1
|
Fatema K, Haidar Z, Tanim MTH, Nath SD, Sajib AA. Unveiling the link between arsenic toxicity and diabetes: an in silico exploration into the role of transcription factors. Toxicol Res 2024; 40:653-672. [PMID: 39345741 PMCID: PMC11436564 DOI: 10.1007/s43188-024-00255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024] Open
Abstract
Arsenic-induced diabetes, despite being a relatively newer finding, is now a growing area of interest, owing to its multifaceted nature of development and the diversity of metabolic conditions that result from it, on top of the already complicated manifestation of arsenic toxicity. Identification and characterization of the common and differentially affected cellular metabolic pathways and their regulatory components among various arsenic and diabetes-associated complications may aid in understanding the core molecular mechanism of arsenic-induced diabetes. This study, therefore, explores the effects of arsenic on human cell lines through 14 transcriptomic datasets containing 160 individual samples using in silico tools to take a systematic, deeper look into the pathways and genes that are being altered. Among these, we especially focused on the role of transcription factors due to their diverse and multifaceted roles in biological processes, aiming to comprehensively investigate the underlying mechanism of arsenic-induced diabetes as well as associated health risks. We present a potential mechanism heavily implying the involvement of the TGF-β/SMAD3 signaling pathway leading to cell cycle alterations and the NF-κB/TNF-α, MAPK, and Ca2+ signaling pathways underlying the pathogenesis of arsenic-induced diabetes. This study also presents novel findings by suggesting potential associations of four transcription factors (NCOA3, PHF20, TFDP1, and TFDP2) with both arsenic toxicity and diabetes; five transcription factors (E2F5, ETS2, EGR1, JDP2, and TFE3) with arsenic toxicity; and one transcription factor (GATA2) with diabetes. The novel association of the transcription factors and proposed mechanism in this study may serve as a take-off point for more experimental evidence needed to understand the in vivo cellular-level diabetogenic effects of arsenic. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00255-y.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Zinia Haidar
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Md Tamzid Hossain Tanim
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Sudipta Deb Nath
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|
2
|
Zhang Y, Sun W, Wang B, Liu Z, Liu Z, Zhang X, Wang B, Han Y, Zhang H. Metabolomics reveals the lipid metabolism disorder in Pelophylax nigromaculatus exposed to environmentally relevant levels of microcystin-LR. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124458. [PMID: 38942276 DOI: 10.1016/j.envpol.2024.124458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Cyanobacterial blooms have emerged as a significant environmental issue worldwide in recent decades. However, the toxic effects of microcystin-LR (MC-LR) on aquatic organisms, such as frogs, have remained poorly understood. In this study, frogs (Pelophylax nigromaculatus) were exposed to environmentally relevant concentrations of MC-LR (0, 1, and 10 μg/L) for 21 days. Subsequently, we assessed the impact of MC-LR on the histomorphology of the frogs' livers and conducted a global MS-based nontarget metabolomics analysis, followed by the determination of substances involved in lipid metabolism. Results showed that MC-LR significantly induced histological alterations in the frogs' hepatopancreas. Over 200 differentially expressed metabolites were identified, primarily enriched in lipid metabolism. Biochemical analysis further confirmed that MC-LR exposure led to a disorder in lipid metabolism in the frogs. This study laid the groundwork for a mechanistic understanding of MC-LR toxicity in frogs and potentially other aquatic organisms.
Collapse
Affiliation(s)
- Yinan Zhang
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Wenhui Sun
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Bingyi Wang
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Zhiqun Liu
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, 310018, China; Hangzhou International Urbanology Research Center, Hangzhou, 311121, China
| | | | - Binhao Wang
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou, 310018, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, 310018, China; Hangzhou International Urbanology Research Center, Hangzhou, 311121, China.
| |
Collapse
|
3
|
Li H, Guo Y, Su W, Zhang H, Wei X, Ma X, Gong S, Qu G, Zhang L, Xu H, Shen F, Jiang S, Xu D, Li J. The mitochondria-targeted antioxidant MitoQ ameliorates inorganic arsenic-induced DCs/Th1/Th2/Th17/Treg differentiation partially by activating PINK1-mediated mitophagy in murine liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116350. [PMID: 38653026 DOI: 10.1016/j.ecoenv.2024.116350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Inorganic arsenic is a well-established environmental toxicant linked to acute liver injury, fibrosis, and cancer. While oxidative stress, pyroptosis, and ferroptosis are known contributors, the role of PTEN-induced kinase 1 (PINK1)-mediated mitophagy in arsenic-induced hepatic immunotoxicity remains underexplored. Our study revealed that acute arsenic exposure prompts differentiation of hepatic dendritic cells (DCs) and T helper (Th) 1, Th2, Th17, and regulatory T (Treg) cells, alongside increased transcription factors and cytokines. Inorganic arsenic triggered liver redox imbalance, leading to elevated alanine transaminase (ALT), hydrogen peroxide (H2O2), malondialdehyde (MDA), and activation of nuclear factor erythroid 2-related factor (Nrf2)/heme oxygenase-1 (HO-1) pathway. PINK1-mediated mitophagy was initiated, and its inhibition exacerbates H2O2 accumulation while promoting DCs/Th1/Th2/Treg differentiation in the liver of arsenic-exposed mice. Mitoquinone (MitoQ) pretreatment relieved arsenic-induced acute liver injury and immune imbalance by activating Nrf2/HO-1 and PINK1-mediated mitophagy. To our knowledge, this is the first report identifying PINK1-mediated mitophagy as a protective factor against inorganic arsenic-induced hepatic DCs/Th1/Th2 differentiation. This study has provided new insights on the immunotoxicity of inorganic arsenic and established a foundation for exploring preventive and therapeutic strategies targeting PINK1-mediated mitophagy in acute liver injury. Consequently, the application of mitochondrial antioxidant MitoQ may offer a promising treatment for the metalloid-induced acute liver injury.
Collapse
Affiliation(s)
- Hui Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Yaning Guo
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Wei Su
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Huan Zhang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Xiaoxi Wei
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Xinyu Ma
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Shuwen Gong
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Gaoyang Qu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Lin Zhang
- Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu, Anhui Province 241000, PR China
| | - Hong Xu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Fuhai Shen
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Shoufang Jiang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China
| | - Dingjie Xu
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, Hebei Province, 063210, PR China.
| | - Jinlong Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063210, PR China.
| |
Collapse
|
4
|
Zhang G, Lin W, Gao N, Lan C, Ren M, Yan L, Pan B, Xu J, Han B, Hu L, Chen Y, Wu T, Zhuang L, Lu Q, Wang B, Fang M. Using Machine Learning to Construct the Blood-Follicle Distribution Models of Various Trace Elements and Explore the Transport-Related Pathways with Multiomics Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7743-7757. [PMID: 38652822 DOI: 10.1021/acs.est.3c10904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Permeabilities of various trace elements (TEs) through the blood-follicle barrier (BFB) play an important role in oocyte development. However, it has not been comprehensively described as well as its involved biological pathways. Our study aimed to construct a blood-follicle distribution model of the concerned TEs and explore their related biological pathways. We finally included a total of 168 women from a cohort of in vitro fertilization-embryo transfer conducted in two reproductive centers in Beijing City and Shandong Province, China. The concentrations of 35 TEs in both serum and follicular fluid (FF) samples from the 168 women were measured, as well as the multiomics features of the metabolome, lipidome, and proteome in both plasma and FF samples. Multiomics features associated with the transfer efficiencies of TEs through the BFB were selected by using an elastic net model and further utilized for pathway analysis. Various machine learning (ML) models were built to predict the concentrations of TEs in FF. Overall, there are 21 TEs that exhibited three types of consistent BFB distribution characteristics between Beijing and Shandong centers. Among them, the concentrations of arsenic, manganese, nickel, tin, and bismuth in FF were higher than those in the serum with transfer efficiencies of 1.19-4.38, while a reverse trend was observed for the 15 TEs with transfer efficiencies of 0.076-0.905, e.g., mercury, germanium, selenium, antimony, and titanium. Lastly, cadmium was evenly distributed in the two compartments with transfer efficiencies of 0.998-1.056. Multiomics analysis showed that the enrichment of TEs was associated with the synthesis and action of steroid hormones and the glucose metabolism. Random forest model can provide the most accurate predictions of the concentrations of TEs in FF among the concerned ML models. In conclusion, the selective permeability through the BFB for various TEs may be significantly regulated by the steroid hormones and the glucose metabolism. Also, the concentrations of some TEs in FF can be well predicted by their serum levels with a random forest model.
Collapse
Affiliation(s)
- Guohuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Weinan Lin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Ning Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Changxin Lan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Mengyuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, P. R. China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, P. R. China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Tianxiang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
| | - Lili Zhuang
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai 264000, P. R. China
| | - Qun Lu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, P.R China
- Center of Reproductive Medicine, Peking University People's Hospital, Beijing 100044, P. R. China
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, P. R. China
- Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, P. R. China
- Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, P. R. China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, P. R. China
- Laboratory for Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
5
|
Lin H, Wu H, Liu F, Yang H, Shen L, Chen J, Zhang X, Zhong Y, Zhang H, Liu Z. Assessing the hepatotoxicity of PFOA, PFOS, and 6:2 Cl-PFESA in black-spotted frogs (Rana nigromaculata) and elucidating potential association with gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120029. [PMID: 36030957 DOI: 10.1016/j.envpol.2022.120029] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Pollution caused by per- and polyfluoroalkyl substances (PFASs) has become a major global concern. The association between PFAS-induced hepatotoxicity and gut microbiota in amphibians, particularly at environmentally relevant concentrations, remains elusive. Herein we exposed male black-spotted frogs (Rana nigromaculata) to 1 and 10 μg/L waterborne perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) for 21 days; subsequently, liver histopathological, oxidative stress, molecular docking, gene/protein expression, and gut microbiome analyses were conducted. PFOS and 6:2 Cl-PFESA exposure enhanced serum alanine aminotransferase and aspartate aminotransferase activities, and markedly increased hepatic area of vacuoles and inflammatory cell infiltration, while PFOA exposure increased serum alanine aminotransferase but not aspartate aminotransferase activities and affected hepatic area of vacuoles and inflammatory cell infiltration to a lesser extent. All three PFASs elevated catalase, glutathione S-transferase, and glutathione peroxidase activities and glutathione and malondialdehyde contents in the liver, suggesting the induction of oxidative stress. Further, PFASs could bind to mitogen-activated protein kinases (p38, ERK, and JNK), upregulating not only their expression but also the expression of downstream oxidative stress-related genes and that of P-p38, P-ERK, and Nrf2 proteins. In addition, PFAS exposure significantly increased the relative abundance of Proteobacteria and Delftia and decreased that of Firmicutes and Dietzia, Mycoplasma, and Methylobacterium-Methylorubrum in the order of PFOS ≈ 6:2 Cl-PFESA > PFOA. Altogether, it appears that PFOS and 6:2 Cl-PFESA are more toxic than PFOA. Finally, microbiota function prediction, microbiota co-occurrence network, and correlation analysis between gut microbiota and liver indices suggested that PFAS-induced hepatotoxicity was associated with gut microbiota dysbiosis. Our data provide new insights into the role of gut microbiota in PFAS-induced hepatotoxicity in frogs.
Collapse
Affiliation(s)
- Huikang Lin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haoying Wu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fangyi Liu
- Zhejiang Qiushi Environmental Monitoring Co., Ltd, Hangzhou, 310018, China
| | - Hongmei Yang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lilai Shen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiahuan Chen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiaofang Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Yuchi Zhong
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China
| | - Zhiquan Liu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Martínez-Castillo M, García-Montalvo EA, Arellano-Mendoza MG, Sánchez-Peña LDC, Soria Jasso LE, Izquierdo-Vega JA, Valenzuela OL, Hernández-Zavala A. Arsenic exposure and non-carcinogenic health effects. Hum Exp Toxicol 2021; 40:S826-S850. [PMID: 34610256 DOI: 10.1177/09603271211045955] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inorganic arsenic (iAs) exposure is a serious health problem that affects more than 140 million individuals worldwide, mainly, through contaminated drinking water. Acute iAs poisoning produces several symptoms such as nausea, vomiting, abdominal pain, and severe diarrhea, whereas prolonged iAs exposure increased the risk of several malignant disorders such as lung, urinary tract, and skin tumors. Another sensitive endpoint less described of chronic iAs exposure are the non-malignant health effects in hepatic, endocrine, renal, neurological, hematological, immune, and cardiovascular systems. The present review outlines epidemiology evidence and possible molecular mechanisms associated with iAs-toxicity in several non-carcinogenic disorders.
Collapse
Affiliation(s)
- Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Mónica G Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico-Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | - Luz Del C Sánchez-Peña
- Departamento de Toxicología, 540716Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Luis E Soria Jasso
- Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina del Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Jeannett A Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Olga L Valenzuela
- Facultad de Ciencias Químicas, 428055Universidad Veracruzana, Orizaba, México
| | - Araceli Hernández-Zavala
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
7
|
Renu K, Chakraborty R, Myakala H, Koti R, Famurewa AC, Madhyastha H, Vellingiri B, George A, Valsala Gopalakrishnan A. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) - induced hepatotoxicity - A review. CHEMOSPHERE 2021; 271:129735. [PMID: 33736223 DOI: 10.1016/j.chemosphere.2021.129735] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals pose a serious threat if they go beyond permissible limits in our bodies. Much heavy metal's viz. Lead, Chromium, Arsenic, Mercury, Nickel, and Cadmium pose a serious threat when they go beyond permissible limits and cause hepatotoxicity. They cause the generation of ROS which in turn causes numerous injuries and undesirable changes in the liver. Epidemiological studies have shown an increase in the levels of such heavy metals in the environment posing a serious threat to human health. Epigenetic alterations have been seen in the event of exposure to such heavy metals. Apoptosis, caspase activation as well as ultrastructural changes in the hepatocytes have also been seen due to heavy metals. Inflammation involving TNF-alpha, pro-inflammatory cytokines, MAPK, ERK pathways have been seen in the event of heavy metal hepatotoxicity. All these have shown that these heavy metals pose a serious threat to human health in particular and the environment as a whole.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Rituraj Chakraborty
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Haritha Myakala
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Rajeshwari Koti
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike lkwo, Nigeria
| | - Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889 1692, Japan
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol 2021; 12:643972. [PMID: 33927623 PMCID: PMC8078867 DOI: 10.3389/fphar.2021.643972] [Citation(s) in RCA: 866] [Impact Index Per Article: 216.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
The industrial activities of the last century have caused massive increases in human exposure to heavy metals. Mercury, lead, chromium, cadmium, and arsenic have been the most common heavy metals that induced human poisonings. Here, we reviewed the mechanistic action of these heavy metals according to the available animal and human studies. Acute or chronic poisonings may occur following exposure through water, air, and food. Bioaccumulation of these heavy metals leads to a diversity of toxic effects on a variety of body tissues and organs. Heavy metals disrupt cellular events including growth, proliferation, differentiation, damage-repairing processes, and apoptosis. Comparison of the mechanisms of action reveals similar pathways for these metals to induce toxicity including ROS generation, weakening of the antioxidant defense, enzyme inactivation, and oxidative stress. On the other hand, some of them have selective binding to specific macromolecules. The interaction of lead with aminolevulinic acid dehydratase and ferrochelatase is within this context. Reactions of other heavy metals with certain proteins were discussed as well. Some toxic metals including chromium, cadmium, and arsenic cause genomic instability. Defects in DNA repair following the induction of oxidative stress and DNA damage by the three metals have been considered as the cause of their carcinogenicity. Even with the current knowledge of hazards of heavy metals, the incidence of poisoning remains considerable and requires preventive and effective treatment. The application of chelation therapy for the management of metal poisoning could be another aspect of heavy metals to be reviewed in the future.
Collapse
Affiliation(s)
- Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Kobra Naseri
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zoya Tahergorabi
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmood Sadeghi
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
9
|
Delaney P, Ramdas Nair A, Palmer C, Khan N, Sadler KC. Arsenic induced redox imbalance triggers the unfolded protein response in the liver of zebrafish. Toxicol Appl Pharmacol 2020; 409:115307. [PMID: 33147493 DOI: 10.1016/j.taap.2020.115307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Inorganic arsenic (iAs) is one of the most endemic toxicants worldwide and oxidative stress is a key cellular pathway underlying iAs toxicity. Other cellular stress response pathways, such as the unfolded protein response (UPR), are also impacted by iAs exposure, however it is not known how these pathways intersect to cause disease. We optimized the use of zebrafish larvae to identify the relationship between these cellular stress response pathways and arsenic toxicity. We found that the window of iAs susceptibility during zebrafish development corresponds with the development of the liver, and that even a 24-h exposure can cause lethality if administered to mature larvae, but not to early embryos. Acute exposure of larvae to iAs generates reactive oxygen species (ROS), an antioxidant response, endoplasmic reticulum (ER) stress and UPR activation in the liver. An in vivo assay using transgenic larvae expressing a GFP-tagged secreted glycoprotein in hepatocytes (Tg(fabp10a:Gc-EGFP)) revealed acute iAs exposure selectively decreased expression of Gc-EGFP, indicating that iAs impairs secretory protein folding in the liver. The transcriptional output of UPR activation is preceded by ROS production and activation of genes involved in the oxidative stress response. These studies implicate redox imbalance as the mechanism of iAs-induced ER stress and suggest that crosstalk between these pathways underlie iAs-induced hepatic toxicity.
Collapse
Affiliation(s)
- Patrice Delaney
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Anjana Ramdas Nair
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Catherine Palmer
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Nouf Khan
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates.
| |
Collapse
|
10
|
Shi L, Hu X, Wang N, Liang H, Wu C, Cao H. Histopathological examination and transcriptome analyses to assess the acute toxic effects of arsenite exposure on rare minnows (Gobiocypris rarus). ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:613-624. [PMID: 32385600 DOI: 10.1007/s10646-020-02222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is ubiquitously present in the aquatic environment. We investigated the acute toxic effects of arsenite [As(III)] exposure on rare minnows (Gobiocypris rarus) in vivo. The 96-h LC50 value for exposure to As(III) was 13.73 mg/L. As(III) bioaccumulation in different tissues was measured using inductively-coupled plasma mass spectrometry, and the extent of As(III) accumulation was, from greatest to least, liver > intestine > gills > muscle > kidney > testis > brain. Histological examination revealed that in As(III)-treated fish, numerous cellular and tissue alterations were present in the gill, liver, and intestine tissues. Moreover, transmission electron microscopy showed ultrastructural alterations in hepatocytes. We also performed transcriptome analyses to investigate As(III)-induced toxicity response in the liver of As(III)-treated fish; various oxidative-related genes were differentially expressed, and their expression levels were further validated using qPCR. This study is one of the many steps we aim to take on the way to promote the rare minnow to an international standard laboratory animal.
Collapse
Affiliation(s)
- Lixia Shi
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, CAFS, Wuhan, 430223, China
- School of Life Sciences, Huizhou University, Huizhou, 516007, China
| | - Xudong Hu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nenghan Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenxi Wu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hong Cao
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, CAFS, Wuhan, 430223, China.
| |
Collapse
|
11
|
Rehman MYA, van Herwijnen M, Krauskopf J, Farooqi A, Kleinjans JCS, Malik RN, Briedé JJ. Transcriptome responses in blood reveal distinct biological pathways associated with arsenic exposure through drinking water in rural settings of Punjab, Pakistan. ENVIRONMENT INTERNATIONAL 2020; 135:105403. [PMID: 31864032 DOI: 10.1016/j.envint.2019.105403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/28/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Groundwater Arsenic (As) contamination is a global public health concern responsible for various health implications and a neglected area of environmental health research in Pakistan. Because of interindividual differences in genetic predisposition, As-related health issues may not be equally distributed among the As-exposed population. However, till date, no studies have been conducted including multiple SNPs involved in As metabolism and disease risk using a linear mixed effect model approach to analyze peripheral blood transcriptomics results. OBJECTIVES In order to detect early responses on the gene expression level and to evaluate the impact of selected SNPs inferring disease risks associated with As exposure, we designed a systematic study to investigate blood transcriptomics profiles of 57 differentially exposed rural subjects living in drinking water As-contaminated settings of Lahore and Kasur districts in Punjab Province in southeast Pakistan. Exposure among the subjects was correlated with individual transcriptome responses applying urinary As profiles as the main biomarker for risk stratification. METHODS We performed whole genome gene expression analysis in blood of subjects using microarrays. Linear effect mixed models were applied for evaluating the combined impact of SNPs hypothetically increasing the risk for As exposure-induced health effects (GSTM1, GSTT1, As3MT, DNMT1, MTHFR, ERCC2 and EGFR). RESULTS Our findings confirmed important signaling, growth factor, cancer and other disease related pathways known to be associated with increased As exposure levels. In addition, upon implementing our integrative SNPs-based genetic risk factor, pathways associated with an increased risk of NAFLD and diabetes appeared significantly enhanced by down-regulation of genes NDUFV3, IKBKB, IL6R, ADIPOR1, PPARA, OGT and FOXO1. CONCLUSION We report the first comprehensive study applying state-of-the-art bioinformatics approaches to address multiple SNP-based inter-individual variability in adverse molecular responses among subjects exposed to drinking water As contamination in Pakistan thereby providing strong evidence of various gene expression targets associated with development of known As-related diseases.
Collapse
Affiliation(s)
- Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Marcel van Herwijnen
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands
| | - Julian Krauskopf
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands
| | - Abida Farooqi
- Environmental Hydro-Geochemistry Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jos C S Kleinjans
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Jacco Jan Briedé
- Grow School of Oncology and Developmental Biology, Department of Toxicogenomics, Maastricht University, the Netherlands.
| |
Collapse
|
12
|
Li J, Xue J, Wang D, Dai X, Sun Q, Xiao T, Wu L, Xia H, Mostofa G, Chen X, Wei Y, Chen F, Quamruzzaman Q, Zhang A, Liu Q. Regulation of gasdermin D by miR-379-5p is involved in arsenite-induced activation of hepatic stellate cells and in fibrosis via secretion of IL-1β from human hepatic cells. Metallomics 2019; 11:483-495. [DOI: 10.1039/c8mt00321a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arsenic is an environmental toxicant and human carcinogen.
Collapse
|
13
|
Susan A, Rajendran K, Sathyasivam K, Krishnan UM. An overview of plant-based interventions to ameliorate arsenic toxicity. Biomed Pharmacother 2018; 109:838-852. [PMID: 30551538 DOI: 10.1016/j.biopha.2018.10.099] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/08/2018] [Accepted: 10/20/2018] [Indexed: 12/20/2022] Open
Abstract
The industrial and technological advancements in the world have also contributed to the rapid deterioration in the environment quality through introduction of obnoxious pollutants that threaten to destroy the subtle balance in the ecosystem. The environment contaminants cause severe adverse effects to humans, flora and fauna that are mostly irreversible. Chief among these toxicants is arsenic, a metalloid, which is considered among the most dangerous environmental toxins that leads to various diseases which affect the quality of life even when present in small quantities. Treatment of arsenic-mediated disorders still remains a challenge due to lack of effective options. Chelation therapy has been the most widely used method to detoxify arsenic. But this method is associated with deleterious effects leading various toxicities such as hepatotoxicity, neurotoxicity and other adverse effects. It has been discovered that indigenous drugs of plant origin display effective and progressive relief from arsenic-mediated toxicity without any side-effects. Further, these phytochemicals have also been found to aid the elimination of arsenic from the biological system and therefore can be more effective than conventional therapeutic agents in ameliorating arsenic-mediated toxicity. This review presents an overview of the toxic effects of arsenic and the therapeutic strategies that are available to mitigate the toxic effects with emphasis on chelation as well as protective and detoxifying activities of different phytochemicals and herbal drugs against arsenic. This information may serve as a primer in identifying novel prophylactic as well as therapeutic formulations against arsenic-induced toxicity.
Collapse
Affiliation(s)
- Ann Susan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, 613 401, India
| | - Kayalvizhi Rajendran
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, 613 401, India
| | - Kaviarasi Sathyasivam
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, 613 401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), SASTRA Deemed-to-be University, Thanjavur, 613 401, India.
| |
Collapse
|
14
|
Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death Dis 2018; 9:946. [PMID: 30237538 PMCID: PMC6148242 DOI: 10.1038/s41419-018-1004-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/30/2018] [Accepted: 08/24/2018] [Indexed: 01/07/2023]
Abstract
Arsenic exposure causes nonalcoholic steatohepatitis (NASH). Inflammation is a key contributor to the pathology of nonalcoholic fatty liver disease (NAFLD), including NASH. However, it is unclear how arsenic induces inflammation. In mouse livers, we show that arsenic trioxide (As2O3) induced NASH, increased autophagy and NLRP3 inflammasome activation, increased lipid accumulation, and resulted in dysregulation of lipid-related genes. Supplemented with taurine (Tau) attenuated the inflammation and autophagy caused by As2O3. In HepG2 cells, we found that As2O3-induced pyroptotic cell death was dependent upon the activation of NLRP3 inflammasome, which was CTSB-dependent. In addition, inhibiting autophagy alleviated the As2O3-induced increase of cytosolic CTSB expression and subsequent release of LDH, activation of the NLRP3 inflammasome, and pyroptosis. Moreover, we found that Tau alleviated As2O3-induced elevation of autophagy, CTSB expression, and activation of the NLRP3 inflammasome, and reduced the release of LDH, pyroptotic cell death, and inflammation. Interestingly, As2O3-induced lipid accumulation could not be alleviated by either inhibition of autophagy nor by inhibition of CTSB. Additionally, neither inhibition of the NLRP3 inflammasome or Tau treatment could alleviate lipid accumulation. These results demonstrated that As2O3-induced pyroptosis involves autophagy, CTSB, and the NLRP3 inflammasome cascade, and that Tau alleviates As2O3-induced liver inflammation by inhibiting the autophagic-CTSB-NLRP3 inflammasomal pathway rather than decreasing lipid accumulation. These findings give insight into the association of autophagy, inflammation, pyroptosis, and NASH induced by As2O3.
Collapse
|
15
|
Sage AP, Minatel BC, Ng KW, Stewart GL, Dummer TJB, Lam WL, Martinez VD. Oncogenomic disruptions in arsenic-induced carcinogenesis. Oncotarget 2018; 8:25736-25755. [PMID: 28179585 PMCID: PMC5421966 DOI: 10.18632/oncotarget.15106] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic exposure to arsenic affects more than 200 million people worldwide, and has been associated with many adverse health effects, including cancer in several organs. There is accumulating evidence that arsenic biotransformation, a step in the elimination of arsenic from the human body, can induce changes at a genetic and epigenetic level, leading to carcinogenesis. At the genetic level, arsenic interferes with key cellular processes such as DNA damage-repair and chromosomal structure, leading to genomic instability. At the epigenetic level, arsenic places a high demand on the cellular methyl pool, leading to global hypomethylation and hypermethylation of specific gene promoters. These arsenic-associated DNA alterations result in the deregulation of both oncogenic and tumour-suppressive genes. Furthermore, recent reports have implicated aberrant expression of non-coding RNAs and the consequential disruption of signaling pathways in the context of arsenic-induced carcinogenesis. This article provides an overview of the oncogenomic anomalies associated with arsenic exposure and conveys the importance of non-coding RNAs in the arsenic-induced carcinogenic process.
Collapse
Affiliation(s)
- Adam P Sage
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Brenda C Minatel
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Kevin W Ng
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Greg L Stewart
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Trevor J B Dummer
- Centre of Excellence in Cancer Prevention, School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Victor D Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Ameliorating effects of Raphanus sativus leaves on sodium arsenite-induced perturbation of blood indices in Swiss albino mice. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Cui X, Li S, Shraim A, Kobayashi Y, Hayakawa T, Kanno S, Yamamoto M, Hirano S. Subchronic Exposure to Arsenic Through Drinking Water Alters Expression of Cancer-Related Genes in Rat Liver. Toxicol Pathol 2016; 32:64-72. [PMID: 14713550 DOI: 10.1080/01926230490261348] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although arsenic exposure causes liver disease and/or hepatoma, little is known about molecular mechanisms of arsenic-induced liver toxicity or carcinogenesis. We investigated the effects of arsenic on expression of cancer-related genes in a rat liver following subchronic exposure to sodium arsenate (1, 10, 100 ppm in drinking water), by using real-time quantitative RT-PCR and immunohistochemical analyses. Arsenic accumulated in the rat liver dose-dependently and caused hepatic histopathological changes, such as disruption of hepatic cords, sinusoidal dilation, and fatty infiltration. A 1-month exposure to arsenic significantly increased hepatic mRNA levels of cyclin D1 (10 ppm), ILK (1 ppm), and p27Kip1 (10 ppm), whereas it reduced mRNA levels of PTEN (1 ppm) and β-catenin (100 ppm). In contrast, a 4-month arsenic exposure showed increased mRNA expression of cyclin D1 (100 ppm), ILK (1 ppm), and p27Kip1 (1 and 10 ppm), and decreased expression of both PTEN and β-catenin at all 3 doses. An immunohistochemical study revealed that each protein expression accords closely with each gene expression of mRNA level. In conclusion, subchronic exposure to inorganic arsenate caused pathological changes and altered expression of cyclin D1, p27Kip1, ILK, PTEN, and β-catenin in the liver. This implies that arsenic liver toxicity involves disturbances of some cancer-related molecules.
Collapse
Affiliation(s)
- Xing Cui
- Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Keshavarzi B, Seradj A, Akbari Z, Moore F, Shahraki AR, Pourjafar M. Chronic arsenic toxicity in sheep of Kurdistan province, western Iran. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 69:44-53. [PMID: 25943488 DOI: 10.1007/s00244-015-0157-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
After the detection of arsenic (As) toxicity in sheep from Ebrahim-abad and Babanazar villages in Kurdistan province, the concentration of this element in drinking water, cultivated soil, alfalfa hay, wool, and blood samples was evaluated. Total As concentrations ranged from 119 to 310 μg/L in drinking water, 46.70-819.20 mg/kg in soil 1.90-6.90 mg/kg in vegetation 1.56-10.79 mg/kg in sheep's wool, and 86.30-656 μg/L in blood samples. These very high As contents, in all parts of the biogeochemical cycle, exceed the recommended normal range for this element compared with a control area. Results indicate that As has moved through all compartments of the biogeochemical cycle by way of direct or indirect pathways. The present investigation illustrated decreased packed cell volume and hemoglobin in sheep from the As-contaminated zone. It was concluded that sheep from the contaminated areas suffer from anemia. Chronic As exposure of the liver was determined by liver function tests. For this purpose, blood aspartate transaminase (AST) and alanine transaminase (ALT) were measured. The results show that serum ALT and AST activities are increased significantly (p < 0.01) in the sheep population exposed to As in the contaminated zone. Moreover, chronic As exposure causes injury to hepatocytes and damages the liver.
Collapse
Affiliation(s)
- Behnam Keshavarzi
- Department of Earth Sciences, College of Sciences, Shiraz University, 71454, Shiraz, Iran,
| | | | | | | | | | | |
Collapse
|
19
|
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. EXPERIENTIA SUPPLEMENTUM (2012) 2015; 101:133-64. [PMID: 22945569 PMCID: PMC4144270 DOI: 10.1007/978-3-7643-8340-4_6] [Citation(s) in RCA: 2172] [Impact Index Per Article: 217.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heavy metals are naturally occurring elements that have a high atomic weight and a density at least five times greater than that of water. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the US Environmental Protection Agency and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity.
Collapse
Affiliation(s)
- Paul B Tchounwou
- NIH-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, 18750, Jackson, MS, 39217, USA,
| | | | | | | |
Collapse
|
20
|
Muñoz A, Chervona Y, Hall M, Kluz T, Gamble MV, Costa M. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water. Toxicol Appl Pharmacol 2015; 284:330-8. [PMID: 25759245 DOI: 10.1016/j.taap.2015.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p<0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females.
Collapse
Affiliation(s)
- Alexandra Muñoz
- New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, NY, USA
| | - Yana Chervona
- New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, NY, USA
| | - Megan Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | - Thomas Kluz
- New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, NY, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA.
| | - Max Costa
- New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, NY, USA.
| |
Collapse
|
21
|
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201. [PMID: 24751969 DOI: 10.1016/j.fct.2014.04.016] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico.
| |
Collapse
|
22
|
Hsiao PJ, Jao JC, Tsai JL, Chang WT, Jeng KS, Kuo KK. Inorganic arsenic trioxide induces gap junction loss in association with the downregulation of connexin43 and E-cadherin in rat hepatic "stem-like" cells. Kaohsiung J Med Sci 2013; 30:57-67. [PMID: 24444534 DOI: 10.1016/j.kjms.2013.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/01/2013] [Indexed: 11/26/2022] Open
Abstract
Chronic exposure to inorganic arsenic trioxide causes tumors of the skin, urinary bladder, lung, and liver. Several cancer initiators and promoters have been shown to alter cell-cell signaling by interference with gap junction intercellular communication (GJIC) and/or modulation of cell adhesion molecules, such as connexin43 (Cx43), E-cadherin, and β-catenin. The aim of this study was to determine whether the disruption of cell-cell interactions occurs in liver epithelial cells after exposure to arsenic trioxide. WB-F344 cells were treated with arsenic trioxide (6.25-50 μM) for up to 8 hours, and gap junction function was analyzed using the scrape-load/dye transfer assay. In addition, the changes in mRNA and protein levels of Cx43, E-cadherin, and β-catenin were determined. A significant dose- and time-dependent decrease in GJIC was observed when WB-F344 cells were exposed to arsenic trioxide (p < 0.05). Consistent with the inhibition of GJIC, cells' exposure to arsenic trioxide resulted in dose- and time-dependent decreases in Cx43 and E-cadherin mRNA expression and protein levels. However, arsenic trioxide did not alter the mRNA or protein levels of β-catenin. In an immunofluorescence study, nuclei were heavily stained with anti-β-catenin antibody, indicating significant nuclear translocation. In this study, we also demonstrated that arsenic trioxide-induced GJIC loss was a reversible process. Taken together, these data support the hypothesis that disruption of cell-cell communication may contribute to the tumor-promoting effect of inorganic arsenic trioxide.
Collapse
Affiliation(s)
- Pi-Jung Hsiao
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jo-Chi Jao
- College of Health Science, Kaohsiung Medical University, Department of Medical Imaging and Radiological Sciences, Kaohsiung, Taiwan
| | - Jin-Lian Tsai
- Graduate Institute of Occupational Safety, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Tsan Chang
- Division of Hepatobiliopancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Kung-Kai Kuo
- Division of Hepatobiliopancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
23
|
Moore LE, Karami S, Steinmaus C, Cantor KP. Use of OMIC technologies to study arsenic exposure in human populations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:589-595. [PMID: 23893652 DOI: 10.1002/em.21792] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
Exposure to arsenic (As) in drinking water is a major health concern. More than 100 million individuals are exposed to levels over the current World Health Organization standard of 10 µg/L worldwide. Arsenic is one of the few agents established as a human carcinogen prior to understanding its mechanism of carcinogenicity. OMIC technologies have enabled researchers to utilize agnostic approaches to explore new, unknown mechanisms through which As causes disease in exposed human populations. In this article, we present recent studies in which OMIC technologies have been used to explore differences in human biological samples to identify markers of exposure, disease susceptibility, and effect in As-exposed and/or diseased tissues.
Collapse
Affiliation(s)
- Lee E Moore
- Division of Cancer Epidemiology and Genetics (DCEG), US National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
24
|
Cytotoxicity and gene expression changes induced by inorganic and organic trivalent arsenicals in human cells. Toxicology 2013; 312:18-29. [PMID: 23876855 DOI: 10.1016/j.tox.2013.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 02/03/2023]
Abstract
Inorganic arsenic (iAs) is a human urinary bladder, skin and lung carcinogen. iAs is metabolized to methylated arsenicals, with trivalent arsenicals more cytotoxic than pentavalent forms in vitro. In this study, cytotoxicity and gene expression changes for arsenite (iAs(III)), monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)) were evaluated in three human cell types, urothelial (1T1), keratinocyte (HEK001) and bronchial epithelial (HBE) cells, corresponding to target organs for iAs-induced cancer. Cells were exposed to arsenicals to determine cytotoxicity and to study gene expression changes. Affymetrix chips were used to determine differentially expressed genes (DEGs) by statistical analysis. Lethal concentrations (LC50) for trivalent arsenicals in all cells ranged from 1.6 to 10μM. MMA(III) and DMA(III) had 4-12-fold greater potency compared to iAs. Increasing concentrations of iAs(III) induced more genes and additional signaling pathways in HBE cells. At equivalent cytotoxic concentrations, greater numbers of DEGs were induced in 1T1 cells compared to the other cells. Each arsenical altered slightly different signaling pathways within and between cell types, but when altered pathways from all three arsenicals were combined, they were similar between cell types. The major signaling pathways altered included NRF2-mediated stress response, interferon, p53, cell cycle regulation and lipid peroxidation. These results show a similar process qualitatively and quantitatively for all three cell types, and support a mode of action involving cytotoxicity and regenerative proliferation.
Collapse
|
25
|
Guardiola FA, Gónzalez-Párraga MP, Cuesta A, Meseguer J, Martínez S, Martínez-Sánchez MJ, Pérez-Sirvent C, Esteban MA. Immunotoxicological effects of inorganic arsenic on gilthead seabream (Sparus aurata L.). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 134-135:112-119. [PMID: 23603147 DOI: 10.1016/j.aquatox.2013.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 06/02/2023]
Abstract
Arsenic (As) has been associated with multitude of animal and human health problems; however, its impact on host immune system has not been extensively investigated. In fish, there are very few works on the potential risks or problems associated to the presence of arsenic. In the present study we have evaluated the effects of exposure (30 days) to sub-lethal concentrations of arsenic (5 μM As₂O₃) in the teleost fish gilthead seabream (Sparus aurata), with special emphasis in the innate immune response. The arsenic concentration was determined using atomic fluorescence spectrometry (AFS) in liver and muscle of exposed fish showing As accumulation in the liver after 30 days of exposure. The hepatosomatic index was increased at significant extent after 10 days but returned to control values after 30 days of exposure. Histological alterations in the liver were observed including hypertrophy, vacuolization and cell-death processes. Focusing on the immunological response, the humoral immune parameters (seric IgM, complement and peroxidase activities) were no affected to a statistically significant extent. Regarding the cellular innate parameters, head-kidney leucocyte peroxidase, respiratory burst and phagocytic activities were significantly increased after 10 days of exposition compared to the control fish. Overall, As-exposure in the seabream affects the immune system. How this might interfere with fish biology, aquaculture management or human consumers warrants further investigations. This paper describes, for the first time, the immunotoxicological effects of arsenic exposure in the gilthead seabream, which is a species with the largest production in Mediterranean aquaculture.
Collapse
Affiliation(s)
- F A Guardiola
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bhattacharjee P, Chatterjee D, Singh KK, Giri AK. Systems biology approaches to evaluate arsenic toxicity and carcinogenicity: an overview. Int J Hyg Environ Health 2013; 216:574-86. [PMID: 23340121 DOI: 10.1016/j.ijheh.2012.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/08/2023]
Abstract
Long term exposure to arsenic, either through groundwater, food stuff or occupational sources, results in a plethora of dermatological and non-dermatological health effects including multi-organ cancer and early mortality. Several epidemiological studies, across the globe have reported arsenic-induced health effects and cancerous outcomes; but the prevalence of such diseases varies depending on environmental factors (geographical location, exposure level), and genetic makeup (and variants thereof); which is further modulated by several other factors like ethnicity, age-sex, smoking status, diet, etc. It is also interesting to note that, chronic arsenic exposure to a similar extent, even among the same family members, result in wide inter-individual variations. To understand the adverse effect of this toxic metabolite on biological system (cellular targets), and to unravel the underlying molecular basis (at the level of transcript, proteome, or metabolite), a holistic, systems biology approach was taken. Due to the paradoxical nature and unavailability of any suitable animal model system; the literature review is primarily based on cell line and population based studies. Thus, here we present a comprehensive review on the systems biology approaches to explore the underlying mechanism of arsenic-induced carcinogenicity, along with our own observations and an overview of mitigation strategies and their effectiveness till date.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | |
Collapse
|
27
|
Das TK, Mani V, De S, Banerjee D, Mukherjee A, Polley S, Kewalramani N, Kaur H. Effect of vitamin E supplementation on mRNA expression of superoxide dismutase and interleukin-2 in arsenic exposed goat leukocytes. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 89:1133-1137. [PMID: 23052575 DOI: 10.1007/s00128-012-0825-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/30/2012] [Indexed: 06/01/2023]
Abstract
The aim of this study was to quantify the expression level of genes involved in antioxidant defenses during inorganic arsenic (iAs) exposure in the blood of goats and to evaluate the regulative activity on these genes of antioxidant vitamin E in the diet. Twenty-four crossbred lactating goats (Alpine × Beetal) were distributed randomly into four equal groups (Control, T(1), T(2) and T(3)) of six in each, on the basis of average body weight (36.10 ± 0.11 kg) and milk yield (1.61 ± 0.004 kg/day). The animals in T(1), T(2) and T(3) were given 50 mg/kg dry matter arsenic daily, while in T(2) and T(3), vitamin E @100 IU and 150 IU/kg dry matter, respectively, was also supplemented additionally for the period of 12 months. Blood was sampled at 0 day then at 3 months interval and analyzed for the expression level of superoxide dismutase (Cu/Zn SOD) and interleukin-2 (IL-2) using real-time PCR technique. Initially there was no difference (p > 0.05) in relative expression of the two genes. But, at 3 months, relative expression of Cu/Zn SOD increased (p < 0.05) in T(1) groups then, at 6 and 9 months expression was decreased (p < 0.05) in all the iAs treated groups whereas at 12 months, vitamin E supplementation increased (p < 0.05) the expression which is comparable to control groups. IL-2 mRNA expression was decreased (p < 0.05) at 6 months in all iAs treated groups, at 9 months there was decline trend but not significantly different whereas at 12 months decline trend was less (p < 0.05) in vitamin E supplemented groups. The result suggests that vitamin E may have a controlling effect on oxidative stress through modulation of SOD and IL-2 expression.
Collapse
Affiliation(s)
- T K Das
- National Dairy Research Institute, Karnal, 132001 Haryana, India.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. EXPERIENTIA SUPPLEMENTUM (2012) 2012. [PMID: 22945569 DOI: 10.1007/978‐3‐7643‐8340‐4_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Heavy metals are naturally occurring elements that have a high atomic weight and a density at least five times greater than that of water. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the US Environmental Protection Agency and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity.
Collapse
Affiliation(s)
- Paul B Tchounwou
- NIH-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, 18750, Jackson, MS, 39217, USA,
| | | | | | | |
Collapse
|
29
|
Das N, Paul S, Chatterjee D, Banerjee N, Majumder NS, Sarma N, Sau TJ, Basu S, Banerjee S, Majumder P, Bandyopadhyay AK, States JC, Giri AK. Arsenic exposure through drinking water increases the risk of liver and cardiovascular diseases in the population of West Bengal, India. BMC Public Health 2012; 12:639. [PMID: 22883023 PMCID: PMC3441389 DOI: 10.1186/1471-2458-12-639] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arsenic is a natural drinking water contaminant affecting 26 million people in West Bengal, India. Chronic arsenic exposure causes cancer, cardiovascular disease, liver disease, neuropathies and ocular diseases. The aims of the present study were to assess bioindicators of hepatocellular injury as indicated by the levels of liver enzymes, to determine the auto immune status, as indicated by the amounts of anti-nuclear antibodies (ANA) and anti-dsDNA antibodies in their serum, and to predict cardiovascular risk in the arsenic exposed population. METHODS Effect of chronic arsenic exposure on liver was determined by liver function tests. Autoimmune status was measured by measuring ANA and anti-dsDNA in serum. Inflammatory cytokines associated with increased cardiovascular disease risk, IL6, IL8 and MCP-1 were determined. RESULTS Our results indicated that serum levels of bilirubin, alanine transaminase, aspartate transaminase, alkaline phosphatase and ANA were increased in the arsenic exposed population. Serum levels of IL6 and IL8 also increased in the arsenic exposed group. CONCLUSIONS Chronic arsenic exposure causes liver injury, increases the serum levels of autoimmune markers and imparts increased cardiovascular risk.
Collapse
Affiliation(s)
- Nandana Das
- Molecular and Human Genetics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S, C, Mullick Road, Kolkata, 700 032, India.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Elamin BK, Callegari E, Gramantieri L, Sabbioni S, Negrini M. MicroRNA response to environmental mutagens in liver. Mutat Res 2011; 717:67-76. [PMID: 21514310 DOI: 10.1016/j.mrfmmm.2011.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 03/18/2011] [Accepted: 03/31/2011] [Indexed: 05/30/2023]
Abstract
During the recent few years, microRNAs emerged as key molecules in the regulation of mammalian cell functions. It was also shown that their altered expression can promote pathologic conditions, such as cancer and other common diseases. Because environmental exposure to biological, chemical or physical agents may be responsible for human diseases, including cancer, uncovering relationships between exposure to environmental carcinogens and expression of microRNAs may help to disclose early mechanisms of disease and it may potentially lead to the development of useful indicators of toxic exposure or novel biomarkers for carcinogenicity testing. The unique expression profile of microRNAs in different types and at different stages of cancer coupled to their remarkable stability in tissues and in serum/plasma suggests that these little molecules may find application as sensitive biomarkers. This review will concentrate on the alterations in microRNA expression in response to environmental factors in relation to the risk of developing liver cancer.
Collapse
Affiliation(s)
- Bahaeldin K Elamin
- Dipartimento di Medicina Sperimentale e Diagnostica, Università di Ferrara, Ferrara, Italy
| | | | | | | | | |
Collapse
|
31
|
Liu Y, Hock JM, Sullivan C, Fang G, Cox AJ, Davis KT, Davis BH, Li X. Activation of the p38 MAPK/Akt/ERK1/2 signal pathways is required for the protein stabilization of CDC6 and cyclin D1 in low-dose arsenite-induced cell proliferation. J Cell Biochem 2011; 111:1546-55. [PMID: 20862710 DOI: 10.1002/jcb.22886] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arsenic trioxide (ATO) is a first-line anti-cancer agent for acute promyelocytic leukemia, and induces apoptosis in other solid cancer cell lines including breast cancer cells. However, as with arsenites found in drinking water and used as raw materials for wood preservatives, insecticides, and herbicides, low doses of ATO can induce carcinogenesis after long-term exposure. At 24 h after exposure, ATO (0.01-1 µM) significantly increased cell proliferation and promoted cell cycle progression from the G1 to S/G2 phases in the non-tumorigenic MCF10A breast epithelial cell line. The expression of 14 out of 96 cell-cycle-associated genes significantly increased, and seven of these genes including cell division cycle 6 (CDC6) and cyclin D1 (CCND1) were closely related to cell cycle progression from G1 to S phase. Low-dose ATO steadily increased gene transcript and protein levels of both CDC6 and cyclin D1 in a dose- and time-dependent manner. Low-dose ATO produced reactive oxygen species (ROS), and activated the p38 MAPK, Akt, and ERK1/2 pathways at different time points within 60 min. Small molecular inhibitors and siRNAs inhibiting the activation of p38 MAPK, Akt, and ERK1/2 decreased the ATO-increased expression of CDC6 protein. Inhibiting the activation of Akt and ERK1/2, but not p38 MAPK, decreased the ATO-induced expression of cyclin D1 protein. This study reports for the first time that p38 MAPK/Akt/ERK1/2 activation is required for the protein stabilization of CDC6 in addition to cyclin D1 in ATO-induced cell proliferation and cell cycle modulation from G1 to S phase.
Collapse
Affiliation(s)
- Youhong Liu
- Maine Institute for Human Genetics and Health, 246 Sylvan Road, Maine 04401, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Banerjee M, Bhattacharjee P, Giri AK. Arsenic-induced Cancers: A Review with Special Reference to Gene, Environment and Their Interaction. Genes Environ 2011. [DOI: 10.3123/jemsge.33.128] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
McHale CM, Zhang L, Hubbard AE, Smith MT. Toxicogenomic profiling of chemically exposed humans in risk assessment. Mutat Res 2010; 705:172-83. [PMID: 20382258 PMCID: PMC2928857 DOI: 10.1016/j.mrrev.2010.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/01/2010] [Indexed: 12/13/2022]
Abstract
Gene-environment interactions contribute to complex disease development. The environmental contribution, in particular low-level and prevalent environmental exposures, may constitute much of the risk and contribute substantially to disease. Systematic risk evaluation of the majority of human chemical exposures, has not been conducted and is a goal of regulatory agencies in the U.S. and worldwide. With the recent recognition that toxicological approaches more predictive of effects in humans are required for risk assessment, in vitro human cell line data as well as animal data are being used to identify toxicity mechanisms that can be translated into biomarkers relevant to human exposure studies. In this review, we discuss how data from toxicogenomic studies of exposed human populations can inform risk assessment, by generating biomarkers of exposure, early effect, and/or susceptibility, elucidating mechanisms of action underlying exposure-related disease, and detecting response at low doses. Good experimental design incorporating precise, individual exposure measurements, phenotypic anchors (pre-disease or traditional toxicological markers), and a range of relevant exposure levels, is necessary. Further, toxicogenomic studies need to be designed with sufficient power to detect true effects of the exposure. As more studies are performed and incorporated into databases such as the Comparative Toxicogenomics Database (CTD) and Chemical Effects in Biological Systems (CEBS), data can be mined for classification of newly tested chemicals (hazard identification), and, for investigating the dose-response, and inter-relationship among genes, environment and disease in a systems biology approach (risk characterization).
Collapse
Affiliation(s)
- Cliona M. McHale
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Luoping Zhang
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Alan E. Hubbard
- School of Public Health, Division of Biostatistics, University of California, Berkeley, CA 94720
| | - Martyn T. Smith
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| |
Collapse
|
34
|
Salgado-Bustamante M, Ortiz-Pérez MD, Calderón-Aranda E, Estrada-Capetillo L, Niño-Moreno P, González-Amaro R, Portales-Pérez D. Pattern of expression of apoptosis and inflammatory genes in humans exposed to arsenic and/or fluoride. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:760-7. [PMID: 19962721 DOI: 10.1016/j.scitotenv.2009.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 10/28/2009] [Accepted: 11/09/2009] [Indexed: 04/14/2023]
Abstract
We have assessed whether the combined exposure to arsenic (As) and fluoride (F) exerts a different effect than the exposure to As alone on the pattern of expression of apoptosis and inflammatory genes by immune cells. RNA was extracted from peripheral blood mononuclear cells from twenty individuals exposed or not to As or F or both. Then, cDNA was isolated, and the expression of 180 genes related to apoptosis and inflammation was tested by a cDNA array test. We found significant differences in the expression of 9 apoptosis and 15 inflammation genes in the three exposed groups compared to non-exposed individuals. In addition, subjects exposed to As or F or both showed different patterns of expression of at least 19 genes. Our data indicate that the combined exposure to As and F has a different effect on gene expression than the exposure to As or F alone.
Collapse
|
35
|
Thompson JA, Franklin CC. Enhanced glutathione biosynthetic capacity promotes resistance to As3+-induced apoptosis. Toxicol Lett 2009; 193:33-40. [PMID: 20006689 DOI: 10.1016/j.toxlet.2009.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 02/01/2023]
Abstract
Trivalent arsenite (As(3+)) is a known human carcinogen capable of inducing both cellular transformation and apoptotic cell death by mechanisms involving the production of reactive oxygen species. The tripeptide antioxidant glutathione (GSH) constitutes a vital cellular defense mechanism against oxidative stress. While intracellular levels of GSH are an important determinant of cellular susceptibility to undergo apoptotic cell death, it is not known whether cellular GSH biosynthetic capacity per se regulates As(3+)-induced apoptosis. The rate-limiting enzyme in GSH biosynthesis is glutamate cysteine ligase (GCL), a heterodimeric holoenzyme composed of a catalytic (GCLC) and a modifier (GCLM) subunit. To determine whether increased GSH biosynthetic capacity enhanced cellular resistance to As(3+)-induced apoptotic cell death, we utilized a mouse liver hepatoma (Hepa-1c1c7) cell line stably overexpressing both GCLC and GCLM. Overexpression of the GCL subunits increased GCL holoenzyme formation and activity and inhibited As(3+)-induced apoptosis. This cytoprotective effect was associated with a decrease in As(3+)-induced caspase activation, cleavage of caspase substrates and translocation of cytochrome c to the cytoplasm. In aggregate, these findings demonstrate that enhanced GSH biosynthetic capacity promotes resistance to As(3+)-induced apoptosis by preventing mitochondrial dysfunction and cytochrome c release and highlight the role of the GSH antioxidant defense system in dictating hepatocyte sensitivity to As(3+)-induced apoptotic cell death.
Collapse
Affiliation(s)
- James A Thompson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA
| | | |
Collapse
|
36
|
Vineis P, Khan AE, Vlaanderen J, Vermeulen R. The impact of new research technologies on our understanding of environmental causes of disease: the concept of clinical vulnerability. Environ Health 2009; 8:54. [PMID: 19948053 PMCID: PMC2793242 DOI: 10.1186/1476-069x-8-54] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 11/30/2009] [Indexed: 05/17/2023]
Abstract
In spite of decades of epidemiological research, the etiology and causal patterns for many common diseases, such as breast and colon cancer or neurodegenerative diseases, are still largely unknown. Such chronic diseases are likely to have an environmental origin. However, "environmental" risks have been often elusive in epidemiological studies. This is a conundrum for current epidemiological research. On the other side, the relative contribution of genes to chronic diseases, as emerging from GWAS, seems to be modest (15-50% increase in disease risk). What is yet to be explored extensively is a model of disease based on long-term effects of low doses of environmental exposures, incorporating both genetic and acquired susceptibility ("clinical vulnerability"), and the cumulative effects of different exposures. Such a disease model would be compatible with the weak associations found by GWAS and the still elusive role of many (low-level) environmental exposures. We also propose that the introduction of "-omic" high-throughput technologies, such as transcriptomics, proteomics and metabolomics, may provide, in the next years, powerful tools to investigate early effects of environmental exposures and understand the etiology of common diseases better, according to the "clinical vulnerability model". The development of "-omics", in spite of current limitations and lack of sound validation, could greatly contribute to the elucidation of the disease model we propose.
Collapse
Affiliation(s)
- Paolo Vineis
- MRC/HPA Centre for Environment and Health, Imperial College, UK
| | - Aneire E Khan
- MRC/HPA Centre for Environment and Health, Imperial College, UK
| | - Jelle Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
37
|
Bailey K, Xia Y, Ward WO, Knapp G, Mo J, Mumford JL, Owen RD, Thai SF. Global Gene Expression Profiling of Hyperkeratotic Skin Lesions from Inner Mongolians Chronically Exposed to Arsenic. Toxicol Pathol 2009; 37:849-59. [DOI: 10.1177/0192623309351725] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The skin is an organ that is highly sensitive to chronic arsenic (As) exposure. Skin lesions such as hyperkeratoses (HKs) are common early manifestations of arsenicosis in humans. HKs can be precursor lesions of nonmelanoma skin cancers (NMSCs), but the driving forces behind their formation and how they may ultimately progress to NMSCs are unknown. The goal of this study was to examine the global gene expression profiles of As-related HKs in an effort to better understand gene expression changes that are potentially associated with early stages of As carcinogenesis. HK biopsies were removed from individuals living in an arsenicosis-endemic region in Inner Mongolia who had been exposed to high As levels in their drinking water for >20 years. Gene expression profiling was performed on RNA isolated from 7 individuals in this group and from 4 lesion-free skin samples from healthy individuals. Consistent with the pathological characteristics of the HK lesions, major functional categories and known canonical pathways represented by altered transcripts include those involved in development, differentiation, apoptosis, proliferation, and stress response. The results of this study may help define a signature profile of gene expression changes associated with long-term As exposure in the skin.
Collapse
Affiliation(s)
- Kathryn Bailey
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Yajuan Xia
- Inner Mongolia Center for Endemic Disease Control and Research, Huhhot, Inner Mongolia, China
| | - William O. Ward
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Geremy Knapp
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jinyao Mo
- National Research Council, Washington, D.C., USA
| | - Judy L. Mumford
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Russell D. Owen
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Sheau-Fung Thai
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
38
|
Global effects of inorganic arsenic on gene expression profile in human macrophages. Mol Immunol 2009; 46:649-56. [DOI: 10.1016/j.molimm.2008.08.268] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/30/2008] [Accepted: 08/12/2008] [Indexed: 11/19/2022]
|
39
|
Guyton KZ, Kyle AD, Aubrecht J, Cogliano VJ, Eastmond DA, Jackson M, Keshava N, Sandy MS, Sonawane B, Zhang L, Waters MD, Smith MT. Improving prediction of chemical carcinogenicity by considering multiple mechanisms and applying toxicogenomic approaches. Mutat Res 2008; 681:230-240. [PMID: 19010444 DOI: 10.1016/j.mrrev.2008.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 11/24/2022]
Abstract
While scientific knowledge of the potential health significance of chemical exposures has grown, experimental methods for predicting the carcinogenicity of environmental agents have not been substantially updated in the last two decades. Current methodologies focus first on identifying genotoxicants under the premise that agents capable of directly damaging DNA are most likely to be carcinogenic to humans. Emphasis on the distinction between genotoxic and non-genotoxic carcinogens is also motivated by assumed implications for the dose-response curve; it is purported that genotoxicants would lack a threshold in the low dose region, in contrast to non-genotoxic agents. However, for the vast majority of carcinogens, little if any empirical data exist to clarify the nature of the cancer dose-response relationship at low doses in the exposed human population. Recent advances in scientific understanding of cancer biology-and increased appreciation of the multiple impacts of carcinogens on this disease process-support the view that environmental chemicals can act through multiple toxicity pathways, modes and/or mechanisms of action to induce cancer and other adverse health outcomes. Moreover, the relationship between dose and a particular outcome in an individual could take multiple forms depending on genetic background, target tissue, internal dose and other factors besides mechanisms or modes of action; inter-individual variability and susceptibility in response are, in turn, key determinants of the population dose-response curve. New bioanalytical approaches (e.g., transcriptomics, proteomics, and metabolomics) applied in human, animal and in vitro studies could better characterize a wider array of hazard traits and improve the ability to predict the potential carcinogenicity of chemicals.
Collapse
Affiliation(s)
- Kathryn Z Guyton
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, 1200 Pennsylvania Avenue, NW Washington, DC 20460, USA.
| | - Amy D Kyle
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Jiri Aubrecht
- Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT 06340, USA
| | | | - David A Eastmond
- Environmental Toxicology Graduate Program and Department of Cell Biology & Neuroscience, University of California, Riverside, CA 92521, USA
| | - Marc Jackson
- Integrated Laboratory Systems (ILS), Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Nagalakshmi Keshava
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, 1200 Pennsylvania Avenue, NW Washington, DC 20460, USA
| | - Martha S Sandy
- California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, Oakland, CA 94612, USA
| | - Babasaheb Sonawane
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, 1200 Pennsylvania Avenue, NW Washington, DC 20460, USA
| | - Luoping Zhang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Michael D Waters
- Integrated Laboratory Systems (ILS), Inc., P.O. Box 13501, Research Triangle Park, NC 27709, USA
| | - Martyn T Smith
- School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
40
|
Ray A, Roy S, Agarwal S, Bhattacharya S. As2O3 toxicity in rat hepatocytes: manifestation of caspase-mediated apoptosis. Toxicol Ind Health 2008; 24:643-53. [DOI: 10.1177/0748233708100370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In India, arsenic contamination in ground water is of immediate environmental concern affecting a large number of inhabitants in Kolkata. Arsenic is known to be one of the most toxic metalloids naturally occurring in the environment giving rise to severe toxic manifestations including cancer. Because arsenic is also used in chemotherapy of leukemia, it was considered worthwhile to concentrate on the mechanism of toxic action in normal hepatocytes which has not been addressed earlier. Rat hepatocytes were isolated and incubated in As2O3 at concentrations of 10, 20, and 40 μM in a time-dependent manner (0, 15, 30 min and 1, 2, and 4 h). The expression of the common stress proteins HSP 70 and 90 throughout the experimental duration confirmed the magnitude of toxic effect imposed by arsenic. Microscopic observations showed clear apoptotic changes in hepatocytes, which were further characterized by DNA ladder formation in time- and concentration-dependent manners. Apoptosis was triggered by caspase activation and over expression of bax at 10 μM As2O3 and at 20 and 40 μM concentrations of As2O3, MAP kinases were found to mediate the apoptotic pathway. Co-treatment of cells with arsenic and caspase inhibitor (Ac-DEVD-Cho) led to over expression of bcl-2, suppression of bax, and cytosolic sequestration of Bid and Bad. It is therefore concluded that caspase activation has a direct role in arsenic-induced apoptosis mediated by mitochondrial factors at 10 μM As2O3, and JUN N-terminal kinase (JNK) and P38 activation are the major mediators of apoptosis at the higher test concentrations (20 and 40 μM) of As2O3.
Collapse
Affiliation(s)
- A Ray
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Science, Visva Bharati University, Santiniketan, India
| | - S Roy
- Ocean Research Institute, University of Tokyo, Japan
| | - S Agarwal
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Science, Visva Bharati University, Santiniketan, India
| | - S Bhattacharya
- Environmental Toxicology Laboratory, Department of Zoology, School of Life Science, Visva Bharati University, Santiniketan, India
| |
Collapse
|
41
|
Burgess JL, Meza MM, Josyula AB, Poplin GS, Kopplin MJ, McClellen HE, Stürup S, Lantz RC. Environmental Arsenic Exposure and Urinary 8-OHdG in Arizona and Sonora. Clin Toxicol (Phila) 2008; 45:490-8. [PMID: 17503254 DOI: 10.1080/15563650701354119] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although at high levels arsenic exposure is associated with increased cancer incidence, information on the health effects of lower exposure levels is limited. The objective of this study was to determine whether arsenic at concentrations below 40 microg/L in drinking water is associated with increased urinary 8-hydroxydeoxyguanosine (8-OHdG), a biomarker of DNA oxidative damage and repair. Urine samples were collected from 73 nonsmoking adults residing in two communities in Arizona (mean tap water arsenic (microg/L) 4.0 +/- 2.3 and 20.3 +/- 3.7), and 51 subjects in four communities in Sonora, Mexico (mean tap water arsenic (microg/L) ranging from 4.8 +/- 0.1 to 33.3 +/- 0.6). Although urinary arsenic concentration increased with higher exposure in tap water, urinary 8-OHdG concentration did not differ by community within Arizona or Sonora, and was not associated with urinary arsenic concentration. At the exposure levels evaluated in this study, drinking water arsenic was not associated with increased DNA oxidation as measured by urinary 8-OHdG.
Collapse
|
42
|
Liu J, Yu L, Tokar EJ, Bortner C, Sifre MI, Sun Y, Waalkes MP. Arsenic-induced aberrant gene expression in fetal mouse primary liver-cell cultures. Ann N Y Acad Sci 2008; 1140:368-75. [PMID: 18991936 PMCID: PMC2697955 DOI: 10.1196/annals.1454.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Exposure of maternal mice to inorganic arsenic through the drinking water induces liver tumors and aberrant gene expression in offspring when they reach adulthood. To help define if these are direct fetal effects of arsenic, fetal liver cells were isolated from untreated mice at gestation day 13.5 by mechanical dissection and centrifugation. Two hours after seeding the cells on collagen1-coated plates in William E media containing 10% fetal bovine serum, 1x ITS (insulin, transferrin, and selenium) and antibiotics, inorganic arsenite (0, 0.1, 0.3, and 1.0 microM) was added to the fresh media for 72 h. Cell morphology and viability were not significantly altered by these arsenic concentrations. At the end of arsenic exposure, cells were harvested into Trizol, and total RNA was extracted, purified, and subjected to real-time reverse transcriptase polymerase chain reaction (RT-PCR) analysis. Arsenite exposure produced a concentration-dependent induction of heme oxygenase-1 (up to eight-fold) and metallothionein-1 (up to five-fold), indicative of stress response to adapt to arsenic insult. Expression of genes related to steroid metabolism, such as 17beta-hydroxysteroid dehydrogenase-7 (HSD17beta7) and Cyp2a4, were increased approximately two-fold, together with increases in estrogen receptor-alpha (ER-alpha) and ER-alpha-linked genes, such as anterior gradient-2, keratin 1-19, and trefoil factor-3. Arsenic in vitro induced a three-fold increase in the expression of alpha-fetoprotein (AFP), a biomarker associated with transplacental arsenic-induced mouse liver tumors. Thus, exposure of mouse fetal liver cells to arsenic induces adaptive responses and aberrant gene expression, which could alter genetic programming at a very early life stage, potentially contributing to tumor formation much later in life.
Collapse
Affiliation(s)
- Jie Liu
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at NIEHS, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Liu J, Waalkes MP. Liver is a target of arsenic carcinogenesis. Toxicol Sci 2008; 105:24-32. [PMID: 18566022 PMCID: PMC2734307 DOI: 10.1093/toxsci/kfn120] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 06/11/2008] [Indexed: 12/11/2022] Open
Abstract
Inorganic arsenic is clearly a human carcinogen causing tumors of the skin, lung, urinary bladder, and possibly liver (IARC, 2004). At the time of construction of this monograph, the evidence for arsenic as a hepatocarcinogen in humans was considered controversial and in rodents considered insufficient. However, recent data has accumulated indicating hepatocarcinogenicity of arsenic. This forum reevaluates epidemiology studies, rodent studies together with in vitro models, and focuses on the liver as a target organ of arsenic toxicity and carcinogenesis. Hepatocellular carcinoma and hepatic angiosarcoma, have been frequently associated with environmental or medicinal exposure to arsenicals. Preneoplastic lesions, including hepatomegaly, hepatoportal sclerosis, fibrosis, and cirrhosis often occur after chronic arsenic exposure. Recent work in mice clearly shows that exposure to inorganic arsenic during gestation induces tumors, including hepatocellular adenoma and carcinoma, in offspring when they reach adulthood. In rats, the methylated arsenicals, dimethylarsinic acid promotes diethylnitrosamine-initiated liver tumors, whereas trimethylarsine oxide induces liver adenomas. Chronic exposure of rat liver epithelial cells to low concentrations of inorganic arsenic induces malignant transformation, producing aggressive, undifferentiated epithelial tumors when inoculated into the Nude mice. There are a variety of potential mechanisms for arsenical-induced hepatocarcinogenesis, such as oxidative DNA damage, impaired DNA damage repair, acquired apoptotic tolerance, hyperproliferation, altered DNA methylation, and aberrant estrogen signaling. Some of these mechanisms may be liver specific/selective. Overall, accumulating evidence clearly indicates that the liver could be an important target of arsenic carcinogenesis.
Collapse
Affiliation(s)
| | - Michael P. Waalkes
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at NIEHS, Research Triangle Park, North Carolina
| |
Collapse
|
44
|
Yamamoto M, Hirano S, Vogel CFA, Cui X, Matsumura F. Selective activation of NF-kappaB and E2F by low concentration of arsenite in U937 human monocytic leukemia cells. J Biochem Mol Toxicol 2008; 22:136-46. [PMID: 18418899 DOI: 10.1002/jbt.20222] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Arsenite has been reported to exert dose-dependent dual effects: triggering apoptosis at relatively high concentrations, whereas inducing partial differentiation at low concentrations in leukemia cells. However, the relevant molecular mechanisms of its action at low and nonapoptotic concentrations remain to be elucidated. We examined the effect of arsenite on activation of key transcription factors in cultured U937 human monocytes/macrophages. Electrophoretic mobility shift assay (EMSA), protein/DNA array and luciferase reporter assay were used to analyze the effect of arsenite on the functional activities of transcription factors. Protein/DNA array analysis showed that activation of E2F was seen after 6-h exposure to 1 and 10 microM arsenite. In contrast, activation of NF-kappaB took place only at 1 microM arsenite, whereas 10 microM arsenite showed no recognizable effect on this nuclear transcription factor in the protein/DNA array analysis. EMSA using a NF-kappaB consensus probe indicates the functional activation of RelB/p50 in the presence of 1 microM arsenite, confirming the above results. Luciferase reporter assay for NF-kappaB showed activation of NF-kappaB in the presence of 1 microM arsenite. Interleukin (IL)-8 and B-cell-activating factor of the tumor necrosis factor family (BAFF) mRNA expression, which have been shown to be regulated through NF-kappaB, were activated in the presence of 1 microM arsenite. These results support the hypothesis that the primary action of nonapoptotic concentrations of arsenite in this cell line is activation of NF-kappaB, signaling as a decision maker for end results such as inflammation disease or cancer. This finding offers the possibility of providing a logical explanation for the observations made by many scientists that chronic exposure of human populations to low doses of arsenic is significantly correlated to clinical signs of inflammation in many tissues.
Collapse
Affiliation(s)
- Megumi Yamamoto
- Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
45
|
Olsen CE, Liguori AE, Zong Y, Lantz RC, Burgess JL, Boitano S. Arsenic upregulates MMP-9 and inhibits wound repair in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2008; 295:L293-302. [PMID: 18539681 DOI: 10.1152/ajplung.00134.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As part of the innate immune defense, the polarized conducting lung epithelium acts as a barrier to keep particulates carried in respiration from underlying tissue. Arsenic is a metalloid toxicant that can affect the lung via inhalation or ingestion. We have recently shown that chronic exposure of mice or humans to arsenic (10-50 ppb) in drinking water alters bronchiolar lavage or sputum proteins consistent with reduced epithelial cell migration and wound repair in the airway. In this report, we used an in vitro model to examine effects of acute exposure of arsenic (15-290 ppb) on conducting airway lung epithelium. We found that arsenic at concentrations as low as 30 ppb inhibits reformation of the epithelial monolayer following scrape wounds of monolayer cultures. In an effort to understand functional contributions to epithelial wound repair altered by arsenic, we showed that acute arsenic exposure increases activity and expression of matrix metalloproteinase (MMP)-9, an important protease in lung function. Furthermore, inhibition of MMP-9 in arsenic-treated cells improved wound repair. We propose that arsenic in the airway can alter the airway epithelial barrier by restricting proper wound repair in part through the upregulation of MMP-9 by lung epithelial cells.
Collapse
Affiliation(s)
- Colin E Olsen
- Arizona Respiratory Center, Arizona Health Sciences Center, 1501 N. Campbell Ave., Tucson, AZ 85724-5030, USA
| | | | | | | | | | | |
Collapse
|
46
|
Wu J, Liu J, Waalkes MP, Cheng ML, Li L, Li CX, Yang Q. High dietary fat exacerbates arsenic-induced liver fibrosis in mice. Exp Biol Med (Maywood) 2008; 233:377-84. [PMID: 18296743 DOI: 10.3181/0710-rm-269] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many factors could potentially affect the process of arsenic-induced liver fibrosis. The present study was undertaken to examine the effect of high fat diet on arsenic-induced liver fibrosis and preneoplastic changes. Mice were given sodium arsenite (As3+, 200 ppm) or sodium arsenate (As5+, 200 ppm) in the drinking water for 10 months, and provided a normal diet or a diet containing 20% added fat. Serum aspartate aminotransferase (AST), indicative of liver injury, was elevated in both arsenite and arsenate groups, and a high fat diet further increased these levels. Histopathology (H&E and Masson stain) showed that liver inflammation, steatosis (fatty liver), hepatocyte degeneration, and fibrosis occurred with arsenic alone, but their severity was markedly increased with the high fat diet. Total liver RNA was isolated for real-time RT-PCR analysis. Arsenic exposure increased the expression of inflammation genes, such as TNF-alpha, IL-6, iNOS, chemokines, and macrophage inflammatory protein-2. The expression of the stress-related gene heme oxygenase-1 was increased, while metallothionein-1 and GSH S-transferase-pi were decreased when arsenic was combined with the high fat diet. Expression of genes related to liver fibrosis, such as procollagen-1 and -3, SM-actin and TGF-beta, were synergistically increased in the arsenic plus high fat diet group. The expression of genes encoding matrix metalloproteinases (MMP2, MMP9) and tissue inhibitors of metalloproteinases (TIMP1, TIMP2) was also enhanced, suggestive of early oncogenic events. In general, arsenite produced more pronounced effects than arsenate. In summary, chronic inorganic arsenic exposure in mice produces liver injury, and a high fat diet markedly increases arsenic-induced hepatofibrogenesis.
Collapse
Affiliation(s)
- Jun Wu
- Guiyang Medical College, 550004 Guiyang, China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Andrew AS, Jewell DA, Mason RA, Whitfield ML, Moore JH, Karagas MR. Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a U.S. population. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:524-31. [PMID: 18414638 PMCID: PMC2290973 DOI: 10.1289/ehp.10861] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 01/21/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arsenic exposure impairs development and can lead to cancer, cardiovascular disease, and diabetes. The mechanism underlying these effects remains unknown. Primarily because of geologic sources of contamination, drinking-water arsenic levels are above the current recommended maximum contaminant level of 10 microg/L in the northeastern, western, and north central regions of the United States. OBJECTIVES We investigated the effects of arsenic exposure, defined by internal biomarkers at levels relevant to the United States and similarly exposed populations, on gene expression. METHODS We conducted separate Affymetrix microarray-based genomewide analyses of expression patterns. Peripheral blood lymphocyte samples from 21 controls interviewed (1999-2002) as part of a case-control study in New Hampshire were selected based on high- versus low-level arsenic exposure levels. RESULTS The biologic functions of the transcripts that showed statistically significant abundance differences between high- and low-arsenic exposure groups included an overrepresentation of genes involved in defense response, immune function, cell growth, apoptosis, regulation of cell cycle, T-cell receptor signaling pathway, and diabetes. Notably, the high-arsenic exposure group exhibited higher levels of several killer cell immunoglobulin-like receptors that inhibit natural killer cell activity. CONCLUSIONS These findings define biologic changes that occur with chronic arsenic exposure in humans and provide leads and potential targets for understanding and monitoring the pathogenesis of arsenic-induced diseases.
Collapse
Affiliation(s)
- Angeline S Andrew
- Dartmouth Medical School Section of Biostatistics and Epidemiology, 7927 Rubin 860, One Medical Center Dr., Lebanon, NH 03756, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Smith E, Juhasz AL, Weber J, Naidu R. Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 392:277-83. [PMID: 18164371 DOI: 10.1016/j.scitotenv.2007.11.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/13/2007] [Accepted: 11/19/2007] [Indexed: 05/22/2023]
Abstract
The accumulation of arsenic (As) by rice (Oryza sativa L.) is of great interest considering the dietary intake of rice is potentially a major As exposure pathway in countries where rice is irrigated with As contaminated groundwater. A small scale rice paddy experiment was conducted to evaluate the uptake of As by rice. Arsenic concentrations in rice tissue increased in the order grain<<leaf<stem<<<root with the As concentration in the rice grain, in some cases, exceeding the maximum Australian permissible concentration of 1 mg kg(-1). Speciation of As in rice tissue was performed using a modified protein extraction procedure and trifluoroacetic acid extraction. Whilst higher As recoveries were obtained using trifluoroacetic acid extraction, both methods identified arsenite and arsenate as the major As species present in the root, stem and leaf, however, arsenite and dimethylarsinic acid (DMA) were the major As species identified in the grain. Notably, DMA comprised 85 to 94% of the total As concentration in the grain. The high proportion of organic to inorganic As in the grain has implications on human health risk assessment as inorganic As species are more bioavailable than methylated As species.
Collapse
Affiliation(s)
- E Smith
- Centre for Environmental Risk Assessment and Remediation, SPRI Building, Mawson Lakes Campus, University of South Australia, Mawson Lakes SA 5095, Australia.
| | | | | | | |
Collapse
|
49
|
Pysher MD, Sollome JJ, Regan S, Cardinal TR, Hoying JB, Brooks HL, Vaillancourt RR. Increased hexokinase II expression in the renal glomerulus of mice in response to arsenic. Toxicol Appl Pharmacol 2007; 224:39-48. [PMID: 17643460 PMCID: PMC2042004 DOI: 10.1016/j.taap.2007.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/12/2007] [Accepted: 06/19/2007] [Indexed: 12/13/2022]
Abstract
Epidemiological studies link arsenic exposure to increased risks of cancers of the skin, kidney, lung, bladder and liver. Additionally, a variety of non-cancerous conditions such as diabetes mellitus, hypertension, and cardiovascular disease have been associated with chronic ingestion of low levels of arsenic. However, the biological and molecular mechanisms by which arsenic exerts its effects remain elusive. Here we report increased renal hexokinase II (HKII) expression in response to arsenic exposure both in vivo and in vitro. In our model, HKII was up-regulated in the renal glomeruli of mice exposed to low levels of arsenic (10 ppb or 50 ppb) via their drinking water for up to 21 days. Additionally, a similar effect was observed in cultured renal mesangial cells exposed to arsenic. This correlation between our in vivo and in vitro data provides further evidence for a direct link between altered renal HKII expression and arsenic exposure. Thus, our data suggest that alterations in renal HKII expression may be involved in arsenic-induced pathological conditions involving the kidney. More importantly, these results were obtained using environmentally relevant arsenic concentrations.
Collapse
Affiliation(s)
- Michele D. Pysher
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721
| | - James J. Sollome
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721
| | - Suzanne Regan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721
| | - Trevor R. Cardinal
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, 85721
| | - James B. Hoying
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, 85721
| | - Heddwen L. Brooks
- Department of Physiology, University of Arizona, Tucson, Arizona, 85721
| | - Richard R. Vaillancourt
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, 85721
| |
Collapse
|
50
|
Liu J, Cheng ML, Yang Q, Shan KR, Shen J, Zhou Y, Zhang X, Dill AL, Waalkes MP. Blood metallothionein transcript as a biomarker for metal sensitivity: low blood metallothionein transcripts in arsenicosis patients from Guizhou, China. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1101-6. [PMID: 17637929 PMCID: PMC1913577 DOI: 10.1289/ehp.10035] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 04/18/2007] [Indexed: 05/16/2023]
Abstract
BACKGROUND Because metallothionein (MT) is a metal-binding protein that protects against metal intoxication, it could be a biomarker for individual sensitivity to metal toxicity. OBJECTIVE We assessed the use of bloodborne MT transcript as a reflection of tissue MT levels and examined the potential role of MT in arsenic toxicity in an environmentally exposed human population. METHOD Rodents were treated with zinc or nonmetallic MT inducers for 4 days, and the blood and tissues were collected for MT transcript analysis by real-time reverse transcriptase-polymerase chain reaction and MT protein determination by the cadmium-hemoglobin assay. Blood and buccal cell samples were collected from arsenicosis patients and healthy subjects residing in Guizhou, China, and total RNA was isolated for MT transcript analysis. RESULTS There was a positive correlation between blood MT-1 and MT-2 transcripts and corresponding hepatic or renal MT transcript levels in rats and mice. Furthermore, there was a positive correlation between blood MT-1 and MT-2 transcript and tissue MT protein levels in these animals. A positive correlation also occurred between human blood MT and buccal cell MT transcript levels. MT-1A and MT-2A were the major isoform transcripts in human blood and buccal cells, and significantly lower MT levels were seen in arsenicosis patients compared with healthy subjects. CONCLUSIONS Blood MT transcript appears to be a useful biomarker of tissue MT levels. Arsenicosis patients in Guizhou show significantly lower MT transcript levels in blood, which may have predisposed this population to arsenic intoxication.
Collapse
Affiliation(s)
- Jie Liu
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | | - Qin Yang
- Guiyang Medical College, Guiyang, China
| | | | - Jun Shen
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Yushu Zhou
- Southwest Prefecture Center for Disease Control, Xingyi, Guizhou, China
| | | | - Anna L. Dill
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Michael P. Waalkes
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Address correspondence to M.P. Waalkes, Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, NCI at NIEHS, Research Triangle Park, NC 27709 USA. Telephone: (919) 541-2328. Fax: (919) 541-3970. E-mail:
| |
Collapse
|