1
|
Tipton M. Any old iron, man. Exp Physiol 2025; 110:6-10. [PMID: 39463270 DOI: 10.1113/ep092295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Affiliation(s)
- Mike Tipton
- Extreme Environments Laboratory, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
2
|
Cable TG, Funnell MP, Reynolds KM, Hudson EF, Macrae HZ, Johnson DA, Taylor L, Heaney LM, Mears SA, Bailey SJ, James LJ. 7 days of L-citrulline supplementation does not improve running performance in the heat whilst in a hypohydrated state. Eur J Appl Physiol 2024:10.1007/s00421-024-05671-4. [PMID: 39699639 DOI: 10.1007/s00421-024-05671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
PURPOSE 7 days L-citrulline supplementation has been reported to improve blood pressure, V . O2 kinetics, gastrointestinal (GI) perfusion and endurance cycling performance through increasing arterial blood flow. In situations where blood volume is compromised (e.g., hyperthermia/hypohydration), L-citrulline may improve thermoregulation and exercise performance by redistributing blood flow to aid heat loss and/or muscle function. This study assessed 7 days L-citrulline supplementation on running performance in the heat, whilst mildly hypohydrated. METHODS 13 endurance runners (2 female, 31 ± 8 y, V . O2peak 60 ± 6 mL/kg/min) participated in a randomised crossover study with 7 days L-citrulline (CIT; 6 g/d) or placebo (maltodextrin powder; PLA) supplementation. Participants completed a 50 min running 'preload' at 65% V . O2peak (32 °C, 50% relative humidity) to induce hyperthermia and hypohydration before a 3 km running time trial (TT). Body mass and blood samples were collected at baseline, pre-preload, post-preload and post-TT, whilst core and skin temperature, heart rate and perceptual responses were collected periodically throughout. RESULTS TT performance was not different between trials (CIT 865 ± 142 s; PLA 892 ± 154 s; P = 0.437). Core and skin temperature and heart rate (P ≥ 0.270), hydration (sweat rate, plasma volume, osmolality) indices (P ≥ 0.216), GI damage (P ≥ 0.260) and perceptual responses (P ≥ 0.610) were not different between trials during the preload and TT. CONCLUSIONS 7 days of L-citrulline supplementation had no effect on 3 km running performance in the heat or any effects on thermoregulation or GI damage in trained runners in a hypohydrated state.
Collapse
Affiliation(s)
- Thomas G Cable
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mark P Funnell
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- NIHR Applied Research Collaboration East Midlands, Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Kirsty M Reynolds
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | - Heather Z Macrae
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Drusus A Johnson
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Lee Taylor
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- University of Technology Sydney, Sydney, NSW, Australia
| | - Liam M Heaney
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephen A Mears
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Stephen J Bailey
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.
| |
Collapse
|
3
|
Triviño AR, Díaz-Romero C, Martin-Olmedo JJ, Jiménez-Martínez P, Alix-Fages C, Cwiklinska M, Pérez D, Jurado-Fasoli L. Acute effects of intra-training carbohydrate ingestion in CrossFit® trained adults: a randomized, triple-blind, placebo-controlled crossover trial. Eur J Appl Physiol 2024:10.1007/s00421-024-05689-8. [PMID: 39671024 DOI: 10.1007/s00421-024-05689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Carbohydrate (CHO) intake during exercise could decrease the subjective perceived exertion and promote recovery; however, the effects of intra-training CHO ingestion remain uncertain in CrossFit® (CF) sessions. Therefore, the aim of this randomized, triple-blind, placebo-controlled crossover trial was to investigate the effect of acute CHO intake during a CF session on the delayed onset muscle soreness (DOMS), the perceived exertion (RPE), performance, recovery, and metabolic markers (capillary lactate and glucose) in CF athletes. Twenty-three male athletes trained in CF ingested CHO (60 g of maltodextrin + fructose) or a placebo (PLA) during a CF session. DOMS was assessed 24 and 48 h after the CF session. The Counter Movement Jump (CMJ) test and the Deep Squat test at 70% of the athlete's body weight (AST70) were performed before, immediately after, and 24 h after the session. Perceived exertion, Feeling Scale (FS), Gastrointestinal Distress Score (GDS), heart rate, capillary lactate, and glucose were assessed across the session. CHO supplementation did not improve DOMS (all P ≥ 0.127), CMJ, or AST70 parameters (all P ≥ 0.053) compared to PLA. There were no differences between CHO and PLA in RPE, FS, GDS, heart rate (all P ≥ 0.088), performance (e.g., nº of repetitions; all P ≥ 0.556), or lactate levels (P = 0.810). However, glucose levels increased from the back squat to the WOD and remained stable after the AMRAP (P < 0.001). In conclusion, acute CHO intake during a CF session did not improve DOMS, perceived exertion, performance, recovery, or metabolic markers in CF athletes. TRN: NCT06440343. Date: 2024-05-10.
Collapse
Affiliation(s)
- Alejandro R Triviño
- Department of Chemical and Pharmaceutical Technology Engineering, University of La Laguna, Santa Cruz de Tenerife, Spain.
| | - Carlos Díaz-Romero
- Department of Chemical and Pharmaceutical Technology Engineering, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Juan J Martin-Olmedo
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Pablo Jiménez-Martínez
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
- ICEN Institute, Madrid, Spain
| | - Carlos Alix-Fages
- Research Group in Prevention and Health in Exercise and Sport (PHES), University of Valencia, Valencia, Spain
- ICEN Institute, Madrid, Spain
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, Madrid, Spain
| | | | - Daniela Pérez
- Neonatology and UMIP Service, University Hospital Nuestra Señora de La Candelaria, Santa Cruz de Tenerife, Spain
| | - Lucas Jurado-Fasoli
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain.
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.
| |
Collapse
|
4
|
Kearns R, Dooley J, Matthews M, McNeilly A. "Do probiotics mitigate GI-induced inflammation and perceived fatigue in athletes? A systematic review". J Int Soc Sports Nutr 2024; 21:2388085. [PMID: 39193818 PMCID: PMC11360638 DOI: 10.1080/15502783.2024.2388085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/28/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Fatigue and gastrointestinal (GI) distress are common among athletes with an estimated 30-90% of athletes participating in marathons, triathlons, or similar events experiencing GI complaints. Intense exercise can lead to increased intestinal permeability, potentially allowing members of the gut microbiota to permeate into the bloodstream, resulting in an inflammatory response and cascade of performance-limiting outcomes. Probiotics, through their capacity to regulate the composition of the gut microbiota, may act as an adjunctive therapy by enhancing GI and immune function while mitigating inflammatory responses. This review investigates the effectiveness of probiotic supplementation on fatigue, inflammatory markers, and exercise performance based on randomized controlled trials (RCTs). METHODS This review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and PICOS (Population, Intervention, Comparison, Outcome, Study design) framework. A comprehensive search was conducted in Sportdiscus, PubMed, and Scopus databases, and the screening of titles, abstracts, and full articles was performed based on pre-defined eligibility criteria. Of the 3505 records identified, 1884 were screened using titles and abstracts, of which 450 studies were selected for full-text screening. After final screening, 13 studies met the eligibility criteria and were included for review. The studies contained 513 participants, consisting of 351 males and 115 females, however, two studies failed to mention the sex of the participants. Among the participants, 246 were defined as athletes, while the remaining participants were classified as recreationally active (n = 267). All trials were fully described and employed a double- or triple-blind placebo-controlled intervention using either a single probiotic strain or a multi-strain synbiotic (containing both pro- and pre-biotics). RESULTS This review assesses the effects of daily probiotic supplementation, ranging from 13 to 90 days, on physical performance and physiological markers in various exercise protocols. Ten studies reported improvements in various parameters, such as, enhanced endurance performance, improved anxiety and stress levels, decreased GI symptoms, and reduced upper respiratory tract infections (URTI). Moreover, despite no improvements in maximal oxygen uptake (VO2), several studies demonstrated that probiotic supplementation led to amelioration in lactate, creatine kinase (CK), and ammonia concentrations, suggesting beneficial effects on mitigating exercise-induced muscular stress and damage. CONCLUSION Probiotic supplementation, specifically at a minimum dosage of 15 billion CFUs daily for a duration of at least 28 days, may contribute to the reduction of perceived or actual fatigue.
Collapse
Affiliation(s)
- R.P. Kearns
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - J.S.G. Dooley
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - M. Matthews
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| | - A.M. McNeilly
- Ulster University, School of Life and Health Sciences, Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, Antrim, UK
| |
Collapse
|
5
|
Guo Z, Gao J, Liu L, Liu X. Quantitatively Predicting Effects of Exercise on Pharmacokinetics of Drugs Using a Physiologically Based Pharmacokinetic Model. Drug Metab Dispos 2024; 52:1271-1287. [PMID: 39251368 DOI: 10.1124/dmd.124.001809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024] Open
Abstract
Exercise significantly alters human physiological functions, such as increasing cardiac output and muscle blood flow and decreasing glomerular filtration rate (GFR) and liver blood flow, thereby altering the absorption, distribution, metabolism, and excretion of drugs. In this study, we aimed to establish a database of human physiological parameters during exercise and to construct equations for the relationship between changes in each physiological parameter and exercise intensity, including cardiac output, organ blood flow (e.g., muscle blood flow and kidney blood flow), oxygen uptake, plasma pH and GFR, etc. The polynomial equation P = ΣaiHRi was used for illustrating the relationship between the physiological parameters (P) and heart rate (HR), which served as an index of exercise intensity. The pharmacokinetics of midazolam, quinidine, digoxin, and lidocaine during exercise were predicted by a whole-body physiologically based pharmacokinetic (WB-PBPK) model and the developed database of physiological parameters following administration to 100 virtual subjects. The WB-PBPK model simulation results showed that most of the observed plasma drug concentrations fell within the 5th-95th percentiles of the simulations, and the estimated peak concentrations (Cmax) and area under the curve (AUC) of drugs were also within 0.5-2.0 folds of observations. Sensitivity analysis showed that exercise intensity, exercise duration, medication time, and alterations in physiological parameters significantly affected drug pharmacokinetics and the net effect depending on drug characteristics and exercise conditions. In conclusion, the pharmacokinetics of drugs during exercise could be quantitatively predicted using the developed WB-PBPK model and database of physiological parameters. SIGNIFICANCE STATEMENT: This study simulated real-time changes of human physiological parameters during exercise in the WB-PBPK model and comprehensively investigated pharmacokinetic changes during exercise following oral and intravenous administration. Furthermore, the factors affecting pharmacokinetics during exercise were also revealed.
Collapse
Affiliation(s)
- Zeyu Guo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jingjing Gao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Sumi D, Okazaki K, Goto K. Gastrointestinal function following endurance exercise under different environmental temperatures. Eur J Appl Physiol 2024; 124:1601-1608. [PMID: 38172425 DOI: 10.1007/s00421-023-05387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE We determined the effects of different environmental temperatures on exercise-induced gastrointestinal (GI) damage and delayed gastric emptying (GE) rate. METHODS Eleven trained males completed three trials on different days, consisting of (1) exercise in a thermoneutral environment (CON, 23 °C), (2) exercise in a hot environment (HOT, 35 °C), and (3) exercise in a cold environment (COLD, 10 °C). The subjects performed high-intensity interval-type endurance exercises in all trials. Blood intestinal fatty acid binding protein (I-FABP) levels was determine before and after exercise. We evaluated Tmax (time when the 13C-excretion/h reached a maximum level) as an indication of the GE rate during post-exercise. RESULTS Rectal temperature during exercise was significantly higher (P < 0.001) in the HOT (38.7 ± 0.3 °C) trial compared with the CON (38.2 ± 0.3 °C) and COLD (38.2 ± 0.3 °C) trials, with no significant difference between the CON and COLD trials. Plasma I-FABP level after exercise (relative to the pre-exercise level) were significantly greater (P = 0.005) in the HOT trial (92.9 ± 69.6%) than in the CON (37.2 ± 31.6%) and COLD (37.6 ± 41.8%) trials. However, there was no significant difference between the CON and COLD trials. Moreover, the Tmax was delayed significantly (P = 0.006) in the HOT trial compared with the CON and COLD trials, with no significant difference between the CON and COLD trials. CONCLUSION GI function following endurance exercise was similar between thermoneutral and cold environments, while endurance exercise in a hot environment exacerbated GI function compared with thermoneutral and cold environments.
Collapse
Affiliation(s)
- Daichi Sumi
- Institute of Sport Science, ASICS Corporation, Kobe, Japan
- Research Center for Urban Health and Sports, Osaka Metropolitan University, Osaka, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kazunobu Okazaki
- Research Center for Urban Health and Sports, Osaka Metropolitan University, Osaka, Japan
| | - Kazushige Goto
- Graduate School of Sports and Health Science, Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
7
|
Caballero-Mateos AM, Ruiz-Rodríguez AJ, Roa-Colomo A, García-Márquez J, Vidal-Vílchez B. β-Endorphins are not responsible for delayed gastric emptying of digestible solids after exercise in professional cyclists. A preliminary study. GASTROENTEROLOGIA Y HEPATOLOGIA 2023; 46:419-424. [PMID: 35964812 DOI: 10.1016/j.gastrohep.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/07/2022] [Accepted: 08/05/2022] [Indexed: 05/24/2023]
Abstract
OBJECTIVE It has been reported that professional cyclists had an accelerated solid gastric emptying which decreased by increasing the exercise intensity. That could be explained by a predominance of stress-dependent motility inhibitors such gastrointestinal hormones, neurotransmitters and or the predominance of the gastric inhibitory vagal motor circuit. The aim of this preliminary study was to evaluate the role of β-endorphins, inhibitors of gastric motility, in these findings. METHODS Gastric emptying of solids marked with Tc99 while resting and plasmatic levels of β-endorphins were evaluated in 27 healthy controls and 19 professional cyclists (day 1). Besides, gastric emptying of solids was also assessed in cyclists when they reached 50% (day 1) and 75% (day 2) of the maximum oxygen consumption (low and high, respectively), during exercise on the cycle-ergometer. The third day, naloxone was administered in cyclists in order to block the β-endorphins receptors and gastric emptying was measured when they reached 75% of the maximum oxygen consumption. RESULTS Basal β-endorphin levels were lower in cyclists vs controls (p<0.05) and they increased with the exercise intensity (p<0.001). There were no significant differences in gastric emptying of solids with or without naloxone when 75% of the maximum oxygen consumption was reached. CONCLUSIONS The inhibitory effect of the exercise in the gastric emptying of solids does not seem to be secondary to the action of β-endorphins, that leaves the gastric inhibitory vagal motor circuit a more likely predominant role.
Collapse
Affiliation(s)
| | | | - Amparo Roa-Colomo
- Servicio de Aparato Digestivo, Hospital Clínico San Cecilio, Granada, Spain
| | | | | |
Collapse
|
8
|
Funnell MP, Embleton D, Morris T, Macrae HZ, Hart N, Mazzotta T, Lockyer W, Juett LA, Mears SA, James LJ. Exercise-induced hypohydration impairs 3 km treadmill-running performance in temperate conditions. J Sports Sci 2023; 41:1171-1178. [PMID: 37733070 DOI: 10.1080/02640414.2023.2259728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Research assessing exercise-induced hypohydration on running performance in a temperate environment is scarce. Given the weight-bearing nature of running, the negative effects of hypohydration might be offset by the weight-loss associated with a negative fluid balance. Therefore, this study investigated the effect of exercise-induced hypohydration on running performance in temperate conditions. Seventeen intermittent games players (age 22 ± 1 y; VO2peak 52.5 ± 4.1 mL∙kg-1∙min-1) completed preliminary and familiarisation trials, and two experimental trials consisting of 12 blocks of 6 min of running (65% VO2peak; preload) with 1 min passive rest in-between, followed by a 3 km time trial (TT). During the preload, subjects consumed minimal fluid (60 mL) to induce hypohydration (HYP) or water to replace 95% sweat losses (1622 ± 343 mL; EUH). Body mass loss (EUH -0.5 ± 0.3%; HYP -2.2 ± 0.4%; P < 0.001), and other changes indicative of hypohydration, including increased serum osmolality, heart rate, thirst sensation, and decreased plasma volume (P ≤ 0.022), were apparent in HYP by the end of the preload. TT performance was ~6% slower in HYP (EUH 900 ± 87 s; HYP 955 ± 110 s; P < 0.001). Exercise-induced hypohydration of ~2% body mass impaired 3 km running TT performance in a temperate environment.
Collapse
Affiliation(s)
- Mark P Funnell
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Daniel Embleton
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Thomas Morris
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Heather Z Macrae
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Nicholas Hart
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Tiberio Mazzotta
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - William Lockyer
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Loris A Juett
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Stephen A Mears
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
9
|
Funnell MP, Juett LA, Ferrara R, Mears SA, James LJ. Ad-libitum fluid intake was insufficient to achieve euhydration 20 h after intermittent running in male team sports athletes. Physiol Behav 2023; 268:114227. [PMID: 37156317 DOI: 10.1016/j.physbeh.2023.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
This study documented 20 h rehydration from intermittent running while concealing the primary outcome of rehydration from subjects. Twenty-eight male team sports athletes (age 25 ± 3 y; predicted V̇O2max 54 ± 3 mL∙kg-1∙min-1) were pair-matched to exercise (EX) or rest (REST) groups. To determine hydration status, body mass, urine and blood samples were collected at 08:00, pre-intervention (09:30), post-intervention (12:00), 3 h post-intervention and 08:00 the following morning (20 h). The intervention was 110 min intermittent running (EX) or seated rest (REST), with ad-libitum fluid provided in both. Subjects completed a weighed diet record and collected all urine for the 24 h. Changes typical of hypohydration were apparent in EX following the intervention period (body mass: EX -2.0 ± 0.5%; REST -0.2 ± 0.3%; serum osmolality: EX 293 ± 4 mOsm∙kgH2O-1; REST 287 ± 6 mOsm∙kgH2O-1; P≤0.022). Fluid intake during the intervention period (EX 704 ± 286 mL, REST 343 ± 230 mL) and fluid intake within the first 3 h post-intervention (EX 1081 ± 460 mL, REST 662 ± 230 mL) were greater (P≤0.004), and 24 h urine volume lower (EX 1697 ± 824 mL, REST 2370 ± 842 mL; P=0.039) in EX. Compared to baseline, body mass remained lower (-0.6 ± 0.5%; P=0.030) and urine osmolality elevated (20 h: 844 ± 197 mOsm∙kgH2O-1, 08:00: 698 ± 200 mOsm∙kgH2O-1; P=0.004) at 20 h in EX. When games players drank fluid ad-libitum during exercise and post-exercise in free-living conditions, a small degree of hypohydration remained 20 h post-exercise.
Collapse
Affiliation(s)
- Mark P Funnell
- National Centre for Sport, Exercise & Medicine, Loughborough University, Leicestershire, UK, LE11 3TU..
| | - Loris A Juett
- National Centre for Sport, Exercise & Medicine, Loughborough University, Leicestershire, UK, LE11 3TU
| | - Robert Ferrara
- National Centre for Sport, Exercise & Medicine, Loughborough University, Leicestershire, UK, LE11 3TU
| | - Stephen A Mears
- National Centre for Sport, Exercise & Medicine, Loughborough University, Leicestershire, UK, LE11 3TU
| | - Lewis J James
- National Centre for Sport, Exercise & Medicine, Loughborough University, Leicestershire, UK, LE11 3TU
| |
Collapse
|
10
|
Gaskell SK, Burgell R, Wiklendt L, Dinning PG, Costa RJS. Impact of exercise duration on gastrointestinal function and symptoms. J Appl Physiol (1985) 2023; 134:160-171. [PMID: 36476157 DOI: 10.1152/japplphysiol.00393.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The study aimed to determine the impact of exercise duration on gastrointestinal functional responses and gastrointestinal symptoms (GISs) in response to differing exercise durations. Endurance runners (n = 16) completed three trials on separate occasions, randomized to 1 h (1-H), 2 h (2-H), and 3 h (3-H) of running at 60% V̇o2max in temperate ambient temperature. Orocecal transit time (OCTT) was determined by lactulose challenge, with concomitant breath hydrogen (H2) determination. Gastric slow wave activity was recorded using cutaneous electrogastrography (cEGG) before and after exertion. GIS was determined using a modified visual analog scale (mVAS). OCTT response was classified as very slow on all trials (∼93-101 min) with no trial difference observed (P = 0.895). Bradygastria increased postexercise on all trials (means ± SD: 1-H: 10.9 ± 11.7%, 2-H: 6.2 ± 9.8%, and 3-H: 13.2 ± 21.4%; P < 0.05). A reduction in the normal gastric slow wave activity (2-4 cycles/min) was observed postexercise on 1-H only (-10.8 ± 17.6%; P = 0.039). GIS incidence and gut discomfort was higher on 2-H (81% and 12 counts) and 3-H (81% and 18 counts), compared with 1-H (69% and 6 counts) (P = 0.038 and P = 0.006, respectively). Severity of gut discomfort, total-GIS, upper-GIS, and lower-GIS increased during exercise on all trials (P < 0.05). Steady-state exercise in temperate ambient conditions for 1 h, 2 h, and 3 h instigates perturbations in gastric slow wave activity compared with rest and hampers OCTT, potentially explaining the incidence and severity on exercise-associated GIS.NEW & NOTEWORTHY Exercise stress per se appears to instigate perturbations to gastric myoelectrical activity, resulting in an increase in bradygastria frequency, inferring a reduction in gastric motility. The perturbations to gastrointestinal functional responses instigated by exercise per se, likely contribute to the high incidence and severity level of exercise-associated gastrointestinal symptoms. Cutaneous electrogastrography is not commonly used in exercise gastroenterology research, however, may be a useful aid in providing an overall depiction of gastrointestinal function. Particularly relating to gastrointestinal motility and concerning gastroparesis.
Collapse
Affiliation(s)
- Stephanie K Gaskell
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria, Australia
| | - Rebecca Burgell
- Medicine, Nursing and Health Sciences, Monash University, Prahan, Victoria, Australia.,Department of Gastroenterology, Alfred Health, Prahan, Victoria, Australia
| | - Lukasz Wiklendt
- Department of Surgery, College of Medicine and Public Health, The Flinders University, Bedford Park, South Australia, Australia
| | - Phil G Dinning
- Department of Surgery, College of Medicine and Public Health, The Flinders University, Bedford Park, South Australia, Australia.,Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ricardo J S Costa
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria, Australia
| |
Collapse
|
11
|
The Impact of Heat Acclimation on Gastrointestinal Function following Endurance Exercise in a Hot Environment. Nutrients 2023; 15:nu15010216. [PMID: 36615873 PMCID: PMC9823684 DOI: 10.3390/nu15010216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
To determine the effects of heat acclimation on gastrointestinal (GI) damage and the gastric emptying (GE) rate following endurance exercise in a hot environment. Fifteen healthy men were divided into two groups: endurance training in hot (HOT, 35 °C, n = 8) or cool (COOL, 18 °C, n = 7) environment. All subjects completed 10 days of endurance training (eight sessions of 60 min continuous exercise at 50% of the maximal oxygen uptake (V·O2max). Subjects completed a heat stress exercise tests (HST, 60 min exercise at 60% V·O2max) to evaluate the plasma intestinal fatty acid-binding protein (I-FABP) level and the GE rate following endurance exercise in a hot environment (35 °C) before (pre-HST) and after (post-HST) the training period. We assessed the GE rate using the 13C-sodium acetate breath test. The core temperature during post-HST exercise decreased significantly in the HOT group compared to the pre-HST (p = 0.004) but not in the COOL group. Both the HOT and COOL groups showed exercise-induced plasma I-FABP elevations in the pre-HST (p = 0.002). Both groups had significantly attenuated exercise-induced I-FABP elevation in the post-HST. However, the reduction of exercise-induced I-FABP elevation was not different significantly between both groups. GE rate following HST did not change between pre- and post-HST in both groups, with no significant difference between two groups in the post-HST. Ten days of endurance training in a hot environment improved thermoregulation, whereas exercise-induced GI damage and delay of GE rate were not further attenuated compared with training in a cool environment.
Collapse
|
12
|
The Hydrating Effects of Hypertonic, Isotonic and Hypotonic Sports Drinks and Waters on Central Hydration During Continuous Exercise: A Systematic Meta-Analysis and Perspective. Sports Med 2021; 52:349-375. [PMID: 34716905 PMCID: PMC8803723 DOI: 10.1007/s40279-021-01558-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 01/25/2023]
Abstract
Background Body-fluid loss during prolonged continuous exercise can impair cardiovascular function, harming performance. Delta percent plasma volume (dPV) represents the change in central and circulatory body-water volume and therefore hydration during exercise; however, the effect of carbohydrate–electrolyte drinks and water on the dPV response is unclear. Objective To determine by meta-analysis the effects of ingested hypertonic (> 300 mOsmol kg−1), isotonic (275–300 mOsmol kg−1) and hypotonic (< 275 mOsmol kg−1) drinks containing carbohydrate and electrolyte ([Na+] < 50 mmol L−1), and non-carbohydrate drinks/water (< 40 mOsmol kg−1) on dPV during continuous exercise. Methods A systematic review produced 28 qualifying studies and 68 drink treatment effects. Random-effects meta-analyses with repeated measures provided estimates of effects and probability of superiority (p+) during 0–180 min of exercise, adjusted for drink osmolality, ingestion rate, metabolic rate and a weakly informative Bayesian prior. Results Mean drink effects on dPV were: hypertonic − 7.4% [90% compatibility limits (CL) − 8.5, − 6.3], isotonic − 8.7% (90% CL − 10.1, − 7.4), hypotonic − 6.3% (90% CL − 7.4, − 5.3) and water − 7.5% (90% CL − 8.5, − 6.4). Posterior contrast estimates relative to the smallest important effect (dPV = 0.75%) were: hypertonic-isotonic 1.2% (90% CL − 0.1, 2.6; p+ = 0.74), hypotonic-isotonic 2.3% (90% CL 1.1, 3.5; p+ = 0.984), water-isotonic 1.3% (90% CL 0.0, 2.5; p+ = 0.76), hypotonic-hypertonic 1.1% (90% CL 0.1, 2.1; p+ = 0.71), hypertonic-water 0.1% (90% CL − 0.8, 1.0; p+ = 0.12) and hypotonic-water 1.1% (90% CL 0.1, 2.0; p+ = 0.72). Thus, hypotonic drinks were very likely superior to isotonic and likely superior to hypertonic and water. Metabolic rate, ingestion rate, carbohydrate characteristics and electrolyte concentration were generally substantial modifiers of dPV. Conclusion Hypotonic carbohydrate–electrolyte drinks ingested continuously during exercise provide the greatest benefit to hydration. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s40279-021-01558-y.
Collapse
|
13
|
Tolentino Bento da Silva M, Palheta-Junior RC, Silva CMS, Cavalcante AKM, Quetz JDS, Havt A, de Lima JBM, Mecawi ADS, de Castro M, Antunes-Rodrigues J, de Oliveira RB, Magalhães PJC, Aguiar Dos Santos A. Role of cholecystokinin and oxytocin in slower gastric emptying induced by physical exercise in rats. Physiol Behav 2021; 233:113355. [PMID: 33571545 DOI: 10.1016/j.physbeh.2021.113355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022]
Abstract
Vigorous exercise can induce gastrointestinal disorders such decreased gastric emptying pace, while low-intensity exercise can accelerate gastric motility. However, the mechanisms of these effects are still unknown. We investigated the possible neurohumoral mechanisms involved in these phenomena. In sedentary (Sed) and acute exercise (Ex) groups of rats, we assessed the activation of c-Fos in NTS and DVMN and the plasma levels of CCK and OXT. Separate groups received pretreatment with the oxytocin antagonist atosiban (AT), the cholecystokinin antagonist devazepide (DVZ), or the TRPV1 receptor inhibitor capsazepine (CAPZ). AT, DVZ and CAPZ treatments prevented (p<0.05) slower gastric emptying induced by acute exercise. The gene expression of OXT decreased (P<0.05) while that of CCK increased (P<0.05) in the gastric fundus and pylorus of the Ex group, while the plasma levels of OXT rose (p<0.05) and of CCK declined (p<5.05). We also observed activation (p<0.05) of c-Fos-sensitive neurons in the NTS and DVMN of exercised rats. In conclusion, acute exercise slowed gastric emptying by the vagal afferent pathway, which involved activation of CCK1/OXT/TRPV1 sensitivity.
Collapse
Affiliation(s)
| | | | - Camila Meirelles Souza Silva
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Josiane da Silva Quetz
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Alexandre Havt
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - André de Souza Mecawi
- Department of Biophisics, Palista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Margaret de Castro
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Antunes-Rodrigues
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Pedro Jorge Caldas Magalhães
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Armenio Aguiar Dos Santos
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
14
|
Does the Minerals Content and Osmolarity of the Fluids Taken during Exercise by Female Field Hockey Players Influence on the Indicators of Water-Electrolyte and Acid-Basic Balance? Nutrients 2021; 13:nu13020505. [PMID: 33557019 PMCID: PMC7913615 DOI: 10.3390/nu13020505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Although it is recognized that dehydration and acidification of the body may reduce the exercise capacity, it remains unclear whether the qualitative and quantitative shares of certain ions in the drinks used by players during the same exertion may affect the indicators of their water–electrolyte and acid–base balance. This question was the main purpose of the publication. The research was carried out on female field hockey players (n = 14) throughout three specialized training sessions, during which the players received randomly assigned fluids of different osmolarity and minerals contents. The water–electrolyte and acid–base balance of the players was assessed on the basis of biochemical blood and urine indicators immediately before and after each training session. There were statistically significant differences in the values of all examined indicators for changes before and after exercise, while the differences between the consumed drinks with different osmolarities were found for plasma osmolality, and concentrations of sodium and potassium ions and aldosterone. Therefore, it can be assumed that the degree of mineralization of the consumed water did not have a very significant impact on the indicators of water–electrolyte and acid–base balance in blood and urine.
Collapse
|
15
|
Davis J, Camilleri M, Eckert D, Burton D, Joyner M, Acosta A. Physical activity is associated with accelerated gastric emptying and increased ghrelin in obesity. Neurogastroenterol Motil 2020; 32:e13879. [PMID: 32390274 PMCID: PMC7606341 DOI: 10.1111/nmo.13879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/29/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Rapid gastric emptying, increased food intake, and alterations in gastrointestinal hormones are associated with obesity. The effect of regular physical activity (PA) on food intake, gastric emptying (GE), gastric accommodation, and gastrointestinal (GI) hormones in adults with obesity remains unclear. Our aim was to compare, at time of presentation, weight trends, eating behavior, GE, and GI hormone levels among individuals with obesity who engage in regular PA compared to those who do not. METHODS In 270 participants with obesity, we performed validated measurements of GI phenotypes: GE of solids and liquids, gastric volume (GV) during fasting and after consumption of 200 mL Ensure®, satiety by kcal intake (T-kcal) during a buffet meal, satiation (volume to fullness [VTF] and maximal tolerated volume [MTV]) of a liquid nutrient, and plasma levels of fasting and postprandial GLP-1, PYY, CCK, and ghrelin. Physical Activity Stages of Change Questionnaire was used to assess whether participants were regularly PA or not. KEY RESULTS PA was associated with lower BMI (Δ 2.01 kg/m2 , P = .001) and body weight (Δ 4.42 kg, P = .0278). GE of solids (T-50% Δ 7.54 min, P = .021) and liquids (T-50% Δ 2.99 min, P = .029%) was significantly more rapid in physically active participants. PA was also associated with relatively higher postprandial ghrelin AUC (Δ 10.4 pg/mL, P = .015). There was no significant difference in postprandial satiation, satiety, GV, or other GI hormones (CCK, PYY, or GLP-1) between groups. CONCLUSIONS & INFERENCES Physical activity is associated with lower BMI, but faster GE and higher postprandial ghrelin levels, two factors that are also associated with obesity.
Collapse
Affiliation(s)
- Judith Davis
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Deborah Eckert
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Duane Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Michael Joyner
- Division of Anesthesia Research, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Andres Acosta
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
16
|
A Comparison of Intermittent and Continuous Exercise Bouts at Different Intensities on Appetite and Postprandial Metabolic Responses in Healthy Men. Nutrients 2020; 12:nu12082370. [PMID: 32784794 PMCID: PMC7468960 DOI: 10.3390/nu12082370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022] Open
Abstract
Exercise intensity affects many potential postprandial responses, but there is limited information on the influence of exercise modality. Therefore, the aim of this study was to investigate if the nature of exercise at two different intensities would affect gastric emptying rate (GER), appetite and metabolic responses following ingestion of a semi-solid meal. Twelve healthy men completed, in a random order, four 60-min cycles at 60% VO2peak (MOD), 40% VO2peak (LOW) and in a continuous (CON) or intermittent (INT) manner. INT consisted of 20 × 1-min exercise bouts with 2-min rest breaks. INT and CON were matched for total work output at each intensity. GER of the post-exercise meal was measured for 2 h using the 13C-breath method. Blood glucose, substrate utilisation and appetite ratings were measured at regular intervals throughout all trials and 24-h energy intake (EI) post-trials was assessed. GER-Delta over Baseline (DOB) was lower (p < 0.05) on MOD-INT vs. MOD-CON from 30–120 min post-meal. Blood glucose was higher mid-exercise (p < 0.05) on MOD-INT vs. MOD-CON. Although post-exercise LOW-CON was significantly higher than LOW-INT (p < 0.05), blood glucose was also higher 30-min post-meal ingestion on both CON trials compared to INT (p < 0.001). No interaction effect was observed for perceived appetite responses 2 h after meal ingestion (all p > 0.05). 24-h post-trial EI was similar between LOW-CON vs. LOW-INT (p > 0.05), although MOD-INT vs. MOD-CON 3500 ± 1419 vs. 2556 ± 989 kCal: p < 0.001 was elevated. In summary, MOD-INT exercise delays GER without stimulating perceived appetite in the 2 h period after meal ingestion, although EI was greater in the 24-h post-trial.
Collapse
|
17
|
Impaired Insulin Profiles Following a Single Night of Sleep Restriction: The Impact of Acute Sprint Interval Exercise. Int J Sport Nutr Exerc Metab 2019; 30:139–144. [PMID: 31816598 DOI: 10.1123/ijsnem.2019-0235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 11/18/2022]
Abstract
Experimental sleep restriction (SR) has demonstrated reduced insulin sensitivity in healthy individuals. Exercise is well-known to be beneficial for metabolic health. A single bout of exercise has the capacity to increase insulin sensitivity for up to 2 days. Therefore, the current study aimed to determine if sprint interval exercise could attenuate the impairment in insulin sensitivity after one night of SR in healthy males. Nineteen males were recruited for this randomized crossover study which consisted of four conditions-control, SR, control plus exercise, and sleep restriction plus exercise. Time in bed was 8 hr (2300-0700) in the control conditions and 4 hr (0300-0700) in the SR conditions. Conditions were separated by a 1-week entraining period. Participants slept at home, and compliance was assessed using wrist actigraphy. Following the night of experimental sleep, participants either conducted sprint interval exercise or rested for the equivalent duration. An oral glucose tolerance test was then conducted. Blood samples were obtained at regular intervals for measurement of glucose and insulin. Insulin concentrations were higher in SR than control (p = .022). Late-phase insulin area under the curve was significantly lower in sleep restriction plus exercise than SR (862 ± 589 and 1,267 ± 558; p = .004). Glucose area under the curve was not different between conditions (p = .207). These findings suggest that exercise improves the late postprandial response following a single night of SR.
Collapse
|
18
|
Merrells RJ, Cripps AJ, Chivers PT, Fournier PA. Role of lactic acidosis as a mediator of sprint-mediated nausea. Physiol Rep 2019; 7:e14283. [PMID: 31724342 PMCID: PMC6854110 DOI: 10.14814/phy2.14283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study aims to determine whether there is a relationship between nausea level and lactic acidosis during recovery from sprinting. In all, 13 recreationally active males completed a 60 s bout of maximal intensity cycling. Prior to and for 45 min following exercise, blood pH, pCO2 , and lactate levels were measured together with nausea. In response to sprinting, nausea, lactate, and H+ concentrations increased and remained elevated for at least 10 min (p < .001), whereas pCO2 increased only transiently (p < .001) before falling below pre-exercise levels (p < .001), with all these variables returning toward pre-exercise levels during recovery. Both measures of nausea adopted for analyses (nausea profile, NP; visual analogue scale, VAS), demonstrated significant repeated measures correlation (rmcorr) post-exercise between nausea and plasma lactate (VAS and NPrrm > 0.595, p < .0001) and H+ concentrations (VAS and NPrrm > 0.689, p < .0001), but an inconsistent relationship with pCO2 (VAS rrm = 0.250, p = .040; NP rrm = 0.144, p = .248) and bicarbonate levels (VAS rrm = -0.252, p = .095; NP rrm = -0.397, p = .008). Linear mixed modeling was used to predict the trajectory of nausea over time, with both lactate and H+ concentrations found to be key predictors of nausea (p < .0001). In conclusion, this study reveals a strong positive relationship between nausea and both H+ and lactate concentrations during recovery from sprinting, a finding consistent with H+ and lactate being potential mediators of nausea post-sprinting. However, as the timing of the recovery of both H+ and lactate was delayed, compared to that of nausea, further research is required to confirm these findings and investigate other potential mechanisms.
Collapse
Affiliation(s)
- Robert J. Merrells
- School of Human SciencesDivision Sport Science, Exercise and HealthUniversity of Western AustraliaCrawleyAustralia
- School of Health SciencesThe University of Notre Dame AustraliaFremantleAustralia
| | - Ashley J. Cripps
- School of Health SciencesThe University of Notre Dame AustraliaFremantleAustralia
| | - Paola T. Chivers
- Institute for Health ResearchThe University of Notre Dame AustraliaFremantleAustralia
- Exercise Medicine Research Institute & School of Medical and Health SciencesEdith Cowan UniversityJoondalupAustralia
| | - Paul A. Fournier
- School of Human SciencesDivision Sport Science, Exercise and HealthUniversity of Western AustraliaCrawleyAustralia
| |
Collapse
|
19
|
Four weeks of probiotic supplementation reduces GI symptoms during a marathon race. Eur J Appl Physiol 2019; 119:1491-1501. [PMID: 30982100 PMCID: PMC6570661 DOI: 10.1007/s00421-019-04136-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Purpose To evaluate the effects of probiotic supplementation on gastrointestinal (GI) symptoms, circulatory markers of GI permeability, damage, and markers of immune response during a marathon race. Methods Twenty-four recreational runners were randomly assigned to either supplement with a probiotic (PRO) capsule [25 billion CFU Lactobacillus acidophilus (CUL60 and CUL21), Bifidobacterium bifidum (CUL20), and Bifidobacterium animalis subs p. Lactis (CUL34)] or placebo (PLC) for 28 days prior to a marathon race. GI symptoms were recorded during the supplement period and during the race. Serum lactulose:rhamnose ratio, and plasma intestinal-fatty acid binding protein, sCD14, and cytokines were measured pre- and post-races. Results Prevalence of moderate GI symptoms reported were lower during the third and fourth weeks of the supplement period compared to the first and second weeks in PRO (p < 0.05) but not PLC (p > 0.05). During the marathon, GI symptom severity during the final third was significantly lower in PRO compared to PLC (p = 0.010). The lower symptom severity was associated with a significant difference in reduction of average speed from the first to the last third of the race between PLC (− 14.2 ± 5.8%) and PRO (− 7.9 ± 7.5%) (p = 0.04), although there was no difference in finish times between groups (p > 0.05). Circulatory measures increased to a similar extent between PRO and PLC (p > 0.05). Conclusion Probiotics supplementation was associated with a lower incidence and severity of GI symptoms in marathon runners, although the exact mechanisms are yet to be elucidated. Reducing GI symptoms during marathon running may help maintain running pace during the latter stages of racing.
Collapse
|
20
|
Savikj M, Gabriel BM, Alm PS, Smith J, Caidahl K, Björnholm M, Fritz T, Krook A, Zierath JR, Wallberg-Henriksson H. Afternoon exercise is more efficacious than morning exercise at improving blood glucose levels in individuals with type 2 diabetes: a randomised crossover trial. Diabetologia 2019; 62:233-237. [PMID: 30426166 PMCID: PMC6323076 DOI: 10.1007/s00125-018-4767-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/03/2018] [Indexed: 10/31/2022]
Abstract
AIMS/HYPOTHESIS Exercise is recommended for the treatment and prevention of type 2 diabetes. However, the most effective time of day to achieve beneficial effects on health remains unknown. We aimed to determine whether exercise training at two distinct times of day would have differing effects on 24 h blood glucose levels in men with type 2 diabetes. METHODS Eleven men with type 2 diabetes underwent a randomised crossover trial. Inclusion criteria were 45-68 years of age and BMI between 23 and 33 kg/m2. Exclusion criteria were insulin treatment and presence of another systemic illness. Researchers were not blinded to the group assignment. The trial involved 2 weeks of either morning or afternoon high-intensity interval training (HIIT) (three sessions/week), followed by a 2 week wash-out period and a subsequent period of the opposite training regimen. Continuous glucose monitor (CGM)-based data were obtained. RESULTS Morning HIIT increased CGM-based glucose concentration (6.9 ± 0.4 mmol/l; mean ± SEM for the exercise days during week 1) compared with either the pre-training period (6.4 ± 0.3 mmol/l) or afternoon HIIT (6.2 ± 0.3 mmol/l for the exercise days during week 1). Conversely, afternoon HIIT reduced the CGM-based glucose concentration compared with either the pre-training period or morning HIIT. Afternoon HIIT was associated with elevated thyroid-stimulating hormone (TSH; 1.9 ± 0.2 mU/l) and reduced T4 (15.8 ± 0.7 pmol/l) concentrations compared with pre-training (1.4 ± 0.2 mU/l for TSH; 16.8 ± 0.6 pmol/l for T4). TSH was also elevated after morning HIIT (1.7 ± 0.2 mU/l), whereas T4 concentrations were unaltered. CONCLUSIONS/INTERPRETATION Afternoon HIIT was more efficacious than morning HIIT at improving blood glucose in men with type 2 diabetes. Strikingly, morning HIIT had an acute, deleterious effect, increasing blood glucose. However, studies of longer training regimens are warranted to establish the persistence of this adverse effect. Our data highlight the importance of optimising the timing of exercise when prescribing it as treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Mladen Savikj
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Solnavägen 9, Biomedicum (C4), 171 77, Stockholm, Sweden
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Brendan M Gabriel
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Solnavägen 9, Biomedicum (C4), 171 77, Stockholm, Sweden
| | - Petter S Alm
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Solnavägen 9, Biomedicum (C4), 171 77, Stockholm, Sweden
| | - Jonathon Smith
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Solnavägen 9, Biomedicum (C4), 171 77, Stockholm, Sweden
| | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Björnholm
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Fritz
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Solnavägen 9, Biomedicum (C4), 171 77, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Solnavägen 9, Biomedicum (C4), 171 77, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Harriet Wallberg-Henriksson
- Department of Physiology and Pharmacology, Section of Integrative Physiology, Karolinska Institutet, Solnavägen 9, Biomedicum (C4), 171 77, Stockholm, Sweden.
| |
Collapse
|
21
|
Shei RJ, Paris HL, Beck CP, Chapman RF, Mickleborough TD. Repeated High-Intensity Cycling Performance Is Unaffected by Timing of Carbohydrate Ingestion. J Strength Cond Res 2018; 32:2243-2249. [PMID: 28902115 DOI: 10.1519/jsc.0000000000002226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Shei, R-J, Paris, HL, Beck, CP, Chapman, RF, and Mickleborough, TD. Repeated high-intensity cycling performance is unaffected by timing of carbohydrate ingestion. J Strength Cond Res 32(8): 2243-2249, 2018-To determine whether carbohydrate (CHO) feeding taken immediately before, early, or late in a series of high-intensity cycling exercises affected cycling performance. A total of 16 trained, male cyclists (>6 hours postprandial) performed 3-, 4-km cycling time trials (TT1, TT2, and TT3) separated by 15 minutes of active recovery on 4 separate occasions. Carbohydrate feeding (80 g) was given either before TT1 (PRE1), before TT2 (PRE2), before TT3 (PRE3), or not at all (control, CTL). Treatment order was randomized. Sweet placebo was given before the other TTs. Blood glucose (BG) concentration was measured before each trial. Mean power output (Pmean) and time to completion (TTC) were recorded. Pmean was higher in TT1 compared with TT2 (p = 0.001) and TT3 (p = 0.004) in all conditions, but no differences were observed between treatments. Time to completion was lower in TT1 compared with TT2 (p = 0.01), but no other differences in TTC (within or between treatments) were observed. Within CTL and PRE1, BG did not differ between TT1, TT2, and TT3. In PRE2, BG was significantly higher in TT2 compared with TT1 (p = 0.006), in TT3 compared with TT1 (p = 0.001), and in TT3 compared with TT2 (p = 0.01). In PRE3, BG was significantly higher in TT3 compared with TT1 and TT2 (p = 0.001 for both). Given that performance was not influenced by the timing of CHO ingestion, athletes engaging in repeated, high-intensity cycling exercise do not need to ingest CHO before- or between-exercise bouts; furthermore, athletes should refrain from ingesting CHO between bouts if they wish to avoid a rise in BG.
Collapse
Affiliation(s)
- Ren-Jay Shei
- HH Morris Human Performance and Exercise Biochemistry Laboratory, Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hunter L Paris
- HH Morris Human Performance and Exercise Biochemistry Laboratory, Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Christopher P Beck
- HH Morris Human Performance and Exercise Biochemistry Laboratory, Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Robert F Chapman
- HH Morris Human Performance and Exercise Biochemistry Laboratory, Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Timothy D Mickleborough
- HH Morris Human Performance and Exercise Biochemistry Laboratory, Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| |
Collapse
|
22
|
Glace BW, Kremenic IJ, McHugh MP. Effect of carbohydrate beverage ingestion on central versus peripheral fatigue: a placebo-controlled, randomized trial in cyclists. Appl Physiol Nutr Metab 2018; 44:139-147. [PMID: 30058344 DOI: 10.1139/apnm-2017-0777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We investigated whether carbohydrate ingestion delays fatigue in endurance-trained cyclists via peripheral or central mechanisms. Ten men (35 ± 9 years of age) and 10 women (42 ± 7 years of age) were assigned, in a double-blind, crossover design, to a sports drink (CHO) or to a placebo (PL). The following strength measures were made 3 times (before exercise, after a time trial (TT), and after a ride to exhaustion): (i) maximal voluntary contraction (MVC); (ii) MVC with superimposed femoral nerve magnetic stimulation to measure central activation ratio (CAR); and (iii) femoral nerve stimulation in a 3-s pulse train on relaxed muscle. The subjects cycled for 2 h at approximately 65% of peak oxygen consumption, with five 1-min sprints interspersed, followed by a 3-km TT. After strength testing, the cyclists remounted their bikes, performed a brief warm-up, and pedaled at approximately 85% peak oxygen consumption until unable to maintain workload. Changes in metabolic and strength measurements were analyzed with repeated-measures ANOVA. From before exercise to after the TT, MVC declined in men (17%) and women (18%) (p = 0.004), with no effect of beverage (p > 0.193); CAR decreased in both sexes with PL (p = 0.009), and the decline was attenuated by CHO in men only (time × treatment, p = 0.022); and there was no evidence of peripheral fatigue in either sex with either beverage (p > 0.122). Men rode faster in the TT with CHO (p = 0.005) but did not improve performance in the ride to exhaustion (p = 0.080). In women, CHO did not improve performance in the TT (p = 0.173) or in the ride to exhaustion (p = 0.930). We concluded that carbohydrate ingestion preserved central activation and performance in men, but not in women, during long-duration cycling.
Collapse
Affiliation(s)
- Beth W Glace
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY 10065, USA.,Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY 10065, USA
| | - Ian J Kremenic
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY 10065, USA.,Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY 10065, USA
| | - Malachy P McHugh
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY 10065, USA.,Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY 10065, USA
| |
Collapse
|
23
|
Abstract
Exercise frequently is prescribed therapeutically, either on its own or combined with drugs. A drug's absorption, distribution, metabolism, and excretion can be affected by the user's anatomy and physiology, which are both changed by the myriad of complex adaptations to acute and chronic exercise. This article reviews the research that suggests exercise may influence a drug's plasma concentration, and thus its efficacy and safety.
Collapse
Affiliation(s)
- Mackenzie McLaughlin
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Efficacy of Carbohydrate Ingestion on CrossFit Exercise Performance. Sports (Basel) 2017; 5:sports5030061. [PMID: 29910421 PMCID: PMC5968949 DOI: 10.3390/sports5030061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/01/2017] [Accepted: 08/10/2017] [Indexed: 11/17/2022] Open
Abstract
The efficacy of carbohydrate (CHO) ingestion during high-intensity strength and conditioning type exercise has yield mixed results. However, little is known about shorter duration high-intensity exercise such as CrossFit. The purpose of this study was to investigate the performance impact of CHO ingestion during high-intensity exercise sessions lasting approximately 30 min. Eight healthy males participated in a total of four trials; two familiarizations, a CHO trial, and a similarly flavored, non-caloric placebo (PLA) trial. CrossFit's "Fight Gone Bad Five" (FGBF) workout of the day was the exercise model which incorporated five rounds of maximal repetition exercises, wall throw, box jump, sumo deadlift high pull, push press, and rowing, followed by one minute of rest. Total repetitions and calories expended were summated from each round to quantify total work (FGBF score). No difference was found for the total work between CHO (321 ± 51) or PLA (314 ± 52) trials (p = 0.38). There were also no main effects (p > 0.05) for treatment comparing exercise performance across rounds. Based on the findings of this study, it does not appear that ingestion of CHO during short duration, high-intensity CrossFit exercise will provide a beneficial performance effect.
Collapse
|
25
|
Costa RJS, Snipe RMJ, Kitic CM, Gibson PR. Systematic review: exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Aliment Pharmacol Ther 2017; 46:246-265. [PMID: 28589631 DOI: 10.1111/apt.14157] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/03/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND "Exercise-induced gastrointestinal syndrome" refers to disturbances of gastrointestinal integrity and function that are common features of strenuous exercise. AIM To systematically review the literature to establish the impact of acute exercise on markers of gastrointestinal integrity and function in healthy populations and those with chronic gastrointestinal conditions. METHODS Search literature using five databases (PubMed, EBSCO, Web of Science, SPORTSdiscus, and Ovid Medline) to review publications that focused on the impact of acute exercise on markers of gastrointestinal injury, permeability, endotoxaemia, motility and malabsorption in healthy populations and populations with gastrointestinal diseases/disorders. RESULTS As exercise intensity and duration increases, there is considerable evidence for increases in indices of intestinal injury, permeability and endotoxaemia, together with impairment of gastric emptying, slowing of small intestinal transit and malabsorption. The addition of heat stress and running mode appears to exacerbate these markers of gastrointestinal disturbance. Exercise stress of ≥2 hours at 60% VO2max appears to be the threshold whereby significant gastrointestinal perturbations manifest, irrespective of fitness status. Gastrointestinal symptoms, referable to upper- and lower-gastrointestinal tract, are common and a limiting factor in prolonged strenuous exercise. While there is evidence for health benefits of moderate exercise in patients with inflammatory bowel disease or functional gastrointestinal disorders, the safety of more strenuous exercise has not been established. CONCLUSIONS Strenuous exercise has a major reversible impact on gastrointestinal integrity and function of healthy populations. The safety and health implications of prolonged strenuous exercise in patients with chronic gastrointestinal diseases/disorders, while hypothetically worrying, has not been elucidated and requires further investigation.
Collapse
Affiliation(s)
- R J S Costa
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
| | - R M J Snipe
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
| | - C M Kitic
- Sport Performance Optimisation Research Team, School of Health Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - P R Gibson
- Department of Gastroenterology- The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Pugh JN, Impey SG, Doran DA, Fleming SC, Morton JP, Close GL. Acute high-intensity interval running increases markers of gastrointestinal damage and permeability but not gastrointestinal symptoms. Appl Physiol Nutr Metab 2017; 42:941-947. [PMID: 28511020 DOI: 10.1139/apnm-2016-0646] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to investigate the effects of high-intensity interval running on markers of gastrointestinal (GI) damage and permeability alongside subjective symptoms of GI discomfort. Eleven male runners completed an acute bout of high-intensity interval training (HIIT) (eighteen 400-m runs at 120% maximal oxygen uptake) where markers of GI permeability, intestinal damage, and GI discomfort symptoms were assessed and compared with resting conditions. Compared with rest, HIIT significantly increased serum lactulose/rhamnose ratio (0.051 ± 0.016 vs. 0.031 ± 0.021, p = 0.0047; 95% confidence interval (CI) = 0.006 to 0.036) and sucrose concentrations (0.388 ± 0.217 vs. 0.137 ± 0.148 mg·L-1; p < 0.001; 95% CI = 0.152 to 0.350). In contrast, urinary lactulose/rhamnose (0.032 ± 0.005 vs. 0.030 ± 0.005; p = 0.3; 95% CI = -0.012 to 0.009) or sucrose concentrations (0.169% ± 0.168% vs. 0.123% ± 0.120%; p = 0.54; 95% CI = -0.199 to 0.108) did not differ between HIIT and resting conditions. Plasma intestinal-fatty acid binding protein (I-FABP) was significantly increased (p < 0.001) during and in the recovery period from HIIT whereas no changes were observed during rest. Mild symptoms of GI discomfort were reported immediately and at 24 h post-HIIT, although these symptoms did not correlate to GI permeability or I-FABP. In conclusion, acute HIIT increased GI permeability and intestinal I-FABP release, although these do not correlate with symptoms of GI discomfort. Furthermore, by using serum sampling, we provide data showing that it is possible to detect changes in intestinal permeability that is not observed using urinary sampling over a shorter time-period.
Collapse
Affiliation(s)
- Jamie N Pugh
- a Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Samuel G Impey
- a Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Dominic A Doran
- a Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | | | - James P Morton
- a Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Graeme L Close
- a Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
27
|
Hazell TJ, Islam H, Townsend LK, Schmale MS, Copeland JL. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms. Appetite 2016; 98:80-8. [DOI: 10.1016/j.appet.2015.12.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/05/2023]
|
28
|
Horner KM, Schubert MM, Desbrow B, Byrne NM, King NA. Acute exercise and gastric emptying: a meta-analysis and implications for appetite control. Sports Med 2016; 45:659-78. [PMID: 25398225 DOI: 10.1007/s40279-014-0285-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Gastric emptying (GE) could influence exercise-induced changes in appetite and energy intake. GE also could contribute to changes in gastric symptoms and the availability of nutrients during exercise, which will subsequently affect performance. OBJECTIVE The objective of this review was to determine the effects of acute exercise on GE using a systematic review and meta-analysis. The most common parameters to determine GE were selected, consisting of half-emptying time and volume emptied. Oral-caecal transit time (OCTT) was also examined. DATA SOURCES Research databases (PubMed, Scopus, Google Scholar, EBSCOhost, SPORTDiscus) were searched through November 2013 for original studies, abstracts, theses and dissertations that examined the influence of acute exercise on GE. STUDY SELECTION Studies were included if they evaluated GE or OCTT during and/or after exercise and involved a resting control trial. STUDY APPRAISAL AND SYNTHESIS Initially, 195 studies were identified. After evaluation of study characteristics and quality and validity, data from 20 studies (35 trials) involving 221 participants (157 men; 52 women; 12 unknown) were extracted for meta-analysis. Random-effects meta-analyses were utilised for the three main outcome variables, and effect sizes (ES) are reported as Hedge's g due to numerous small sample sizes. RESULTS Random-effects modelling revealed non-significant and small/null main effect sizes for volume emptied (ES = 0.195; 95% CI -0.25 to 0.64), half-time (ES = -0.109, 95% CI -0.66 to 0.44) and OCTT (ES = 0.089; 95% CI -0.64 to 0.82). All analyses exhibited significant heterogeneity and numerous variables moderated the results. There was a dose response of exercise intensity; at lower intensities GE was faster, and at high exercise intensities GE was slower. Walking was associated with faster GE and cycling with slower GE. Greater volume of meal/fluid ingested, higher osmolality of beverage and longer exercise duration were also associated with slower GE with exercise. LIMITATIONS The major limitation is that the majority of studies utilised a liquid bolus administered pre-exercise to determine GE; the relationship to post-exercise appetite and energy intake remains unknown. Study populations were also generally active or trained individuals. Furthermore, our review was limited to English language studies and studies that utilised resting control conditions. CONCLUSIONS These results suggest that exercise intensity, mode, duration and the nature of meal/fluid ingested all influence GE during and after acute exercise. The relationship of GE parameters with appetite regulation after exercise remains largely unexplored. Further integrative studies combining GE and alterations in gut hormones, as well as in populations such as overweight and obese individuals are needed.
Collapse
Affiliation(s)
- Katy M Horner
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | | | | | |
Collapse
|
29
|
Abstract
The common pattern of play in 'team sports' is 'stop and go', i.e. where players perform repeated bouts of brief high-intensity exercise punctuated by lower intensity activity. Sprints are generally 2-4 s long and recovery between sprints is of variable length. Energy production during brief sprints is derived from the degradation of intra-muscular phosphocreatine and glycogen (anaerobic metabolism). Prolonged periods of multiple sprints drain muscle glycogen stores, leading to a decrease in power output and a reduction in general work rate during training and competition. The impact of dietary carbohydrate interventions on team sport performance have been typically assessed using intermittent variable-speed shuttle running over a distance of 20 m. This method has evolved to include specific work to rest ratios and skills specific to team sports such as soccer, rugby and basketball. Increasing liver and muscle carbohydrate stores before sports helps delay the onset of fatigue during prolonged intermittent variable-speed running. Carbohydrate intake during exercise, typically ingested as carbohydrate-electrolyte solutions, is also associated with improved performance. The mechanisms responsible are likely to be the availability of carbohydrate as a substrate for central and peripheral functions. Variable-speed running in hot environments is limited by the degree of hyperthermia before muscle glycogen availability becomes a significant contributor to the onset of fatigue. Finally, ingesting carbohydrate immediately after training and competition will rapidly recover liver and muscle glycogen stores.
Collapse
Affiliation(s)
- Clyde Williams
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, England, LE11 3TU, UK.
| | - Ian Rollo
- Gatorade Sports Science Institute, Leicester, UK
| |
Collapse
|
30
|
Carbohydrate-dependent, exercise-induced gastrointestinal distress. Nutrients 2014; 6:4191-9. [PMID: 25314645 PMCID: PMC4210913 DOI: 10.3390/nu6104191] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 01/14/2023] Open
Abstract
Gastrointestinal (GI) problems are a common concern of athletes during intense exercise. Ultimately, these symptoms can impair performance and possibly prevent athletes from winning or even finishing a race. The main causes of GI problems during exercise are mechanical, ischemic and nutritional factors. Among the nutritional factors, a high intake of carbohydrate and hyperosmolar solutions increases GI problems. A number of nutritional manipulations have been proposed to minimize gastrointestinal symptoms, including the use of multiple transportable carbohydrates. This type of CHO intake increases the oxidation rates and can prevent the accumulation of carbohydrate in the intestine. Glucose (6%) or glucose plus fructose (8%–10%) beverages are recommended in order to increase CHO intake while avoiding the gastric emptying delay. Training the gut with high intake of CHO may increase absorption capacity and probably prevent GI distress. CHO mouth rinse may be a good strategy to enhance performance without using GI tract in exercises lasting less than an hour. Future strategies should be investigated comparing different CHO types, doses, and concentration in exercises with the same characteristics.
Collapse
|
31
|
Lee CL, Cheng CF, Astorino TA, Lee CJ, Huang HW, Chang WD. Effects of carbohydrate combined with caffeine on repeated sprint cycling and agility performance in female athletes. J Int Soc Sports Nutr 2014; 11:17. [PMID: 24855458 PMCID: PMC4012529 DOI: 10.1186/1550-2783-11-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/17/2014] [Indexed: 11/10/2022] Open
Abstract
Background Caffeine (CAF) has been shown to improve performance during early phase of repeated sprint exercise; however some studies show that CAF also increases the magnitude of physical stress represented by augmented blood lactate, glucose, and cortisol concentrations during latter phase of repeated sprint exercise. No studies have investigated the efficacy of combined carbohydrate (CHO) and CAF consumption during repeated sprint exercise (RSE) in female athletes. Thus, the purpose of this study was to investigate the effects of CAF with CHO supplementation on RSE and agility. Methods Eleven female athletes completed four experimental trials performed 7 d apart in a double-blind, randomized, and counter-balanced crossover design. Treatments included CAF + PLA (placebo), CAF + CHO, PLA + CHO, and PLA + PLA. Participants ingested capsules containing 6 mg · kg−1 of CAF or PLA 60-min prior to RSE, and 0.8 g · kg−1 of CHO solution or PLA immediately before the RSE, which consisted of ten sets of 5 × 4-s sprints on the cycle ergometer with 20-s active recovery. The agility T-test (AT-test) was performed before and after the RSE. Blood samples were acquired to assess glucose, lactate, testosterone, and cortisol. Results During Set 6 of RSE, peak power and mean power were significantly higher in PLA + CHO than those in CAF + PLA and PLA + PLA, respectively (p < .05). Total work was significantly increased by 4.8% and 5.9% with PLA + CHO than those of CAF + CHO and CAF + PLA during Set 3. PLA + CHO also increased total work more than CAF + PLA and PLA + PLA did during Set 6 (p < .05). No significant differences in AT-test performance either before or after the RSE were occurred among treatments (p > .05). Blood lactate and glucose concentrations were significantly higher under CAF + CHO, CAF + PLA, and PLA + CHO versus PLA + PLA (p < .05), but no differences in testosterone or cortisol levels were found (p > .05). Conclusions Findings indicate that CAF + PLA or CAF + CHO ingestion did not improve repeated sprint performance with short rest intervals or agility. However, CHO ingested immediately prior to exercise provided a small but significant benefit on RSE performance in female athletes.
Collapse
Affiliation(s)
- Chia-Lun Lee
- Physical Education Section of General Education, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ching-Feng Cheng
- Department of Athletic Performance, National Taiwan Normal University, Taipei, Taiwan
| | - Todd A Astorino
- Department of Kinesiology, California State University-San Marcos, San Marcos, CA, USA
| | - Chia-Jung Lee
- Department of Athletic Performance, National Taiwan Normal University, Taipei, Taiwan
| | - Hsin-Wei Huang
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan
| | - Wen-Dien Chang
- Department of Sports Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
32
|
Silva MTB, Palheta-Junior RC, Sousa DF, Fonseca-Magalhães PA, Okoba W, Campos CPS, Oliveira RB, Magalhães PJC, Santos AA. Sodium bicarbonate treatment prevents gastric emptying delay caused by acute exercise in awake rats. J Appl Physiol (1985) 2014; 116:1133-41. [PMID: 24557800 DOI: 10.1152/japplphysiol.01242.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physical exercise, mainly after vigorous activity, may induce gastrointestinal dysmotility whose mechanisms are still unknown. We hypothesized that physical exercise and ensuing lactate-related acidemia alter gastrointestinal motor behavior. In the present study, we evaluated the effects of short-term exercise on gastric emptying rate in awake rats subjected to 15-min swimming sessions against a load equivalent to 5% of their body weight. After 0, 10, or 20 min of exercise testing, the rats were gavage fed with 1.5 ml of a liquid test meal (0.5 mg/ml of phenol red in 5% glucose solution) and euthanized 10 min postprandially to measure fractional gastric dye recovery. In addition to inducing acidemia and increasing blood lactate levels, acute exercise increased (P < 0.05) gastric retention. Such a phenomenon presented a positive correlation (P < 0.001) between blood lactate levels and fractional gastric dye recovery. Gastric retention and other acidbase-related changes were all prevented by NaHCO3 pretreatment. Additionally, exercise enhanced (P < 0.05) the marker's progression through the small intestine. In anesthetized rats, exercise increased (P < 0.05) gastric volume, measured by a balloon catheter in a barostat system. Compared with sedentary control rats, acute exercise also inhibited (P < 0.05) the contractility of gastric fundus strips in vitro. In conclusion, acute exercise delayed the gastric emptying of a liquid test meal by interfering with the acid-base balance.
Collapse
Affiliation(s)
- Moisés T B Silva
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fleming J, James LJ. Repeated familiarisation with hypohydration attenuates the performance decrement caused by hypohydration during treadmill running. Appl Physiol Nutr Metab 2014; 39:124-9. [DOI: 10.1139/apnm-2013-0044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effect of repeated familiarisation to hypohydration on hypohydrated exercise performance. After familiarisation with the exercise protocol, 10 recreationally active males completed a euhydrated (EU-pre) and hypohydrated (HYPO-pre) trial, which involved a 45-min steady state run at 75% peak oxygen uptake (45SS) followed by a 5-km time trial (TT). Euhydration and hypohydration were induced by manipulating fluid intake in the 24-h pre-exercise and during the 45SS. Subjects then completed 4 habituation sessions that involved replication of the HYPO-pre trial, except they completed 60 min of running at 75% peak oxygen uptake and no TT. Subjects then replicated the euhydrated (EU-post) and hypohydrated (HYPO-post) trials. Body mass loss pre-TT was 0.2 (0.2)% (EU-pre), 2.4 (0.3)% (HYPO-pre), 0.1 (0.1)% (EU-post), and 2.4 (0.3)% (HYPO-post). TT performance was 5.8 (2.4)% slower during the HYPO-pre trial (1459 (250) s) than during the EU-pre trial (1381 (237) s) (p < 0.01), but only 1.2 (1.6)% slower during the HYPO-post trial (1381 (200) s) than during the EU-post trial (1366 (211) s) (p = 0.064). TT performance was not different between EU-pre and EU-post trials, but was 5.1 (2.3)% faster during the HYPO-post trial than the HYPO-pre trial (p < 0.01). Heart rate was greater during HYPO trials than EU trials (p < 0.001), whilst rating of perceived exertion (RPE) response was similar to TT time and was lower in the HYPO-post trial than the HYPO-pre trial (p < 0.01). In conclusion, hypohydration impaired 5-km running performance in subjects unfamiliar with the hypohydration protocol, but 4 familiarisation sessions designed to habituate subjects with the hypohydration protocol attenuated the performance decrement, seemingly via an attenuation of RPE during hypohydrated exercise.
Collapse
Affiliation(s)
- Joseph Fleming
- SHAPE Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Lewis J. James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- SHAPE Research Group, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
34
|
Cermak NM, van Loon LJC. The Use of Carbohydrates During Exercise as an Ergogenic Aid. Sports Med 2013; 43:1139-55. [DOI: 10.1007/s40279-013-0079-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Abstract
This review examines the effect of prior exercise on postprandial triacylglycerol (pTAG) concentrations, an independent risk factor for cardiovascular diseases. Numerous studies have shown that a single bout of exercise reduces pTAG concentrations; however, several modulators such as exercise energy expenditure/deficit, mode of exercise (aerobic/resistance/high intensity/intermittent exercise or combinations), type of meal (moderate or high fat), time frame between exercise and meal and target group may individually or in conjunction influence this effect. On the other hand, at least for aerobic exercise, training reduces pTAG concentrations transiently (~2 days); therefore, exercise sessions should be frequent enough to maintain this clinically significant improvement. For the healthy population, it seems that a subject's preference and ability determine which type of exercise to undertake to attenuate pTAG concentrations; an energy expenditure of ~30 kJ/kg of body mass (or ~2-2.5 MJ) not combined with a corresponding increase in energy intake is required; for resistance or intermittent exercise, for those following a moderate rather than a high-fat diet, and for those with obesity (expressed as kJ/kg of body mass), a smaller energy expenditure is probably sufficient. More studies are needed to investigate dose-response/plateau effects, as well as the threshold of energy expenditure in those with diabetes mellitus and other high-risk populations. Finally, investigation of the underlying mechanisms may be clinically helpful in individualizing the appropriate intervention.
Collapse
Affiliation(s)
- Maria I. Maraki
- Laboratory of Nutrition & Clinical Dietetics, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Labros S. Sidossis
- Laboratory of Nutrition & Clinical Dietetics, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
- Department of Internal Medicine, Sealy Center on Aging, Institute for Translational Sciences and Shriners Hospital for Children, University of Texas Medical Branch at Galveston, TX, USA
| |
Collapse
|
36
|
King NA, Horner K, Hills AP, Byrne NM, Wood RE, Bryant E, Caudwell P, Finlayson G, Gibbons C, Hopkins M, Martins C, Blundell JE. The Interaction Between Exercise, Appetite, and Food Intake. Am J Lifestyle Med 2013. [DOI: 10.1177/1559827613475584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exercise could indirectly affect body weight by exerting changes on various components of appetite control, including nutrient and taste preferences, meal size and frequency, and the drive to eat. This review summarizes the evidence on how exercise affects appetite and eating behavior and in particular answers the question, “Does exercise induce an increase in food intake to compensate for the increase in energy expenditure?” Evidence will be presented to demonstrate that there is no automatic increase in food intake in response to acute exercise and that the response to repeated exercise is variable. The review will also identify areas of further study required to explain the variability. One limitation with studies that assess the efficacy of exercise as a method of weight control is that only mean data are presented—the individual variability tends to be overlooked. Recent evidence highlights the importance of characterizing the individual variability by demonstrating exercise-induced changes in appetite. Individuals who experience lower than theoretically predicted reductions in body weight can be characterized by hedonic (eg, pleasure) and homeostatic (eg, hunger) features.
Collapse
Affiliation(s)
- Neil Anthony King
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia (NAK, KH, APH, NMB, REW)
- Centre for Psychology Studies, University of Bradford, UK (EB)
- BioPsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK (PC, GF, CG, JEB)
- Department of Sport, Health, and Nutrition, Leeds Trinity University College, Leeds, UK (MH)
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway (CM)
| | - Katy Horner
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia (NAK, KH, APH, NMB, REW)
- Centre for Psychology Studies, University of Bradford, UK (EB)
- BioPsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK (PC, GF, CG, JEB)
- Department of Sport, Health, and Nutrition, Leeds Trinity University College, Leeds, UK (MH)
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway (CM)
| | - Andrew Peter Hills
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia (NAK, KH, APH, NMB, REW)
- Centre for Psychology Studies, University of Bradford, UK (EB)
- BioPsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK (PC, GF, CG, JEB)
- Department of Sport, Health, and Nutrition, Leeds Trinity University College, Leeds, UK (MH)
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway (CM)
| | - Nuala Mary Byrne
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia (NAK, KH, APH, NMB, REW)
- Centre for Psychology Studies, University of Bradford, UK (EB)
- BioPsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK (PC, GF, CG, JEB)
- Department of Sport, Health, and Nutrition, Leeds Trinity University College, Leeds, UK (MH)
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway (CM)
| | - Rachel Elise Wood
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia (NAK, KH, APH, NMB, REW)
- Centre for Psychology Studies, University of Bradford, UK (EB)
- BioPsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK (PC, GF, CG, JEB)
- Department of Sport, Health, and Nutrition, Leeds Trinity University College, Leeds, UK (MH)
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway (CM)
| | - Eleanor Bryant
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia (NAK, KH, APH, NMB, REW)
- Centre for Psychology Studies, University of Bradford, UK (EB)
- BioPsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK (PC, GF, CG, JEB)
- Department of Sport, Health, and Nutrition, Leeds Trinity University College, Leeds, UK (MH)
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway (CM)
| | - Phillipa Caudwell
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia (NAK, KH, APH, NMB, REW)
- Centre for Psychology Studies, University of Bradford, UK (EB)
- BioPsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK (PC, GF, CG, JEB)
- Department of Sport, Health, and Nutrition, Leeds Trinity University College, Leeds, UK (MH)
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway (CM)
| | - Graham Finlayson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia (NAK, KH, APH, NMB, REW)
- Centre for Psychology Studies, University of Bradford, UK (EB)
- BioPsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK (PC, GF, CG, JEB)
- Department of Sport, Health, and Nutrition, Leeds Trinity University College, Leeds, UK (MH)
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway (CM)
| | - Catherine Gibbons
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia (NAK, KH, APH, NMB, REW)
- Centre for Psychology Studies, University of Bradford, UK (EB)
- BioPsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK (PC, GF, CG, JEB)
- Department of Sport, Health, and Nutrition, Leeds Trinity University College, Leeds, UK (MH)
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway (CM)
| | - Mark Hopkins
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia (NAK, KH, APH, NMB, REW)
- Centre for Psychology Studies, University of Bradford, UK (EB)
- BioPsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK (PC, GF, CG, JEB)
- Department of Sport, Health, and Nutrition, Leeds Trinity University College, Leeds, UK (MH)
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway (CM)
| | - Catia Martins
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia (NAK, KH, APH, NMB, REW)
- Centre for Psychology Studies, University of Bradford, UK (EB)
- BioPsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK (PC, GF, CG, JEB)
- Department of Sport, Health, and Nutrition, Leeds Trinity University College, Leeds, UK (MH)
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway (CM)
| | - John Edward Blundell
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia (NAK, KH, APH, NMB, REW)
- Centre for Psychology Studies, University of Bradford, UK (EB)
- BioPsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK (PC, GF, CG, JEB)
- Department of Sport, Health, and Nutrition, Leeds Trinity University College, Leeds, UK (MH)
- Obesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway (CM)
| |
Collapse
|
37
|
Exercise-induced vomiting. GASTROENTEROLOGY REVIEW 2013; 8:396-400. [PMID: 24868290 PMCID: PMC4027831 DOI: 10.5114/pg.2013.39924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/19/2012] [Accepted: 12/29/2012] [Indexed: 01/14/2023]
|
38
|
Miller KC. Plasma potassium concentration and content changes after banana ingestion in exercised men. J Athl Train 2012. [PMID: 23182013 DOI: 10.4085/1062-6050-47.6.05] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Individuals prone to exercise-associated muscle cramps (EAMCs) are instructed to eat bananas because of their high potassium (K(+)) concentration and carbohydrate content and the perception that K(+) imbalances and fatigue contribute to the genesis of EAMCs. No data exist about the effect of bananas on plasma K(+) concentration ([K(+)](p)) or plasma glucose concentration ([glucose](p)) after exercise in the heat. OBJECTIVE To determine whether ingesting 0, 1, or 2 servings of bananas after 60 minutes of moderate to vigorous exercise in the heat alters [K(+)](p) or [glucose](p) and whether changes in [K(+)](p) result from hypotonic fluid effluxes or K(+) ion changes. DESIGN Crossover study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS Nine euhydrated men (age = 27 ± 4 years, height = 180.3 ± 8.4 cm, mass = 84.9 ± 26.1 kg, urine specific gravity ≤ 1.006) without EAMCs volunteered. INTERVENTION(S) On 3 separate days, participants completed 60 minutes of moderate to vigorous cycling (temperature = 36.4°C ± 1.1°C, relative humidity = 19.4% ± 2.5%) and then ate 0 g (0 servings), 150 g (1 serving), or 300 g (2 servings) of bananas. Blood samples were collected at 3, 5, 15, 30, and 60 minutes postingestion. MAIN OUTCOME MEASURE(S) The [K(+)](p), changes in plasma K(+) content, plasma volume changes, and [glucose](p). RESULTS The [K(+)](p) differed between conditions at 60 minutes; 2 servings (4.6 ± 0.3 mmol/L [conventional unit = 4.6 ± 0.3 mEq/L]) was greater than 1 serving (4.5 ± 0.2 mmol/L [conventional unit = 4.5 ± 0.2 mEq/L]) and 0 servings (4.4 ± 0.3 mmol/L [conventional unit = 4.4 ± 0.3 mEq/L]) (P < .05). The [K(+)](p) was greater at 60 minutes than at 3 and 5 minutes in the 1-serving condition and was greater at 30 and 60 minutes than at 3 and 5 minutes in the 2-servings condition (P < .05). Percentage change in K(+) content was greater only at 30 and 60 minutes postingestion than at baseline in the 2-servings condition (4.4% ± 3.7% and 5.8% ± 2.3% increase, respectively) (P < .05). The plasma volume changes among conditions were unremarkable. The [glucose](p) was greater in the 2-servings condition than in all other conditions at 15, 30, and 60 minutes (P < .05). CONCLUSIONS The effect of banana ingestion on EAMCs is unknown; however, these data suggested bananas are unlikely to relieve EAMCs by increasing extracellular [K(+)] or [glucose](p). The increases in [K(+)](p) were marginal and within normal clinical values. The changes in [K(+)](p), plasma K(+) content, and [glucose](p) do not occur quickly enough to treat acute EAMCs, especially if they develop near the end of competition.
Collapse
Affiliation(s)
- Kevin C Miller
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, PO Box 6050, Department 2620, Fargo, ND 58108, USA.
| |
Collapse
|
39
|
Mora-Rodriguez R, Hamouti N, Del Coso J, Ortega JF. Fluid ingestion is more effective in preventing hyperthermia in aerobically trained than untrained individuals during exercise in the heat. Appl Physiol Nutr Metab 2012; 38:73-80. [PMID: 23368831 DOI: 10.1139/apnm-2012-0174] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is unclear if fluid ingestion during exercise in the heat alleviates the thermoregulatory and cardiovascular strain similarly in aerobically trained and untrained individuals. It is also unknown at what exercise intensity the effects of rehydration are greater. Ten aerobically trained (T) and 10 healthy untrained (UT) subjects ([Formula: see text]O(2peak), 60 ± 6 vs. 44 ± 3 mL O(2)·kg(-1)·min(-1), respectively; P < 0.05) pedalled in a hot, dry environment (36 ± 1 °C; 25% ± 2% relative humidity; airflow, 2.5 m·s(-1)) at 40%, 60%, and 80% [Formula: see text]O(2peak) while ingesting fluids (Fluid). The results were compared with those from our previous study [Mora-Rodriguez et al., Eur. J. Appl. Physiol. 109(5): 973-981 (2010)] with no fluid ingestion (No Fluid). Subjects were not heat-acclimated. At 40% [Formula: see text]O(2peak), Fluid reduced rectal temperature (T(RE)) in T and UT (0.31 ± 0.08 and 0.32 ± 0.07 °C; respectively). At 60% [Formula: see text]O(2peak), Fluid reduced T(RE) in T more than in UT (0.30 ± 0.10 °C vs. 0.18 ± 0.10 °C; P < 0.05) but had no effect at 80% [Formula: see text]O(2peak) in any group. At similar relative intensity, heart rates (HR) were similar between groups. Fluid lowered heart rate (i.e., HR) similarly in the T and UT at 40% and 60% [Formula: see text]O(2peak) (11% and 6%, respectively; P < 0.05) but not at 80% [Formula: see text]O(2peak) (P > 0.05). At similar metabolic heat production (i.e., 60% for T vs. 80% [Formula: see text]O(2peak) for UT), Fluid lowered T(RE) only in the T individuals (P < 0.05). In summary, rehydration during low- and moderate-intensity exercise reduces T(RE) and HR more than during high-intensity exercise (80% [Formula: see text]O(2peak)) in T and UT subjects. Fluid replacement is more effective on preventing the rise in T(RE) in T than in UT individuals during moderate-intensity exercise (60% [Formula: see text]O(2peak)), as well as when exercising at a similar heat production rate.
Collapse
|
40
|
Horner KM, Byrne NM, Cleghorn GJ, Näslund E, King NA. The effects of weight loss strategies on gastric emptying and appetite control. Obes Rev 2011; 12:935-51. [PMID: 21729233 DOI: 10.1111/j.1467-789x.2011.00901.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The gastrointestinal tract plays an important role in the improved appetite control and weight loss in response to bariatric surgery. Other strategies which similarly alter gastrointestinal responses to food intake could contribute to successful weight management. The aim of this review is to discuss the effects of surgical, pharmacological and behavioural weight loss interventions on gastrointestinal targets of appetite control, including gastric emptying. Gastrointestinal peptides are also discussed because of their integrative relationship in appetite control. This review shows that different strategies exert diverse effects and there is no consensus on the optimal strategy for manipulating gastric emptying to improve appetite control. Emerging evidence from surgical procedures (e.g. sleeve gastrectomy and Roux-en-Y gastric bypass) suggests a faster emptying rate and earlier delivery of nutrients to the distal small intestine may improve appetite control. Energy restriction slows gastric emptying, while the effect of exercise-induced weight loss on gastric emptying remains to be established. The limited evidence suggests that chronic exercise is associated with faster gastric emptying, which we hypothesize will impact on appetite control and energy balance. Understanding how behavioural weight loss interventions (e.g. diet and exercise) alter gastrointestinal targets of appetite control may be important to improve their success in weight management.
Collapse
Affiliation(s)
- K M Horner
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
41
|
Food-dependent, exercise-induced gastrointestinal distress. J Int Soc Sports Nutr 2011; 8:12. [PMID: 21955383 PMCID: PMC3190328 DOI: 10.1186/1550-2783-8-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 09/28/2011] [Indexed: 12/14/2022] Open
Abstract
Among athletes strenuous exercise, dehydration and gastric emptying (GE) delay are the main causes of gastrointestinal (GI) complaints, whereas gut ischemia is the main cause of their nausea, vomiting, abdominal pain and (blood) diarrhea. Additionally any factor that limits sweat evaporation, such as a hot and humid environment and/or body dehydration, has profound effects on muscle glycogen depletion and risk for heat illness. A serious underperfusion of the gut often leads to mucosal damage and enhanced permeability so as to hide blood loss, microbiota invasion (or endotoxemia) and food-born allergen absorption (with anaphylaxis). The goal of exercise rehydration is to intake more fluid orally than what is being lost in sweat. Sports drinks provide the addition of sodium and carbohydrates to assist with intestinal absorption of water and muscle-glycogen replenishment, respectively. However GE is proportionally slowed by carbohydrate-rich (hyperosmolar) solutions. On the other hand, in order to prevent hyponatremia, avoiding overhydration is recommended. Caregiver's responsibility would be to inform athletes about potential dangers of drinking too much water and also advise them to refrain from using hypertonic fluid replacements.
Collapse
|
42
|
Miller KC, Mack GW, Knight KL. Gastric emptying after pickle-juice ingestion in rested, euhydrated humans. J Athl Train 2011; 45:601-8. [PMID: 21062184 DOI: 10.4085/1062-6050-45.6.601] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Small volumes of pickle juice (PJ) relieve muscle cramps within 85 seconds of ingestion without significantly affecting plasma variables. This effect may be neurologic rather than metabolic. Understanding PJ's gastric emptying would help to strengthen this theory. OBJECTIVE To compare gastric emptying and plasma variables after PJ and deionized water (DIW) ingestion. DESIGN Crossover study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS Ten men (age = 25.4 ± 0.7 years, height = 177.1 ± 1.6 cm, mass = 78.1 ± 3.6 kg). INTERVENTION(S) Rested, euhydrated, and eunatremic participants ingested 7 mL·kg⁻¹ body mass of PJ or DIW on separate days. MAIN OUTCOME MEASURE(S) Gastric volume was measured at 0, 5, 10, 20, and 30 minutes postingestion (using the phenol red dilution technique). Percentage changes in plasma volume and plasma sodium concentration were measured preingestion (-45 minutes) and at 5, 10, 20, and 30 minutes postingestion. RESULTS Initial gastric volume was 624.5 ± 27.4 mL for PJ and 659.5 ± 43.8 mL for DIW (P > .05). Both fluids began to empty within the first 5 minutes (volume emptied: PJ = 219.2 ± 39.1 mL, DIW = 305.0 ± 40.5 mL, P < .05). Participants who ingested PJ did not empty further after the first 5 minutes (P > .05), whereas in those who ingested DIW, gastric volume decreased to 111.6 ± 39.9 mL by 30 minutes (P < .05). The DIW group emptied faster than the PJ group between 20 and 30 minutes postingestion (P < .05). Within 5 minutes of PJ ingestion, plasma volume decreased 4.8% ± 1.6%, whereas plasma sodium concentration increased 1.6 ± 0.5 mmol·L⁻¹ (P < .05). Similar changes occurred after DIW ingestion. Calculated plasma sodium content was unchanged for both fluids (P > .05). CONCLUSIONS The initial decrease in gastric volume with both fluids is likely attributable to gastric distension. Failure of the PJ group to empty afterward is likely due to PJ's osmolality and acidity. Cardiovascular reflexes resulting from gastric distension are likely responsible for the plasma volume shift and rise in plasma sodium concentration despite nonsignificant changes in plasma sodium content. These data support our theory that PJ does not relieve cramps via a metabolic mechanism.
Collapse
Affiliation(s)
- Kevin C Miller
- Department of Health, Nutrition, and Exercise Sciences, North Dakota State University, Fargo, ND 58108- 6050, USA.
| | | | | |
Collapse
|
43
|
Sidhu P, Peng HT, Cheung B, Edginton A. Simulation of differential drug pharmacokinetics under heat and exercise stress using a physiologically based pharmacokinetic modeling approach. Can J Physiol Pharmacol 2011; 89:365-82. [PMID: 21627485 DOI: 10.1139/y11-030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Under extreme conditions of heat exposure and exercise stress, the human body undergoes major physiological changes. Perturbations in organ blood flows, gastrointestinal properties, and vascular physiology may impact the body's ability to absorb, distribute, and eliminate drugs. Clinical studies on the effect of these stressors on drug pharmacokinetics demonstrate that the likelihood of pharmacokinetic alteration is dependent on drug properties and the intensity of the stressor. The objectives of this study were to use literature data to quantify the correlation between exercise and heat exposure intensity to changing physiological parameters and further, to use this information for the parameterization of a whole-body, physiologically based pharmacokinetic model for the purposes of determining those drug properties most likely to demonstrate altered drug pharmacokinetics under stress. Cardiac output and most organ blood flows were correlated with heart rate using regression analysis. Other altered parameters included hematocrit and intravascular albumin concentration. Pharmacokinetic simulations of intravenous and oral administration of hypothetical drugs with either a low or high value of lipophilicity, unbound fraction in plasma, and unbound intrinsic hepatic clearance demonstrated that the area under the curve of those drugs with a high unbound intrinsic clearance was most affected (up to a 130% increase) following intravenous administration, whereas following oral administration, pharmacokinetic changes were smaller (<40% increase in area under the curve) for all hypothetical compounds. A midazolam physiologically based pharmacokinetic model was also used to demonstrate that simulated changes in pharmacokinetic parameters under exercise and heat stress were generally consistent with those reported in the literature.
Collapse
Affiliation(s)
- Pardeep Sidhu
- School of Pharmacy, University of Waterloo, ON, Canada
| | | | | | | |
Collapse
|
44
|
Mujika I, Burke LM. Nutrition in team sports. ANNALS OF NUTRITION AND METABOLISM 2011; 57 Suppl 2:26-35. [PMID: 21346334 DOI: 10.1159/000322700] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Team sports are based on intermittent high-intensity activity patterns, but the exact characteristics vary between and within codes, and from one game to the next. Despite the challenge of predicting exact game demands, performance in team sports is often dependent on nutritional factors. Chronic issues include achieving ideal levels of muscle mass and body fat, and supporting the nutrient needs of the training program. Acute issues, both for training and in games, include strategies that allow the player to be well fuelled and hydrated over the duration of exercise. Each player should develop a plan of consuming fluid and carbohydrate according to the needs of their activity patterns, within the breaks that are provided in their sport. In seasonal fixtures, competition varies from a weekly game in some codes to 2-3 games over a weekend road trip in others, and a tournament fixture usually involves 1-3 days between matches. Recovery between events is a major priority, involving rehydration, refuelling and repair/adaptation activities. Some sports supplements may be of value to the team athlete. Sports drinks, gels and liquid meals may be valuable in allowing nutritional goals to be met, while caffeine, creatine and buffering agents may directly enhance performance.
Collapse
|
45
|
Cockburn E, Stevenson E, Hayes PR, Robson-Ansley P, Howatson G. Effect of milk-based carbohydrate-protein supplement timing on the attenuation of exercise-induced muscle damage. Appl Physiol Nutr Metab 2010; 35:270-7. [DOI: 10.1139/h10-017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise-induced muscle damage (EIMD) leads to decrements in muscle performance and increases in intramuscular enzymes measured in the plasma, and to delayed onset of muscle soreness (DOMS), partly due to the activation of degradative pathways. It has been shown that milk-based carbohydrate-protein (CHO-P) can limit changes in markers of EIMD, possibly by attenuating protein degradation and (or) increasing protein synthesis. However, the timing of supplementation has received limited attention, and this may alter the response. This study examined the effects of acute milk-based CHO-P supplementation timing on the attenuation of EIMD. Four independent matched groups of 8 healthy males consumed milk-based CHO-P before (PRE), immediately after (POST), or 24 h after (TWENTY-FOUR) muscle-damaging exercise. Active DOMS, isokinetic muscle performance, reactive strength index (RSI), and creatine kinase (CK) were assessed immediately before and 24, 48, and 72 h after EIMD. POST and TWENTY-FOUR demonstrated a benefit in limiting changes in active DOMS, peak torque, and RSI over 48 h, compared with PRE. PRE showed a possible benefit in reducing increases in CK over 48 h and limiting changes in other variables over 72 h. Consuming milk-based CHO-P after muscle-damaging exercise is more beneficial in attenuating decreases in muscle performance and increases in active DOMS at 48 h than ingestion prior to exercise.
Collapse
Affiliation(s)
- Emma Cockburn
- Department of Sport Sciences, Northumberland Building, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Emma Stevenson
- Department of Sport Sciences, Northumberland Building, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Philip R. Hayes
- Department of Sport Sciences, Northumberland Building, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Paula Robson-Ansley
- Department of Sport Sciences, Northumberland Building, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Glyn Howatson
- Department of Sport Sciences, Northumberland Building, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| |
Collapse
|
46
|
MacLeod H, Sunderland C. Fluid balance and hydration habits of elite female field hockey players during consecutive international matches. J Strength Cond Res 2009; 23:1245-51. [PMID: 19528861 DOI: 10.1519/jsc.0b013e318192b77a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to assess sweat loss and hydration practices of elite female field hockey players during consecutive international matches. Eighteen England U21 field hockey players were assessed during 2 consecutive international matches. Sweat loss was assessed from changes in body mass after correction for the volume of fluid consumed and any urine loss. Players completed a questionnaire to assess hydration habits and practices. Mean (+/- SD) change in body mass after match 1 was -0.1 +/- 0.6 kg compared with -0.3 +/- 0.5 kg after match 2. This equates to a percentage level of body mass change of -0.2 +/- 1.1% after match 1 and -0.5 +/- 0.7% after match 2. Mean fluid intake was 1264 +/- 394 mL during match 1 and 1216 +/- 488 mL during match 2. Prematch urine osmolality was significantly higher before match 2 (425 +/- 206 mOsm x kg(-1)) compared with match 1 (197 +/- 110 mOsm x kg(-1); p = 0.008). There was no significant difference between morning body mass changes (p = 0.97); however, 14 players experienced reductions in body mass. There were large interindividual differences in sweat loss and drinking habits in players, ranging from levels of dehydration reaching 2% body mass loss to net body mass gains of 2.4%. Fluid loss was moderate, and players were aware of the impact that dehydration has on performance. With regular substitutions, moderate conditions, and a sound knowledge of correct hydration practice, hydration status was well maintained despite playing consecutive matches.
Collapse
Affiliation(s)
- Hannah MacLeod
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.
| | | |
Collapse
|
47
|
Aragón-Vargas LF, Moncada-Jiménez J, Hernández-Elizondo J, Barrenechea A, Monge-Alvarado M. Evaluation of pre-game hydration status, heat stress, and fluid balance during professional soccer competition in the heat. Eur J Sport Sci 2009. [DOI: 10.1080/17461390902829242] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Tarnopolsky MA, Gibala M, Jeukendrup AE, Phillips SM. Nutritional needs of elite endurance athletes. Part I: Carbohydrate and fluid requirements. Eur J Sport Sci 2006. [DOI: 10.1080/17461390500076741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mark A. Tarnopolsky
- a Department of Pediatrics and Medicine , McMaster University , Hamilton, Canada
| | - Martin Gibala
- b Department of Kinesiology , McMaster University , Hamilton, Canada
| | - Asker E. Jeukendrup
- c School of Sport and Exercise Sciences , University of Birmingham , Edgbaston, Birmingham, UK
| | | |
Collapse
|
49
|
Leiper JB, Nicholas CW, Ali A, Williams C, Maughan RJ. The effect of intermittent high-intensity running on gastric emptying of fluids in man. Med Sci Sports Exerc 2006; 37:240-7. [PMID: 15692319 DOI: 10.1249/01.mss.0000152730.74596.50] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study examined the effect of variable-intensity shuttle running on gastric emptying of a carbohydrate-free placebo (Plac) drink and of a 6.4% carbohydrate-electrolyte (CHO) sports drink. METHOD We compared the volume of test drink emptied during two 15-min periods of walking exercise (WE) with that during two 15-min periods of the Loughborough Intermittent Shuttle Test (LIST). Gastric emptying was measured on the four trials using a double-sampling aspiration technique in eight healthy males after ingestion of a 420 +/- 49 mL and a 168 +/- 20 mL bolus of the appropriate test drink at the start of the first and second exercise period, respectively. RESULTS During the initial 15 min of exercise, the mean (+/-SD) volume of Plac (124 +/- 95 mL) and CHO (71 +/- 43 mL) drink emptied was similar between the two LIST trials, but the volume of Plac (227 +/- 85 mL) and CHO (159 +/- 63 mL) drinks emptied on the WE trials was greater than for the respective test drinks on the LIST trials. Similar volumes of test drinks were emptied on all trials (P = 0.20) during the second 15 min of exercise. Over the 30 min of each trial, the exercise intensity of the LIST reduced the volume of the Plac (211 +/- 108 mL) and CHO (208 +/- 83 mL) drink emptied compared with that on the WE trial for the Plac (396 +/- 74 mL) and CHO (293 +/- 73 mL) drink, respectively. CONCLUSIONS The exercise intensity of the LIST is sufficient to slow gastric emptying of carbohydrate and noncarbohydrate containing drinks compared with walking. Dilute carbohydrate-electrolyte drinks empty at about the same rate as carbohydrate-free beverages during variable-intensity running.
Collapse
Affiliation(s)
- John B Leiper
- Department of Biomedical Sciences, University Medical School, Aberdeen University, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Triathlon combines three disciplines (swimming, cycling and running) and competitions last between 1 hour 50 minutes (Olympic distance) and 14 hours (Ironman distance). Independent of the distance, dehydration and carbohydrate (CHO) depletion are the most likely causes of fatigue in triathlon, whereas gastrointestinal (GI) problems, hyperthermia and hyponatraemia are potentially health threatening, especially in longer events. Although glycogen supercompensation may be beneficial for triathlon performance (even Olympic distance), this does not necessarily have to be achieved by the traditional supercompensation protocol. More recently, studies have revealed ways to increase muscle glycogen concentrations to very high levels with minimal modifications in diet and training. During competition, cycling provides the best opportunity to ingest fluids. The optimum CHO concentration seems to be in the range of 5-8% and triathletes should aim to achieve a CHO intake of 60-70 g/hour. Triathletes should attempt to limit body mass losses to 1% of body mass. In all cases, a drink should contain sodium (30-50 mmol/L) for optimal absorption and prevention of hyponatraemia.Post-exercise rehydration is best achieved by consuming beverages that have a high sodium content (>60 mmol/L) in a volume equivalent to 150% of body mass loss. GI problems occur frequently, especially in long-distance triathlon. Problems seem related to the intake of highly concentrated carbohydrate solutions, or hyperosmotic drinks, and the intake of fibre, fat and protein. Endotoxaemia has been suggested as an explanation for some of the GI problems, but this has not been confirmed by recent research. Although mild endotoxaemia may occur after an Ironman-distance triathlon, this does not seem to be related to the incidence of GI problems. Hyponatraemia has occasionally been reported, especially among slow competitors in triathlons and probably arises due to loss of sodium in sweat coupled with very high intakes (8-10 L) of water or other low-sodium drinks.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- Human Performance Laboratory, School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|