1
|
Burbank M, Kukic P, Ouedraogo G, Kenna JG, Hewitt NJ, Armstrong D, Otto-Bruc A, Ebmeyer J, Boettcher M, Willox I, Mahony C. In vitro pharmacologic profiling aids systemic toxicity assessment of chemicals. Toxicol Appl Pharmacol 2024; 492:117131. [PMID: 39437896 DOI: 10.1016/j.taap.2024.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
An adapted in vitro pharmacology profiling panel (APPP) was developed that included targets used in the pharmaceutical industry alongside additional targets whose cellular functions have been linked to systemic toxicities. This panel of 83 target assays was used to profile the activities of 129 cosmetic relevant chemicals with diverse chemical structures, physiochemical properties and cosmetic use types. Internal data consistency was proved robust, as evidenced by the reproducibility between single concentration and concentration-response data and showed good concordance with data reported in the ToxCast and drug excipient datasets. We discuss how the data can be analyzed and multiple potential contexts of use illustrated by case studies, alongside other new approach methodologies, to support cosmetic chemical risk assessments that do not require data from new animal studies.
Collapse
Affiliation(s)
| | - Predrag Kukic
- Unilever Safety and Environmental Assurance Centre, Bedfordshire, MK 44 1LQ, UK
| | | | - J Gerry Kenna
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160 Brussels, Belgium
| | - Nicola J Hewitt
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160 Brussels, Belgium
| | | | | | | | | | - Ian Willox
- Eurofins Cerep, Celle-Lévescault, France
| | | |
Collapse
|
2
|
Najjar A, Lange D, Géniès C, Kuehnl J, Zifle A, Jacques C, Fabian E, Hewitt N, Schepky A. Development and validation of PBPK models for genistein and daidzein for use in a next-generation risk assessment. Front Pharmacol 2024; 15:1421650. [PMID: 39421667 PMCID: PMC11483610 DOI: 10.3389/fphar.2024.1421650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction All cosmetic ingredients must be evaluated for their safety to consumers. In the absence of in vivo data, systemic concentrations of ingredients can be predicted using Physiologically based Pharmacokinetic (PBPK) models. However, more examples are needed to demonstrate how they can be validated and applied in Next-Generation Risk Assessments (NGRA) of cosmetic ingredients. We used a bottom-up approach to develop human PBPK models for genistein and daidzein for a read-across NGRA, whereby genistein was the source chemical for the target chemical, daidzein. Methods An oral rat PBPK model for genistein was built using PK-Sim® and in vitro ADME input data. This formed the basis of the daidzein oral rat PBPK model, for which chemical-specific input parameters were used. Rat PBPK models were then converted to human models using human-specific physiological parameters and human in vitro ADME data. In vitro skin metabolism and penetration data were used to build the dermal module to represent the major route of exposure to cosmetics. Results The initial oral rat model for genistein was qualified since it predicted values within 2-fold of measured in vivo PK values. This was used to predict plasma concentrations from the in vivo NOAEL for genistein to set test concentrations in bioassays. Intrinsic hepatic clearance and unbound fractions in plasma were identified as sensitive parameters impacting the predicted Cmax values. Sensitivity and uncertainty analyses indicated the developed PBPK models had a moderate level of confidence. An important aspect of the development of the dermal module was the implementation of first-pass metabolism, which was extensive for both chemicals. The final human PBPK model for daidzein was used to convert the in vitro PoD of 33 nM (from an estrogen receptor transactivation assay) to an external dose of 0.2% in a body lotion formulation. Conclusion PBPK models for genistein and daidzein were developed as a central component of an NGRA read-across case study. This will help to gain regulatory confidence in the use of PBPK models, especially for cosmetic ingredients.
Collapse
Affiliation(s)
| | | | - C. Géniès
- Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France
| | | | - A. Zifle
- Kao Germany GmbH, Darmstadt, Germany
| | - C. Jacques
- Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France
| | | | | | | |
Collapse
|
3
|
Wood A, Breffa C, Chaine C, Cubberley R, Dent M, Eichhorn J, Fayyaz S, Grimm FA, Houghton J, Kiwamoto R, Kukic P, Lee M, Malcomber S, Martin S, Nicol B, Reynolds J, Riley G, Scott S, Smith C, Westmoreland C, Wieland W, Williams M, Wolton K, Zellmann T, Gutsell S. Next generation risk assessment for occupational chemical safety - A real world example with sodium-2-hydroxyethane sulfonate. Toxicology 2024; 506:153835. [PMID: 38857863 DOI: 10.1016/j.tox.2024.153835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
Next Generation Risk Assessment (NGRA) is an exposure-led approach to safety assessment that uses New Approach Methodologies (NAMs). Application of NGRA has been largely restricted to assessments of consumer use of cosmetics and is not currently implemented in occupational safety assessments, e.g. under EU REACH. By contrast, a large proportion of regulatory worker safety assessments are underpinned by toxicological studies using experimental animals. Consequently, occupational safety assessment represents an area that would benefit from increasing application of NGRA to safety decision making. Here, a workflow for conducting NGRA under an occupational safety context was developed, which is illustrated with a case study chemical; sodium 2-hydroxyethane sulphonate (sodium isethionate or SI). Exposures were estimated using a standard occupational exposure model following a comprehensive life cycle assessment of SI and considering factory-specific data. Outputs of this model were then used to estimate internal exposures using a Physiologically Based Kinetic (PBK) model, which was constructed with SI specific Absorption, Distribution, Metabolism and Excretion (ADME) data. PBK modelling indicated a worst-case plasma maximum concentration (Cmax) of 0.8 μM across the SI life cycle. SI bioactivity was assessed in a battery of NAMs relevant to systemic, reproductive, and developmental toxicity; a cell stress panel, high throughput transcriptomics in three cell lines (HepG2, HepaRG and MCF-7 cells), pharmacological profiling and specific assays relating to developmental toxicity (Reprotracker and devTOX quickPredict). Points of Departure (PoDs) for SI ranged from 104 to 5044 µM. Cmax values obtained from PBK modelling of occupational exposures to SI were compared with PoDs from the bioactivity assays to derive Bioactivity Exposure Ratios (BERs) which demonstrated the safety for workers exposed to SI under current levels of factory specific risk management. In summary, the tiered and iterative workflow developed here represents an opportunity for integrating non animal approaches for a large subset of substances for which systemic worker safety assessment is required. Such an approach could be followed to ensure that animal testing is only conducted as a "last resort" e.g. under EU REACH.
Collapse
Affiliation(s)
- Adam Wood
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK.
| | - Catherine Breffa
- Clariant Produkte (Deutschland) GmbH, Frankfurt am Main, Germany
| | - Caroline Chaine
- Vantage Specialty Chemicals, 3 rue Jules Guesde, Ris Orangis 91130, France
| | - Richard Cubberley
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Matthew Dent
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Joachim Eichhorn
- Clariant Produkte (Deutschland) GmbH, Frankfurt am Main, Germany
| | - Susann Fayyaz
- Clariant Produkte (Deutschland) GmbH, Frankfurt am Main, Germany
| | - Fabian A Grimm
- Clariant Produkte (Deutschland) GmbH, Frankfurt am Main, Germany
| | - Jade Houghton
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Reiko Kiwamoto
- Unilever, Bronland 14, Wageningen 6708 WH, the Netherlands
| | - Predrag Kukic
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - MoungSook Lee
- Clariant Produkte (Deutschland) GmbH, Frankfurt am Main, Germany
| | - Sophie Malcomber
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Suzanne Martin
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Beate Nicol
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Joe Reynolds
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Gordon Riley
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Sharon Scott
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Colin Smith
- ERM Ireland Limited, Ardilaun Court, St Stephen's Green, Dublin, Ireland
| | - Carl Westmoreland
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | | | - Mesha Williams
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Kathryn Wolton
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | | | - Steve Gutsell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| |
Collapse
|
4
|
Najjar A, Kühnl J, Lange D, Géniès C, Jacques C, Fabian E, Zifle A, Hewitt NJ, Schepky A. Next-generation risk assessment read-across case study: application of a 10-step framework to derive a safe concentration of daidzein in a body lotion. Front Pharmacol 2024; 15:1421601. [PMID: 38962304 PMCID: PMC11220827 DOI: 10.3389/fphar.2024.1421601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction: We performed an exposure-based Next Generation Risk Assessment case read-across study using New Approach Methodologies (NAMs) to determine the highest safe concentration of daidzein in a body lotion, based on its similarities with its structural analogue, genistein. Two assumptions were: (1) daidzein is a new chemical and its dietary intake omitted; (2) only in vitro data were used for daidzein, while in vitro and legacy in vivo data for genistein were considered. Methods: The 10-step tiered approach evaluating systemic toxicity included toxicokinetics NAMs: PBPK models and in vitro biokinetics measurements in cells used for toxicogenomics and toxicodynamic NAMs: pharmacology profiling (i.e., interaction with molecular targets), toxicogenomics and EATS assays (endocrine disruption endpoints). Whole body rat and human PBPK models were used to convert external doses of genistein to plasma concentrations and in vitro Points of Departure (PoD) to external doses. The PBPK human dermal module was refined using in vitro human skin metabolism and penetration data. Results: The most relevant endpoint for daidzein was from the ERα assay (Lowest Observed Effective Concentration was 100 ± 0.0 nM), which was converted to an in vitro PoD of 33 nM. After application of a safety factor of 3.3 for intra-individual variability, the safe concentration of daidzein was estimated to be 10 nM. This was extrapolated to an external dose of 0.5 μg/cm2 for a body lotion and face cream, equating to a concentration of 0.1%. Discussion: When in vitro PoD of 33 nM for daidzein was converted to an external oral dose in rats, the value correlated with the in vivo NOAEL. This increased confidence that the rat oral PBPK model provided accurate estimates of internal and external exposure and that the in vitro PoD was relevant in the safety assessment of both chemicals. When plasma concentrations estimated from applications of 0.1% and 0.02% daidzein were used to calculate bioactivity exposure ratios, values were >1, indicating a good margin between exposure and concentrations causing adverse effects. In conclusion, this case study highlights the use of NAMs in a 10-step tiered workflow to conclude that the highest safe concentration of daidzein in a body lotion is 0.1%.
Collapse
Affiliation(s)
| | | | | | - Camille Géniès
- Pierre Fabre Dermo-Cosmétique and Personal CareToulouse, Toulouse, France
| | - Carine Jacques
- Pierre Fabre Dermo-Cosmétique and Personal CareToulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
5
|
Chambers BA, Basili D, Word L, Baker N, Middleton A, Judson RS, Shah I. Searching for LINCS to Stress: Using Text Mining to Automate Reference Chemical Curation. Chem Res Toxicol 2024; 37:878-893. [PMID: 38736322 PMCID: PMC11447707 DOI: 10.1021/acs.chemrestox.3c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Adaptive stress response pathways (SRPs) restore cellular homeostasis following perturbation but may activate terminal outcomes like apoptosis, autophagy, or cellular senescence if disruption exceeds critical thresholds. Because SRPs hold the key to vital cellular tipping points, they are targeted for therapeutic interventions and assessed as biomarkers of toxicity. Hence, we are developing a public database of chemicals that perturb SRPs to enable new data-driven tools to improve public health. Here, we report on the automated text-mining pipeline we used to build and curate the first version of this database. We started with 100 reference SRP chemicals gathered from published biomarker studies to bootstrap the database. Second, we used information retrieval to find co-occurrences of reference chemicals with SRP terms in PubMed abstracts and determined pairwise mutual information thresholds to filter biologically relevant relationships. Third, we applied these thresholds to find 1206 putative SRP perturbagens within thousands of substances in the Library of Integrated Network-Based Cellular Signatures (LINCS). To assign SRP activity to LINCS chemicals, domain experts had to manually review at least three publications for each of 1206 chemicals out of 181,805 total abstracts. To accomplish this efficiently, we implemented a machine learning approach to predict SRP classifications from texts to prioritize abstracts. In 5-fold cross-validation testing with a corpus derived from the 100 reference chemicals, artificial neural networks performed the best (F1-macro = 0.678) and prioritized 2479/181,805 abstracts for expert review, which resulted in 457 chemicals annotated with SRP activities. An independent analysis of enriched mechanisms of action and chemical use class supported the text-mined chemical associations (p < 0.05): heat shock inducers were linked with HSP90 and DNA damage inducers to topoisomerase inhibition. This database will enable novel applications of LINCS data to evaluate SRP activities and to further develop tools for biomedical information extraction from the literature.
Collapse
Affiliation(s)
- Bryant A. Chambers
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Danilo Basili
- Unilever, Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Laura Word
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | - Alistair Middleton
- Unilever, Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Richard S. Judson
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Imran Shah
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
6
|
Nicol B, Vandenbossche-Goddard E, Thorpe C, Newman R, Patel H, Yates D. A workflow to practically apply true dose considerations to in vitro testing for next generation risk assessment. Toxicology 2024; 505:153826. [PMID: 38719068 DOI: 10.1016/j.tox.2024.153826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
With the move away from safety testing assessment based on data generated in experimental animals the concept of Next Generation Risk Assessment (NGRA) has arisen which instead uses data from in silico and in vitro models. A key uncertainty in risk assessment is the actual dose of test chemical at the target site, and therefore surrogate dose metrics, such as nominal concentration in test media are used to describe in vitro effect (or no-effect) doses. The reliability and accuracy of the risk assessment therefore depends largely on our ability to understand and characterise the relationship between the dose metrics used and the actual biologically effective dose at the target site. The objective of this publication is to use 40 case study chemicals to illustrate how in vitro dose considerations can be applied to characterise the "true dose" and build confidence in the understanding of the biologically effective dose in in vitro test systems for the determination e.g. points of departure (PoDs) for NGRA. We propose a workflow that can be applied to assess whether the nominal test concentration can be considered a conservative dose metric for use in NGRA. The workflow examines the implications of volatility, stability, hydrophobicity, binding to plastic and serum, solubility, and the potential use of in silico models for some of these parameters. For the majority of the case study chemicals we found that the use of nominal concentrations in risk assessment would result in conservative decision making. However, for serval chemicals a potential for underestimation of the risk in humans in vivo based on in vitro nominal effect concentrations was identified, and approaches for refinement by characterisation of the actual effect concentration are proposed.
Collapse
Affiliation(s)
- Beate Nicol
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford, Bedfordshire MK44 1LQ, UK
| | - Evita Vandenbossche-Goddard
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford, Bedfordshire MK44 1LQ, UK.
| | - Charlotte Thorpe
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedford, Bedfordshire MK44 1LQ, UK
| | | | - Hiral Patel
- Charles River Laboratories, Cambridgeshire CB10 1XL, UK
| | - Dawn Yates
- Charles River Laboratories, Cambridgeshire CB10 1XL, UK
| |
Collapse
|
7
|
Achar J, Cronin MTD, Firman JW, Öberg G. A problem formulation framework for the application of in silico toxicology methods in chemical risk assessment. Arch Toxicol 2024; 98:1727-1740. [PMID: 38555325 PMCID: PMC11106140 DOI: 10.1007/s00204-024-03721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
The first step in the hazard or risk assessment of chemicals should be to formulate the problem through a systematic and iterative process aimed at identifying and defining factors critical to the assessment. However, no general agreement exists on what components an in silico toxicology problem formulation (PF) should include. The present work aims to develop a PF framework relevant to the application of in silico models for chemical toxicity prediction. We modified and applied a PF framework from the general risk assessment literature to peer reviewed papers describing PFs associated with in silico toxicology models. Important gaps between the general risk assessment literature and the analyzed PF literature associated with in silico toxicology methods were identified. While the former emphasizes the need for PFs to address higher-level conceptual questions, the latter does not. There is also little consistency in the latter regarding the PF components addressed, reinforcing the need for a PF framework that enable users of in silico toxicology models to answer the central conceptual questions aimed at defining components critical to the model application. Using the developed framework, we highlight potential areas of uncertainty manifestation in in silico toxicology PF in instances where particular components are missing or implicitly described. The framework represents the next step in standardizing in silico toxicology PF component. The framework can also be used to improve the understanding of how uncertainty is apparent in an in silico toxicology PF, thus facilitating ways to address uncertainty.
Collapse
Affiliation(s)
- Jerry Achar
- Institute for Resources Environment, and Sustainability, The University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - James W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Gunilla Öberg
- Institute for Resources Environment, and Sustainability, The University of British Columbia, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
8
|
Barutcu AR, Black MB, Samuel R, Slattery S, McMullen PD, Nong A. Integrating gene expression and splicing dynamics across dose-response oxidative modulators. Front Genet 2024; 15:1389095. [PMID: 38846964 PMCID: PMC11155298 DOI: 10.3389/fgene.2024.1389095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Toxicological risk assessment increasingly utilizes transcriptomics to derive point of departure (POD) and modes of action (MOA) for chemicals. One essential biological process that allows a single gene to generate several different RNA isoforms is called alternative splicing. To comprehensively assess the role of splicing dysregulation in toxicological evaluation and elucidate its potential as a complementary endpoint, we performed RNA-seq on A549 cells treated with five oxidative stress modulators across a wide dose range. Differential gene expression (DGE) showed limited pathway enrichment except at high concentrations. However, alternative splicing analysis revealed variable intron retention events affecting diverse pathways for all chemicals in the absence of significant expression changes. For instance, diazinon elicited negligible gene expression changes but progressive increase in the number of intron retention events, suggesting splicing alterations precede expression responses. Benchmark dose modeling of intron retention data highlighted relevant pathways overlooked by expression analysis. Systematic integration of splicing datasets should be a useful addition to the toxicogenomic toolkit. Combining both modalities paint a more complete picture of transcriptomic dose-responses. Overall, evaluating intron retention dynamics afforded by toxicogenomics may provide biomarkers that can enhance chemical risk assessment and regulatory decision making. This work highlights splicing-aware toxicogenomics as a possible additional tool for examining cellular responses.
Collapse
|
9
|
Sewell F, Alexander-White C, Brescia S, Currie RA, Roberts R, Roper C, Vickers C, Westmoreland C, Kimber I. New approach methodologies (NAMs): identifying and overcoming hurdles to accelerated adoption. Toxicol Res (Camb) 2024; 13:tfae044. [PMID: 38533179 PMCID: PMC10964841 DOI: 10.1093/toxres/tfae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
New approach methodologies (NAMs) can deliver improved chemical safety assessment through the provision of more protective and/or relevant models that have a reduced reliance on animals. Despite the widely acknowledged benefits offered by NAMs, there continue to be barriers that prevent or limit their application for decision-making in chemical safety assessment. These include barriers related to real and perceived scientific, technical, legislative and economic issues, as well as cultural and societal obstacles that may relate to inertia, familiarity, and comfort with established methods, and perceptions around regulatory expectations and acceptance. This article focuses on chemical safety science, exposure, hazard, and risk assessment, and explores the nature of these barriers and how they can be overcome to drive the wider exploitation and acceptance of NAMs. Short-, mid- and longer-term goals are outlined that embrace the opportunities provided by NAMs to deliver improved protection of human health and environmental security as part of a new paradigm that incorporates exposure science and a culture that promotes the use of protective toxicological risk assessments.
Collapse
Affiliation(s)
- Fiona Sewell
- UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London, NW1 2BE, United Kingdom
| | | | - Susy Brescia
- UK Chemicals Regulation Division, Health and Safety Executive, Redgrave Court, Bootle, Merseyside, L20 7HS, United Kingdom
| | - Richard A Currie
- Jealotts Hill International Research Centre, Syngenta, Bracknell, RG42 6EX, United Kingdom
| | - Ruth Roberts
- University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
- ApconiX, BioHub at Alderley Park, Alderley Edge, SK10 4TG, United Kingdom
| | - Clive Roper
- Roper Toxicology Consulting Limited, 6 St Colme Street, Edinburgh, EH3 6AD, United Kingdom
| | - Catherine Vickers
- UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Gibbs Building, 215 Euston Road, London, NW1 2BE, United Kingdom
| | - Carl Westmoreland
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, United Kingdom
| | - Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
10
|
Ebmeyer J, Najjar A, Lange D, Boettcher M, Voß S, Brandmair K, Meinhardt J, Kuehnl J, Hewitt NJ, Krueger CT, Schepky A. Next generation risk assessment: an ab initio case study to assess the systemic safety of the cosmetic ingredient, benzyl salicylate, after dermal exposure. Front Pharmacol 2024; 15:1345992. [PMID: 38515841 PMCID: PMC10955127 DOI: 10.3389/fphar.2024.1345992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
We performed an ab initio next-generation risk assessment (NGRA) for a fragrance ingredient, benzyl salicylate (BSal), to demonstrate how cosmetic ingredients can be evaluated for systemic toxicity endpoints based on non-animal approaches. New approach methodologies (NAMs) used to predict the internal exposure included skin absorption assays, hepatocyte metabolism, and physiologically based pharmacokinetic (PBPK) modeling, and potential toxicodynamic effects were assessed using pharmacology profiling, ToxProfiler cell stress assay, transcriptomics in HepG2 and MCF-7 cells, ReproTracker developmental and reproductive toxicology (DART) assays, and cytotoxicity assays in human kidney cells. The outcome of the NGRA was compared to that of the traditional risk assessment approach based on animal data. The identification of the toxicologically critical entity was a critical step that directed the workflow and the selection of chemicals for PBPK modeling and testing in bioassays. The traditional risk assessment and NGRA identified salicylic acid (SA) as the "toxdriver." A deterministic PBPK model for a single-day application of 1.54 g face cream containing 0.5% BSal estimated the Cmax for BSal (1 nM) to be much lower than that of its major in vitro metabolite, SA (93.2 nM). Therefore, SA was tested using toxicodynamics bioassays. The lowest points of departure (PoDs) were obtained from the toxicogenomics assays. The interpretation of these results by two companies and methods were similar (SA only results in significant gene deregulation in HepG2 cells), but PoD differed (213 μM and 10.6 µM). A probabilistic PBPK model for repeated applications of the face cream estimated the highest Cmax of SA to be 630 nM. The resulting margins of internal exposure (MoIE) using the PoDs were 338 and 16, which were more conservative than those derived from external exposure and in vivo PoDs (margin of safety values were 9,705). In conclusion, both traditional and ab initio NGRA approaches concluded that the daily application of BSal in a cosmetic leave-on face cream at 0.5% is safe for humans. The processing and interpretation of toxicogenomics data can lead to different PoDs, which can subsequently affect the calculation of the MoIE. This case study supports the use of NAMs in a tiered NGRA ab initio approach.
Collapse
|
11
|
Berridge BR, Bucher JR, Sistare F, Stevens JL, Chappell GA, Clemons M, Snow S, Wignall J, Shipkowski KA. Enabling novel paradigms: a biological questions-based approach to human chemical hazard and drug safety assessment. Toxicol Sci 2024; 198:4-13. [PMID: 38134427 PMCID: PMC10901149 DOI: 10.1093/toxsci/kfad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
Throughput needs, costs of time and resources, and concerns about the use of animals in hazard and safety assessment studies are fueling a growing interest in adopting new approach methodologies for use in product development and risk assessment. However, current efforts to define "next-generation risk assessment" vary considerably across commercial and regulatory sectors, and an a priori definition of the biological scope of data needed to assess hazards is generally lacking. We propose that the absence of clearly defined questions that can be answered during hazard assessment is the primary barrier to the generation of a paradigm flexible enough to be used across varying product development and approval decision contexts. Herein, we propose a biological questions-based approach (BQBA) for hazard and safety assessment to facilitate fit-for-purpose method selection and more efficient evidence-based decision-making. The key pillars of this novel approach are bioavailability, bioactivity, adversity, and susceptibility. This BQBA is compared with current hazard approaches and is applied in scenarios of varying pathobiological understanding and/or regulatory testing requirements. To further define the paradigm and key questions that allow better prediction and characterization of human health hazard, a multidisciplinary collaboration among stakeholder groups should be initiated.
Collapse
Affiliation(s)
- Brian R Berridge
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - John R Bucher
- Retired (Division of Translational Toxicology, NIEHS), Hillsborough, North Carolina 27278, USA
| | | | - James L Stevens
- Paradox Found Consulting Services, Apex, North Carolina 27523, USA
| | | | | | | | | | - Kelly A Shipkowski
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
12
|
Schumann P, Rivetti C, Houghton J, Campos B, Hodges G, LaLone C. Combination of computational new approach methodologies for enhancing evidence of biological pathway conservation across species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168573. [PMID: 37981146 PMCID: PMC10926110 DOI: 10.1016/j.scitotenv.2023.168573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
The ability to predict which chemicals are of concern for environmental safety is dependent, in part, on the ability to extrapolate chemical effects across many species. This work investigated the complementary use of two computational new approach methodologies to support cross-species predictions of chemical susceptibility: the US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool and Unilever's recently developed Genes to Pathways - Species Conservation Analysis (G2P-SCAN) tool. These stand-alone tools rely on existing biological knowledge to help understand chemical susceptibility and biological pathway conservation across species. The utility and challenges of these combined computational approaches were demonstrated using case examples focused on chemical interactions with peroxisome proliferator activated receptor alpha (PPARα), estrogen receptor 1 (ESR1), and gamma-aminobutyric acid type A receptor subunit alpha (GABRA1). Overall, the biological pathway information enhanced the weight of evidence to support cross-species susceptibility predictions. Through comparisons of relevant molecular and functional data gleaned from adverse outcome pathways (AOPs) to mapped biological pathways, it was possible to gain a toxicological context for various chemical-protein interactions. The information gained through this computational approach could ultimately inform chemical safety assessments by enhancing cross-species predictions of chemical susceptibility. It could also help fulfill a core objective of the AOP framework by potentially expanding the biologically plausible taxonomic domain of applicability of relevant AOPs.
Collapse
Affiliation(s)
- Peter Schumann
- Oak Ridge Institute for Science and Education, Duluth, MN, USA
| | - Claudia Rivetti
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Jade Houghton
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Carlie LaLone
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA.
| |
Collapse
|
13
|
Kaplan BLF, Hoberman AM, Slikker W, Smith MA, Corsini E, Knudsen TB, Marty MS, Sobrian SK, Fitzpatrick SC, Ratner MH, Mendrick DL. Protecting Human and Animal Health: The Road from Animal Models to New Approach Methods. Pharmacol Rev 2024; 76:251-266. [PMID: 38351072 PMCID: PMC10877708 DOI: 10.1124/pharmrev.123.000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
Animals and animal models have been invaluable for our current understanding of human and animal biology, including physiology, pharmacology, biochemistry, and disease pathology. However, there are increasing concerns with continued use of animals in basic biomedical, pharmacological, and regulatory research to provide safety assessments for drugs and chemicals. There are concerns that animals do not provide sufficient information on toxicity and/or efficacy to protect the target population, so scientists are utilizing the principles of replacement, reduction, and refinement (the 3Rs) and increasing the development and application of new approach methods (NAMs). NAMs are any technology, methodology, approach, or assay used to understand the effects and mechanisms of drugs or chemicals, with specific focus on applying the 3Rs. Although progress has been made in several areas with NAMs, complete replacement of animal models with NAMs is not yet attainable. The road to NAMs requires additional development, increased use, and, for regulatory decision making, usually formal validation. Moreover, it is likely that replacement of animal models with NAMs will require multiple assays to ensure sufficient biologic coverage. The purpose of this manuscript is to provide a balanced view of the current state of the use of animal models and NAMs as approaches to development, safety, efficacy, and toxicity testing of drugs and chemicals. Animals do not provide all needed information nor do NAMs, but each can elucidate key pieces of the puzzle of human and animal biology and contribute to the goal of protecting human and animal health. SIGNIFICANCE STATEMENT: Data from traditional animal studies have predominantly been used to inform human health safety and efficacy. Although it is unlikely that all animal studies will be able to be replaced, with the continued advancement in new approach methods (NAMs), it is possible that sometime in the future, NAMs will likely be an important component by which the discovery, efficacy, and toxicity testing of drugs and chemicals is conducted and regulatory decisions are made.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Alan M Hoberman
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - William Slikker
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Mary Alice Smith
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Emanuela Corsini
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Thomas B Knudsen
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - M Sue Marty
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Sonya K Sobrian
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Suzanne C Fitzpatrick
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Marcia H Ratner
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Donna L Mendrick
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| |
Collapse
|
14
|
Bishop E, Miazzi F, Bozhilova S, East N, Evans R, Smart D, Gaca M, Breheny D, Thorne D. An in vitro toxicological assessment of two electronic cigarettes: E-liquid to aerosolisation. Curr Res Toxicol 2024; 6:100150. [PMID: 38298371 PMCID: PMC10827682 DOI: 10.1016/j.crtox.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Interest in the toxicological assessment of iterations of e-cigarette devices, e-liquid formulations and flavour use is increasing. Here, we describe a multiple test matrix and in vitro approach to assess the biological impact of differing e-cigarette activation mechanism (button vs. puff-activated) and heating technology (cotton vs. ceramic wick). The e-liquids selected for each device contained the same nicotine concentration and flavourings. We tested both e-liquid and aqueous extract of e-liquid aerosol using a high throughput cytotoxicity and genotoxicity screen. We also conducted whole aerosol assessment both in a reconstituted human airway lung tissue (MucilAir) with associated endpoint assessment (cytotoxicity, TEER, cilia beat frequency and active area) and an Ames whole aerosol assay with up to 900 consecutive undiluted puffs. Following this testing it is shown that the biological impact of these devices is similar, taking into consideration the limitations and capturing efficiencies of the different testing matrices. We have contextualised these responses against previous published reference cigarette data to establish the comparative reduction in response consistent with reduced risk potential of the e-cigarette products tested in this study as compared to conventional cigarettes.
Collapse
Affiliation(s)
- E. Bishop
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - F. Miazzi
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - S. Bozhilova
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - N. East
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - R. Evans
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Smart
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - M. Gaca
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Breheny
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| | - D. Thorne
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton SO15 8TL, UK
| |
Collapse
|
15
|
Harrill JA, Everett LJ, Haggard DE, Bundy JL, Willis CM, Shah I, Friedman KP, Basili D, Middleton A, Judson RS. Exploring the effects of experimental parameters and data modeling approaches on in vitro transcriptomic point-of-departure estimates. Toxicology 2024; 501:153694. [PMID: 38043774 DOI: 10.1016/j.tox.2023.153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Multiple new approach methods (NAMs) are being developed to rapidly screen large numbers of chemicals to aid in hazard evaluation and risk assessments. High-throughput transcriptomics (HTTr) in human cell lines has been proposed as a first-tier screening approach for determining the types of bioactivity a chemical can cause (activation of specific targets vs. generalized cell stress) and for calculating transcriptional points of departure (tPODs) based on changes in gene expression. In the present study, we examine a range of computational methods to calculate tPODs from HTTr data, using six data sets in which MCF7 cells cultured in two different media formulations were treated with a panel of 44 chemicals for 3 different exposure durations (6, 12, 24 hr). The tPOD calculation methods use data at the level of individual genes and gene set signatures, and compare data processed using the ToxCast Pipeline 2 (tcplfit2), BMDExpress and PLIER (Pathway Level Information ExtractoR). Methods were evaluated by comparing to in vitro PODs from a validated set of high-throughput screening (HTS) assays for a set of estrogenic compounds. Key findings include: (1) for a given chemical and set of experimental conditions, tPODs calculated by different methods can vary by several orders of magnitude; (2) tPODs are at least as sensitive to computational methods as to experimental conditions; (3) in comparison to an external reference set of PODs, some methods give generally higher values, principally PLIER and BMDExpress; and (4) the tPODs from HTTr in this one cell type are mostly higher than the overall PODs from a broad battery of targeted in vitro ToxCast assays, reflecting the need to test chemicals in multiple cell types and readout technologies for in vitro hazard screening.
Collapse
Affiliation(s)
- Joshua A Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Logan J Everett
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Derik E Haggard
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA; Oak Ridge Institute for Science and Education (ORISE), USA
| | - Joseph L Bundy
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Clinton M Willis
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA; Oak Ridge Associated Universities (ORAU), USA
| | - Imran Shah
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Danilo Basili
- Unilever Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Alistair Middleton
- Unilever Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Richard S Judson
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
16
|
Ivan de Ávila R, Fentem J, Villela I, Somlo D, Fusco Almeida AM, Mendes-Giannini MJS, Di Pietro Micali Canavez A, Bosquetti B, Catarino CM, Schuck DC, Valadares BN, Facchini G, Marigliani B, Migliorini Figueira AC, Hickson R, Leme DM, Tagliati C, de Souza LCR, Maria Engler SS, Gaspar Cordeiro LR, Koepp J, Granjeiro JM, de Mello Brandao H, Munk M, Antunes de Mattos K, Pedralli B, Siqueira Furtuoso Rodrigues MM, Stival AC, Andrade J, Brito LB, Marques Dos Santos TR, Leite J, Garcia da Silva AC, Valadares MC. Brazilian National Network of Alternative Methods (RENAMA) 10th Anniversary: Meeting of the Associated Laboratories, May 2022. Altern Lab Anim 2024; 52:60-68. [PMID: 38061994 DOI: 10.1177/02611929231218378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The Brazilian National Network of Alternative Methods (RENAMA), which is linked to the Ministry of Science, Technology and Innovation, is currently comprised of 51 laboratories from CROs, academia, industry and government. RENAMA's aim is to develop and validate new approach methodologies (NAMs), as well as train researchers and disseminate information on their use - thus reducing Brazilian, and consequently Latin American, dependence on external technology. Moreover, it promotes the adoption of NAMs by educators and trained researchers, as well as the implementation of good laboratory practice (GLP) and the use of certified products. The RENAMA network started its activities in 2012, and was originally comprised of three central laboratories - the National Institute of Metrology, Quality and Technology (INMETRO); the National Institute of Quality Control in Health (INCQS); and the National Brazilian Biosciences Laboratory (LNBio) - and ten associated laboratories. In 2022, RENAMA celebrated its 10th anniversary, a milestone commemorated by the organisation of a meeting attended by different stakeholders, including the RENAMA-associated laboratories, academia, non-governmental organisations and industry. Ninety-six participants attended the meeting, held on 26 May 2022 in Balneário Camboriú, SC, Brazil, as part of the programme of the XXIII Brazilian Congress of Toxicology 2022. Significant moments of the RENAMA were remembered, and new goals and discussion themes were established. The lectures highlighted recent innovations in the toxicological sciences that have translated into the assessment of consumer product safety through the use of human-relevant NAMs instead of the use of existing animal-based approaches. The challenges and opportunities in accepting such practices for regulatory purposes were also presented and discussed.
Collapse
Affiliation(s)
- Renato Ivan de Ávila
- Unilever's Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Bedfordshire, UK
| | - Julia Fentem
- Unilever's Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Bedfordshire, UK
| | - Izabel Villela
- InnVitro Support and Management in Toxicology, Porto Alegre, Brazil
| | - Debora Somlo
- Unilever Brazil Industrial Ltda, WTorre Morumbi, São Paulo, Brazil
| | - Ana Marisa Fusco Almeida
- Laboratory of Proteomics and Clinical Mycology, Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Maria José S Mendes-Giannini
- Laboratory of Proteomics and Clinical Mycology, Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | | | - Bruna Bosquetti
- Safety Assessment Management, Grupo Boticário, Curitiba, Brazil
| | | | | | | | | | - Bianca Marigliani
- Research and Toxicology Department, Humane Society International (HSI), Rio de Janeiro, Brazil
| | | | | | | | - Carlos Tagliati
- Lab Tox, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Janice Koepp
- Biocelltis Biotechnology SA, Florianópolis, Brazil
| | - Jose Mauro Granjeiro
- National Institute of Metrology, Quality and Technology, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Humberto de Mello Brandao
- Innovation Laboratory in Nanobiotechnology and Advanced Materials for Livestock Embrapa Gado de Leite, Juiz de Fora, Brazil
| | - Michele Munk
- Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Katherine Antunes de Mattos
- Microbiological Control Laboratory, Quality Control Department, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Bruna Pedralli
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | | | - Ana Clara Stival
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Jordana Andrade
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Lara Barroso Brito
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Thais Rosa Marques Dos Santos
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Jacqueline Leite
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Artur Christian Garcia da Silva
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Marize Campos Valadares
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
17
|
Hendriks G, Adriaens E, Allemang A, Clements J, Cole G, Derr R, Engel M, Hamel A, Kidd D, Kellum S, Kiyota T, Myhre A, Naëssens V, Pfuhler S, Roy M, Settivari R, Schuler M, Zeller A, van Benthem J, Vanparys P, Kirkland D. Interlaboratory validation of the ToxTracker assay: An in vitro reporter assay for mechanistic genotoxicity assessment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:4-24. [PMID: 38545858 DOI: 10.1002/em.22592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
ToxTracker is a mammalian cell reporter assay that predicts the genotoxic properties of compounds with high accuracy. By evaluating induction of various reporter genes that play a key role in relevant cellular pathways, it provides insight into chemical mode-of-action (MoA), thereby supporting discrimination of direct-acting genotoxicants and cytotoxic chemicals. A comprehensive interlaboratory validation trial was conducted, in which the principles outlined in OECD Guidance Document 34 were followed, with the primary objectives of establishing transferability and reproducibility of the assay and confirming the ability of ToxTracker to correctly classify genotoxic and non-genotoxic compounds. Reproducibility of the assay to predict genotoxic MoA was confirmed across participating laboratories and data were evaluated in terms of concordance with in vivo genotoxicity outcomes. Seven laboratories tested a total of 64 genotoxic and non-genotoxic chemicals that together cover a broad chemical space. The within-laboratory reproducibility (WLR) was up to 98% (73%-98% across participants) and the overall between-laboratory reproducibility (BLR) was 83%. This trial confirmed the accuracy of ToxTracker to predict in vivo genotoxicants with a sensitivity of 84.4% and a specificity of 91.2%. We concluded that ToxTracker is a robust in vitro assay for the accurate prediction of in vivo genotoxicity. Considering ToxTracker's robust standalone accuracy and that it can provide important information on the MoA of chemicals, it is seen as a valuable addition to the regulatory in vitro genotoxicity battery that may even have the potential to replace certain currently used in vitro battery assays.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jan van Benthem
- National Institute for Public Health and the Environment, The Netherlands
| | | | | |
Collapse
|
18
|
Botham P, Cronin MTD, Currie R, Doe J, Funk-Weyer D, Gant TW, Leist M, Marty S, van Ravenzwaay B, Westmoreland C. Analysis of health concerns not addressed by REACH for low tonnage chemicals and opportunities for new approach methodology. Arch Toxicol 2023; 97:3075-3083. [PMID: 37755502 PMCID: PMC10567824 DOI: 10.1007/s00204-023-03601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
In Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) the criterion for deciding the studies that must be performed is the annual tonnage of the chemical manufactured or imported into the EU. The annual tonnage may be considered as a surrogate for levels of human exposure but this does not take into account the physico-chemical properties and use patterns that determine exposure. Chemicals are classified using data from REACH under areas of health concern covering effects on the skin and eye; sensitisation; acute, repeated and prolonged systemic exposure; effects on genetic material; carcinogenicity; and reproduction and development. We analysed the mandated study lists under REACH for each annual tonnage band in terms of the information they provide on each of the areas of health concern. Using the European Chemicals Agency (ECHA) REACH Registration data base of over 20,000 registered substances, we found that only 19% of registered substances have datasets on all areas of health concern. Information limited to acute exposure, sensitisation and genotoxicity was found for 62%. The analysis highlighted the shortfall of information mandated for substances in the lower tonnage bands. Deploying New Approach Methodologies (NAMs) at this lower tonnage band to assess health concerns which are currently not covered by REACH, such as repeat and extended exposure and carcinogenicity, would provide additional information and would be a way for registrants and regulators to gain experience in the use of NAMs. There are currently projects in Europe aiming to develop NAM-based assessment frameworks and they could find their first use in assessing low tonnage chemicals once confidence has been gained by their evaluation with data rich chemicals.
Collapse
Affiliation(s)
- Philip Botham
- Syngenta Product Safety, Jealott’s Hill International Research Centre, Bracknell, RG42 6EY Berkshire UK
| | - Mark T. D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF UK
| | - Richard Currie
- Syngenta Product Safety, Jealott’s Hill International Research Centre, Bracknell, RG42 6EY Berkshire UK
| | - John Doe
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF UK
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Timothy W. Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Harwell Science Campus, Chilton, OX11 0RQ UK
- School of Public Health, Imperial College London, London, UK
| | - Marcel Leist
- Department of Biology and CAAT-Europe, University of Konstanz, 78457 Constance, Germany
| | - Sue Marty
- The Dow Chemical Company, Toxicology and Environmental Research and Consulting, 1803 Building, Midland, MI 48674 USA
| | - Bennard van Ravenzwaay
- Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 WG Wageningen, The Netherlands
| | - Carl Westmoreland
- SEAC, Unilever, Colworth Science Park, Sharnbrook, MK44 1LQ Bedfordshire UK
| |
Collapse
|
19
|
Chen P, Li Y, Long Q, Zuo T, Zhang Z, Guo J, Xu D, Li K, Liu S, Li S, Yin J, Chang L, Kukic P, Liddell M, Tulum L, Carmichael P, Peng S, Li J, Zhang Q, Xu P. The phosphoproteome is a first responder in tiered cellular adaptation to chemical stress followed by proteomics and transcriptomics alteration. CHEMOSPHERE 2023; 344:140329. [PMID: 37783352 DOI: 10.1016/j.chemosphere.2023.140329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Next-generation risk assessment (NGRA) for environmental chemicals involves a weight of evidence (WoE) framework integrating a suite of new approach methodologies (NAMs) based on points of departure (PoD) obtained from in vitro assays. Among existing NAMs, the omic-based technologies are of particular importance based on the premise that any apical endpoint change indicative of impaired health must be underpinned by some alterations at the omics level, such as transcriptome, proteome, metabolome, epigenome and genome. Transcriptomic assay plays a leading role in providing relatively conservative PoDs compared with apical endpoints. However, it is unclear whether and how parameters measured with other omics techniques predict the cellular response to chemical perturbations, especially at exposure levels below the transcriptomically defined PoD. Multi-omics coverage may provide additional sensitive or confirmative biomarkers to complement and reduce the uncertainty in safety decisions made using targeted and transcriptomics assays. In the present study, we conducted multi-omics studies of transcriptomics, proteomics and phosphoproteomics on two prototype compounds, coumarin and 2,4-dichlorophenoxyacetic acid (2,4-D), with multiple chemical concentrations and time points, to understand the sensitivity of the three omics techniques in response to chemically-induced changes in HepG2. We demonstrated that, phosphoproteomics alterations occur not only earlier in time, but also more sensitive to lower concentrations than proteomics and transcriptomics when the HepG2 cells were exposed to various chemical treatments. The phosphoproteomics changes appear to approach maximum when the transcriptomics alterations begin to initiate. Therefore, it is proximal to the very early effects induced by chemical exposure. We concluded that phosphoproteomics can be utilized to provide a more complete coverage of chemical-induced cellular alteration and supplement transcriptomics-based health safety decision making.
Collapse
Affiliation(s)
- Peiru Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yuan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang, 550002, China
| | - Qi Long
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Tao Zuo
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Jiabin Guo
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Danyang Xu
- Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kaixuan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Shu Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Suzhen Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Jian Yin
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lei Chang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Predrag Kukic
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Mark Liddell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Liz Tulum
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Paul Carmichael
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Jin Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK.
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA, GA, 30322.
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, 071002, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; School of Basic Medicine, Anhui Medical University, Hefei, 230032, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
20
|
Cronin MTD, Ball N, Beken S, Bender H, Bercaru O, Caneva L, Corvaro M, Currie RA, Dawson JL, Desert P, Escher SE, Franco A, Irizar A, Mehta JM, Rogiers V, Tremblay RT, Westmoreland C, Maxwell G. Exposure considerations in human safety assessment: Report from an EPAA Partners' Forum. Regul Toxicol Pharmacol 2023; 144:105483. [PMID: 37640101 DOI: 10.1016/j.yrtph.2023.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Understanding and estimating the exposure to a substance is one of the fundamental requirements for safe manufacture and use. Many approaches are taken to determine exposure to substances, mainly driven by potential use and regulatory need. There are many opportunities to improve and optimise the use of exposure information for chemical safety. The European Partnership for Alternative Approaches to Animal Testing (EPAA) therefore convened a Partners' Forum (PF) to explore exposure considerations in human safety assessment of industrial products to agree key conclusions for the regulatory acceptance of exposure assessment approaches and priority areas for further research investment. The PF recognised the widescale use of exposure information across industrial sectors with the possibilities of creating synergies between different sectors. Further, the PF acknowledged that the EPAA could make a significant contribution to promote the use of exposure data in human safety assessment, with an aim to address specific regulatory needs. To achieve this, research needs, as well as synergies and areas for potential collaboration across sectors, were identified.
Collapse
Affiliation(s)
- Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom.
| | - Nicholas Ball
- Dow Europe GmbH, Bachtobelstrasse, 8810, Horgen, Switzerland.
| | - Sonja Beken
- Federal Agency for Medicines and Health Products (FAMHP), Avenue Galilée 5/03, 1210, Brussels, Belgium.
| | | | - Ofelia Bercaru
- European Chemicals Agency, Telakkakatu 6, Helsinki, Finland.
| | - Laura Caneva
- Zoetis Belgium, Veterinary Medicine Research & Development, Mercuriusstraat 20, B-1930, Zaventem, Belgium.
| | | | - Richard A Currie
- Syngenta Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK.
| | - Jeffrey L Dawson
- United States Environmental Protection Agency, 1200 Pennsylvania Ave NW, Washington DC, 20004, USA.
| | - Paul Desert
- Sanofi, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.
| | - Antonio Franco
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - Amaia Irizar
- The International Fragrance Association (IFRA), Geneva, Switzerland.
| | | | - Vera Rogiers
- Faculty of Medicine and Pharmacy, In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels, Belgium.
| | - Raphaël T Tremblay
- Procter & Gamble Services Company, Temselaan 100, 1853 Strombeek-Bever, Belgium.
| | - Carl Westmoreland
- Safety & Environmental Assurance Centre (SEAC), Unilever, Colworth Science Park, Sharnbrook, Bedford, MK44 1LQ, United Kingdom.
| | - Gavin Maxwell
- Safety & Environmental Assurance Centre (SEAC), Unilever, Colworth Science Park, Sharnbrook, Bedford, MK44 1LQ, United Kingdom.
| |
Collapse
|
21
|
Feshuk M, Kolaczkowski L, Dunham K, Davidson-Fritz SE, Carstens KE, Brown J, Judson RS, Paul Friedman K. The ToxCast pipeline: updates to curve-fitting approaches and database structure. FRONTIERS IN TOXICOLOGY 2023; 5:1275980. [PMID: 37808181 PMCID: PMC10552852 DOI: 10.3389/ftox.2023.1275980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: The US Environmental Protection Agency Toxicity Forecaster (ToxCast) program makes in vitro medium- and high-throughput screening assay data publicly available for prioritization and hazard characterization of thousands of chemicals. The assays employ a variety of technologies to evaluate the effects of chemical exposure on diverse biological targets, from distinct proteins to more complex cellular processes like mitochondrial toxicity, nuclear receptor signaling, immune responses, and developmental toxicity. The ToxCast data pipeline (tcpl) is an open-source R package that stores, manages, curve-fits, and visualizes ToxCast data and populates the linked MySQL Database, invitrodb. Methods: Herein we describe major updates to tcpl and invitrodb to accommodate a new curve-fitting approach. The original tcpl curve-fitting models (constant, Hill, and gain-loss models) have been expanded to include Polynomial 1 (Linear), Polynomial 2 (Quadratic), Power, Exponential 2, Exponential 3, Exponential 4, and Exponential 5 based on BMDExpress and encoded by the R package dependency, tcplfit2. Inclusion of these models impacted invitrodb (beta version v4.0) and tcpl v3 in several ways: (1) long-format storage of generic modeling parameters to permit additional curve-fitting models; (2) updated logic for winning model selection; (3) continuous hit calling logic; and (4) removal of redundant endpoints as a result of bidirectional fitting. Results and discussion: Overall, the hit call and potency estimates were largely consistent between invitrodb v3.5 and 4.0. Tcpl and invitrodb provide a standard for consistent and reproducible curve-fitting and data management for diverse, targeted in vitro assay data with readily available documentation, thus enabling sharing and use of these data in myriad toxicology applications. The software and database updates described herein promote comparability across multiple tiers of data within the US Environmental Protection Agency CompTox Blueprint.
Collapse
Affiliation(s)
- M. Feshuk
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - L. Kolaczkowski
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
- National Student Services Contractor, Oak Ridge Associated Universities, Oak Ridge, TN, United States
| | - K. Dunham
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
- National Student Services Contractor, Oak Ridge Associated Universities, Oak Ridge, TN, United States
| | - S. E. Davidson-Fritz
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - K. E. Carstens
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - J. Brown
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - R. S. Judson
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - K. Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| |
Collapse
|
22
|
Tozer S, Alexander-White C, Amin R, Audebert F, Barratt C, O'Brien J, Burke T, Bury D, Nguea HD, Dimopoulou M, Farahmand S, Fritz S, Gerber E, Giusti A, Goodwin W, Kirsch T, Oreffo V, McNamara C. From worst-case to reality - Case studies illustrating tiered refinement of consumer exposure to cosmetic ingredients. Regul Toxicol Pharmacol 2023; 143:105436. [PMID: 37429522 DOI: 10.1016/j.yrtph.2023.105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Consumer exposure to cosmetic ingredients is estimated in a tiered manner. Simple Tier1 deterministic aggregate exposure modelling generates a worst case estimate of exposure. Tier1 assumes that a consumer uses all cosmetic products concomitantly daily, at maximum frequency, and products always contain the ingredient at the maximum allowed % w/w concentration. Refining exposure assessment from worst case to more realistic estimates uses evidence from surveys of actual use levels of ingredients and Tier2 probabilistic models, where distributions of consumer use data can be applied. In Tier2+ modelling, occurrence data provides evidence of products on the market actually containing the ingredient. Three case studies are presented using this tiered approach to illustrate progressive refinement. The scale of refinements from Tier1 to Tier2+ modelling for the ingredients, propyl paraben, benzoic acid and DMDM hydantoin were: 0.492 to 0.026; 1.93 to 0.042 and 1.61 to 0.027 mg/kg/day exposure dose. For propyl paraben, moving from Tier1 to Tier2+ represents a refinement from 49-fold to 3-fold overestimate of exposure when compared to a maximum estimate of 0.01 mg/kg/day exposure seen in human studies. Such refinements from worst case to realistic levels of exposure estimation can be critical in the demonstration of consumer safety.
Collapse
Affiliation(s)
- Sarah Tozer
- Procter & Gamble Technical Centres Ltd, Reading, RG2 0QE, UK
| | | | - Ripal Amin
- Avon Products International, 1 Avon Place, Suffern, NY, 10901, USA
| | | | - Catherine Barratt
- Unilever Safety & Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - John O'Brien
- Creme Global, 4th Floor, The Tower, Trinity Technology & Enterprise Campus, Grand Canal Quay, Dublin 2, Ireland
| | | | - Dagmar Bury
- Worldwide Safety Evaluation Department, L'Oreal Research and Innovation, 9 Rue Pierre Dreyfus, 92110, Clichy, France
| | - Hermine Dika Nguea
- Worldwide Safety Evaluation Department, L'Oreal Research and Innovation, 9 Rue Pierre Dreyfus, 92110, Clichy, France
| | | | - Sarah Farahmand
- Edgewell Personal Care, 75 Commerce Drive, Allendale, NJ, 07401, USA
| | - Sabrina Fritz
- Kao Germany GmbH, Pfungstädter Straße 98-100, 64297, Darmstadt, Germany
| | | | - Arianna Giusti
- Cosmetics Europe - The Personal Care Association, Avenue Herrmann-Debroux 40, B-1160, Brussels, Belgium
| | - William Goodwin
- Creme Global, 4th Floor, The Tower, Trinity Technology & Enterprise Campus, Grand Canal Quay, Dublin 2, Ireland
| | - Taryn Kirsch
- Procter & Gamble, Sulzbacher Str. 40, 65824, Schwalbach am Taunus, Germany
| | - Victor Oreffo
- Unilever Safety & Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Cronan McNamara
- Creme Global, 4th Floor, The Tower, Trinity Technology & Enterprise Campus, Grand Canal Quay, Dublin 2, Ireland
| |
Collapse
|
23
|
Schmeisser S, Miccoli A, von Bergen M, Berggren E, Braeuning A, Busch W, Desaintes C, Gourmelon A, Grafström R, Harrill J, Hartung T, Herzler M, Kass GEN, Kleinstreuer N, Leist M, Luijten M, Marx-Stoelting P, Poetz O, van Ravenzwaay B, Roggeband R, Rogiers V, Roth A, Sanders P, Thomas RS, Marie Vinggaard A, Vinken M, van de Water B, Luch A, Tralau T. New approach methodologies in human regulatory toxicology - Not if, but how and when! ENVIRONMENT INTERNATIONAL 2023; 178:108082. [PMID: 37422975 PMCID: PMC10858683 DOI: 10.1016/j.envint.2023.108082] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
The predominantly animal-centric approach of chemical safety assessment has increasingly come under pressure. Society is questioning overall performance, sustainability, continued relevance for human health risk assessment and ethics of this system, demanding a change of paradigm. At the same time, the scientific toolbox used for risk assessment is continuously enriched by the development of "New Approach Methodologies" (NAMs). While this term does not define the age or the state of readiness of the innovation, it covers a wide range of methods, including quantitative structure-activity relationship (QSAR) predictions, high-throughput screening (HTS) bioassays, omics applications, cell cultures, organoids, microphysiological systems (MPS), machine learning models and artificial intelligence (AI). In addition to promising faster and more efficient toxicity testing, NAMs have the potential to fundamentally transform today's regulatory work by allowing more human-relevant decision-making in terms of both hazard and exposure assessment. Yet, several obstacles hamper a broader application of NAMs in current regulatory risk assessment. Constraints in addressing repeated-dose toxicity, with particular reference to the chronic toxicity, and hesitance from relevant stakeholders, are major challenges for the implementation of NAMs in a broader context. Moreover, issues regarding predictivity, reproducibility and quantification need to be addressed and regulatory and legislative frameworks need to be adapted to NAMs. The conceptual perspective presented here has its focus on hazard assessment and is grounded on the main findings and conclusions from a symposium and workshop held in Berlin in November 2021. It intends to provide further insights into how NAMs can be gradually integrated into chemical risk assessment aimed at protection of human health, until eventually the current paradigm is replaced by an animal-free "Next Generation Risk Assessment" (NGRA).
Collapse
Affiliation(s)
| | - Andrea Miccoli
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany; National Research Council, Ancona, Italy
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | | | - Albert Braeuning
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Wibke Busch
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Christian Desaintes
- European Commission (EC), Directorate General for Research and Innovation (RTD), Brussels, Belgium
| | - Anne Gourmelon
- Organisation for Economic Cooperation and Development (OECD), Environment Directorate, Paris, France
| | | | - Joshua Harrill
- Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency (US EPA), Durham, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health Baltimore MD USA, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Matthias Herzler
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Nicole Kleinstreuer
- NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Institute of Environmental Health Sciences (NIEHS), Durham, USA
| | - Marcel Leist
- CAAT‑Europe and Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Oliver Poetz
- NMI Natural and Medical Science Institute at the University of Tuebingen, Reutlingen, Germany; SIGNATOPE GmbH, Reutlingen, Germany
| | | | - Rob Roggeband
- European Partnership for Alternative Approaches to Animal Testing (EPAA), Procter and Gamble Services Company NV/SA, Strombeek-Bever, Belgium
| | - Vera Rogiers
- Scientific Committee on Consumer Safety (SCCS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Adrian Roth
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Pascal Sanders
- Fougeres Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Fougères, France France
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency (US EPA), Durham, USA
| | | | | | | | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
24
|
Rivetti C, Houghton J, Basili D, Hodges G, Campos B. Genes-to-Pathways Species Conservation Analysis: Enabling the Exploration of Conservation of Biological Pathways and Processes Across Species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1152-1166. [PMID: 36861224 DOI: 10.1002/etc.5600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The last two decades have witnessed a strong momentum toward integration of cell-based and computational approaches in safety assessments. This is fueling a global regulatory paradigm shift toward reduction and replacement of the use of animals in toxicity tests while promoting the use of new approach methodologies. The understanding of conservation of molecular targets and pathways provides an opportunity to extrapolate effects across species and ultimately to determine the taxonomic applicability domain of assays and biological effects. Despite the wealth of genome-linked data available, there is a compelling need for improved accessibility, while ensuring that it reflects the underpinning biology. We present the novel pipeline Genes-to-Pathways Species Conservation Analysis (G2P-SCAN) to further support understanding on cross-species extrapolation of biological processes. This R package extracts, synthetizes, and structures the data available from different databases, that is, gene orthologs, protein families, entities, and reactions, linked to human genes and respective pathways across six relevant model species. The use of G2P-SCAN enables the overall analysis of orthology and functional families to substantiate the identification of conservation and susceptibility at the pathway level. In the present study we discuss five case studies, demonstrating the validity of the developed pipeline and its potential use as species extrapolation support. We foresee this pipeline will provide valuable biological insights and create space for the use of mechanistically based data to inform potential species susceptibility for research and safety decision purposes. Environ Toxicol Chem 2023;42:1152-1166. © 2023 UNILEVER GLOBAL IP LTD. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Claudia Rivetti
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, United Kingdom
| | - Jade Houghton
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, United Kingdom
| | - Danilo Basili
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, United Kingdom
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, United Kingdom
| | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, United Kingdom
| |
Collapse
|
25
|
Pruteanu LL, Bender A. Using Transcriptomics and Cell Morphology Data in Drug Discovery: The Long Road to Practice. ACS Med Chem Lett 2023; 14:386-395. [PMID: 37077392 PMCID: PMC10107910 DOI: 10.1021/acsmedchemlett.3c00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/10/2023] [Indexed: 04/21/2023] Open
Abstract
Gene expression and cell morphology data are high-dimensional biological readouts of much recent interest for drug discovery. They are able to describe biological systems in different states (e.g., healthy and diseased), as well as biological systems before and after compound treatment, and they are hence useful for matching both spaces (e.g., for drug repurposing) as well as for characterizing compounds with respect to efficacy and safety endpoints. This Microperspective describes recent advances in this direction with a focus on applied drug discovery and drug repurposing, as well as outlining what else is needed to advance further, with a particular focus on better understanding the applicability domain of readouts and their relevance for decision making, which is currently often still unclear.
Collapse
Affiliation(s)
- Lavinia-Lorena Pruteanu
- Department
of Chemistry and Biology, North University
Center at Baia Mare, Technical University of Cluj-Napoca, Victoriei 76, 430122 Baia Mare, Romania
- Research
Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Haţieganu” University
of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreas Bender
- Centre
for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
26
|
Nyffeler J, Willis C, Harris FR, Foster MJ, Chambers B, Culbreth M, Brockway RE, Davidson-Fritz S, Dawson D, Shah I, Friedman KP, Chang D, Everett LJ, Wambaugh JF, Patlewicz G, Harrill JA. Application of cell painting for chemical hazard evaluation in support of screening-level chemical assessments. Toxicol Appl Pharmacol 2023; 468:116513. [PMID: 37044265 DOI: 10.1016/j.taap.2023.116513] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
'Cell Painting' is an imaging-based high-throughput phenotypic profiling (HTPP) method in which cultured cells are fluorescently labeled to visualize subcellular structures (i.e., nucleus, nucleoli, endoplasmic reticulum, cytoskeleton, Golgi apparatus / plasma membrane and mitochondria) and to quantify morphological changes in response to chemicals or other perturbagens. HTPP is a high-throughput and cost-effective bioactivity screening method that detects effects associated with many different molecular mechanisms in an untargeted manner, enabling rapid in vitro hazard assessment for thousands of chemicals. Here, 1201 chemicals from the ToxCast library were screened in concentration-response up to ~100 μM in human U-2 OS cells using HTPP. A phenotype altering concentration (PAC) was estimated for chemicals active in the tested range. PACs tended to be higher than lower bound potency values estimated from a broad collection of targeted high-throughput assays, but lower than the threshold for cytotoxicity. In vitro to in vivo extrapolation (IVIVE) was used to estimate administered equivalent doses (AEDs) based on PACs for comparison to human exposure predictions. AEDs for 18/412 chemicals overlapped with predicted human exposures. Phenotypic profile information was also leveraged to identify putative mechanisms of action and group chemicals. Of 58 known nuclear receptor modulators, only glucocorticoids and retinoids produced characteristic profiles; and both receptor types are expressed in U-2 OS cells. Thirteen chemicals with profile similarity to glucocorticoids were tested in a secondary screen and one chemical, pyrene, was confirmed by an orthogonal gene expression assay as a novel putative GR modulating chemical. Most active chemicals demonstrated profiles not associated with a known mechanism-of-action. However, many structurally related chemicals produced similar profiles, with exceptions such as diniconazole, whose profile differed from other active conazoles. Overall, the present study demonstrates how HTPP can be applied in screening-level chemical assessments through a series of examples and brief case studies.
Collapse
Affiliation(s)
- Jo Nyffeler
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America; Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, Oak Ridge, TN 37831, United States of America
| | - Clinton Willis
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - Felix R Harris
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America; Oak Ridge Associated Universities (ORAU) National Student Services Contractor, Oak Ridge, TN 37831, United States of America
| | - M J Foster
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America; Oak Ridge Associated Universities (ORAU) National Student Services Contractor, Oak Ridge, TN 37831, United States of America
| | - Bryant Chambers
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - Megan Culbreth
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - Richard E Brockway
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America; Oak Ridge Associated Universities (ORAU) National Student Services Contractor, Oak Ridge, TN 37831, United States of America
| | - Sarah Davidson-Fritz
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - Daniel Dawson
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - Imran Shah
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - Katie Paul Friedman
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - Dan Chang
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - Logan J Everett
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - John F Wambaugh
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - Grace Patlewicz
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - Joshua A Harrill
- Center for Computational Toxicology & Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America.
| |
Collapse
|
27
|
Fentem JH. The 19th FRAME Annual Lecture, November 2022: Safer Chemicals and Sustainable Innovation Will Be Achieved by Regulatory Use of Modern Safety Science, Not by More Animal Testing. Altern Lab Anim 2023; 51:90-101. [PMID: 36856032 DOI: 10.1177/02611929231158236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The decisions we make on chemical safety, for consumers, workers and the environment, must be based on the best scientific data and knowledge available. Rapid advances in biology, in cell-based technologies and assays, and in analytical and computational approaches, have led to new types of highly relevant scientific data being generated. Such data enable us to improve the safety decisions we make, whilst also enabling us to avoid animal testing. Stimulated by the UK and EU bans on animal testing for cosmetics, Next Generation Risk Assessment (NGRA) approaches, which integrate various types of non-animal scientific data, have been established for assessing the safety of chemical ingredients used in cosmetics and other consumer products. In stark contrast, the chemicals regulations in Europe and other parts of the world have not kept pace with modern safety science and regulators are now mandating even more animal testing. Urgently closing this science-regulation gap is essential to upholding the EU's legislative requirement that any animal testing is a last resort. The ongoing revisions of UK and EU chemicals strategy and regulations provide an opportunity to fundamentally change the design and assessment paradigm needed to underpin safe and more sustainable innovation, through applying the best science and tools available rather than continuing to be anchored in animal tests dating back many decades. A range of initiatives have recently been launched in response to this urgent need, in the UK as well as in the EU.
Collapse
Affiliation(s)
- Julia H Fentem
- 3099Unilever Safety & Environmental Assurance Centre (SEAC), Bedford, UK
| |
Collapse
|
28
|
Magurany KA, Chang X, Clewell R, Coecke S, Haugabrooks E, Marty S. A Pragmatic Framework for the Application of New Approach Methodologies in One Health Toxicological Risk Assessment. Toxicol Sci 2023; 192:kfad012. [PMID: 36782355 PMCID: PMC10109535 DOI: 10.1093/toxsci/kfad012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Globally, industries and regulatory authorities are faced with an urgent need to assess the potential adverse effects of chemicals more efficiently by embracing new approach methodologies (NAMs). NAMs include cell and tissue methods (in vitro), structure-based/toxicokinetic models (in silico), methods that assess toxicant interactions with biological macromolecules (in chemico), and alternative models. Increasing knowledge on chemical toxicokinetics (what the body does with chemicals) and toxicodynamics (what the chemicals do with the body) obtained from in silico and in vitro systems continues to provide opportunities for modernizing chemical risk assessments. However, directly leveraging in vitro and in silico data for derivation of human health-based reference values has not received regulatory acceptance due to uncertainties in extrapolating NAM results to human populations, including metabolism, complex biological pathways, multiple exposures, interindividual susceptibility and vulnerable populations. The objective of this article is to provide a standardized pragmatic framework that applies integrated approaches with a focus on quantitative in vitro to in vivo extrapolation (QIVIVE) to extrapolate in vitro cellular exposures to human equivalent doses from which human reference values can be derived. The proposed framework intends to systematically account for the complexities in extrapolation and data interpretation to support sound human health safety decisions in diverse industrial sectors (food systems, cosmetics, industrial chemicals, pharmaceuticals etc.). Case studies of chemical entities, using new and existing data, are presented to demonstrate the utility of the proposed framework while highlighting potential sources of human population bias and uncertainty, and the importance of Good Method and Reporting Practices.
Collapse
Affiliation(s)
| | | | - Rebecca Clewell
- 21st Century Tox Consulting, Chapel Hill, North Carolina 27517, USA
| | - Sandra Coecke
- European Commission Joint Research Centre, Ispra, Italy
| | - Esther Haugabrooks
- Coca-Cola Company (formerly Physicians Committee for Responsible Medicine), Atlanta, Georgia 30313, USA
| | - Sue Marty
- The Dow Chemical Company, Midland, Michigan 48667, USA
| |
Collapse
|
29
|
Brescia S, Alexander-White C, Li H, Cayley A. Risk assessment in the 21st century: where are we heading? Toxicol Res (Camb) 2023; 12:1-11. [PMID: 36866215 PMCID: PMC9972812 DOI: 10.1093/toxres/tfac087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Reliance on animal tests for chemical safety assessment is increasingly being challenged, not only because of ethical reasons, but also because they procrastinate regulatory decisions and because of concerns over the transferability of results to humans. New approach methodologies (NAMs) need to be fit for purpose and new thinking is required to reconsider chemical legislation, validation of NAMs and opportunities to move away from animal tests. This article summarizes the presentations from a symposium at the 2022 Annual Congress of the British Toxicology Society on the topic of the future of chemical risk assessment in the 21st century. The symposium included three case-studies where NAMs have been used in safety assessments. The first case illustrated how read-across augmented with some in vitro tests could be used reliably to perform the risk assessment of analogues lacking data. The second case showed how specific bioactivity assays could identify an NAM point of departure (PoD) and how this could be translated through physiologically based kinetic modelling in an in vivo PoD for the risk assessment. The third case showed how adverse-outcome pathway (AOP) information, including molecular-initiating event and key events with their underlying data, established for certain chemicals could be used to produce an in silico model that is able to associate chemical features of an unstudied substance with specific AOPs or AOP networks. The manuscript presents the discussions that took place regarding the limitations and benefits of these new approaches, and what are the barriers and the opportunities for their increased use in regulatory decision making.
Collapse
Affiliation(s)
- Susy Brescia
- Health & Safety Executive, Chemicals Regulation Division, Redgrave Court, Merton Road, Bootle, Merseyside L20 7HS, UK
| | | | - Hequn Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Alex Cayley
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11, 5PS, UK
| |
Collapse
|
30
|
Li Y, Zhang Z, Jiang S, Xu F, Tulum L, Li K, Liu S, Li S, Chang L, Liddell M, Tu F, Gu X, Carmichael PL, White A, Peng S, Zhang Q, Li J, Zuo T, Kukic P, Xu P. Using transcriptomics, proteomics and phosphoproteomics as new approach methodology (NAM) to define biological responses for chemical safety assessment. CHEMOSPHERE 2023; 313:137359. [PMID: 36427571 DOI: 10.1016/j.chemosphere.2022.137359] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Omic-based technologies are of particular interest and importance for hazard identification and health risk characterization of chemicals. Their application in the new approach methodologies (NAMs) anchored on cellular toxicity pathways is based on the premise that any apical health endpoint change must be underpinned by some alterations at the omic levels. In the present study we examined the cellular responses to two chemicals, caffeine and coumarin, by generating and integrating multi-omic data from multi-dose and multi-time point transcriptomic, proteomic and phosphoproteomic experiments. We showed that the methodology presented here was able to capture the complete chain of events from the first chemical-induced changes at the phosphoproteome level, to changes in gene expression, and lastly to changes in protein abundance, each with vastly different points of departure (PODs). In HepG2 cells we found that the metabolism of lipids and general cellular stress response to be the dominant biological processes in response to caffeine and coumarin exposure, respectively. The phosphoproteomic changes were detected early in time, at very low doses and provided a fast, adaptive cellular response to chemical exposure with 7-37-fold lower points of departure comparing to the transcriptomics. Changes in protein abundance were found much less frequently than transcriptomic changes. While challenges remain, our study provides strong and novel evidence supporting the notion that these three omic technologies can be used in an integrated manner to facilitate a more complete understanding of pathway perturbations and POD determinations for risk assessment of chemical exposures.
Collapse
Affiliation(s)
- Yuan Li
- Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Songhao Jiang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Feng Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Liz Tulum
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Kaixuan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Shu Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Suzhen Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Lei Chang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Mark Liddell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Fengjuan Tu
- Unilever Research & Development Centre Shanghai, Shanghai, 200335, China
| | - Xuelan Gu
- Unilever Research & Development Centre Shanghai, Shanghai, 200335, China
| | - Paul Lawford Carmichael
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Andrew White
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Jin Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Tao Zuo
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China.
| | - Predrag Kukic
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK.
| | - Ping Xu
- Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, 071002, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
31
|
Pitaro M, Croce N, Gallo V, Arienzo A, Salvatore G, Antonini G. Coumarin-Induced Hepatotoxicity: A Narrative Review. Molecules 2022; 27:9063. [PMID: 36558195 PMCID: PMC9783661 DOI: 10.3390/molecules27249063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Coumarin is an effective treatment for primary lymphoedema, as well as lymphoedema related to breast cancer radiotherapy or surgery. However, its clinical use is limited in several countries due to the possible occurrence of hepatotoxicity, mainly in the form of mild to moderate transaminase elevation. It is worth noting that only a few cases of severe hepatotoxicity have been described in the literature, with no reported cases of liver failure. Data available on coumarin absorption, distribution, metabolism, and excretion have been reviewed, focusing on hepatotoxicity studies carried out in vitro and in vivo. Finally, safety and tolerability data from clinical trials have been thoroughly discussed. Based on these data, coumarin-induced hepatotoxicity is restricted to a small subset of patients, probably due to the activation in these individuals of alternative metabolic pathways involving specific CYP450s isoforms. The aim of this work is to stimulate research to clearly identify patients at risk of developing hepatotoxicity following coumarin treatment. Early identification of this subset of patients could open the possibility of more safely exploiting the therapeutical properties of coumarin, allowing patients suffering from lymphoedema to benefit from the anti-oedematous activity of the treatment.
Collapse
Affiliation(s)
- Michele Pitaro
- INBB—Biostructures and Biosystems National Institute, Viale delle Medaglie d’Oro 305, 00136 Rome, RM, Italy
| | - Nicoletta Croce
- INBB—Biostructures and Biosystems National Institute, Viale delle Medaglie d’Oro 305, 00136 Rome, RM, Italy
| | - Valentina Gallo
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, RM, Italy
| | - Alyexandra Arienzo
- INBB—Biostructures and Biosystems National Institute, Viale delle Medaglie d’Oro 305, 00136 Rome, RM, Italy
| | - Giulia Salvatore
- INBB—Biostructures and Biosystems National Institute, Viale delle Medaglie d’Oro 305, 00136 Rome, RM, Italy
| | - Giovanni Antonini
- INBB—Biostructures and Biosystems National Institute, Viale delle Medaglie d’Oro 305, 00136 Rome, RM, Italy
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, RM, Italy
| |
Collapse
|
32
|
Dimitrijevic D, Fabian E, Nicol B, Funk-Weyer D, Landsiedel R. Toward Realistic Dosimetry In Vitro: Determining Effective Concentrations of Test Substances in Cell Culture and Their Prediction by an In Silico Mass Balance Model. Chem Res Toxicol 2022; 35:1962-1973. [PMID: 36264934 PMCID: PMC9682521 DOI: 10.1021/acs.chemrestox.2c00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nominal concentrations (CNom) in cell culture media are routinely used to define concentration-effect relationships in the in vitro toxicology. The actual concentration in the medium (CMedium) can be affected by adsorption processes, evaporation, or degradation of chemicals. Therefore, we measured the total and free concentration of 12 chemicals, covering a wide range of lipophilicity (log KOW -0.07-6.84), in the culture medium (CMedium) and cells (CCell) after incubation with Balb/c 3T3 cells for up to 48 h. Measured values were compared to predictions using an as yet unpublished in silico mass balance model that combined relevant equations from similar models published by others. The total CMedium for all chemicals except tamoxifen (TAM) were similar to the CNom. This was attributed to the cellular uptake of TAM and accumulation into lysosomes. The free (i.e., unbound) CMedium for the low/no protein binding chemicals were similar to the CNom, whereas values of all moderately to highly protein-bound chemicals were less than 30% of the CNom. Of the 12 chemicals, the two most hydrophilic chemicals, acetaminophen (APAP) and caffeine (CAF), were the only ones for which the CCell was the same as the CNom. The CCell for all other chemicals tended to increase over time and were all 2- to 274-fold higher than CNom. Measurements of CCytosol, using a digitonin method to release cytosol, compared well with CCell (using a freeze-thaw method) for four chemicals (CAF, APAP, FLU, and KET), indicating that both methods could be used. The mass balance model predicted the total CMedium within 30% of the measured values for 11 chemicals. The free CMedium of all 12 chemicals were predicted within 3-fold of the measured values. There was a poorer prediction of CCell values, with a median overprediction of 3- to 4-fold. In conclusion, while the number of chemicals in the study is limited, it demonstrates the large differences between CNom and total and free CMedium and CCell, which were also relatively well predicted by the mass balance model.
Collapse
Affiliation(s)
- Dunja Dimitrijevic
- Free
University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Königin-Luise-Straße
2−4, 14195Berlin, Germany
| | - Eric Fabian
- BASF
SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67056Ludwigshafen am Rhein, Germany
| | - Beate Nicol
- Safety
& Environmental Assurance Centre, Unilever
U.K., Sharnbrook, MK44 ILQBedford, United Kingdom
| | - Dorothee Funk-Weyer
- BASF
SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67056Ludwigshafen am Rhein, Germany
| | - Robert Landsiedel
- Free
University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Königin-Luise-Straße
2−4, 14195Berlin, Germany,BASF
SE, Experimental Toxicology and Ecology, Carl-Bosch-Straße 38, 67056Ludwigshafen am Rhein, Germany,. Fax: +49 621 60-58134
| |
Collapse
|
33
|
Colbourne JK, Shaw JR, Sostare E, Rivetti C, Derelle R, Barnett R, Campos B, LaLone C, Viant MR, Hodges G. Toxicity by descent: A comparative approach for chemical hazard assessment. ENVIRONMENTAL ADVANCES 2022; 9:100287. [PMID: 39228468 PMCID: PMC11370884 DOI: 10.1016/j.envadv.2022.100287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Toxicology is traditionally divided between human and eco-toxicology. In the shared pursuit of environmental health, this separation does not account for discoveries made in the comparative studies of animal genomes. Here, we provide evidence on the feasibility of understanding the health impact of chemicals on all animals, including ecological keystone species and humans, based on a significant number of conserved genes and their functional associations to health-related outcomes across much of animal diversity. We test four conditions to understand the value of comparative genomics data to inform mechanism-based human and environmental hazard assessment: (1) genes that are most fundamental for health evolved early during animal evolution; (2) the molecular functions of pathways are better conserved among distantly related species than the individual genes that are members of these pathways; (3) the most conserved pathways among animals are those that cause adverse health outcomes when disrupted; (4) gene sets that serve as molecular signatures of biological processes or disease-states are largely enriched by evolutionarily conserved genes across the animal phylogeny. The concept of homology is applied in a comparative analysis of gene families and pathways among invertebrate and vertebrate species compared with humans. Results show that over 70% of gene families associated with disease are shared among the greatest variety of animal species through evolution. Pathway conservation between invertebrates and humans is based on the degree of conservation within vertebrates and the number of interacting genes within the human network. Human gene sets that already serve as biomarkers are enriched by evolutionarily conserved genes across the animal phylogeny. By implementing a comparative method for chemical hazard assessment, human and eco-toxicology converge towards a more holistic and mechanistic understanding of toxicity disrupting biological processes that are important for health and shared among animals (including humans).
Collapse
Affiliation(s)
- John K. Colbourne
- Michabo Health Science Ltd, Coventry CV1 2NT, UK
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Joseph R. Shaw
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington 47405, USA
| | | | - Claudia Rivetti
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | | | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Carlie LaLone
- US Environmental Protection Agency, Duluth 55804, USA
| | - Mark R. Viant
- Michabo Health Science Ltd, Coventry CV1 2NT, UK
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| |
Collapse
|
34
|
Terasaka S, Hayashi A, Nukada Y, Yamane M. Investigating the uncertainty of prediction accuracy for the application of physiologically based pharmacokinetic models to animal-free risk assessment of cosmetic ingredients. Regul Toxicol Pharmacol 2022; 135:105262. [PMID: 36103952 DOI: 10.1016/j.yrtph.2022.105262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models are considered useful tools in animal-free risk assessment. To utilize PBPK models for risk assessment, it is necessary to compare their reliability with in vivo data. However, obtaining in vivo pharmacokinetics data for cosmetic ingredients is difficult, complicating the utilization of PBPK models for risk assessment. In this study, to utilize PBPK models for risk assessment without accuracy evaluation, we proposed a novel concept-the modeling uncertainty factor (MUF). By calculating the prediction accuracy for 150 compounds, we established that using in vitro data for metabolism-related parameters and limiting the applicability domain increase the prediction accuracy of a PBPK model. Based on the 97.5th percentile of prediction accuracy, MUF was defined at 10 for the area under the plasma concentration curve and 6 for Cmax. A case study on animal-free risk assessment was conducted for bisphenol A using these MUFs. As this study was conducted mainly on pharmaceuticals, further investigation using cosmetic ingredients is pivotal. However, since internal exposure is essential in realizing animal-free risk assessment, our concept will serve as a useful tool to predict plasma concentrations without using in vivo data.
Collapse
Affiliation(s)
- Shimpei Terasaka
- Kao Corporation, Safety Science Research, 2-1-3, Bunka, Sumida-Ku, Tokyo, 131-8501, Japan.
| | - Akane Hayashi
- Kao Corporation, Safety Science Research, 2-1-3, Bunka, Sumida-Ku, Tokyo, 131-8501, Japan
| | - Yuko Nukada
- Kao Corporation, Safety Science Research, 2-1-3, Bunka, Sumida-Ku, Tokyo, 131-8501, Japan
| | - Masayuki Yamane
- Kao Corporation, Safety Science Research, 2-1-3, Bunka, Sumida-Ku, Tokyo, 131-8501, Japan
| |
Collapse
|
35
|
Miller-Holt J, Behrsing HP, Clippinger AJ, Hirn C, Stedeford TJ, Stucki AO. Use of new approach methodologies (NAMs) to meet regulatory requirements for the assessment of tobacco and other nicotine-containing products. FRONTIERS IN TOXICOLOGY 2022; 4:943358. [PMID: 36157974 PMCID: PMC9500230 DOI: 10.3389/ftox.2022.943358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Regulatory frameworks on tobacco and other nicotine-containing products (TNCP) continue to evolve as novel products emerge, including electronic nicotine delivery systems (e.g., electronic cigarettes or vaping products), heated tobacco products, or certain smokeless products (e.g., nicotine pouches). This article focuses on selected regulations for TNCPs that do not make health claims, and on the opportunities to use new approach methodologies (NAMs) to meet regulatory requirements for toxicological information. The manuscript presents a brief overview of regulations and examples of feedback from regulatory agencies whilst highlighting NAMs that have been successfully applied, or could be used, in a regulatory setting, either as stand-alone methods or as part of a weight-of-evidence approach to address selected endpoints. The authors highlight the need for agencies and stakeholders to collaborate and communicate on the development and application of NAMs to address specific regulatory toxicological endpoints. Collaboration across sectors and geographies will facilitate harmonized use of robust testing approaches to evaluate TNCPs without animal testing.
Collapse
Affiliation(s)
| | | | | | - Carole Hirn
- Scientific and Regulatory Affairs, JT International SA, Geneva, Switzerland
| | | | | |
Collapse
|
36
|
El-Masri H, Paul Friedman K, Isaacs K, Wetmore BA. Advances in computational methods along the exposure to toxicological response paradigm. Toxicol Appl Pharmacol 2022; 450:116141. [PMID: 35777528 PMCID: PMC9619339 DOI: 10.1016/j.taap.2022.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Human health risk assessment is a function of chemical toxicity, bioavailability to reach target biological tissues, and potential environmental exposure. These factors are complicated by many physiological, biochemical, physical and lifestyle factors. Furthermore, chemical health risk assessment is challenging in view of the large, and continually increasing, number of chemicals found in the environment. These challenges highlight the need to prioritize resources for the efficient and timely assessment of those environmental chemicals that pose greatest health risks. Computational methods, either predictive or investigative, are designed to assist in this prioritization in view of the lack of cost prohibitive in vivo experimental data. Computational methods provide specific and focused toxicity information using in vitro high throughput screening (HTS) assays. Information from the HTS assays can be converted to in vivo estimates of chemical levels in blood or target tissue, which in turn are converted to in vivo dose estimates that can be compared to exposure levels of the screened chemicals. This manuscript provides a review for the landscape of computational methods developed and used at the U.S. Environmental Protection Agency (EPA) highlighting their potentials and challenges.
Collapse
Affiliation(s)
- Hisham El-Masri
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kristin Isaacs
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Barbara A Wetmore
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
37
|
Middleton AM, Reynolds J, Cable S, Baltazar MT, Li H, Bevan S, Carmichael PL, Dent MP, Hatherell S, Houghton J, Kukic P, Liddell M, Malcomber S, Nicol B, Park B, Patel H, Scott S, Sparham C, Walker P, White A. Are Non-animal Systemic Safety Assessments Protective? A Toolbox and Workflow. Toxicol Sci 2022; 189:124-147. [PMID: 35822611 PMCID: PMC9412174 DOI: 10.1093/toxsci/kfac068] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
An important question in toxicological risk assessment is whether non-animal new approach methodologies (NAMs) can be used to make safety decisions that are protective of human health, without being overly conservative. In this work, we propose a core NAM toolbox and workflow for conducting systemic safety assessments for adult consumers. We also present an approach for evaluating how protective and useful the toolbox and workflow are by benchmarking against historical safety decisions. The toolbox includes physiologically based kinetic (PBK) models to estimate systemic Cmax levels in humans, and 3 bioactivity platforms, comprising high-throughput transcriptomics, a cell stress panel, and in vitro pharmacological profiling, from which points of departure are estimated. A Bayesian model was developed to quantify the uncertainty in the Cmax estimates depending on how the PBK models were parameterized. The feasibility of the evaluation approach was tested using 24 exposure scenarios from 10 chemicals, some of which would be considered high risk from a consumer goods perspective (eg, drugs that are systemically bioactive) and some low risk (eg, existing food or cosmetic ingredients). Using novel protectiveness and utility metrics, it was shown that up to 69% (9/13) of the low risk scenarios could be identified as such using the toolbox, whilst being protective against all (5/5) the high-risk ones. The results demonstrated how robust safety decisions could be made without using animal data. This work will enable a full evaluation to assess how protective and useful the toolbox and workflow are across a broader range of chemical-exposure scenarios.
Collapse
Affiliation(s)
| | - Joe Reynolds
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | - Sophie Cable
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | | | - Hequn Li
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | | | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | - Matthew Philip Dent
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | - Sarah Hatherell
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | - Jade Houghton
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | - Predrag Kukic
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | - Mark Liddell
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | - Sophie Malcomber
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | - Beate Nicol
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | | | - Hiral Patel
- Charles River Laboratories, Cambridgeshire, CB10 1XL, UK
| | - Sharon Scott
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | - Chris Sparham
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| | - Paul Walker
- Cyprotex Discovery Ltd, Cheshire SK10 4TG, UK
| | - Andrew White
- Unilever Safety and Environmental Assurance Centre, Bedfordshire MK44 1LQ, UK
| |
Collapse
|
38
|
Macmillan DS, Chilton ML, Gao Y, Kern PS, Schneider SN. How to resolve inconclusive predictions from defined approaches for skin sensitisation in OECD Guideline No. 497. Regul Toxicol Pharmacol 2022; 135:105248. [PMID: 36007801 DOI: 10.1016/j.yrtph.2022.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 10/31/2022]
Abstract
In June 2021 the Organisation for Economic Co-operation and Development published Guideline No. 497 on Defined Approaches for Skin Sensitisation (DASS GL). There are two DAs published, known as the 2o3 and the ITS. The 2o3 uses two concordant results from either the DPRA, KeratinoSens™, or the h-CLAT assays to predict hazard (sensitiser/non-sensitiser). The ITS applies a score to results from the DPRA, the h-CLAT and an in silico model to predict United Nations Globally Harmonized System (GHS) sub-categories (1A/1B/Not Classified). The ITS can use Derek Nexus as the in silico model (known as ITSv1) or use OECD QSAR Toolbox (known as ITSv2). As limitations of the individual in chemico/in vitro assays and in silico predictions are carried through to the DAs, inconclusive predictions are possible for chemicals with results in the borderline range, and chemicals with out of domain results. However, these inconclusive predictions can be resolved by applying a weight of evidence approach. Herein, four case studies are presented, each 'inconclusive' for skin sensitisation potential according to both DAs. A weight of evidence approach was applied to each using a robust scientific approach to provide a conclusive prediction, where possible, based on several additional, non-animal lines of evidence.
Collapse
Affiliation(s)
- Donna S Macmillan
- Humane Society International, 1255 23rd St. NW, Suite 450. Washington, DC, 20037, USA.
| | - Martyn L Chilton
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - Yuan Gao
- Procter & Gamble Technology (Beijing) Co., Ltd, China
| | - Petra S Kern
- Procter & Gamble Services NV, Temselaan 100, B-1853, Strombeek-Bever, Belgium
| | | |
Collapse
|
39
|
Rusyn I, Sakolish C, Kato Y, Stephan C, Vergara L, Hewitt P, Bhaskaran V, Davis M, Hardwick RN, Ferguson SS, Stanko JP, Bajaj P, Adkins K, Sipes NS, Hunter ES, Baltazar MT, Carmichael PL, Sadh K, Becker RA. Microphysiological Systems Evaluation: Experience of TEX-VAL Tissue Chip Testing Consortium. Toxicol Sci 2022; 188:143-152. [PMID: 35689632 PMCID: PMC9333404 DOI: 10.1093/toxsci/kfac061] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Much has been written and said about the promise and excitement of microphysiological systems, miniature devices that aim to recreate aspects of human physiology on a chip. The rapid explosion of the offerings and persistent publicity placed high expectations on both product manufacturers and regulatory agencies to adopt the data. Inevitably, discussions of where this technology fits in chemical testing paradigms are ongoing. Some end-users became early adopters, whereas others have taken a more cautious approach because of the high cost and uncertainties of their utility. Here, we detail the experience of a public-private collaboration established for testing of diverse microphysiological systems. Collectively, we present a number of considerations on practical aspects of using microphysiological systems in the context of their applications in decision-making. Specifically, future end-users need to be prepared for extensive on-site optimization and have access to a wide range of imaging and other equipment. We reason that cells, related reagents, and the technical skills of the research staff, not the devices themselves, are the most critical determinants of success. Extrapolation from concentration-response effects in microphysiological systems to human blood or oral exposures, difficulties with replicating the whole organ, and long-term functionality remain as critical challenges. Overall, we conclude that it is unlikely that a rodent- or human-equivalent model is achievable through a finite number of microphysiological systems in the near future; therefore, building consensus and promoting the gradual incorporation of these models into tiered approaches for safety assessment and decision-making is the sensible path to wide adoption.
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Yuki Kato
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Clifford Stephan
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, USA
| | - Leoncio Vergara
- Institute of Biosciences and Technology, Texas A&M University, Houston, Texas 77030, USA
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Vasanthi Bhaskaran
- Discovery Toxicology, Bristol Myers Squibb, Princeton, New Jersey 08543, USA
| | - Myrtle Davis
- Discovery Toxicology, Bristol Myers Squibb, Princeton, New Jersey 08543, USA
| | - Rhiannon N Hardwick
- Discovery Toxicology, Bristol Myers Squibb, San Diego, California 92130, USA
| | - Stephen S Ferguson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Jason P Stanko
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Framingham, Massachusetts 01701, USA
| | - Karissa Adkins
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Framingham, Massachusetts 01701, USA
| | - Nisha S Sipes
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, USA
| | - E Sidney Hunter
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711, USA
| | - Maria T Baltazar
- Unilever Safety and Environmental Assurance Centre, Bedfordshire, Sharnbrook MK44 1LQ, UK
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Centre, Bedfordshire, Sharnbrook MK44 1LQ, UK
| | - Kritika Sadh
- Unilever Safety and Environmental Assurance Centre, Bedfordshire, Sharnbrook MK44 1LQ, UK
| | - Richard A Becker
- American Chemistry Council, Washington, District of Columbia 20002, USA
| |
Collapse
|
40
|
van Tongeren TC, Carmichael PL, Rietjens IM, Li H. Next Generation Risk Assessment of the Anti-Androgen Flutamide Including the Contribution of Its Active Metabolite Hydroxyflutamide. FRONTIERS IN TOXICOLOGY 2022; 4:881235. [PMID: 35722059 PMCID: PMC9201820 DOI: 10.3389/ftox.2022.881235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/29/2022] [Indexed: 12/03/2022] Open
Abstract
In next generation risk assessment (NGRA), non-animal approaches are used to quantify the chemical concentrations required to trigger bioactivity responses, in order to assure safe levels of human exposure. A limitation of many in vitro bioactivity assays, which are used in an NGRA context as new approach methodologies (NAMs), is that toxicokinetics, including biotransformation, are not adequately captured. The present study aimed to include, as a proof of principle, the bioactivity of the metabolite hydroxyflutamide (HF) in an NGRA approach to evaluate the safety of the anti-androgen flutamide (FLU), using the AR-CALUX assay to derive the NAM point of departure (PoD). The NGRA approach applied also included PBK modelling-facilitated quantitative in vitro to in vivo extrapolation (QIVIVE). The PBK model describing FLU and HF kinetics in humans was developed using GastroPlus™ and validated against human pharmacokinetic data. PBK model-facilitated QIVIVE was performed to translate the in vitro AR-CALUX derived concentration-response data to a corresponding in vivo dose-response curve for the anti-androgenicity of FLU, excluding and including the activity of HF (-HF and +HF, respectively). The in vivo benchmark dose 5% lower confidence limits (BMDL05) derived from the predicted in vivo dose-response curves for FLU, revealed a 440-fold lower BMDL05 when taking the bioactivity of HF into account. Subsequent comparison of the predicted BMDL05 values to the human therapeutic doses and historical animal derived PoDs, revealed that PBK modelling-facilitated QIVIVE that includes the bioactivity of the active metabolite is protective and provides a more appropriate PoD to assure human safety via NGRA, whereas excluding this would potentially result in an underestimation of the risk of FLU exposure in humans.
Collapse
Affiliation(s)
| | - Paul L. Carmichael
- Unilever Safety and Environmental Assurance Centre, Sharnbrook, United Kingdom
| | | | - Hequn Li
- Unilever Safety and Environmental Assurance Centre, Sharnbrook, United Kingdom
| |
Collapse
|
41
|
Zhang Z, Zhang Y, Li Y, Jiang S, Xu F, Li K, Chang L, Gao H, Kukic P, Carmichael P, Liddell M, Li J, Zhang Q, Lyu Z, Peng S, Zuo T, Tulum L, Xu P. Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol 2022; 449:116110. [DOI: 10.1016/j.taap.2022.116110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022]
|
42
|
Basili D, Reynolds J, Houghton J, Malcomber S, Chambers B, Liddell M, Muller I, White A, Shah I, Everett LJ, Middleton A, Bender A. Latent Variables Capture Pathway-Level Points of Departure in High-Throughput Toxicogenomic Data. Chem Res Toxicol 2022; 35:670-683. [PMID: 35333521 PMCID: PMC9019810 DOI: 10.1021/acs.chemrestox.1c00444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/28/2022]
Abstract
Estimation of points of departure (PoDs) from high-throughput transcriptomic data (HTTr) represents a key step in the development of next-generation risk assessment (NGRA). Current approaches mainly rely on single key gene targets, which are constrained by the information currently available in the knowledge base and make interpretation challenging as scientists need to interpret PoDs for thousands of genes or hundreds of pathways. In this work, we aimed to address these issues by developing a computational workflow to investigate the pathway concentration-response relationships in a way that is not fully constrained by known biology and also facilitates interpretation. We employed the Pathway-Level Information ExtractoR (PLIER) to identify latent variables (LVs) describing biological activity and then investigated in vitro LVs' concentration-response relationships using the ToxCast pipeline. We applied this methodology to a published transcriptomic concentration-response data set for 44 chemicals in MCF-7 cells and showed that our workflow can capture known biological activity and discriminate between estrogenic and antiestrogenic compounds as well as activity not aligning with the existing knowledge base, which may be relevant in a risk assessment scenario. Moreover, we were able to identify the known estrogen activity in compounds that are not well-established ER agonists/antagonists supporting the use of the workflow in read-across. Next, we transferred its application to chemical compounds tested in HepG2, HepaRG, and MCF-7 cells and showed that PoD estimates are in strong agreement with those estimated using a recently developed Bayesian approach (cor = 0.89) and in weak agreement with those estimated using a well-established approach such as BMDExpress2 (cor = 0.57). These results demonstrate the effectiveness of using PLIER in a concentration-response scenario to investigate pathway activity in a way that is not fully constrained by the knowledge base and to ease the biological interpretation and support the development of an NGRA framework with the ability to improve current risk assessment strategies for chemicals using new approach methodologies.
Collapse
Affiliation(s)
- Danilo Basili
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Joe Reynolds
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Jade Houghton
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Sophie Malcomber
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Bryant Chambers
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina 27711, United States
| | - Mark Liddell
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Iris Muller
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Andrew White
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Imran Shah
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina 27711, United States
| | - Logan J. Everett
- Center
for Computational Toxicology and Exposure, Office of Research and
Development, U.S. Environmental Protection
Agency, Research Triangle Park, North Carolina 27711, United States
| | - Alistair Middleton
- Unilever,
Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K.
| | - Andreas Bender
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
43
|
Sørli JB, Sengupta S, Jensen ACØ, Nikiforov V, Clausen PA, Hougaard KS, Højriis S, Frederiksen M, Hadrup N. Risk assessment of consumer spray products using in vitro lung surfactant function inhibition, exposure modelling and chemical analysis. Food Chem Toxicol 2022; 164:112999. [PMID: 35427705 DOI: 10.1016/j.fct.2022.112999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
Consumer spray products release aerosols that can potentially be inhaled and reach the deep parts of the lungs. A thin layer of liquid, containing a mixture of proteins and lipids known as lung surfactant, coats the alveoli. Inhibition of lung surfactant function can lead to acute loss of lung function. We focused on two groups of spray products; 8 cleaning and 13 impregnation products, and in the context of risk assessment, used an in vitro method for assessing inhibition of lung surfactant function. Original spray-cans were used to generate aerosols to measure aerodynamic particle size distribution. We recreated a real-life exposure scenario to estimate the alveolar deposited dose. Most impregnation products inhibited lung surfactant function at the lowest aerosolization rate, whereas only two cleaning products inhibited function at the highest rates. We used inhibitory dose and estimated alveolar deposition to calculate the margin of safety (MoS). The MoS for the inhibitory products was ≤1 for the impregnation products, while much larger for the cleaning products (>880). This risk assessment focused on the risk of lung surfactant function disruption and provides knowledge on an endpoint of lung toxicity that is not investigated by the currently available OECD test guidelines.
Collapse
Affiliation(s)
- J B Sørli
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - S Sengupta
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - A C Ø Jensen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - V Nikiforov
- Norwegian Institute for Air Research (NILU), Tromsø, Norway.
| | - P A Clausen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - K S Hougaard
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Sara Højriis
- COWI, Parallelvej 2, Kgs, Lyngby, Denmark; DHI A/S, Agern Allé 5, Hørsholm, Denmark.
| | - M Frederiksen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - N Hadrup
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| |
Collapse
|
44
|
PBK modelling of topical application and characterisation of the uncertainty of C max estimate: A case study approach. Toxicol Appl Pharmacol 2022; 442:115992. [PMID: 35346730 DOI: 10.1016/j.taap.2022.115992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
Abstract
Combined with in vitro bioactivity data, physiologically based kinetic (PBK) models has increasing applications in next generation risk assessment for animal-free safety decision making. A tiered framework of building PBK models for such application has been developed with increasing complexity and refinements, as model parameters determined in silico, in vitro, and with human pharmacokinetic data become progressively available. PBK modelling has been widely applied for oral/intravenous administration, but less so on topically applied chemicals. Therefore, building PBK models for topical applications and characterizing their uncertainties in the tiered approach is critical to safety decision making. The purpose of this study was to assess the confidence of PBK modelling of topically applied chemicals following the tiered framework, using non-animal methods derived parameters. Prediction of maximum plasma concentration (Cmax) and area under the curve were compared to observed kinetics from published dermal clinical studies for five chemicals (diclofenac, salicylic acid, coumarin, nicotine, caffeine). A bespoke Bayesian statistical model was developed to describe the distributions of Cmax errors between the predicted and observed data. We showed a general trend that confidence in model predictions increases when more quality in vitro data, particularly those on hepatic clearance and dermal absorption, are available as model input. The overall fold error distributions are useful for characterizing model uncertainty. We concluded that by identifying and quantifying the uncertainties in the tiered approach, we can increase the confidence in using PBK modelling to help make safety decisions on topically applied chemicals in the absence of human pharmacokinetic data.
Collapse
|
45
|
Gilmour N, Reynolds J, Przybylak K, Aleksic M, Aptula N, Baltazar MT, Cubberley R, Rajagopal R, Reynolds G, Spriggs S, Thorpe C, Windebank S, Maxwell G. Next generation risk assessment for skin allergy: Decision making using new approach methodologies. Regul Toxicol Pharmacol 2022; 131:105159. [PMID: 35311660 DOI: 10.1016/j.yrtph.2022.105159] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
Our aim is to develop and apply next generation approaches to skin allergy risk assessment (SARA) that do not require new animal test data and better quantify uncertainties. Significant progress has been made in the development of New Approach Methodologies (NAMs), non-animal test methods, for assessment of skin sensitisation and there is now focus on their application to derive potency information for use in Next Generation Risk Assessment (NGRA). The SARA model utilises a Bayesian statistical approach to infer a human-relevant metric of sensitiser potency and a measure of risk associated with a given consumer exposure based upon any combination of human repeat insult patch test, local lymph node, direct peptide reactivity assay, KeratinoSens™, h-CLAT or U-SENS™ data. Here we have applied the SARA model within our weight of evidence NGRA framework for skin allergy to three case study materials in four consumer products. Highlighting how to structure the risk assessment, apply NAMs to derive a point of departure and conclude on consumer safety risk. NGRA based upon NAMs were, for these exposures, at least as protective as the historical risk assessment approaches. Through such case studies we are building our confidence in using NAMs for skin allergy risk assessment.
Collapse
Affiliation(s)
- N Gilmour
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK.
| | - J Reynolds
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - K Przybylak
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - M Aleksic
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - N Aptula
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - M T Baltazar
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - R Cubberley
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - R Rajagopal
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - G Reynolds
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - S Spriggs
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - C Thorpe
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - S Windebank
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - G Maxwell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| |
Collapse
|
46
|
Rajagopal R, Baltazar MT, Carmichael PL, Dent MP, Head J, Li H, Muller I, Reynolds J, Sadh K, Simpson W, Spriggs S, White A, Kukic P. Beyond AOPs: A Mechanistic Evaluation of NAMs in DART Testing. FRONTIERS IN TOXICOLOGY 2022; 4:838466. [PMID: 35295212 PMCID: PMC8915803 DOI: 10.3389/ftox.2022.838466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
New Approach Methodologies (NAMs) promise to offer a unique opportunity to enable human-relevant safety decisions to be made without the need for animal testing in the context of exposure-driven Next Generation Risk Assessment (NGRA). Protecting human health against the potential effects a chemical may have on embryo-foetal development and/or aspects of reproductive biology using NGRA is particularly challenging. These are not single endpoint or health effects and risk assessments have traditionally relied on data from Developmental and Reproductive Toxicity (DART) tests in animals. There are numerous Adverse Outcome Pathways (AOPs) that can lead to DART, which means defining and developing strict testing strategies for every AOP, to predict apical outcomes, is neither a tenable goal nor a necessity to ensure NAM-based safety assessments are fit-for-purpose. Instead, a pragmatic approach is needed that uses the available knowledge and data to ensure NAM-based exposure-led safety assessments are sufficiently protective. To this end, the mechanistic and biological coverage of existing NAMs for DART were assessed and gaps to be addressed were identified, allowing the development of an approach that relies on generating data relevant to the overall mechanisms involved in human reproduction and embryo-foetal development. Using the knowledge of cellular processes and signalling pathways underlying the key stages in reproduction and development, we have developed a broad outline of endpoints informative of DART. When the existing NAMs were compared against this outline to determine whether they provide comprehensive coverage when integrated in a framework, we found them to generally cover the reproductive and developmental processes underlying the traditionally evaluated apical endpoint studies. The application of this safety assessment framework is illustrated using an exposure-led case study.
Collapse
Affiliation(s)
- Ramya Rajagopal
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nitsche KS, Müller I, Malcomber S, Carmichael PL, Bouwmeester H. Implementing organ-on-chip in a next-generation risk assessment of chemicals: a review. Arch Toxicol 2022; 96:711-741. [PMID: 35103818 PMCID: PMC8850248 DOI: 10.1007/s00204-022-03234-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
Abstract
Organ-on-chip (OoC) technology is full of engineering and biological challenges, but it has the potential to revolutionize the Next-Generation Risk Assessment of novel ingredients for consumer products and chemicals. A successful incorporation of OoC technology into the Next-Generation Risk Assessment toolbox depends on the robustness of the microfluidic devices and the organ tissue models used. Recent advances in standardized device manufacturing, organ tissue cultivation and growth protocols offer the ability to bridge the gaps towards the implementation of organ-on-chip technology. Next-Generation Risk Assessment is an exposure-led and hypothesis-driven tiered approach to risk assessment using detailed human exposure information and the application of appropriate new (non-animal) toxicological testing approaches. Organ-on-chip presents a promising in vitro approach by combining human cell culturing with dynamic microfluidics to improve physiological emulation. Here, we critically review commercial organ-on-chip devices, as well as recent tissue culture model studies of the skin, intestinal barrier and liver as the main metabolic organ to be used on-chip for Next-Generation Risk Assessment. Finally, microfluidically linked tissue combinations such as skin-liver and intestine-liver in organ-on-chip devices are reviewed as they form a relevant aspect for advancing toxicokinetic and toxicodynamic studies. We point to recent achievements and challenges to overcome, to advance non-animal, human-relevant safety studies.
Collapse
Affiliation(s)
- Katharina S Nitsche
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands.
| | - Iris Müller
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Sophie Malcomber
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Paul L Carmichael
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
| |
Collapse
|
48
|
Huh Y, Lee DH, Choi D, Lim KM. Effect of Cosmetics Use on the In Vitro Skin Absorption of a Biocide, 1,2-Benzisothiazolin-3-one. TOXICS 2022; 10:108. [PMID: 35324733 PMCID: PMC8948713 DOI: 10.3390/toxics10030108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023]
Abstract
1,2-Benzisothiazolin-3-one (BIT) is a commonly used organic biocide containing an isothiazolone ring. However, it may have adverse effects on human health and its risk needs to be properly evaluated. Dermal exposure is the main route of BIT exposure, and co-exposed substances may affect its absorption. The dermal permeation profile of BIT has not been well-studied. This study aimed to investigate the dermal permeation profiles of BIT with or without cosmetic use. Dermal permeation profiles of BIT were investigated after infinite- (100 μg/cm2), or a finite-dose (10 μg/cm2) application with or without cosmetics using a minipig skin and Strat-M®, an artificial membrane. A cream, lotion, and essence (namely, face serum) were pre-treated as representative cosmetics on minipig skin for 30 min, with BIT treatment afterward. After the treatment, BIT left on the skin surface was collected by cotton swabbing, BIT in the stratum corneum, by sequential tape stripping, and BIT retained in the remaining skin was extracted after cutting the skin into pieces before LC-MS/MS analysis. When an infinite dose was applied, permeation coefficients (Kp, cm/h) for minipig skin and Strat-M® were 2.63 × 10-3 and 19.94 × 10-3, respectively, reflecting that skin permeation was seven to eight times higher in Strat-M® than in the minipig skin. BIT, in the presence of cosmetics, rapidly permeated the skin, while the amount in the stratum corneum and skin deposit was reduced. We performed a risk assessment of dermally applied BIT in the absence or presence of cosmetics by calculating the skin absorption rate at 10 h based on the toxicological data from several references. The risk level was higher in the presence of essence as compared to lotion, which was higher than cream, which was higher than the control (non-treated). However, all of the margins of safety values obtained were greater than 100, suggesting that BIT is safe for use in dermally exposed consumer products. We believe that this research contributes to a greater understanding of the risk assessment of isothiazolinone biocides.
Collapse
Affiliation(s)
- Yoonjung Huh
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
| | - Do-Hyeon Lee
- Transdisciplinary Major in Learning Health Systems, Department of Health and Safety Convergence Science, Korea University, Seoul 02481, Korea;
| | - Dalwoong Choi
- Transdisciplinary Major in Learning Health Systems, Department of Health and Safety Convergence Science, Korea University, Seoul 02481, Korea;
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
| |
Collapse
|
49
|
Hewitt NJ, Troutman J, Przibilla J, Schepky A, Ouédraogo G, Mahony C, Kenna G, Varçin M, Dent MP. Use of in vitro metabolism and biokinetics assays to refine predicted in vivo and in vitro internal exposure to the cosmetic ingredient, phenoxyethanol, for use in risk assessment. Regul Toxicol Pharmacol 2022; 131:105132. [PMID: 35217105 DOI: 10.1016/j.yrtph.2022.105132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 01/04/2023]
Abstract
A novel approach was developed to help characterize the biokinetics of the cosmetic ingredient, phenoxyethanol, to help assess the safety of the parent and its major stable metabolite. In the first step of this non-animal tiered approach, primary human hepatocytes were used to confirm or refute in silico predicted metabolites, and elucidate the intrinsic clearance of phenoxyethanol. A key result was the identification of the major metabolite, phenoxyacetic acid (PAA), the exposure to which in the kidney was subsequently predicted to far exceed that of phenoxyethanol in blood or other tissues. Therefore, a novel aspect of this approach was to measure in the subsequent step the formation of PAA in the cells dosed with phenoxyethanol that were used to provide points of departure (PoDs) and express the intracellular exposure as the Cmax and AUC24. This enabled the calculation of the intracellular concentrations of parent and metabolite at the PoD in the cells used to derive this value. These concentrations can be compared with in vivo tissue levels to conclude on the safety margin. The lessons from this case study will help to inform the design of other non-animal safety assessments.
Collapse
Affiliation(s)
- Nicola J Hewitt
- Cosmetics Europe, Avenue Herrmann-Debroux 40, 1160, Auderghem, Belgium
| | | | - Julia Przibilla
- Pharmacelsus GmbH, Science Park 2, D-66123, Saarbrücken, Germany
| | | | - Gladys Ouédraogo
- L'Oréal, Research & Innovation, 9 rue Pierre Dreyfus, 92110, Clichy, France
| | | | - Gerry Kenna
- Drug Safety Consultant, 2 Farmfield Drive, Macclesfield, Cheshire, SK10 2TJ, UK
| | - Mustafa Varçin
- Cosmetics Europe, Avenue Herrmann-Debroux 40, 1160, Auderghem, Belgium
| | - Mathew P Dent
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| |
Collapse
|
50
|
Zhang J, Chang X, Holland TL, Hines DE, Karmaus AL, Bell S, Lee KM. Evaluation of Inhalation Exposures and Potential Health Impacts of Ingredient Mixtures Using in vitro to in vivo Extrapolation. FRONTIERS IN TOXICOLOGY 2022; 3:787756. [PMID: 35295123 PMCID: PMC8915826 DOI: 10.3389/ftox.2021.787756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
In vitro methods offer opportunities to provide mechanistic insight into bioactivity as well as human-relevant toxicological assessments compared to animal testing. One of the challenges for this task is putting in vitro bioactivity data in an in vivo exposure context, for which in vitro to in vivo extrapolation (IVIVE) translates in vitro bioactivity to clinically relevant exposure metrics using reverse dosimetry. This study applies an IVIVE approach to the toxicity assessment of ingredients and their mixtures in e-cigarette (EC) aerosols as a case study. Reported in vitro cytotoxicity data of EC aerosols, as well as in vitro high-throughput screening (HTS) data for individual ingredients in EC liquids (e-liquids) are used. Open-source physiologically based pharmacokinetic (PBPK) models are used to calculate the plasma concentrations of individual ingredients, followed by reverse dosimetry to estimate the human equivalent administered doses (EADs) needed to obtain these plasma concentrations for the total e-liquids. Three approaches (single actor approach, additive effect approach, and outcome-oriented ingredient integration approach) are used to predict EADs of e-liquids considering differential contributions to the bioactivity from the ingredients (humectant carriers [propylene glycol and glycerol], flavors, benzoic acid, and nicotine). The results identified critical factors for the EAD estimation, including the ingredients of the mixture considered to be bioactive, in vitro assay selection, and the data integration approach for mixtures. Further, we introduced the outcome-oriented ingredient integration approach to consider e-liquid ingredients that may lead to a common toxicity outcome (e.g., cytotoxicity), facilitating a quantitative evaluation of in vitro toxicity data in support of human risk assessment.
Collapse
Affiliation(s)
- Jingjie Zhang
- Altria Client Services, LLC, Richmond, VA, United States
- *Correspondence: Jingjie Zhang,
| | - Xiaoqing Chang
- Integrated Laboratory Systems, LLC, Morrisville, NC, United States
| | - Tessa L. Holland
- Lancaster Laboratories, c/o Altria Client Services, LLC, Regulatory Affairs, VA, Richmond, United States
| | - David E. Hines
- Integrated Laboratory Systems, LLC, Morrisville, NC, United States
| | - Agnes L. Karmaus
- Integrated Laboratory Systems, LLC, Morrisville, NC, United States
| | - Shannon Bell
- Integrated Laboratory Systems, LLC, Morrisville, NC, United States
| | - K. Monica Lee
- Altria Client Services, LLC, Richmond, VA, United States
| |
Collapse
|