1
|
Naveed M, Shen Z, Bao J. Sperm-borne small non-coding RNAs: potential functions and mechanisms as epigenetic carriers. Cell Biosci 2025; 15:5. [PMID: 39825433 PMCID: PMC11740426 DOI: 10.1186/s13578-025-01347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025] Open
Abstract
Over the past two decades, the study of sperm-borne small non-coding RNAs (sncRNAs) has garnered substantial growth. Once considered mere byproducts during germ cell maturation, these sncRNAs have now been recognized as crucial carriers of epigenetic information, playing a significant role in transmitting acquired traits from paternal to offspring, particularly under environmental influences. A growing body of evidence highlights the pivotal role of these sncRNAs in facilitating epigenetic inheritance across generations. However, the exact mechanisms through which these paternally supplied epigenetic carriers operate remain unclear and are under hot debate. This concise review presents the most extensive evidence to date on environmentally-responsive sperm-borne sncRNAs, encompassing brief summary of their origin, dynamics, compartmentalization, characteristics, as well as in-depth elaboration of their functional roles in epigenetic and transgenerational inheritance. Additionally, the review delves into the potential mechanisms by which sperm-delivered sncRNAs may acquire and transmit paternally acquired traits to offspring, modulating zygotic gene expression and influencing early embryonic development.
Collapse
Affiliation(s)
- Muhammad Naveed
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Zhaokang Shen
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Jianqiang Bao
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China.
| |
Collapse
|
2
|
Akhatova A, Jones C, Coward K, Yeste M. How do lifestyle and environmental factors influence the sperm epigenome? Effects on sperm fertilising ability, embryo development, and offspring health. Clin Epigenetics 2025; 17:7. [PMID: 39819375 PMCID: PMC11740528 DOI: 10.1186/s13148-025-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Recent studies support the influence of paternal lifestyle and diet before conception on the health of the offspring via epigenetic inheritance through sperm DNA methylation, histone modification, and small non-coding RNA (sncRNA) expression and regulation. Smoking may induce DNA hypermethylation in genes related to anti-oxidation and insulin resistance. Paternal diet and obesity are associated with greater risks of metabolic dysfunction in offspring via epigenetic alterations in the sperm. Metabolic changes, such as high blood glucose levels and increased body weight, are commonly observed in the offspring of fathers subjected to chronic stress, in addition to an enhanced risk of depressive-like behaviour and increased sensitivity to stress in both the F0 and F1 generations. DNA methylation is correlated with alterations in sperm quality and the ability to fertilise oocytes, possibly via a differentially regulated MAKP81IP3 signalling pathway. Paternal exposure to toxic endocrine-disrupting chemicals (EDCs) is also linked to the transgenerational transmission of increased predisposition to disease, infertility, testicular disorders, obesity, and polycystic ovarian syndrome (PCOS) in females through epigenetic changes during gametogenesis. As the success of assisted reproductive technology (ART) is also affected by paternal diet, BMI, and alcohol consumption, its outcomes could be improved by modifying factors that are dependent on male lifestyle choices and environmental factors. This review discusses the importance of epigenetic signatures in sperm-including DNA methylation, histone retention, and sncRNA-for sperm functionality, early embryo development, and offspring health. We also discuss the mechanisms by which paternal lifestyle and environmental factors (obesity, smoking, EDCs, and stress) may impact the sperm epigenome.
Collapse
Affiliation(s)
- Ayazhan Akhatova
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- School of Medicine, Nazarbayev University, Zhanybek-Kerey Khan Street 5/1, 010000, Astana, Kazakhstan
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
3
|
Adthapanyawanich K, Aitsarangkun Na Ayutthaya K, Kreungnium S, Mark PJ, Nakata H, Chen W, Chinda K, Amatyakul P, Tongpob Y. Molecular Mechanisms and Therapeutic Potential of Mulberry Fruit Extract in High-Fat Diet-Induced Male Reproductive Dysfunction: A Comprehensive Review. Nutrients 2025; 17:273. [PMID: 39861403 PMCID: PMC11767445 DOI: 10.3390/nu17020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
High-fat diet (HFD)-induced obesity represents a significant challenge to male reproductive health, affecting approximately 13% of the global adult population. This comprehensive review synthesizes current evidence regarding mulberry (Morus alba L.) fruit extract's therapeutic potential for HFD-induced male reproductive dysfunction. Through comprehensive analysis of the peer-reviewed literature from multiple databases (PubMed, Web of Science, Scopus, and Google Scholar; 2005-2024), we evaluated mulberry extract's effects on testicular morphology, spermatogenesis, sperm parameters, and the underlying molecular mechanisms. Mechanistic studies reveal that standardized mulberry extract mediates protective effects through multiple pathways: enhanced antioxidant enzyme activities (SOD: +45%, Catalase: +38%, GPx: +35%), reduced inflammatory markers (TNF-α: -64%, IL-6: -58%), and modulated NF-κB signaling (-42.3%). These effects are facilitated by mulberry's rich phytochemical profile, particularly anthocyanins (2.92-5.35 mg/g dry weight) and polyphenols (4.23-6.38 mg/g). The extract demonstrates particular efficacy in preserving seminiferous tubule integrity and maintaining blood-testis barrier function, with treated groups maintaining up to 85% of normal tubular architecture compared to HFD controls. Key molecular mechanisms include AMPK/SIRT1 pathway activation (2.3-fold increase), enhanced mitochondrial function (67% increase in mtDNA copy number), and epigenetic regulation of metabolic pathways. Temporal analysis indicates optimal therapeutic effects after 28 days of treatment, with initial improvements observable within 14 days. While current evidence is promising, limitations include predominant reliance on rodent models and lack of standardized extraction protocols. Future research priorities include well-designed human clinical trials, standardization of preparation methods, and investigation of potential synergistic effects with other therapeutic agents. This comprehensive review indicates that mulberry extract is a promising therapeutic candidate for obesity-related male infertility, warranting further clinical investigation.
Collapse
Affiliation(s)
- Kannika Adthapanyawanich
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (K.A.); (K.A.N.A.); (S.K.)
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | | | - Siriporn Kreungnium
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (K.A.); (K.A.N.A.); (S.K.)
| | - Peter J. Mark
- School of Human Sciences, The University of Western Australia, Perth 6009, Australia
| | - Hiroki Nakata
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu 923-8511, Ishikawa, Japan
| | - Wai Chen
- Curtin Medical School, and Curtin enAble Institute, Curtin University, Perth 6102, Australia
- Fiona Stanley Hospital, Perth 6150, Australia
| | - Kroekkiat Chinda
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Patcharada Amatyakul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand;
| | - Yutthapong Tongpob
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (K.A.); (K.A.N.A.); (S.K.)
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| |
Collapse
|
4
|
Santillán JAG, Mezo-González CE, Gourdel M, Croyal M, Bolaños-Jiménez F. Diet-Induced Obesity in the Rat Impairs Sphingolipid Metabolism in the Brain and This Metabolic Dysfunction Is Transmitted to the Offspring via Both the Maternal and the Paternal Lineage. J Neurochem 2025; 169:e16307. [PMID: 39831759 DOI: 10.1111/jnc.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Obesity leads to a number of health problems, including learning and memory deficits that can be passed on to the offspring via a developmental programming process. However, the mechanisms involved in the deleterious effects of obesity on cognition remain largely unknown. This study aimed to assess the impact of obesity on the production of sphingolipids (ceramides and sphingomyelins) in the brain and its relationship with the learning deficits displayed by obese individuals. We also sought to determine whether the effects of obesity on brain sphingolipid synthesis could be passed on to the offspring. Learning abilities and brain concentration of sphingolipids in male and female control and obese founder rats (F0) and their offspring (F1) were evaluated, respectively, by the novel object recognition test and by ultra-performance liquid chromatography tandem mass spectrometry. In addition, a global lipidome profiling of the cerebral cortex and hippocampus was performed. Both male and female F0 rats showed impaired learning and increased concentrations of ceramides and sphingomyelins in the hippocampus and frontal cortex compared to their control counterparts. However, the overall lipidome profile of these brain regions did not change with obesity. Remarkably, the alterations in brain sphingolipid synthesis, as well as the cognitive impairment induced by obesity, were also present in adult F1 male rats born to obese mothers or sired by obese fathers and were associated with enhanced expression of mRNAs coding for enzymes involved in the de novo synthesis of ceramides. These results show that the cognitive deficits and impaired sphingolipid metabolism induced by obesity can be transmitted to the offspring through both the maternal and paternal lineages and suggest that an increase in the brain concentration of sphingolipids could play a causal role in the cognitive deficits associated with obesity.
Collapse
Affiliation(s)
| | | | - Mathilde Gourdel
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
- Nantes Université, CNRS, INSERM, L'institut du Thorax, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Mikaël Croyal
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
- Nantes Université, CNRS, INSERM, L'institut du Thorax, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | | |
Collapse
|
5
|
Dahlen CR, Ramírez-Zamudio GD, Bochantin-Winders KA, Hurlbert JL, Crouse MS, McLean KJ, Diniz WJS, Amat S, Snider AP, Caton JS, Reynolds LP. International Symposium on Ruminant Physiology: Paternal Nutrient Supply: Impacts on Physiological and Whole Animal Outcomes in Offspring. J Dairy Sci 2024:S0022-0302(24)01425-5. [PMID: 39710267 DOI: 10.3168/jds.2024-25800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
Recent evidence suggests that environmental factors experienced by sires can be transmitted through the ejaculate (seminal plasma + sperm) into the female reproductive tract, influencing fertilization, embryo development, and postnatal offspring outcomes. This concept is termed paternal programming. In rodents, sire nutrition was shown to directly alter offspring outcomes through sperm epigenetic signatures, DNA damage/oxidative stress, cytokine profiles, and/or the seminal microbiome. Response variables impacted in rodent models, including adiposity, muscle mass, metabolic responses, and reproductive performance, could have major productivity and financial implications for producers if these paternal programming responses are also present in ruminant species. However, a paucity of data exist regarding paternal programming in ruminants. The limited data in the literature mainly point to alterations in sperm epigenome as a result of sire diet or environment. Global nutrition has been implicated in ruminant models to alter seminal cytokine profiles, which could subsequently alter the uterine environment and immune response to mating. Several reports indicate that embryo development and epigenetic signatures can be impacted by sire plane of nutrition and inclusion of specific feed ingredients into diets (polyunsaturated fatty acids, folic acid, and rumen protected methionine). Models of sheep nutrition indicate that addition of rumen protected methionine can impact DNA methylation and offspring performance characteristics extending to the F3 generation, and that divergent planes of sire nutrition can cause altered hormone profiles and insulin/glucose metabolism in offspring. There are almost unlimited opportunities for discovery in this area, but researchers are encouraged to target critical questions such as whether and the extent to which paternal programming effects are present in common management scenarios, the mechanisms by which paternal programming is inherited in ruminants, and whether the effects of paternal nutrition interact with those of maternal nutrition to influence offspring physiology, whole animal outcomes, and herd or flock productivity.
Collapse
Affiliation(s)
| | - Germán D Ramírez-Zamudio
- North Dakota State University, Fargo, ND, USA; University of São Paulo, Pirassununga, SP, Brazil
| | | | | | | | | | | | - Samat Amat
- North Dakota State University, Fargo, ND, USA
| | | | | | | |
Collapse
|
6
|
Kampmann U, Suder LB, Nygaard M, Geiker NRW, Nielsen HS, Almstrup K, Bruun JM, Magkos F, Ovesen P, Catalano P. Prepregnancy and Gestational Interventions to Prevent Childhood Obesity. J Clin Endocrinol Metab 2024; 110:e8-e18. [PMID: 39401333 DOI: 10.1210/clinem/dgae724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Indexed: 12/19/2024]
Abstract
Childhood obesity is a significant global health issue with complex and multifactorial origins, often beginning before conception and influenced by both maternal and paternal health. The increased prevalence of prepregnancy obesity and gestational diabetes mellitus in women of reproductive age contributes to a heightened risk of metabolic dysfunction in offspring. Current clinical practices often implement lifestyle interventions after the first trimester and have limited success, implying that they miss a critical window for effective metabolic adjustments. This review examines the limitations of lifestyle interventions during pregnancy in improving perinatal outcomes and highlights the importance of initiating such interventions before conception to positively impact parental health and fetal development. A re-evaluation of strategies is needed to enhance the metabolic health of prospective parents as a preventive measure against childhood obesity.
Collapse
Affiliation(s)
- Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
| | - Louise Birk Suder
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
| | - Malene Nygaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, DK-1958, Denmark
| | | | - Henriette Svarre Nielsen
- Department of Gynecology and Obstetrics, Copenhagen University Hospital Hvidovre, Hvidovre, DK 2650, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Kristian Almstrup
- Department of Growth and reproduction, Copenhagen University Hospital-Rigshospitalet, Copenhagen, DK-2100, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Jens Meldgaard Bruun
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, DK-1958, Denmark
| | - Per Ovesen
- Department of Clinical Medicine, Aarhus University, Aarhus N, DK-8200, Denmark
- Department of Gynecology and Obstetrics, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
| | - Patrick Catalano
- Division of Reproductive Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
7
|
Jahan-Mihan A, Leftwich J, Berg K, Labyak C, Nodarse RR, Allen S, Griggs J. The Impact of Parental Preconception Nutrition, Body Weight, and Exercise Habits on Offspring Health Outcomes: A Narrative Review. Nutrients 2024; 16:4276. [PMID: 39770898 PMCID: PMC11678361 DOI: 10.3390/nu16244276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
An increasing number of studies highlight the critical role of both maternal and paternal nutrition and body weight before conception in shaping offspring health. Traditionally, research has focused on maternal factors, particularly in utero exposures, as key determinants of chronic disease development. However, emerging evidence underscores the significant influence of paternal preconception health on offspring metabolic outcomes. While maternal health remains vital, with preconception nutrition playing a pivotal role in fetal development, paternal obesity and poor nutrition are linked to increased risks of metabolic disorders, including type 2 diabetes and cardiovascular disease in children. This narrative review aims to synthesize recent findings on the effects of both maternal and paternal preconception health, emphasizing the need for integrated early interventions. The literature search utilized PubMed, UNF One Search, and Google Scholar, focusing on RCTs; cohort, retrospective, and animal studies; and systematic reviews, excluding non-English and non-peer-reviewed articles. The findings of this review indicate that paternal effects are mediated by epigenetic changes in sperm, such as DNA methylation and non-coding RNA, which influence gene expression in offspring. Nutrient imbalances during preconception in both parents can lead to low birth weight and increased metabolic disease risk, while deficiencies in folic acid, iron, iodine, and vitamin D are linked to developmental disorders. Additionally, maternal obesity elevates the risk of chronic diseases in children. Future research should prioritize human studies to explore the influence of parental nutrition, body weight, and lifestyle on offspring health, ensuring findings are applicable across diverse populations. By addressing both maternal and paternal factors, healthcare providers can better reduce the prevalence of metabolic syndrome and its associated risks in future generations.
Collapse
Affiliation(s)
- Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Jamisha Leftwich
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Kristin Berg
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Corinne Labyak
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Reniel R. Nodarse
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Sarah Allen
- Greenleaf Behavioral Health, 2209 Pineview Dr., Valdosta, GA 31602, USA;
| | | |
Collapse
|
8
|
Carvalho MR, Miranda DEGDA, Baroni NF, Santos IDS, Carreira NP, Crivellenti LC, Sartorelli DS. Relationship between paternal excessive weight and neonatal anthropometry in a clinical trial of nutritional counseling for pregnant women with overweight. Int J Obes (Lond) 2024; 48:1831-1838. [PMID: 39317700 DOI: 10.1038/s41366-024-01639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND/OBJECTIVES Human studies suggest that fathers with obesity influence infant growth and development. This study aimed to evaluate the relationship between paternal body mass index (BMI) and waist circumference (WC) with neonatal anthropometry and adiposity. METHODS This study is a cohort nested in a randomized controlled clinical trial of nutritional counseling for pregnant women with overweight. In total, 89 partner-pregnant woman-neonate triads were included. Paternal anthropometric measurements were taken at the time of the interview. Secondary data related to birth were obtained through access to the health information systems. Neonatal skinfold thickness was assessed and the adiposity was estimated using a predictive anthropometric model. Pearson's correlation and adjusted multivariate linear regression models were employed to evaluate the relationship between paternal BMI and WC with neonatal anthropometric measurements and adiposity. RESULTS In total, 57.0% of the fathers presented a BMI ≥ 25 kg/m² and 14.6% a waist circumference ≥102 cm. The mean ± SD birth weight of the newborns (g) was 3357 ± 538. Paternal BMI and WC were inversely correlated with head circumference at birth [r = -0.31 (p = 0.004), r = -0.23 (p = 0.03), respectively]. Paternal BMI was also inversely correlated with the birth weight standardized by gestational age (z-score) [r = -0.23 (p = 0.03)]. In adjusted multivariate linear regression models, the paternal BMI (kg/m²) was inversely associated with the head circumference at birth (cm) [β = -0.07 (95% CI -0.15; -0.001) p = 0.04]. CONCLUSION The data suggest that paternal excessive weight have a negative effect on fetal development, as assessed by anthropometric measurements. The inverse association between paternal BMI and the head circumference at birth was independent of confounders. Future studies with larger sample sizes are necessary to confirm or refute such hypotheses.
Collapse
Affiliation(s)
- Mariana Rinaldi Carvalho
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Naiara Franco Baroni
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Izabela da Silva Santos
- Programa de Pós-Graduação em Nutrição e Metabolismo, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Natália Posses Carreira
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Livia Castro Crivellenti
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Daniela Saes Sartorelli
- Departamento de Medicina Social, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
9
|
Rasouli MA, Dumesic DA, Singhal V. Male infertility and obesity. Curr Opin Endocrinol Diabetes Obes 2024; 31:203-209. [PMID: 39253759 DOI: 10.1097/med.0000000000000883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The increasing rate of obesity is having an adverse impact on male reproduction. RECENT FINDINGS The negative effect of reactive oxygen species on male reproductive tissues and the age of onset of obesity are new areas of research on male infertility. SUMMARY This review highlights how obesity impairs male reproduction through complex mechanisms, including metabolic syndrome, lipotoxicity, sexual dysfunction, hormonal and adipokine alterations as well as epigenetic changes, and how new management strategies may improve the reproductive health of men throughout life.
Collapse
Affiliation(s)
| | | | - Vibha Singhal
- Division of Endocrinology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Li X, Luan T, Zhao C, Ling X. Effect of paternal body mass index on maternal and child-health outcomes of singletons after frozen-thawed embryo transfer cycles: a retrospective study. HUM FERTIL 2024; 27:2285343. [PMID: 38205607 DOI: 10.1080/14647273.2023.2285343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/26/2023] [Indexed: 01/12/2024]
Abstract
The objective was to analyze the effect of paternal body mass index (BMI) on maternal and child-health outcomes of singletons after frozen-thawed embryo transfer (FET) cycles. A retrospective cohort study was conducted between January 2019 and December 2021. Pregnancy, perinatal complications and neonatal outcomes were compared among different paternal BMI. Multivariate logistic regression was performed to evaluate the relationship between different paternal BMI and pregnancy, obstetric and neonatal outcomes. The paternal normal group was more likely to suffer from gestational hypertension than the paternal obesity group (3.59% vs. 2.42%), and paternal underweight group was more likely to suffer from preeclampsia than the other three groups (11.63% vs. 4.43%, 7.57%, 4.03%). Birthweight among infants in the paternal overweight categories was significantly higher than infants in the paternal normal weight categories. The rate of foetal macrosomia was higher among infants in the paternal overweight (12.36%) category, while lower among infants in the paternal underweight categories (2.33%). The incidence of macrosomia in the paternal overweight categories (aOR 1.527, 95% CI 1.078-2.163) was significantly higher than those normal controls after adjustment for known confounding factors. The rates of LGA babies were higher in the paternal overweight category (aOR 1.260, 95% CI 1.001-1.587) compared with those in the paternal normal weight category, before and after adjustment. The results suggest that parental pre-pregnancy overweight or obesity has an adverse effect on the perinatal complications and neonatal outcomes.
Collapse
Affiliation(s)
- Xin Li
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ting Luan
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Chun Zhao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
11
|
Pepin AS, Jazwiec PA, Dumeaux V, Sloboda DM, Kimmins S. Determining the effects of paternal obesity on sperm chromatin at histone H3 lysine 4 tri-methylation in relation to the placental transcriptome and cellular composition. eLife 2024; 13:e83288. [PMID: 39612469 PMCID: PMC11717366 DOI: 10.7554/elife.83288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2024] [Indexed: 12/01/2024] Open
Abstract
Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.
Collapse
Affiliation(s)
- Anne-Sophie Pepin
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill UniversityMontrealCanada
| | - Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
| | - Vanessa Dumeaux
- Departments of Anatomy & Cell Biology and Oncology, Western UniversityLondonCanada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- Farncombe Family Digestive Health Research Institute, McMaster University HamiltonHamiltonCanada
- Departments of Obstetrics and Gynecology, and Pediatrics, McMaster UniversityHamiltonCanada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill UniversityMontrealCanada
- Department of Pathology and Molecular Biology, University of Montreal, University of Montreal Hospital Research CenterMontrealCanada
| |
Collapse
|
12
|
Zhang B, Ban M, Chen X, Zhang Y, Wang Z, Feng W, Zhao H, Li J, Zhang T, Hu J, Hu K, Cui L, Chen ZJ. Associations Between Paternal Obesity and Cardiometabolic Alterations in Offspring via Assisted Reproductive Technology. J Clin Endocrinol Metab 2024; 109:e2309-e2316. [PMID: 38375892 PMCID: PMC11570360 DOI: 10.1210/clinem/dgae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
CONTEXT Both assisted reproductive technology (ART) and obesity are associated with adverse cardiometabolic alterations in offspring. However, the combined effects of paternal obesity and ART on offspring cardiometabolic health are still unclear. OBJECTIVE To clarify cardiometabolic changes in offspring of obese fathers conceived using ART. This was a retrospective cohort study conducted between June 2014 and October 2019 at a center for reproductive medicine. A total of 2890 singleton visits aged 4-10 years were followed. Age-and sex-specific z-score of body mass index (BMI), blood pressure, insulin resistance, and lipid profile were examined. RESULTS We observed a strong association between paternal BMI categories and offspring BMI, blood pressure, and insulin resistance. Compared with offspring of fathers with normal weight, multivariable-adjusted mean differences for BMI z-score were 0.53 (95% CI 0.37-0.68) for obese fathers, 0.17 (95% CI 0.05-0.30) for overweight fathers, and -0.55 (95% CI -0.95-0.15) for underweight fathers; corresponding values for systolic blood pressure z-score were 0.21(95% CI 0.07-0.35), 0.10 (95% CI -0.01-0.21), and -0.24 (95% CI -0.59-0.11), and corresponding values for homeostatic model assessment for insulin resistance z-score were 0.31 (95% CI 0.16-0.46), 0.09 (95% CI -0.02-0.21), and -0.11 (95% CI -0.48-0.28), respectively. The mediation analyses suggested that 57.48% to 94.75% of the associations among paternal obesity and offspring cardiometabolic alterations might be mediated by offspring BMI. CONCLUSION Paternal obesity was associated with an unfavorable cardiometabolic profile in ART-conceived offspring. Mediation analyses indicated that offspring BMI was a possible mediator of the association between paternal obesity and the offspring impaired metabolic changes.
Collapse
Affiliation(s)
- Bingqian Zhang
- Children and Reproductive Health, Institute of Women, The Second Hospital, Shandong University, Shandong, 250012, China
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Chinese Academy of Medical Sciences (No. 2021RU001), Research Unit of Gametogenesis and Health of ART-Offspring, Jinan, Shandong, 250012, China
| | - Miaomiao Ban
- Children and Reproductive Health, Institute of Women, The Second Hospital, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Chinese Academy of Medical Sciences (No. 2021RU001), Research Unit of Gametogenesis and Health of ART-Offspring, Jinan, Shandong, 250012, China
| | - Xiaojing Chen
- Children and Reproductive Health, Institute of Women, The Second Hospital, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Chinese Academy of Medical Sciences (No. 2021RU001), Research Unit of Gametogenesis and Health of ART-Offspring, Jinan, Shandong, 250012, China
| | - Yiyuan Zhang
- Children and Reproductive Health, Institute of Women, The Second Hospital, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Chinese Academy of Medical Sciences (No. 2021RU001), Research Unit of Gametogenesis and Health of ART-Offspring, Jinan, Shandong, 250012, China
| | - Zijing Wang
- Children and Reproductive Health, Institute of Women, The Second Hospital, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Chinese Academy of Medical Sciences (No. 2021RU001), Research Unit of Gametogenesis and Health of ART-Offspring, Jinan, Shandong, 250012, China
| | - Wanbing Feng
- Children and Reproductive Health, Institute of Women, The Second Hospital, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Chinese Academy of Medical Sciences (No. 2021RU001), Research Unit of Gametogenesis and Health of ART-Offspring, Jinan, Shandong, 250012, China
| | - Han Zhao
- Children and Reproductive Health, Institute of Women, The Second Hospital, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Chinese Academy of Medical Sciences (No. 2021RU001), Research Unit of Gametogenesis and Health of ART-Offspring, Jinan, Shandong, 250012, China
| | - Jingyu Li
- Children and Reproductive Health, Institute of Women, The Second Hospital, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Chinese Academy of Medical Sciences (No. 2021RU001), Research Unit of Gametogenesis and Health of ART-Offspring, Jinan, Shandong, 250012, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingmei Hu
- Children and Reproductive Health, Institute of Women, The Second Hospital, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Chinese Academy of Medical Sciences (No. 2021RU001), Research Unit of Gametogenesis and Health of ART-Offspring, Jinan, Shandong, 250012, China
| | - Kuona Hu
- Children and Reproductive Health, Institute of Women, The Second Hospital, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Chinese Academy of Medical Sciences (No. 2021RU001), Research Unit of Gametogenesis and Health of ART-Offspring, Jinan, Shandong, 250012, China
| | - Linlin Cui
- Children and Reproductive Health, Institute of Women, The Second Hospital, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Chinese Academy of Medical Sciences (No. 2021RU001), Research Unit of Gametogenesis and Health of ART-Offspring, Jinan, Shandong, 250012, China
| | - Zi-Jiang Chen
- Children and Reproductive Health, Institute of Women, The Second Hospital, Shandong University, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China
- Chinese Academy of Medical Sciences (No. 2021RU001), Research Unit of Gametogenesis and Health of ART-Offspring, Jinan, Shandong, 250012, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| |
Collapse
|
13
|
Shang Q, Wu H, Wang K, Zhang M, Dou Y, Jiang X, Zhao Y, Zhao H, Chen ZJ, Wang J, Bian Y. Exposure to polystyrene microplastics during lactational period alters immune status in both male mice and their offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175371. [PMID: 39137849 DOI: 10.1016/j.scitotenv.2024.175371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The widespread use of microplastics and their harmful effects on the environment have emerged as serious concerns. However, the effect of microplastics on the immune system of mammals, particularly their offspring, has received little attention. In this study, polystyrene microplastics (PS-MPs) were orally administered to male mice during lactation. Flow cytometry was used to assess the immune cells in the spleens of both adult male mice and their offspring. The results showed that mice exposed to PS-MPs exhibited an increase in spleen weight and an elevated number of B and regulatory T cells (Tregs), irrespective of dosage. Furthermore, the F1 male offspring of the PS-MPs-exposed group had enlarged spleens; an increased number of B cells, T helper cells (Th cells), and Tregs; and an elevated ratio of T helper cells 17 (Th17 cells) to Tregs and T helper cells 1 (Th1 cells) to T helper cells 2 (Th2 cells). These results suggested a pro-inflammatory state in the spleen. In contrast, in the F1 female offspring exposed to PS-MPs, the changes in splenic immune cells were less pronounced. In the F2 generation of mice with exposed to PS-MPs, minimal alterations were observed in spleen immune cells and morphology. In conclusion, our study demonstrated that exposure to real human doses of PS-MPs during lactation in male mice altered the immune status, which can be passed on to F1 offspring but is not inherited across generations.
Collapse
Affiliation(s)
- Qian Shang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Han Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Ke Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Mengge Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Yunde Dou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China.
| | - Xiaohong Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China
| | - Yueran Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China.
| | - Yuehong Bian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong 250012, China.
| |
Collapse
|
14
|
Wu X, Zhang W, Chen H, Weng J. Multifaceted paternal exposures before conception and their epigenetic impact on offspring. J Assist Reprod Genet 2024; 41:2931-2951. [PMID: 39230664 PMCID: PMC11621294 DOI: 10.1007/s10815-024-03243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
As scientific research progresses, there is an increasing understanding of the importance of paternal epigenetics in influencing the health and developmental path of offspring. Prior to conception, the environmental exposures and lifestyle choices of fathers can significantly influence the epigenetic state of sperm, including DNA methylation and histone changes, among other factors. These alterations in epigenetic patterns have the potential for transgenerational transmission potential and may exert profound effects on the biological characteristics of descendants. Paternal epigenetic changes not only affect the regulation of gene expression patterns in offspring but also increase the risk to certain diseases. It is crucial to comprehend the conditions that fathers are exposed to before conception and the potential outcomes of these conditions. This understanding is essential for assessing personal reproductive decisions and anticipating health risks for future generations. This review article systematically summarizes and analyzes current research findings regarding how paternal pre-pregnancy exposures influence offspring as well as elucidates underlying mechanisms, aiming to provide a comprehensive perspective for an enhanced understanding of the impact that paternal factors have on offspring health.
Collapse
Affiliation(s)
- Xiaojing Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weiping Zhang
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Huijun Chen
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianfei Weng
- The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
15
|
Pastore A, Badolati N, Manfrevola F, Sagliocchi S, Laurenzi V, Musto G, Porreca V, Murolo M, Chioccarelli T, Ciampaglia R, Vellecco V, Bucci M, Dentice M, Cobellis G, Stornaiuolo M. N-acetyl-L-cysteine reduces testis ROS in obese fathers but fails in protecting offspring from acquisition of epigenetic traits at cyp19a1 and IGF11/H19 ICR loci. Front Cell Dev Biol 2024; 12:1450580. [PMID: 39493346 PMCID: PMC11527676 DOI: 10.3389/fcell.2024.1450580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Introduction Paternal nutrition before conception has a marked impact on offspring's risk of developing metabolic disorders during adulthood. Research on human cohorts and animal models has shown that paternal obesity alters sperm epigenetics (DNA methylation, protamine-to-histone replacement, and non-coding RNA content), leading to adverse health outcomes in the offspring. So far, the mechanistic events that translate paternal nutrition into sperm epigenetic changes remain unclear. High-fat diet (HFD)-driven paternal obesity increases gonadic Reactive Oxygen Species (ROS), which modulate enzymes involved in epigenetic modifications of DNA during spermatogenesis. Thus, the gonadic pool of ROS might be responsible for transducing paternal health status to the zygote through germ cells. Methods The involvement of ROS in paternal intergenerational transmission was assessed by modulating the gonadic ROS content in male mice. Testicular oxidative stress induced by HFD was counterbalanced by N-acetylcysteine (NAC), an antioxidant precursor of GSH. The sires were divided into four feeding groups: i) control diet; ii) HFD; iii) control diet in the presence of NAC; and iv) HFD in the presence of NAC. After 8 weeks, males were mated with females that were fed a control diet. Antioxidant treatment was then evaluated in terms of preventing the HFD-induced transmission of dysmetabolic traits from obese fathers to their offspring. The offspring were weaned onto a regular control diet until week 16 and then underwent metabolic evaluation. The methylation status of the genomic region IGFII/H19 and cyp19a1 in the offspring gDNA was also assessed using Sanger sequencing and methylation-dependent qPCR. Results Supplementation with NAC protected sires from HFD-induced weight gain, hyperinsulinemia, and glucose intolerance. NAC reduced oxidative stress in the gonads of obese fathers and improved sperm viability. However, NAC did not prevent the transmission of epigenetic modifications from father to offspring. Male offspring of HFD-fed fathers, regardless of NAC treatment, exhibited hyperinsulinemia, glucose intolerance, and hypoandrogenism. Additionally, they showed altered methylation at the epigenetically controlled loci IGFII/H19 and cy19a1. Conclusion Although NAC supplementation improved the health status and sperm quality of HFD-fed male mice, it did not prevent the epigenetic transmission of metabolic disorders to their offspring. Different NAC dosages and antioxidants other than NAC might represent alternatives to stop the intergenerational transmission of paternal dysmetabolic traits.
Collapse
Affiliation(s)
- Arianna Pastore
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Nadia Badolati
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Valentina Laurenzi
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Giorgia Musto
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Roberto Ciampaglia
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University della Campania “Luigi Vanvitelli”, Naples, Italy
| | | |
Collapse
|
16
|
Ban M, Feng W, Hou M, Zhang Z, Cui L. IVF exposure induced intergenerational effects on metabolic phenotype in mice. Reprod Biomed Online 2024; 49:103992. [PMID: 38889592 DOI: 10.1016/j.rbmo.2024.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 06/20/2024]
Abstract
RESEARCH QUESTION What is the potential transmission of metabolic phenotype from IVF offspring to the subsequent generation? DESIGN An IVF mouse model was established. The F1 generation mice were produced though IVF or natural mating and the F2 generation was obtained through the mating of F1 generation males with normal females. Their metabolic phenotype, including systemic and hepatic glucolipid metabolism, was examined. RESULTS It was found that IVF F1 males exhibited metabolic changes. Compared with the control group, the IVF F1 generation showed increased body weight, elevated fasting glucose and insulin, and increased serum triglyceride concentrations. IVF F1 mice also showed an increased expression of hepatic lipogenesis and autophagy genes. Moreover, IVF F1 males transmitted some metabolic changes to their own male progeny (IVF F2) in the absence of a dietary challenge. IVF F2 mice had increased peri-epididymal and subcutaneous fat and decreased insulin sensitivity. Under the 'second hit' of a high-fat diet, IVF F2 mice further showed increased hepatic lipid deposition with unaltered autophagy levels. CONCLUSION This research demonstrates the impact of IVF on hepatic glucose-lipid metabolism in two successive generations of offspring, highlighting the need for additional investigation. Enhanced understanding of the mechanisms underlying the transmission of multigenerational effects induced by IVF could potentially lead to the advancement of therapeutic interventions for individuals experiencing infertility.
Collapse
Affiliation(s)
- Miaomiao Ban
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Shandong, China.; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Shandong, China.; Shandong Technology Innovation Center for Reproductive Health, Shandong, China.; Shandong Provincial Clinical Research Center for Reproductive Health, Shandong, China.; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Shandong, China
| | - Wanbing Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Shandong, China.; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Shandong, China.; Shandong Technology Innovation Center for Reproductive Health, Shandong, China.; Shandong Provincial Clinical Research Center for Reproductive Health, Shandong, China.; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Shandong, China
| | - Min Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Shandong, China.; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Shandong, China.; Shandong Technology Innovation Center for Reproductive Health, Shandong, China.; Shandong Provincial Clinical Research Center for Reproductive Health, Shandong, China.; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Shandong, China
| | - Zhirong Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Shandong, China.; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Shandong, China.; Shandong Technology Innovation Center for Reproductive Health, Shandong, China.; Shandong Provincial Clinical Research Center for Reproductive Health, Shandong, China.; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Shandong, China
| | - Linlin Cui
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Shandong, China.; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Shandong, China.; Shandong Technology Innovation Center for Reproductive Health, Shandong, China.; Shandong Provincial Clinical Research Center for Reproductive Health, Shandong, China.; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Shandong, China.; State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, The Second Hospital, Shandong University, Shandong, China..
| |
Collapse
|
17
|
Haberman M, Menashe T, Cohen N, Kisliouk T, Yadid T, Marco A, Meiri N, Weller A. Paternal high-fat diet affects weight and DNA methylation of their offspring. Sci Rep 2024; 14:19874. [PMID: 39191806 DOI: 10.1038/s41598-024-70438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Obesity poses a public health threat, reaching epidemic proportions. Our hypothesis suggests that some of this epidemic stems from its transmission across generations via paternal epigenetic mechanisms. To investigate this possibility, we focused on examining the paternal transmission of CpG methylation. First-generation male Wistar rats were fed either a high-fat diet (HF) or chow and were mated with females fed chow. We collected sperm from these males. The resulting offspring were raised on a chow diet until day 35, after which they underwent a dietary challenge. Diet-induced obese (DIO) male rats passed on the obesogenic trait to both male and female offspring. We observed significant hypermethylation of the Pomc promoter in the sperm of HF-treated males and in the hypothalamic arcuate nucleus (Arc) of their offspring at weaning. However, these differences in Arc methylation decreased later in life. This hypermethylation is correlated with increased expression of DNMT3B. Further investigating genes in the Arc that might be involved in obesogenic transgenerational transmission, using reduced representation bisulfite sequencing (RRBS) we identified 77 differentially methylated regions (DMRs), highlighting pathways associated with neuronal development. These findings support paternal CpG methylation as a mechanism for transmitting obesogenic traits across generations.
Collapse
Affiliation(s)
- Michal Haberman
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tzlil Menashe
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Nir Cohen
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Tam Yadid
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
18
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
19
|
Carrageta DF, Pereira SC, Ferreira R, Monteiro MP, Oliveira PF, Alves MG. Signatures of metabolic diseases on spermatogenesis and testicular metabolism. Nat Rev Urol 2024; 21:477-494. [PMID: 38528255 DOI: 10.1038/s41585-024-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Diets leading to caloric overload are linked to metabolic disorders and reproductive function impairment. Metabolic and hormonal abnormalities stand out as defining features of metabolic disorders, and substantially affect the functionality of the testis. Metabolic disorders induce testicular metabolic dysfunction, chronic inflammation and oxidative stress. The disruption of gastrointestinal, pancreatic, adipose tissue and testicular hormonal regulation induced by metabolic disorders can also contribute to a state of compromised fertility. In this Review, we will delve into the effects of high-fat diets and metabolic disorders on testicular metabolism and spermatogenesis, which are crucial elements for male reproductive function. Moreover, metabolic disorders have been shown to influence the epigenome of male gametes and might have a potential role in transmitting phenotype traits across generations. However, the existing evidence strongly underscores the unmet need to understand the mechanisms responsible for transgenerational paternal inheritance of male reproductive function impairment related to metabolic disorders. This knowledge could be useful for developing targeted interventions to prevent, counteract, and most of all break the perpetuation chain of male reproductive dysfunction associated with metabolic disorders across generations.
Collapse
Affiliation(s)
- David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Sara C Pereira
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariana P Monteiro
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marco G Alves
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Campus de Santiago Agra do Crasto, Aveiro, Portugal.
| |
Collapse
|
20
|
Tahiri I, Llana SR, Fos-Domènech J, Milà-Guash M, Toledo M, Haddad-Tóvolli R, Claret M, Obri A. Paternal obesity induces changes in sperm chromatin accessibility and has a mild effect on offspring metabolic health. Heliyon 2024; 10:e34043. [PMID: 39100496 PMCID: PMC11296027 DOI: 10.1016/j.heliyon.2024.e34043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
The increasing global burden of metabolic disorders including obesity and diabetes necessitates a comprehensive understanding of their etiology, which not only encompasses genetic and environmental factors but also parental influence. Recent evidence has unveiled paternal obesity as a contributing factor to offspring's metabolic health via sperm epigenetic modifications. In this study, we investigated the impact of a Western diet-induced obesity in C57BL/6 male mice on sperm chromatin accessibility and the subsequent metabolic health of their progeny. Utilizing Assay for Transposase-Accessible Chromatin with sequencing, we discovered 450 regions with differential accessibility in sperm from obese fathers, implicating key developmental and metabolic pathways. Contrary to expectations, these epigenetic alterations in sperm were not predictive of long-term metabolic disorders in offspring, who exhibited only mild transient metabolic changes early in life. Both male and female F1 progeny showed no enduring predisposition to obesity or diabetes. These results underscore the biological resilience of offspring to paternal epigenetic inheritance, suggesting a complex interplay between inherited epigenetic modifications and the offspring's own developmental compensatory mechanisms. This study calls for further research into the biological processes that confer this resilience, which could inform interventional strategies to combat the heritability of metabolic diseases.
Collapse
Affiliation(s)
- Iasim Tahiri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Sergio R. Llana
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Júlia Fos-Domènech
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Maria Milà-Guash
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Miriam Toledo
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
21
|
Ding L, Weger BD, Liu J, Zhou L, Lim Y, Wang D, Xie Z, Liu J, Ren J, Zheng J, Zhang Q, Yu M, Weger M, Morrison M, Xiao X, Gachon F. Maternal high fat diet induces circadian clock-independent endocrine alterations impacting the metabolism of the offspring. iScience 2024; 27:110343. [PMID: 39045103 PMCID: PMC11263959 DOI: 10.1016/j.isci.2024.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Maternal obesity has long-term effects on offspring metabolic health. Among the potential mechanisms, prior research has indicated potential disruptions in circadian rhythms and gut microbiota in the offspring. To challenge this hypothesis, we implemented a maternal high fat diet regimen before and during pregnancy, followed by a standard diet after birth. Our findings confirm that maternal obesity impacts offspring birth weight and glucose and lipid metabolisms. However, we found minimal impact on circadian rhythms and microbiota that are predominantly driven by the feeding/fasting cycle. Notably, maternal obesity altered rhythmic liver gene expression, affecting mitochondrial function and inflammatory response without disrupting the hepatic circadian clock. These changes could be explained by a masculinization of liver gene expression similar to the changes observed in polycystic ovarian syndrome. Intriguingly, such alterations seem to provide the first-generation offspring with a degree of protection against obesity when exposed to a high fat diet.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Benjamin D. Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100022, China
| | - Yenkai Lim
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Dongmei Wang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ziyan Xie
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Miao Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark Morrison
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Australian Infectious Diseases Research Centre, St. Lucia, QLD 4072, Australia
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
22
|
Sivakumar S, Lama D, Rabhi N. Childhood obesity from the genes to the epigenome. Front Endocrinol (Lausanne) 2024; 15:1393250. [PMID: 39045266 PMCID: PMC11263020 DOI: 10.3389/fendo.2024.1393250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
The prevalence of obesity and its associated comorbidities has surged dramatically in recent decades. Especially concerning is the increased rate of childhood obesity, resulting in diseases traditionally associated only with adulthood. While obesity fundamentally arises from energy imbalance, emerging evidence over the past decade has revealed the involvement of additional factors. Epidemiological and murine studies have provided extensive evidence linking parental obesity to increased offspring weight and subsequent cardiometabolic complications in adulthood. Offspring exposed to an obese environment during conception, pregnancy, and/or lactation often exhibit increased body weight and long-term metabolic health issues, suggesting a transgenerational inheritance of disease susceptibility through epigenetic mechanisms rather than solely classic genetic mutations. In this review, we explore the current understanding of the mechanisms mediating transgenerational and intergenerational transmission of obesity. We delve into recent findings regarding both paternal and maternal obesity, shedding light on the underlying mechanisms and potential sex differences in offspring outcomes. A deeper understanding of the mechanisms behind obesity inheritance holds promise for enhancing clinical management strategies in offspring and breaking the cycle of increased metabolic risk across generations.
Collapse
Affiliation(s)
| | | | - Nabil Rabhi
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
23
|
Crafa A, Cannarella R, Calogero AE, Gunes S, Agarwal A. Behind the Genetics: The Role of Epigenetics in Infertility-Related Testicular Dysfunction. Life (Basel) 2024; 14:803. [PMID: 39063558 PMCID: PMC11277947 DOI: 10.3390/life14070803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, we have witnessed a progressive decline in male fertility. This is partly related to the increased prevalence of chronic diseases (e.g., obesity and diabetes mellitus) and risky lifestyle behaviors. These conditions alter male fertility through various non-genetic mechanisms. However, there is increasing evidence that they are also capable of causing sperm epigenetic alterations, which, in turn, can cause infertility. Furthermore, these modifications could be transmitted to offspring, altering their general and reproductive health. Therefore, these epigenetic modifications could represent one of the causes of the progressive decline in sperm count recorded in recent decades. This review focuses on highlighting epigenetic modifications at the sperm level induced by non-genetic causes of infertility. In detail, the effects on DNA methylation, histone modifications, and the expression profiles of non-coding RNAs are evaluated. Finally, a focus on the risk of transgenerational inheritance is presented. Our narrative review aims to demonstrate how certain conditions can alter gene expression, potentially leading to the transmission of anomalies to future generations. It emphasizes the importance of the early detection and treatment of reversible conditions (such as obesity and varicocele) and the modification of risky lifestyle behaviors. Addressing these issues is crucial for individual health, in preserving fertility, and in ensuring the well-being of future generations.
Collapse
Affiliation(s)
- Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (R.C.); (A.E.C.)
- Global Andrology Forum, Moreland Hills, OH 44022, USA
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (R.C.); (A.E.C.)
- Global Andrology Forum, Moreland Hills, OH 44022, USA
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (R.C.); (A.E.C.)
- Global Andrology Forum, Moreland Hills, OH 44022, USA
| | - Sezgin Gunes
- Global Andrology Forum, Moreland Hills, OH 44022, USA
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, 55280 Samsun, Türkiye
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH 44022, USA
- Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
24
|
Crean AJ, Senior AM, Freire T, Clark TD, Mackay F, Austin G, Pulpitel TJ, Nobrega MA, Barrès R, Simpson SJ. Paternal dietary macronutrient balance and energy intake drive metabolic and behavioral differences among offspring. Nat Commun 2024; 15:2982. [PMID: 38582785 PMCID: PMC10998877 DOI: 10.1038/s41467-024-46782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/11/2024] [Indexed: 04/08/2024] Open
Abstract
Paternal diet can influence the phenotype of the next generation, yet, the dietary components inducing specific responses in the offspring are not identified. Here, we use the Nutritional Geometry Framework to determine the effects of pre-conception paternal dietary macronutrient balance on offspring metabolic and behavioral traits in mice. Ten isocaloric diets varying in the relative proportion of protein, fats, and carbohydrates are fed to male mice prior to mating. Dams and offspring are fed standard chow and never exposed to treatment diets. Body fat in female offspring is positively associated with the paternal consumption of fat, while in male offspring, an anxiety-like phenotype is associated to paternal diets low in protein and high in carbohydrates. Our study uncovers that the nature and the magnitude of paternal effects are driven by interactions between macronutrient balance and energy intake and are not solely the result of over- or undernutrition.
Collapse
Affiliation(s)
- Angela Jane Crean
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alistair McNair Senior
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Therese Freire
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Daniel Clark
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Flora Mackay
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gracie Austin
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tamara Jayne Pulpitel
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, DK, 2200, Denmark.
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur & Centre National pour la Recherche Scientifique (CNRS), Valbonne, 06560, France.
| | - Stephen James Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
25
|
Alfaiate MI, Tavares RS, Ramalho-Santos J. A ripple effect? The impact of obesity on sperm quality and function. Reprod Fertil Dev 2024; 36:RD23215. [PMID: 38589340 DOI: 10.1071/rd23215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
Infertility affects approximately 15% of couples trying to conceive. Male-related causes account for roughly 50% of cases, with obesity emerging as a possible significant factor. Obesity, defined as a body mass index of 30.0 or higher, has become a widespread epidemic associated with numerous health issues, including a decrease of fertility. This review discusses the relationship between obesity and male infertility, particularly focusing on sperm quality and function. An overview of the literature suggests that obesity may influence the male reproductive system via disruptions in hormonal profiles, oxidative stress, and inflammation, leading to changes in sperm parameters. Several studies have discussed if obesity causes a decrease in sperm concentration, motility, and normal morphology, so far without a consensus being reached. However, available evidence suggests an impairment of sperm function in obese men, due to an increase in DNA damage and oxidative stress, impaired mitochondrial function and acrosome reaction in response to progesterone. Finally, the relationship between obesity and assisted reproductive technologies outcomes remains debatable, with conflicting evidence regarding the influence on fertilisation, pregnancy, and live birth rates. Therefore, the actual impact of obesity on human spermatozoa still needs to be clarified, due to the multiple factors potentially in play.
Collapse
Affiliation(s)
- Maria Inês Alfaiate
- University of Coimbra, CNC-UC, Center for Neuroscience and Cell Biology, CIBB, Coimbra, Portugal; and University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Coimbra, Portugal
| | - Renata Santos Tavares
- University of Coimbra, CNC-UC, Center for Neuroscience and Cell Biology, CIBB, Coimbra, Portugal; and Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - João Ramalho-Santos
- University of Coimbra, CNC-UC, Center for Neuroscience and Cell Biology, CIBB, Coimbra, Portugal; and Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| |
Collapse
|
26
|
Pérez Lugo MI, Salas ML, Shrestha A, Ramalingam L. Fish Oil Improves Offspring Metabolic Health of Paternal Obese Mice by Targeting Adipose Tissue. Biomolecules 2024; 14:418. [PMID: 38672435 PMCID: PMC11048145 DOI: 10.3390/biom14040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity is a fast-growing epidemic affecting more than 40% of the US population and leads to co-morbidities such as type 2 diabetes and cancer. More importantly, there is a rapid increase in childhood obesity associated with obesity in parents. Further, offspring are encoded with approximately half of their genetic information from the paternal side. Obesity in fathers at the preconceptional period likely influences the intergenerational development of obesity. This study focuses on the role of fish oil supplementation as a non-pharmacological intervention in fathers and its impact on childhood obesity using animal models. Male mice were fed a low-fat diet or high-fat diet with or without fish oil for 10 weeks and mated with female mice on a chow diet. Offspring were then continued on a chow diet until 8 or 16 weeks. In vivo insulin tolerance was tested to assess the metabolic health of offspring. Further, adipose tissue was harvested upon sacrifice, and genetic markers of inflammation and lipid metabolism in the tissue were analyzed. Offspring of males supplemented with fish oil showed lower body weight, improved insulin tolerance, and altered inflammatory markers. Markers of fatty acid oxidation were higher, while markers of fatty acid synthesis were lower in offspring of fathers fed fish oil. This supports fish oil as an accessible intervention to improve offspring metabolic health.
Collapse
Affiliation(s)
| | | | | | - Latha Ramalingam
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA (M.L.S.); (A.S.)
| |
Collapse
|
27
|
Bochantin-Winders KA, Slavick KR, Jurgens IM, Hurlbert JL, Menezes ACB, Kirsch JD, Borowicz PP, Schauer CS, Dahlen CR. Influence of sire plane of nutrition and targeted body weight gain on ewe lamb growth, glucose metabolism, and ovarian reserve. J Anim Sci 2024; 102:skae301. [PMID: 39367596 PMCID: PMC11600961 DOI: 10.1093/jas/skae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Rambouillet rams were managed on either a positive (POS; gain 12% body weight [BW]; n = 8), maintenance (MAINT; maintain BW; n = 8), or negative (NEG; lose 12% BW; n = 8) plane of nutrition before breeding. Rams were bred to ewes (n = 10 per ram) that were managed similarly throughout gestation, and lambs were fed a common diet postnatally. Two ewe lambs (7.6 ± 0.02 mo of age, BW = 47.1 ± 1.17 kg) from each sire were selected and within-pair, randomly assigned to be managed for a moderate (MOD, 0.11 kg/d; n = 23) or accelerated (ACC, 0.20 kg/d; n = 22) rate of gain for 56 d. Ewe lamb BW was recorded on a weekly basis and blood was collected on days 0, 28, and 56 for analysis of insulin-like growth factor 1 (IGF-1), triiodothyronine (T3), thyroxine (T4), glucose, blood urea nitrogen (BUN), and non-esterified fatty acids (NEFA). Intravenous glucose tolerance tests (IVGTT) were conducted from days -7 to -4 and days 57 to 64. A unilateral ovariectomy was performed and ovarian follicles were staged and counted macro and microscopically. Sire treatment × day and ewe treatment × day interactions were present for BW (P ≤ 0.05), where POS had slower growth than MAINT and NEG, and tended (P = 0.10) to have reduced average daily gain (ADG) when managed at an accelerated rate of gain. By design, ACC had greater BW and ADG than MOD (P < 0.05). Concentrations of IGF-1 and T4 were greater in ACC than MOD (P ≤ 0.05), and NEG tended to have greater concentrations of IGF-1 than POS and MAINT (P = 0.08). At the first IVGTT, the concentration of insulin was influenced by a sire treatment × time interaction (P ≤ 0.05), suggesting impaired secretion in NEG-sires ewes, but no differences in area under the curve (AUC) for glucose, insulin, or their ratio (P ≥ 0.11). No interactive effects of sire and ewe treatment (P ≥ 0.52) were observed at the second IVGTT, but insulin and insulin:glucose ratio were influenced by sire treatment × time (P ≤ 0.02), as NEG had greater insulin concentration at 60 min than MAINT (P = 0.03) and greater AUC than POS and MAINT (P ≤ 0.04). No differences in ovary size, weight, or total counts of macro and microscopic follicles were observed (P ≥ 0.23). Ewes-fed ACC had a greater number of small surface follicles (P = 0.02), whereas MOD tended to have a greater number of large surface follicles and tertiary follicles (P < 0.06). These findings suggest that the paternal plane of nutrition influences female offspring physiology, particularly at varying growth rates.
Collapse
Affiliation(s)
- Kerri A Bochantin-Winders
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, USA
| | - Kathryn R Slavick
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, USA
| | - Isabella M Jurgens
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, USA
| | - Jennifer L Hurlbert
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, USA
| | - Ana Clara B Menezes
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - James D Kirsch
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, USA
| | - Pawel P Borowicz
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, USA
| | - Christopher S Schauer
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND 58639, USA
| | - Carl R Dahlen
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
28
|
Bochantin-Winders KA, Baumgaertner F, Hurlbert JL, Menezes ACB, Kirsch JD, Dorsam ST, Schauer CS, Dahlen CR. Divergent planes of nutrition in mature rams influences body composition, hormone and metabolite concentrations, and offspring birth measurements, but not semen characteristics or offspring growth. J Anim Sci 2024; 102:skae207. [PMID: 39044680 PMCID: PMC11347781 DOI: 10.1093/jas/skae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
Objectives of this experiment were to characterize the effects of ram plane of nutrition on body composition, concentrations of hormones and metabolites, sperm characteristics, and offspring outcomes. Mature Rambouillet rams (n = 24, BW = 82.9 ± 2.63 kg) were individually housed and randomly assigned to either a positive (POS; n = 8), maintenance (MAINT; n = 8), or negative (NEG; n = 8) plane of nutrition for an 84-day feeding period. Rams were fed a common diet, with daily feed allocations adjusted weekly based on body weight (BW) to achieve the targeted weight gain or loss (approximately 12% of initial BW). On 0, 28, 56, and 84-d, body condition score (BCS) and scrotal circumference (SC) were recorded, and blood and semen were collected. Following the feeding period, rams were placed in pens with 10 ewes each for a 28-d breeding period. Ewes were managed similarly throughout gestation and body weight and measurements were recorded at birth and weaning. Data were analyzed as repeated measures in time where appropriate with the mixed procedure of SAS, and individual ram was the experimental unit for all analysis. Ram BW was influenced by a treatment × day interaction (P < 0.001), with POS (0.12 ± 0.01 kg) having greater daily weight change than MAINT (0.1 ± 0.01 kg), which was greater than NEG (-0.12 ± 0.01 kg). Ram BCS and SC were influenced by treatment × day interactions (P ≤ 0.01), being similar on day 0 but POS being greater than NEG by day 56. Concentrations of triiodothyronine (T3) and T3:T4 ratio exhibited treatment × day interactions (P ≤ 0.02), as POS had greater values than NEG by day 84 (P ≤ 0.02). Concentration of insulin-like growth factor-1 was greater in POS than MAINT and NEG (P ≤ 0.02), and non-esterified fatty acids and thyroxine (T4) were influenced by a day effect (P ≤ 0.01), but testosterone was unaffected (P ≥ 0.09). Minimal differences in semen volume, sperm concentration, motility, or morphology were observed among treatments (P ≥ 0.31). A similar proportion of ewes bred by rams in the respective treatments lambed and weaned lambs (P ≥ 0.54). Birth weight, chest circumference, and shoulder-hip length were greater (P ≤ 0.05) in NEG lambs compared with POS and MAINT; however, no differences were detected in weaning weight and weaning body measurements (P ≥ 0.40). Findings suggest paternal nutrition during the period of sperm development may influence offspring outcomes, potentially as a result of in-utero programming of paternal origin.
Collapse
Affiliation(s)
| | | | - Jennifer L Hurlbert
- Department of Animal Science, North Dakota State University, Fargo, ND, 58105, USA
| | - Ana Clara B Menezes
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - James D Kirsch
- Department of Animal Science, North Dakota State University, Fargo, ND, 58105, USA
| | - Sheri T Dorsam
- Department of Animal Science, North Dakota State University, Fargo, ND, 58105, USA
| | - Christopher S Schauer
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND 58639, USA
| | - Carl R Dahlen
- Department of Animal Science, North Dakota State University, Fargo, ND, 58105, USA
| |
Collapse
|
29
|
Valente LC, de Matos Manoel B, Reis ACC, Stein J, Jorge BC, Barbisan LF, Romualdo GR, Arena AC. A mixture of glyphosate and 2,4-D herbicides enhances the deleterious reproductive outcomes induced by Western diet in obese male mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:31-43. [PMID: 37615203 DOI: 10.1002/tox.23937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/13/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023]
Abstract
The consumption of Western diet (WD) - enriched in fats and sugars - is associated with overweight, obesity and male reproductive disorders. In addition to WD intake, crops and dairy products display residues of herbicides, including glyphosate and 2,4-D that are widely applied worldwide. The concomitant exposure to WD and herbicides - mimicking contemporary scenarios - is not fully investigated. Thus, we evaluated the effects of glyphosate and 2,4-D, alone or in mixture, on WD-induced alterations in the male genital system. Male C57BL6J mice were submitted to WD (chow containing 20% lard, 0.2% cholesterol, 20% sucrose, and high sugar solution with 23.1 and 18.9 g/L of D-fructose and D-glucose) for 6 months. Concomitantly to WD, the animals received glyphosate (0.05, 5, or 50 mg/kg/day), 2,4-D (0.02, 2 or 20 mg/kg/day) or their mixture (0, 05 + 0.02, 5 + 2, or 50 + 20 mg/kg/day) by intragastrical administration (5×/week). Doses were based on Acceptable Daily Intake (ADIs) or No Observed Adverse Effect Level (NOAEL) values. Herbicide exposure did not alter the WD-induced obesity, hypercholesterolemia and hyperglycemia. WD induced sperm cell abnormalities, reduced the number, volume and area of Leydig cells, enhanced the frequency of epididymal abnormalities, decreased the proliferation in both germinal and epididymal epithelia, and reduced the number of androgen receptor (AR) positive epididymal cells. Remarkably, the herbicide mixtures promoted such WD-induced effects: increased the frequency of sperm cell and epididymal abnormalities (absence of sperm, cytoplasmic vacuoles, and clear cell hypertrophy) (5 + 2 and 50 + 20 doses); decreased Leydig cell nuclei volume and area (5 + 2 and 50 + 20 doses), reduced epididymal cell proliferation (all mixtures), and AR expression (50 + 20 dose). In addition, herbicide mixtures reduced serum testosterone levels (5 + 2 and 50 + 20 doses). Our findings indicate that the mixture of glyphosate and 2,4-D herbicides, mimicking environmentally relevant scenarios, promotes WD-induced changes in the male genital system.
Collapse
Affiliation(s)
- Leticia Cardoso Valente
- Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, Brazil
- Biosciences Institute, Department of Structural and Functional Biology, São Paulo State University (UNESP), Dourados, Brazil
- Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically induced and Experimental Carcinogenesis (MDSP-LCQE), São Paulo State University (UNESP), Botucatu Medical School, Dourados, Brazil
| | - Beatriz de Matos Manoel
- Biosciences Institute, Department of Structural and Functional Biology, São Paulo State University (UNESP), Dourados, Brazil
| | - Ana Carolina Casali Reis
- Biosciences Institute, Department of Structural and Functional Biology, São Paulo State University (UNESP), Dourados, Brazil
| | - Julia Stein
- Biosciences Institute, Department of Structural and Functional Biology, São Paulo State University (UNESP), Dourados, Brazil
| | - Bárbara Campos Jorge
- Biosciences Institute, Department of Structural and Functional Biology, São Paulo State University (UNESP), Dourados, Brazil
| | - Luís Fernando Barbisan
- Biosciences Institute, Department of Structural and Functional Biology, São Paulo State University (UNESP), Dourados, Brazil
- Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically induced and Experimental Carcinogenesis (MDSP-LCQE), São Paulo State University (UNESP), Botucatu Medical School, Dourados, Brazil
| | - Guilherme Ribeiro Romualdo
- Biosciences Institute, Department of Structural and Functional Biology, São Paulo State University (UNESP), Dourados, Brazil
- Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically induced and Experimental Carcinogenesis (MDSP-LCQE), São Paulo State University (UNESP), Botucatu Medical School, Dourados, Brazil
| | - Arielle Cristina Arena
- Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, Brazil
- Biosciences Institute, Department of Structural and Functional Biology, São Paulo State University (UNESP), Dourados, Brazil
| |
Collapse
|
30
|
George BT, Jhancy M, Dube R, Kar SS, Annamma LM. The Molecular Basis of Male Infertility in Obesity: A Literature Review. Int J Mol Sci 2023; 25:179. [PMID: 38203349 PMCID: PMC10779000 DOI: 10.3390/ijms25010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The rising incidence of obesity has coincided with rising levels of poor reproductive outcomes. The molecular basis for the association of infertility in obese males is now being explained through various mechanisms. Insulin resistance, hyperglycemia, and changes in serum and gonadal concentrations of adipokines, like leptin, adiponectin, resistin, and ghrelin have been implicated as causes of male infertility in obese males. The effects of obesity and hypogonadism form a vicious cycle whereby dysregulation of the hypothalamic-pituitary-testicular axis-due to the effect of the release of multiple mediators, thus decreasing GnRH release from the hypothalamus-causes decreases in LH and FSH levels. This leads to lower levels of testosterone, which further increases adiposity because of increased lipogenesis. Cytokines such as TNF-α and interleukins, sirtuins, and other inflammatory mediators like reactive oxygen species are known to affect fertility in obese male adults. There is evidence that parental obesity can be transferred through subsequent generations to offspring through epigenetic marks. Thus, negative expressions like obesity and infertility have been linked to epigenetic marks being altered in previous generations. The interesting aspect is that these epigenetic expressions can be reverted by removing the triggering factors. These positive modifications are also transmitted to subsequent generations.
Collapse
Affiliation(s)
- Biji Thomas George
- Department of Surgery, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates
| | - Malay Jhancy
- Department of Pediatrics, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (M.J.); (S.S.K.)
| | - Rajani Dube
- Department of Obstetrics and Gynecology, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Subhranshu Sekhar Kar
- Department of Pediatrics, RAK College of Medical Sciences, RAKMHSU, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (M.J.); (S.S.K.)
| | - Lovely Muthiah Annamma
- Department of Clinical Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| |
Collapse
|
31
|
Karahan G, Martel J, Rahimi S, Farag M, Matias F, MacFarlane AJ, Chan D, Trasler J. Higher incidence of embryonic defects in mouse offspring conceived with assisted reproduction from fathers with sperm epimutations. Hum Mol Genet 2023; 33:48-63. [PMID: 37740387 PMCID: PMC10729866 DOI: 10.1093/hmg/ddad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Assisted reproductive technologies (ART) account for 1-6% of births in developed countries. While most children conceived are healthy, increases in birth and genomic imprinting defects have been reported; such abnormal outcomes have been attributed to underlying parental infertility and/or the ART used. Here, we assessed whether paternal genetic and lifestyle factors, that are associated with male infertility and affect the sperm epigenome, can influence ART outcomes. We examined how paternal factors, haploinsufficiency for Dnmt3L, an important co-factor for DNA methylation reactions, and/or diet-induced obesity, in combination with ART (superovulation, in vitro fertilization, embryo culture and embryo transfer), could adversely influence embryo development and DNA methylation patterning in mice. While male mice fed high-fat diets (HFD) gained weight and showed perturbed metabolic health, their sperm DNA methylation was minimally affected by the diet. In contrast, Dnmt3L haploinsufficiency induced a marked loss of DNA methylation in sperm; notably, regions affected were associated with neurodevelopmental pathways and enriched in young retrotransposons, sequences that can have functional consequences in the next generation. Following ART, placental imprinted gene methylation and growth parameters were impacted by one or both paternal factors. For embryos conceived by natural conception, abnormality rates were similar for WT and Dnmt3L+/- fathers. In contrast, paternal Dnmt3L+/- genotype, as compared to WT fathers, resulted in a 3-fold increase in the incidence of morphological abnormalities in embryos generated by ART. Together, the results indicate that embryonic morphological and epigenetic defects associated with ART may be exacerbated in offspring conceived by fathers with sperm epimutations.
Collapse
Affiliation(s)
- Gurbet Karahan
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Josée Martel
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Sophia Rahimi
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Mena Farag
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Fernando Matias
- Nutrition Research Division, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | | | - Donovan Chan
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jacquetta Trasler
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Pediatrics, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
32
|
Shrestha A, Dellett SK, Yang J, Sharma U, Ramalingam L. Effects of Fish Oil Supplementation on Reducing the Effects of Paternal Obesity and Preventing Fatty Liver in Offspring. Nutrients 2023; 15:5038. [PMID: 38140297 PMCID: PMC10745816 DOI: 10.3390/nu15245038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious public health concern, which calls for appropriate diet/nutrition intervention. Fish oil (FO) has several benefits in reducing obesity, but its intergenerational role in reducing the effects of paternal obesity has not been established. Hence, we hypothesized that FO supplementation to an obese father during the pre-conceptional period could improve the metabolic health of the offspring, specifically in the liver. Three groups of male mice were fed with a low-fat (LF), high-fat (HF), or high-fat diet supplemented with FO (HF-FO) for 10 weeks and were then allowed to mate with female mice fed a chow diet. Offspring were sacrificed at 16 weeks. The liver tissue was harvested for genomic and histological analyses. The offspring of HF and HF-FO fathers were heavier compared to that of the LF mice during 9-16 weeks. The glucose tolerance of the offspring of HF-FO fathers were significantly improved as compared to the offspring of HF fathers. Paternal FO supplementation significantly lowered inflammation and fatty acid synthesis biomarkers and increased fatty acid oxidation biomarkers in the offspring liver. In summary, FO supplementation in fathers shows the potential to reduce metabolic and cardiovascular diseases through genetic means in offspring.
Collapse
Affiliation(s)
- Akriti Shrestha
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| | - Sarah Katherine Dellett
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| | - Junhui Yang
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Latha Ramalingam
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY 13244, USA; (A.S.); (S.K.D.); (J.Y.)
| |
Collapse
|
33
|
Sengupta P, Dutta S, Liew FF, Dhawan V, Das B, Mottola F, Slama P, Rocco L, Roychoudhury S. Environmental and Genetic Traffic in the Journey from Sperm to Offspring. Biomolecules 2023; 13:1759. [PMID: 38136630 PMCID: PMC10741607 DOI: 10.3390/biom13121759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.
Collapse
Affiliation(s)
- Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Sulagna Dutta
- School of Life Sciences, Manipal Academy of Higher Education (MAHE), Dubai 345050, United Arab Emirates
| | - Fong Fong Liew
- Department of Preclinical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Vidhu Dhawan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Biprojit Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | | |
Collapse
|
34
|
Kretschmer M, Fischer V, Gapp K. When Dad's Stress Gets under Kid's Skin-Impacts of Stress on Germline Cargo and Embryonic Development. Biomolecules 2023; 13:1750. [PMID: 38136621 PMCID: PMC10742275 DOI: 10.3390/biom13121750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple lines of evidence suggest that paternal psychological stress contributes to an increased prevalence of neuropsychiatric and metabolic diseases in the progeny. While altered paternal care certainly plays a role in such transmitted disease risk, molecular factors in the germline might additionally be at play in humans. This is supported by findings on changes to the molecular make up of germ cells and suggests an epigenetic component in transmission. Several rodent studies demonstrate the correlation between paternal stress induced changes in epigenetic modifications and offspring phenotypic alterations, yet some intriguing cases also start to show mechanistic links in between sperm and the early embryo. In this review, we summarise efforts to understand the mechanism of intergenerational transmission from sperm to the early embryo. In particular, we highlight how stress alters epigenetic modifications in sperm and discuss the potential for these modifications to propagate modified molecular trajectories in the early embryo to give rise to aberrant phenotypes in adult offspring.
Collapse
Affiliation(s)
- Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
35
|
Tompkins JD. Transgenerational Epigenetic DNA Methylation Editing and Human Disease. Biomolecules 2023; 13:1684. [PMID: 38136557 PMCID: PMC10742326 DOI: 10.3390/biom13121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
During gestation, maternal (F0), embryonic (F1), and migrating primordial germ cell (F2) genomes can be simultaneously exposed to environmental influences. Accumulating evidence suggests that operating epi- or above the genetic DNA sequence, covalent DNA methylation (DNAme) can be recorded onto DNA in response to environmental insults, some sites which escape normal germline erasure. These appear to intrinsically regulate future disease propensity, even transgenerationally. Thus, an organism's genome can undergo epigenetic adjustment based on environmental influences experienced by prior generations. During the earliest stages of mammalian development, the three-dimensional presentation of the genome is dramatically changed, and DNAme is removed genome wide. Why, then, do some pathological DNAme patterns appear to be heritable? Are these correctable? In the following sections, I review concepts of transgenerational epigenetics and recent work towards programming transgenerational DNAme. A framework for editing heritable DNAme and challenges are discussed, and ethics in human research is introduced.
Collapse
Affiliation(s)
- Joshua D Tompkins
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
36
|
Tando Y, Matsui Y. Inheritance of environment-induced phenotypic changes through epigenetic mechanisms. ENVIRONMENTAL EPIGENETICS 2023; 9:dvad008. [PMID: 38094661 PMCID: PMC10719065 DOI: 10.1093/eep/dvad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 03/08/2024]
Abstract
Growing evidence suggests that epigenetic changes through various parental environmental factors alter the phenotypes of descendants in various organisms. Environmental factors, including exposure to chemicals, stress and abnormal nutrition, affect the epigenome in parental germ cells by different epigenetic mechanisms, such as DNA methylation, histone modification as well as small RNAs via metabolites. Some current remaining questions are the causal relationship between environment-induced epigenetic changes in germ cells and altered phenotypes of descendants, and the molecular basis of how the abnormal epigenetic changes escape reprogramming in germ cells. In this review, we introduce representative examples of intergenerational and transgenerational inheritance of phenotypic changes through parental environmental factors and the accompanied epigenetic and metabolic changes, with a focus on animal species. We also discuss the molecular mechanisms of epigenomic inheritance and their possible biological significance.
Collapse
Affiliation(s)
- Yukiko Tando
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
37
|
Santos-Pereira M, Pereira SC, Rebelo I, Spadella MA, Oliveira PF, Alves MG. Decoding the Influence of Obesity on Prostate Cancer and Its Transgenerational Impact. Nutrients 2023; 15:4858. [PMID: 38068717 PMCID: PMC10707940 DOI: 10.3390/nu15234858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the escalating prevalence of metabolic disorders, notably obesity and being overweight, has emerged as a pressing concern in public health. Projections for the future indicate a continual upward trajectory in obesity rates, primarily attributable to unhealthy dietary patterns and sedentary lifestyles. The ramifications of obesity extend beyond its visible manifestations, intricately weaving a web of hormonal dysregulation, chronic inflammation, and oxidative stress. This nexus of factors holds particular significance in the context of carcinogenesis, notably in the case of prostate cancer (PCa), which is a pervasive malignancy and a leading cause of mortality among men. A compelling hypothesis arises from the perspective of transgenerational inheritance, wherein genetic and epigenetic imprints associated with obesity may wield influence over the development of PCa. This review proposes a comprehensive exploration of the nuanced mechanisms through which obesity disrupts prostate homeostasis and serves as a catalyst for PCa initiation. Additionally, it delves into the intriguing interplay between the transgenerational transmission of both obesity-related traits and the predisposition to PCa. Drawing insights from a spectrum of sources, ranging from in vitro and animal model research to human studies, this review endeavors to discuss the intricate connections between obesity and PCa. However, the landscape remains partially obscured as the current state of knowledge unveils only fragments of the complex mechanisms linking these phenomena. As research advances, unraveling the associated factors and underlying mechanisms promises to unveil novel avenues for understanding and potentially mitigating the nexus between obesity and the development of PCa.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Sara C. Pereira
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal;
| | - Maria A. Spadella
- Human Embryology Laboratory, Marília Medical School, Marília 17519-030, SP, Brazil;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
38
|
Crisóstomo L, Oliveira PF, Alves MG. A systematic scientometric review of paternal inheritance of acquired metabolic traits. BMC Biol 2023; 21:255. [PMID: 37953286 PMCID: PMC10641967 DOI: 10.1186/s12915-023-01744-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND The concept of the inheritance of acquired traits, a foundational principle of Lamarck's evolutionary theory, has garnered renewed attention in recent years. Evidence for this phenomenon remained limited for decades but gained prominence with the Överkalix cohort study in 2002. This study revealed a link between cardiovascular disease incidence and the food availability experienced by individuals' grandparents during their slow growth periods, reigniting interest in the inheritance of acquired traits, particularly in the context of non-communicable diseases. This scientometric analysis and systematic review comprehensively explores the current landscape of paternally transmitted acquired metabolic traits. RESULTS Utilizing Scopus Advanced search and meticulous screening, we included mammalian studies that document the inheritance or modification of metabolic traits in subsequent generations of unexposed descendants. Our inclusive criteria encompass intergenerational and transgenerational studies, as well as multigenerational exposures. Predominantly, this field has been driven by a select group of researchers, potentially shaping the design and focus of existing studies. Consequently, the literature primarily comprises transgenerational rodent investigations into the effects of ancestral exposure to environmental pollutants on sperm DNA methylation. The complexity and volume of data often lead to multiple or redundant publications. This practice, while understandable, may obscure the true extent of the impact of ancestral exposures on the health of non-exposed descendants. In addition to DNA methylation, studies have illuminated the role of sperm RNAs and histone marks in paternally acquired metabolic disorders, expanding our understanding of the mechanisms underlying epigenetic inheritance. CONCLUSIONS This review serves as a comprehensive resource, shedding light on the current state of research in this critical area of science, and underscores the need for continued exploration to uncover the full spectrum of paternally mediated metabolic inheritance.
Collapse
Affiliation(s)
- Luís Crisóstomo
- Departmento de Anatomia, UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marco G Alves
- Departmento de Anatomia, UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal.
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.
- Institute of Biomedicine - iBiMED and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
39
|
Beil J, Perner J, Pfaller L, Gérard MA, Piaia A, Doelemeyer A, Wasserkrug Naor A, Martin L, Piequet A, Dubost V, Chibout SD, Moggs J, Terranova R. Unaltered hepatic wound healing response in male rats with ancestral liver injury. Nat Commun 2023; 14:6353. [PMID: 37816736 PMCID: PMC10564731 DOI: 10.1038/s41467-023-41998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
The possibility that ancestral environmental exposure could result in adaptive inherited effects in mammals has been long debated. Numerous rodent models of transgenerational responses to various environmental factors have been published but due to technical, operational and resource burden, most still await independent confirmation. A previous study reported multigenerational epigenetic adaptation of the hepatic wound healing response upon exposure to the hepatotoxicant carbon tetrachloride (CCl4) in male rats. Here, we comprehensively investigate the transgenerational effects by repeating the original CCl4 multigenerational study with increased power, pedigree tracing, F2 dose-response and suitable randomization schemes. Detailed pathology evaluations do not support adaptive phenotypic suppression of the hepatic wound healing response or a greater fitness of F2 animals with ancestral liver injury exposure. However, transcriptomic analyses identified genes whose expression correlates with ancestral liver injury, although the biological relevance of this apparent transgenerational transmission at the molecular level remains to be determined. This work overall highlights the need for independent evaluation of transgenerational epigenetic inheritance paradigms in mammals.
Collapse
Affiliation(s)
- Johanna Beil
- Novartis, Biomedical Research, Basel, Switzerland
| | | | - Lena Pfaller
- Novartis, Biomedical Research, Basel, Switzerland
| | | | | | | | | | - Lori Martin
- Novartis, Biomedical Research, East-Hanover, NJ, USA
| | | | | | | | | | | |
Collapse
|
40
|
Escalona R, Larqué C, Cortes D, Vilchis R, Granados-Delgado E, Sánchez A, Sánchez-Bringas G, Lugo-Martínez H. High-fat diet impairs glucose homeostasis by increased p16 beta-cell expression and alters glucose homeostasis of the progeny in a parental-sex dependent manner. Front Endocrinol (Lausanne) 2023; 14:1246194. [PMID: 37876538 PMCID: PMC10591070 DOI: 10.3389/fendo.2023.1246194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Obesity consists in the accumulation of adipose tissue accompanied by low grade chronic inflammation and is considered a pandemic disease. Recent studies have observed that obesity affects females and males in a sex-dependent manner. In addition, several works have demonstrated that parental obesity increases the risk to develop obesity, insulin resistance, diabetes, and reproductive disorders. Considering that intergenerational effects of obesity may occur in a sex-dependent manner, we studied male Wistar rat progeny (F1) obtained from mothers or fathers (F0) fed on a high-fat diet (HFD). Methods Five-week-old female and male Wistar rats were fed on a HFD (with 60% of calories provided by fat) for 18 weeks (F0). At the end of the treatment, animals were mated with young rats to obtain their progeny (F1). After weaning, F1 animals were fed on standard chow until 18 weeks of age. Body weight gain, fasting plasma glucose, insulin and leptin levels, glucose tolerance, insulin sensitivity, and adiposity were evaluated. In addition, beta-cell expression of nuclear p16 was assessed by immunofluorescence. Results and conclusions HFD altered plasma fasting glucose, insulin and leptin levels, glucose tolerance, adiposity, and beta-cell expression of p16 in F0 rats. Particularly, HFD showed sexual dimorphic effects on body weight gain and insulin sensitivity. Moreover, we observed that parental HFD feeding exerts parental-sex-specific metabolic impairment in the male progeny. Finally, parental metabolic dysfunction could be in part attributed to the increased beta-cell expression of p16; other mechanisms could be involved in the offspring glucose homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haydée Lugo-Martínez
- Laboratory of Embryology and Genetics, Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
41
|
Bak ST, Haupt-Jorgensen M, Dudele A, Wegener G, Wang T, Nielsen AL, Lund S. The anti-inflammatory agent 5-ASA reduces the level of specific tsRNAs in sperm cells of high-fat fed C57BL/6J mouse sires and improves glucose tolerance in female offspring. J Diabetes Complications 2023; 37:108563. [PMID: 37499293 DOI: 10.1016/j.jdiacomp.2023.108563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION The prevalence of obesity and associated comorbidities have increased to epidemic proportions globally. Paternal obesity is an independent risk factor for developing obesity and type 2 diabetes in the following generation, and growing evidence suggests epigenetic inheritance as a mechanism for this predisposition. How and why obesity induces epigenetic changes in sperm cells remain to be clarified in detail. Yet, recent studies show that alterations in sperm content of transfer RNA-derived small RNAs (tsRNAs) can transmit the effects of paternal obesity to offspring. Obesity is closely associated with low-grade chronic inflammation. Thus, we evaluated whether the anti-inflammatory agent 5-aminosalicylic acid (5-ASA) could intervene in the transmission of epigenetic inheritance of paternal obesity by reducing the inflammatory state in obese fathers. METHODS Male C57BL/6JBomTac mice were either fed a high-fat diet or a high-fat diet with 5-ASA for ten weeks before mating. The offspring metabolic phenotype was evaluated, and spermatozoa from sires were isolated for assessment of specific tsRNAs levels. RESULTS 5-ASA intervention reduced the levels of Glu-CTC tsRNAs in sperm cells and improved glucose tolerance in female offspring fed a chow diet. Paternal high-fat diet-induced obesity per se had only a moderate impact on the metabolic phenotype of both male and female offspring in our setting. CONCLUSION The results indicate that the low-grade inflammatory response associated with obesity may be an important factor in epigenetic inheritance of paternal obesity.
Collapse
Affiliation(s)
| | - Martin Haupt-Jorgensen
- The Bartholin Institute, Department of Pathology, Rigshospitalet, 2200 Copenhagen N, Denmark.
| | - Anete Dudele
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, 8200 Aarhus, Denmark
| | - Gregers Wegener
- Department of Clinial Medicine, Translational Neuropsychiatry Unit, Aarhus University, 8000 Aarhus, Denmark; Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Tobias Wang
- Department of Bioscience, Section for Zoophysiology, Aarhus University, 8000 Aarhus, Denmark
| | | | - Sten Lund
- Department of Internal Medicine and Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
42
|
Wei S, Luo S, Zhang H, Li Y, Zhao J. Paternal high-fat diet altered SETD2 gene methylation in sperm of F0 and F1 mice. GENES & NUTRITION 2023; 18:12. [PMID: 37598138 PMCID: PMC10439541 DOI: 10.1186/s12263-023-00731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Paternal high-fat diet (HFD) can alter the epigenetics of sperm DNA, resulting in the transmission of obesity-related traits to the offspring. Previous studies have mainly focused on the HFD-induced changes in DNA methylation of imprinted genes, overlooking the potential involvement of non-imprinted genes in this process. SETD2, an important epigenetically-regulated gene known for its response to environmental stress, remains poorly understood in the context of high-fat diet-induced epigenetic changes. Here we examined the effect of obesity from a HFD on paternal SETD2 expression and methylation in sperm, and embryos at the blastocyst stage and during subsequent development, to determine the alteration of SETD2 in paternal intergenerational and transgenerational inheritance. The result showed that mice fed with HFD for two months had significantly increased SETD2 expression in testis and sperm. The paternal HFD significantly altered the DNA methylation level with 20 of the 26 CpG sites being changed in sperm from F0 mice. Paternal high-fat diet increased apoptotic index and decreased total cell number of blastocysts, which were closely correlated with DNA methylation level of sperm. Out of the 26 CpG sites, we also found three CpG sites that were significantly changed in the sperm from F1 mice, which meant that the methylation changes at these three CpG sites were maintained.In conclusion, we found that paternal exposure to an HFD disrupted the methylation pattern of SETD2 in the sperm of F0 mice and resulted in perturbed SETD2 expression. Furthermore, the paternal high-fat diet influenced embryo apoptosis and development, possibly through the SETD2 pathway. The altered methylation of SETD2 in sperm induced by paternal HFD partially persisted in the sperm of the F1 generation, highlighting the role of SETD2 as an epigenetic carrier for paternal intergenerational and transgenerational inheritance.
Collapse
Affiliation(s)
- Suhua Wei
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shiwei Luo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, China
| | - Haifeng Zhang
- Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Yandong Li
- Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China.
| | - Juan Zhao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
43
|
Murashov AK, Pak ES, Mar J, O’Brien K, Fisher-Wellman K, Bhat KM. Paternal Western diet causes transgenerational increase in food consumption in Drosophila with parallel alterations in the offspring brain proteome and microRNAs. FASEB J 2023; 37:e22966. [PMID: 37227156 PMCID: PMC10234493 DOI: 10.1096/fj.202300239rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
Several lines of evidence indicate that ancestral diet might play an important role in determining offspring's metabolic traits. However, it is not yet clear whether ancestral diet can affect offspring's food choices and feeding behavior. In the current study, taking advantage of Drosophila model system, we demonstrate that paternal Western diet (WD) increases offspring food consumption up to the fourth generation. Paternal WD also induced alterations in F1 offspring brain proteome. Using enrichment analyses of pathways for upregulated and downregulated proteins, we found that upregulated proteins had significant enrichments in terms related to translation and translation factors, whereas downregulated proteins displayed enrichments in small molecule metabolic processes, TCA cycles, and electron transport chain (ETC). Using MIENTURNET miRNA prediction tool, dme-miR-10-3p was identified as the top conserved miRNA predicted to target proteins regulated by ancestral diet. RNAi-based knockdown of miR-10 in the brain significantly increased food consumption, implicating miR-10 as a potential factor in programming feeding behavior. Together, these findings suggest that ancestral nutrition may influence offspring feeding behavior through alterations in miRNAs.
Collapse
Affiliation(s)
- Alexander K. Murashov
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Elena S. Pak
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Jordan Mar
- Department of Molecular Medicine, University of South Florida, Tampa, FL
| | - Kevin O’Brien
- Department of Biostatistics, College of Allied Health Sciences, East Carolina University, Greenville, NC
| | - Kelsey Fisher-Wellman
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Krishna M. Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
44
|
Ali W, Deng K, Bian Y, Liu Z, Zou H. Spectacular role of epididymis and bio-active cargo of nano-scale exosome in sperm maturation: A review. Biomed Pharmacother 2023; 164:114889. [PMID: 37209627 DOI: 10.1016/j.biopha.2023.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
The epididymis is responsible for post-testicular sperm maturation as it provides a favorable environment for spermatozoa to gain the ability for movement and fertilization. The recent evidence has shown that, the spermatozoa are vulnerable to dynamic variations driven by various cellular exposure mechanisms mediated by epididymosomes. Exosomes provide new insight into a mechanism of intercellular communication because they provide direct evidence for the transfer of several important bio-active cargo elements (proteins, lipid, DNA, mRNA, microRNA, circular RNA, long noncoding RNA) between epididymis and spermatozoa. In broad sense, proteomic analysis of exosomes from epididymis indicates number of proteins that are involved in sperm motility, acrosomal reaction, prevent pre-mature sperm capacitation and male infertility. Pinpointing, how reproductive disorders are associated with bio-active cargo elements of nano-scale exosome in the male reproductive tract. Therefore, the current review presents evidence regarding the distinctive characteristics and functions of nano-scale exosome in the male reproductive tract in both pathological and physiological developments, and argue that these vesicles serve as an important regulator of male reproduction, fertility, and disease susceptibility.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Kai Deng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yusheng Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
45
|
Manfrevola F, Chioccarelli T, Mele VG, Porreca V, Mattia M, Cimini D, D'Agostino A, Cobellis G, Fasano S, Schiraldi C, Chianese R, Pierantoni R. Novel Insights into circRNA Saga Coming from Spermatozoa and Epididymis of HFD Mice. Int J Mol Sci 2023; 24:ijms24076865. [PMID: 37047838 PMCID: PMC10095261 DOI: 10.3390/ijms24076865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Obesity is a pathophysiological disorder associated with adiposity accumulation, oxidative stress, and chronic inflammation state that is progressively increasing in younger population worldwide, negatively affecting male reproductive skills. An emerging topic in the field of male reproduction is circRNAs, covalently closed RNA molecules produced by backsplicing, actively involved in a successful spermatogenesis and in establishing high-quality sperm parameters. However, a direct correlation between obesity and impaired circRNA cargo in spermatozoa (SPZ) remains unclear. In the current work, using C57BL6/J male mice fed with a high-fat diet (HFD, 60% fat) as experimental model of oxidative stress, we investigated the impact of HFD on sperm morphology and motility as well as on spermatic circRNAs. We performed a complete dataset of spermatic circRNA content by a microarray strategy, and differentially expressed (DE)-circRNAs were identified. Using a circRNA/miRNA/target network (ceRNET) analysis, we identified circRNAs potentially involved in oxidative stress and sperm motility pathways. Interestingly, we demonstrated an enhanced skill of HFD sperm in backsplicing activity together with an inefficient epididymal circRNA biogenesis. Fused protein in sarcoma (FUS) and its ability to recruit quaking (QKI) could be involved in orchestrating such mechanism.
Collapse
Affiliation(s)
- Francesco Manfrevola
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Monica Mattia
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Donatella Cimini
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Antonella D'Agostino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
46
|
Alata Jimenez N, Castellano M, Santillan EM, Boulias K, Boan A, Arias Padilla LF, Fernandino JI, Greer EL, Tosar JP, Cochella L, Strobl-Mazzulla PH. Paternal methotrexate exposure affects sperm small RNA content and causes craniofacial defects in the offspring. Nat Commun 2023; 14:1617. [PMID: 36959185 PMCID: PMC10036556 DOI: 10.1038/s41467-023-37427-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Folate is an essential vitamin for vertebrate embryo development. Methotrexate (MTX) is a folate antagonist that is widely prescribed for autoimmune diseases, blood and solid organ malignancies, and dermatologic diseases. Although it is highly contraindicated for pregnant women, because it is associated with an increased risk of multiple birth defects, the effect of paternal MTX exposure on their offspring has been largely unexplored. Here, we found MTX treatment of adult medaka male fish (Oryzias latipes) causes cranial cartilage defects in their offspring. Small non-coding RNA (sncRNAs) sequencing in the sperm of MTX treated males identify differential expression of a subset of tRNAs, with higher abundance for specific 5' tRNA halves. Sperm RNA methylation analysis on MTX treated males shows that m5C is the most abundant and differential modification found in RNAs ranging in size from 50 to 90 nucleotides, predominantly tRNAs, and that it correlates with greater testicular Dnmt2 methyltransferase expression. Injection of sperm small RNA fractions from MTX-treated males into normal fertilized eggs generated cranial cartilage defects in the offspring. Overall, our data suggest that paternal MTX exposure alters sperm sncRNAs expression and modifications that may contribute to developmental defects in their offspring.
Collapse
Affiliation(s)
- Nagif Alata Jimenez
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Mauricio Castellano
- Functional Genomics Unit, Instituto Pasteur de Montevideo, Montevideo, Uruguay
- School of Science, Universidad de la República, Montevideo, Uruguay
| | - Emilio M Santillan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Konstantinos Boulias
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Agustín Boan
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Luisa F Arias Padilla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Juan I Fernandino
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Eric L Greer
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Juan P Tosar
- Functional Genomics Unit, Instituto Pasteur de Montevideo, Montevideo, Uruguay
- School of Science, Universidad de la República, Montevideo, Uruguay
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Pablo H Strobl-Mazzulla
- Laboratory of Developmental Biology, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina.
| |
Collapse
|
47
|
Liu S, Sharma U. Sperm RNA Payload: Implications for Intergenerational Epigenetic Inheritance. Int J Mol Sci 2023; 24:5889. [PMID: 36982962 PMCID: PMC10052761 DOI: 10.3390/ijms24065889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
There is mounting evidence that ancestral life experiences and environment can influence phenotypes in descendants. The parental environment regulates offspring phenotypes potentially via modulating epigenetic marks in the gametes. Here, we review examples of across-generational inheritance of paternal environmental effects and the current understanding of the role of small RNAs in such inheritance. We discuss recent advances in revealing the small RNA payload of sperm and how environmental conditions modulate sperm small RNAs. Further, we discuss the potential mechanism of inheritance of paternal environmental effects by focusing on sperm small RNA-mediated regulation of early embryonic gene expression and its role in influencing offspring phenotypes.
Collapse
Affiliation(s)
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
48
|
Martinello P, Omar NF, Fornel R, de Oliveria AFDR, Gomes JR. Effects of obesity on the rat incisor enamel and dentine thickness, as well as on the hemimandible shape over generations. Ann Anat 2023; 248:152080. [PMID: 36925082 DOI: 10.1016/j.aanat.2023.152080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023]
Abstract
Obesity has several effects on the general body metabolism. However, little is known about the impact of obesity on the growth and shape of mineralized tissues like mandibles and teeth, as well as if it effects are passed down from generation to next. Therefore, in this study, we aimed to evaluate, over nine generations using the consanguineous mating (inbreeding), the effect of the obesity condition produced by the reduction in the number of rats per litter during the lactation period on the hemimandible shape, dentine, and enamel of the rat incisor. Litters were reduced to two males and two females after birth, and were consanguinity mated in adulthood for nine generations. For all evaluations performed in this investigation, only males were used. The control group was formed by a non-consanguineous litter containing eight males. The parameters evaluated were food consumption, body weight, Lee Index, and bone density of the hemimandible bone. Incisor enamel and dentine thickness were also evaluated. The hemimandible shape was evaluated using geometric morphometry. The results show a significant and progressive increase in food intake, Lee Index, body weight, hemimandible weight, and enamel thickness, and a decrease in dentine thickness. The linear measurements of the length of the ramus ascending hemimandibular segment were found to be shorter, while its height was increased. In contrast, the geometric morphometry shows that the general hemimandible shape changed over the consanguineous obesity generations. We conclude that over generations, obesity increases and maintains the parameters evaluated with significant changes in hemimandible shape as well as in the dimensions of enamel and dentine of incisors, suggesting that enamel and dentine could be used as phenotype biomarkers to detect changes in tooth and craniofacial development related to obesity effects.
Collapse
Affiliation(s)
- Poliana Martinello
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Nadia Fayez Omar
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Rodrigo Fornel
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | | | - José Rosa Gomes
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, PR, Brazil.
| |
Collapse
|
49
|
Svanes C, Holloway JW, Krauss-Etschmann S. Preconception origins of asthma, allergies and lung function: The influence of previous generations on the respiratory health of our children. J Intern Med 2023; 293:531-549. [PMID: 36861185 DOI: 10.1111/joim.13611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Emerging research suggests that exposures occurring years before conception are important determinants of the health of future offspring and subsequent generations. Environmental exposures of both the father and mother, or exposure to disease processes such as obesity or infections, may influence germline cells and thereby cause a cascade of health outcomes in multiple subsequent generations. There is now increasing evidence that respiratory health is influenced by parental exposures that occur long before conception. The strongest evidence relates adolescent tobacco smoking and overweight in future fathers to increased asthma and lower lung function in their offspring, supported by evidence on parental preconception occupational exposures and air pollution. Although this literature is still sparse, the epidemiological analyses reveal strong effects that are consistent across studies with different designs and methodologies. The results are strengthened by mechanistic research from animal models and (scarce) human studies that have identified molecular mechanisms that can explain the epidemiological findings, suggesting transfer of epigenetic signals through germline cells, with susceptibility windows in utero (both male and female line) and prepuberty (male line). The concept that our lifestyles and behaviours may influence the health of our future children represents a new paradigm. This raises concerns for future health in decades to come with respect to harmful exposures but may also open for radical rethinking of preventive strategies that may improve health in multiple generations, reverse the imprint of our parents and forefathers, and underpin strategies that can break the vicious circle of propagation of health inequalities across generations.
Collapse
Affiliation(s)
- Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Susanne Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
50
|
Deshpande SSS, Bera P, Khambata K, Balasinor NH. Paternal obesity induces epigenetic aberrations and gene expression changes in placenta and fetus. Mol Reprod Dev 2023; 90:109-126. [PMID: 36541371 DOI: 10.1002/mrd.23660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 09/15/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022]
Abstract
Paternal epigenome regulates placental and fetal growth. However, the effect of paternal obesity on placenta and its subsequent effect on the fetus via sperm remains unknown. We previously discovered abnormal methylation of imprinted genes involved in placental and fetal development in the spermatozoa of obese rats. In the present study, elaborate epigenetic characterization of sperm, placenta, and fetus was performed. For 16 weeks, male rats were fed either control or a high-fat diet. Following mating studies, sperm, placenta, and fetal tissue were collected. Significant changes were observed in placental weights, morphology, and cell populations. Methylation status of imprinted genes-Igf2, Peg3, Cdkn1c, and Gnas in spermatozoa, correlated with their expression in the placenta and fetus. Placental DNA methylating enzymes and 5-methylCytosine levels increased. Furthermore, in spermatozoa, DNA methylation of a few genes involved in pathways associated with placental endocrine function-gonadotropin-releasing hormone, prolactin, estrogen, and vascular endothelial growth factor, correlated with their expression in placenta and fetus. Changes in histone-modifying enzymes were also observed in the placenta. Histone marks H3K4me3, H3K9me3, and H4ac were downregulated, while H3K27me3 and H3ac were upregulated in placentas derived from obese male rats. This study shows that obesity-related changes in sperm methylome translate into abnormal expression in the F1-placenta fathered by the obese male, presumably affecting placental and fetal development.
Collapse
Affiliation(s)
- Sharvari S S Deshpande
- Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India.,Integrative Physiology and Metabolism Section, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Priyanka Bera
- Gamete Immunobiology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Kushaan Khambata
- Gamete Immunobiology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Nafisa H Balasinor
- Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India
| |
Collapse
|