1
|
Conti M, Cirillo F, Maio S, Fernandes M, Bovenzi R, Placidi F, Izzi F, Mercuri NB, Liguori C. Increased neutrophil-to-lymphocyte ratio as a possible marker to detect neuroinflammation in patients with narcolepsy type 1. J Clin Sleep Med 2025; 21:101-107. [PMID: 39297540 DOI: 10.5664/jcsm.11368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
STUDY OBJECTIVES Narcolepsy type 1 (NT1) is an autoimmune disease caused by the selective immune attack against orexin-producing neurons. However, the pathophysiology of narcolepsy type 2 (NT2) and idiopathic hypersomnia (IH) remains controversial. The neutrophil-to-lymphocyte ratio (NLR) is an easily calculated parameter from the white blood cell count, which has already been extensively used as an inflammatory marker in immunological disorders. In this study, we examined the white blood cell count of patients with NT1, NT2, and IH compared to healthy controls (HC) and evaluated the NLR to test the possibility of identifying an easy biofluid marker for detecting inflammation and distinguishing patients from HC. METHODS White blood cell count and NLR were compared between 28 patients with NT1, 17 with NT2, 11 with IH, and 21 sex/age-matched HC. These parameters were correlated with cerebrospinal fluid levels of orexin-A, the cerebrospinal fluid/serum albumin ratio (as a marker of blood-brain barrier integrity), and polysomnographic parameters. RESULTS Patients with NT1 (NLR 2.01 ± 0.44) showed significantly higher NLR than those with NT2 (NLR 1.59 ± 0.53) or IH (NLR 1.48 ± 0.37) and HC (NLR 1.48 ± 0.43). Correlation analysis did not document significant associations between NLR and the other biological markers in each group of patients. The receiver operating characteristic curve analysis detected an optimal cutoff value to discriminate patients with NT1 from those with NT2, IH, and HC for values of NLR ≥ 1.60, 1.62, and 1.59, respectively. CONCLUSIONS Patients with NT1 showed a higher NLR than those with NT2, IH, and HC, possibly reflecting lymphocyte migration within the central nervous system, supporting the hypothesis of a neuroinflammatory attack of lymphocytes against orexin-producing neurons. Considering its sensitivity, this easily obtainable biofluid marker could help to screen patients with NT1. CITATION Conti M, Cirillo F, Maio S, et al. Increased neutrophil-to-lymphocyte ratio as a possible marker to detect neuroinflammation in patients with narcolepsy type 1. J Clin Sleep Med. 2025;21(1):101-107.
Collapse
Affiliation(s)
- Matteo Conti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Flavia Cirillo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Maio
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberta Bovenzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Chen W, Liu M, Li Z, Luo Z, Wu J. Phloretin alleviates sleep deprivation-induced cognitive impairment by reducing inflammation through PPARγ/NF-κB signaling pathway. Exp Neurol 2024; 382:114949. [PMID: 39284540 DOI: 10.1016/j.expneurol.2024.114949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Sleep loss leads to significant pathophysiological consequences, including cognitive impairment. The neuroinflammation are pivotal factors in the pathogenesis of cognitive impairment induced by sleep loss. The phloretin (PHL), derived from peel of juicy fruits, has demonstrated potent anti-inflammatory properties. However, the precise influence of PHL on the cognitive impairment triggered by sleep loss and its underlying mechanism remain uncertain. In the present study, mice were subjected to sleep deprivation (SD) paradigm. Cognitive impairment induced by SD were significantly relieved by administration of PHL in a dose-dependent manner. Furthermore, PHL not only mitigated the synaptic losses but also enhanced dendritic spine density and neuronal activity within mice hippocampus following exposure to SD. Moreover, PHL treatment decreased the microglial numbers and altered microglial morphology in the hippocampus to restore the M1/M2 balances; these effects were accompanied by regulation of pro-/anti-inflammatory cytokine production and secretion in SD-exposed mice. Additionally, in vivo and in vitro studies showed PHL might attenuate the inflammation through the PPARγ/NF-κB pathway. Our findings suggest that PHL exerts inhibitory effects on microglia-mediated neuroinflammation, thereby providing protection against cognitive impairment induced by SD through a PPAR-γ dependent mechanism. The results indicate PHL is expected to provide a valuable candidate for new drug development for SD-induced cognitive impairment in the future.
Collapse
Affiliation(s)
- Wenjun Chen
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China; Meizhou Clinical Medical College of Guangdong Medical University, Meizhou 514000, China; Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514000, China.
| | - Mei Liu
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Afffliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ziming Li
- Department of Neurobiology, Southern Medical University, Guangzhou 510515, China
| | - Zhoucai Luo
- National Canine Laboratory Animal Resources Center, Guangzhou General Pharmaceutical Research Institute Co., Ltd., Guangzhou 510240, China
| | - Jianlin Wu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou 514031, China; Meizhou Clinical Medical College of Guangdong Medical University, Meizhou 514000, China; Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou 514000, China.
| |
Collapse
|
3
|
Drexhage HA, Bergink V, Poletti S, Benedetti F, Osborne LM. Conventional and new immunotherapies for immune system dysregulation in postpartum mood disorders: comparisons to immune system dysregulations in bipolar disorder, major depression, and postpartum autoimmune thyroid disease. Expert Rev Clin Immunol 2024:1-23. [PMID: 39441185 DOI: 10.1080/1744666x.2024.2420053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Postpartum mood disorders are heterogenous disorders and comprise postpartum psychosis and postpartum depression. Evidence is accumulating that systemic monocyte/macrophage activation, low-grade inflammation and (premature senescence related) T cell defects increase the risk for mood disorders outside pregnancy by affecting the function of microglia and T cells in the emotional brain (the cortico-limbic system) leading to inadequate mood regulation upon stress. AREAS COVERED The evidence in the literature that similar immune dysregulations are present in postpartum mood disorders. RESULTS The physiological postpartum period is characterized by a rapid T cell surge and a mild activation of the monocyte/macrophage system. Postpartum mood disorder patients show a diminished T cell surge (including that of T regulatory cells) and an increase in low grade inflammation, that is, an increased inflammatory state of monocytes/macrophages and higher levels of serum pro-inflammatory cytokines. EXPERT OPINION Anti-inflammatory agents (e.g. COX-2 inhibitors) and T cell boosting agents (e.g. low-dose IL-2 therapy) should be further investigated as treatment. The hypothesis should be investigated that postpartum mood disorders are active episodes (triggered by changes in the postpartum immuno-endocrine milieu) in ongoing, dynamically fluctuating aberrant neuro-immune-endocrine trajectories leading to mood disorders in women (inheritably) vulnerable to these disorders.
Collapse
Affiliation(s)
- Hemmo A Drexhage
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Lauren M Osborne
- Departments of Obstetrics and Gynecology and of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
4
|
Hatori S, Matsui F, Zhou Z, Norimoto H. Microglia mediate the increase in slow-wave sleep associated with high ambient temperature. J Physiol Sci 2024; 74:37. [PMID: 39020291 PMCID: PMC11253348 DOI: 10.1186/s12576-024-00929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
An increase in ambient temperature leads to an increase in sleep. However, the mechanisms behind this phenomenon remain unknown. This study aimed to investigate the role of microglia in the increase of sleep caused by high ambient temperature. We confirmed that at 35 °C, slow-wave sleep was significantly increased relative to those observed at 25 °C. Notably, this effect was abolished upon treatment with PLX3397, a CSF1R inhibitor that can deplete microglia, while sleep amount at 25 °C was unaffected. These observations suggest that microglia play a pivotal role in modulating the homeostatic regulation of sleep in response to the fluctuations in ambient temperature.
Collapse
Affiliation(s)
- Sena Hatori
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
- Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Futaba Matsui
- Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Zhiwen Zhou
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
- Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| | - Hiroaki Norimoto
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
- Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| |
Collapse
|
5
|
Baril AA, Picard C, Labonté A, Sanchez E, Duclos C, Mohammediyan B, Breitner JCS, Villeneuve S, Poirier J. Longer sleep duration and neuroinflammation in at-risk elderly with a parental history of Alzheimer's disease. Sleep 2024; 47:zsae081. [PMID: 38526098 PMCID: PMC11168764 DOI: 10.1093/sleep/zsae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
STUDY OBJECTIVES Although short sleep could promote neurodegeneration, long sleep may be a marker of ongoing neurodegeneration, potentially as a result of neuroinflammation. The objective was to evaluate sleep patterns with age of expected Alzheimer's disease (AD) onset and neuroinflammation. METHODS We tested 203 dementia-free participants (68.5 ± 5.4 years old, 78M). The PREVENT-AD cohort includes older persons with a parental history of AD whose age was nearing their expected AD onset. We estimated expected years to AD onset by subtracting the participants' age from their parent's at AD dementia onset. We extracted actigraphy sleep variables of interest (times of sleep onset and morning awakening, time in bed, sleep efficiency, and sleep duration) and general profiles (sleep fragmentation, phase delay, and hypersomnia). Cerebrospinal fluid (CSF) inflammatory biomarkers were assessed with OLINK multiplex technology. RESULTS Proximity to, or exceeding, expected age of onset was associated with a sleep profile suggestive of hypersomnia (longer sleep and later morning awakening time). This hypersomnia sleep profile was associated with higher CSF neuroinflammatory biomarkers (IL-6, MCP-1, and global score). Interaction analyses revealed that some of these sleep-neuroinflammation associations were present mostly in those closer/exceeding the age of expected AD onset, APOE4 carriers, and those with better memory performance. CONCLUSIONS Proximity to, or exceeding, parental AD dementia onset was associated with a longer sleep pattern, which was related to elevated proinflammatory CSF biomarkers. We speculate that longer sleep may serve a compensatory purpose potentially triggered by neuroinflammation as individuals are approaching AD onset. Further studies should investigate whether neuroinflammatory-triggered long sleep duration could mitigate cognitive deficits.
Collapse
Affiliation(s)
- Andrée-Ann Baril
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS-NIM, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Cynthia Picard
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Anne Labonté
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Erlan Sanchez
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Catherine Duclos
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS-NIM, Montréal, QC, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, QC, Canada
| | - Béry Mohammediyan
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - John C S Breitner
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Sylvia Villeneuve
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Judes Poirier
- Center for Studies on Prevention of Alzheimer's Disease, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Poletti S, Mazza MG, Benedetti F. Inflammatory mediators in major depression and bipolar disorder. Transl Psychiatry 2024; 14:247. [PMID: 38851764 PMCID: PMC11162479 DOI: 10.1038/s41398-024-02921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024] Open
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) are highly disabling illnesses defined by different psychopathological, neuroimaging, and cognitive profiles. In the last decades, immune dysregulation has received increasing attention as a central factor in the pathophysiology of these disorders. Several aspects of immune dysregulations have been investigated, including, low-grade inflammation cytokines, chemokines, cell populations, gene expression, and markers of both peripheral and central immune activation. Understanding the distinct immune profiles characterizing the two disorders is indeed of crucial importance for differential diagnosis and the implementation of personalized treatment strategies. In this paper, we reviewed the current literature on the dysregulation of the immune response system focusing our attention on studies using inflammatory markers to discriminate between MDD and BD. High heterogeneity characterized the available literature, reflecting the heterogeneity of the disorders. Common alterations in the immune response system include high pro-inflammatory cytokines such as IL-6 and TNF-α. On the contrary, a greater involvement of chemokines and markers associated with innate immunity has been reported in BD together with dynamic changes in T cells with differentiation defects during childhood which normalize in adulthood, whereas classic mediators of immune responses such as IL-4 and IL-10 are present in MDD together with signs of immune-senescence.
Collapse
Affiliation(s)
- Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Mario Gennaro Mazza
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Khoury ES, Patel RV, O’Ferrall C, Fowler A, Sah N, Sharma A, Gupta S, Scafidi S, Kurtz J, Olmstead SJ, Kudchadkar SR, Kannan RM, Blue ME, Kannan S. Dendrimer nanotherapy targeting of glial dysfunction improves inflammation and neurobehavioral phenotype in adult female Mecp2-heterozygous mouse model of Rett syndrome. J Neurochem 2024; 168:841-854. [PMID: 37777475 PMCID: PMC11002961 DOI: 10.1111/jnc.15960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/19/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
Rett syndrome is an X-linked neurodevelopmental disorder caused by mutation of Mecp2 gene and primarily affects females. Glial cell dysfunction has been implicated in in Rett syndrome (RTT) both in patients and in mouse models of this disorder and can affect synaptogenesis, glial metabolism and inflammation. Here we assessed whether treatment of adult (5-6 months old) symptomatic Mecp2-heterozygous female mice with N-acetyl cysteine conjugated to dendrimer (D-NAC), which is known to target glia and modulate inflammation and oxidative injury, results in improved behavioral phenotype, sleep and glial inflammatory profile. We show that unbiased global metabolomic analysis of the hippocampus and striatum in adult Mecp2-heterozygous mice demonstrates significant differences in lipid metabolism associated with neuroinflammation, providing the rationale for targeting glial inflammation in this model. Our results demonstrate that treatment with D-NAC (10 mg/kg NAC) once weekly is more efficacious than equivalently dosed free NAC in improving the gross neurobehavioral phenotype in symptomatic Mecp2-heterozygous female mice. We also show that D-NAC therapy is significantly better than saline in ameliorating several aspects of the abnormal phenotype including paw clench, mobility, fear memory, REM sleep and epileptiform activity burden. Systemic D-NAC significantly improves microglial proinflammatory cytokine production and is associated with improvements in several aspects of the phenotype including paw clench, mobility, fear memory, and REM sleep, and epileptiform activity burden in comparison to saline-treated Mecp2-hetereozygous mice. Systemic glial-targeted delivery of D-NAC after symptom onset in an older clinically relevant Rett syndrome model shows promise in improving neurobehavioral impairments along with sleep pattern and epileptiform activity burden. These findings argue for the translational value of this approach for treatment of patients with Rett Syndrome.
Collapse
Affiliation(s)
- Elizabeth Smith Khoury
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ruchit V. Patel
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Caroline O’Ferrall
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amanda Fowler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nirnath Sah
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Siddharth Gupta
- Kennedy Krieger Institute, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Josh Kurtz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sarah J. Olmstead
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sapna R. Kudchadkar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Departments of Pediatrics and Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
- Departments of Chemical and Biomolecular Engineering, and Materials Science and Engineering, Johns Hopkins University, Baltimore MD, 21218
| | - Mary E. Blue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore MD, 21205
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore MD, 21205
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore MD, 21205
- Kennedy Krieger Institute – Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21287
| |
Collapse
|
8
|
Karperien AL, Jelinek HF. Morphology and Fractal-Based Classifications of Neurons and Microglia in Two and Three Dimensions. ADVANCES IN NEUROBIOLOGY 2024; 36:149-172. [PMID: 38468031 DOI: 10.1007/978-3-031-47606-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Microglia and neurons live physically intertwined, intimately related structurally and functionally in a dynamic relationship in which microglia change continuously over a much shorter timescale than do neurons. Although microglia may unwind and depart from the neurons they attend under certain circumstances, in general, together both contribute to the fractal topology of the brain that defines its computational capabilities. Both neuronal and microglial morphologies are well-described using fractal analysis complementary to more traditional measures. For neurons, the fractal dimension has proved valuable for classifying dendritic branching and other neuronal features relevant to pathology and development. For microglia, fractal geometry has substantially contributed to classifying functional categories, where, in general, the more pathological the biological status, the lower the fractal dimension for individual cells, with some exceptions, including hyper-ramification. This chapter provides a review of the intimate relationships between neurons and microglia, by introducing 2D and 3D fractal analysis methodology and its applications in neuron-microglia function in health and disease.
Collapse
Affiliation(s)
- Audrey L Karperien
- School of Community Health, Charles Sturt University, Albury, NSW, Australia
| | - Herbert F Jelinek
- Department of Medical Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
9
|
Picard K, Dolhan K, Watters JJ, Tremblay MÈ. Microglia and Sleep Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:357-377. [PMID: 39207702 DOI: 10.1007/978-3-031-55529-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sleep is a physiological state that is essential for maintaining physical and mental health. Sleep disorders and sleep deprivation therefore have many adverse effects, including an increased risk of metabolic diseases and a decline in cognitive function that may be implicated in the long-term development of neurodegenerative diseases. There is increasing evidence that microglia, the resident immune cells of the central nervous system (CNS), are involved in regulating the sleep-wake cycle and the CNS response to sleep alteration and deprivation. In this chapter, we will discuss the involvement of microglia in various sleep disorders, including sleep-disordered breathing, insomnia, narcolepsy, myalgic encephalomyelitis/chronic fatigue syndrome, and idiopathic rapid-eye-movement sleep behavior disorder. We will also explore the impact of acute and chronic sleep deprivation on microglial functions. Moreover, we will look into the potential involvement of microglia in sleep disorders as a comorbidity to Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin Madison, Madison, WI, USA
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
10
|
Nguyen VT, Fields CJ, Ashley NT. Temporal dynamics of pro-inflammatory cytokines and serum corticosterone following acute sleep fragmentation in male mice. PLoS One 2023; 18:e0288889. [PMID: 38096187 PMCID: PMC10721077 DOI: 10.1371/journal.pone.0288889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Obstructive sleep apnea is increasing worldwide, leading to disordered sleep patterns and inflammatory responses in brain and peripheral tissues that predispose individuals to chronic disease. Pro-inflammatory cytokines activate the inflammatory response and are normally regulated by glucocorticoids secreted from adrenal glands. However, the temporal dynamics of inflammatory responses and hypothalamic-pituitary-adrenal (HPA) axis activation in relation to acute sleep fragmentation (ASF) are undescribed. Male C57BL/6J mice were exposed to ASF or control conditions (no ASF) over specified intervals (1, 2, 6, or 24 h) and cytokine gene expression (IL-1β, TNF-α) in brain and peripheral tissues as well as serum glucocorticoid and interleukin-6 (IL-6) concentration were assessed. The HPA axis was rapidly activated, leading to elevated serum corticosterone from 1-24 h of ASF compared with controls. This activation was followed by elevated serum IL-6 concentration from 6-24 h of ASF. The tissue to first exhibit increased pro-inflammatory gene expression from ASF was heart (1 h of ASF). In contrast, pro-inflammatory gene expression was suppressed in hypothalamus from 1 h of ASF, but elevated at 6 h. Because the HPA axis was activated throughout ASF, this suggests that brain, but not peripheral, pro-inflammatory responses were rapidly inhibited by glucocorticoid immunosuppression.
Collapse
Affiliation(s)
- Van Thuan Nguyen
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Cameron J. Fields
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Noah T. Ashley
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| |
Collapse
|
11
|
Zhai Q, Zhang Y, Ye M, Zhu S, Sun J, Wang Y, Deng B, Ma D, Wang Q. Reducing complement activation during sleep deprivation yields cognitive improvement by dexmedetomidine. Br J Anaesth 2023; 131:542-555. [PMID: 37517957 DOI: 10.1016/j.bja.2023.04.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Sleep loss and its associated conditions (e.g. cognitive deficits) represent a large societal burden, but the underlying mechanisms of these cognitive deficits remain unknown. This study assessed the effect of dexmedetomidine (DEX) on cognitive decline induced by sleep loss. METHODS C57BL/6 mice were subjected to chronic sleep restriction (CSR) for 20 h (5 pm-1 pm the next day) daily for 7 days, and cognitive tests were subsequently carried out. The neuromolecular and cellular changes that occurred in the presence and absence of DEX (100 μg kg-1, i.v., at 1 pm and 3 pm every day) were also investigated. RESULTS CSR mice displayed a decline in learning and memory by 12% (P<0.05) in the Y-maze and by 18% (P<0.01) in the novel object recognition test; these changes were associated with increases in microglial activation, CD68+ microglial phagosome counts, astrocyte-derived complement C3 secretion, and microglial C3a receptor expression (all P<0.05). Synapse elimination, as indicated by a 66% decrease in synaptophysin expression (P=0.0004) and a 45% decrease in postsynaptic density protein-95 expression (P=0.0003), was associated with the occurrence of cognitive deficits. DEX activated astrocytic α2A adrenoceptors and inhibited astrocytic complement C3 release to attenuate synapse elimination through microglial phagocytosis. DEX restored synaptic connections and reversed cognitive deficits induced by CSR. CONCLUSIONS The results demonstrate that complement pathway activation associated with synapse elimination contributes to sleep loss-related cognitive deficits and that dexmedetomidine protects against sleep deprivation-induced complement activation. Dexmedetomidine holds potential for preventing cognitive deficits associated with sleep loss, which warrants further study.
Collapse
Affiliation(s)
- Qian Zhai
- Department of Anaesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Zhang
- Department of Anaesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mao Ye
- Department of Anaesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan Zhu
- Department of Anaesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianyu Sun
- Department of Anaesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yue Wang
- Department of Anaesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bin Deng
- Department of Anaesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK; Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Qiang Wang
- Department of Anaesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
12
|
Matsui F, Yamaguchi ST, Kobayashi R, Ito S, Nagashima S, Zhou Z, Norimoto H. Ablation of microglia does not alter circadian rhythm of locomotor activity. Mol Brain 2023; 16:34. [PMID: 37029416 PMCID: PMC10080745 DOI: 10.1186/s13041-023-01021-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/19/2023] [Indexed: 04/09/2023] Open
Abstract
Microglia, as macrophages in the brain, are responsible for immune responses and synaptic remodeling. Although the function of microglia is regulated by circadian rhythms, it is still unclear whether microglia are involved in the generation and light entrainment of circadian rhythms of behavior. Here, we report that microglial depletion does not alter behavioral circadian rhythms. We depleted ~ 95% of microglia in the mouse brain by PLX3397, a CSF1R inhibitor, and analyzed the effect on the spontaneous behaviors of mice. We found that neither the free-running period under constant darkness nor light entrainment under jet-lag circumstances were influenced by the ablation of microglia. Our results demonstrate that the circadian rhythms of locomotor activity, an important output of the circadian clock in the brain, are likely a phenomenon not produced by microglia.
Collapse
Affiliation(s)
- Futaba Matsui
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sho T Yamaguchi
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Riho Kobayashi
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shiho Ito
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sakimi Nagashima
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Zhiwen Zhou
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Hiroaki Norimoto
- Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
13
|
Sanford LD, Wellman LL, Adkins AM, Guo ML, Zhang Y, Ren R, Yang L, Tang X. Modeling integrated stress, sleep, fear and neuroimmune responses: Relevance for understanding trauma and stress-related disorders. Neurobiol Stress 2023; 23:100517. [PMID: 36793998 PMCID: PMC9923229 DOI: 10.1016/j.ynstr.2023.100517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Sleep and stress have complex interactions that are implicated in both physical diseases and psychiatric disorders. These interactions can be modulated by learning and memory, and involve additional interactions with the neuroimmune system. In this paper, we propose that stressful challenges induce integrated responses across multiple systems that can vary depending on situational variables in which the initial stress was experienced, and with the ability of the individual to cope with stress- and fear-inducing challenges. Differences in coping may involve differences in resilience and vulnerability and/or whether the stressful context allows adaptive learning and responses. We provide data demonstrating both common (corticosterone, SIH and fear behaviors) and distinguishing (sleep and neuroimmune) responses that are associated with an individual's ability to respond and relative resilience and vulnerability. We discuss neurocircuitry regulating integrated stress, sleep, neuroimmune and fear responses, and show that responses can be modulated at the neural level. Finally, we discuss factors that need to be considered in models of integrated stress responses and their relevance for understanding stress-related disorders in humans.
Collapse
Affiliation(s)
- Larry D. Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Laurie L. Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Austin M. Adkins
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ming-Lei Guo
- Drug Addiction Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Herrero Babiloni A, Baril AA, Charlebois-Plante C, Jodoin M, Sanchez E, De Baets L, Arbour C, Lavigne GJ, Gosselin N, De Beaumont L. The Putative Role of Neuroinflammation in the Interaction between Traumatic Brain Injuries, Sleep, Pain and Other Neuropsychiatric Outcomes: A State-of-the-Art Review. J Clin Med 2023; 12:jcm12051793. [PMID: 36902580 PMCID: PMC10002551 DOI: 10.3390/jcm12051793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Sleep disturbances are widely prevalent following a traumatic brain injury (TBI) and have the potential to contribute to numerous post-traumatic physiological, psychological, and cognitive difficulties developing chronically, including chronic pain. An important pathophysiological mechanism involved in the recovery of TBI is neuroinflammation, which leads to many downstream consequences. While neuroinflammation is a process that can be both beneficial and detrimental to individuals' recovery after sustaining a TBI, recent evidence suggests that neuroinflammation may worsen outcomes in traumatically injured patients, as well as exacerbate the deleterious consequences of sleep disturbances. Additionally, a bidirectional relationship between neuroinflammation and sleep has been described, where neuroinflammation plays a role in sleep regulation and, in turn, poor sleep promotes neuroinflammation. Given the complexity of this interplay, this review aims to clarify the role of neuroinflammation in the relationship between sleep and TBI, with an emphasis on long-term outcomes such as pain, mood disorders, cognitive dysfunctions, and elevated risk of Alzheimer's disease and dementia. In addition, some management strategies and novel treatment targeting sleep and neuroinflammation will be discussed in order to establish an effective approach to mitigate long-term outcomes after TBI.
Collapse
Affiliation(s)
- Alberto Herrero Babiloni
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0C7, Canada
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Correspondence:
| | - Andrée-Ann Baril
- Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | | | - Marianne Jodoin
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Erlan Sanchez
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Liesbet De Baets
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Faculty of Medicine, University of Montreal, Montreal, QC H3T 1C5, Canada
- Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Caroline Arbour
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Faculty of Nursing, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Gilles J. Lavigne
- Division of Experimental Medicine, McGill University, Montreal, QC H3A 0C7, Canada
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Faculty of Dental Medicine, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Nadia Gosselin
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
| | - Louis De Beaumont
- CIUSSS-NIM, Hôpital du Sacré-Coeur de Montréal, Montreal, QC H4J 1C5, Canada
- Department of Surgery, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
15
|
Steffens SK, Stenberg TH, Wigren HKM. Alterations in microglial morphology concentrate in the habitual sleeping period of the mouse. Glia 2023; 71:366-376. [PMID: 36196985 PMCID: PMC10092278 DOI: 10.1002/glia.24279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
In nocturnal animals, waking appears during the dark period while maximal non-rapid-eye-movement sleep (NREMS) with electroencephalographic slow-wave-activity (SWA) takes place at the beginning of the light period. Vigilance states associate with variable levels of neuronal activity: waking with high-frequency activity patterns while during NREMS, SWA influences neuronal activity in many brain areas. On a glial level, sleep deprivation modifies microglial morphology, but only few studies have investigated microglia through the physiological sleep-wake cycle. To quantify microglial morphology (territory, volume, ramification) throughout the 24 h light-dark cycle, we collected brain samples from inbred C57BL male mice (n = 51) every 3 h and applied a 3D-reconstruction method for microglial cells on the acquired confocal microscopy images. As microglia express regional heterogeneity and are influenced by local neuronal activity, we chose to investigate three interconnected and functionally well-characterized brain areas: the somatosensory cortex (SC), the dorsal hippocampus (HC), and the basal forebrain (BF). To temporally associate microglial morphology with vigilance stages, we performed a 24 h polysomnography in a separate group of animals (n = 6). In line with previous findings, microglia displayed de-ramification in the 12 h light- and hyper-ramification in the 12 h dark period. Notably, we found that the decrease in microglial features was most prominent within the early hours of the light period, co-occurring with maximal sleep SWA. By the end of the light period, all features reached maximum levels and remained steadily elevated throughout the dark period with minor regional differences. We propose that vigilance-stage specific neuronal activity, and SWA, could modify microglial morphology.
Collapse
Affiliation(s)
| | - Tarja Helena Stenberg
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
16
|
Galea E, Graeber MB. Neuroinflammation: The Abused Concept. ASN Neuro 2023; 15:17590914231197523. [PMID: 37647500 PMCID: PMC10469255 DOI: 10.1177/17590914231197523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Scientific progress requires the relentless correction of errors and refinement of hypotheses. Clarity of terminology is essential for clarity of thought and proper experimental interrogation of nature. Therefore, the application of the same scientific term to different and even conflicting phenomena and concepts is not useful and must be corrected. Such abuse of terminology has happened and is still increasing in the case of "neuroinflammation," a term that until the 1990s meant classical inflammation affecting the central nervous system (CNS) and thereon was progressively used to mostly denote microglia activation. The resulting confusion is very wasteful and detrimental not only for scientists but also for patients, given the numerous failed clinical trials in acute and chronic CNS diseases over the last decade with "anti-inflammatory" drugs. Despite this failure, reassessments of the "neuroinflammation" concept are rare, especially considering the number of articles still using the term. This undesirable situation motivates this article. We review the origins and evolution of the term "neuroinflammation," discuss the unique tissue defense and repair strategies in the CNS, define CNS immunity, and emphasize the notion of gliopathies to help readdress, if not bury, the term "neuroinflammation" as it stands in the way of scientific progress.
Collapse
Affiliation(s)
- Elena Galea
- Departament de Bioquímica, Unitat de Bioquímica, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- ICREA, Barcelona, Spain
| | - Manuel B. Graeber
- Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Camperdown, Australia
| |
Collapse
|
17
|
Vicente MC, Paneghini JL, Stabile AM, Amorim M, Anibal Silva CE, Patrone LGA, Cunha TM, Bícego KC, Almeida MC, Carrettiero DC, Gargaglioni LH. Inhibition of Pro-Inflammatory Microglia with Minocycline Improves Cognitive and Sleep-Wake Dysfunction Under Respiratory Stress in a Sporadic Model for Alzheimer's Disease. J Alzheimers Dis 2023; 95:317-337. [PMID: 37522205 DOI: 10.3233/jad-230151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND Neuroinflammation in Alzheimer's disease (AD) can occur due to excessive activation of microglia in response to the accumulation of amyloid-β peptide (Aβ). Previously, we demonstrated an increased expression of this peptide in the locus coeruleus (LC) in a sporadic model for AD (streptozotocin, STZ; 2 mg/kg, ICV). We hypothesized that the STZ-AD model exhibits neuroinflammation, and treatment with an inhibitor of microglia (minocycline) can reverse the cognitive, respiratory, sleep, and molecular disorders of this model. OBJECTIVE To evaluate the effect of minocycline treatment in STZ model disorders. METHODS We treated control and STZ-treated rats for five days with minocycline (30 mg/kg, IP) and evaluated cognitive performance, chemoreflex response to hypercapnia and hypoxia, and total sleep time. Additionally, quantification of Aβ, microglia analyses, and relative expression of cytokines in the LC were performed. RESULTS Minocycline treatment improved learning and memory, which was concomitant with a decrease in microglial cell density and re-establishment of morphological changes induced by STZ in the LC region. Minocycline did not reverse the STZ-induced increase in CO2 sensitivity during wakefulness. However, it restored the daytime sleep-wake cycle in STZ-treated animals to the same levels as those observed in control animals. In the LC, levels of A and expression of Il10, Il1b, and Mcp1 mRNA remained unaffected by minocycline, but we found a strong trend of minocycline effect on Tnf- α. CONCLUSION Our findings suggest that minocycline effectively reduces microglial recruitment and the inflammatory morphological profile in the LC, while it recovers cognitive performance and restores the sleep-wake pattern impaired by STZ.
Collapse
Affiliation(s)
- Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV, Jaboticabal, SP, Brazil
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Julia L Paneghini
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Angelita M Stabile
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mateus Amorim
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Conceição E Anibal Silva
- Department of Pharmachology, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Thiago M Cunha
- Department of Pharmachology, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Maria C Almeida
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Daniel C Carrettiero
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV, Jaboticabal, SP, Brazil
| |
Collapse
|
18
|
Kip E, Parr-Brownlie LC. Healthy lifestyles and wellbeing reduce neuroinflammation and prevent neurodegenerative and psychiatric disorders. Front Neurosci 2023; 17:1092537. [PMID: 36875655 PMCID: PMC9975355 DOI: 10.3389/fnins.2023.1092537] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Since the mid-20th century, Western societies have considered productivity and economic outcomes are more important than focusing on people's health and wellbeing. This focus has created lifestyles with high stress levels, associated with overconsumption of unhealthy foods and little exercise, which negatively affect people's lives, and subsequently lead to the development of pathologies, including neurodegenerative and psychiatric disorders. Prioritizing a healthy lifestyle to maintain wellbeing may slow the onset or reduce the severity of pathologies. It is a win-win for everyone; for societies and for individuals. A balanced lifestyle is increasingly being adopted globally, with many doctors encouraging meditation and prescribing non-pharmaceutical interventions to treat depression. In psychiatric and neurodegenerative disorders, the inflammatory response system of the brain (neuroinflammation) is activated. Many risks factors are now known to be linked to neuroinflammation such as stress, pollution, and a high saturated and trans fat diet. On the other hand, many studies have linked healthy habits and anti-inflammatory products with lower levels of neuroinflammation and a reduced risk of neurodegenerative and psychiatric disorders. Sharing risk and protective factors is critical so that individuals can make informed choices that promote positive aging throughout their lifespan. Most strategies to manage neurodegenerative diseases are palliative because neurodegeneration has been progressing silently for decades before symptoms appear. Here, we focus on preventing neurodegenerative diseases by adopting an integrated "healthy" lifestyle approach. This review summarizes the role of neuroinflammation on risk and protective factors of neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Elodie Kip
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Agrawal S, Kumar V, Singh V, Singh C, Singh A. A Review on Pathophysiological Aspects of Sleep Deprivation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1194-1208. [PMID: 35549867 DOI: 10.2174/1871527321666220512092718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/03/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022]
Abstract
Sleep deprivation (SD) (also referred as insomnia) is a condition in which individuals fail to get enough sleep due to excessive yawning, facing difficulty to learn new concepts, experiencing forgetfulness as well as depressed mood. This could occur due to several possible reasons, including medications and stress (caused by shift work). Despite the fact that sleep is important for normal physiology, it currently affects millions of people around the world, especially the US (70 million) and Europe (45 million). Due to increased work demand nowadays, lots of people are experiencing sleep deprivation hence, this could be the reason for several car accidents followed by death and morbidity. This review highlighted the impact of SD on neurotransmitter release and functions, theories (Flip-flop theory, oxidative stress theory, neuroinflammation theory, neurotransmitter theory, and hormonal theory) associated with SD pathogenesis; apart from this, it also demonstrates the molecular pathways underlying SD (PI3K and Akt, NF-κB, Nrf2, and adenosine pathway. However, this study also elaborates on the SD-induced changes in the level of neurotransmitters, hormonal, and mitochondrial functions. Along with this, it also covers several molecular aspects associated with SD as well. Through this study, a link is made between SD and associated causes, which will further help to develop a potential therapeutic strategy against SD.
Collapse
Affiliation(s)
- Shelly Agrawal
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Vishesh Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
20
|
Rowe RK, Green TRF, Giordano KR, Ortiz JB, Murphy SM, Opp MR. Microglia Are Necessary to Regulate Sleep after an Immune Challenge. BIOLOGY 2022; 11:1241. [PMID: 36009868 PMCID: PMC9405260 DOI: 10.3390/biology11081241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022]
Abstract
Microglia play a critical role in the neuroimmune response, but little is known about the role of microglia in sleep following an inflammatory trigger. Nevertheless, decades of research have been predicated on the assumption that an inflammatory trigger increases sleep through microglial activation. We hypothesized that mice (n = 30) with depleted microglia using PLX5622 (PLX) would sleep less following the administration of lipopolysaccharide (LPS) to induce inflammation. Brains were collected and microglial morphology was assessed using quantitative skeletal analyses and physiological parameters were recorded using non-invasive piezoelectric cages. Mice fed PLX diet had a transient increase in sleep that dissipated by week 2. Subsequently, following a first LPS injection (0.4 mg/kg), mice with depleted microglia slept more than mice on the control diet. All mice were returned to normal rodent chow to repopulate microglia in the PLX group (10 days). Nominal differences in sleep existed during the microglia repopulation period. However, following a second LPS injection, mice with repopulated microglia slept similarly to control mice during the dark period but with longer bouts during the light period. Comparing sleep after the first LPS injection to sleep after the second LPS injection, controls exhibited temporal changes in sleep patterns but no change in cumulative minutes slept, whereas cumulative sleep in mice with repopulated microglia decreased during the dark period across all days. Repopulated microglia had a reactive morphology. We conclude that microglia are necessary to regulate sleep after an immune challenge.
Collapse
Affiliation(s)
- Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80301, USA
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Tabitha R. F. Green
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Katherine R. Giordano
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - J. Bryce Ortiz
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - Sean M. Murphy
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Mark R. Opp
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80301, USA
| |
Collapse
|
21
|
Insomnia, sleep loss, and circadian sleep disturbances in mood disorders: a pathway toward neurodegeneration and neuroprogression? A theoretical review. CNS Spectr 2022; 27:298-308. [PMID: 33427150 DOI: 10.1017/s1092852921000018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present paper aims at reviewing and commenting on the relationships between sleep and circadian phasing alterations and neurodegenerative/neuroprogressive processes in mood disorder. We carried out a systematic review, according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, in PubMed, PsycINFO, and Embase electronic databases for literature related to mood disorders, sleep disturbances, and neurodegenerative/neuroprogressive processes in relation to (1) neuroinflammation, (2) activation of the stress system, (3) oxidative stress, (4) accumulation of neurotoxic proteins, and (5) neuroprotection deficit. Seventy articles were collectively selected and analyzed. Experimental and clinical studies revealed that insomnia, conditions of sleep loss, and altered circadian sleep may favor neurodegeneration and neuroprogression in mood disorders. These sleep disturbances may induce a state of chronic inflammation by enhancing neuroinflammation, both directly and indirectly, via microglia and astrocytes activation. They may act as neurobiological stressors that by over-activating the stress system may negatively influence neural plasticity causing neuronal damage. In addition, sleep disturbances may favor the accumulation of neurotoxic proteins, favor oxidative stress, and a deficit in neuroprotection hence contributing to neurodegeneration and neuroprogression. Targeting sleep disturbances in the clinical practice may hold a neuroprotective value for mood disorders.
Collapse
|
22
|
Ortinski PI, Reissner KJ, Turner J, Anderson TA, Scimemi A. Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev 2022; 137:104651. [PMID: 35367512 PMCID: PMC9119927 DOI: 10.1016/j.neubiorev.2022.104651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Evidence that glial cells influence behavior has been gaining a steady foothold in scientific literature. Out of the five main subtypes of glial cells in the brain, astrocytes and microglia have received an outsized share of attention with regard to shaping a wide spectrum of behavioral phenomena and there is growing appreciation that the signals intrinsic to these cells as well as their interactions with surrounding neurons reflect behavioral history in a brain region-specific manner. Considerable regional diversity of glial cell phenotypes is beginning to be recognized and may contribute to behavioral outcomes arising from circuit-specific computations within and across discrete brain nuclei. Here, we summarize current knowledge on the impact of astrocyte and microglia activity on behavioral outcomes, with a specific focus on brain areas relevant to higher cognitive control, reward-seeking, and circadian regulation.
Collapse
Affiliation(s)
- P I Ortinski
- Department of Neuroscience, University of Kentucky, USA
| | - K J Reissner
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, USA
| | - J Turner
- Department of Pharmaceutical Sciences, University of Kentucky, USA
| | - T A Anderson
- Department of Neuroscience, University of Kentucky, USA
| | - A Scimemi
- Department of Biology, State University of New York at Albany, USA
| |
Collapse
|
23
|
Gentry NW, McMahon T, Yamazaki M, Webb J, Arnold TD, Rosi S, Ptáček LJ, Fu YH. Microglia are involved in the protection of memories formed during sleep deprivation. Neurobiol Sleep Circadian Rhythms 2022; 12:100073. [PMID: 35028489 PMCID: PMC8741522 DOI: 10.1016/j.nbscr.2021.100073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
Sleep deprivation can generate inflammatory responses in the central nervous system. In turn, this inflammation increases sleep drive, leading to a rebound in sleep duration. Microglia, the innate immune cells found exclusively in the CNS, have previously been found to release inflammatory signals and exhibit altered characteristics in response to sleep deprivation. Together, this suggests that microglia may be partially responsible for the brain's response to sleep deprivation through their inflammatory activity. In this study, we ablated microglia from the mouse brain and assessed resulting sleep, circadian, and sleep deprivation phenotypes. We find that microglia are dispensable for both homeostatic sleep and circadian function and the sleep rebound response to sleep deprivation. However, we uncover a phenomenon by which microglia appear to be essential for the protection of fear-conditioning memories formed during the recovery sleep period following a period of sleep deprivation. This phenomenon occurs potentially through the upregulation of synaptic-homeostasis related genes to protect nascent dendritic spines that may be otherwise removed or downscaled during recovery sleep. These findings further expand the list of known functions for microglia in synaptic modulation.
Collapse
Affiliation(s)
- Nicholas W. Gentry
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Thomas McMahon
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Maya Yamazaki
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - John Webb
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Thomas D. Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Physical Rehabilitation Science, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Susanna Rosi
- Department of Physical Rehabilitation Science, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Louis J. Ptáček
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ying-Hui Fu
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94143, USA
| |
Collapse
|
24
|
Sunkaria A, Bhardwaj S. Sleep Disturbance and Alzheimer's Disease: The Glial Connection. Neurochem Res 2022; 47:1799-1815. [PMID: 35303225 DOI: 10.1007/s11064-022-03578-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
Poor quality and quantity of sleep are very common in elderly people throughout the world. Growing evidence has suggested that sleep disturbances could accelerate the process of neurodegeneration. Recent reports have shown a positive correlation between sleep deprivation and amyloid-β (Aβ)/tau aggregation in the brain of Alzheimer's patients. Glial cells have long been implicated in the progression of Alzheimer's disease (AD) and recent findings have also suggested their role in regulating sleep homeostasis. However, how glial cells control the sleep-wake balance and exactly how disturbed sleep may act as a trigger for Alzheimer's or other neurological disorders have recently gotten attention. In an attempt to connect the dots, the present review has highlighted the role of glia-derived sleep regulatory molecules in AD pathogenesis. Role of glia in sleep disturbance and Alzheimer's progression.
Collapse
Affiliation(s)
- Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Supriya Bhardwaj
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
25
|
TNF signaling pathway-mediated microglial activation in the PFC underlies acute paradoxical sleep deprivation-induced anxiety-like behaviors in mice. Brain Behav Immun 2022; 100:254-266. [PMID: 34915154 DOI: 10.1016/j.bbi.2021.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
Acute sleep deprivation is a common condition in modern life and increases anxiety symptoms in healthy individuals. The neuroinflammatory response induced by microglial activation could be an important contributing factor, but its underlying molecular mechanisms are still unclear. In the present study, we first found that acute paradoxical sleep deprivation (PSD) induced by the modified multiple platform method (MMPM) for 6 h led to anxiety-like behavior in mice, as verified by the open field test, elevated plus maze test, light-dark box test, and marble burying test. In addition, bioinformatic analysis suggested an important relationship between acute sleep deprivation and brain inflammatory signaling pathways. Key genes enriched in the TNF signaling pathway were confirmed to be altered during acute PSD by qPCR and Western blot analyses, including the upregulation of the prostaglandin-endoperoxide synthase 2 (Ptgs2) and suppressor of cytokine signaling 3 protein (Socs3) genes and the downregulation of the cysteine-aspartic acid protease 3 (Casp3) gene. Furthermore, we found that microglial cells in the prefrontal cortex (PFC) were activated with significant branch structure changes and that the cell body area was increased in the PSD model. Finally, we found that minocycline, a tetracycline with anti-inflammatory properties, may ameliorate the anxiogenic effect and microglial activation. Our study reveals significant correlations of anxiety-like behavior, microglial activation, and inflammation during acute PSD.
Collapse
|
26
|
Tsao CY, Tuan LH, Lee LJH, Liu CM, Hwu HG, Lee LJ. Impaired response to sleep deprivation in heterozygous Disc1 mutant mice. World J Biol Psychiatry 2022; 23:55-66. [PMID: 33783301 DOI: 10.1080/15622975.2021.1907724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Sleep/circadian rhythm disturbances are environmental stress factors that might interact with genetic risk factors and contribute to the pathogenesis of psychiatric disorders. METHODS In this study, the multiple-platform method was used to induce sleep deprivation (SD). We evaluated the impact of 72-hour SD in behavioural, anatomical, and biochemical aspects in heterozygous Disc1 mutant (Disc1 Het) mice, an animal model of schizophrenia. RESULTS The sleep pattern and circadian activity were not altered in Disc1 Het mice. Yet, we observed differential responses to SD stress between genotypes. Increased microglial density and reduced neuronal proliferative activity were found in the dentate gyrus, a neurogenic niche, in Het-SD mice. Notably, SD-induced Bdnf mRNA elevations were evident in both WT and Het mice, while only in WT-SD mice did we observe increased BDNF protein expression. Our results suggested an SD-induced physical response featured by the elevation of BDNF protein expression to counteract the harmful influences of SD and sufficient DISC1 is required in this process. CONCLUSIONS The present study proposes that sleep disturbance could be pathogenic especially in genetically predisposed subjects who fail to cope with the stress. Potential therapeutic strategies for psychiatric disorders targeting the mRNA translation machinery could be considered.
Collapse
Affiliation(s)
- Chih-Yu Tsao
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Heng Tuan
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lukas Jyuhn-Hsiarn Lee
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan.,Departments of Environmental and Occupational Medicine, Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan.,Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan.,Research Center for Environmental Medicine, Ph.D. Program of Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Zhang B, Wang Y, Liu X, Zhai Z, Sun J, Yang J, Li Y, Wang C. The association of sleep quality and night sleep duration with coronary heart disease in a large-scale rural population. Sleep Med 2021; 87:233-240. [PMID: 34644677 DOI: 10.1016/j.sleep.2021.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purposes of the present study were to explore independent and interactive associations between night sleep duration, night sleep quality and coronary heart disease (CHD) based on a rural population in China. METHODS A total of 27,935 participants (11,177 men and 16,758 women) were investigated from the Henan Rural Cohort. Information about sleep was assessed by using the Pittsburgh Sleep Quality Index (PSQI). Restricted cubic splines and logistic regression were used to estimate the relationship between night sleep duration and quality with CHD. RESULT Among the 27,935 participants, 1506 participants with CHD were identified. Compared with participants with scores lower than 3, the odds ratios (ORs) and 95% confidence intervals (95% CIs) of participants with score of 3-5, 6-8, ≥9 were respectively 1.42 (1.24-1.63), 1.99 (1.70-2.33), and 2.56 (2.13-3.08) with full adjustment of covariates. Compared with night sleep duration of 7 h, men and women who slept less than 5 h were 1.55 (1.11-2.17), 1.12 (0.59-2.12) and 1.80 (1.20-2.68), after being adjusted ORs (95% CIs) of the total. Moreover, the ORs and 95% CIs of CHD increased with the shortening of sleep duration at PSQI score above the highlighted levels. CONCLUSION Poor sleep quality and short night sleep duration were all associated with CHD in Chinese rural areas. Moreover, the association was more obvious in women. In addition, the strongest prevalence of CHD was found in short sleepers with poor sleep quality.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhihan Zhai
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiaqi Sun
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jing Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuqian Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China; Department of Clinical Pharmacology, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
28
|
Corsi G, Picard K, di Castro MA, Garofalo S, Tucci F, Chece G, Del Percio C, Golia MT, Raspa M, Scavizzi F, Decoeur F, Lauro C, Rigamonti M, Iannello F, Ragozzino DA, Russo E, Bernardini G, Nadjar A, Tremblay ME, Babiloni C, Maggi L, Limatola C. Microglia modulate hippocampal synaptic transmission and sleep duration along the light/dark cycle. Glia 2021; 70:89-105. [PMID: 34487590 PMCID: PMC9291950 DOI: 10.1002/glia.24090] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 01/09/2023]
Abstract
Microglia, the brain's resident macrophages, actively contribute to the homeostasis of cerebral parenchyma by sensing neuronal activity and supporting synaptic remodeling and plasticity. While several studies demonstrated different roles for astrocytes in sleep, the contribution of microglia in the regulation of sleep/wake cycle and in the modulation of synaptic activity in the different day phases has not been deeply investigated. Using light as a zeitgeber cue, we studied the effects of microglial depletion with the colony stimulating factor‐1 receptor antagonist PLX5622 on the sleep/wake cycle and on hippocampal synaptic transmission in male mice. Our data demonstrate that almost complete microglial depletion increases the duration of NREM sleep and reduces the hippocampal excitatory neurotransmission. The fractalkine receptor CX3CR1 plays a relevant role in these effects, because cx3cr1GFP/GFP mice recapitulate what found in PLX5622‐treated mice. Furthermore, during the light phase, microglia express lower levels of cx3cr1 and a reduction of cx3cr1 expression is also observed when cultured microglial cells are stimulated by ATP, a purinergic molecule released during sleep. Our findings suggest that microglia participate in the regulation of sleep, adapting their cx3cr1 expression in response to the light/dark phase, and modulating synaptic activity in a phase‐dependent manner.
Collapse
Affiliation(s)
- Giorgio Corsi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Katherine Picard
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Quebec, Canada
| | | | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Federico Tucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Department of Neurology, San Raffaele of Cassino, Cassino (FR), Italy
| | - Giuseppina Chece
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Golia
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marcello Raspa
- National Research Council, Institute of Biochemistry and Cell Biology (EMMA/Infrafrontier/IMPC, International Campus "A. Buzzati-Traverso", Rome, Italy
| | - Ferdinando Scavizzi
- National Research Council, Institute of Biochemistry and Cell Biology (EMMA/Infrafrontier/IMPC, International Campus "A. Buzzati-Traverso", Rome, Italy
| | - Fanny Decoeur
- INRAE, Bordeaux INP, NutriNeuro UMR 1286, Bordeaux University, Bordeaux, France
| | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Eleonora Russo
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Agnès Nadjar
- INRAE, Bordeaux INP, NutriNeuro UMR 1286, Bordeaux University, Bordeaux, France.,INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | - Marie Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Quebec, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,The Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Claudio Babiloni
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Department of Neurology, San Raffaele of Cassino, Cassino (FR), Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia, Rome, Italy.,Department of Neurophysiology, Neuropharmacology, Inflammaging, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
29
|
Lavigna G, Masone A, Bouybayoune I, Bertani I, Lucchetti J, Gobbi M, Porcu L, Zordan S, Rigamonti M, Imeri L, Restelli E, Chiesa R. Doxycycline rescues recognition memory and circadian motor rhythmicity but does not prevent terminal disease in fatal familial insomnia mice. Neurobiol Dis 2021; 158:105455. [PMID: 34358614 PMCID: PMC8463834 DOI: 10.1016/j.nbd.2021.105455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/15/2023] Open
Abstract
Fatal familial insomnia (FFI) is a dominantly inherited prion disease linked to the D178N mutation in the gene encoding the prion protein (PrP). Symptoms, including insomnia, memory loss and motor abnormalities, appear around 50 years of age, leading to death within two years. No treatment is available. A ten-year clinical trial of doxycycline (doxy) is under way in healthy individuals at risk of FFI to test whether presymptomatic doxy prevents or delays the onset of disease. To assess the drug's effect in a tractable disease model, we used Tg(FFI-26) mice, which accumulate aggregated and protease-resistant PrP in their brains and develop a fatal neurological illness highly reminiscent of FFI. Mice were treated daily with 10 mg/kg doxy starting from a presymptomatic stage for twenty weeks. Doxy rescued memory deficits and restored circadian motor rhythmicity in Tg(FFI-26) mice. However, it did not prevent the onset and progression of motor dysfunction, clinical signs and progression to terminal disease. Doxy did not change the amount of aggregated and protease-resistant PrP, but reduced microglial activation in the hippocampus. Presymptomatic doxy treatment rescues cognitive impairment and the motor correlates of sleep dysfunction in Tg(FFI-26) mice but does not prevent fatal disease.
Collapse
Affiliation(s)
- Giada Lavigna
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Antonio Masone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ihssane Bouybayoune
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Bertani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jacopo Lucchetti
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luca Porcu
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | - Luca Imeri
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Elena Restelli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
30
|
Wheeler ND, Ensminger DC, Rowe MM, Wriedt ZS, Ashley NT. Alpha- and beta- adrenergic receptors regulate inflammatory responses to acute and chronic sleep fragmentation in mice. PeerJ 2021; 9:e11616. [PMID: 34221721 PMCID: PMC8236227 DOI: 10.7717/peerj.11616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/24/2021] [Indexed: 01/17/2023] Open
Abstract
Sleep is a recuperative process, and its dysregulation has cognitive, metabolic, and immunological effects that are largely deleterious to human health. Epidemiological and empirical studies have suggested that sleep fragmentation (SF) as result of obstructive sleep apnea (OSA) and other sleep abnormalities leads to pronounced inflammatory responses, which are influenced by the sympathetic nervous system (SNS). However, the underlying molecular mechanisms contributing to SNS regulation of SF-induced inflammation are not fully understood. To assess the effects of the SNS upon inflammatory responses to SF, C57BL/6j female mice were placed in automated SF chambers with horizontally moving bars across the bottom of each cage at specified intervals to disrupt sleep. Mice were first subjected to either control (no bar movement), acute sleep fragmentation (ASF), or chronic sleep fragmentation (CSF) on a 12:12-h light/dark schedule. ASF involved a bar sweep every 120 s for 24 h, whereas CSF involved a bar sweep every 120 s for 12 h (during 12 L; resting period) over a period of 4 weeks. After exposure to these conditions, mice received an intraperitoneal injection of either phentolamine (5 mg/kg BW; an α-adrenergic receptor blocker), propranolol (5 mg/kg BW; a β-adrenergic receptor blocker), or vehicle (saline). Serum corticosterone concentration, brain and peripheral cytokine (IL1β, TNFα, and TGFβ) mRNA expression, and body mass were assessed. ASF and CSF significantly elevated serum corticosterone concentrations as well as cytokine mRNA expression levels compared with controls, and mice subjected to CSF had decreased body mass relative to controls. Mice subjected to CSF and treated with phentolamine or propranolol had a greater propensity for a decrease in cytokine gene expression compared with ASF, but effects were tissue-specific. Taken together, these results suggest that both α- and β-adrenergic receptors contribute to the SNS mediation of inflammatory responses, and adrenergic antagonists may effectively mitigate tissue-specific SF-mediated inflammation.
Collapse
Affiliation(s)
- Nicholas D Wheeler
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America.,College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
| | - David C Ensminger
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Megan M Rowe
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| | - Zachary S Wriedt
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| | - Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| |
Collapse
|
31
|
Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep 2021; 44:5986548. [PMID: 33202015 DOI: 10.1093/sleep/zsaa173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
In the mammalian brain, adult neurogenesis has been extensively studied in the hippocampal sub-granular zone and the sub-ventricular zone of the anterolateral ventricles. However, growing evidence suggests that new cells are not only "born" constitutively in the adult hypothalamus, but many of these cells also differentiate into neurons and glia and serve specific functions. The preoptic-hypothalamic area plays a central role in the regulation of many critical functions, including sleep-wakefulness and circadian rhythms. While a role for adult hippocampal neurogenesis in regulating hippocampus-dependent functions, including cognition, has been extensively studied, adult hypothalamic neurogenic process and its contributions to various hypothalamic functions, including sleep-wake regulation are just beginning to unravel. This review is aimed at providing the current understanding of the hypothalamic adult neurogenic processes and the extent to which it affects hypothalamic functions, including sleep-wake regulation. We propose that hypothalamic neurogenic processes are vital for maintaining the proper functioning of the hypothalamic sleep-wake and circadian systems in the face of regulatory challenges. Sleep-wake disturbance is a frequent and challenging problem of aging and age-related neurodegenerative diseases. Aging is also associated with a decline in the neurogenic process. We discuss a hypothesis that a decrease in the hypothalamic neurogenic process underlies the aging of its sleep-wake and circadian systems and associated sleep-wake disturbance. We further discuss whether neuro-regenerative approaches, including pharmacological and non-pharmacological stimulation of endogenous neural stem and progenitor cells in hypothalamic neurogenic niches, can be used for mitigating sleep-wake and other hypothalamic dysfunctions in aging.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA
| | - Md Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychiatry, University of California, Los Angeles, CA
| | - Dennis McGinty
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Psychology, University of California, Los Angeles, CA
| | - Md Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
32
|
Hall S, Deurveilher S, Robertson GS, Semba K. Homeostatic state of microglia in a rat model of chronic sleep restriction. Sleep 2021; 43:5849344. [PMID: 32474610 DOI: 10.1093/sleep/zsaa108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
Chronic sleep restriction (CSR) negatively impacts brain functions. Whether microglia, the brain's resident immune cells, play any role is unknown. We studied microglia responses to CSR using a rat model featuring slowly rotating wheels (3 h on/1 h off), which was previously shown to induce both homeostatic and adaptive responses in sleep and attention. Adult male rats were sleep restricted for 27 or 99 h. Control rats were housed in locked wheels. After 27 and/or 99 h of CSR, the number of cells immunoreactive for the microglia marker ionized calcium-binding adaptor molecule-1 (Iba1) and the density of Iba1 immunoreactivity were increased in 4/10 brain regions involved in sleep/wake regulation and cognition, including the prelimbic cortex, central amygdala, perifornical lateral hypothalamic area, and dorsal raphe nucleus. CSR neither induced mitosis in microglia (assessed with bromodeoxyuridine) nor impaired blood-brain barrier permeability (assessed with Evans Blue). Microglia appeared ramified in all treatment groups and, when examined quantitatively in the prelimbic cortex, their morphology was not affected by CSR. After 27 h, but not 99 h, of CSR, mRNA levels of the anti-inflammatory cytokine interleukin-10 were increased in the frontal cortex. Pro-inflammatory cytokine mRNA levels (tumor necrosis factor-α, interleukin-1β, and interleukin-6) were unchanged. Furthermore, cortical microglia were not immunoreactive for several pro- and anti-inflammatory markers tested, but were immunoreactive for the purinergic P2Y12 receptor. These results suggest that microglia respond to CSR while remaining in a physiological state and may contribute to the previously reported homeostatic and adaptive responses to CSR.
Collapse
Affiliation(s)
- Shannon Hall
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Samüel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - George S Robertson
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Psychology & Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
33
|
Song Y, Martin JL, Lee D, Kramer BJ, Ryan GW, Hays RD, Choi SE. Associations of Self-Reported Sleep Quality with Demographic and Other Characteristics in Older Korean Immigrants. J Immigr Minor Health 2021; 24:403-411. [PMID: 33751360 PMCID: PMC7942980 DOI: 10.1007/s10903-021-01174-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 11/02/2022]
Abstract
Poor sleep is common among older adults, affecting a wide range of health outcomes. However, little is known about sleep issues among older Korean immigrants, the fastest growing Asian American subgroup in the United States. We aimed to explore multiple factors associated with sleep among this group. We analyzed cross-sectional survey data from 43 older immigrants living in two large Korean communities in Southern California. Perceived sleep quality was significantly associated with gender, living arrangement, employment status, mental health, and sleep-related beliefs (all p-values < 0.05). Living with someone and being employed for wages were significantly uniquely associated with better sleep quality, accounting for demographic and health-related factors (R2 = 51.8%, adjusted R2 = 38.7%, p = 0.002). These findings suggest a potential role of sociocultural factors on sleep. Further studies are needed to confirm these findings and to inform a sleep intervention program tailored to the characteristics of older Korean immigrants.
Collapse
Affiliation(s)
- Yeonsu Song
- School of Nursing, University of California Los Angeles, 700 Tiverton Avenue, 3-242 Factor, Los Angeles, CA, 90095, USA. .,Geriatric Research, Education, and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA. .,David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Jennifer L Martin
- Geriatric Research, Education, and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Diane Lee
- Geriatric Research, Education, and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - B Josea Kramer
- Geriatric Research, Education, and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gery W Ryan
- Kaiser Permanente Bernard J. Tyson School of Medicine, Los Angeles, CA, USA
| | - Ron D Hays
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Sarah E Choi
- School of Nursing, University of California Los Angeles, 700 Tiverton Avenue, 3-242 Factor, Los Angeles, CA, 90095, USA
| |
Collapse
|
34
|
Deurveilher S, Golovin T, Hall S, Semba K. Microglia dynamics in sleep/wake states and in response to sleep loss. Neurochem Int 2020; 143:104944. [PMID: 33359188 DOI: 10.1016/j.neuint.2020.104944] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/22/2022]
Abstract
Sleep has an essential role for optimal brain function, but the cellular substrates for sleep regulation are not fully understood. Microglia, the immune cells of the brain, have gained increasingly more attention over the last two decades for their important roles in various brain functions that extend beyond their well-known immune function, including brain development, neuronal protection, and synaptic plasticity. Here we review recent advances in understanding: i) morphological and phenotypic dynamics of microglia including process motility/growth and gene/protein expression, and ii) microglia-neuron interactions including phagocytosis and contact at synapses which alters neuronal circuit activity, both under physiological state in the adult brain. We discuss how the microglia-neuron interactions particularly at synapses could influence microglia and neuronal activities across circadian cycles and sleep/wake states. We also review recent findings on how microglia respond to sleep loss. We conclude by pointing out key questions and proposing suggestions for future research to better understand the role of microglia in sleep regulation, sleep homeostasis, and the function of sleep.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tatjana Golovin
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shannon Hall
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
35
|
Rosenthal SJ, Josephs T, Kovtun O, McCarty R. Seasonal effects on bipolar disorder: A closer look. Neurosci Biobehav Rev 2020; 115:199-219. [DOI: 10.1016/j.neubiorev.2020.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 11/15/2022]
|
36
|
Abstract
While neurons and circuits are almost unequivocally considered to be the computational units and actuators of behavior, a complete understanding of the nervous system must incorporate glial cells. Far beyond a copious but passive substrate, glial influence is inextricable from neuronal physiology, whether during developmental guidance and synaptic shaping or through the trophic support, neurotransmitter and ion homeostasis, cytokine signaling and immune function, and debris engulfment contributions that this class provides throughout an organism's life. With such essential functions, among a growing literature of nuanced roles, it follows that glia are consequential to behavior in adult animals, with novel genetic tools allowing for the investigation of these phenomena in living organisms. We discuss here the relevance of glia for maintaining circadian rhythms and also for serving functions of sleep.
Collapse
Affiliation(s)
- Gregory Artiushin
- Chronobiology and Sleep Institute, Perelman School of Medicine, and Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine, and Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
37
|
Garofalo S, Picard K, Limatola C, Nadjar A, Pascual O, Tremblay MÈ. Role of Glia in the Regulation of Sleep in Health and Disease. Compr Physiol 2020; 10:687-712. [PMID: 32163207 DOI: 10.1002/cphy.c190022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sleep is a naturally occurring physiological state that is required to sustain physical and mental health. Traditionally viewed as strictly regulated by top-down control mechanisms, sleep is now known to also originate locally. Glial cells are emerging as important contributors to the regulation of sleep-wake cycles, locally and among dedicated neural circuits. A few pioneering studies revealed that astrocytes and microglia may influence sleep pressure, duration as well as intensity, but the precise involvement of these two glial cells in the regulation of sleep remains to be fully addressed, across contexts of health and disease. In this overview article, we will first summarize the literature pertaining to the role of astrocytes and microglia in the regulation of sleep under normal physiological conditions. Afterward, we will discuss the beneficial and deleterious consequences of glia-mediated neuroinflammation, whether it is acute, or chronic and associated with brain diseases, on the regulation of sleep. Sleep disturbances are a main comorbidity in neurodegenerative diseases, and in several brain diseases that include pain, epilepsy, and cancer. Identifying the relationships between glia-mediated neuroinflammation, sleep-wake rhythm disruption and brain diseases may have important implications for the treatment of several disorders. © 2020 American Physiological Society. Compr Physiol 10:687-712, 2020.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Katherine Picard
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France
| | - Olivier Pascual
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Université Claude Bernard Lyon, Lyon, France
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Départment de médecine moleculaire, Faculté de médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
38
|
Korin B, Avraham S, Azulay-Debby H, Farfara D, Hakim F, Rolls A. Short-term sleep deprivation in mice induces B cell migration to the brain compartment. Sleep 2020; 43:zsz222. [PMID: 31553459 PMCID: PMC7616588 DOI: 10.1093/sleep/zsz222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence highlight the involvement of immune cells in brain activity and its dysfunction. The brain's immune compartment is a dynamic ensemble of cells that can fluctuate even in naive animals. However, the dynamics and factors that can affect the composition of immune cells in the naive brain are largely unknown. Here, we examined whether acute sleep deprivation can affect the brain's immune compartment (parenchyma, meninges, and choroid plexus). Using high-dimensional mass cytometry analysis, we broadly characterized the effects of short-term sleep deprivation on the immune composition in the mouse brain. We found that after 6 h of sleep deprivation, there was a significant increase in the abundance of B cells in the brain compartment. This effect can be accounted for, at least in part, by the elevated expression of the migration-related receptor, CXCR5, on B cells and its ligand, cxcl13, in the meninges following sleep deprivation. Thus, our study reveals that short-term sleep deprivation affects the brain's immune compartment, offering a new insight into how sleep disorders can affect brain function and potentially contribute to neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Ben Korin
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shimrit Avraham
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hilla Azulay-Debby
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dorit Farfara
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Fahed Hakim
- Pediatric Pulmonary Unit, Rambam Health Care Campus, Haifa, Israel
- Cancer Research Center, EMMS Hospital, Nazareth, Israel
| | - Asya Rolls
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Technion Integrated Cancer Center (TICC), Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
39
|
Association between autophagy and rapid eye movement sleep loss-associated neurodegenerative and patho-physio-behavioral changes. Sleep Med 2019; 63:29-37. [DOI: 10.1016/j.sleep.2019.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/26/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
|
40
|
Tuan LH, Lee LJ. Microglia-mediated synaptic pruning is impaired in sleep-deprived adolescent mice. Neurobiol Dis 2019; 130:104517. [PMID: 31229687 DOI: 10.1016/j.nbd.2019.104517] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 05/10/2019] [Accepted: 06/19/2019] [Indexed: 01/26/2023] Open
Abstract
The detrimental effects of sleep insufficiency have been extensively explored. However, only a few studies have addressed this issue in adolescents. In the present study, we examined and compared the effects of 72 h paradoxical sleep deprivation (SD) on adolescent (5 weeks old) and adult (~12 weeks old) mice. Following 72 h of SD, induced by a modified multiple-platform method, mice were subjected to behavioral, histological and neurochemical examinations. In both adolescent and adult mice, SD adversely affected short-term memory in a novel object recognition test. Compared with normal-sleep controls, sleep-deprived adolescent mice had an increased density of excitatory synapses in the granule cells of the dentate gyrus, but no such pattern was observed in the adult group. The engulfment of postsynaptic components within the microglia after SD was reduced in adolescents but not in adults, suggesting an impaired microglia-mediated synaptic pruning in adolescent SD mice. Possible contributing factors included the decreases in CX3CR1, CD11b and P2Y12, closely associated with the synaptic pruning via microglial phagocytosis. In adult SD mice, microglia-associated inflammatory reactions were noted. In sum, sleep deprivation induces age-dependent microglial reactions in adolescent and adult mice, respectively; yet results in similar defects in short-term recognition memory. Sufficient sleep is indispensable for adolescents and adults.
Collapse
Affiliation(s)
- Li-Heng Tuan
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC; Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
41
|
Melloni EMT, Poletti S, Vai B, Bollettini I, Colombo C, Benedetti F. Effects of illness duration on cognitive performances in bipolar depression are mediated by white matter microstructure. J Affect Disord 2019; 249:175-182. [PMID: 30772745 DOI: 10.1016/j.jad.2019.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cognitive deficits are a core feature of bipolar disorder (BD), and persist during the euthymic phase. White matter (WM) microstructural abnormalities are widely considered a structural marker of BD. Features of illness chronicity, such as illness duration and number of mood episodes, have been associated with worsening of both clinical profile and brain structural alterations. This study examined the role of WM integrity as a possible mediator between illness duration and cognitive performances in a sample of BD patients. METHODS We assessed 88 inpatients affected by a depressive episode in course of type I BD for verbal memory, visual memory, working memory, visuospatial constructional abilities, psychomotor coordination, executive functions, processing speed, and verbal fluency. White matter integrity was evaluated through FA measurements derived using the Enhancing Neuro Imaging Genetics Through Meta-Analysis (ENIGMA)-DTI protocol. RESULTS The effect of illness duration on processing speed, verbal memory, and visual memory was mediated by the FA values of bilateral anterior corona radiata, bilateral corona radiata, genu of corpus callosum, and fornix, adjusting for age, sex, education and lithium treatment (p < 0.05). LIMITATIONS Potential interaction factors were not examined in this study. CONCLUSIONS This is the first study to show the role of WM integrity as a mediator of the negative effect of illness duration on cognitive performances. Our data provide new insight into the neuroprogressive hypothesis of BD.
Collapse
Affiliation(s)
| | - Sara Poletti
- University Vita-Salute San Raffaele, Milano, Italy
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Irene Bollettini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | | | | |
Collapse
|
42
|
Wirz-Justice A, Benedetti F. Perspectives in affective disorders: Clocks and sleep. Eur J Neurosci 2019; 51:346-365. [PMID: 30702783 DOI: 10.1111/ejn.14362] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/30/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Mood disorders are often characterised by alterations in circadian rhythms, sleep disturbances and seasonal exacerbation. Conversely, chronobiological treatments utilise zeitgebers for circadian rhythms such as light to improve mood and stabilise sleep, and manipulations of sleep timing and duration as rapid antidepressant modalities. Although sleep deprivation ("wake therapy") can act within hours, and its mood-elevating effects be maintained by regular morning light administration/medication/earlier sleep, it has not entered the regular guidelines for treating affective disorders as a first-line treatment. The hindrances to using chronotherapeutics may lie in their lack of patentability, few sponsors to carry out large multi-centre trials, non-reimbursement by medical insurance and their perceived difficulty or exotic "alternative" nature. Future use can be promoted by new technology (single-sample phase measurements, phone apps, movement and sleep trackers) that provides ambulatory documentation over long periods and feedback to therapist and patient. Light combinations with cognitive behavioural therapy and sleep hygiene practice may speed up and also maintain response. The urgent need for new antidepressants should hopefully lead to reconsideration and implementation of these non-pharmacological methods, as well as further clinical trials. We review the putative neurochemical mechanisms underlying the antidepressant effect of sleep deprivation and light therapy, and current knowledge linking clocks and sleep with affective disorders: neurotransmitter switching, stress and cortico-limbic reactivity, clock genes, cortical neuroplasticity, connectomics and neuroinflammation. Despite the complexity of multi-system mechanisms, more insight will lead to fine tuning and better application of circadian and sleep-related treatments of depression.
Collapse
Affiliation(s)
- Anna Wirz-Justice
- Centre for Chronobiology, Transfaculty Research Platform Molecular and Cognitive Neurosciences, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Francesco Benedetti
- University Vita-Salute San Raffaele, Milano, Italy.,Psychiatry & Clinical Psychobiology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
43
|
Phan TX, Malkani RG. Sleep and circadian rhythm disruption and stress intersect in Alzheimer's disease. Neurobiol Stress 2019; 10:100133. [PMID: 30937343 PMCID: PMC6279965 DOI: 10.1016/j.ynstr.2018.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) was discovered and the pathological hallmarks were revealed more than a century ago. Subsequently, many remarkable discoveries and breakthroughs provided us with mechanistic insights into the pathogenesis of AD. The identification of the molecular underpinning of the disease not only provided the framework of AD pathogenesis but also targets for therapeutic inventions. Despite all the initial successes, no effective treatment for AD has emerged yet as all the late stages of clinical trials have failed. Many factors ranging from genetic to environmental factors have been critically appraised as the potential causes of AD. In particular, the role of stress on AD has been intensively studied while the relationship between sleep and circadian rhythm disruption (SCRD) and AD have recently emerged. SCRD has always been thought to be a corollary of AD pathologies until recently, multiple lines of evidence converge on the notion that SCRD might be a contributing factor in AD pathogenesis. More importantly, how stress and SCRD intersect and make their concerted contributions to AD phenotypes has not been reviewed. The goal of this literature review is to examine at multiple levels - molecular, cellular (e.g. microglia, gut microbiota) and holistic - how the interaction between stress and SCRD bi-directionally and synergistically exacerbate AD pathologies and cognitive impairment. AD, in turn, worsens stress and SCRD and forms the vicious cycle that perpetuates and amplifies AD.
Collapse
Affiliation(s)
- Trongha X. Phan
- Department of Neurology, Division of Sleep Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Circadian and Sleep Medicine, Northwestern University, Chicago, IL, USA
| | - Roneil G. Malkani
- Department of Neurology, Division of Sleep Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Circadian and Sleep Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
44
|
Zhou X, Oishi Y, Cherasse Y, Korkutata M, Fujii S, Lee CY, Lazarus M. Extracellular adenosine and slow-wave sleep are increased after ablation of nucleus accumbens core astrocytes and neurons in mice. Neurochem Int 2019; 124:256-263. [PMID: 30690114 DOI: 10.1016/j.neuint.2019.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/07/2019] [Accepted: 01/19/2019] [Indexed: 02/06/2023]
Abstract
Sleep and wakefulness are controlled by a wide range of neuronal populations in the mammalian brain. Activation of adenosine A2A receptor (A2AR)-expressing neurons in the nucleus accumbens (NAc) core promotes slow-wave sleep (SWS). The neuronal mechanism by which activation of NAc A2AR neurons induces SWS, however, is unknown. We hypothesized that the ability of NAc activation to induce sleep is mediated by the classic somnogen adenosine, which can be formed by various processes in all types of cells. Here, to investigate whether astrocytes are involved in the ability of the NAc to regulate SWS, we ablated glial fibrillary acidic protein (GFAP)-positive cells in the NAc core of mice by virus-mediated expression of diphtheria toxin (DT) receptors and intraperitoneal administration of DT. Analysis of electroencephalogram and electromyogram recordings of DT-treated wild-type mice revealed that SWS was remarkably increased at 1 week after DT treatment, whereas sleep-wake behavior was unchanged in DT-treated A2AR knockout mice. Cell ablation was associated with an increased number of GFAP-positive cells and activation of microglia in the NAc. In-vivo microdialysis revealed significantly increased levels of extracellular adenosine in the NAc at 1 week after DT treatment. Our findings suggest that elevated adenosine levels in the NAc core promote SWS by acting on A2ARs and provide the first evidence that adenosine is an endogenous candidate for activating NAc A2AR neurons that have the ability to induce SWS.
Collapse
Affiliation(s)
- Xuzhao Zhou
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan; Doctoral Program of Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Mustafa Korkutata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan; PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, 305-0005, Japan
| | - Shinya Fujii
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan; Doctoral Program of Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Chia-Ying Lee
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan; PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, 305-0005, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
45
|
Cooper LN, Mishra I, Ashley NT. Short-Term Sleep Loss Alters Cytokine Gene Expression in Brain and Peripheral Tissues and Increases Plasma Corticosterone of Zebra Finch (Taeniopygia guttata). Physiol Biochem Zool 2019; 92:80-91. [DOI: 10.1086/701170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Abstract
The cellular mechanisms governing the expression, regulation, and function of sleep are not entirely understood. The traditional view is that these mechanisms are neuronal. An alternative view is that glial brain cells may play important roles in these processes. Their ubiquity in the central nervous system makes them well positioned to modulate neuronal circuits that gate sleep and wake. Their ability to respond to chemical neuronal signals suggests that they form feedback loops with neurons that may globally regulate neuronal activity. Their potential role in detoxifying the brain, regulating neuronal metabolism, and promoting synaptic plasticity raises the intriguing possibility that glia mediate important functions ascribed to sleep.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, USA.
| |
Collapse
|
47
|
Seixas AA, Trinh-Shevrin C, Ravenell J, Ogedegbe G, Zizi F, Jean-Louis G. Culturally tailored, peer-based sleep health education and social support to increase obstructive sleep apnea assessment and treatment adherence among a community sample of blacks: study protocol for a randomized controlled trial. Trials 2018; 19:519. [PMID: 30249293 PMCID: PMC6154893 DOI: 10.1186/s13063-018-2835-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 08/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Compared to whites, blacks are at increased risk for obstructive sleep apnea (OSA) yet less likely to adhere to physician-recommended sleep assessment and treatment. Poor OSA health literacy and lack of social support to navigate the current healthcare system are two potential barriers to adequate OSA care. This study is designed to address these barriers by evaluating the effectiveness of a peer-based sleep health education program on adherence to OSA assessment and treatment among blacks at risk for OSA. METHOD/DESIGN In a two-arm, randomized controlled trial, we will ascertain the effectiveness of peer-based sleep health education and social support in increasing OSA evaluation and treatment rates among 398 blacks at low to high OSA risk. Participants at risk of OSA will receive quality controlled, culturally, and linguistically tailored peer education based on Motivational Enhancement principles over a period of 12 months. During this 12-month period, participants are encouraged to participate in a sleep home study to determine risk of OSA and, if found to be at risk, they are invited to undergo a diagnostic sleep assessment at a clinic. Participants who are diagnosed with OSA and who are prescribed continuous positive airway pressure treatment will be encouraged, through peer-based education, to adhere to recommended treatment. Recruitment for the project is ongoing. DISCUSSION The use of a culturally tailored sleep health education program, peer health educators trained in sleep health, and home-based sleep assessment are novel approaches in improving OSA assessment and treatment adherence in blacks who are significantly at risk for OSA. Empirical evidence from this trial will provide clinical and population level solutions on how to improve and increase assessment and treatment of OSA among blacks. TRIAL REGISTRATION NCT02427815 . Registered on 20 April 2015. ClinicalTrials.gov title: Sleep Health Education and Social Support Among Blacks With OSA.
Collapse
Affiliation(s)
- Azizi A. Seixas
- Department of Population Health, New York School of Medicine, New York, NY USA
- Department of Psychiatry, NYU Langone Health, New York, NY 10016 USA
| | - Chau Trinh-Shevrin
- Department of Population Health, New York School of Medicine, New York, NY USA
| | - Joseph Ravenell
- Department of Population Health, New York School of Medicine, New York, NY USA
| | - Gbenga Ogedegbe
- Department of Population Health, New York School of Medicine, New York, NY USA
| | - Ferdinand Zizi
- Department of Population Health, New York School of Medicine, New York, NY USA
| | - Girardin Jean-Louis
- Department of Population Health, New York School of Medicine, New York, NY USA
| |
Collapse
|
48
|
Jiao-tai-wan Up-regulates Hypothalamic and Peripheral Circadian Clock Gene Cryptochrome and Activates PI3K/AKT Signaling in Partially Sleep-deprived Rats. Curr Med Sci 2018; 38:704-713. [PMID: 30128882 DOI: 10.1007/s11596-018-1934-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/27/2018] [Indexed: 12/20/2022]
Abstract
This study aims to explore the effect and mechanism of Jiao-tai-wan (JTW) on systemic and tissue-specific inflammation and insulin resistance in obesity-resistant (OR) rats with chronic partial sleep deprivation (PSD). OR rats with PSD were orally given JTW and Estazolam for 4 weeks. The amount of food intake and metabolic parameters such as body weight increase rate, fasting plasma glucose (FPG), fasting insulin (FINS), homeostasis model assessment-insulin resistance (HOMA-IR) and plasma inflammatory markers were measured. The expression levels of circadian proteins cryptochrome 1 (Cryl) and cryptochrome 2 (Cry2) in hypothalamus, adipose and liver tissues were also determined. Meanwhile, the mRNA expression of inflammatory markers, activity of nuclear factor kappa B (NF-κB) p65 protein, as well as the expression levels of insulin signaling pathway proteins in hypothalamus, adipose and liver tissues were measured. Additionally, cyclic adenosine 3', 5'-monophosphate (cAMP) and activity of vasodilator-stimulated phosphoprotein (VASP) in hypothalamus tissue were measured. JTW significantly decreased the body weight increase rate and food intake, ameliorated systemic inflammation and insulin resistance. JTW effectively ameliorated inflammation and increased PI3K/AKT signaling activation in hypothalamus, adipose and liver. Interestingly, all these changes were associated with the up-regulation of circadian gene Cryl and Cry2 protein expression. We also found that in hypothalamus tissue of PSD rats, down-regulation of Cryl and Cry2 activated cAMP/PKA signaling and then led to inflammation, while JTW inhibited this signaling. These results suggested that JTW has the beneficial effect on ameliorating inflammation and insulin resistance in partially sleep-deprived rats by up-regulating Cry expression.
Collapse
|
49
|
Massie A, Boland E, Kapás L, Szentirmai É. Mice Lacking Alternatively Activated (M2) Macrophages Show Impairments in Restorative Sleep after Sleep Loss and in Cold Environment. Sci Rep 2018; 8:8625. [PMID: 29872141 PMCID: PMC5988741 DOI: 10.1038/s41598-018-26758-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/18/2018] [Indexed: 01/22/2023] Open
Abstract
The relationship between sleep, metabolism and immune functions has been described, but the cellular components of the interaction are incompletely identified. We previously reported that systemic macrophage depletion results in sleep impairment after sleep loss and in cold environment. These findings point to the role of macrophage-derived signals in maintaining normal sleep. Macrophages exist either in resting form, classically activated, pro-inflammatory (M1) or alternatively activated, anti-inflammatory (M2) phenotypes. In the present study we determined the contribution of M2 macrophages to sleep signaling by using IL-4 receptor α-chain-deficient [IL-4Rα knockout (KO)] mice, which are unable to produce M2 macrophages. Sleep deprivation induced robust increases in non-rapid-eye-movement sleep (NREMS) and slow-wave activity in wild-type (WT) animals. NREMS rebound after sleep deprivation was ~50% less in IL-4Rα KO mice. Cold exposure induced reductions in rapid-eye-movement sleep (REMS) and NREMS in both WT and KO mice. These differences were augmented in IL-4Rα KO mice, which lost ~100% more NREMS and ~25% more REMS compared to WTs. Our finding that M2 macrophage-deficient mice have the same sleep phenotype as mice with global macrophage depletion reconfirms the significance of macrophages in sleep regulation and suggests that the main contributors are the alternatively activated M2 cells.
Collapse
Affiliation(s)
- Ashley Massie
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, Washington, USA
| | - Erin Boland
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, Washington, USA
| | - Levente Kapás
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, Washington, USA
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA
| | - Éva Szentirmai
- Elson S. Floyd College of Medicine, Department of Biomedical Sciences, Washington State University, Spokane, Washington, USA.
- Sleep and Performance Research Center, Washington State University, Spokane, Washington, USA.
| |
Collapse
|
50
|
Hambrecht-Wiedbusch VS, Gabel M, Liu LJ, Imperial JP, Colmenero AV, Vanini G. Preemptive Caffeine Administration Blocks the Increase in Postoperative Pain Caused by Previous Sleep Loss in the Rat: A Potential Role for Preoptic Adenosine A2A Receptors in Sleep-Pain Interactions. Sleep 2018; 40:4037126. [PMID: 28934532 DOI: 10.1093/sleep/zsx116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sleep and pain are reciprocally related, but the precise mechanisms underlying this relationship are poorly understood. This study used a rat model of surgical pain to examine the effect of previous sleep loss on postoperative pain and tested the hypothesis that preoptic adenosinergic mechanisms regulate sleep-pain interactions. Relative to ad libitum sleep, 6 hours of total sleep deprivation prior to a surgical incision significantly enhanced postoperative mechanical hypersensitivity in the affected paw and prolonged the time to recovery from surgery. There were no sex-specific differences in these measures. There were also no changes in adrenocorticotropic hormone and corticosterone levels after sleep deprivation, suggesting that this effect was not mediated by the stress associated with the sleep perturbation. Systemic administration of the nonselective adenosine receptor antagonist caffeine at the onset of sleep deprivation prevented the sleep deprivation-induced increase in postoperative hypersensitivity. Microinjection of the adenosine A2A receptor antagonist ZM 241385 into the median preoptic nucleus (MnPO) blocked the increase in surgical pain levels and duration caused by prior sleep deprivation and eliminated the thermal hyperalgesia induced by sleep deprivation in a group of nonoperated (i.e., without surgical incision) rats. These data show that even a brief sleep disturbance prior to surgery worsens postoperative pain and are consistent with our hypothesis that adenosine A2A receptors in the MnPO contribute to regulate these sleep-pain interactions.
Collapse
Affiliation(s)
| | - Maya Gabel
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - Linda J Liu
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - John P Imperial
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | | | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| |
Collapse
|