeding process. FRONTIERS IN PLANT SCIENCE 2022; 13:971453. [PMID: 36570936 PMCID: PMC9773389 DOI: 10.3389/fpls.2022.971453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Leaf morphology can affect the development and yield of plants by regulating plant architecture and photosynthesis. Several factors can determine the final leaf morphology, including the leaf complexity, size, shape, and margin type, which suggests that leaf morphogenesis is a complex regulation network. The formation of diverse leaf morphology is precisely controlled by gene regulation on translation and transcription levels. To further reveal this, more and more genome data has been published for different kinds of vegetable crops and advanced genotyping approaches have also been applied to identify the causal genes for the target traits. Therefore, the studies on the molecular regulation of leaf morphogenesis in vegetable crops have also been largely improved. This review will summarize the progress on identified genes or regulatory mechanisms of leaf morphogenesis and development in vegetable crops. These identified markers can be applied for further molecular-assisted selection (MAS) in vegetable crops. Overall, the review will contribute to understanding the leaf morphology of different crops from the perspective of molecular regulation and shortening the breeding cycle for vegetable crops.
Collapse
Affiliation(s)
- Ning Hao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, China
| | - Jiajian Cao
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| | - Chunhua Wang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| | - Yipeng Zhu
- Guiyang Productivity Promotion Center, Guiyang Science and Technology Bureau, Guiyang, China
| | - Yalin Du
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, China
| |
Collapse
|
3
|
Du Y, Wu B, Xing Y, Zhang Z. Conservation and divergence: Regulatory networks underlying reproductive branching in rice and maize. J Adv Res 2022; 41:179-190. [PMID: 36328747 PMCID: PMC9637487 DOI: 10.1016/j.jare.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cereal crops are a major source of raw food and nutrition for humans worldwide. Inflorescence of cereal crops is their reproductive organ, which also contributes to crop productivity. The branching pattern in flowering plant species not only determines inflorescence architecture but also determines the grain yield. There are good reviews describing the grass inflorescence architecture contributing to the final grain yield. However, very few discuss the aspects of inflorescence branching. AIM OF REVIEW This review aimed at systematically and comprehensively summarizing the latest progress in the field of conservation and divergence of genetic regulatory network that controls inflorescence branching in maize and rice, provide strategies to efficiently utilize the achievements in reproductive branching for crop yield improvement, and suggest a potential regulatory network underlying the inflorescence branching and vegetative branching system. KEY SCIENTIFIC CONCEPTS OF REVIEW Inflorescence branching is the consequence of a series of developmental events including the initiation, outgrowth, determinacy, and identity of reproductive axillary meristems, and it is controlled by a complex functional hierarchy of genetic networks. Initially, we compared the inflorescence architecture of maize and rice; then, we reviewed the genetic regulatory pathways controlling the inflorescence meristem size, bud initiation, and outgrowth, and the key transition steps that shape the inflorescence branching in maize and rice; additionally, we summarized strategies to effectively apply the recent advances in inflorescence branching for crop yield improvement. Finally, we discussed how the newly discovered hormones coordinate the regulation of inflorescence branching and yield traits. Furthermore, we discussed the possible reason behind distinct regulatory pathways for vegetative and inflorescence branching.
Collapse
Affiliation(s)
- Yanfang Du
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Bi Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Panda S, Majhi PK, Anandan A, Mahender A, Veludandi S, Bastia D, Guttala SB, Singh SK, Saha S, Ali J. Proofing Direct-Seeded Rice with Better Root Plasticity and Architecture. Int J Mol Sci 2021; 22:6058. [PMID: 34199720 PMCID: PMC8199995 DOI: 10.3390/ijms22116058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
The underground reserve (root) has been an uncharted research territory with its untapped genetic variation yet to be exploited. Identifying ideal traits and breeding new rice varieties with efficient root system architecture (RSA) has great potential to increase resource-use efficiency and grain yield, especially under direct-seeded rice, by adapting to aerobic soil conditions. In this review, we tried to mine the available research information on the direct-seeded rice (DSR) root system to highlight the requirements of different root traits such as root architecture, length, number, density, thickness, diameter, and angle that play a pivotal role in determining the uptake of nutrients and moisture at different stages of plant growth. RSA also faces several stresses, due to excess or deficiency of moisture and nutrients, low or high temperature, or saline conditions. To counteract these hindrances, adaptation in response to stress becomes essential. Candidate genes such as early root growth enhancer PSTOL1, surface rooting QTL qSOR1, deep rooting gene DRO1, and numerous transporters for their respective nutrients and stress-responsive factors have been identified and validated under different circumstances. Identifying the desired QTLs and transporters underlying these traits and then designing an ideal root architecture can help in developing a suitable DSR cultivar and aid in further advancement in this direction.
Collapse
Affiliation(s)
- Siddharth Panda
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Prasanta Kumar Majhi
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Anumalla Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| | - Sumanth Veludandi
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Debendranath Bastia
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Suresh Babu Guttala
- Department of Genetics and Plant Breeding, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj 211007, Uttar Pradesh, India;
| | - Shravan Kumar Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Sanjoy Saha
- Crop Production Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India;
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| |
Collapse
|
5
|
Shen C, Li G, Dreni L, Zhang D. Molecular Control of Carpel Development in the Grass Family. FRONTIERS IN PLANT SCIENCE 2021; 12:635500. [PMID: 33664762 PMCID: PMC7921308 DOI: 10.3389/fpls.2021.635500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 05/26/2023]
Abstract
Carpel is the ovule-bearing female reproductive organ of flowering plants and is required to ensure its protection, an efficient fertilization, and the development of diversified types of fruits, thereby it is a vital element of most food crops. The origin and morphological changes of the carpel are key to the evolution and adaption of angiosperms. Progresses have been made in elucidating the developmental mechanisms of carpel establishment in the model eudicot plant Arabidopsis thaliana, while little and fragmentary information is known in grasses, a family that includes many important crops such as rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aestivum). Here, we highlight recent advances in understanding the mechanisms underlying potential pathways of carpel development in grasses, including carpel identity determination, morphogenesis, and floral meristem determinacy. The known role of transcription factors, hormones, and miRNAs during grass carpel formation is summarized and compared with the extensively studied eudicot model plant Arabidopsis. The genetic and molecular aspects of carpel development that are conserved or diverged between grasses and eudicots are therefore discussed.
Collapse
Affiliation(s)
- Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Gang Li
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Ludovico Dreni
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| |
Collapse
|
6
|
Hostetler AN, Khangura RS, Dilkes BP, Sparks EE. Bracing for sustainable agriculture: the development and function of brace roots in members of Poaceae. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101985. [PMID: 33418403 DOI: 10.1016/j.pbi.2020.101985] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 05/28/2023]
Abstract
Optimization of crop production requires root systems to function in water uptake, nutrient use, and anchorage. In maize, two types of nodal roots-subterranean crown and aerial brace roots function in anchorage and water uptake and preferentially express multiple water and nutrient transporters. Brace root development shares genetic control with juvenile-to-adult phase change and flowering time. We present a comprehensive list of the genes known to alter brace roots and explore these as candidates for QTL studies in maize and sorghum. Brace root development and function may be conserved in other members of Poaceae, however research is limited. This work highlights the critical knowledge gap of aerial nodal root development and function and suggests new focus areas for breeding resilient crops.
Collapse
Affiliation(s)
- Ashley N Hostetler
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, United States
| | - Rajdeep S Khangura
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, United States.
| |
Collapse
|
7
|
Li SW. Molecular Bases for the Regulation of Adventitious Root Generation in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:614072. [PMID: 33584771 PMCID: PMC7876083 DOI: 10.3389/fpls.2021.614072] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 05/08/2023]
Abstract
The formation of adventitious roots (ARs) is an ecologically and economically important developmental process in plants. The evolution of AR systems is an important way for plants to cope with various environmental stresses. This review focuses on identified genes that have known to regulate the induction and initiation of ARs and offers an analysis of this process at the molecular level. The critical genes involved in adventitious rooting are the auxin signaling-responsive genes, including the AUXIN RESPONSE FACTOR (ARF) and the LATERAL ORGAN BOUNDARIES-DOMAIN (LOB) gene families, and genes associated with auxin transport and homeostasis, the quiescent center (QC) maintenance, and the root apical meristem (RAM) initiation. Several genes involved in cell wall modulation are also known to be involved in the regulation of adventitious rooting. Furthermore, the molecular processes that play roles in the ethylene, cytokinin, and jasmonic acid signaling pathways and their crosstalk modulate the generation of ARs. The crosstalk and interaction among many molecular processes generates complex networks that regulate AR generation.
Collapse
|
8
|
Wang H, Niu H, Li C, Shen G, Liu X, Weng Y, Wu T, Li Z. WUSCHEL-related homeobox1 (WOX1) regulates vein patterning and leaf size in Cucumis sativus. HORTICULTURE RESEARCH 2020; 7:182. [PMID: 33328463 PMCID: PMC7603520 DOI: 10.1038/s41438-020-00404-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 05/24/2023]
Abstract
In plants, WUSCHEL-related homeobox1 (WOX1) homologs promote lamina mediolateral outgrowth. However, the downstream components linking WOX1 and lamina development remain unclear. In this study, we revealed the roles of WOX1 in palmate leaf expansion in cucumber (Cucumis sativus). A cucumber mango fruit (mf) mutant, resulting from truncation of a WOX1-type protein (CsWOX1), displayed abnormal lamina growth and defects in the development of secondary and smaller veins. CsWOX1 was expressed in the middle mesophyll and leaf margins and rescued defects of the Arabidopsis wox1 prs double mutant. Transcriptomic analysis revealed that genes involved in auxin polar transport and auxin response were highly associated with leaf development. Analysis of the cucumber mf rl (round leaf) double mutant revealed that CsWOX1 functioned in vein development via PINOID (CsPID1)-controlled auxin transport. Overexpression of CsWOX1 in cucumber (CsWOX1-OE) affected vein patterning and produced 'butterfly-shaped' leaves. CsWOX1 physically interacted with CsTCP4a, which may account for the abnormal lamina development in the mf mutant line and the smaller leaves in the CsWOX1-OE plants. Our findings demonstrated that CsWOX1 regulates cucumber leaf vein development by modulating auxin polar transport; moreover, CsWOX1 regulates leaf size by controlling CIN-TCP genes.
Collapse
Affiliation(s)
- Hu Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huanhuan Niu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guoyan Shen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaofeng Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Tao Wu
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zheng Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Wu H, Xie D, Tang Z, Shi D, Yang W. PINOID regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1778-1795. [PMID: 31950589 PMCID: PMC7336374 DOI: 10.1111/pbi.13340] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/14/2019] [Accepted: 12/26/2019] [Indexed: 05/12/2023]
Abstract
In rice (Oryza sativa L.), floral organ development is an important trait. Although a role for PINOID in regulating floral organ development was reported recently, the underlying molecular mechanism remains unclear. Here, we isolated and characterized an abnormal floral organ mutant and mapped the causative gene through an improved MutMap method. Molecular study revealed that the observed phenotype is caused by a point mutation in OsPINOID (OsPID) gene; therefore, we named the mutation as ospid-4. Our data demonstrate that OsPID interacts with OsPIN1a and OsPIN1b to regulate polar auxin transport as shown previously. Additionally, OsPID also interacts with OsMADS16 to regulate transcription during floral organ development in rice. Together, we propose a model that OsPID regulates floral organ development by modulating auxin polar transport and interaction with OsMADS16 and/or LAX1 in rice. These results provide a novel insight into the role of OsPID in regulating floral organ development of rice, especially in stigma development, which would be useful for genetic improvement of high-yield breeding of rice.
Collapse
Affiliation(s)
- Hua‐Mao Wu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Dong‐Jiang Xie
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zuo‐Shun Tang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Dong‐Qiao Shi
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Wei‐Cai Yang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Liu X, Hao N, Li H, Ge D, Du Y, Liu R, Wen C, Li Y, Zhang X, Wu T. PINOID is required for lateral organ morphogenesis and ovule development in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5715-5730. [PMID: 31407012 DOI: 10.1093/jxb/erz354] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 08/01/2019] [Indexed: 05/10/2023]
Abstract
Lateral organ development is essential for cucumber production. The protein kinase PINOID (PID) participates in distinct aspects of plant development by mediating polar auxin transport in different species. Here, we obtained a round leaf (rl) mutant that displayed extensive phenotypes including round leaf shape, inhibited tendril outgrowth, abnormal floral organs, and disrupted ovule genesis. MutMap+ analysis revealed that rl encodes a cucumber ortholog of PID (CsPID). A non-synonymous single nucleotide polymorphism in the second exon of CsPID resulted in an amino acid substitution from arginine to lysine in the rl mutant. Allelic testing using the mutant allele C356 with similar phenotypes verified that CsPID was the causal gene. CsPID was preferentially expressed in young leaf and flower buds and down-regulated in the rl mutant. Subcellular localization showed that the mutant form, Cspid, showed a dotted pattern of localization, in contrast to the continuous pattern of CsPID in the periphery of the cell and nucleus. Complementation analysis in Arabidopsis showed that CsPID, but not Cspid, can partially rescue the pid-14 mutant phenotype. Moreover, indole-3-acetic acid content was greatly reduced in the rl mutant. Transcriptome profiling revealed that transcription factors, ovule morphogenesis, and auxin transport-related genes were significantly down-regulated in the rl mutant. Biochemical analysis showed that CsPID physically interacted with a key polarity protein, CsREV (REVOLUTA). We developed a model in which CsPID regulates lateral organ morphogenesis and ovule development by stimulating genes related to auxin transport and ovule development.
Collapse
Affiliation(s)
- Xiaofeng Liu
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Ning Hao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Huiyuan Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Danfeng Ge
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yalin Du
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Renyi Liu
- College of Horticulture, and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changlong Wen
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing, China
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, Shanxi, China
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, China
| | - Tao Wu
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Song M, Cheng F, Wang J, Wei Q, Fu W, Yu X, Li J, Chen J, Lou Q. A leaf shape mutant provides insight into PINOID Serine/Threonine Kinase function in cucumber (Cucumis sativus L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1000-1014. [PMID: 30421569 DOI: 10.1111/jipb.12739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/08/2018] [Indexed: 05/10/2023]
Abstract
Optimizing leaf shape is a major challenge in efforts to develop an ideal plant type. Cucumber leaf shapes are diverse; however, the molecular regulatory mechanisms underlying leaf shape formation are unknown. In this study, we obtained a round leaf mutant (rl) from an ethyl methanesulfonate-induced mutagenesis population. Genetic analysis revealed that a single recessive gene, rl, is responsible for this mutation. A modified MutMap analysis combined linkage mapping identified a single nucleotide polymorphism within a candidate gene, Csa1M537400, as the mutation underlying the trait. Csa1M537400 encodes a PINOID kinase protein involved in auxin transport. Expression of Csa1M537400 was significantly lower in the rl mutant than in wild type, and it displayed higher levels of IAA (indole-3-acetic acid) in several tissues. Treatment of wild-type plants with an auxin transport inhibitor induced the formation of round leaves, similar to those in the rl mutant. Altered expression patterns of several auxin-related genes in the rl mutant suggest that rl plays a key role in auxin biosynthesis, transport, and response in cucumber. These findings provide insight into the molecular mechanism underlying the regulation of auxin signaling pathways in cucumber, and will be valuable in the development of an ideal plant type.
Collapse
Affiliation(s)
- Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingzhen Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyuan Fu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaqing Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Chongloi GL, Prakash S, Vijayraghavan U. Regulation of meristem maintenance and organ identity during rice reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1719-1736. [PMID: 30753578 DOI: 10.1093/jxb/erz046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Grasses have evolved complex inflorescences, where the primary unit is the specialized short branch called a spikelet. Detailed studies of the cumulative action of the genetic regulators that direct the progressive change in axillary meristem identity and their terminal differentiation are crucial to understanding the complexities of the inflorescence and the development of a determinate floret. Grass florets also pose interesting questions concerning the morphologies and functions of organs as compared to other monocots and eudicots. In this review, we summarize our current knowledge of the regulation of the transitions that occur in grass inflorescence meristems, and of the specification of floret meristems and their determinate development. We primarily use rice as a model, with appropriate comparisons to other crop models and to the extensively studied eudicot Arabidopsis. The role of MADS-domain transcription factors in floral organ patterning is well documented in many eudicots and in grasses. However, there is evidence to suggest that some of these rice floral regulators have evolved distinctive functions and that other grass species-specific factors and regulatory pathways occur - for example the LOFSEP 'E' class genes OsMADS1 and OsMAD34, and ramosa genes. A better understanding of these systems and the epigenetic regulators and hormone signaling pathways that interact with them will provide new insights into the rice inflorescence meristem and the differentiation of its floret organs, and should indicate genetic tools that can be used to control yield-related traits in both rice and other cereal crops.
Collapse
Affiliation(s)
- Grace L Chongloi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sandhan Prakash
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
13
|
Yao H, Skirpan A, Wardell B, Matthes MS, Best NB, McCubbin T, Durbak A, Smith T, Malcomber S, McSteen P. The barren stalk2 Gene Is Required for Axillary Meristem Development in Maize. MOLECULAR PLANT 2019; 12:374-389. [PMID: 30690173 DOI: 10.1016/j.molp.2018.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
The diversity of plant architecture is determined by axillary meristems (AMs). AMs are produced from small groups of stem cells in the axils of leaf primordia and generate vegetative branches and reproductive inflorescences. Previous studies identified genes critical for AM development that function in auxin biosynthesis, transport, and signaling. barren stalk1 (ba1), a basic helix-loop-helix transcription factor, acts downstream of auxin to control AM formation. Here, we report the cloning and characterization of barren stalk2 (ba2), a mutant that fails to produce ears and has fewer branches and spikelets in the tassel, indicating that ba2 functions in reproductive AM development. Furthermore, the ba2 mutation suppresses tiller growth in the teosinte branched1 mutant, indicating that ba2 also plays an essential role in vegetative AM development. The ba2 gene encodes a protein that co-localizes and heterodimerizes with BA1 in the nucleus. Characterization of the genetic interaction between ba2 and ba1 demonstrates that ba1 shows a gene dosage effect in ba2 mutants, providing further evidence that BA1 and BA2 act together in the same pathway. Characterization of the molecular and genetic interaction between ba2 and additional genes required for the regulation of ba1 further supports this finding. The ba1 and ba2 genes are orthologs of rice genes, LAX PANICLE1 (LAX1) and LAX2, respectively, hence providing insights into pathways controlling AMs development in grasses.
Collapse
Affiliation(s)
- Hong Yao
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Andrea Skirpan
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Brian Wardell
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
| | - Michaela S Matthes
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Norman B Best
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Tyler McCubbin
- Division of Biological Sciences, Interdisciplinary Plant Group, Columbia, MO 65211, USA
| | - Amanda Durbak
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Taylor Smith
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Simon Malcomber
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
14
|
Matthes MS, Best NB, Robil JM, Malcomber S, Gallavotti A, McSteen P. Auxin EvoDevo: Conservation and Diversification of Genes Regulating Auxin Biosynthesis, Transport, and Signaling. MOLECULAR PLANT 2019; 12:298-320. [PMID: 30590136 DOI: 10.1016/j.molp.2018.12.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/02/2018] [Accepted: 12/16/2018] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin has been shown to be of pivotal importance in growth and development of land plants. The underlying molecular players involved in auxin biosynthesis, transport, and signaling are quite well understood in Arabidopsis. However, functional characterizations of auxin-related genes in economically important crops, specifically maize and rice, are still limited. In this article, we comprehensively review recent functional studies on auxin-related genes in both maize and rice, compared with what is known in Arabidopsis, and highlight conservation and diversification of their functions. Our analysis is illustrated by phylogenetic analysis and publicly available gene expression data for each gene family, which will aid in the identification of auxin-related genes for future research. Current challenges and future directions for auxin research in maize and rice are discussed. Developments in gene editing techniques provide powerful tools for overcoming the issue of redundancy in these gene families and will undoubtedly advance auxin research in crops.
Collapse
Affiliation(s)
- Michaela Sylvia Matthes
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Norman Bradley Best
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Janlo M Robil
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Simon Malcomber
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA; Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA.
| |
Collapse
|
15
|
Shi J, Drummond BJ, Habben JE, Brugire N, Weers BP, Hakimi SM, Lafitte HR, Schussler JR, Mo H, Beatty M, Zastrow-Hayes G, O'Neill D. Ectopic expression of ARGOS8 reveals a role for ethylene in root-lodging resistance in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:378-390. [PMID: 30326542 PMCID: PMC7379592 DOI: 10.1111/tpj.14131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 05/22/2023]
Abstract
Ethylene plays a critical role in many diverse processes in plant development. Recent studies have demonstrated that overexpression of the maize ARGOS8 gene reduces the plant's response to ethylene by decreasing ethylene signaling and enhances grain yield in transgenic maize plants. The objective of this study was to determine the effects of ethylene on the development of nodal roots, which are primarily responsible for root-lodging resistance in maize. Exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was found to promote the emergence of nodal roots. Transcriptome analysis of nodal tissues revealed that the expression of genes involved in metabolic processes and cell wall biogenesis was upregulated in response to ACC treatment, supporting the notion that ethylene is a positive regulator for the outgrowth of young root primordia. In BSV::ARGOS8 transgenic plants with reduced ethylene sensitivity due to constitutive overexpression of ARGOS8, nodal root emergence was delayed and the promotional effect of ACC on nodal root emergence decreased. Field tests showed that the BSV::ARGOS8 plants had higher root lodging relative to non-transgenic controls. When ARGOS8 expression was controlled by the developmentally regulated promoter FTM1, which conferred ARGOS8 overexpression in adult plants but not in the nodal roots and nodes in juvenile plants, the FTM1::ARGOS8 plants had no significant difference in root lodging compared with the wild type but produced a higher grain yield. These results suggest that ethylene has a role in promoting nodal root emergence and that a delay in nodal root development has a negative effect on root-lodging resistance in maize.
Collapse
Affiliation(s)
- Jinrui Shi
- Corteva Agriscience, Agriculture Division of DowDuPont, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Bruce J Drummond
- Corteva Agriscience, Agriculture Division of DowDuPont, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Jeffrey E Habben
- Corteva Agriscience, Agriculture Division of DowDuPont, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Norbert Brugire
- Corteva Agriscience, Agriculture Division of DowDuPont, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Ben P Weers
- Corteva Agriscience, Agriculture Division of DowDuPont, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Salim M Hakimi
- Corteva Agriscience, Agriculture Division of DowDuPont, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - H Renee Lafitte
- Corteva Agriscience, Agriculture Division of DowDuPont, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Jeffrey R Schussler
- Corteva Agriscience, Agriculture Division of DowDuPont, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Hua Mo
- Corteva Agriscience, Agriculture Division of DowDuPont, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Mary Beatty
- Corteva Agriscience, Agriculture Division of DowDuPont, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Gina Zastrow-Hayes
- Corteva Agriscience, Agriculture Division of DowDuPont, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| | - Dennis O'Neill
- Corteva Agriscience, Agriculture Division of DowDuPont, 7300 NW 62nd Avenue, Johnston, IA, 50131, USA
| |
Collapse
|
16
|
Inahashi H, Shelley IJ, Yamauchi T, Nishiuchi S, Takahashi-Nosaka M, Matsunami M, Ogawa A, Noda Y, Inukai Y. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. PHYSIOLOGIA PLANTARUM 2018; 164:216-225. [PMID: 29446441 DOI: 10.1111/ppl.12707] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 05/07/2023]
Abstract
Auxin flow is important for different root developmental processes such as root formation, emergence, elongation and gravitropism. However, the detailed information about the mechanisms regulating the auxin flow is less well understood in rice. We characterized the auxin transport-related mutants, Ospin-formed2-1 (Ospin2-1) and Ospin2-2, which exhibited curly root phenotypes and altered lateral root formation patterns in rice. The OsPIN2 gene encodes a member of the auxin efflux carrier proteins that possibly regulates the basipetal auxin flow from the root tip toward the root elongation zone. According to DR5-driven GUS expression, there is an asymmetric auxin distribution in the mutants that corresponded with the asymmetric cell elongation pattern in the mutant root tip. Auxin transport inhibitor, N-1-naphthylphthalamic acid and Ospin2-1 Osiaa13 double mutant rescued the curly root phenotype indicating that this phenotype results from a defect in proper auxin distribution. The typical curly root phenotype was not observed when Ospin2-1 was grown in distilled water as an alternative to tap water, although higher auxin levels were found at the root tip region of the mutant than that of the wild-type. Therefore, the lateral root formation zone in the mutant was shifted basipetally compared with the wild-type. These results reflect that an altered auxin flow in the root tip region is responsible for root elongation growth and lateral root formation patterns in rice.
Collapse
Affiliation(s)
- Hiroki Inahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Israt J Shelley
- International Cooperation Center for Agricultural Education, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Takaki Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shunsaku Nishiuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Misuzu Takahashi-Nosaka
- International Cooperation Center for Agricultural Education, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Maya Matsunami
- Faculty of Agriculture, Iwate University, Morioka, Iwate, 020-8550, Japan
| | - Atsushi Ogawa
- Department of Biological Production, Akita Prefectural University, Akita, Akita, 010-0146, Japan
| | - Yusaku Noda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoshiaki Inukai
- International Cooperation Center for Agricultural Education, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- PRESTO, JST, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
17
|
Zhang T, Li R, Xing J, Yan L, Wang R, Zhao Y. The YUCCA-Auxin-WOX11 Module Controls Crown Root Development in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:523. [PMID: 29740464 PMCID: PMC5925970 DOI: 10.3389/fpls.2018.00523] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 05/18/2023]
Abstract
A well-developed root system in rice and other crops can ensure plants to efficiently absorb nutrients and water. Auxin is a key regulator for various aspect of root development, but the detailed molecular mechanisms by which auxin controls crown root development in rice are not understood. We show that overexpression of a YUC gene, which encodes the rate-limiting enzyme in auxin biosynthesis, causes massive proliferation of crown roots. On the other hand, we find that disruption of TAA1, which functions upstream of YUC genes, greatly reduces crown root development. We find that YUC overexpression-induced crown root proliferation requires the presence of the transcription factor WOX11. Moreover, the crown rootless phenotype of taa1 mutants was partially rescued by overexpression of WOX11. Furthermore, we show that WOX11 expression is induced in OsYUC1 overexpression lines, but is repressed in the taa1 mutants. Our results indicate that auxin synthesized by the TAA/YUC pathway is necessary and sufficient for crown root development in rice. Auxin activates WOX11 transcription, which subsequently drives crown root initiation and development, establishing the YUC-Auxin-WOX11 module for crown root development in rice.
Collapse
Affiliation(s)
- Tao Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ruonan Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jialing Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Lang Yan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Rongchen Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yunde Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- Section of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, United States
- *Correspondence: Yunde Zhao, ;
| |
Collapse
|
18
|
Li X, Guo Z, Lv Y, Cen X, Ding X, Wu H, Li X, Huang J, Xiong L. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genet 2017; 13:e1006889. [PMID: 28686596 PMCID: PMC5521850 DOI: 10.1371/journal.pgen.1006889] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/21/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022] Open
Abstract
A variety of adverse conditions including drought stress severely affect rice production. Root system plays a critical role in drought avoidance, which is one of the major mechanisms of drought resistance. In this study, we adopted genome-wide association study (GWAS) to dissect the genetic basis controlling various root traits by using a natural population consisting of 529 representative rice accessions. A total of 413 suggestive associations, containing 143 significant associations, were identified for 21 root traits, such as maximum root length, root volume, and root dry weight under normal and drought stress conditions at the maturation stage. More than 80 percent of the suggestive loci were located in the region of reported QTLs for root traits, while about 20 percent of suggestive loci were novel loci detected in this study. Besides, 11 reported root-related genes, including DRO1, WOX11, and OsPID, were found to co-locate with the association loci. We further proved that the association results can facilitate the efficient identification of causal genes for root traits by the two case studies of Nal1 and OsJAZ1. These loci and their candidate causal genes provide an important basis for the genetic improvement of root traits and drought resistance.
Collapse
Affiliation(s)
- Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zilong Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yan Lv
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xiang Cen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xipeng Ding
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Hua Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jianping Huang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Zhou Y, Dong G, Tao Y, Chen C, Yang B, Wu Y, Yang Z, Liang G, Wang B, Wang Y. Mapping Quantitative Trait Loci Associated with Toot Traits Using Sequencing-Based Genotyping Chromosome Segment Substitution Lines Derived from 9311 and Nipponbare in Rice (Oryza sativa L.). PLoS One 2016; 11:e0151796. [PMID: 27010823 PMCID: PMC4807085 DOI: 10.1371/journal.pone.0151796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 03/06/2016] [Indexed: 11/18/2022] Open
Abstract
Identification of quantitative trait loci (QTLs) associated with rice root morphology provides useful information for avoiding drought stress and maintaining yield production under the irrigation condition. In this study, a set of chromosome segment substitution lines derived from 9311 as the recipient and Nipponbare as donor, were used to analysis root morphology. By combining the resequencing-based bin-map with a multiple linear regression analysis, QTL identification was conducted on root number (RN), total root length (TRL), root dry weight (RDW), maximum root length (MRL), root thickness (RTH), total absorption area (TAA) and root vitality (RV), using the CSSL population grown under hydroponic conditions. A total of thirty-eight QTLs were identified: six for TRL, six for RDW, eight for the MRL, four for RTH, seven for RN, two for TAA, and five for RV. Phenotypic effect variance explained by these QTLs ranged from 2.23% to 37.08%, and four single QTLs had more than 10% phenotypic explanations on three root traits. We also detected the correlations between grain yield (GY) and root traits, and found that TRL, RTH and MRL had significantly positive correlations with GY. However, TRL, RDW and MRL had significantly positive correlations with biomass yield (BY). Several QTLs identified in our population were co-localized with some loci for grain yield or biomass. This information may be immediately exploited for improving rice water and fertilizer use efficiency for molecular breeding of root system architectures.
Collapse
Affiliation(s)
- Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Guichun Dong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yajun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Bin Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yue Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Baohe Wang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou 225007, China
| | - Yulong Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
20
|
Kitomi Y, Kanno N, Kawai S, Mizubayashi T, Fukuoka S, Uga Y. QTLs underlying natural variation of root growth angle among rice cultivars with the same functional allele of DEEPER ROOTING 1. RICE (NEW YORK, N.Y.) 2015; 8:16. [PMID: 25844121 PMCID: PMC4385264 DOI: 10.1186/s12284-015-0049-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/27/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND The functional allele of the rice gene DEEPER ROOTING 1 (DRO1) increases the root growth angle (RGA). However, wide natural variation in RGA is observed among rice cultivars with the functional DRO1 allele. To elucidate genetic factors related to such variation, we quantitatively measured RGA using the basket method and analyzed quantitative trait loci (QTLs) for RGA in three F2 mapping populations derived from crosses between the large RGA-type cultivar Kinandang Patong and each of three accessions with varying RGA: Momiroman has small RGA and was used to produce the MoK-F2 population; Yumeaoba has intermediate RGA (YuK-F2 population); Tachisugata has large RGA (TaK-F2 population). All four accessions belong to the same haplotype group of functional DRO1 allele. RESULTS We detected the following statistically significant QTLs: one QTL on chromosome 4 in MoK-F2, three QTLs on chromosomes 2, 4, and 6 in YuK-F2, and one QTL on chromosome 2 in TaK-F2. Among them, the two QTLs on chromosome 4 were located near DRO2, which has been previously reported as a major QTL for RGA, whereas the two major QTLs for RGA on chromosomes 2 (DRO4) and 6 (DRO5) were novel. With the LOD threshold reduced to 3.0, several minor QTLs for RGA were also detected in each population. CONCLUSION Natural variation in RGA in rice cultivars carrying functional DRO1 alleles may be controlled by a few major QTLs and by several additional minor QTLs.
Collapse
Affiliation(s)
- Yuka Kitomi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Noriko Kanno
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Sawako Kawai
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Tatsumi Mizubayashi
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Shuichi Fukuoka
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Yusaku Uga
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| |
Collapse
|
21
|
Šiukšta R, Vaitkūnienė V, Kaselytė G, Okockytė V, Žukauskaitė J, Žvingila D, Rančelis V. Inherited phenotype instability of inflorescence and floral organ development in homeotic barley double mutants and its specific modification by auxin inhibitors and 2,4-D. ANNALS OF BOTANY 2015; 115:651-63. [PMID: 25660346 PMCID: PMC4343296 DOI: 10.1093/aob/mcu263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Barley (Hordeum vulgare) double mutants Hv-Hd/tw2, formed by hybridization, are characterized by inherited phenotypic instability and by several new features, such as bract/leaf-like structures, long naked gaps in the spike, and a wide spectrum of variations in the basic and ectopic flowers, which are absent in single mutants. Several of these features resemble those of mutations in auxin distribution, and thus the aim of this study was to determine whether auxin imbalances are related to phenotypic variations and instability. The effects of auxin inhibitors and 2,4-D (2,4-dichlorophenoxyacetic acid) on variation in basic and ectopic flowers were therefore examined, together with the effects of 2,4-D on spike structure. METHODS The character of phenotypic instability and the effects of auxin inhibitors and 2,4-D were compared in callus cultures and intact plants of single homeotic Hv-tw2 and Hv-Hooded/Kap (in the BKn3 gene) mutants and alternative double mutant lines: offspring from individual plants in distal hybrid generations (F9-F10) that all had the same BKn3 allele as determined by DNA sequencing. For intact plants, two auxin inhibitors, 9-hydroxyfluorene-9-carboxylic acid (HFCA) and p-chlorophenoxyisobutyric acid (PCIB), were used. KEY RESULTS Callus growth and flower/spike structures of the Hv-tw2 mutant differed in their responses to HFCA and PCIB. An increase in normal basic flowers after exposure to auxin inhibitors and a decrease in their frequencies caused by 2,4-D were observed, and there were also modifications in the spectra of ectopic flowers, especially those with sexual organs, but the effects depended on the genotype. Exposure to 2,4-D decreased the frequency of short gaps and lodicule transformations in Hv-tw2 and of long naked gaps in double mutants. CONCLUSIONS The effects of auxin inhibitors and 2,4-D suggest that ectopic auxin maxima or deficiencies arise in various regions of the inflorescence/flower primordia. Based on the phenotypic instability observed, definite trends in the development of ectopic flower structures may be detected, from insignificant outgrowths on awns to flowers with sterile organs. Phenotypically unstable barley double mutants provide a highly promising genetic system for the investigation of gene expression modules and trend orders.
Collapse
Affiliation(s)
- Raimondas Šiukšta
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Virginija Vaitkūnienė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Greta Kaselytė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Vaiva Okockytė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Justina Žukauskaitė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Donatas Žvingila
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Vytautas Rančelis
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| |
Collapse
|
22
|
Uga Y, Kitomi Y, Yamamoto E, Kanno N, Kawai S, Mizubayashi T, Fukuoka S. A QTL for root growth angle on rice chromosome 7 is involved in the genetic pathway of DEEPER ROOTING 1. RICE (NEW YORK, N.Y.) 2015; 8:8. [PMID: 25844113 PMCID: PMC4384719 DOI: 10.1186/s12284-015-0044-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/20/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Root growth angle (RGA) is an important trait that influences the ability of rice to avoid drought stress. DEEPER ROOTING 1 (DRO1), which is a major quantitative trait locus (QTL) for RGA, is responsible for the difference in RGA between the shallow-rooting cultivar IR64 and the deep-rooting cultivar Kinandang Patong. However, the RGA differences between these cultivars cannot be fully explained by DRO1. The objective of this study was to identify new QTLs for RGA explaining the difference in RGA between these cultivars. RESULTS By crossing IR64 (which has a non-functional allele of DRO1) with Kinandang Patong (which has a functional allele of DRO1), we developed 26 chromosome segment substitution lines (CSSLs) that carried a particular chromosome segment from Kinandang Patong in the IR64 genetic background. Using these CSSLs, we found only one chromosomal region that was related to RGA: on chromosome 9, which includes DRO1. Using an F2 population derived from a cross between Kinandang Patong and the Dro1-NIL (near isogenic line), which had a functional DRO1 allele in the IR64 genetic background, we identified a new QTL for RGA (DRO3) on the long arm of chromosome 7. CONCLUSIONS DRO3 may only affect RGA in plants with a functional DRO1 allele, suggesting that DRO3 is involved in the DRO1 genetic pathway.
Collapse
Affiliation(s)
- Yusaku Uga
- />National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Yuka Kitomi
- />National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Eiji Yamamoto
- />National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
- />(Present address) NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392 Japan
| | - Noriko Kanno
- />National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Sawako Kawai
- />National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Tatsumi Mizubayashi
- />National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Shuichi Fukuoka
- />National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| |
Collapse
|
23
|
Azizi P, Rafii M, Maziah M, Abdullah S, Hanafi M, Latif M, Rashid A, Sahebi M. Understanding the shoot apical meristem regulation: A study of the phytohormones, auxin and cytokinin, in rice. Mech Dev 2015; 135:1-15. [DOI: 10.1016/j.mod.2014.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
|
24
|
Miyamoto K, Matsumoto T, Okada A, Komiyama K, Chujo T, Yoshikawa H, Nojiri H, Yamane H, Okada K. Identification of target genes of the bZIP transcription factor OsTGAP1, whose overexpression causes elicitor-induced hyperaccumulation of diterpenoid phytoalexins in rice cells. PLoS One 2014; 9:e105823. [PMID: 25157897 PMCID: PMC4144896 DOI: 10.1371/journal.pone.0105823] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/24/2014] [Indexed: 01/15/2023] Open
Abstract
Phytoalexins are specialised antimicrobial metabolites that are produced by plants in response to pathogen attack. Momilactones and phytocassanes are the major diterpenoid phytoalexins in rice and are synthesised from geranylgeranyl diphosphate, which is derived from the methylerythritol phosphate (MEP) pathway. The hyperaccumulation of momilactones and phytocassanes due to the hyperinductive expression of the relevant biosynthetic genes and the MEP pathway gene OsDXS3 in OsTGAP1-overexpressing (OsTGAP1ox) rice cells has previously been shown to be stimulated by the chitin oligosaccharide elicitor. In this study, to clarify the mechanisms of the elicitor-stimulated coordinated hyperinduction of these phytoalexin biosynthetic genes in OsTGAP1ox cells, transcriptome analysis and chromatin immunoprecipitation with next-generation sequencing were performed, resulting in the identification of 122 OsTGAP1 target genes. Transcriptome analysis revealed that nearly all of the momilactone and phytocassane biosynthetic genes, which are clustered on chromosomes 4 and 2, respectively, and the MEP pathway genes were hyperinductively expressed in the elicitor-stimulated OsTGAP1ox cells. Unexpectedly, none of the clustered genes was included among the OsTGAP1 target genes, suggesting that OsTGAP1 did not directly regulate the expression of these biosynthetic genes through binding to each promoter region. Interestingly, however, several OsTGAP1-binding regions were found in the intergenic regions among and near the cluster regions. Concerning the MEP pathway genes, only OsDXS3, which encodes a key enzyme of the MEP pathway, possessed an OsTGAP1-binding region in its upstream region. A subsequent transactivation assay further confirmed the direct regulation of OsDXS3 expression by OsTGAP1, but other MEP pathway genes were not included among the OsTGAP1 target genes. Collectively, these results suggest that OsTGAP1 participates in the enhanced accumulation of diterpenoid phytoalexins, primarily through mechanisms other than the direct transcriptional regulation of the genes involved in the biosynthetic pathway of these phytoalexins.
Collapse
Affiliation(s)
- Koji Miyamoto
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, Japan
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Matsumoto
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Atsushi Okada
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kohei Komiyama
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tetsuya Chujo
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hisakazu Yamane
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, Japan
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
25
|
Cardarelli M, Cecchetti V. Auxin polar transport in stamen formation and development: how many actors? FRONTIERS IN PLANT SCIENCE 2014; 5:333. [PMID: 25076953 PMCID: PMC4100440 DOI: 10.3389/fpls.2014.00333] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/24/2014] [Indexed: 05/20/2023]
Abstract
In flowering plants, proper development of stamens, the male reproductive organs, is required for successful sexual reproduction. In Arabidopsis thaliana normally six stamen primordia arise in the third whorl of floral organs and subsequently differentiate into stamen filaments and anthers, where male meiosis occurs, thus ending the early developmental phase. This early phase is followed by a late developmental phase, which consists of a rapid elongation of stamen filaments coordinated with anther dehiscence and pollen maturation, and terminates with mature pollen grain release at anthesis. Increasing evidence suggests that auxin transport is necessary for both early and late phases of stamen development. It has been shown that different members of PIN (PIN-FORMED) family are involved in the early phase, whereas members of both PIN and P-glycoproteins of the ABCB (PGP) transporter families are required during the late developmental phase. In this review we provide an overview of the increasing knowledge on auxin transporters involved in Arabidopsis stamen formation and development and we discuss their role and functional conservation across plant species.
Collapse
Affiliation(s)
- Maura Cardarelli
- Istituto di Biologia, Medicina Molecolare e Nanotecnologie, CNR, Sapienza Università di RomaRome, Italy
- *Correspondence: Maura Cardarelli, Istituto di Biologia, Medicina Molecolare e Nanotecnologie, CNR, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy e-mail:
| | - Valentina Cecchetti
- Istituto di Biologia, Medicina Molecolare e Nanotecnologie, CNR, Sapienza Università di RomaRome, Italy
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di RomaRome, Italy
| |
Collapse
|
26
|
Hanzawa E, Sasaki K, Nagai S, Obara M, Fukuta Y, Uga Y, Miyao A, Hirochika H, Higashitani A, Maekawa M, Sato T. Isolation of a novel mutant gene for soil-surface rooting in rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2013; 6:30. [PMID: 24280269 PMCID: PMC3874653 DOI: 10.1186/1939-8433-6-30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 11/15/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant. RESULTS The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting. CONCLUSION These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes.
Collapse
Affiliation(s)
- Eiko Hanzawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kazuhiro Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Present address: Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Shinsei Nagai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Mitsuhiro Obara
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Yoshimichi Fukuta
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Yusaku Uga
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Akio Miyao
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hirohiko Hirochika
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Masahiko Maekawa
- Institute of Plant Science and Resources, Okayama University, 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Tadashi Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- RIKEN Innovation Center, Ion Beam Breeding Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Uga Y, Yamamoto E, Kanno N, Kawai S, Mizubayashi T, Fukuoka S. A major QTL controlling deep rooting on rice chromosome 4. Sci Rep 2013; 3:3040. [PMID: 24154623 PMCID: PMC3807109 DOI: 10.1038/srep03040] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/09/2013] [Indexed: 11/24/2022] Open
Abstract
Drought is the most serious abiotic stress that hinders rice production under rainfed conditions. Breeding for deep rooting is a promising strategy to improve the root system architecture in shallow-rooting rice cultivars to avoid drought stress. We analysed the quantitative trait loci (QTLs) for the ratio of deep rooting (RDR) in three F2 mapping populations derived from crosses between each of three shallow-rooting varieties (‘ARC5955', ‘Pinulupot1', and ‘Tupa729') and a deep-rooting variety, ‘Kinandang Patong'. In total, we detected five RDR QTLs on chromosomes 2, 4, and 6. In all three populations, QTLs on chromosome 4 were found to be located at similar positions; they explained from 32.0% to 56.6% of the total RDR phenotypic variance. This suggests that one or more key genetic factors controlling the root growth angle in rice is located in this region of chromosome 4.
Collapse
Affiliation(s)
- Yusaku Uga
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 2013; 45:1097-102. [PMID: 23913002 DOI: 10.1038/ng.2725] [Citation(s) in RCA: 677] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/15/2013] [Indexed: 01/27/2023]
Abstract
The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.
Collapse
Affiliation(s)
- Yusaku Uga
- National Institute of Agrobiological Sciences, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Khanday I, Yadav SR, Vijayraghavan U. Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways. PLANT PHYSIOLOGY 2013; 161:1970-83. [PMID: 23449645 PMCID: PMC3613468 DOI: 10.1104/pp.112.212423] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
SEPALLATA (SEP) MADS box transcription factors mediate floral development in association with other regulators. Mutants in five rice (Oryza sativa) SEP genes suggest both redundant and unique functions in panicle branching and floret development. leafy hull sterile1/OsMADS1, from a grass-specific subgroup of LOFSEP genes, is required for specifying a single floret on the spikelet meristem and for floret organ development, but its downstream mechanisms are unknown. Here, key pathways and directly modulated targets of OsMADS1 were deduced from expression analysis after its knockdown and induction in developing florets and by studying its chromatin occupancy at downstream genes. The negative regulation of OsMADS34, another LOFSEP gene, and activation of OsMADS55, a SHORT VEGETATIVE PHASE-like floret meristem identity gene, show its role in facilitating the spikelet-to-floret meristem transition. Direct regulation of other transcription factor genes like OsHB4 (a class III homeodomain Leu zipper member), OsBLH1 (a BEL1-like homeodomain member), OsKANADI2, OsKANADI4, and OsETTIN2 show its role in meristem maintenance, determinacy, and lateral organ development. We found that the OsMADS1 targets OsETTIN1 and OsETTIN2 redundantly ensure carpel differentiation. The multiple effects of OsMADS1 in promoting auxin transport, signaling, and auxin-dependent expression and its direct repression of three cytokinin A-type response regulators show its role in balancing meristem growth, lateral organ differentiation, and determinacy. Overall, we show that OsMADS1 integrates transcriptional and signaling pathways to promote rice floret specification and development.
Collapse
|
30
|
Yoshida A, Ohmori Y, Kitano H, Taguchi-Shiobara F, Hirano HY. Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:327-39. [PMID: 22136599 DOI: 10.1111/j.1365-313x.2011.04872.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Post-embryonic development depends on the activity of meristems in plants, and thus control of cell fate in the meristem is crucial to plant development and its architecture. In grasses such as rice and maize, the fate of reproductive meristems changes from indeterminate meristems, such as inflorescence and branch meristems, to determinate meristems, such as the spikelet meristem. Here we analyzed a recessive mutant of rice, aberrant spikelet and panicle1 (asp1), that showed pleiotropic phenotypes such as a disorganized branching pattern, aberrant spikelet morphology, and disarrangement of phyllotaxy. Close examination revealed that regulation of meristem fate was compromised in asp1: degeneration of the inflorescence meristem was delayed, transition from the branch meristem to the spikelet meristem was accelerated, and stem cell maintenance in both the branch meristem and the spikelet meristem was compromised. The genetic program was also disturbed in terms of spikelet development. Gene isolation revealed that ASP1 encodes a transcriptional co-repressor that is related to TOPLESS (TPL) in Arabidopsis and RAMOSA ENHANCER LOCUS2 (REL2) in maize. It is likely that the pleiotropic defects are associated with de-repression of multiple genes related to meristem function in the asp1 mutant. The asp1 mutant also showed de-repression of axillary bud growth and disturbed phyllotaxy in the vegetative phase, suggesting that the function of this gene is closely associated with auxin action. Consistent with these observations and the molecular function of Arabidopsis TPL, auxin signaling was also compromised in the rice asp1 mutant. Taken together, these results indicate that ASP1 regulates various aspects of developmental processes and physiological responses as a transcriptional co-repressor in rice.
Collapse
Affiliation(s)
- Akiko Yoshida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
31
|
Rademacher EH, Offringa R. Evolutionary Adaptations of Plant AGC Kinases: From Light Signaling to Cell Polarity Regulation. FRONTIERS IN PLANT SCIENCE 2012; 3:250. [PMID: 23162562 PMCID: PMC3499706 DOI: 10.3389/fpls.2012.00250] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/22/2012] [Indexed: 05/19/2023]
Abstract
Signaling and trafficking over membranes involves a plethora of transmembrane proteins that control the flow of compounds or relay specific signaling events. Next to external cues, internal stimuli can modify the activity or abundance of these proteins at the plasma membrane (PM). One such regulatory mechanism is protein phosphorylation by membrane-associated kinases, several of which are AGC kinases. The AGC kinase family is one of seven kinase families that are conserved in all eukaryotic genomes. In plants evolutionary adaptations introduced specific structural changes within the AGC kinases that most likely allow modulation of kinase activity by external stimuli (e.g., light). Starting from the well-defined structural basis common to all AGC kinases we review the current knowledge on the structure-function relationship in plant AGC kinases. Nine of the 39 Arabidopsis AGC kinases have now been shown to be involved in the regulation of auxin transport. In particular, AGC kinase-mediated phosphorylation of the auxin transporters ABCB1 and ABCB19 has been shown to regulate their activity, while auxin transporters of the PIN family are located to different positions at the PM depending on their phosphorylation status, which is a result of counteracting AGC kinase and PP6 phosphatase activities. We therefore focus on regulation of AGC kinase activity in this context. Identified structural adaptations of the involved AGC kinases may provide new insight into AGC kinase functionality and demonstrate their position as central hubs in the cellular network controlling plant development and growth.
Collapse
Affiliation(s)
- Eike H. Rademacher
- Molecular and Developmental Genetics, Institute Biology Leiden, Leiden UniversityLeiden, Netherlands
| | - Remko Offringa
- Molecular and Developmental Genetics, Institute Biology Leiden, Leiden UniversityLeiden, Netherlands
- *Correspondence: Remko Offringa, Molecular and Developmental Genetics, Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333BE Leiden, Netherlands. e-mail:
| |
Collapse
|
32
|
Wang XF, He FF, Ma XX, Mao CZ, Hodgman C, Lu CG, Wu P. OsCAND1 is required for crown root emergence in rice. MOLECULAR PLANT 2011; 4:289-99. [PMID: 20978084 DOI: 10.1093/mp/ssq068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Crown roots are main components of the fibrous root system and important for crops to anchor and absorb water and nutrition. To understand the molecular mechanisms of crown root formation, we isolated a rice mutant defective in crown root emergence designated as Oscand1 (named after the Arabidopsis homologous gene AtCAND1). The defect of visible crown root in the Oscand1 mutant is the result of cessation of the G2/M cell cycle transition in the crown root meristem. Map-based cloning revealed that OsCAND1 is a homolog of Arabidopsis CAND1. During crown root primordium development, the expression of OsCAND1 is confined to the root cap after the establishment of fundamental organization. The transgenic plants harboring DR5::GUS showed that auxin signaling in crown root tip is abnormal in the mutant. Exogenous auxin application can partially rescue the defect of crown root development in Oscand1. Taken together, these data show that OsCAND1 is involved in auxin signaling to maintain the G2/M cell cycle transition in crown root meristem and, consequently, the emergence of crown root. Our findings provide new information about the molecular regulation of the emergence of crown root in rice.
Collapse
Affiliation(s)
- Xiao-Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | | | | | | | | | | | | |
Collapse
|
33
|
Miyashita Y, Takasugi T, Ito Y. Identification and expression analysis of PIN genes in rice. PLANT SCIENCE 2010; 178:424-428. [PMID: 0 DOI: 10.1016/j.plantsci.2010.02.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
34
|
Huang F, Kemel Zago M, Abas L, van Marion A, Galván-Ampudia CS, Offringa R. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. THE PLANT CELL 2010; 22:1129-42. [PMID: 20407025 PMCID: PMC2879764 DOI: 10.1105/tpc.109.072678] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/01/2010] [Accepted: 03/27/2010] [Indexed: 05/19/2023]
Abstract
Polar cell-to-cell transport of auxin by plasma membrane-localized PIN-FORMED (PIN) auxin efflux carriers generates auxin gradients that provide positional information for various plant developmental processes. The apical-basal polar localization of the PIN proteins that determines the direction of auxin flow is controlled by reversible phosphorylation of the PIN hydrophilic loop (PINHL). Here, we identified three evolutionarily conserved TPRXS(N/S) motifs within the PIN1HL and proved that the central Ser residues were phosphorylated by the PINOID (PID) kinase. Loss-of-phosphorylation PIN1:green fluorescent protein (GFP) (Ser to Ala) induced inflorescence defects, correlating with their basal localization in the shoot apex, and induced internalization of PIN1:GFP during embryogenesis, leading to strong embryo defects. Conversely, phosphomimic PIN1:GFP (Ser to Glu) showed apical localization in the shoot apex but did not rescue pin1 inflorescence defects. Both loss-of-phosphorylation and phosphomimic PIN1:GFP proteins were insensitive to PID overexpression. The basal localization of loss-of-phosphorylation PIN1:GFP increased auxin accumulation in the root tips, partially rescuing PID overexpression-induced root collapse. Collectively, our data indicate that reversible phosphorylation of the conserved Ser residues in the PIN1HL by PID (and possibly by other AGC kinases) is required and sufficient for proper PIN1 localization and is thus essential for generating the differential auxin distribution that directs plant development.
Collapse
Affiliation(s)
- Fang Huang
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, 2333 EB Leiden, The Netherlands
| | - Marcelo Kemel Zago
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, 2333 EB Leiden, The Netherlands
| | - Lindy Abas
- Institute for Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences (BOKU Wien), A-1190 Vienna, Austria
| | - Arnoud van Marion
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, 2333 EB Leiden, The Netherlands
| | - Carlos Samuel Galván-Ampudia
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, 2333 EB Leiden, The Netherlands
| | - Remko Offringa
- Department of Molecular and Developmental Genetics, Institute of Biology, Leiden University, 2333 EB Leiden, The Netherlands
- Address correspondence to
| |
Collapse
|
35
|
Abstract
Monocots are known to respond differently to auxinic herbicides; hence, certain herbicides kill broadleaf (i.e., dicot) weeds while leaving lawns (i.e., monocot grasses) intact. In addition, the characters that distinguish monocots from dicots involve structures whose development is controlled by auxin. However, the molecular mechanisms controlling auxin biosynthesis, homeostasis, transport, and signal transduction appear, so far, to be conserved between monocots and dicots, although there are differences in gene copy number and expression leading to diversification in function. This article provides an update on the conservation and diversification of the roles of genes controlling auxin biosynthesis, transport, and signal transduction in root, shoot, and reproductive development in rice and maize.
Collapse
Affiliation(s)
- Paula McSteen
- Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
36
|
Abstract
In flowering plants, the founder cells from which reproductive organs form reside in structures called floral meristems. Recent molecular genetic studies have revealed that the specification of floral meristems is tightly controlled by regulatory networks that underpin several coordinated programmes, from the integration of flowering signals to floral organ formation. A notable feature of certain regulatory genes that have been newly implicated in the acquisition and maintenance of floral meristem identity is their conservation across diverse groups of flowering plants. This review provides an overview of the molecular mechanisms that underlie floral meristem specification in Arabidopsis thaliana and, where appropriate, discusses the conservation and divergence of these mechanisms across plant species.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | | | | |
Collapse
|
37
|
Shitsukawa N, Kinjo H, Takumi S, Murai K. Heterochronic development of the floret meristem determines grain number per spikelet in diploid, tetraploid and hexaploid wheats. ANNALS OF BOTANY 2009; 104:243-51. [PMID: 19491089 PMCID: PMC2710895 DOI: 10.1093/aob/mcp129] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/10/2009] [Accepted: 04/22/2009] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The inflorescence of grass species such as wheat, rice and maize consists of a unique reproductive structure called the spikelet, which is comprised of one, a few, or several florets (individual flowers). When reproductive growth is initiated, the inflorescence meristem differentiates a spikelet meristem as a lateral branch; the spikelet meristem then produces a floret meristem as a lateral branch. Interestingly, in wheat, the number of fertile florets per spikelet is associated with ploidy level: one or two florets in diploid, two or three in tetraploid, and more than three in hexaploid wheats. The objective of this study was to identify the mechanisms that regulate the architecture of the inflorescence in wheat and its relationship to ploidy level. METHODS The floral anatomy of diploid (Triticum monococcum), tetraploid (T. turgidum ssp. durum) and hexaploid (T. aestivum) wheat species were investigated by light and scanning electron microscopy to describe floret development and to clarify the timing of the initiation of the floret primordia. In situ hybridization analysis using Wknox1, a wheat knotted1 orthologue, was performed to determine the patterning of meristem formation in the inflorescence. KEY RESULTS The recessive natural mutation of tetraploid (T. turgidum ssp. turgidum) wheat, branching head (bh), which produces branched inflorescences, was used to demonstrate the utility of Wknox1 as a molecular marker for meristematic tissue. Then an analysis of Wknox1 expression was performed in diploid, tetraploid and hexaploid wheats and heterochronic development of the floret meristems was found among these wheat species. CONCLUSIONS It is shown that the difference in the number of floret primordia in diploid, tetraploid and hexaploid wheats is caused by the heterochronic initiation of floret meristem development from the spikelet meristem.
Collapse
Affiliation(s)
- Naoki Shitsukawa
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Hiroko Kinjo
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Shigeo Takumi
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Koji Murai
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| |
Collapse
|
38
|
Oikawa T, Kyozuka J. Two-Step Regulation of LAX PANICLE1 Protein Accumulation in Axillary Meristem Formation in Rice. THE PLANT CELL 2009; 21:1095-108. [PMID: 19346465 PMCID: PMC2685638 DOI: 10.1105/tpc.108.065425] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/05/2009] [Accepted: 03/18/2009] [Indexed: 05/18/2023]
Abstract
Axillary meristem (AM) formation is an important determinant of plant architecture. In rice (Oryza sativa), LAX PANICLE1 (LAX1) function is required for the generation of AM throughout the plant's lifespan. Here, we show a close relationship between AM initiation and leaf development; specifically, the plastochron 4 (P4) stage of leaf development is crucial for the proliferation of meristematic cells. Coincident with this, LAX1 expression starts in the axils of leaves at P4 stage. LAX1 mRNA accumulates in two to three layers of cells in the boundary region between the initiating AM and the shoot apical meristem. In lax1 mutants, the proliferation of meristematic cells is initiated but fails to progress into the formation of AM. The difference in sites of LAX1 mRNA expression and its action suggests non-cell-autonomous characteristics of LAX1 function. We found that LAX1 protein is trafficked to AM in a stage- and direction-specific manner. Furthermore, we present evidence that LAX1 protein movement is required for the full function of LAX1. Thus, we propose that LAX1 protein accumulates transiently in the initiating AM at P4 stage by a strict regulation of mRNA expression and a subsequent control of protein trafficking. This two-step regulation is crucial to the establishment of the new AM.
Collapse
Affiliation(s)
- Tetsuo Oikawa
- Graduate School of Agriculture and Life Sciences, University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | | |
Collapse
|
39
|
Affiliation(s)
- Paula McSteen
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
40
|
Gao X, Nagawa S, Wang G, Yang Z. Cell polarity signaling: focus on polar auxin transport. MOLECULAR PLANT 2008; 1:899-909. [PMID: 19825591 PMCID: PMC2902905 DOI: 10.1093/mp/ssn069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Polar auxin transport, which is required for the formation of auxin gradients and directional auxin flows that are critical for plant pattern formation, morphogenesis, and directional growth response to vectorial cues, is mediated by polarized sub-cellular distribution of PIN-FORMED Proteins (PINs, auxin efflux carriers), AUX1/AUX1-like proteins (auxin influx facilitators), and multidrug resistance P-glycoproteins (MDR/PGP). Polar localization of these proteins is controlled by both developmental and environmental cues. Recent studies have revealed cellular (endocytosis, transcytosis, and endosomal sorting and recycling) and molecular (PINOID kinase, protein phosphatase 2A) mechanisms underlying the polar distribution of these auxin transport proteins. Both TIR1-mediated auxin signaling and TIR1-independent auxin-mediated endocytosis have been shown to regulate polar PIN localization and auxin flow, implicating auxin as a self-organizing signal in directing polar transport and directional flows.
Collapse
Affiliation(s)
- Xiaowei Gao
- Key Laboratory of Arid and Grassland Agroeology at Lanzhou University, Ministry of Education, Lanzhou 730000, China
- CAU–UCR Joint Center for Biological Science, China Agricultural University, Beijing 100094, China
| | - Shingo Nagawa
- Center for Plant Cell Biology and Department of Botany and Plant Science, University of California, Riverside, CA 92521, USA
| | - Genxuan Wang
- College of Life Science, Zhejiang University, Hangzhou 310029, China
| | - Zhenbiao Yang
- CAU–UCR Joint Center for Biological Science, China Agricultural University, Beijing 100094, China
- Center for Plant Cell Biology and Department of Botany and Plant Science, University of California, Riverside, CA 92521, USA
- To whom correspondence should be addressed. E-mail , fax 9011-886-2-2651-6234, tel. 951-827-7351
| |
Collapse
|
41
|
Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt RJ, McSteen P. sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci U S A 2008; 105:15196-201. [PMID: 18799737 PMCID: PMC2567514 DOI: 10.1073/pnas.0805596105] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Indexed: 11/18/2022] Open
Abstract
The plant growth hormone auxin plays a critical role in the initiation of lateral organs and meristems. Here, we identify and characterize a mutant, sparse inflorescence1 (spi1), which has defects in the initiation of axillary meristems and lateral organs during vegetative and inflorescence development in maize. Positional cloning shows that spi1 encodes a flavin monooxygenase similar to the YUCCA (YUC) genes of Arabidopsis, which are involved in local auxin biosynthesis in various plant tissues. In Arabidopsis, loss of function of single members of the YUC family has no obvious effect, but in maize the mutation of a single yuc locus causes severe developmental defects. Phylogenetic analysis of the different members of the YUC family in moss, monocot, and eudicot species shows that there have been independent expansions of the family in monocots and eudicots. spi1 belongs to a monocot-specific clade, within which the role of individual YUC genes has diversified. These observations, together with expression and functional data, suggest that spi1 has evolved a dominant role in auxin biosynthesis that is essential for normal maize inflorescence development. Analysis of the interaction between spi1 and genes regulating auxin transport indicate that auxin transport and biosynthesis function synergistically to regulate the formation of axillary meristems and lateral organs in maize.
Collapse
Affiliation(s)
- Andrea Gallavotti
- *Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Solmaz Barazesh
- Department of Biology, Pennsylvania State University, University Park, PA 16802; and
| | - Simon Malcomber
- Department of Biological Sciences, California State University, Long Beach, CA 90840
| | - Darren Hall
- *Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Robert J. Schmidt
- *Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093
| | - Paula McSteen
- Department of Biology, Pennsylvania State University, University Park, PA 16802; and
| |
Collapse
|
42
|
Skirpan A, Wu X, McSteen P. Genetic and physical interaction suggest that BARREN STALK 1 is a target of BARREN INFLORESCENCE2 in maize inflorescence development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:787-797. [PMID: 18466309 DOI: 10.1111/j.1365-313x.2008.03546.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Organogenesis in plants is controlled by polar auxin transport. In maize (Zea mays), barren inflorescence2 (bif2) encodes a co-ortholog of the serine/threonine protein kinase PINOID (PID), which regulates auxin transport in Arabidopsis. In this paper, we report that the basic helix-loop-helix transcription factor BARREN STALK1 (BA1) is a putative target of BIF2, revealing a previously unknown function of BIF2 in the nucleus. Both bif2 and ba1 are required for axillary meristem initiation during inflorescence and vegetative development in maize. Using a yeast two-hybrid approach, we identified BA1 as an interacting partner with BIF2. We confirmed the interaction by in vitro pull-down assays, and demonstrated that BIF2 phosphorylates BA1 in vitro. Previously, RNA in situ hybridization showed that bif2 and ba1 are both expressed during axillary meristem initiation. Here, we heterologously expressed BIF2 and BA1, and found that they co-localize in the nucleus. Based on these findings, we propose that in addition to regulating auxin transport at the cell periphery, BIF2 also functions in the nucleus by interacting with BA1 to promote axillary meristem initiation. Double mutant analysis is consistent with these results, showing that bif2 and ba1 have overlapping as well as unique roles in inflorescence development.
Collapse
Affiliation(s)
- Andrea Skirpan
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
43
|
Bai F, Demason DA. Hormone interactions and regulation of PsPK2::GUS compared with DR5::GUS and PID::GUS in Arabidopsis thaliana. AMERICAN JOURNAL OF BOTANY 2008; 95:133-145. [PMID: 21632339 DOI: 10.3732/ajb.95.2.133] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The putative pea PINOID homolog, PsPK2, is expressed in all growing plant parts and is positively regulated by auxin, gibberellin, and cytokinin. Here, we studied hormonal regulation of PsPK2::GUS expression compared with DR5::GUS and PID::GUS in Arabidopsis. PsPK2::GUS, DR5::GUS, and PID::GUS expression in Arabidopsis shoots is mainly localized in the stipules, hydathodes, veins, developing leaves, and cotyledons. Unlike DR5::GUS, PsPK2::GUS, and PID::GUS are weakly expressed in root tips. Both DR5::GUS and PsPK2::GUS are induced by different auxins and are more sensitive to methyl indole acetic acid, 4-chloro-indole acetic acid, and α-naphthalene acetic acid than others. GA(3) has no significant effect on GUS activity in DR5::GUS-transformed seedlings compared to the control, but induction by auxin and gibberellin in combination is synergistic. Cytokinin increases auxin transport in Arabidopsis seedlings. Auxin, gibberellin, and cytokinin all increase GUS activity in shoots of PsPK2::GUS transformed plants compared to the control. However, only auxin and gibberellin increase GUS activity in PID::GUS shoots. In conclusion, auxin, gibberellin, and cytokinin positively regulate PsPK2 expression in shoots, but not in roots. Auxin and gibberellin also upregulate AtPIN1 and LEAFY expression, which is similar to PsPIN1 and Uni in pea. With minor exceptions, the orthologous genes from both species are regulated similarly.
Collapse
Affiliation(s)
- Fang Bai
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521 USA
| | | |
Collapse
|
44
|
Wu X, McSteen P. The role of auxin transport during inflorescence development in maize (Zea mays, Poaceae). AMERICAN JOURNAL OF BOTANY 2007; 94:1745-55. [PMID: 21636370 DOI: 10.3732/ajb.94.11.1745] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Axillary meristems play a fundamental role in inflorescence architecture. Maize (Zea mays) inflorescences are highly branched panicles because of the production of multiple types of axillary meristems. We used auxin transport inhibitors to show that auxin transport is required for axillary meristem initiation in the maize inflorescence. The phenotype of plants treated with auxin transport inhibitors is very similar to that of barren inflorescence2 (bif2) and barren stalk1 (ba1) mutants, suggesting that these genes function in the same auxin transport pathway. To dissect this pathway, we performed RNA in situ hybridization on plants treated with auxin transport inhibitors. We determined that bif2 is expressed upstream and that ba1 is expressed downstream of auxin transport, enabling us to integrate the genetic and hormonal control of axillary meristem initiation. In addition, treatment of maize inflorescences with auxin transport inhibitors later in development results in the production of single instead of paired spikelets. Paired spikelets are a key feature of the Andropogoneae, a group of over 1000 grasses that includes maize, sorghum, and sugarcane. Because all other grasses bear spikelets singly, these results implicate auxin transport in the evolution of inflorescence architecture. Furthermore, our results provide insight into mechanisms of inflorescence branching that are relevant to all plants.
Collapse
Affiliation(s)
- Xianting Wu
- Department of Biology, The Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802 USA
| | | |
Collapse
|
45
|
McSteen P, Malcomber S, Skirpan A, Lunde C, Wu X, Kellogg E, Hake S. barren inflorescence2 Encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. PLANT PHYSIOLOGY 2007; 144:1000-11. [PMID: 17449648 PMCID: PMC1914211 DOI: 10.1104/pp.107.098558] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Organogenesis in plants is controlled by meristems. Axillary meristems, which give rise to branches and flowers, play a critical role in plant architecture and reproduction. Maize (Zea mays) and rice (Oryza sativa) have additional types of axillary meristems in the inflorescence compared to Arabidopsis (Arabidopsis thaliana) and thus provide an excellent model system to study axillary meristem initiation. Previously, we characterized the barren inflorescence2 (bif2) mutant in maize and showed that bif2 plays a key role in axillary meristem and lateral primordia initiation in the inflorescence. In this article, we cloned bif2 by transposon tagging. Isolation of bif2-like genes from seven other grasses, along with phylogenetic analysis, showed that bif2 is a co-ortholog of PINOID (PID), which regulates auxin transport in Arabidopsis. Expression analysis showed that bif2 is expressed in all axillary meristems and lateral primordia during inflorescence and vegetative development in maize and rice. Further phenotypic analysis of bif2 mutants in maize illustrates additional roles of bif2 during vegetative development. We propose that bif2/PID sequence and expression are conserved between grasses and Arabidopsis, attesting to the important role they play in development. We provide further support that bif2, and by analogy PID, is required for initiation of both axillary meristems and lateral primordia.
Collapse
Affiliation(s)
- Paula McSteen
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | |
Collapse
|