1
|
Zhang P, Wu Y, Chen X, Wang G, Li P, Cao Z, Du H, Zhang C, Du X, Chen G, Zhou Y, Sun Y. TroTNFα, a teleost tumour necrosis factor of golden pompano (Trachinotus ovatus), enhances pathogen clearance and acts as an immune adjuvant. Int J Biol Macromol 2025; 299:140128. [PMID: 39842583 DOI: 10.1016/j.ijbiomac.2025.140128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Tumour necrosis factor (TNF) is one of the most pivotal factors of the TNF family and plays an essential biological role in immunity. However, the antibacterial function and mechanism of TNFα in teleosts are relatively poorly understood. In this study, a novel TNFα from Trachinotus ovatus (TroTNFα) was characterized. TroTNFα is widely expressed in immune tissues and increased after Vibrio harveyi infection. The recombinant protein TroTNFα facilitated the proliferation and chemotaxis of T. ovatus head kidney lymphocytes, induced apoptosis in human hepatocellular carcinoma cells (HepG2), and enhanced NF-κB promoter activity, whereas mutants with altered conserved receptor binding sites (Phe and Tyr mutated to Ala) lost these functions. Similarly, in vivo research revealed that, compared with the control, TroTNFα overexpression significantly reduced bacterial colonization, whereas the bacterial colonization of the mutants was similar to that of the control. Furthermore, our results showed that TroTNFα increased the vaccine-induced immune responses induced by the DNA vaccine pCTssJ against V. harveyi. Taken together, our results indicate that TroTNFα plays an indispensable role in antibacterial immunity, providing the first evidence that the binding sites (Phe144 and Tyr216) of TroTNFα are crucial in these processes in teleosts and enhances DNA vaccine efficacy as an immune adjuvant.
Collapse
Affiliation(s)
- Panpan Zhang
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Ying Wu
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Xiaojuan Chen
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Guotao Wang
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Zhenjie Cao
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Hehe Du
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Chen Zhang
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Xiangyu Du
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Guisen Chen
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Yongcan Zhou
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China
| | - Yun Sun
- Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, China; Engineering Research Center of Hainan Province for Blue Carbonand Coastal Wetland Conservation and Restoration, China; International Joint Research Center of Hainan Province for Blue Carbon and Coastal Wetland, China.
| |
Collapse
|
2
|
Sangamesh VC, Alagundagi DB, Jayaswamy PK, Kuriakose N, Shetty P. Targeting AnxA2-EGFR signaling: hydroxychloroquine as a therapeutic strategy for bleomycin-induced pulmonary fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2015-2026. [PMID: 39222243 DOI: 10.1007/s00210-024-03417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease that causes progressive failure of lung function, and its molecular mechanism remains poorly understood. However, the AnnexinA2-epidermal growth factor receptor (EGFR) signaling pathway has been identified as playing a significant role in its development. Hydroxychloroquine, a common anti-malarial drug, has been found to inhibit this pathway and slow down the progression of IPF. To better understand the role of the AnxA2-EGFR signaling pathway in pulmonary fibrosis, an in vivo study was conducted. In this study, mice were induced with pulmonary fibrosis using bleomycin, and HCQ was administered intraperitoneally the next day of bleomycin induction. The study also employed nintedanib as a positive control. After the induction, the lungs showed increased levels of fibronectin and vimentin, along with enhanced expression of AnxA2, EGFR, and Gal-3, indicating pulmonary fibrosis. Additionally, the study also found that HCQ significantly inhibited these effects and showed antifibrotic properties similar to nintedanib. Overall, these findings suggest that HCQ can attenuate bleomycin-induced pulmonary fibrosis by inhibiting the AnxA2-EGFR signaling pathway. These results are promising for developing new treatments for IPF.
Collapse
Affiliation(s)
- Vinay C Sangamesh
- Nitte University Centre for Science Education and Research, Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Dhananjay B Alagundagi
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Pavan K Jayaswamy
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Nithin Kuriakose
- Nitte University Centre for Science Education and Research, Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - Praveenkumar Shetty
- Central Research Laboratory, KS. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
- Department of Biochemistry, K.S. Hegde Medical Academy, Nitte (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
3
|
Álvarez-López AI, Cruz-Chamorro I, Lardone PJ, Bejarano I, Aspiazu-Hinostroza K, Ponce-España E, Santos-Sánchez G, Álvarez-Sánchez N, Carrillo-Vico A. Melatonin, an Antitumor Necrosis Factor Therapy. J Pineal Res 2025; 77:e70025. [PMID: 39740227 DOI: 10.1111/jpi.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/22/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Tumor necrosis factor (TNF) is a biomarker of inflammation whose levels are elevated in patients with several diseases associated with dysregulation of the immune response. The main limitations of currently used anti-TNF therapies are the induction of immunodepression, which in many cases leads to serious adverse effects such as infection and cancer, and the inability to cross the blood-brain barrier in neuroinflammatory conditions. Melatonin, in addition to being a chronobiotic compound, is widely known for its antioxidant and immunomodulatory capacity to control inflammatory processes in different pathological contexts. The aim of the present review is to address human-based studies that describe the effect of melatonin on TNF production. The review includes all the articles published in PubMed databases until April 15, 2024. After depuration, 45 studies were finally included in the review, 23 related to the in vitro action of melatonin in human cells and 22 in vivo studies in humans. Most of the data reviewed support the idea that melatonin has an immunosuppressive effect on TNF levels, which, together with its low toxicity profile, low cost, and ability to cross the blood-brain barrier, points to melatonin as a potential anti-TNF therapy. Therefore, improving our knowledge of the action of melatonin in regulating TNF through appropriate clinical trials would reveal the true potential of this molecule as a possible anti-TNF therapy.
Collapse
Grants
- This work was supported by the Andalusian Government Ministry of Health PC-0019-2017, PI-0015-2018 and PEMP-0085-2020 (co-financed with FEDER funds, call Resolution of 7 July 2021 of the General Secretary for Research, Development and Innovation in Health, which calls for grants to finance research, development and innovation in biomedicine and health sciences in Andalusia by 2021), the PAIDI Program from the Andalusian Government (CTS160) and Regional Ministry of Economy and Knowledge of Andalusia (US-1263804) into the European Regional Development Fund Operational Programme 2014 to 2020. A.I.A.L. was supported by grants US-1263804 and PEMP-0085-2020. I.C.C. was supported by a postdoctoral fellowship from the Andalusian Government Ministry of Economy, Knowledge, Business, and University (DOC_00587/2020). I.B. and E.P.E were supported by the VI Program of Inner Initiative for Research and Transfer of the University of Seville [VI PPIT-US]. G.S.S. was supported by a FPU grant from the Spanish Ministerio de Educación, Cultura y Deporte (FPU16/02339). N.A.-S. was supported by a fellowship from the Andalusian Regional Ministry of Health (PC-0111-2016-0111).
Collapse
Affiliation(s)
- Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Ignacio Bejarano
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Karla Aspiazu-Hinostroza
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Universidad Católica de Cuenca, Research Department, Cuenca-Azuay, Ecuador
| | - Eduardo Ponce-España
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Nuria Álvarez-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
4
|
Caravaca-Fontán F, Yandian F, Zand L, Sethi S, Fervenza FC. Antimalarials in Lupus Nephritis: How Strong Is the Evidence? KIDNEY360 2024; 5:1938-1947. [PMID: 39450981 PMCID: PMC11687987 DOI: 10.34067/kid.0000000626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
SLE is a chronic multisystem autoimmune disease that affects the kidneys in approximately 50% of patients, with the prevalence rising to as high as 70% in certain populations, such as African American and Asian people. Antimalarials-and particularly hydroxychloroquine (HCQ)-are currently considered a mainstay of therapy, together with immunosuppressants. Over the past decades, several studies have extensively investigated the mechanisms of action of antimalarial agents and their potential beneficial properties in patients with SLE in general. However, the evidence for the therapeutic benefit of HCQ in patients with lupus nephritis (LN) derives mainly from observational studies, conducted in an era before the refinement of induction and maintenance protocols for immunosuppressive therapy. Despite the paucity of high-quality evidence on its efficacy in LN, the nephrology community widely supports the universal use of HCQ in patients with LN, and recommendations for its use are firmly entrenched in various clinical practice guidelines. Nonetheless, the use of antimalarials may also carry inherent risks, underscoring the importance of personalized approaches in these patients. Herein, we comprehensively review the available literature on antimalarials in LN, aiming to update the current evidence, limitations, and future perspectives for the use of antimalarials in adults.
Collapse
Affiliation(s)
- Fernando Caravaca-Fontán
- Department of Nephrology, Instituto de Investigación Hospital “12 de Octubre” (imas12), Madrid, Spain
| | - Federico Yandian
- Department of Nephrology, Hospital de Clínicas “Dr. Manuel Quintela”, Montevideo, Uruguay
| | - Ladan Zand
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
5
|
Long H, Espinosa L, Sawalha AH. Unraveling the immunomodulatory impact of hydroxychloroquine on peripheral T cells using single-cell RNA sequencing. J Autoimmun 2024; 149:103324. [PMID: 39405653 DOI: 10.1016/j.jaut.2024.103324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/28/2024] [Accepted: 10/05/2024] [Indexed: 12/15/2024]
Abstract
Hydroxychloroquine (HCQ) is widely used in the treatment of a variety of autoimmune diseases. However, the mechanisms responsible for the immunomodulatory properties of HCQ in T cells remain unclear. Here we used single-cell RNA-sequencing to examine the effect of HCQ on T cells following in vitro stimulation. HCQ treatment led to a reduction in effector CD4+ T cells and upregulation of inhibitory genes including CTLA4 and TNFAIP3 in effector and naive CD4+ T cells, respectively. HCQ induced a significant expansion of effector CD8+ T cells, and significantly upregulated key cytotoxicity genes including GZMA, GZMB, GZMH, KLRD1, NKG7, and PRF1, as well as IFNG expression. Furthermore, HCQ treatment led to a reduction in the CD38+ CD8+ T cell subset, which is characterized by defective cytotoxicity and thought to both play a pathogenic role and increase susceptibility to infections in autoimmunity. We analyzed single-cell RNA-sequencing data in effector CD8+ T cells from lupus patients with or without HCQ treatment and confirmed upregulation of key cytotoxicity genes in patients receiving HCQ. In conclusion, this work provides additional insights into the immunomodulatory effects of HCQ and indicates that HCQ improves T cell cytotoxicity, which could explain a previously suggested protective effect of HCQ against infections in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Huizhong Long
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luis Espinosa
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Hitti EG, Muazzen Z, Moghrabi W, Al-Yahya S, Khabar KSA. Hydroxychloroquine attenuates double-stranded RNA-stimulated hyper-phosphorylation of tristetraprolin/ZFP36 and AU-rich mRNA stabilization. Immunology 2024; 173:511-519. [PMID: 39046234 DOI: 10.1111/imm.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
The human innate immune system recognizes dsRNA as a pathogen-associated molecular pattern that induces a potent inflammatory response. The primary source of pathogenic dsRNA is cells infected with replicating viruses, but can also be released from uninfected necrotic cells. Here, we show that the dsRNA poly(I:C) challenge in human macrophages activates the p38 MAPK-MK2 signalling pathway and subsequently the phosphorylation of tristetraprolin (TTP/ZFP36). The latter is an mRNA decay-promoting protein that controls the stability of AU-rich mRNAs (AREs) that code for many inflammatory mediators. Hydroxychloroquine (HCQ), a common anti-malaria drug, is used to treat inflammatory and autoimmune disorders and, controversially, during acute COVID-19 disease. We found that HCQ reduced the dsRNA-dependent phosphorylation of p38 MAPK and its downstream kinase MK2. Subsequently, HCQ reduced the abundance and protein stability of the inactive (phosphorylated) form of TTP. HCQ reduced the levels and the mRNA stability of poly (I:C)-induced cytokines and inflammatory mRNAs like TNF, IL-6, COX-2, and IL-8 in THP-1 and primary blood monocytes. Our results demonstrate a new mechanism of the anti-inflammatory role of HCQ at post-transcriptional level (TTP phosphorylation) in a model of dsRNA activation, which usually occurs in viral infections or RNA release from necrotic tissue.
Collapse
Affiliation(s)
- Edward G Hitti
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Zeyad Muazzen
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Walid Moghrabi
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Suhad Al-Yahya
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khalid S A Khabar
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Paredes-Ruiz D, Martin-Iglesias D, Amo L, Ruiz-Irastorza G. Elucidating the mechanisms and efficacy of antimalarial drugs in systemic lupus erythematosus. Expert Opin Pharmacother 2024; 25:2047-2060. [PMID: 39354741 DOI: 10.1080/14656566.2024.2412252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION Antimalarials (AMs) are old drugs with a wide range of beneficial effects in systemic lupus erythematosus (SLE) beyond the control of activity. The most recent debate is focused on defining the optimal doses to assure the best benefit/risk ratio. AREAS COVERED We have reviewed the pharmacological basis underlying the various therapeutic effects of AMs and the beneficial and toxic effects of HCQ, also discussing the role of mepacrine not only as a substitute in cases of maculopathy, but also as a very effective therapy combined with HCQ. We searched PubMed and Embase for articles published in English at any time. We used the terms "hydroxychloroquine" or "mepacrine" or "chloroquine" or "antimalarials", "pharmacokinetics", "efficacy", "remission", "toxicity", "adherence". We reviewed original research articles, large observational studies, systematic reviews, and expert consensus statements. Additionally, studies were identified through the assessment of the reference lists of the evaluated manuscripts. EXPERT OPINION We advocate for the widespread use of HCQ at stable doses of 200 mg/d (≤4 mg/kg/d for most patients) and also for the early combination therapy with mepacrine to assure a good control of SLE activity, and also a durable and safe use of these essential drugs for the management of SLE.
Collapse
Affiliation(s)
- Diana Paredes-Ruiz
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, Bizkaia, The Basque Country, Spain
| | - Daniel Martin-Iglesias
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, Bizkaia, The Basque Country, Spain
- Internal Medicine Department, Hospital Universitario de Leon, Leon, Spain
| | - Laura Amo
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Guillermo Ruiz-Irastorza
- Biobizkaia Health Research Institute, Hospital Universitario Cruces, Bizkaia, The Basque Country, Spain
- Department of Medicine, University of The Basque Country, UPV/EHU, Bizkaia, The Basque Country, Spain
| |
Collapse
|
8
|
Rodrigues Aguiar MDF, Guterres MM, Benarrosh EM, Verri WA, Calixto-Campos C, Dias QM. The Nociceptive and Inflammatory Responses Induced by the Ehrlich Solid Tumor Are Changed in Mice Healed of Plasmodium berghei Strain ANKA Infection after Chloroquine Treatment. J Parasitol Res 2024; 2024:3771926. [PMID: 38774541 PMCID: PMC11108701 DOI: 10.1155/2024/3771926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 05/24/2024] Open
Abstract
Comorbidities that involve infectious and noninfectious diseases, such as malaria and cancer, have been described. Cancer and malaria induce changes in the nociceptive and inflammatory responses through similar pathophysiological mechanisms. However, it is unclear whether malaria and antimalarial treatment can change the inflammatory and nociceptive responses induced by solid cancer. Therefore, the present study experimentally evaluated the effect of infection by Plasmodium berghei strain ANKA and chloroquine treatment on the nociceptive and inflammatory responses induced by the solid Ehrlich tumor in male BALB/c mice. On the 1st experimental day, mice were infected with Plasmodium berghei and injected with tumor cells in the left hind paw. From the 7th to the 9th experimental day, mice were treated daily with chloroquine. The parasitemia was evaluated on the 7th and 10th days after infection. On the 11th experimental day, mice were evaluated on the von Frey filament test, the hot plate test, and the paw volume test. At the end of the experimental tests on the 11th day, the peripheral blood of all mice was collected for dosing of IL-1β and TNF-α. The blood parasitemia significantly increased from the 7th to the 10th day. The chloroquine treatment significantly decreased the parasitemia on the 10th day. The presence of the tumor did not significantly change the parasitemia on the 7th and 10th days in mice treated and nontreated with chloroquine. On the 11th day, the mechanical and thermal nociceptive responses significantly increased in mice with tumors. The treatment with antimalarial significantly reduced the mechanical nociceptive response induced by tumors. The hyperalgesia induced by tumors did not change with malaria. The mechanical and thermal hyperalgesia induced by the tumor was significantly reduced in mice treated and healed from malaria. On the 11th day, the volume of the paw injected by the tumor was significantly increased. The mice treated with chloroquine, infected with malaria, or healed of malaria showed reduced paw edema induced by the tumor. Mice with tumors did not show a change in IL-β and TNF-α serum levels. Mice with tumors showed a significant increase in serum levels of IL-1β but not TNF-α when treated with chloroquine, infected with malaria, or healed of malaria. In conclusion, the results show that malaria infection and chloroquine treatment can influence, in synergic form, the nociceptive and inflammatory responses induced by the solid tumor. Moreover, the mechanical antinociception, the thermal hyperalgesia, and the antiedema effect observed in mice treated with chloroquine and healed from malaria can be related to the increase in the serum level of IL-1β.
Collapse
Affiliation(s)
- Maria de Fatima Rodrigues Aguiar
- Laboratory of Neuro and Immunopharmacology (NIMFAR)-Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira, 7671, BR 364, Km 3.5, Bairro Lagoa, Porto Velho, Rondônia, Brazil
- Postgraduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia, Campus-BR 364, Km 9.5, Porto Velho, Rondônia, Brazil
| | - Meiriane Mendes Guterres
- Laboratory of Neuro and Immunopharmacology (NIMFAR)-Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira, 7671, BR 364, Km 3.5, Bairro Lagoa, Porto Velho, Rondônia, Brazil
| | - Eduarda Magalhães Benarrosh
- Laboratory of Neuro and Immunopharmacology (NIMFAR)-Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira, 7671, BR 364, Km 3.5, Bairro Lagoa, Porto Velho, Rondônia, Brazil
| | - Waldiceu Aparecido Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Cássia Calixto-Campos
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Quintino Moura Dias
- Laboratory of Neuro and Immunopharmacology (NIMFAR)-Oswaldo Cruz Foundation, Fiocruz Rondônia, Rua da Beira, 7671, BR 364, Km 3.5, Bairro Lagoa, Porto Velho, Rondônia, Brazil
- Postgraduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia, Campus-BR 364, Km 9.5, Porto Velho, Rondônia, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- São Lucas University Center - São Lucas PVH, Porto Velho, Rondônia, Brazil
| |
Collapse
|
9
|
Tomassi MV, D'Abramo A, Vita S, Corpolongo A, Vulcano A, Ascoli Bartoli T, Bartolini B, Faraglia F, Nicastri E. A case of severe Plasmodium ovale malaria with acute respiratory distress syndrome and splenic infarction in a male traveller presenting in Italy. Malar J 2024; 23:93. [PMID: 38575935 PMCID: PMC10993526 DOI: 10.1186/s12936-024-04911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Plasmodium ovale malaria is usually considered a tropical infectious disease associated with low morbidity and mortality. However, severe disease and death have previously been reported. CASE PRESENTATION A case of severe P. ovale malaria in a healthy Caucasian man with a triangle splenic infarction and clinical progression towards Acute Respiratory Distress Syndrome was reported despite a rapid response to oral chloroquine treatment with 24-h parasitaemia clearance. CONCLUSION Plasmodium ovale malaria is generally considered as a benign disease, with low parasitaemia. However, severe disease and death have occasionally been reported. It is important to be aware that occasionally it can progress to serious illness and death even in immunocompetent individuals.
Collapse
Affiliation(s)
- Maria Virginia Tomassi
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Alessandra D'Abramo
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy.
| | - Serena Vita
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Angela Corpolongo
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Antonella Vulcano
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Tommaso Ascoli Bartoli
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Barbara Bartolini
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Francesca Faraglia
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| |
Collapse
|
10
|
Cordova Sanchez A, Khokhar F, Olonoff DA, Carhart RL. Hydroxychloroquine and Cardiovascular Events in Patients with Rheumatoid Arthritis. Cardiovasc Drugs Ther 2024; 38:297-304. [PMID: 36197529 PMCID: PMC9532807 DOI: 10.1007/s10557-022-07387-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of mortality in patients with rheumatoid arthritis (RA). Some studies have reported a decrease in CVD in patients with RA using hydroxychloroquine (HCQ). Most of these have had fewer participants and have analyzed only composite outcomes. We aimed to identify the association between the use of HCQ in patients with RA and the incidence of major adverse cardiac events (MACEs), cerebral infarction, and AMI. METHODS This was a retrospective observational study using the TriNetX Diamond Network. Propensity score matching (PSM) was used to equilibrate the cohorts. The dependent variables in our study were MACE, cerebral infarction, and AMI. RESULTS A total of 2,261,643 patients with RA were identified. Approximately 6% had been prescribed HCQ. Of those prescribed HCQ, 80% (112,743) were females, while of those not prescribed HCQ, 72.5% (1,536,937) were females. HCQ was associated with lower rates of MACE (HR 0.827, 95%CI 0.8,0.86), cerebral infarction (HR 0.824, 95% CI 0.78,0.87), and AMI (HR 0.9, 95% CI 0.85,0.96). These associations were not seen in patients taking biologics. HCQ was associated with lower MACE in all other subgroups. CONCLUSION In conclusion, HCQ was slightly beneficial in decreasing MACE and cerebral infarction in patients with RA. These associations were significantly lower in patients taking methotrexate or biologics. Although there was a significant decrease in the risk of AMI in all patients with RA, these results were not replicated in subgroup analyses, and there was an apparent increased risk of AMI with the use of HCQ in patients using biologics.
Collapse
Affiliation(s)
- Andres Cordova Sanchez
- Department of Medicine, SUNY Upstate Medical University, Rm. 5138. 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Farzam Khokhar
- Department of Medicine, SUNY Upstate Medical University, Rm. 5138. 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Danielle A Olonoff
- Department of Medicine, SUNY Upstate Medical University, Rm. 5138. 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Robert L Carhart
- Division of Cardiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
11
|
Peng Y, Huang Y, Li H, Li C, Wu Y, Wang X, Wang Q, He J, Miao C. Associations between rheumatoid arthritis and intestinal flora, with special emphasis on RA pathologic mechanisms to treatment strategies. Microb Pathog 2024; 188:106563. [PMID: 38331355 DOI: 10.1016/j.micpath.2024.106563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/01/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that primarily affects the joints. Individuals at risk for RA and people with RA develop intestinal dysbiosis. The changes in intestinal flora composition in preclinical and confirmed RA patients suggest that intestinal flora imbalance may play an important role in the induction and persistence of RA. METHODS Based on the current research on the interaction between RA and intestinal microbiota, intestinal microbiota metabolites and intestinal barrier changes. This paper systematically summarized the changes in intestinal microbiota in RA patients, the metabolites of intestinal flora, and the influence mechanism of intestinal barrier on RA, and further discussed the influence of drugs for RA on intestinal flora and its mechanism of action. RESULTS Compared with healthy controls, α diversity analysis of intestinal flora showed no significant difference, β diversity analysis showed significant differences. The intestinal flora produces bioactive metabolites, such as short-chain fatty acids and aromatic amino acids, which have anti-inflammatory effects. Abnormal intestinal flora leads to impaired barrier function and mucosal immune dysfunction, promoting the development of inflammation. Traditional Chinese medicine (TCM) and chemical drugs can also alleviate RA by regulating intestinal flora, intestinal flora metabolites, and intestinal barrier. Intestinal flora is closely related to the pathogenesis of RA and may become potential biomarkers for the diagnosis and treatment of RA. CONCLUSIONS Intestinal flora and its metabolites play an important role in the pathogenesis of autoimmune diseases such as RA, and are expected to become a new target for clinical diagnosis and treatment, providing a new idea for targeted treatment of RA.
Collapse
Affiliation(s)
- Yanhui Peng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hui Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chen Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiaomei Wang
- Department of Humanistic Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qiang Wang
- Department of Pharmaceutical Preparation, Anhui University of Science and Technology, Fengyang, Anhui, China
| | - Juan He
- Department of Gynecology, Anhui Maternal and Child Health Hospital, Hefei, Anhui, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
12
|
Hasby Saad MA, El-Saadi EG, Ali DA, Watany MM, Eid MM. Potential i-Nos/Arg-1 Switch with NLRP3 and Parasitic Load Down Regulation in Experimental Schistosoma mansoni Infection via Chloroquine Repurposing. Parasite Immunol 2024; 46:e13030. [PMID: 38498004 DOI: 10.1111/pim.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
In previous studies, the inhibitory effect of chloroquine on NLRP3 inflammasome and heme production was documented. This may be employed as a double-bladed sword in schistosomiasis (anti-inflammatory and parasiticidal). In this study, chloroquine's impact on schistosomiasis mansoni was investigated. The parasitic load (worm/egg counts and reproductive capacity index [RCI]), i-Nos/Arg-1 expression, splenomegaly, hepatic insult and NLRP3-immunohistochemical expression were assessed in infected mice after receiving early and late repeated doses of chloroquine alone or dually with praziquantel. By early treatment, the least RCI was reported in dually treated mice (41.48 ± 28.58) with a significant reduction in worm/egg counts (3.50 ± 1.29/2550 ± 479.58), compared with either drug alone. A marked reduction in the splenic index was achieved by prolonged chloroquine administration (alone: 43.15 ± 5.67, dually: 36.03 ± 5.27), with significantly less fibrosis (15 ± 3.37, 14.25 ± 2.22) than after praziquantel alone (20.5 ± 2.65). Regarding inflammation, despite the praziquantel-induced significant decrease in NLRP3 expression, the inhibitory effect was marked after dual and chloroquine administration (liver: 3.13 ± 1.21/3.45 ± 1.23, spleen: 5.7 ± 1.6/4.63 ± 2.41). i-Nos RNA peaked with early/late chloroquine administration (liver: 68.53 ± 1.8/57.78 ± 7.14, spleen: 63.22 ± 2.06/62.5 ± 3.05). High i-Nos echoed with a parasiticidal and hepatoprotective effect and may indicate macrophage-1 polarisation. On the flip side, the chloroquine-induced low Arg-1 seemed to abate immune tolerance and probably macrophage-2 polarisation. Collectively, chloroquine synergised the praziquantel-schistosomicidal effect and minimised tissue inflammation, splenomegaly and hepatic fibrosis.
Collapse
Affiliation(s)
- Marwa A Hasby Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Esraa G El-Saadi
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dareen A Ali
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mona M Watany
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohammed M Eid
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
13
|
Gajić M, Schröder-Heurich B, Mayer-Pickel K. Deciphering the immunological interactions: targeting preeclampsia with Hydroxychloroquine's biological mechanisms. Front Pharmacol 2024; 15:1298928. [PMID: 38375029 PMCID: PMC10875033 DOI: 10.3389/fphar.2024.1298928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Preeclampsia (PE) is a complex pregnancy-related disorder characterized by hypertension, followed by organ dysfunction and uteroplacental abnormalities. It remains a major cause of maternal and neonatal morbidity and mortality worldwide. Although the pathophysiology of PE has not been fully elucidated, a two-stage model has been proposed. In this model, a poorly perfused placenta releases various factors into the maternal circulation during the first stage, including pro-inflammatory cytokines, anti-angiogenic factors, and damage-associated molecular patterns into the maternal circulation. In the second stage, these factors lead to a systemic vascular dysfunction with consecutive clinical maternal and/or fetal manifestations. Despite advances in feto-maternal management, effective prophylactic and therapeutic options for PE are still lacking. Since termination of pregnancy is the only curative therapy, regardless of gestational age, new treatment/prophylactic options are urgently needed. Hydroxychloroquine (HCQ) is mainly used to treat malaria as well as certain autoimmune conditions such as systemic lupus and rheumatoid arthritis. The exact mechanism of action of HCQ is not fully understood, but several mechanisms of action have been proposed based on its pharmacological properties. Interestingly, many of them might counteract the proposed processes involved in the development of PE. Therefore, based on a literature review, we aimed to investigate the interrelated biological processes of HCQ and PE and to identify potential molecular targets in these processes.
Collapse
Affiliation(s)
- Maja Gajić
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | | | | |
Collapse
|
14
|
Rao IR, Kolakemar A, Shenoy SV, Prabhu RA, Nagaraju SP, Rangaswamy D, Bhojaraja MV. Hydroxychloroquine in nephrology: current status and future directions. J Nephrol 2023; 36:2191-2208. [PMID: 37530940 PMCID: PMC10638202 DOI: 10.1007/s40620-023-01733-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
Hydroxychloroquine is one of the oldest disease-modifying anti-rheumatic drugs in clinical use. The drug interferes with lysosomal activity and antigen presentation, inhibits autophagy, and decreases transcription of pro-inflammatory cytokines. Owing to its immunomodulatory, anti-inflammatory, anti-thrombotic effect, hydroxychloroquine has been an integral part of therapy for systemic lupus erythematosus and lupus nephritis for several decades. The therapeutic versatility of hydroxychloroquine has led to repurposing it for other clinical conditions, with recent studies showing reduction in proteinuria in IgA nephropathy. Research is also underway to investigate the efficacy of hydroxychloroquine in primary membranous nephropathy, Alport's syndrome, systemic vasculitis, anti-GBM disease, acute kidney injury and for cardiovascular risk reduction in chronic kidney disease. Hydroxychloroquine is well-tolerated, inexpensive, and widely available and therefore, should its indications expand in the future, it would certainly be welcomed. However, clinicians should be aware of the risk of irreversible and progressive retinal toxicity and rarely, cardiomyopathy. Monitoring hydroxychloroquine levels in blood appears to be a promising tool to evaluate compliance, individualize the dose and reduce the risk of retinal toxicity, although this is not yet standard clinical practice. In this review, we discuss the existing knowledge regarding the mechanism of action of hydroxychloroquine, its utility in lupus nephritis and other kidney diseases, the main adverse effects and the evidence gaps that need to be addressed in future research. Created with Biorender.com. HCQ, hydroxychloroquine; GBM, glomerular basement membrane; mDC, myeloid dendritic cell; MHC, major histocompatibility complex; TLR, toll-like receptor.
Collapse
Affiliation(s)
- Indu Ramachandra Rao
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| | - Ashwija Kolakemar
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Srinivas Vinayak Shenoy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Ravindra Attur Prabhu
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Dharshan Rangaswamy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | | |
Collapse
|
15
|
Viskupicova J, Rezbarikova P, Kovacikova L, Kandarova H, Majekova M. Inhibitors of SARS-CoV-2 main protease: Biological efficacy and toxicity aspects. Toxicol In Vitro 2023; 92:105640. [PMID: 37419426 DOI: 10.1016/j.tiv.2023.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
The emergence of the highly contagious respiratory disease, COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a significant global public health concern. To combat this virus, researchers have focused on developing antiviral strategies that target specific viral components, such as the main protease (Mpro), which plays a crucial role in SARS-CoV-2 replication. While many compounds have been identified as potent inhibitors of Mpro, only a few have been translated into clinical use due to the potential risk-benefit trade-offs. Development of systemic inflammatory response and bacterial co-infection in patients belong to severe, frequent complications of COVID-19. In this context, we analysed available data on the anti-inflammatory and antibacterial activities of the SARS-CoV-2 Mpro inhibitors for possible implementation in the treatment of complicated and long COVID-19 cases. Synthetic feasibility and ADME properties were calculated and included for better characterisation of the compounds' predicted toxicity. Analysis of the collected data resulted in several clusters pointing to the most prospective compounds for further study and design. The complete tables with collected data are attached in Supplementary material for use by other researchers.
Collapse
Affiliation(s)
- Jana Viskupicova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Lucia Kovacikova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Helena Kandarova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Magdalena Majekova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
16
|
Varga KZ, Gyurina K, Radványi Á, Pál T, Sasi-Szabó L, Yu H, Felszeghy E, Szabó T, Röszer T. Stimulator of Interferon Genes (STING) Triggers Adipocyte Autophagy. Cells 2023; 12:2345. [PMID: 37830559 PMCID: PMC10572001 DOI: 10.3390/cells12192345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Innate immune signaling in adipocytes affects systemic metabolism. Cytosolic nucleic acid sensing has been recently shown to stimulate thermogenic adipocyte differentiation and protect from obesity; however, DNA efflux from adipocyte mitochondria is a potential proinflammatory signal that causes adipose tissue dysfunction and insulin resistance. Cytosolic DNA activates the stimulator of interferon response genes (STING), a key signal transducer which triggers type I interferon (IFN-I) expression; hence, STING activation is expected to induce IFN-I response and adipocyte dysfunction. However, we show herein that mouse adipocytes had a diminished IFN-I response to STING stimulation by 2'3'-cyclic-GMP-AMP (cGAMP). We also show that cGAMP triggered autophagy in murine and human adipocytes. In turn, STING inhibition reduced autophagosome number, compromised the mitochondrial network and caused inflammation and fat accumulation in adipocytes. STING hence stimulates a process that removes damaged mitochondria, thereby protecting adipocytes from an excessive IFN-I response to mitochondrial DNA efflux. In summary, STING appears to limit inflammation in adipocytes by promoting mitophagy under non-obesogenic conditions.
Collapse
Affiliation(s)
- Kornél Z. Varga
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Katalin Gyurina
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ádám Radványi
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tibor Pál
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Sasi-Szabó
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Haidong Yu
- Institute of Neurobiology, Ulm University, 89081 Ulm, Germany
| | - Enikő Felszeghy
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Szabó
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Röszer
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Neurobiology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
17
|
Gomi M, Nakayama Y, Sakurai Y, Oyama R, Iwasaki K, Doi M, Liu Y, Hori M, Watanabe H, Hashimoto K, Tanaka H, Tange K, Nakai Y, Akita H. Tolerogenic Lipid Nanoparticles for Delivering Self-Antigen mRNA for the Treatment of Experimental Autoimmune Encephalomyelitis. Pharmaceuticals (Basel) 2023; 16:1270. [PMID: 37765078 PMCID: PMC10537621 DOI: 10.3390/ph16091270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis is a disease caused by autoantigen-responsive immune cells that disrupt the myelin in the central nervous system (CNS). Although immunosuppressive drugs are used to suppress symptoms, no definitive therapy exists. As in the experimental autoimmune encephalitis (EAE) model of multiple sclerosis, a partial sequence of the myelin oligodendrocyte glycoprotein (MOG35-55) was identified as a causative autoantigen. This suggests that the induction of immune tolerance that is specific to MOG35-55 would be a fundamental treatment for EAE. We previously reported that lipid nanoparticles (LNPs) containing an anionic phospholipid, phosphatidylserine (PS), in their lipid composition, can be used to deliver mRNA and that this leads to proteins of interest to be expressed in the spleen. In addition to the targeting capability of PS, PS molecules avoid activating the immune system. Physiologically, the recognition of PS on apoptotic cells suppresses immune activation against these cells by releasing cytokines, such as interleukin-10 (IL-10) and transforming growth factor (TGF)-β that negatively regulate immunity. In this study, we tested whether mRNA delivery of autoantigens to the spleen by PS-LNPs causes the expression of MOG35-55 antigens with minimal immune stimulation and whether this could be used to treat an EAE model by inducing immune tolerance.
Collapse
Affiliation(s)
- Masaki Gomi
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-0856, Japan
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yuka Nakayama
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yu Sakurai
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Ryotaro Oyama
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-0856, Japan
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Koki Iwasaki
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-0856, Japan
| | - Mizuki Doi
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-0856, Japan
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yi Liu
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-0856, Japan
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Mizuho Hori
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Himeka Watanabe
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kohei Hashimoto
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-0856, Japan
| | - Kota Tange
- Life Science Research Laboratory, NOF CORPORATION, 3-3, Chidoricho, Kawasaki-ku, Kawasaki 210-0865, Japan
| | - Yuta Nakai
- Life Science Research Laboratory, NOF CORPORATION, 3-3, Chidoricho, Kawasaki-ku, Kawasaki 210-0865, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
18
|
In 't Veld AE, Grievink HW, van der Plas JL, Eveleens Maarse BC, van Kraaij SJW, Woutman TD, Schoonakker M, Klarenbeek NB, de Kam ML, Kamerling IMC, Jansen MAA, Moerland M. Immunosuppression by hydroxychloroquine: mechanistic proof in in vitro experiments but limited systemic activity in a randomized placebo-controlled clinical pharmacology study. Immunol Res 2023; 71:617-627. [PMID: 36811819 PMCID: PMC9945836 DOI: 10.1007/s12026-023-09367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Based on its wide range of immunosuppressive properties, hydroxychloroquine (HCQ) is used for the treatment of several autoimmune diseases. Limited literature is available on the relationship between HCQ concentration and its immunosuppressive effect. To gain insight in this relationship, we performed in vitro experiments in human PBMCs and explored the effect of HCQ on T and B cell proliferation and Toll-like receptor (TLR)3/TLR7/TLR9/RIG-I-induced cytokine production. In a placebo-controlled clinical study, these same endpoints were evaluated in healthy volunteers that were treated with a cumulative dose of 2400 mg HCQ over 5 days. In vitro, HCQ inhibited TLR responses with IC50s > 100 ng/mL and reaching 100% inhibition. In the clinical study, maximal HCQ plasma concentrations ranged from 75 to 200 ng/mL. No ex vivo HCQ effects were found on RIG-I-mediated cytokine release, but there was significant suppression of TLR7 responses and mild suppression of TLR3 and TLR9 responses. Moreover, HCQ treatment did not affect B cell and T cell proliferation. These investigations show that HCQ has clear immunosuppressive effects on human PBMCs, but the effective concentrations exceed the circulating HCQ concentrations under conventional clinical use. Of note, based on HCQ's physicochemical properties, tissue drug concentrations may be higher, potentially resulting in significant local immunosuppression. This trial is registered in the International Clinical Trials Registry Platform (ICTRP) under study number NL8726.
Collapse
Affiliation(s)
- Aliede E In 't Veld
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Hendrika W Grievink
- Centre for Human Drug Research, Leiden, The Netherlands
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Johan L van der Plas
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Boukje C Eveleens Maarse
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Sebastiaan J W van Kraaij
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | - Ingrid M C Kamerling
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Matthijs Moerland
- Centre for Human Drug Research, Leiden, The Netherlands.
- Leiden University Medical Centre, Leiden, The Netherlands.
| |
Collapse
|
19
|
Ravindranath MH, Ravindranath NM, Amato-Menker CJ, El Hilali F, Selvan SR, Filippone EJ, Morales-Buenrostro LE. Antibodies for β2-Microglobulin and the Heavy Chains of HLA-E, HLA-F, and HLA-G Reflect the HLA-Variants on Activated Immune Cells and Phases of Disease Progression in Rheumatoid Arthritis Patients under Treatment. Antibodies (Basel) 2023; 12:antib12020026. [PMID: 37092447 PMCID: PMC10123671 DOI: 10.3390/antib12020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/18/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Rheumatoid arthritis (RA) is a progressive, inflammatory, autoimmune, symmetrical polyarticular arthritis. It is characterized by synovial infiltration and activation of several types of immune cells, culminating in their apoptosis and antibody generation against “altered” autoantigens. β2-microglobulin (β2m)-associated heavy chains (HCs) of HLA antigens, also known as closed conformers (Face-1), undergo “alteration” during activation of immune cells, resulting in β2m-free structural variants, including monomeric open conformers (Face-2) that are capable of dimerizing as either homodimers (Face-3) or as heterodimers (Face-4). β2m-free HCs uncover the cryptic epitopes that can elicit antibodies (Abs). We report here the levels of IgM and IgG Abs against both β2m and HCs of HLA-E, HLA-F, and HLA-G in 74 RA patients receiving immunosuppressive drugs. Anti-β2m IgM was present in 20 of 74 patients, whereas anti-β2m IgG was found in only 8 patients. Abs against β2m would be expected if Abs were generated against β2m-associated HLA HCs. The majority of patients were devoid of either anti-β2m IgM or IgG but had Abs against HCs of different HLA-Ib molecules. The paucity of anti-β2m Abs in this cohort of patients suggests that Abs were developed against β2m-free HLA HCs, such as Face-2, Face-3, and Face-4. While 63 of 68 patients had IgG Abs against anti-HLA-F HCs, 36 and 50 patients showed IgG Ab reactivity against HLA-E and anti-HLA-G HCs, respectively. Evidently, anti-HLA-F HC Abs are the most predominant anti-HLA-Ib HC IgG Abs in RA patients. The incidence and intensity of Abs against HLA-E, HLA-F, and HLA-G in the normal control group were much higher than those observed in RA patients. Evidently, the lower level of Abs in RA patients points to the impact of the immunosuppressive drugs on these patients. These results underscore the need for further studies to unravel the nature of HLA-F variants on activated immune cells and synoviocytes of RA patients.
Collapse
|
20
|
Abbasloo E, Amiresmaili S, Shirazpour S, Khaksari M, Kobeissy F, Thomas TC. Satureja khuzistanica Jamzad essential oil and pure carvacrol attenuate TBI-induced inflammation and apoptosis via NF-κB and caspase-3 regulation in the male rat brain. Sci Rep 2023; 13:4780. [PMID: 36959464 PMCID: PMC10036533 DOI: 10.1038/s41598-023-31891-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/20/2023] [Indexed: 03/25/2023] Open
Abstract
Traumatic brain injury (TBI) causes progressive dysfunction that induces biochemical and metabolic changes that lead to cell death. Nevertheless, there is no definitive FDA-approved therapy for TBI treatment. Our previous immunohistochemical results indicated that the cost-effective natural Iranian medicine, Satureja khuzistanica Jamzad essential oil (SKEO), which consists of 94.16% carvacrol (CAR), has beneficial effects such as reducing neuronal death and inflammatory markers, as well as activating astrocytes and improving neurological outcomes. However, the molecular mechanisms of these neuroprotective effects have not yet been elucidated. This study investigated the possible mechanisms involved in the anti-inflammatory and anti-apoptotic properties of SKEO and CAR after TBI induction. Eighty-four male Wistar rats were randomly divided into six groups: Sham, TBI, TBI + Vehicle, TBI + CAR (100 and 200 mg/kg), and TBI + SKEO (200 mg/kg) groups. After establishing the "Marmarou" weight drop model, diffuse TBI was induced in the rat brain. Thirty minutes after TBI induction, SKEO & CAR were intraperitoneally injected. One day after TBI, injured rats exhibited significant brain edema, neurobehavioral dysfunctions, and neuronal apoptosis. Western blot results revealed upregulation of the levels of cleaved caspase-3, NFκB p65, and Bax/Bcl-2 ratio, which was attenuated by CAR and SKEO (200 mg/kg). Furthermore, the ELISA results showed that CAR treatment markedly prevents the overproduction of the brain pro-inflammatory cytokines, including IL-1β, TNF-α, and IL-6. Moreover, the neuron-specific enolase (NSE) immunohistochemistry results revealed the protective effect of CAR and SKEO on post-TBI neuronal death. The current study revealed that the possible neuroprotective mechanisms of SKEO and CAR might be related to (at least in part) modulating NF-κB regulated inflammation and caspase-3 protein expression. It also suggested that CAR exerts more potent protective effects than SKEO against TBI. Nevertheless, the administration of SKEO and CAR may express a novel therapeutic approach to ameliorate TBI-related secondary phase neuropathological outcomes.
Collapse
Affiliation(s)
- Elham Abbasloo
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Sara Shirazpour
- Department of Physiology and Pharmacology, Faculty of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Khaksari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Neurotrauma, Multiomics and Biomarkers, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, USA
- Translational Neurotrauma Research Program, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, USA
| |
Collapse
|
21
|
Yang CA, Li JP, Lai YH, Huang YL, Lin CY, Lan JL. Assessing the Immune Cell Subset and Genetic Mutations in Patients With Palindromic Rheumatism Seronegative for Rheumatoid Factor and Anti-Cyclic Citrullinated Peptide. Arthritis Rheumatol 2023; 75:187-200. [PMID: 35819819 DOI: 10.1002/art.42297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The etiology underlying cases of palindromic rheumatism (PR) not associated with other rheumatic diseases in patients who are seronegative for rheumatoid factor and anti-cyclic citrullinated peptide (seronegative PR) is unclear. We aimed to investigate the immune cells and genes involved. METHODS This was a single-center comparative study of 48 patients with seronegative PR and 48 healthy controls. Mass cytometry and RNA sequencing were used to identify distinct immune cell subsets in blood. Among the 48 seronegative PR patients, plasma samples from 40 patients were evaluated by enzyme-linked immunosorbent assay for cytokine levels, and peripheral blood samples from 25 patients were evaluated by flow cytometry for mononuclear cell subsets. Plasma samples from 21 patients were evaluated by real-time polymerase chain reaction for differential gene and protein expression, and samples from 3 patients were analyzed with whole-exome sequencing for gene mutations. RESULTS Immunophenotyping revealed a markedly increased frequency of CD14+CD11b+CD36+ and CD4+CD25-CD69+ cells in seronegative PR patients with active flares compared with healthy controls (P < 0.0001 for both cell subset comparisons). Gene enrichment analyses of RNA-sequencing data from sorted CD14+CD11b+CD36+ and CD4+CD25-CD69+ cells showed involvement of the inflammatory/stress response, phagocytosis, and regulation of apoptosis functional pathways. Up-regulated expression of CXCL16 and IL10RA was observed in monocytes from PR patients. Up-regulation of PFKFB3, DDIT4, and TGFB1, and down-regulation of PDIA6 were found in monocytes and lymphocytes from PR patients with active flares and PR patients in intercritical periods. Plasma levels of S100A8/A9 and interleukin-1β were elevated in PR patients. Whole-exome sequencing revealed novel polygenic mutations in HACL1, KDM5A, RASAL1, HAVCR2, PRDM9, MBOAT4, and JRKL. CONCLUSION In seronegative PR patients, we identified a distinct CD14+CD11b+CD36+ cell subset that can induce an inflammatory response under stress and exert antiinflammatory effects after phagocytosis of apoptotic cells, and a CD4+CD25-CD69+ T cell subset with pro- and antiinflammatory properties. Individuals with genetic mutations involving epigenetic modification, potentiation and resolution of stress-induced inflammation/apoptosis, and a dysregulated endoplasmic reticulum stress response could be predisposed to seronegative PR.
Collapse
Affiliation(s)
- Chin-An Yang
- College of Medicine, China Medical University, Division of Laboratory Medicine, China Medical University Hsinchu Hospital, and Departments of Medical Education and Pediatrics, China Medical University Hsinchu Hospital, Zhubei City, Taiwan, and Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan
| | - Ju-Pi Li
- Rheumatic Diseases Research Center, China Medical University Hospital, Department of Pathology, School of Medicine, Chung Shan Medical University and Chung Shan Medical University Hospital, Taiwan
| | - Yi-Hua Lai
- College of Medicine, China Medical University, Rheumatic Diseases Research Center, China Medical University Hospital, and Rheumatology and Immunology Center, China Medical University Hospital, Taiwan
| | - Ya-Ling Huang
- Division of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City, Taiwan
| | - Chien-Yu Lin
- Division of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City, Taiwan
| | - Joung-Liang Lan
- College of Medicine, China Medical University, Rheumatic Diseases Research Center, China Medical University Hospital, and Rheumatology and Immunology Center, China Medical University Hospital, Taiwan
| |
Collapse
|
22
|
Manuja A, Chhabra D, Kumar B. Chloroquine chaos and COVID-19: Smart delivery perspectives through pH sensitive polymers/micelles and ZnO nanoparticles. ARAB J CHEM 2023; 16:104468. [PMID: 36466721 PMCID: PMC9710101 DOI: 10.1016/j.arabjc.2022.104468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
The global pandemic of COVID-19 had a consequential impact on our lives. (Hydroxy)chloroquine, a well-known drug for treatment or prevention against malaria and chronic inflammatory conditions, was also used for COVID patients with reported potential efficacy. Although it was well tolerated, however in some cases, it produced severe side effects, including grave cardiac issues. The variable reports on the administration of (hydroxy)chloroquine in COVID19 patients led to chaos. This drug is a well-known zinc ionophore, besides possessing antiviral effects. Zinc ionophores augment the intracellular Zn2+ concentration by facilitating the zinc ions into the cells and subsequently impair virus replication. Zinc oxide nanoparticles (ZnO NPs) have been reported to possess antiviral activity. However, the adverse effects of both components are also reported. We discussed in depth their possible mechanism as antiviral and smart delivery perspectives through pH-sensitive polymers/ micelles and ZnO NPs.
Collapse
Affiliation(s)
- Anju Manuja
- Corresponding authors at: ICAR-National Research Centre on Equines, Hisar-125001, Haryana, India
| | | | - Balvinder Kumar
- Corresponding authors at: ICAR-National Research Centre on Equines, Hisar-125001, Haryana, India
| |
Collapse
|
23
|
Shoaib S, Ansari MA, Kandasamy G, Vasudevan R, Hani U, Chauhan W, Alhumaidi MS, Altammar KA, Azmi S, Ahmad W, Wahab S, Islam N. An Attention towards the Prophylactic and Therapeutic Options of Phytochemicals for SARS-CoV-2: A Molecular Insight. Molecules 2023; 28:795. [PMID: 36677853 PMCID: PMC9864057 DOI: 10.3390/molecules28020795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The novel pathogenic virus was discovered in Wuhan, China (December 2019), and quickly spread throughout the world. Further analysis revealed that the pathogenic strain of virus was corona but it was distinct from other coronavirus strains, and thus it was renamed 2019-nCoV or SARS-CoV-2. This coronavirus shares many characteristics with other coronaviruses, including SARS-CoV and MERS-CoV. The clinical manifestations raised in the form of a cytokine storm trigger a complicated spectrum of pathophysiological changes that include cardiovascular, kidney, and liver problems. The lack of an effective treatment strategy has imposed a health and socio-economic burden. Even though the mortality rate of patients with this disease is lower, since it is judged to be the most contagious, it is considered more lethal. Globally, the researchers are continuously engaged to develop and identify possible preventive and therapeutic regimens for the management of disease. Notably, to combat SARS-CoV-2, various vaccine types have been developed and are currently being tested in clinical trials; these have also been used as a health emergency during a pandemic. Despite this, many old antiviral and other drugs (such as chloroquine/hydroxychloroquine, corticosteroids, and so on) are still used in various countries as emergency medicine. Plant-based products have been reported to be safe as alternative options for several infectious and non-infectious diseases, as many of them showed chemopreventive and chemotherapeutic effects in the case of tuberculosis, cancer, malaria, diabetes, cardiac problems, and others. Therefore, plant-derived products may play crucial roles in improving health for a variety of ailments by providing a variety of effective cures. Due to current therapeutic repurposing efforts against this newly discovered virus, we attempted to outline many plant-based compounds in this review to aid in the fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Abha 62529, Saudi Arabia
| | - Waseem Chauhan
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Maryam S. Alhumaidi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Khadijah A. Altammar
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Sarfuddin Azmi
- Molecular Microbiology Biology Division, Scientific Research Centre (SRC), Prince Sultan Military Medical City (PSMMC), Riyadh 11159, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Shadma Wahab
- Deparment of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Najmul Islam
- Department Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
24
|
Therapeutic efficacy of Chloroquine for the treatment of uncomplicated Plasmodium vivax infection in Shewa Robit, Northeast Ethiopia. PLoS One 2023; 18:e0277362. [PMID: 36634046 PMCID: PMC9836259 DOI: 10.1371/journal.pone.0277362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/25/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The development of drug resistance to chloroquine is posing a challenge in the prevention and control efforts of malaria globally. Chloroquine is the first-line treatment for uncomplicated P.vivax in Ethiopia. Regular monitoring of anti-malarial drugs is recommended to help early detection of drug-resistant strains of malaria parasites before widely distributed. The emergence of P.vivax resistance to chloroquine in the country endangers the efficacy of P.vivax treatment. This study aimed to assess the therapeutic efficacy of chloroquine among uncomplicated P.vivax infections at Shewa Robit Health Center, northeast Ethiopia. METHODS One-arm in vivo prospective chloroquine efficacy study was conducted from November 2020 to March 2021. Ninety participants aged between 16 months to 60 years confirmed with P.vivax mono-infection microscopically were selected and treated with a 25 mg/kg standard dose of chloroquine over three days. Thick and thin blood smears were prepared and examined. Clinical examination was performed over 28 follow-up days. Hemoglobin concentration level was measured on days 0, 14, and 28. RESULT Of the 90 enrolled participants, 86 (96%) completed their 28 days follow-up period. The overall cure rate of the drug was 98.8% (95% CI: 95.3-100%). All asexual stages and gametocytes were cleared within 48 hours with rapid clearance of fever. Hemoglobin concentration had significantly recovered between days 0 and 14, 0 and 28, and 14 and 28 days (P = 0.032, P<0.001, and P = 0.005), respectively. Fast resolution of clinical signs and symptoms was also observed. Severe adverse events were not recorded. CONCLUSION The present study revealed that chloroquine remains an efficacious and safe drug in the study setting for treating uncomplicated P.vivax in the study area. Large-scale continuous surveillance is needed to monitor the development of resistance in due time.
Collapse
|
25
|
Alrashedi MG, Ali AS, Ahmed OA, Ibrahim IM. Local Delivery of Azithromycin Nanoformulation Attenuated Acute Lung Injury in Mice. Molecules 2022; 27:8293. [PMID: 36500388 PMCID: PMC9739299 DOI: 10.3390/molecules27238293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Humanity has suffered from the coronavirus disease 2019 (COVID-19) pandemic over the past two years, which has left behind millions of deaths. Azithromycin (AZ), an antibiotic used for the treatment of several bacterial infections, has shown antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as against the dengue, Zika, Ebola, and influenza viruses. Additionally, AZ has shown beneficial effects in non-infective diseases such as cystic fibrosis and bronchiectasis. However, the systemic use of AZ in several diseases showed low efficacy and potential cardiac toxicity. The application of nanotechnology to formulate a lung delivery system of AZ could prove to be one of the solutions to overcome these drawbacks. Therefore, we aimed to evaluate the attenuation of acute lung injury in mice via the local delivery of an AZ nanoformulation. The hot emulsification-ultrasonication method was used to prepare nanostructured lipid carrier of AZ (AZ-NLC) pulmonary delivery systems. The developed formulation was evaluated and characterized in vitro and in vivo. The efficacy of the prepared formulation was tested in the bleomycin (BLM) -mice model for acute lung injury. AZ-NLC was given by the intratracheal (IT) route for 6 days at a dose of about one-eighth oral dose of AZ suspension. Samples of lung tissues were taken at the end of the experiment for immunological and histological assessments. AZ-NLC showed an average particle size of 453 nm, polydispersity index of 0.228 ± 0.07, zeta potential of -30 ± 0.21 mV, and a sustained release pattern after the initial 50% drug release within the first 2 h. BLM successfully induced a marked increase in pro-inflammatory markers and also induced histological changes in pulmonary tissues. All these alterations were significantly reversed by the concomitant administration of AZ-NLC (IT). Pulmonary delivery of AZ-NLC offered delivery of the drug locally to lung tissues. Its attenuation of lung tissue inflammation and histological injury induced by bleomycin was likely through the downregulation of the p53 gene and the modulation of Bcl-2 expression. This novel strategy could eventually improve the effectiveness and diminish the adverse drug reactions of AZ. Lung delivery could be a promising treatment for acute lung injury regardless of its cause. However, further work is needed to explore the stability of the formulation, its pharmacokinetics, and its safety.
Collapse
Affiliation(s)
- Mohsen G. Alrashedi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Ministry of Health, Riyadh 12628, Saudi Arabia
| | - Ahmed Shaker Ali
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Osama Abdelhakim Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
26
|
Drug Repurposing in Chagas Disease: Chloroquine Potentiates Benznidazole Activity against Trypanosoma cruzi
In Vitro
and
In Vivo. Antimicrob Agents Chemother 2022; 66:e0028422. [PMID: 36314800 PMCID: PMC9664849 DOI: 10.1128/aac.00284-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug combinations and drug repurposing have emerged as promising strategies to develop novel treatments for infectious diseases, including Chagas disease. In this study, we aimed to investigate whether the repurposed drugs chloroquine (CQ) and colchicine (COL), known to inhibit
Trypanosoma cruzi
infection in host cells, could boost the anti-
T. cruzi
effect of the trypanocidal drug benznidazole (BZN), increasing its therapeutic efficacy while reducing the dose needed to eradicate the parasite. The combination of BZN and COL exhibited cytotoxicity to infected cells and low antiparasitic activity.
Collapse
|
27
|
Sari E, He C, Margaroli C. Plasticity towards Rigidity: A Macrophage Conundrum in Pulmonary Fibrosis. Int J Mol Sci 2022; 23:11443. [PMID: 36232756 PMCID: PMC9570276 DOI: 10.3390/ijms231911443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and ultimately fatal diffuse parenchymal lung disease. The molecular mechanisms of fibrosis in IPF patients are not fully understood and there is a lack of effective treatments. For decades, different types of drugs such as immunosuppressants and antioxidants have been tested, usually with unsuccessful results. Although two antifibrotic drugs (Nintedanib and Pirfenidone) are approved and used for the treatment of IPF, side effects are common, and they only slow down disease progression without improving patients' survival. Macrophages are central to lung homeostasis, wound healing, and injury. Depending on the stimulus in the microenvironment, macrophages may contribute to fibrosis, but also, they may play a role in the amelioration of fibrosis. In this review, we explore the role of macrophages in IPF in relation to the fibrotic processes, epithelial-mesenchymal transition (EMT), and their crosstalk with resident and recruited cells and we emphasized the importance of macrophages in finding new treatments.
Collapse
Affiliation(s)
- Ezgi Sari
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Camilla Margaroli
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
28
|
Huang J, Hong W, Wan M, Zheng L. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm (Beijing) 2022; 3:e162. [PMID: 36000086 PMCID: PMC9390875 DOI: 10.1002/mco2.162] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Evidence shows that neutrophils can protect the host against pathogens in multiple ways, including the formation and release of neutrophil extracellular traps (NETs). NETs are web-like structures composed of fibers, DNA, histones, and various neutrophil granule proteins. NETs can capture and kill pathogens, including bacteria, viruses, fungi, and protozoa. The process of NET formation is called NETosis. According to whether they depend on nicotinamide adenine dinucleotide phosphate (NADPH), NETosis can be divided into two categories: "suicidal" NETosis and "vital" NETosis. However, NET components, including neutrophil elastase, myeloperoxidase, and cell-free DNA, cause a proinflammatory response and potentially severe diseases. Compelling evidence indicates a link between NETs and the pathogenesis of a number of diseases, including sepsis, systemic lupus erythematosus, rheumatoid arthritis, small-vessel vasculitis, inflammatory bowel disease, cancer, COVID-19, and others. Therefore, targeting the process and products of NETosis is critical for treating diseases linked with NETosis. Researchers have discovered that several NET inhibitors, such as toll-like receptor inhibitors and reactive oxygen species scavengers, can prevent uncontrolled NET development. This review summarizes the mechanism of NETosis, the receptors associated with NETosis, the pathology of NETosis-induced diseases, and NETosis-targeted therapy.
Collapse
Affiliation(s)
- Jiayu Huang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional GenesMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
29
|
Gao X, Jing X, Wang J, Zheng Y, Qiu Y, Ji H, Peng L, Jiang S, Wu W, Guo D. Safety considerations of chloroquine in the treatment of patients with diabetes and COVID-19. Chem Biol Interact 2022; 361:109954. [PMID: 35469826 PMCID: PMC9023373 DOI: 10.1016/j.cbi.2022.109954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 02/09/2023]
Abstract
Patients with underlying diseases and coronavirus disease 2019 (COVID-19) are at increased risk of death. Using the recommended anti-COVID-19 drug, chloroquine phosphate (CQ), to treat patients with severe cases and type 2 diabetes (T2D) could potentially cause harm. We aimed to understand the safety of CQ in patients with T2D by administrating the recommended dose (63 mg/kg twice daily for 7 days) and a high dose (126 mg/kg twice daily for 7 days) of CQ in T2D rats. We found that CQ increased the total mortality of the T2D rats from 27.3% to 72.7% in the recommended and high-dose groups during the whole period. CQ also induced hematotoxicity of T2D rats in the high-dose group; the hepatic enzymes in T2D rats were significantly elevated. CQ also changed the electrocardiograms, prolonged the QTc intervals, and produced urinary leukocytes and proteins in the T2D rats. Histopathological observations revealed that CQ caused severe damage to the rats' heart, jejunum, liver, kidneys, spleen, and retinas. Furthermore, CQ significantly decreased the serum IL-1β and IL-6 levels. In conclusion, the CQ dosage and regimen used to treat COVID-19 induced adverse effects in diabetic rats, suggesting the need to reevaluate the effective dose of CQ in humans.
Collapse
Affiliation(s)
- Xiuge Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China,Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Xian Jing
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China,Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Junqi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China,Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Yuling Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China,Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Yawei Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China,Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Hui Ji
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China,Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Lin Peng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China,Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Shanxiang Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China,Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China,Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China,Corresponding author. Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| | - Dawei Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China,Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China,Corresponding author. MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, PR China
| |
Collapse
|
30
|
Celecoxib Microparticles for Inhalation in COVID-19-Related Acute Respiratory Distress Syndrome. Pharmaceutics 2022; 14:pharmaceutics14071392. [PMID: 35890288 PMCID: PMC9320401 DOI: 10.3390/pharmaceutics14071392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Inhalation therapy is gaining increasing attention for the delivery of drugs destined to treat respiratory disorders associated with cytokine storms, such as COVID-19. The pathogenesis of COVID-19 includes an inflammatory storm with the release of cytokines from macrophages, which may be treated with anti-inflammatory drugs as celecoxib (CXB). For this, CXB-loaded PLGA microparticles (MPs) for inhaled therapy and that are able to be internalized by alveolar macrophages, were developed. MPs were prepared with 5% and 10% initial percentages of CXB (MP-C1 and MP-C2). For both systems, the mean particle size was around 5 µm, which was adequate for macrophage uptake, and the mean encapsulation efficiency was >89%. The in vitro release of CXB was prolonged for more than 40 and 70 days, respectively. The uptake of fluorescein-loaded PLGA MPs by the RAW 264.7 macrophage cell line was evidenced by flow cytometry, fluorescence microscopy and confocal microscopy. CXB-loaded PLGA MPs did not produce cytotoxicity at the concentrations assayed. The anti-inflammatory activity of CXB (encapsulated and in solution) was evaluated by determining the IL-1, IL-6 and TNF-α levels at 24 h and 72 h in RAW 264.7 macrophages, resulting in a higher degree of reduction in the expression of inflammatory mediators for CXB in solution. A potent degree of gene expression reduction was obtained with the developed CXB-loaded MPs.
Collapse
|
31
|
Ali AS, Alrashedi MG, Ahmed OAA, Ibrahim IM. Pulmonary Delivery of Hydroxychloroquine Nanostructured Lipid Carrier as a Potential Treatment of COVID-19. Polymers (Basel) 2022; 14:polym14132616. [PMID: 35808662 PMCID: PMC9269041 DOI: 10.3390/polym14132616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 12/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is a pandemic caused by severe acute respiratory syndrome coronavirus 2. Pneumonia is considered the most severe and long-term complication of COVID-19. Among other drugs, hydroxychloroquine (HCQ) was repurposed for the management of COVID-19; however, low efficacy and cardiac toxicity of the conventional dosage form limited its use in COVID-19. Therefore, utilizing nanotechnology, a pulmonary delivery system of HCQ was investigated to overcome these limitations. HCQ was formulated in nanostructured lipid carriers (HCQ-NLCs) using the hot emulsification–ultrasonication method. Furthermore, the prepared formulation was evaluated in vitro. Moreover, the efficacy was tested in vivo in a bleomycin-induced acute lung injury mice model. Intriguingly, nanoformulations were given by the intratracheal route for 6 days. HCQ-NLCs showed a mean particle size of 277 nm and a good drug release profile. Remarkably, acute lung injury induced by bleomycin was associated with a marked elevation of inflammatory markers and histological alterations in lung tissues. Astoundingly, all these changes were significantly attenuated with HCQ-NLCs. The pulmonary delivery of HCQ-NLCs likely provided adequate targeting to lung tissues. Nevertheless, there is hope that this novel strategy will eventually lead to the improved effectiveness and diminished probability of alarming adverse drug reactions.
Collapse
Affiliation(s)
- Ahmed Shaker Ali
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.A.); (M.G.A.)
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Mohsen Geza Alrashedi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.A.); (M.G.A.)
- Ministry of Health, Riyadh 12628, Saudi Arabia
| | - Osama Abdelhakim Aly Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.A.); (M.G.A.)
- Correspondence:
| |
Collapse
|
32
|
Villa Zapata L, Boyce RD, Chou E, Hansten PD, Horn JR, Gephart SM, Subbian V, Romero A, Malone DC. QTc Prolongation with the Use of Hydroxychloroquine and Concomitant Arrhythmogenic Medications: A Retrospective Study Using Electronic Health Records Data. Drugs Real World Outcomes 2022; 9:415-423. [PMID: 35665910 PMCID: PMC9167427 DOI: 10.1007/s40801-022-00307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Hydroxychloroquine can induce QT/QTc interval prolongation for some patients; however, little is known about its interactions with other QT-prolonging drugs. Objective The purpose of this retrospective electronic health records study was to evaluate changes in the QTc interval in patients taking hydroxychloroquine with or without concomitant QT-prolonging medications. Methods De-identified health records were obtained from the Cerner Health Facts® database. Variables of interest included demographics, diagnoses, clinical procedures, laboratory tests, and medications. Patients were categorized into six cohorts based on exposure to hydroxychloroquine, methotrexate, or sulfasalazine alone, or the combination of any those drugs with any concomitant drug known to prolong the QT interval. Tisdale QTc risk score was calculated for each patient cohort. Two-sample paired t-tests were used to test differences between the mean before and after QTc measurements within each group and ANOVA was used to test for significant differences across the cohort means. Results A statistically significant increase in QTc interval from the last measurement prior to concomitant exposure of 18.0 ms (95% CI 3.5–32.5; p < 0.05) was found in the hydroxychloroquine monotherapy cohort. QTc changes varied considerably across cohorts, with standard deviations ranging from 40.9 (hydroxychloroquine monotherapy) to 57.8 (hydroxychloroquine + sulfasalazine). There was no difference in QTc measurements among cohorts. The hydroxychloroquine + QTc-prolonging agent cohort had the highest average Tisdale Risk Score compared with those without concomitant exposure (p < 0.05). Conclusion Our analysis of retrospective electronic health records found hydroxychloroquine to be associated with a moderate increase in the QTc interval compared with sulfasalazine or methotrexate. However, the QTc was not significantly increased with concomitant exposure to other drugs known to increase QTc interval.
Collapse
Affiliation(s)
- Lorenzo Villa Zapata
- Department of Pharmacy Practice, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Richard D Boyce
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, The Offices@Baum, 5607 Baum Blvd, Pittsburgh, PA, 15202, USA.
| | - Eric Chou
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, The Offices@Baum, 5607 Baum Blvd, Pittsburgh, PA, 15202, USA
| | | | - John R Horn
- Department of Pharmacy Practice, School of Pharmacy and Pharmacy Services UW Medicine, University of Washington, Seattle, WA, USA
| | - Sheila M Gephart
- Community and Health Systems Science, College of Nursing, The University of Arizona, Tucson, AZ, USA
| | - Vignesh Subbian
- Department of Biomedical Engineering and Department of Systems and Industrial Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA
| | - Andrew Romero
- Department of Pharmacy, Banner University Medical Center, Tucson, AZ, USA
| | - Daniel C Malone
- College of Pharmacy, L.S. Skaggs Research Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
33
|
Račková L, Csekes E. Redox aspects of cytotoxicity and anti-neuroinflammatory profile of chloroquine and hydroxychloroquine in serum-starved BV-2 microglia. Toxicol Appl Pharmacol 2022; 447:116084. [PMID: 35618033 DOI: 10.1016/j.taap.2022.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) have long been used worldwide to treat and prevent human malarias. However, these 4-aminoquinolines have also shown promising potential in treating chronic illnesses with an inflammatory component, including neurological diseases. Given the current demand for serum avoidance during pharmacological testing and modeling of some pathologies, we compared cytotoxicities of CQ and HCQ in both serum-deprived and -fed murine BV-2 microglia. Furthermore, we assessed the anti-neuroinflammatory potential of both compounds in serum-deprived cells. Under both conditions, CQ showed higher cytotoxicity than HCQ. However, the comparable MTT-assay-derived data measured under different serum conditions were associated with disparate cytotoxic mechanisms of CQ and HCQ. In particular, under serum starvation, CQ mildly enhanced secondary ROS, mitochondrial hyperpolarization, and decreased phagocytosis. However, CQ promoted G1 phase cell cycle arrest and mitochondrial depolarization in serum-fed cells. Under both conditions, CQ fostered early apoptosis. Additionally, we confirmed that both compounds could exert anti-inflammatory effects in microglia through interference with MAPK signaling under nutrient-deprivation-related stress. Nevertheless, unlike HCQ, CQ is more likely to exaggerate intracellular prooxidant processes in activated starved microglia, which are inefficiently buffered by Nrf2/HO-1 signaling pathway activation. These outcomes also show HCQ as a promising anti-neuroinflammatory drug devoid of CQ-mediated cytotoxicity.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic.
| | - Erika Csekes
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
34
|
Zhu D, Krause M, Yawno T, Kusuma GD, Schwab R, Barabadi M, Maleken AS, Chan ST, Hunt R, Greening D, Wallace EM, Lim R. Assessing the impact of gestational age of donors on the efficacy of amniotic epithelial cell-derived extracellular vesicles in experimental bronchopulmonary dysplasia. Stem Cell Res Ther 2022; 13:196. [PMID: 35550006 PMCID: PMC9102678 DOI: 10.1186/s13287-022-02874-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Background and rationale Extracellular vesicles (EVs) are a potential cell-free regenerative medicine. Human amniotic epithelial cells (hAECs) are a viable source of cell therapy for diseases like bronchopulmonary dysplasia (BPD). However, little is known about the impact of gestational age of the donor on the quality of hAEC-derived EVs.
Aims To determine the impact of gestational age on hAEC-derived EVs in experimental BPD.
Results Term hAEC-derived EVs displayed a significantly higher density of surface epitopes (CD142 and CD133) and induced greater macrophage phagocytosis compared to preterm hAEC-EVs. However, T cell proliferation was more significantly suppressed by preterm hAEC-EVs. Using a model of experimental BPD, we observed that term but not preterm hAEC-EVs improved tissue-to-airspace ratio and septal crest density. While both term and preterm hAEC-EVs reduced the levels of inflammatory cytokines on postnatal day 7, the improvement in lung injury was associated with increased type II alveolar cells which was only observed in term hAEC-EV treatment group. Furthermore, only neonatal term hAEC-EVs reduced airway hyper-responsiveness, mitigated pulmonary hypertension and protected against right ventricular hypertrophy at 6 weeks of age. Conclusion Term hAEC-EVs, but not preterm hAEC-EVs, have therapeutic efficacy in a mouse model of BPD-like lung injury. Therefore, the impact of donor criteria should be considered when applying perinatal cells-derived EV therapy for clinical use.
Collapse
Affiliation(s)
- Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Mirja Krause
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia. .,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia. .,Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia.
| | - Gina D Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Renate Schwab
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Amina S Maleken
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Siow T Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Rod Hunt
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia
| | - David Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.,Central Clinical School, Monash University, Clayton, VIC, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
35
|
Chen H, Zhou M, Zeng Y, Miao T, Luo H, Tong Y, Zhao M, Mu R, Gu J, Yang S, Han L. Biomimetic Lipopolysaccharide-Free Bacterial Outer Membrane-Functionalized Nanoparticles for Brain-Targeted Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105854. [PMID: 35355446 PMCID: PMC9165477 DOI: 10.1002/advs.202105854] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Indexed: 05/04/2023]
Abstract
The blood-brain barrier (BBB) severely blocks the intracranial accumulation of most systemic drugs. Inspired by the contribution of the bacterial outer membrane to Escherichia coli K1 (EC-K1) binding to and invasion of BBB endothelial cells in bacterial meningitis, utilization of the BBB invasion ability of the EC-K1 outer membrane for brain-targeted drug delivery and construction of a biomimetic self-assembled nanoparticle with a surface featuring a lipopolysaccharide-free EC-K1 outer membrane are proposed. BBB penetration of biomimetic nanoparticles is demonstrated to occur through the transcellular vesicle transport pathway, which is at least partially dependent on internalization, endosomal escape, and transcytosis mediated by the interactions between outer membrane protein A and gp96 on BBB endothelial cells. This biomimetic nanoengineering strategy endows the loaded drugs with prolonged circulation, intracranial interstitial distribution, and extremely high biocompatibility. Based on the critical roles of gp96 in cancer biology, this strategy reveals enormous potential for delivering therapeutics to treat gp96-overexpressing intracranial malignancies.
Collapse
Affiliation(s)
- Haiyan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical SciencesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Mengyuan Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical SciencesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Yuteng Zeng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical SciencesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Tongtong Miao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical SciencesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Haoyuan Luo
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical SciencesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Yang Tong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical SciencesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Mei Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical SciencesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Rui Mu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical SciencesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Jiang Gu
- National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of PharmacyThird Military Medical UniversityChongqing400038P. R. China
| | - Shudi Yang
- Suzhou Polytechnic Institute of AgricultureSuzhou215008P. R. China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical SciencesSoochow UniversitySuzhouJiangsu215123P. R. China
| |
Collapse
|
36
|
Hu Y, Li Z, Chen G, Li Z, Huang J, Huang H, Xie Y, Chen Q, Zhu W, Wang M, Chen J, Su W, Chen X, Liang D. Hydroxychloroquine Alleviates EAU by Inhibiting Uveitogenic T Cells and Ameliorating Retinal Vascular Endothelial Cells Dysfunction. Front Immunol 2022; 13:859260. [PMID: 35401507 PMCID: PMC8989724 DOI: 10.3389/fimmu.2022.859260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Inflammation triggers the activation of CD4+T cells and the breakdown of blood–retinal barrier, thus contributing to the pathology of experimental autoimmune uveitis (EAU). We explored the anti-inflammatory effect of hydroxychloroquine (HCQ) on EAU and the potential mechanisms active in T cells and retinal vascular endothelial cells (RVECs). Methods C57BL/6J mice were immunized with interphotoreceptor retinoid binding protein 1-20 (IRBP1–20) to induce EAU and then treated with the vehicle or HCQ (100 mg/kg/day). On day 7, 14, 21, 30 and 60 after immunization, clinical scores were evaluated. On day 14, histopathological scores were assessed, and retinas, spleens, and lymph nodes were collected for quantitative polymerase chain reaction or flow cytometry analysis. RVEC dysfunction was induced by tumor necrosis factor α (TNF-α) stimulation. The expression of cytokines, chemokines, adhesion molecules, and lectin-like oxidized LDL receptor-1 (LOX-1)/nuclear factor κB (NF-κB) was measured in RVECs with or without HCQ. Results HCQ treatment protected mice from uveitis, evidenced by reduced expression of inflammatory factors, chemokines, and adhesion molecules in the retina. In systemic immune response, HCQ inhibited the activation of naïve CD4+T cells and frequencies of T effector cells, and promoted T regulatory cells. HCQ decreased IRBP1-20–specific T cell responses and proliferation of CD4+T cells in vitro. Further studies established that TNF-α induced RVECs to express inflammatory cytokines, chemokines, and adhesion molecules, whereas HCQ alleviated the alterations via the LOX-1/NF-κB pathways. Conclusions HCQ alleviates EAU by regulating the Teff/Treg balance and ameliorating RVECs dysfunction via the LOX-1/NF-κB axis. HCQ may be a promising therapeutic candidate for uveitis.
Collapse
Affiliation(s)
- Yunwei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zuoyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Guanyu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Haixiang Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanyan Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenjie Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Minzhen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jianping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoqing Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
37
|
Neutrophil Extracellular Traps in Severe SARS-CoV-2 Infection: A Possible Impact of LPS and (1→3)-β-D-glucan in Blood from Gut Translocation. Cells 2022; 11:cells11071103. [PMID: 35406667 PMCID: PMC8997739 DOI: 10.3390/cells11071103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to limited data on the link between gut barrier defects (leaky gut) and neutrophil extracellular traps (NETs) in coronavirus disease 2019 (COVID-19), blood samples of COVID-19 cases—mild (upper respiratory tract symptoms without pneumonia; n = 27), moderate (pneumonia without hypoxia; n = 28), and severe (pneumonia with hypoxia; n = 20)—versus healthy control (n = 15) were evaluated, together with in vitro experiments. Accordingly, neutrophil counts, serum cytokines (IL-6 and IL-8), lipopolysaccharide (LPS), bacteria-free DNA, and NETs parameters (fluorescent-stained nuclear morphology, dsDNA, neutrophil elastase, histone–DNA complex, and myeloperoxidase–DNA complex) were found to differentiate COVID-19 severity, whereas serum (1→3)-β-D-glucan (BG) was different between the control and COVID-19 cases. Despite non-detectable bacteria-free DNA in the blood of healthy volunteers, using blood bacteriome analysis, proteobacterial DNA was similarly predominant in both control and COVID-19 cases (all severities). In parallel, only COVID-19 samples from moderate and severe cases, but not mild cases, were activated in vitro NETs, as determined by supernatant dsDNA, Peptidyl Arginine Deiminase 4, and nuclear morphology. With neutrophil experiments, LPS plus BG (LPS + BG) more prominently induced NETs, cytokines, NFκB, and reactive oxygen species, when compared with the activation by each molecule alone. In conclusion, pathogen molecules (LPS and BG) from gut translocation along with neutrophilia and cytokinemia in COVID-19-activated, NETs-induced hyperinflammation.
Collapse
|
38
|
Blood Bacteria-Free DNA in Septic Mice Enhances LPS-Induced Inflammation in Mice through Macrophage Response. Int J Mol Sci 2022; 23:ijms23031907. [PMID: 35163830 PMCID: PMC8836862 DOI: 10.3390/ijms23031907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023] Open
Abstract
Although bacteria-free DNA in blood during systemic infection is mainly derived from bacterial death, translocation of the DNA from the gut into the blood circulation (gut translocation) is also possible. Hence, several mouse models with experiments on macrophages were conducted to explore the sources, influences, and impacts of bacteria-free DNA in sepsis. First, bacteria-free DNA and bacteriome in blood were demonstrated in cecal ligation and puncture (CLP) sepsis mice. Second, administration of bacterial lysate (a source of bacterial DNA) in dextran sulfate solution (DSS)-induced mucositis mice elevated blood bacteria-free DNA without bacteremia supported gut translocation of free DNA. The absence of blood bacteria-free DNA in DSS mice without bacterial lysate implies an impact of the abundance of bacterial DNA in intestinal contents on the translocation of free DNA. Third, higher serum cytokines in mice after injection of combined bacterial DNA with lipopolysaccharide (LPS), when compared to LPS injection alone, supported an influence of blood bacteria-free DNA on systemic inflammation. The synergistic effects of free DNA and LPS on macrophage pro-inflammatory responses, as indicated by supernatant cytokines (TNF-α, IL-6, and IL-10), pro-inflammatory genes (NFκB, iNOS, and IL-1β), and profound energy alteration (enhanced glycolysis with reduced mitochondrial functions), which was neutralized by TLR-9 inhibition (chloroquine), were demonstrated. In conclusion, the presence of bacteria-free DNA in sepsis mice is partly due to gut translocation of bacteria-free DNA into the systemic circulation, which would enhance sepsis severity. Inhibition of the responses against bacterial DNA by TLR-9 inhibition could attenuate LPS-DNA synergy in macrophages and might help improve sepsis hyper-inflammation in some situations.
Collapse
|
39
|
Ashander LM, Lumsden AL, Dawson AC, Ma Y, Ferreira LB, Oliver GF, Appukuttan B, Carr JM, Smith JR. Infection of Human Retinal Pigment Epithelial Cells with Dengue Virus Strains Isolated during Outbreaks in Singapore. Microorganisms 2022; 10:310. [PMID: 35208767 PMCID: PMC8878224 DOI: 10.3390/microorganisms10020310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Prevalence of dengue retinopathy varies across epidemics, with the disease linked to circulation of dengue virus serotype 1 (DENV-1). The retinal pigment epithelium has been implicated in the pathology. We investigated infectivity, molecular response, and barrier function of epithelial cells inoculated with DENV strains from different outbreaks in Singapore. Monolayers of human retinal pigment epithelial cells (multiple primary cell isolates and the ARPE-19 cell line) were inoculated with six DENV strains, at multiplicity of infection of 10; uninfected and recombinant strain-infected controls were included where relevant. Infectivity and cell response were assessed primarily by RT-qPCR on total cellular RNA, and barrier function was evaluated as electrical resistance across monolayers. Higher viral RNA loads were measured in human retinal pigment epithelial cells infected with DENV-1 strains from the 2005 Singapore epidemic, when retinopathy was prevalent, versus DENV-1 strains from the 2007 Singapore epidemic, when retinopathy was not observed. Type I interferon (IFN) transcripts (IFN-β and multiple IFN-stimulated genes) were up-regulated, and impact on barrier function was more pronounced, for cells infected with DENV-1 strains from the 2005 versus the 2007 Singapore epidemics. Aside from serotype, strain of DENV may determine the potential to induce retinal pathology. Identification of molecular markers of disease-associated DENV strains may provide insights into the pathogenesis of dengue retinopathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Justine R. Smith
- College of Medicine & Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.M.A.); (A.L.L.); (A.C.D.); (Y.M.); (L.B.F.); (G.F.O.); (B.A.); (J.M.C.)
| |
Collapse
|
40
|
da Silva Neto GJ, Silva LR, de Omena RJM, Aguiar ACC, Annunciato Y, Rossetto BS, Gazarini ML, Heimfarth L, Quintans-Júnior LJ, da Silva-Júnior EF, Meneghetti MR. Dual quinoline-hybrid compounds with antimalarial activity against Plasmodium falciparum parasites. NEW J CHEM 2022; 46:6502-6518. [DOI: 10.1039/d1nj05598d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Although we have at our disposal relatively low-cost drugs that can be prescribed for the treatment of malaria, the prevalence of resistant strains of the causative parasite has required the development of new drugs.
Collapse
Affiliation(s)
- Geraldo José da Silva Neto
- Group of Catalysis and Chemical Reactivity, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| | - Leandro Rocha Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| | - Rafael Jorge Melo de Omena
- Group of Catalysis and Chemical Reactivity, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| | - Anna Caroline Campos Aguiar
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Yasmin Annunciato
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Bárbara Santos Rossetto
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Marcos Leoni Gazarini
- Department of Biosciences, Federal University of São Paulo, Silva Jardim Street 136, 11015-020, Santos, São Paulo, Brazil
| | - Luana Heimfarth
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Mario Roberto Meneghetti
- Group of Catalysis and Chemical Reactivity, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Av. Lourival Melo Mota, 57072-900, Maceió, Brazil
| |
Collapse
|
41
|
Croci S, Venneri MA, Mantovani S, Fallerini C, Benetti E, Picchiotti N, Campolo F, Imperatore F, Palmieri M, Daga S, Gabbi C, Montagnani F, Beligni G, Farias TDJ, Carriero ML, Di Sarno L, Alaverdian D, Aslaksen S, Cubellis MV, Spiga O, Baldassarri M, Fava F, Norman PJ, Frullanti E, Isidori AM, Amoroso A, Mari F, Furini S, Mondelli MU, Gen-Covid Multicenter Study, Chiariello M, Renieri A, Meloni I. The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males. Autophagy 2021; 18:1662-1672. [PMID: 34964709 PMCID: PMC9298458 DOI: 10.1080/15548627.2021.1995152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor
Collapse
Affiliation(s)
- Susanna Croci
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefania Mantovani
- Division of Clinical Immunology and Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Benetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Nicola Picchiotti
- DIISM-SAILAB, University of Siena, Siena, Italy.,Department of Mathematics, University of Pavia, Pavia, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Imperatore
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina, Siena, Italy.,Consiglio Nazionale delle Ricerche, Istituto DI Fisiologia Clinica, Siena, Italy
| | - Maria Palmieri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sergio Daga
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Gabbi
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Montagnani
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Medical Sciences, Infectious and Tropical Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giada Beligni
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ticiana D J Farias
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Miriam Lucia Carriero
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Laura Di Sarno
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Diana Alaverdian
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sigrid Aslaksen
- Department of Clinical Science, Universty of Bergen and K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
| | | | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elisa Frullanti
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin, Italy.,Immunogenetics and Transplant Biology, Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Torino, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Italy
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mario U Mondelli
- Division of Clinical Immunology and Infectious Diseases, Department of Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | - Mario Chiariello
- Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Core Research Laboratory, Via Fiorentina, Siena, Italy.,Consiglio Nazionale delle Ricerche, Istituto DI Fisiologia Clinica, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Italy
| | - Ilaria Meloni
- Medical Genetics, University of Siena, Siena, Italy.,Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
42
|
Allen ME, Golding A, Rus V, Karabin NB, Li S, Lescott CJ, Bobbala S, Scott EA, Szeto GL. Targeted Delivery of Chloroquine to Antigen-Presenting Cells Enhances Inhibition of the Type I Interferon Response. ACS Biomater Sci Eng 2021; 7:5666-5677. [PMID: 34813288 DOI: 10.1021/acsbiomaterials.1c01047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systemic lupus erythematosus (SLE) causes damaging inflammation in multiple organs via the accumulation of immune complexes. These complexes activate plasmacytoid dendritic cells (pDCs) via toll-like receptors (TLRs), contributing to disease pathogenesis by driving the secretion of inflammatory type I interferons (IFNs). Antimalarial drugs, such as chloroquine (CQ), are TLR antagonists used to alleviate inflammation in SLE. However, they require ∼3 months of continuous use before achieving therapeutic efficacy and can accumulate in the retinal pigment epithelium with chronic use, resulting in retinopathy. We hypothesized that poly(ethylene glycol)-b-poly(propylene sulfide) filamentous nanocarriers, filomicelles (FMs), could directly deliver CQ to pDCs via passive, morphology-based targeting to concentrate drug delivery to specific immune cells, improve drug activity by increased inhibition of type I IFN, and enhance efficacy per dose. Healthy human peripheral blood mononuclear cells were treated with soluble CQ or CQ-loaded FMs, stimulated with TLR agonists or SLE patient sera, and type I IFN secretion was quantified via multi-subtype IFN-α ELISA and MX1 gene expression using real-time reverse transcription-quantitative polymerase chain reaction. Our results showed that 50 μg CQ/mg FM decreased MX1 expression and IFN-α production after TLR activation with either synthetic nucleic acid agonists or immune complex-rich sera from SLE patients. Cellular uptake and biodistribution studies showed that FMs preferentially accumulate in human pDCs and monocytes in vitro and in tissues frequently damaged in SLE patients (i.e., kidneys), while sparing the eye in vivo. These results showed that nanocarrier morphology enables drug delivery, and CQ-FMs may be equally effective and more targeted than soluble CQ at inhibiting SLE-relevant pathways.
Collapse
Affiliation(s)
- Marilyn E Allen
- Department of Chemical, Biochemical & Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Amit Golding
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Maryland 21201, United States
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Maryland 21201, United States
| | - Nicholas B Karabin
- Department of Biomedical Engineering, Northwestern University, 633 Clark Street, Evanston, Illinois 60208, United States
| | - Sophia Li
- Department of Biomedical Engineering, Northwestern University, 633 Clark Street, Evanston, Illinois 60208, United States
| | - Chamille J Lescott
- Department of Biomedical Engineering, Northwestern University, 633 Clark Street, Evanston, Illinois 60208, United States
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia 26506, United States
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, 633 Clark Street, Evanston, Illinois 60208, United States
| | - Gregory L Szeto
- Allen Institute for Immunology, 615 Westlake Avenue North, Seattle, Washington 98109, United States
| |
Collapse
|
43
|
Martens K, Steelant B, Bullens DMA. Taste Receptors: The Gatekeepers of the Airway Epithelium. Cells 2021; 10:cells10112889. [PMID: 34831117 PMCID: PMC8616034 DOI: 10.3390/cells10112889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Taste receptors are well known for their role in the sensation of taste. Surprisingly, the expression and involvement of taste receptors in chemosensory processes outside the tongue have been recently identified in many organs including the airways. Currently, a clear understanding of the airway-specific function of these receptors and the endogenous activating/inhibitory ligands is lagging. The focus of this review is on recent physiological and clinical data describing the taste receptors in the airways and their activation by secreted bacterial compounds. Taste receptors in the airways are potentially involved in three different immune pathways (i.e., the production of nitric oxide and antimicrobial peptides secretion, modulation of ciliary beat frequency, and bronchial smooth muscle cell relaxation). Moreover, genetic polymorphisms in these receptors may alter the patients’ susceptibility to certain types of respiratory infections as well as to differential outcomes in patients with chronic inflammatory airway diseases such as chronic rhinosinusitis and asthma. A better understanding of the function of taste receptors in the airways may lead to the development of a novel class of therapeutic molecules that can stimulate airway mucosal immune responses and could treat patients with chronic airway diseases.
Collapse
Affiliation(s)
- Katleen Martens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
- Department of Bioscience Engineering, University of Antwerp, 2020 Antwerp, Belgium
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
| | - Dominique M. A. Bullens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
- Clinical Division of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
44
|
IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms222011027. [PMID: 34681685 PMCID: PMC8540903 DOI: 10.3390/ijms222011027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.
Collapse
|
45
|
Mutua V, Gershwin LJ. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clin Rev Allergy Immunol 2021; 61:194-211. [PMID: 32740860 PMCID: PMC7395212 DOI: 10.1007/s12016-020-08804-7] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Activated neutrophils release neutrophil extracellular traps (NETs) in response to a variety of stimuli. NETosis is driven by protein-arginine deiminase type 4, with the release of intracellular granule components that function by capturing and destroying microbes, including viral, fungal, bacterial, and protozoal pathogens. The positive effects of pathogen control are countered by pro-inflammatory effects as demonstrated in a variety of diseases. Components of NETS are non-specific, and other than controlling microbes, they cause injury to surrounding tissue by themselves or by increasing the pro-inflammatory response. NETs can play a role in enhancement of the inflammation seen in autoimmune diseases including psoriasis, rheumatoid arthritis, and systemic lupus erythematosis. In addition, autoinflammatory diseases such as gout have been associated with NETosis. Inhibition of NETs may decrease the severity of many diseases improving survival. Herein, we describe NETosis in different diseases focusing on the detrimental effect of NETs and outline possible therapeutics that can be used to mitigate netosis. There is a need for more studies and clinical trials on these and other compounds that could prevent or destroy NETs, thereby decreasing damage to patients.
Collapse
Affiliation(s)
- Victoria Mutua
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, USA.
| | - Laurel J Gershwin
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, USA
| |
Collapse
|
46
|
Bhattacharya A, Ghosh P, Singh A, Ghosh A, Bhowmick A, Sinha DK, Ghosh A, Sen P. Delineating the complex mechanistic interplay between NF-κβ driven mTOR depedent autophagy and monocyte to macrophage differentiation: A functional perspective. Cell Signal 2021; 88:110150. [PMID: 34547324 DOI: 10.1016/j.cellsig.2021.110150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022]
Abstract
Autophagy is an extremely essential cellular process aimed to clear redundant and damaged materials, namely organelles, protein aggregates, invading pathogens, etc. through the formation of autophagosomes which are ultimately targeted to lysosomal degradation. In this study, we demonstrated that mTOR dependent classical autophagy is ubiquitously triggered in differentiating monocytes. Moreover, autophagy plays a decisive role in sustaining the process of monocyte to macrophage differentiation. We have delved deeper into understanding the underlying mechanistic complexities that trigger autophagy during differentiation. Intrigued by the significant difference between the protein profiles of monocytes and macrophages, we investigated to learn that autophagy directs monocyte differentiation via protein degradation. Further, we delineated the complex cross-talk between autophagy and cell-cycle arrest in differentiating monocytes. This study also inspects the contribution of adhesion on various steps of autophagy and its ultimate impact on monocyte differentiation. Our study reveals new mechanistic insights into the process of autophagy associated with monocyte differentiation and would undoubtedly help to understand the intricacies of the process better for the effective design of therapeutics as autophagy and autophagy-related processes have enormous importance in human patho-physiology.
Collapse
Affiliation(s)
- Anindita Bhattacharya
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Purnam Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Arpana Singh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Arghya Bhowmick
- Department of Biochemistry, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Deepak Kumar Sinha
- Department of Biochemistry, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata 700054, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
47
|
Tedesco Silva LM, Cortes A, Rossi B, Boll L, Waclawovsky G, Eibel B, Cadaval Gonçalves S, Irigoyen MC, Martinez D. Effects of Hydroxychloroquine on endOthelial function in eLDerly with sleep apnea (HOLD): study protocol for a randomized clinical trial. Trials 2021; 22:638. [PMID: 34535165 PMCID: PMC8447592 DOI: 10.1186/s13063-021-05610-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Sleep apnea and coronary artery disease are prevalent and relevant diseases. The mechanism by which sleep apnea leads to coronary artery disease remains unclear. Intermittent hypoxia, caused by sleep apnea, leads to inflammation and consequent endothelial dysfunction. Endothelial dysfunction precedes the development of atherosclerotic disease and the occurrence of cardiovascular events. Agents that potentially act to improve endothelial function can help prevent cardiovascular events. Patients using immunomodulators due to rheumatic diseases have a lower prevalence of cardiovascular diseases. However, the potential cardioprotective effect of these drugs in patients without autoimmune diseases is not clear. Hydroxychloroquine (HCQ) is an immunomodulator used to treat rheumatoid arthritis and systemic lupus erythematosus. In addition to its anti-inflammatory properties, HCQ reduces cholesterol and blood glucose levels and has antithrombotic effects. The drug is inexpensive and widely available. Adverse effects of HCQ are rare and occur more frequently with high doses. OBJECTIVE In this randomized clinical trial, the effect of HCQ treatment on endothelial function will be tested in seniors with sleep apnea. METHODS We will recruit participants over the age of 65 and with moderate-severe sleep apnea from an ongoing cohort. We chose to use this sample already evaluated for sleep apnea for reasons of convenience, but also because the elderly with sleep apnea are vulnerable to heart disease. Endothelial function will be assessed by examining flow-mediated dilation of the brachial artery, the gold standard method, considered an independent predictor of cardiovascular events in the general population and by peripheral arterial tonometry, the most recent and most easily obtained method. Hydroxychloroquine will be used at a dose of 400 mg/daily for 8 weeks. DISCUSSION Our study aims to obtain evidence, albeit preliminary, of the efficacy of hydroxychloroquine in improving endothelial function and reducing cardiovascular risk markers. If the improvement occurs, we plan to design a randomized multicenter clinical trial to confirm the findings. TRIAL REGISTRATION ClinicalTrials.gov NCT04161339 . Registered on November 2019.
Collapse
Affiliation(s)
| | - Antonio Cortes
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Beatriz Rossi
- Instituto de Cardiologia - Fundação Universitária de Cardiologia (IC-FUC), Porto Alegre, Brazil
| | - Liliana Boll
- Instituto de Cardiologia - Fundação Universitária de Cardiologia (IC-FUC), Porto Alegre, Brazil
| | - Gustavo Waclawovsky
- Instituto de Cardiologia - Fundação Universitária de Cardiologia (IC-FUC), Porto Alegre, Brazil
| | - Bruna Eibel
- Instituto de Cardiologia - Fundação Universitária de Cardiologia (IC-FUC), Porto Alegre, Brazil
| | | | - Maria Claudia Irigoyen
- Instituto de Cardiologia - Fundação Universitária de Cardiologia (IC-FUC), Porto Alegre, Brazil
- Universidade de São Paulo, São Paulo, Brazil
| | - Denis Martinez
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
48
|
Overbury RS, Stoddard GJ, Pupaibool J, Hansen CB, Lebiedz-Odrobina D. The effect of an electronic medical record intervention on hydroxychloroquine prescribing habits and surveyed providers' opinions of the 2016 American Academy of Ophthalmology guidelines in the rheumatology and dermatology practices of an academic institutionle. BMC Health Serv Res 2021; 21:913. [PMID: 34479563 PMCID: PMC8418105 DOI: 10.1186/s12913-021-06954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Retinal toxicity is a rare adverse event related to the use of hydroxychloroquine (HCQ). To address this, in 2016, the American Academy of Ophthalmology (AAO) issued guidelines recommending that HCQ not exceed 5 mg/kg/day. We analyzed HCQ prescribing habits at our institution, compared to these guidelines, and used surveys to determine the opinions on these guidelines. We then introduced, in a prospective and non-controlled study, a clinical decision support (CDS) tool into the electronic medical record (EMR) to study how this intervention might affect adherence with or opinions on these guidelines. METHODS Data were collected pre-intervention (June 2017-January 2019) and post-intervention (March 2019-April 2020). In January 2019 we released our CDS tool. Results were analyzed using descriptive statistics for demographic data and Fisher's exact tests for comparisons of proportions between groups. RESULTS Pre-intervention, we reviewed 1128 rheumatology charts and 282 dermatology charts. 31.0 and 39.7% respectively (32.8% combined) were prescribed HCQ > 5 .0 mg/kg/day. Post-intervention, we reviewed 1161 rheumatology charts and 110 dermatology charts. 23.0 and 25.5% respectively (23.2% combined) were prescribed HCQ > 5.0 mg/kg/day. Post-intervention, 9.6% fewer patients were prescribed HCQ > 5 mg/kg/day (P < .001). Pre-intervention, we compiled 18 rheumatology surveys and 12 dermatology surveys. Post-intervention, we compiled 16 rheumatology surveys and 12 dermatology surveys. Post-intervention, fewer rheumatologists incorrectly described the AAO weight-based guidelines. Combined, there was an overall reduction but not of statistical significance (P = .47). The majority of providers surveyed believed that the CDS tool was useful (72.2%). CONCLUSIONS At our academic institution, there remains unfamiliarity with and hesitation to comply with the 2016 AAO guidelines. Prescribed doses often exceed what is recommended in these guidelines. A CDS tool can improve adherence with these guidelines and might improve providers' familiarity with these guidelines.
Collapse
Affiliation(s)
- Rebecca S Overbury
- Department of Internal Medicine, Division of Rheumatology, University of Utah, School of Medicine, 30 North 1900 East, 4B200, Salt Lake City, UT, 84132, USA.
| | - Gregory J Stoddard
- Department of Internal Medicine, University of Utah, Salt Lake City, USA
| | - Jakrapun Pupaibool
- Department of Internal Medicine, Division of Infectious Diseases, University of Utah, Salt Lake City, USA
| | | | - Dorota Lebiedz-Odrobina
- Department of Internal Medicine, Division of Rheumatology, University of Utah, School of Medicine, 30 North 1900 East, 4B200, Salt Lake City, UT, 84132, USA
| |
Collapse
|
49
|
Prommajun P, Phetcharaburanin J, Namwat N, Klanrit P, Sa-Ngiamwibool P, Thanee M, Dokduang H, Kittirat Y, Li JV, Loilome W. Metabolic Profiling of Praziquantel-mediated Prevention of Opisthorchis viverrini-induced Cholangiocyte Transformation in the Hamster Model of Cholangiocarcinoma. Cancer Genomics Proteomics 2021; 18:29-42. [PMID: 33419894 DOI: 10.21873/cgp.20239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Opisthorchis viverrini (Ov) infection-induced cholangiocarcinoma (CCA) is a major public health problem in northeastern Thailand. Praziquantel was shown to prevent CCA development in an Ov-infected hamster model; however, the molecular mechanism remains unknown. MATERIALS AND METHODS In this study, we used a hamster model with Ov and N-nitrosodimethylamine-induced CCA to study the mechanisms of praziquantel action. The liver tissues from the hamsters with and without praziquantel treatment were analyzed using 1H nuclear magnetic resonance spectroscopy. RESULTS A total of 14 metabolites were found to be significantly different between the two groups. Furthermore, the combination of acetate, inosine and sarcosine was shown to exert an anti-inflammatory effect through interleukin-6 inhibition in a macrophage cell line, suggesting a mechanism by which praziquantel may prevent inflammation caused by Ov, cholangiocyte transformation and further CCA develpoment. CONCLUSION These findings might avail the development of a preventive strategy for CCA in high-risk populations.
Collapse
Affiliation(s)
- Pattama Prommajun
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Prakasit Sa-Ngiamwibool
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Malinee Thanee
- Faculty of Medical Science, Nakhonratchasima College, Nakhon Ratchasima, Thailand
| | - Hasaya Dokduang
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Yingpinyapat Kittirat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Jia V Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, South Kensington Campus, London, U.K
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
50
|
Tai W, Chow MYT, Chang RYK, Tang P, Gonda I, MacArthur RB, Chan HK, Kwok PCL. Nebulised Isotonic Hydroxychloroquine Aerosols for Potential Treatment of COVID-19. Pharmaceutics 2021; 13:1260. [PMID: 34452220 PMCID: PMC8399722 DOI: 10.3390/pharmaceutics13081260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an unprecedented pandemic that has severely impacted global public health and the economy. Hydroxychloroquine administered orally to COVID-19 patients was ineffective, but its antiviral and anti-inflammatory actions were observed in vitro. The lack of efficacy in vivo could be due to the inefficiency of the oral route in attaining high drug concentration in the lungs. Delivering hydroxychloroquine by inhalation may be a promising alternative for direct targeting with minimal systemic exposure. This paper reports on the characterisation of isotonic, pH-neutral hydroxychloroquine sulphate (HCQS) solutions for nebulisation for COVID-19. They can be prepared, sterilised, and nebulised for testing as an investigational new drug for treating this infection. The 20, 50, and 100 mg/mL HCQS solutions were stable for at least 15 days without refrigeration when stored in darkness. They were atomised from Aerogen Solo Ultra vibrating mesh nebulisers (1 mL of each of the three concentrations and, in addition, 1.5 mL of 100 mg/mL) to form droplets having a median volumetric diameter of 4.3-5.2 µm, with about 50-60% of the aerosol by volume < 5 µm. The aerosol droplet size decreased (from 4.95 to 4.34 µm) with increasing drug concentration (from 20 to 100 mg/mL). As the drug concentration and liquid volume increased, the nebulisation duration increased from 3 to 11 min. The emitted doses ranged from 9.1 to 75.9 mg, depending on the concentration and volume nebulised. The HCQS solutions appear suitable for preclinical and clinical studies for potential COVID-19 treatment.
Collapse
Affiliation(s)
- Waiting Tai
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (W.T.); (M.Y.T.C.); (R.Y.K.C.); (P.T.); (H.-K.C.)
| | - Michael Yee Tak Chow
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (W.T.); (M.Y.T.C.); (R.Y.K.C.); (P.T.); (H.-K.C.)
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (W.T.); (M.Y.T.C.); (R.Y.K.C.); (P.T.); (H.-K.C.)
| | - Patricia Tang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (W.T.); (M.Y.T.C.); (R.Y.K.C.); (P.T.); (H.-K.C.)
| | - Igor Gonda
- Pulmoquine Therapeutics, Inc., 1155 Camino Del Mar Suite 481, Del Mar, CA 92014, USA; (I.G.); (R.B.M.)
| | - Robert B. MacArthur
- Pulmoquine Therapeutics, Inc., 1155 Camino Del Mar Suite 481, Del Mar, CA 92014, USA; (I.G.); (R.B.M.)
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (W.T.); (M.Y.T.C.); (R.Y.K.C.); (P.T.); (H.-K.C.)
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (W.T.); (M.Y.T.C.); (R.Y.K.C.); (P.T.); (H.-K.C.)
| |
Collapse
|