1
|
El Safadi D, Paulo-Ramos A, Hoareau M, Roche M, Krejbich-Trotot P, Viranaicken W, Lebeau G. The Influence of Metabolism on Immune Response: A Journey to Understand Immunometabolism in the Context of Viral Infection. Viruses 2023; 15:2399. [PMID: 38140640 PMCID: PMC10748259 DOI: 10.3390/v15122399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, the emergence of the concept of immunometabolism has shed light on the pivotal role that cellular metabolism plays in both the activation of immune cells and the development of immune programs. The antiviral response, a widely distributed defense mechanism used by infected cells, serves to not only control infections but also to attenuate their deleterious effects. The exploration of the role of metabolism in orchestrating the antiviral response represents a burgeoning area of research, especially considering the escalating incidence of viral outbreaks coupled with the increasing prevalence of metabolic diseases. Here, we present a review of current knowledge regarding immunometabolism and the antiviral response during viral infections. Initially, we delve into the concept of immunometabolism by examining its application in the field of cancer-a domain that has long spearheaded inquiries into this fascinating intersection of disciplines. Subsequently, we explore examples of immune cells whose activation is intricately regulated by metabolic processes. Progressing with a systematic and cellular approach, our aim is to unravel the potential role of metabolism in antiviral defense, placing significant emphasis on the innate and canonical interferon response.
Collapse
Affiliation(s)
- Daed El Safadi
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Aurélie Paulo-Ramos
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Mathilde Hoareau
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Marjolaine Roche
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Pascale Krejbich-Trotot
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| | - Wildriss Viranaicken
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
- INSERM, UMR 1188 Diabète Athérothrombose Réunion Océan Indien (DéTROI), Université de La Réunion, Campus Santé de Terre Sainte, 97410 Saint-Pierre, France; (A.P.-R.)
| | - Grégorie Lebeau
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, 97490 Sainte-Clotilde, France; (D.E.S.); (M.R.); (P.K.-T.)
| |
Collapse
|
2
|
Komano Y, Fukao K, Shimada K, Naito H, Ishihara Y, Fujii T, Kokubo T, Daida H. Effects of Ingesting Food Containing Heat-Killed Lactococcus lactis Strain Plasma on Fatigue and Immune-Related Indices after High Training Load: A Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Study. Nutrients 2023; 15:nu15071754. [PMID: 37049594 PMCID: PMC10096552 DOI: 10.3390/nu15071754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Lactococcus lactis strain Plasma (LC-Plasma) is a unique lactic acid bacterium that activates plasmacytoid dendritic cells (pDCs). We evaluated the effect of LC-Plasma on fatigue indices and dendritic cells activity in athletes after 14 days’ continuous exercise load. Thirty-seven participants were divided into two groups and consumed placebo (PL) or LC-Plasma capsules (containing 100 billion cells) daily for 14 days. Maturation markers on dendritic cells, blood parameters, physiological indices, and fatigue-related indices were recorded on days 1 and 15 (before and after exercise). Cumulative days of symptoms relating to physical conditions were also recorded during the continuous exercise period. We observed that CD86 as a maturation marker on pDCs was significantly higher and that cumulative days of fatigue were significantly fewer in the LC-Plasma group than in the Placebo group on day 15. We also conducted 2 h ergometer exercise on day 15 to evaluate fatigue. The results showed that autonomic fatigue parameters (LF/HF) were significantly lower in the LC-Plasma group. These results suggest that LC-Plasma supplementation alleviates fatigue accumulation and increases pDC activity caused by a continuous high training load.
Collapse
Affiliation(s)
- Yuta Komano
- Kirin Holdings Company, Limited, Tokyo 164-0001, Japan
| | - Kosuke Fukao
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kazunori Shimada
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
| | - Yoshihiko Ishihara
- School of Science and Technology for Future Life, Department of Humanities and Social Sciences, Tokyo Denki University, Tokyo 120-8551, Japan
| | - Toshio Fujii
- Kirin Holdings Company, Limited, Tokyo 164-0001, Japan
| | | | - Hiroyuki Daida
- Faculty of Health Science, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
3
|
Perkins E, Davison G. Epstein-Barr Virus (EBV) DNA as a Potential Marker of in vivo Immunity in Professional Footballers. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2022; 93:861-868. [PMID: 34806947 DOI: 10.1080/02701367.2021.1932707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Introduction: Team sport athletes have increased susceptibility to upper respiratory symptoms (URS) during periods of intensified training and competition. Reactivation of Epstein-Barr Virus (EBV) may be a novel marker for risk of upper respiratory illness (URI) in professional athletes. Aims: To investigate changes in salivary EBV DNA (in addition to the well-established marker, salivary secretory immunoglobulin A), and incidence of URS in professional footballers. Methods: Over a 16-week period (August to November 2016), 15 male players from a professional English football League 1 club provided weekly unstimulated saliva samples (after a rest day) and recorded URS. Saliva samples were analyzed for secretory IgA (ELISA) and EBV DNA (qPCR). Results: Whole squad median (interquartile range) saliva IgA concentration and secretion rate significantly decreased (p < .05) between weeks 8 and 12 (concentration, 107 (76-150) mg/L healthy baseline to 51 (31-80) mg/L at week 12; secretion rate 51 (30-78) µg/min healthy baseline to 22 (18-43) µg/min at week 12). Two players reported URS episodes during week 10, both after IgA secretion rate decreased below 40% of the individual's healthy baseline. EBV DNA was detected in the weeks before URS but also at other times and in healthy players (overall frequency 40%, range 11-78%) and frequency was similar between the URS and healthy group. Conclusion: These findings confirm salivary IgA as a useful marker of URS risk but EBV DNA was not. Further research capturing a greater number of URS episodes is required, however, to fully determine the utility of this marker.
Collapse
Affiliation(s)
- Eleanor Perkins
- School of Sport and Exercise Sciences, Division of Natural Sciences, University of Kent, Canterbury Campus
| | - Glen Davison
- School of Sport and Exercise Sciences, Division of Natural Sciences, University of Kent, Canterbury Campus
| |
Collapse
|
4
|
Baker C, Hunt J, Piasecki J, Hough J. Lymphocyte and dendritic cell response to a period of intensified training in young healthy humans and rodents: A systematic review and meta-analysis. Front Physiol 2022; 13:998925. [PMID: 36439269 PMCID: PMC9691956 DOI: 10.3389/fphys.2022.998925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Intensified training coupled with sufficient recovery is required to improve athletic performance. A stress-recovery imbalance can lead to negative states of overtraining. Hormonal alterations associated with intensified training, such as blunted cortisol, may impair the immune response. Cortisol promotes the maturation and migration of dendritic cells which subsequently stimulate the T cell response. However, there are currently no clear reliable biomarkers to highlight the overtraining syndrome. This systematic review and meta-analysis examined the effect of intensified training on immune cells. Outcomes from this could provide insight into whether these markers may be used as an indicator of negative states of overtraining. Methods: SPORTDiscus, PUBMED, Academic Search Complete, Scopus and Web of Science were searched until June 2022. Included articles reported on immune biomarkers relating to lymphocytes, dendritic cells, and cytokines before and after a period of intensified training, in humans and rodents, at rest and in response to exercise. Results: 164 full texts were screened for eligibility. Across 57 eligible studies, 16 immune biomarkers were assessed. 7 were assessed at rest and in response to a bout of exercise, and 9 assessed at rest only. Included lymphocyte markers were CD3+, CD4+ and CD8+ T cell count, NK cell count, NK Cytolytic activity, lymphocyte proliferation and CD4/CD8 ratio. Dendritic cell markers examined were CD80, CD86, and MHC II expression. Cytokines included IL-1β, IL-2, IL-10, TNF-α and IFN-γ. A period of intensified training significantly decreased resting total lymphocyte (d= -0.57, 95% CI -0.30) and CD8+ T cell counts (d= -0.37, 95% CI -0.04), and unstimulated plasma IL-1β levels (d= -0.63, 95% CI -0.17). Resting dendritic cell CD86 expression significantly increased (d = 2.18, 95% CI 4.07). All other biomarkers remained unchanged. Conclusion: Although some biomarkers alter after a period of intensified training, definitive immune biomarkers are limited. Specifically, due to low study numbers, further investigation into the dendritic cell response in human models is required.
Collapse
Affiliation(s)
- Carla Baker
- SHAPE Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham, United Kingdom,*Correspondence: Carla Baker,
| | - John Hunt
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, United Kingdom
| | - Jessica Piasecki
- SHAPE Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham, United Kingdom
| | - John Hough
- SHAPE Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
5
|
Alkemade P, Gerrett N, Daanen HAM, Eijsvogels TMH, Janssen TWJ, Keaney LC. Heat acclimation does not negatively affect salivary immunoglobulin-A and self-reported illness symptoms and wellness in recreational athletes. Temperature (Austin) 2022; 9:331-343. [PMID: 36339091 PMCID: PMC9629114 DOI: 10.1080/23328940.2022.2088029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heat acclimation (HA) protocols repeatedly expose individuals to heat stress. As HA is typically performed close to the pinnacle event, it is essential that the protocol does not compromise immune status, health, or wellbeing. The purpose of this study was to examine the effect of HA on resting salivary immunoglobulin-A (s-IgA) and salivary cortisol (s-cortisol), self-reported upper-respiratory tract symptoms, and self-reported wellness parameters. Seventeen participants (peak oxygen uptake 53.2 ± 9.0 mL·kg−1·min−1) completed a 10-day controlled-hyperthermia HA protocol, and a heat stress test both before (HST1) and after (HST2) HA (33°C, 65% relative humidity). Resting saliva samples were collected at HST1, day 3 and 7 of the HA protocol, HST2, and at 5 ± 1 days post-HA. Upper-respiratory tract symptom data were collected weekly from one week prior to HA until three weeks post HA, and wellness ratings were reported daily throughout HA. HA successfully induced physiological adaptations, with a lower end-exercise rectal temperature and heart rate and higher whole-body sweat rate at HST2 compared to HST1. In contrast, resting saliva flow rate, s-IgA concentration, s-cortisol concentration, and s-cortisol secretion rate remained unchanged (n = 11–14, P = 0.10–0.48). Resting s-IgA secretion rate increased by 39% from HST1 to HST2 (n = 14, P = 0.03). No changes were observed in self-reported upper respiratory tract symptoms and wellness ratings. In conclusion, controlled-hyperthermia HA did not negatively affect resting s-IgA and s-cortisol, self-reported upper-respiratory tract symptoms, and self-reported wellness parameters in recreational athletes.
Collapse
Affiliation(s)
- Puck Alkemade
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Nicola Gerrett
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Gentherm, Northville, MI, USA
| | - Hein A. M. Daanen
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Thijs M. H. Eijsvogels
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas W. J. Janssen
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Lauren C. Keaney
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
- Defence Technology Agency, New Zealand Defence Force, Auckland, New Zealand
| |
Collapse
|
6
|
Derman W, Badenhorst M, Eken M, Gomez-Ezeiza J, Fitzpatrick J, Gleeson M, Kunorozva L, Mjosund K, Mountjoy M, Sewry N, Schwellnus M. Risk factors associated with acute respiratory illnesses in athletes: a systematic review by a subgroup of the IOC consensus on ‘acute respiratory illness in the athlete’. Br J Sports Med 2022; 56:639-650. [DOI: 10.1136/bjsports-2021-104795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/18/2022]
Abstract
ObjectiveTo review risk factors associated with acute respiratory illness (ARill) in athletes, including non-infectious ARill and suspected or confirmed acute respiratory infections (ARinf).DesignSystematic review.Data sourcesElectronic databases: PubMed-Medline, EbscoHost and Web of Science.Eligibility criteriaOriginal research articles published between January 1990 and July 2020 in English were searched for prospective and retrospective full text studies that reported quantitative data on risk factors associated with ARill/ARinf in athletes, at any level of performance (elite/non-elite), aged 15–65 years.Results48 studies (n=19 390 athletes) were included in the study. Risk factors associated with ARill/ARinf were: increased training monotony, endurance training programmes, lack of tapering, training during winter or at altitude, international travel and vitamin D deficits. Low tear-(SIgA) and salivary-(IgA) were immune biomarkers associated with ARill/ARinf.ConclusionsModifiable training and environmental risk factors could be considered by sports coaches and athletes to reduce the risk of ARill/ARinf. Clinicians working with athletes can consider assessing and treating specific nutritional deficiencies such as vitamin D. More research regarding the role and clinical application of measuring immune biomarkers in athletes at high risk of ARill/ARinf is warranted.PROSPERO registration numberCRD42020160928.
Collapse
|
7
|
Derman W, Badenhorst M, Eken MM, Ezeiza-Gomez J, Fitzpatrick J, Gleeson M, Kunorozva L, Mjosund K, Mountjoy M, Sewry N, Schwellnus M. Incidence of acute respiratory illnesses in athletes: a systematic review and meta-analysis by a subgroup of the IOC consensus on 'acute respiratory illness in the athlete'. Br J Sports Med 2022; 56:630-638. [PMID: 35260411 DOI: 10.1136/bjsports-2021-104737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To determine the incidence of acute respiratory illness (ARill) in athletes and by method of diagnosis, anatomical classification, ages, levels of performance and seasons. DESIGN Systematic review and meta-analysis. DATA SOURCES Electronic databases: PubMed-Medline, EbscoHost and Web of Science. ELIGIBILITY CRITERIA Original research articles published between January 1990 and July 2020 in English reporting the incidence of ARill in athletes, at any level of performance (elite/non-elite), aged 15-65 years. RESULTS Across all 124 studies (n=1 28 360 athletes), the incidence of ARill, estimated by dividing the number of cases by the total number of athlete days, was 4.7 (95% CI 3.9 to 5.7) per 1000 athlete days. In studies reporting acute respiratory infections (ARinf; suspected and confirmed) the incidence was 4.9 (95% CI 4.0 to 6.0), which was similar in studies reporting undiagnosed ARill (3.7; 95% CI 2.1 to 6.7). Incidences of 5.9 (95% CI 4.8 to 7.2) and 2.8 (95% CI 1.8 to 4.5) were found for studies reporting upper ARinf and general ARinf (upper or lower), respectively. The incidence of ARinf was similar across the different methods to diagnose ARinf. A higher incidence of ARinf was found in non-elite (8.7; 95% CI 6.1 to 12.5) vs elite athletes (4.2; 95% CI 3.3 to 5.3). SUMMARY/CONCLUSIONS These findings suggest: (1) the incidence of ARill equates to approximately 4.7 per athlete per year; (2) the incidence of upper ARinf was significantly higher than general (upper/lower) ARinf; (3) elite athletes have a lower incidence of ARinf than non-elite athletes; (4) if pathogen identification is not available, physicians can confidently use validated questionnaires and checklists to screen athletes for suspected ARinf. For future studies, we recommend that a clear diagnosis of ARill is reported. PROSPERO REGISTRATION NUMBER CRD42020160472.
Collapse
Affiliation(s)
- Wayne Derman
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa .,International Olympic Committee Research Centre, Pretoria, South Africa
| | - Marelise Badenhorst
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.,Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Maaike Maria Eken
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Josu Ezeiza-Gomez
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.,International Olympic Committee Research Centre, Pretoria, South Africa
| | - Jane Fitzpatrick
- Centre for Health and Exercise Sports Medicine, Faculty of Medicine Dentistry and Health Science, University of Melbourne, Parkville, Victoria, Australia
| | - Maree Gleeson
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Lovemore Kunorozva
- Institute of Sport and Exercise Medicine, Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Katja Mjosund
- Paavo Nurmi Centre, Sport and Exercise Medicine Unit, University of Turku, Turku, Finland
| | - Margo Mountjoy
- Department of Family Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nicola Sewry
- International Olympic Committee Research Centre, Pretoria, South Africa.,Sport, Exercise Medicine and Lifestyle Institute, University of Pretoria, Faculty of Health Sciences, Pretoria, South Africa
| | - Martin Schwellnus
- International Olympic Committee Research Centre, Pretoria, South Africa.,Sport, Exercise Medicine and Lifestyle Institute, University of Pretoria, Faculty of Health Sciences, Pretoria, South Africa
| |
Collapse
|
8
|
Multipathogen Detection in Patients with Respiratory Tract Infection: Identification of Non-respiratory Viruses Using Multiplex Real-time Polymerase Reaction. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm.120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Due to the overlapping clinical characteristics of respiratory tract infections (RTIs) and the unavailability of appropriate diagnostic techniques, the diagnosis of RTIs is controversial. Objectives: The study aimed to prompt the diagnosis of RTIs using commercial multiplex real-time PCR. Methods: The survey undertook for two years (2019 - 2020) on 144 flu-negative immunocompetent outpatients. Respiratory samples were examined by multiplex PCR assays. Results: Study population consisted of females (n = 77, 53.5%) and males (n = 67, 46.5%). The mean age was 42.8 ± 23.7 years. Thirty-one (21.5%) patients were infected with only one viral or bacterial infection. Eighty-two (57%) were infected with more than one pathogen. Ninety-five (37%) and 161 (62%) tests were positive for bacterial and viral pathogens, respectively. Community-acquired Pneumonia (CAP) and atypical CAP pathogens included 17% and 10% of respiratory specimens, respectively. The predominant pathogens consisted of Human Herpes Virus 7 (HHV-7) (n = 38, 15.5%), Epstein-Barr Virus (EBV) (n = 34, 13.8%), Mycoplasma pneumoniae (n = 24, 9.8%), and Human Herpes Virus 6 (HHV-6) (n = 21, 8.5%). There were associations between pathogen findings and special age categories. Fever, cough, dyspnea, and hemoptysis were associated with certain pathogens. There was no substantial difference between viral and bacterial Ct concerning gender, age group, and comorbidities. Conclusions: Multiplex diagnostic assays significantly increased the rate of appropriate diagnosis of respiratory pathogens. However, further investigation is needed to find non-respiratory viruses' significance in respiratory specimens of immunocompetent symptomatic patients.
Collapse
|
9
|
Wang X. Retrospection of Analytical Data Collected through Smart Devices for Diseases and Disability Caused by Physical Inactivity. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4731281. [PMID: 34804451 PMCID: PMC8601795 DOI: 10.1155/2021/4731281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
The basic meaning of inactive lifestyle is doing sedentary activities. This includes playing video games, watching TV, operating computers, and sitting in a particular place for a long time. It may be sitting on the train or in bus, car, or office. This has many adverse effects on our bodies. This paper emphasizes the importance of physical activity, and a case study is presented to support the hypothesis that physical activity can certainly help improve human health. The diseases caused by inactive life are discussed in our paper. In this paper, a case study is described in which 200 individuals have participated in an activity called "Activity is Life," with the goal of improving the sedentary lifestyle and getting rid of physical ailments. The usage of analytical tools is made to analyse the data collected from the empirical research study, and IoT-based smart devices are used to capture the runtime data. The physicians and nurses have odd working hours, they have to go through many stress-induced situations, and most of them are suffering from life-threatening diseases such as depression, hypertension, cancer, and cardiovascular diseases. The main reason is inactivity in their lifestyles. To carry out an experimental study and to see the impact of regular activities on the health of doctors and nurses, a program was designed where 200 participants have participated. It is found that the activity-based 30-day program yielded great health benefits, including reduction in stress level, improvement in sleep quality index, and improvement in blood pressure values.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Sports Department, Jilin Technology College of Electronic Information, Jilin 132000, China
| |
Collapse
|
10
|
Hox V, Beyaert S, Bullens D, Couto M, Langer D, Hellings P, Huart C, Rombaux P, Seys SF, Surda P, Walker A, Steelant B. Tackling nasal symptoms in athletes: Moving towards personalized medicine. Allergy 2021; 76:2716-2729. [PMID: 33605430 DOI: 10.1111/all.14786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 01/16/2023]
Abstract
Adequate nasal breathing is indispensable for athletes, and nasal symptoms have been shown to interfere with their subjective feeling of comfortable breathing and quality of life. Nasal symptoms are caused by either structural abnormalities or mucosal pathology. Structural pathologies are managed differently from mucosal disease, and therefore, adequate diagnosis is of utmost importance in athletes in order to choose the correct treatment option for the individual. Literature suggests that nasal symptoms are more prevalent in athletes compared to the general population and certain sports environments might even trigger the development of symptoms. Given the high demands of respiratory function in athletes, insight into triggering factors is of high importance for disease prevention. Also, it has been suggested that athletes are more neglectful to their symptoms and hence remain undertreated, meaning that special attention should be paid to education of athletes and their caregivers. This review aims at giving an overview of nasal physiology in exercise as well as the possible types of nasal pathology. Additionally, diagnostic and treatment options are discussed and we focus on unmet needs for the management and prevention of these symptoms in athletes within the concept of precision medicine.
Collapse
Affiliation(s)
- Valerie Hox
- Department of Otorhinolaryngology Cliniques Universitaires Saint‐Luc Brussels Belgium
- Institute of Experimental and Clinical Research Pole of Pulmonology, Otorhinolaryngology and Dermatology UCLouvain Brussels Belgium
| | - Simon Beyaert
- Department of Otorhinolaryngology Cliniques Universitaires Saint‐Luc Brussels Belgium
| | - Dominique Bullens
- Clinical Division of Pediatrics University Hospitals Leuven Belgium
- Allergy and Clinical Immunology Research Group Department of Microbiology, Immunology and Transplantation KU Leuven Belgium
| | - Mariana Couto
- Allergy Unit Hospital CUF Descobertas, Lisbon, Portugal Lisbon Portugal
| | - Daniel Langer
- Respiratory Rehabilitation and Respiratory Division University Hospitals Leuven, KU Leuven Leuven Belgium
| | - Peter‐Willem Hellings
- Allergy and Clinical Immunology Research Group Department of Microbiology, Immunology and Transplantation KU Leuven Belgium
- Clinical Division of Ear, Nose and Throat Disease, Head and Neck Surgery University Hospitals Leuven Belgium
| | - Caroline Huart
- Department of Otorhinolaryngology Cliniques Universitaires Saint‐Luc Brussels Belgium
| | - Philippe Rombaux
- Department of Otorhinolaryngology Cliniques Universitaires Saint‐Luc Brussels Belgium
| | - Sven F. Seys
- Allergy and Clinical Immunology Research Group Department of Microbiology, Immunology and Transplantation KU Leuven Belgium
| | - Pavol Surda
- Department of Otorhinolaryngology Guy’s and St‐Thomas’ University Hospital London UK
| | - Abigail Walker
- Department of Ear, Nose and Throat Disease St‐George Hospital London UK
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Group Department of Microbiology, Immunology and Transplantation KU Leuven Belgium
| |
Collapse
|
11
|
Pyöriä L, Valtonen M, Luoto R, Grönroos W, Waris M, Heinonen OJ, Ruuskanen O, Perdomo MF. Survey of Viral Reactivations in Elite Athletes: A Case-Control Study. Pathogens 2021; 10:666. [PMID: 34071724 PMCID: PMC8229584 DOI: 10.3390/pathogens10060666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Exercise-induced immune perturbations have been proposed to increase susceptibility to viral infections. We investigated the replication of persisting viruses as indicators of immune function in elite cross-country skiers after ten months of sustained high-performance exercise. The viruses evaluated, nine human herpesviruses (HHVs) and torque teno virus (TTV), are typically restrained in health but replicate actively in immunosuppressed individuals. We collected sera from 27 Finnish elite cross-country skiers at the end of the competition's season and 27 matched controls who perform moderate exercise. We quantified all the HHVs and-TTV via highly sensitive qPCRs. To verify equal past exposures between the groups, we assessed the IgG antibody prevalences toward HHV-4 (Epstein-Barr virus, EBV) and HHV-5 (human cytomegalovirus, HCMV). We found equal TTV DNA prevalences in athletes (63%) and controls (63%) and loads with respective geometric means of 1.7 × 103 and 1.2 × 103 copies/mL of serum. Overall, the copy numbers were low and consistent with those of healthy individuals. Neither of the groups presented with herpesvirus viremia despite similar past exposures to HHVs (seroprevalences of EBV 70% vs. 78% and HCMV 52% vs. 44% in athletes and controls, respectively). We found no evidence of increased replication of persistent viruses in elite athletes, arguing against impaired viral immunity due to high-performance exercise.
Collapse
Affiliation(s)
- Lari Pyöriä
- Department of Virology, University of Helsinki, 00290 Helsinki, Finland;
| | - Maarit Valtonen
- Research Institute for Olympics Sports, 40700 Jyväskylä, Finland;
| | - Raakel Luoto
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, 20521 Turku, Finland; (R.L.); (O.R.)
| | - Wilma Grönroos
- Paavo Nurmi Centre and Unit of Health and Physical Activity, University of Turku, 20520 Turku, Finland; (W.G.); (O.J.H.)
| | - Matti Waris
- Institute of Biomedicine, University of Turku and Department of Clinical Microbiology, Turku University Hospital, 20520 Turku, Finland;
| | - Olli J. Heinonen
- Paavo Nurmi Centre and Unit of Health and Physical Activity, University of Turku, 20520 Turku, Finland; (W.G.); (O.J.H.)
| | - Olli Ruuskanen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, 20521 Turku, Finland; (R.L.); (O.R.)
| | - Maria F. Perdomo
- Department of Virology, University of Helsinki, 00290 Helsinki, Finland;
| |
Collapse
|
12
|
Sharp M, Wilson J, Stefan M, Gheith R, Lowery R, Ottinger C, Reber D, Orhan C, Sahin N, Tuzcu M, Durkee S, Saiyed Z, Sahin K. Marine phytoplankton improves recovery and sustains immune function in humans and lowers proinflammatory immunoregulatory cytokines in a rat model. Phys Act Nutr 2021; 25:42-55. [PMID: 33887828 PMCID: PMC8076584 DOI: 10.20463/pan.2021.0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose This study investigated the effects of marine phytoplankton supplementation (Oceanix®, Tetraselmis chuii) on 1) maximal isometric strength and immune function in healthy humans following a oneweek high-intensity resistance-training program and 2) the proinflammatory cytokine response to exercise in a rat model. Methods In the human trial, 22 healthy male and female participants were randomly divided into marine phytoplankton and placebo groups. Following baseline testing, participants underwent a 14-day supplement loading phase before completing five consecutive days of intense resistance training. In the rat model, rats were randomly divided into four groups (n=7 per condition): (i) control, (ii) exercise, (iii) exercise + marine phytoplankton (2.55 mg/kg/day), or (iv) exercise + marine phytoplankton (5.1 mg/kg/day). Rats in the exercising groups performed treadmill exercise 5 days per week for 6 weeks. Results In the human model, marine phytoplankton prevented significant declines in the isometric peak rate of force development compared to placebo. Additionally, salivary immunoglobulin A concentration was significantly lower following the resistance training protocol in the placebo group but not in the marine phytoplankton group. Marine phytoplankton in exercising rats decreased intramuscular levels and serum concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) and intramuscular concentrations of malondialdehyde. Conclusion Marine phytoplankton prevented decrements in indices of functional exercise recovery and immune function. Mechanistically, these outcomes could be prompted by modulating the oxidative stress and proinflammatory cytokine response to exercise.
Collapse
Affiliation(s)
- Matthew Sharp
- Research Division, Applied Science and Performance Institute, Florida, USA
| | - Jacob Wilson
- Research Division, Applied Science and Performance Institute, Florida, USA
| | - Matthew Stefan
- Research Division, Applied Science and Performance Institute, Florida, USA
| | - Raad Gheith
- Research Division, Applied Science and Performance Institute, Florida, USA
| | - Ryan Lowery
- Research Division, Applied Science and Performance Institute, Florida, USA
| | - Charlie Ottinger
- Research Division, Applied Science and Performance Institute, Florida, USA
| | - Dallen Reber
- Research Division, Applied Science and Performance Institute, Florida, USA
| | - Cemal Orhan
- Department of Animal Nutrition, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Firat University, Elazig, Turkey
| | - Shane Durkee
- Lonza Consumer Health Inc., Greenwood, South Carolina, USA
| | | | - Kazim Sahin
- Department of Animal Nutrition, Firat University, Elazig, Turkey
| |
Collapse
|
13
|
Keaney LC, Kilding AE, Merien F, Shaw DM, Borotkanics RJ, Cupples B, Dulson DK. Predictors of upper respiratory tract symptom risk: Differences between elite rugby union and league players. J Sports Sci 2021; 39:1594-1601. [PMID: 33629651 DOI: 10.1080/02640414.2021.1888430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study examined possible predictors of upper respiratory tract symptom (URTS) episodes in elite rugby union and league players (n = 51) during intensive pre-season training. Baseline saliva and blood samples were collected in the first week of pre-season training for analysis of salivary secretory immunoglobulin A (SIgA) and cytomegalovirus. Thereafter, SIgA, URTS, internal training load and self-reported wellness data were repeatedly measured throughout a 10-week pre-season training period. Univariate frailty model analysis, which included 502 observations, was performed for each rugby code for the following independent predictor variables: SIgA concentration, internal training load, total wellness, sleep quantity, sleep quality and stress. Rugby union and league players experienced a similar number of URTS episodes; however, predictors of URTS episodes differed between the codes. No biomarkers or self-reported measures significantly predicted URTS risk in rugby union players, while reductions in self-reported total wellness (HR: 0.731, p = 0.004) and sleep quality (HR: 0.345, p = 0.001) predicted increased URTS risk in rugby league players. The findings from this study highlight that factors influencing URTS risk are perhaps sport specific and this may be attributed to different sporting demands and/or different management of players by team-practitioners.
Collapse
Affiliation(s)
- Lauren Catherine Keaney
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Andrew E Kilding
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Fabrice Merien
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.,AUT-Roche Diagnostics Laboratory, Auckland University of Technology, Auckland, New Zealand
| | - David M Shaw
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Robert J Borotkanics
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Balin Cupples
- Faculty of Education and Social Work, The University of Sydney, Sydney, Australia
| | - Deborah K Dulson
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
14
|
Hodges-Simeon CR, Grail GPO, Albert G, Landry N, Ortiz TL, Carré JM, McHale TS, Arnocky SA. Testosterone, cortisol, and secretory immunoglobulin-A within a single day and across two sequential days among trans- and cis-gender men. Steroids 2020; 160:108640. [PMID: 32298661 DOI: 10.1016/j.steroids.2020.108640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/02/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Previous research on the association between testosterone (T) and immunity has produced conflicting results. OBJECTIVES We address two potential reasons for these empirical inconsistencies in the present research. First, the association between T and immunity may depend on which branch of the immune system is considered. Here, we examine secretory IgA (sIgA), a measure of mucosal immunity functionally related to respiratory infection risk. Second, the association between T and immunity may depend on a third regulatory variable. Therefore, we examine the interaction between T and cortisol (CORT) as well as their independent and combined effects on mucosal immunity. To do this, we explore intra-individual associations between sIgA, CORT, and T within a single day (i.e., morning vs. evening) and across 2 sequential mornings. We target two samples of men: (1) cisgender (i.e., born and identifying as men), and (2) transgender (i.e., born female but identifying as men) undergoing T therapy for gender realignment. MATERIALS AND METHODS One hundred and forty-eight adult men (transgender n = 29) provided saliva samples at three time points: (1) upon waking, (2) before sleep on the same day, and (3) upon waking the following day. Samples were assayed in duplicate for sIgA, T and CORT. RESULTS For cisgender men, sIgA, T, and CORT exhibited clear circadian rhythms and were significantly related within and between samples. For transgender men, evidence for circadian change was found for sIgA and CORT, but not T. Further, sIgA was associated with CORT, but not T. DISCUSSION AND CONCLUSIONS This study provides the first evidence that salivary T and sIgA concentrations are associated within a single day and across sequential days for cisgender men. Differences between cis- and transgender men suggest that this may only be true for T levels driven by endogenous production; however, future studies should employ a larger sample size.
Collapse
Affiliation(s)
| | - Graham P O Grail
- Department of Anthropology, Boston University, Boston, MA, United States; Department of Forensic Sciences, George Washington University, Washington, D.C., United States
| | - Graham Albert
- Department of Anthropology, Boston University, Boston, MA, United States
| | - Nicholas Landry
- Department of Psychology, Nipissing University, North Bay, Ontario, Canada
| | - Triana L Ortiz
- Department of Psychology, Nipissing University, North Bay, Ontario, Canada
| | - Justin M Carré
- Department of Psychology, Nipissing University, North Bay, Ontario, Canada
| | - Timothy S McHale
- Department of Anthropology, Boston University, Boston, MA, United States; Department of Anthropology and Museum Studies, Central Washington University, Ellensburg, WA, United States
| | - Steven A Arnocky
- Department of Psychology, Nipissing University, North Bay, Ontario, Canada
| |
Collapse
|
15
|
Agha NH, Mehta SK, Rooney BV, Laughlin MS, Markofski MM, Pierson DL, Katsanis E, Crucian BE, Simpson RJ. Exercise as a countermeasure for latent viral reactivation during long duration space flight. FASEB J 2020; 34:2869-2881. [PMID: 31908052 DOI: 10.1096/fj.201902327r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
Latent viral reactivation is a commonly reported manifestation of immune system dysregulation during spaceflight. As physical fitness and exercise training have been shown to benefit multiple arms of the immune system, we hypothesized that higher levels of preflight physical fitness and/or maintaining fitness during a mission would protect astronauts from latent viral reactivation. Standardized tests of maximal strength, muscular endurance, flexibility, and cardiorespiratory fitness (CRF) were performed in 22 international space station (ISS) crewmembers before and after a ~6-month mission. Reactivation of cytomegalovirus (CMV), Epstein-Barr virus (EBV), and varicella zoster virus (VZV) was determined in crewmembers and ground-based controls before, during, and after spaceflight. Crewmembers with higher CRF before spaceflight had a 29% reduced risk of latent viral reactivation compared to crew with lower CRF. Higher preflight upper body muscular endurance was associated with a 39% reduced risk of viral reactivation, a longer time to viral reactivation, and lower peak viral DNA concentrations, particularly for EBV and VZV. Latent viral reactivation rates were highest in crew with lower preflight CRF and higher levels of CRF deconditioning on return to Earth. We conclude that physical fitness may protect astronauts from latent viral reactivation during long duration spaceflight missions.
Collapse
Affiliation(s)
- Nadia H Agha
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | | | - Bridgette V Rooney
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA.,GeoControl Systems Inc., NASA Johnson Space Center, Houston, TX, USA
| | - Mitzi S Laughlin
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Melissa M Markofski
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | | | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA.,Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | | | - Richard J Simpson
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA.,Department of Behavioral Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.,Department of Pediatrics, University of Arizona, Tucson, AZ, USA.,Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
16
|
Blume K, Wolfarth B. Identification of Potential Performance-Related Predictors in Young Competitive Athletes. Front Physiol 2019; 10:1394. [PMID: 31803061 PMCID: PMC6872676 DOI: 10.3389/fphys.2019.01394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/28/2019] [Indexed: 12/31/2022] Open
Abstract
Introduction Systematic training is an essential demand for the individual success of an athlete. However, similar training modalities cause individual responses, and finally, decide on athletes’ success or failure. To predict performance development, potential influencing parameters should be known. Therefore, the purpose of this study was to identify performance-related parameters in young competitive athletes. Methods Individual performance developments of 146 young athletes (m: n = 96, f: n = 50, age V1: 14.7 ± 1.7 years) of four different sports (soccer: n = 45, cycling: n = 48, swimming: n = 18, cross-country skiing: n = 35) were evaluated by analysis of 356 visits in total (exercise intervention periods, 289 ± 112 d). At V1 and V2 several performance parameters were determined. Based on the relative performance progress (Δ), potential influencing predictors were analyzed: training load, health sense, stress level, clinical complaints, hemoglobin, vitamin D, hs-CRP and EBV serostatus. Data were collected within a controlled, prospective study on young athletes, which was conducted between 2010 and 2014. Results Athletes improved their performance by 4.7 ± 10.7%. In total, 66.3% of all athletes represented a positive performance progress. This group demonstrated, despite similar training loads (p = 0.207), enhanced health senses (p = 0.001) and lower stress levels (p = 0.002). In contrast, compared to athletes with an impaired performance progress, no differences in hemoglobin values (m: p = 0.926, f: p = 0.578), vitamin D levels (0.787) and EBV serostatus (p = 0.842) were found. Performance progress was dependent on extents of health senses (p = 0.040) and stress levels (p = 0.045). Furthermore, the combination of declined health senses and rised stress levels was associated with an impaired performance development (p = 0.018) and higher prevalences of clinical complaints (p < 0.001) above all, in contrast to hs-CRP (p = 0.168). Discussion Athletes with an improved performance progress reported less pronounced subjective sensations and complaints. In contrast, objective known performance-related indicators, offered no differences. Therefore, subjective self-reported data, reflecting health and stress status, should be additionally considered to regulate training, modify intensities, and finally, predict and ensure an optimal performance advance.
Collapse
Affiliation(s)
- Katharina Blume
- Department of Sports Medicine, Humboldt University of Berlin/Charité University Medicine, Berlin, Germany.,Zentrum für Innere Medizin, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Germany
| | - Bernd Wolfarth
- Department of Sports Medicine, Humboldt University of Berlin/Charité University Medicine, Berlin, Germany.,Institute for Applied Training Science (IAT), Leipzig, Germany
| |
Collapse
|
17
|
Hodges-Simeon CR, Asif S, Gurven M, Blackwell AD, Gaulin SJC. Testosterone is positively and estradiol negatively associated with mucosal immunity in Amazonian adolescents. Am J Hum Biol 2019; 31:e23284. [PMID: 31273877 DOI: 10.1002/ajhb.23284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/03/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES A core assumption of life history theory and the immunocompetence handicap hypothesis (ICHH) is that testosterone (T) upregulates energetic investment in mating effort at the expense of immunity. This tenet, along with observed positive relationships between estrogens and immunity, may contribute to the higher observed morbidity and mortality of males. In the present study, we examine the association between sex steroid hormones and mucosal immunity as well as sex differences in immunity in a rural Amazonian population of immune-challenged Bolivian adolescents. METHODS Salivary steroid hormones (T [males only] and estradiol [E2 , females only]), Tsimane-specific age-standardized BMI z-scores, and salivary mucosal immunity (sIgA, secretory IgA) were measured in 89 adolescent males and females. RESULTS Males had significantly higher sIgA levels than females, which may be due to the observed immune-endocrine associations found in the present study. Controlling for age and phenotypic condition, higher T significantly predicted higher sIgA; whereas higher E2 was associated with lower sIgA in females. CONCLUSIONS Results stood in contrast to common interpretations of the ICHH, that is, that T should be inversely associated with immunity. Findings from the present study support the notion that the endocrine system likely affects immunity in a regulatory fashion, upregulating certain aspects of immunity while downregulating others. An important remaining question is the adaptive reason(s) for sex differences in endocrine-mediated immuno-redistribution.
Collapse
Affiliation(s)
| | - Soubhana Asif
- Department of Anthropology, Boston University, Boston, Massachusetts
| | - Michael Gurven
- Department of Anthropology, University of California, Santa Barbara, California
| | - Aaron D Blackwell
- Department of Anthropology, University of California, Santa Barbara, California.,Department of Anthropology, University of Washington, Pullman, Washington
| | - Steven J C Gaulin
- Department of Anthropology, University of California, Santa Barbara, California
| |
Collapse
|
18
|
Jones AW, Davison G. Exercise, Immunity, and Illness. MUSCLE AND EXERCISE PHYSIOLOGY 2019. [PMCID: PMC7149380 DOI: 10.1016/b978-0-12-814593-7.00015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
It is generally accepted that moderate amounts of exercise improve immune system functions and hence reduce the risk of infection whereas athletes engaged in regular prolonged and/or intensive training have a higher than “normal” incidence of minor infections, especially of the upper respiratory tract (URT, e.g., common cold and influenza). This is likely related to regular acute (and possibly chronic) periods of exercise-induced changes in immune function. URT infections can compromise performance directly if suffered shortly before or during competition or indirectly if suffered at other times via effects on training and/or physiological adaptations. This chapter covers the effects of exercise (acute and chronic), both positive and negative, on immune function and consequent infection risk, and considers the current state-of-the-art for monitoring and assessing this in athletes.
Collapse
|
19
|
Komano Y, Shimada K, Naito H, Fukao K, Ishihara Y, Fujii T, Kokubo T, Daida H. Efficacy of heat-killed Lactococcus lactis JCM 5805 on immunity and fatigue during consecutive high intensity exercise in male athletes: a randomized, placebo-controlled, double-blinded trial. J Int Soc Sports Nutr 2018; 15:39. [PMID: 30071871 PMCID: PMC6090876 DOI: 10.1186/s12970-018-0244-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/29/2018] [Indexed: 02/07/2023] Open
Abstract
Background Lactococcus lactis JCM 5805 (LC-Plasma) is a unique lactic acid bacteria (LAB) which activates plasmacytoid dendritic cells (pDC). We aimed to evaluate the effect of LC-Plasma on dendritic cell (DC) activity and subjective indices of upper respiratory tract infections (URTI) and fatigue in athletes under high intensity exercise. Methods We conducted a randomized, placebo-controlled, double-blinded trial. Fifty-one male subjects belonging to a university sports club were randomized into placebo (n = 25) and LC-Plasma (n = 26) groups. Individuals ingested placebo capsules containing cornstarch or LC-Plasma capsules containing 100 billion cells of heat-killed LC-Plasma per day for 13 days. During the intervention period, subjects performed high intensity exercise according to their sports club training regime. Blood and saliva sampling were obtained at days 1 and 14, and physical conditions were recorded in a diary. We investigated expression of maturation markers on DCs, muscle damage and stress markers and used student’s t test adjusted by Bonferoni’s method for multiple comparison between groups. These data were presented as mean ± SD. We also investigated cumulative days of symptoms regarding infections and fatigue and used Chi-square test for comparison between groups. These data were presented as cumulative number. Results CD86 as maturation marker on pDC was significantly increased in the LC-Plasma group at day 14 (Placebo: 296 ± 70 vs. LC-Plasma: 365 ± 115; Mean Fluorescent Intensity; p = 0.013). Cumulative days of URTI were significantly lower in the LC-Plasma group (Placebo: URTI positive 56, URTI negative 256 vs. LC-Plasma: URTI positive 39, URTI negative 299; days; p = 0.028) and symptoms like sneeze or running nose were significantly lower in the LC-Plasma group (Placebo: Symptom positive 52, Symptom negative 258, vs. LC-Plasma: Symptom positive 36, Symptom negative 301; days; p = 0.032). Moreover, the cumulative days of fatigue were significantly fewer in the LC-Plasma group (Placebo: Symptom positive 128, Symptom negative 182, vs. LC-Plasma: Symptom positive 110, Symptom negative 225; days; p = 0.032). Markers of muscle damage and stress markers were not significantly different between groups. Conclusion We consider that heat-killed LC-Plasma supplementation relieves morbidity and symptoms of URTI via activation of pDC and decreases fatigue accumulation during consecutive high intensity exercise in athletes. However, LC-Plasma ingestion did not affect markers of muscle damage and stress. Trial registration UMIN-CTR, UMIN000020372. Registered 28 December 2015.
Collapse
Affiliation(s)
- Yuta Komano
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan. .,Research Laboratories for Health Science & Food Technologies, Kirin Co., Ltd., Yokohama, Kanagawa, Japan.
| | - Kazunori Shimada
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.,Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Kosuke Fukao
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.,Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Yoshihiko Ishihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan.,Department of humanities and Social Sciences, School of Science and Technology for Future Life, Tokyo Denki University, Adachi-ku, Tokyo, Japan
| | - Toshio Fujii
- Research Laboratories for Health Science & Food Technologies, Kirin Co., Ltd., Yokohama, Kanagawa, Japan
| | - Takeshi Kokubo
- Research Laboratories for Health Science & Food Technologies, Kirin Co., Ltd., Yokohama, Kanagawa, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
20
|
Lindsay A, Costello JT. Realising the Potential of Urine and Saliva as Diagnostic Tools in Sport and Exercise Medicine. Sports Med 2018; 47:11-31. [PMID: 27294353 DOI: 10.1007/s40279-016-0558-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Accurate monitoring of homeostatic perturbations following various psychophysiological stressors is essential in sports and exercise medicine. Various biomarkers are routinely used as monitoring tools in both clinical and elite sport settings. Blood collection and muscle biopsies, both invasive in nature, are considered the gold standard for the analysis of these biomarkers in exercise science. Exploring non-invasive methods of collecting and analysing biomarkers that are capable of providing accurate information regarding exercise-induced physiological and psychological stress is of obvious practical importance. This review describes the potential benefits, and the limitations, of using saliva and urine to ascertain biomarkers capable of identifying important stressors that are routinely encountered before, during, or after intense or unaccustomed exercise, competition, over-training, and inappropriate recovery. In particular, we focus on urinary and saliva biomarkers that have previously been used to monitor muscle damage, inflammation, cardiovascular stress, oxidative stress, hydration status, and brain distress. Evidence is provided from a range of empirical studies suggesting that urine and saliva are both capable of identifying various stressors. Although additional research regarding the efficacy of using urine and/or saliva to indicate the severity of exercise-induced psychophysiological stress is required, it is likely that these non-invasive biomarkers will represent "the future" in sports and exercise medicine.
Collapse
Affiliation(s)
- Angus Lindsay
- Program in Physical Therapy and Rehabilitation Sciences, School of Medicine, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| | - Joseph T Costello
- Extreme Environments Laboratory, Department of Sport and Exercise Science, University of Portsmouth, Spinnaker Building, Cambridge Road, Portsmouth, PO1 2ER, UK
| |
Collapse
|
21
|
Campbell JP, Turner JE. Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Front Immunol 2018; 9:648. [PMID: 29713319 PMCID: PMC5911985 DOI: 10.3389/fimmu.2018.00648] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
Epidemiological evidence indicates that regular physical activity and/or frequent structured exercise reduces the incidence of many chronic diseases in older age, including communicable diseases such as viral and bacterial infections, as well as non-communicable diseases such as cancer and chronic inflammatory disorders. Despite the apparent health benefits achieved by leading an active lifestyle, which imply that regular physical activity and frequent exercise enhance immune competency and regulation, the effect of a single bout of exercise on immune function remains a controversial topic. Indeed, to this day, it is perceived by many that a vigorous bout of exercise can temporarily suppress immune function. In the first part of this review, we deconstruct the key pillars which lay the foundation to this theory-referred to as the "open window" hypothesis-and highlight that: (i) limited reliable evidence exists to support the claim that vigorous exercise heightens risk of opportunistic infections; (ii) purported changes to mucosal immunity, namely salivary IgA levels, after exercise do not signpost a period of immune suppression; and (iii) the dramatic reductions to lymphocyte numbers and function 1-2 h after exercise reflects a transient and time-dependent redistribution of immune cells to peripheral tissues, resulting in a heightened state of immune surveillance and immune regulation, as opposed to immune suppression. In the second part of this review, we provide evidence that frequent exercise enhances-rather than suppresses-immune competency, and highlight key findings from human vaccination studies which show heightened responses to bacterial and viral antigens following bouts of exercise. Finally, in the third part of this review, we highlight that regular physical activity and frequent exercise might limit or delay aging of the immune system, providing further evidence that exercise is beneficial for immunological health. In summary, the over-arching aim of this review is to rebalance opinion over the perceived relationships between exercise and immune function. We emphasize that it is a misconception to label any form of acute exercise as immunosuppressive, and, instead, exercise most likely improves immune competency across the lifespan.
Collapse
Affiliation(s)
- John P Campbell
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E Turner
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
22
|
Blume K, Körber N, Hoffmann D, Wolfarth B. Training Load, Immune Status, and Clinical Outcomes in Young Athletes: A Controlled, Prospective, Longitudinal Study. Front Physiol 2018; 9:120. [PMID: 29628891 PMCID: PMC5876235 DOI: 10.3389/fphys.2018.00120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/05/2018] [Indexed: 12/31/2022] Open
Abstract
Introduction: Beside positive effects on athlete's health, competitive sport can be linked with an increased risk of illness and injury. Because of high relative increases in training, additional physical and psychological strains, and an earlier specialization and professionalization, adolescent athletes needs an increased attention. Training can alter the immune system by inducing a temporary immunosuppression, finally developing infection symptoms. Previous studies identified Epstein Barr Virus (EBV) as potential indicator for the immune status. In addition to the identification of triggering risk factors for recurrent infections, the aim was to determine the interaction between training load, stress sense, immunological parameters, and clinical symptoms. Methods: A controlled, prospective, longitudinal study on young athletes (n = 274, mean age: 13.8 ± 1.5 yrs) was conducted between 2010 and 2014. Also 285 controls (students, who did not perform competitive sports, mean age: 14.5 ± 1.9 yrs) were recruited. Athletes were examined 3 times each year to determine the effects of stress factors (training load: training hours per week [Th/w]) on selected outcome parameters (clinical [susceptibility to infection, WURSS-21: 21-item Wisconsin Upper Respiratory Symptom Survey], immunological, psychological end points). As part of each visit, EBV serostatus and EBV-specific IgG tiers were studied longitudinally as potential immune markers. Results: Athletes (A) trained 14.9 ± 5.6 h weekly. Controls (C) showed no lower stress levels compared to athletes (p = 0.387). Twelve percent of athletes reported recurrent infections (C: 8.5%, p = 0.153), the presence of an upper respiratory tract infection (URTI) was achieved in 30.7%. EBV seroprevalence of athletes was 60.3% (C: 56.6%, p = 0.339). Mean EBV-specific IgG titer of athletes was 166 ± 115 U/ml (C: 137 ± 112 U/ml, p = 0.030). With increasing Th/w, higher stress levels were observed (p < 0.001). Analyzes of WURSS-21 data revealed no relationship to training load (p = 0.323). Also, training load had no relation to EBV serostatus (p = 0.057) or the level of EBV-specific IgG titers (p = 0.364). Discussion: Young elite athletes showed no increased sense of stress, no higher prevalence of recurrent infections, and no different EBV-specific serological parameters compared to controls. Also, no direct relationship between training loads, clinical complaints, and EBV-specific immune responses was found. With increasing training loads athletes felt more stressed, but significant associations to EBV-specific serological parameters were absent. In summary, EBV serostatus and EBV-specific IgG titers do not allow risk stratification for impaired health. Further investigations are needed to identify additional risk factors and immune markers, with the aim to avoid inappropriate strains by early detection and following intervention.
Collapse
Affiliation(s)
- Katharina Blume
- Department of Sports Medicine, Humboldt-University, Charité University Medicine, Berlin, Germany
| | - Nina Körber
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, Munich, Germany
| | - Dieter Hoffmann
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, Munich, Germany
| | - Bernd Wolfarth
- Department of Sports Medicine, Humboldt-University, Charité University Medicine, Berlin, Germany
| |
Collapse
|
23
|
Agostinho MF, Moreira A, Julio UF, Marcolino GS, Antunes BMM, Lira FS, Franchini E. Monitoring internal training load and salivary immune-endocrine responses during an annual judo training periodization. J Exerc Rehabil 2017; 13:68-75. [PMID: 28349036 PMCID: PMC5332002 DOI: 10.12965/jer.1732850.425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/02/2017] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to examine the internal training load (TL), IgA, and salivary steroid hormone responses in elite youth judo athletes during an entire annual training periodization. Ten male judo athletes (18±2 years, 72.3±12.3 kg, and 175±6 cm) competing at a state/national level were examined for the TL and salivary imune-endocrine responses variations over an annual judo season, divided in three macrocyles composed by distinct periods denominated preparatory period (PP), competitive period (CP) and transition period (TP). At the end of PP and CP, saliva samples were collected to determine cortisol, testosterone and IgA concentrations. Throughout PP and CP the session-rating of perceived exertion and the total duration of each session were monitored, allowing the internal TL and weekly training strain (TS) calculation. During all macrocycles, significant decreases in TL and TS were observed during CP compared with PP (P<0.05), although no significant differences were observed for immune-endocrine concentrations between PP and CP (P>0.05). Specific variations were observed comparing periods with similar characteristics throughout the macrocycles as higher TL and TS (PP1 to PP2 and PP3, P<0.05), increased testosterone (CP1 to CP3, P=0.024) and decreased testosterone-cortisol ratio (PP1 to PP2, P=0.005). The present findings suggest that the internal TL variations over an annual multipeak traditional periodization did not influence the resting mucosal immune-endocrinal responses in young judo athletes.
Collapse
Affiliation(s)
- Marcus F Agostinho
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Alexandre Moreira
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Ursula F Julio
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Gilvan S Marcolino
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| | - Barbara M M Antunes
- Exercise and Immunometabolism Research Group, Department of Physical Education, Paulista State University (UNESP), Presidente Prudente, Brazil
| | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Paulista State University (UNESP), Presidente Prudente, Brazil
| | - Emerson Franchini
- School of Physical Education and Sport, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
24
|
Hanstock HG, Walsh NP, Edwards JP, Fortes MB, Cosby SL, Nugent A, Curran T, Coyle PV, Ward MD, Yong XHA. Tear Fluid SIgA as a Noninvasive Biomarker of Mucosal Immunity and Common Cold Risk. Med Sci Sports Exerc 2017; 48:569-77. [PMID: 26496418 DOI: 10.1249/mss.0000000000000801] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Research has not convincingly demonstrated the utility of saliva secretory immunoglobulin-A (SIgA) as a biomarker of upper respiratory tract infection (URTI) risk, and disagreement exists about the influence of heavy exercise ("open-window theory") and dehydration on saliva SIgA. Prompted by the search for viable alternatives, we compared the utility of tear and saliva SIgA to predict URTI prospectively (study 1) and assessed the influence of exercise (study 2) and dehydration (study 3) using a repeated-measures crossover design. METHODS In study 1, 40 subjects were recruited during the common-cold season. Subjects provided tear and saliva samples weekly and recorded upper respiratory symptoms (URS) daily for 3 wk. Real-time PCR confirmed common-cold pathogens in 9 of 11 subjects reporting URS (82%). Predictive utility of tear and saliva SIgA was explored by comparing healthy samples with those collected during the week before URS. In study 2, 13 subjects performed a 2-h run at 65% V˙O2peak. In study 3, 13 subjects performed exercise heat stress to 3% body mass loss followed by overnight fluid restriction. RESULTS Tear SIgA concentration and secretion rate were 48% and 51% lower, respectively, during URTI and 34% and 46% lower the week before URS (P < 0.05), but saliva SIgA remained unchanged. The risk of URS the following week increased ninefold (95% confidence interval, 1.7-48) when the tear SIgA secretion rate was <5.5 μg·min(-1) and sixfold (95% confidence interval, 1.2-29) when the tear SIgA secretion rate decreased >30%. Tear SIgA secretion rate >5.5 μg·min(-1) or no decrease of >30% predicted subjects free of URS in >80% of cases. Tear SIgA concentration decreased after exercise (-57%, P < 0.05) in line with the "open-window theory" but was unaffected by dehydration. Saliva flow rate decreased and saliva SIgA concentration increased after exercise and during dehydration (P < 0.05). CONCLUSIONS Tear SIgA has utility as a noninvasive biomarker of mucosal immunity and common-cold risk.
Collapse
Affiliation(s)
- Helen G Hanstock
- 1College of Health and Behavioural Sciences, Bangor University, Bangor, Gwynedd, UNITED KINGDOM; 2Centre for Infection and Immunity, Queen's University Belfast, Northern Ireland, UNITED KINGDOM; and 3Regional Virus Laboratory, Royal Victoria Hospital, Belfast, UNITED KINGDOM
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
SIgA response and incidence of upper respiratory tract infections during intensified training in youth basketball players. Biol Sport 2016; 34:49-55. [PMID: 28416898 PMCID: PMC5377561 DOI: 10.5114/biolsport.2017.63733] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 07/19/2016] [Accepted: 10/09/2016] [Indexed: 01/25/2023] Open
Abstract
The aim of the present study was to examine the effect of an intensified training phase followed by a tapering phase on the salivary immunoglobulin A concentration and on the upper respiratory tract infection (URTI) symptoms in young male basketball players. The session rating of perceived exertion method was used to quantify the internal training load, and the Wisconsin Upper Respiratory Symptom Survey-21 questionnaire was used to assess URTI symptoms. The Yo-Yo IR1 test and saliva collection were carried out at the beginning of the study (T1), after the intensified phase (T2), and after tapering (T3). A higher internal training load was observed for the intensified phase compared with the tapering phase (t=19.10; p<0.001), and a significant decrease in salivary immunoglobulin A concentration was detected (F=7.48; p=0.004) at T3 compared to T1 (p=0.02) and T2 (p=0.05). However, there was no significant difference between phases for severity of URTI (χ2= 2.83; p=0.242). The Yo-Yo IR1 test performance increased from T2 and T3 compared to T1 (F=58.24; p<0.001). There was no significant effect of aerobic fitness level on salivary immunoglobulin A response (F=1.095; p=0.344). In summary, the present findings suggest that an intensified training load followed by a tapering period negatively affects the mucosal immune function with no significant change in severity of URTI in young basketball players.
Collapse
|
26
|
Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol (1985) 2016; 122:1077-1087. [PMID: 27909225 DOI: 10.1152/japplphysiol.00622.2016] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/31/2016] [Accepted: 11/16/2016] [Indexed: 12/27/2022] Open
Abstract
The notion that prolonged, intense exercise causes an "open window" of immunodepression during recovery after exercise is well accepted. Repeated exercise bouts or intensified training without sufficient recovery may increase the risk of illness. However, except for salivary IgA, clear and consistent markers of this immunodepression remain elusive. Exercise increases circulating neutrophil and monocyte counts and reduces circulating lymphocyte count during recovery. This lymphopenia results from preferential egress of lymphocyte subtypes with potent effector functions [e.g., natural killer (NK) cells, γδ T cells, and CD8+ T cells]. These lymphocytes most likely translocate to peripheral sites of potential antigen encounter (e.g., lungs and gut). This redeployment of effector lymphocytes is an integral part of the physiological stress response to exercise. Current knowledge about changes in immune function during recovery from exercise is derived from assessment at the cell population level of isolated cells ex vivo or in blood. This assessment can be biased by large changes in the distribution of immune cells between blood and peripheral tissues during and after exercise. Some evidence suggests that reduced immune cell function in vitro may coincide with changes in vivo and rates of illness after exercise, but more work is required to substantiate this notion. Among the various nutritional strategies and physical therapies that athletes use to recover from exercise, carbohydrate supplementation is the most effective for minimizing immune disturbances during exercise recovery. Sleep is an important aspect of recovery, but more research is needed to determine how sleep disruption influences the immune system of athletes.
Collapse
Affiliation(s)
- Jonathan M Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; .,Centre of Excellence for Applied Sport Science Research, Queensland Academy of Sport, Brisbane, Queensland, Australia
| | - Oliver Neubauer
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Neil P Walsh
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom; and
| | - Richard J Simpson
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas
| |
Collapse
|
27
|
Kurimoto Y, Saruta J, To M, Yamamoto Y, Kimura K, Tsukinoki K. Voluntary exercise increases IgA concentration and polymeric Ig receptor expression in the rat submandibular gland. Biosci Biotechnol Biochem 2016; 80:2490-2496. [PMID: 27499238 DOI: 10.1080/09168451.2016.1217145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Salivary IgA-a primary factor in local immunity of the oral cavity-plays an important role in maintaining local immune function in the oral cavity and prevent upper respiratory tract infections. Oral IgA levels are known to fluctuate in an exercise-dependent manner; thus, we investigated the effects of voluntary exercise on salivary IgA secretion in rats to better understand the mechanism by which this occurs. Six-week-old male Wistar rats were placed in individual cages with or without access to exercise wheels for three weeks. Notably, animals who engaged in voluntary exercise demonstrated significant increases in IgA concentration in saliva and submandibular gland tissue, as well as a markedly higher salivary IgA flow rate. Moreover, active rats also exhibited elevated polymeric Ig receptor (pIgR) mRNA expression in submandibular gland tissue. Collectively, these results suggest that voluntary exercise may increase salivary IgA concentration and boost immune function in the oral cavity.
Collapse
Affiliation(s)
- Yuki Kurimoto
- a Division of Environmental Pathology, Department of Oral Science , Graduate School of Dentistry, Kanagawa Dental University , Yokosuka , Japan
| | - Juri Saruta
- b Division of Salivary Gland and Health Medicine, Department of Oral Science , Graduate School of Dentistry, Kanagawa Dental University , Yokosuka , Japan
| | - Masahiro To
- b Division of Salivary Gland and Health Medicine, Department of Oral Science , Graduate School of Dentistry, Kanagawa Dental University , Yokosuka , Japan
| | - Yuko Yamamoto
- c Department of Junior College, School of Dental Hygiene , Kanagawa Dental University , Yokosuka , Japan
| | - Koji Kimura
- d Department of Dental Education , Graduate School of Dentistry, Kanagawa Dental University , Yokosuka , Japan
| | - Keiichi Tsukinoki
- a Division of Environmental Pathology, Department of Oral Science , Graduate School of Dentistry, Kanagawa Dental University , Yokosuka , Japan
| |
Collapse
|
28
|
Nunes JA, Moreira A, Crewther BT, Nosaka K, Viveiros L, Aoki MS. Monitoring training load, recovery-stress state, immune-endocrine responses, and physical performance in elite female basketball players during a periodized training program. J Strength Cond Res 2015; 28:2973-80. [PMID: 24736768 DOI: 10.1519/jsc.0000000000000499] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study investigated the effect of a periodized training program on internal training load (ITL), recovery-stress state, immune-endocrine responses, and physical performance in 19 elite female basketball players. The participants were monitored across a 12-week period before an international championship, which included 2 overloading and tapering phases. The first overloading phase (fourth to sixth week) was followed by a 1-week tapering, and the second overloading phase (eighth to 10th week) was followed by a 2-week tapering. ITL (session rating of perceived exertion method) and recovery-stress state (RESTQ-76 Sport questionnaire) were assessed weekly and bi-weekly, respectively. Pretraining and posttraining assessments included measures of salivary IgA, testosterone and cortisol concentrations, strength, jumping power, running endurance, and agility. Internal training load increased across all weeks from 2 to 11 (p ≤ 0.05). After the first tapering period (week 7), a further increase in ITL was observed during the second overloading phase (p ≤ 0.05). After the second tapering period, a decrease in ITL was detected (p ≤ 0.05). A disturbance in athlete stress-recovery state was noted during the second overloading period (p ≤ 0.05), before returning to baseline level in end of the second tapering period. The training program led to significant improvements in the physical performance parameters evaluated. The salivary measures did not change despite the fluctuations in ITL. In conclusion, a periodized training program evoked changes in ITL in elite female basketball players, which appeared to influence their recovery-stress state. The training plan was effective in preparing participants for competition, as indicated by improvements in recovery-stress state and physical performance after tapering.
Collapse
Affiliation(s)
- João A Nunes
- 1School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil; 2Hamlyn Center, Imperial College, London, United Kingdom; 3School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Western Australia, Australia; 4Brazilian Olympic Committee, Rio de Janeiro, Brazil; and 5School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Gleeson M, Pyne DB. Respiratory inflammation and infections in high-performance athletes. Immunol Cell Biol 2015; 94:124-31. [PMID: 26568028 PMCID: PMC7165758 DOI: 10.1038/icb.2015.100] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 02/06/2023]
Abstract
Upper respiratory illness is the most common reason for non-injury-related presentation to a sports medicine clinic, accounting for 35-65% of illness presentations. Recurrent or persistent respiratory illness can have a negative impact on health and performance of athletes undertaking high levels of strenuous exercise. The cause of upper respiratory symptoms (URS) in athletes can be uncertain but the majority of cases are related to common respiratory viruses, viral reactivation, allergic responses to aeroallergens and exercise-related trauma to the integrity of respiratory epithelial membranes. Bacterial respiratory infections are uncommon in athletes. Undiagnosed or inappropriately treated asthma and/or allergy are common findings in clinical assessments of elite athletes experiencing recurrent URS. High-performance athletes with recurrent episodes of URS should undergo a thorough clinical assessment to exclude underlying treatable conditions of respiratory inflammation. Identifying athletes at risk of recurrent URS is important in order to prescribe preventative clinical, training and lifestyle strategies. Monitoring secretion rates and falling concentrations of salivary IgA can identify athletes at risk of URS. Therapeutic interventions are limited by the uncertainty of the underlying cause of inflammation. Topical anti-inflammatory sprays can be beneficial for some athletes. Dietary supplementation with bovine colostrum, probiotics and selected antioxidants can reduce the incidence or severity of URS in some athletes. Preliminary studies on athletes prone to URS indicate a genetic predisposition to a pro-inflammatory response and a dysregulated anti-inflammatory cytokine response to intense exercise as a possible mechanism of respiratory inflammation. This review focuses on respiratory infections and inflammation in elite/professional athletes.
Collapse
Affiliation(s)
- Maree Gleeson
- Hunter Medical Research Institute and School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - David B Pyne
- Department of Physiology, Sports Science and Medicine, Australian Institute of Sport, Belconnen, Australian Capital Territory, Australia.,Research Institute for Sports and Exercise, University of Canberra, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
30
|
Hellard P, Avalos M, Guimaraes F, Toussaint JF, Pyne DB. Training-related risk of common illnesses in elite swimmers over a 4-yr period. Med Sci Sports Exerc 2015; 47:698-707. [PMID: 25100341 DOI: 10.1249/mss.0000000000000461] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The objective of this study is to investigate the relation between sport training and the risk of common illnesses: upper respiratory tract and pulmonary infections (URTPI), muscular affections (MA), and all-type pathologies in highly trained swimmers. METHODS Twenty-eight French professional swimmers were monitored weekly for 4 yr. Training variables included 1) in-water and dryland intensity levels: low-load, high-load, resistance, maximal strength, and general conditioning training (expressed as the percentage of the maximal load performed by each subject, at each intensity level over the study period); and 2) training periods: moderate, intensive, taper, competition, and postcompetition. Illnesses were diagnosed by a sports physician using a standardized questionnaire. Mixed-effects logistic regression analyses were used to model odds ratios for the association between common illnesses and training variables, adjusted for sport season, semiseason (summer or winter), age, competition level, sex, and history of recent events, whereas controlling for heterogeneity among swimmers. RESULTS The risk of common illnesses was significantly higher in winter months, for national swimmers (for URTPI), and in cases of history of recent event (notably for MA). The odds of URTPI increased 1.08 (95% CI, 1.01-1.16) and 1.10 (95% CI, 1.01-1.19) times for every 10% increase in resistance and high-load trainings, respectively. The odds of MA increased by 1.49 (95% CI, 1.14-1.96) and 1.63 (95% CI, 1.20-2.21) for each 10% increase in high load and general conditioning training, respectively. The odds of illnesses were 50%-70% significantly higher during intensive training periods. CONCLUSION Particular attention must be paid to illness prevention strategies during periods of intensive training, particularly in the winter months or in case of the recent medical episode.
Collapse
Affiliation(s)
- Philippe Hellard
- 1Research Department, French Swimming Federation, Pantin, FRANCE; 2IRMES, Institut de Recherche bioMédicale et d'Epidémiologie du Sport, Insep, Paris, FRANCE; 3Univ. Bordeaux, INSERM U897-Epidémiologie-Biostatistique, Bordeaux, FRANCE; 4INSERM U897-Epidémiologie-Biostatistique, Bordeaux, FRANCE; 5INRIA-SISTM, Bordeaux, FRANCE; 6Département du Génie Mathématique et de la Modélisation, Institut National des Sciences Appliquées, Toulouse, FRANCE; 7Centre d'Investigations en Médecine du Sport (CIMS), Hôtel, AP-HP, Paris, FRANCE; 8Department of Physiology, Australian Institute of Sport, Canberra, ACT, AUSTRALIA
| | | | | | | | | |
Collapse
|
31
|
Brown FF, Bigley AB, Ross JC, LaVoy EC, Simpson RJ, Galloway SDR. T-lymphocyte populations following a period of high volume training in female soccer players. Physiol Behav 2015; 152:175-81. [PMID: 26432452 DOI: 10.1016/j.physbeh.2015.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/26/2015] [Accepted: 09/28/2015] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate the T-lymphocyte response to a period of increased training volume in trained females compared to habitual activity in female controls. METHODS Thirteen trained female (19.8 ± 1.9 yrs) soccer players were monitored during a two-week long high volume training period (increased by 39%) and thirteen female untrained (20.5 ± 2.2 yrs) controls were monitored during two-weeks of habitual activity. Blood lymphocytes, collected at rest, were isolated before and after the two-week period. Isolated lymphocytes were assessed for the cell surface expression of the co-receptor CD28, a marker of T-lymphocyte naivety, and CD57 a marker used to identify highly-differentiated T-lymphocytes. Co-expression of these markers was identified on helper CD4(+) and cytotoxic CD8(+) T-lymphocytes. In addition a further population of γδ(+) T-lymphocytes were identified. Plasma was used to determine Cytomegalovirus (CMV) serostatus. RESULTS No difference was observed in the T-lymphocyte populations following the two-week period of increased volume training. At baseline the number of total CD3(+), cytotoxic CD8(+), naïve (CD8(+) CD28(+) CD57(-)), intermediate (CD8(+) CD28(+) CD57(+)) T-lymphocytes and the number and proportion of γδ(+) T-lymphocytes were greater in the trained compared to the untrained females (p<0.05). The proportion of CD4(+)T-lymphocytes was greater in the untrained compared to the trained (p<0.05), in turn the CD4(+):CD8(+) ratio was also greater in the untrained females (p<0.05). Inclusion of percentage body fat as a covariate removed the main effect of training status in all T-lymphocyte sub-populations, with the exception of the γδ(+) T-lymphocyte population. 8% of the untrained group was defined as positive for CMV whereas 23% of the trained group was positive for CMV. However, CMV was not a significant covariate in the analysis of T-lymphocyte proportions. CONCLUSION The period of high volume training had no effect on T-lymphocyte populations in trained females. However, baseline training status differences were evident between groups. This indicates that long-term exercise training, as opposed to short-term changes in exercise volume, appears to elicit discernible changes in the composition of the blood T-lymphocyte pool.
Collapse
Affiliation(s)
- F F Brown
- Health and Exercise Sciences Research Group, University of Stirling, Stirling FK9 4LA, United Kingdom.
| | - A B Bigley
- Health and Exercise Sciences Research Group, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - J C Ross
- Health and Exercise Sciences Research Group, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - E C LaVoy
- Health and Exercise Sciences Research Group, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - R J Simpson
- Health and Exercise Sciences Research Group, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - S D R Galloway
- Health and Exercise Sciences Research Group, University of Stirling, Stirling FK9 4LA, United Kingdom
| |
Collapse
|
32
|
Simpson RJ, Kunz H, Agha N, Graff R. Exercise and the Regulation of Immune Functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:355-80. [PMID: 26477922 DOI: 10.1016/bs.pmbts.2015.08.001] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exercise has a profound effect on the normal functioning of the immune system. It is generally accepted that prolonged periods of intensive exercise training can depress immunity, while regular moderate intensity exercise is beneficial. Single bouts of exercise evoke a striking leukocytosis and a redistribution of effector cells between the blood compartment and the lymphoid and peripheral tissues, a response that is mediated by increased hemodynamics and the release of catecholamines and glucocorticoids following the activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. Single bouts of prolonged exercise may impair T-cell, NK-cell, and neutrophil function, alter the Type I and Type II cytokine balance, and blunt immune responses to primary and recall antigens in vivo. Elite athletes frequently report symptoms associated with upper respiratory tract infections (URTI) during periods of heavy training and competition that may be due to alterations in mucosal immunity, particularly reductions in secretory immunoglobulin A. In contrast, single bouts of moderate intensity exercise are "immuno-enhancing" and have been used to effectively increase vaccine responses in "at-risk" patients. Improvements in immunity due to regular exercise of moderate intensity may be due to reductions in inflammation, maintenance of thymic mass, alterations in the composition of "older" and "younger" immune cells, enhanced immunosurveillance, and/or the amelioration of psychological stress. Indeed, exercise is a powerful behavioral intervention that has the potential to improve immune and health outcomes in the elderly, the obese, and patients living with cancer and chronic viral infections such as HIV.
Collapse
Affiliation(s)
- Richard J Simpson
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, Houston, Texas, USA.
| | - Hawley Kunz
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, Houston, Texas, USA
| | - Nadia Agha
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, Houston, Texas, USA
| | - Rachel Graff
- Department of Health and Human Performance, Laboratory of Integrated Physiology, University of Houston, Houston, Texas, USA
| |
Collapse
|
33
|
Abstract
OBJECTIVE Viral infections are often suspected to cause pediatric acute liver failure (PALF), but large-scale studies have not been performed. We analyzed the results of viral testing among nonacetaminophen PALF study participants. METHODS Participants were enrolled in the PALF registry. Diagnostic evaluation and final diagnosis were determined by the site investigator and methods for viral testing by local standard of care. Viruses were classified as either causative viruses (CVs) or associated viruses (AVs). Supplemental testing for CV was performed if not done clinically and serum was available. Final diagnoses included "viral," "indeterminate," and "other." RESULTS Of 860 participants, 820 had at least 1 test result for a CV or AV. A positive viral test was found in 166/820 (20.2%) participants and distributed among "viral" (66/80 [82.5%]), "indeterminate" (52/420 [12.4%]), and "other" (48/320 [15.0%]) diagnoses. CVs accounted for 81/166 (48.8%) positive tests. Herpes simplex virus (HSV) was positive in 39/335 (11.6%) who were tested 26/103 (25.2%) and 13/232 (5.6%) among infants 0 to 6 and >6 months, respectively. HSV was not tested in 61.0% and 53% of the overall cohort and those 0 to 6 months, respectively. Supplemental testing yielded 17 positive, including 5 HSV. CONCLUSIONS Viral testing in PALF occurs frequently but is often incomplete. The evidence for acute viral infection was found in 20.2% of those tested for viruses. HSV is an important viral cause for PALF in all age groups. The etiopathogenic role of CV and AV in PALF requires further investigation.
Collapse
|
34
|
Moreira A, Mortatti AL, Arruda AFS, Freitas CG, de Arruda M, Aoki MS. Salivary IgA response and upper respiratory tract infection symptoms during a 21-week competitive season in young soccer players. J Strength Cond Res 2014; 28:467-73. [PMID: 24473469 DOI: 10.1519/jsc.0b013e31829b5512] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sports training and competition are significant sources of stress, especially for young athletes. It is well known that physiological and psychological stressors induce neuroendocrine responses that could modulate immune system function. However, to date, little is known about the immune responses of young soccer players during a competitive season. Therefore, this study examined the effects of a 21-week competitive season divided into preseason, competitive season, and detraining on salivary immunoglobulin A (SIgA), upper respiratory tract infection (URTI) symptoms, and salivary cortisol in preadolescent male soccer players. Thirty-four young soccer players agreed to participate, and 26 (12.9 ± 0.2 years) completed the entire study. The investigation period was structured as follows: a 12-week preparatory training phase (preseason training), a 7-week competitive and a 2-week detraining phase. Resting saliva samples were taken to determine cortisol and SIgA responses. The players were required to complete a weekly log during the entire investigation reporting every sign or symptoms consistent with URTI. A significant increase in SIgA secretion rate and a decrease in URTI symptoms were observed after the 2-week detraining period (p < 0.05). No change was observed for cortisol during the study. These results indicate that training and competition demands affect the mucosal immune responses of young athletes. In addition, a short-prophylactic period (2-week detraining period) after a competitive period may attenuate mucosal immunosuppression related to URTI symptoms. Sport coaches should monitor markers of mucosal immune function to minimize illness that ultimately might lead to a decrease in performance.
Collapse
Affiliation(s)
- Alexandre Moreira
- 1Department of Sport, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil; 2Physical Education Department, Rio Grande do Norte Federal University, Natal, Brazil; 3Faculty of Physical Education, University of Campinas, Campinas, Brazil; and 4School of Arts, Sciences, and Humanities, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Ultra-endurance exercise: unanswered questions in redox biology and immunology. Biochem Soc Trans 2014; 42:989-95. [DOI: 10.1042/bst20140120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ultra-endurance races are extreme exercise events that can take place over large parts of a day, several consecutive days or over weeks and months interspersed by periods of rest and recovery. Since the first ultra-endurance races in the late 1970s, around 1000 races are now held worldwide each year, and more than 100000 people take part. Although these athletes appear to be fit and healthy, there have been occasional reports of severe complications following ultra-endurance exercise. Thus there is concern that repeated extreme exercise events could have deleterious effects on health, which might be brought about by the high levels of ROS (reactive oxygen species) produced during exercise. Studies that have examined biomarkers of oxidative damage following ultra-endurance exercise have found measurements to be elevated for several days, which has usually been interpreted to reflect increased ROS production. Levels of the antioxidant molecule GSH (reduced glutathione) are depleted for 1 month or longer following ultra-endurance exercise, suggesting an impaired capacity to cope with ROS. The present paper summarizes studies that have examined the oxidative footprint of ultra-endurance exercise in light of current thinking in redox biology and the possible health implications of such extreme exercise.
Collapse
|
36
|
Terrestrial stress analogs for spaceflight associated immune system dysregulation. Brain Behav Immun 2014; 39:23-32. [PMID: 24462949 DOI: 10.1016/j.bbi.2014.01.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 11/24/2022] Open
Abstract
Recent data indicates that dysregulation of the immune system occurs and persists during spaceflight. Impairment of immunity, especially in conjunction with elevated radiation exposure and limited clinical care, may increase certain health risks during exploration-class deep space missions (i.e. to an asteroid or Mars). Research must thoroughly characterize immune dysregulation in astronauts to enable development of a monitoring strategy and validate any necessary countermeasures. Although the International Space Station affords an excellent platform for on-orbit research, access may be constrained by technical, logistical vehicle or funding limitations. Therefore, terrestrial spaceflight analogs will continue to serve as lower cost, easier access platforms to enable basic human physiology studies. Analog work can triage potential in-flight experiments and thus result in more focused on-orbit studies, enhancing overall research efficiency. Terrestrial space analogs generally replicate some of the physiological or psychological stress responses associated with spaceflight. These include the use of human test subjects in a laboratory setting (i.e. exercise, bed rest, confinement, circadian misalignment) and human remote deployment analogs (Antarctica winterover, undersea, etc.) that incorporate confinement, isolation, extreme environment, physiological mission stress and disrupted circadian rhythms. While bed rest has been used to examine the effects of physical deconditioning, radiation and microgravity may only be simulated in animal or microgravity cell culture (clinorotation) analogs. This article will characterize the array of terrestrial analogs for spaceflight immune dysregulation, the current evidence base for each, and interpret the analog catalog in the context of acute and chronic stress.
Collapse
|
37
|
Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol 2013; 2:1143-211. [PMID: 23798298 DOI: 10.1002/cphy.c110025] [Citation(s) in RCA: 1265] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic diseases are major killers in the modern era. Physical inactivity is a primary cause of most chronic diseases. The initial third of the article considers: activity and prevention definitions; historical evidence showing physical inactivity is detrimental to health and normal organ functional capacities; cause versus treatment; physical activity and inactivity mechanisms differ; gene-environment interaction (including aerobic training adaptations, personalized medicine, and co-twin physical activity); and specificity of adaptations to type of training. Next, physical activity/exercise is examined as primary prevention against 35 chronic conditions [accelerated biological aging/premature death, low cardiorespiratory fitness (VO2max), sarcopenia, metabolic syndrome, obesity, insulin resistance, prediabetes, type 2 diabetes, nonalcoholic fatty liver disease, coronary heart disease, peripheral artery disease, hypertension, stroke, congestive heart failure, endothelial dysfunction, arterial dyslipidemia, hemostasis, deep vein thrombosis, cognitive dysfunction, depression and anxiety, osteoporosis, osteoarthritis, balance, bone fracture/falls, rheumatoid arthritis, colon cancer, breast cancer, endometrial cancer, gestational diabetes, pre-eclampsia, polycystic ovary syndrome, erectile dysfunction, pain, diverticulitis, constipation, and gallbladder diseases]. The article ends with consideration of deterioration of risk factors in longer-term sedentary groups; clinical consequences of inactive childhood/adolescence; and public policy. In summary, the body rapidly maladapts to insufficient physical activity, and if continued, results in substantial decreases in both total and quality years of life. Taken together, conclusive evidence exists that physical inactivity is one important cause of most chronic diseases. In addition, physical activity primarily prevents, or delays, chronic diseases, implying that chronic disease need not be an inevitable outcome during life.
Collapse
Affiliation(s)
- Frank W Booth
- Departments of Biomedical Sciences, Medical Pharmacology and Physiology, and Nutrition and Exercise Physiology, Dalton Cardiovascular Institute, University of Missouri, Columbia, Missouri, USA.
| | | | | |
Collapse
|
38
|
VanElzakker MB. Chronic fatigue syndrome from vagus nerve infection: A psychoneuroimmunological hypothesis. Med Hypotheses 2013; 81:414-23. [DOI: 10.1016/j.mehy.2013.05.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 05/15/2013] [Accepted: 05/23/2013] [Indexed: 12/20/2022]
|
39
|
Turner JE, Bennett SJ, Campbell JP, Bosch JA, Aldred S, Griffiths HR. The antioxidant enzyme peroxiredoxin-2 is depleted in lymphocytes seven days after ultra-endurance exercise. Free Radic Res 2013; 47:821-8. [DOI: 10.3109/10715762.2013.828836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
LaVoy ECP, Nieman DC, Henson DA, Shanely RA, Knab AM, Cialdella-Kam L, Simpson RJ. Latent cytomegalovirus infection and innate immune function following a 75 km cycling time trial. Eur J Appl Physiol 2013; 113:2629-35. [DOI: 10.1007/s00421-013-2706-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/31/2013] [Indexed: 01/12/2023]
|
41
|
Influence of CMV/EBV serostatus on respiratory infection incidence during 4 months of winter training in a student cohort of endurance athletes. Eur J Appl Physiol 2013; 113:2613-9. [DOI: 10.1007/s00421-013-2704-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/25/2013] [Indexed: 12/21/2022]
|
42
|
Kuchar E, Miskiewicz K, Nitsch-Osuch A, Kurpas D, Han S, Szenborn L. Immunopathology of exercise-induced bronchoconstriction in athletes--a new modified inflammatory hypothesis. Respir Physiol Neurobiol 2013; 187:82-7. [PMID: 23473923 DOI: 10.1016/j.resp.2013.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/10/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Elite athletes have a higher prevalence of exercise-induced bronchoconstriction than the general population. The pathogenesis of exercise-induced bronchoconstriction is not fully elucidated. Increasing evidence suggests that airway inflammation plays a major role in the immunopathogenesis of exercise-induced bronchoconstriction. The aim of our review is to discuss existing evidence and to present a new, modified inflammatory hypothesis of exercise-induced bronchoconstriction. Exercise alters the number and function of circulating immune cells. Episodes of upper respiratory symptoms in elite athletes do not follow the usual seasonal patterns. Moreover, they have an unusual short-term duration, which suggests a non-infectious etiology. If the pro-inflammatory response to exercise has the potential to induce symptoms that mimic respiratory tract infection, it definitely up-regulates pro-inflammatory cytokine expression in the airways. We can conclude that exercise up-regulates airway cytokine expression in a way that favors inflammation and allergic reactions in bronchi and lowers the threshold for bronchoconstriction to different stimuli like cool, dry air, allergens, and pollutants.
Collapse
Affiliation(s)
- Ernest Kuchar
- Department of Pediatric Infectious Diseases, Wroclaw Medical University, Poland.
| | | | | | | | | | | |
Collapse
|
43
|
Pottgiesser T, Schumacher YO, Wolfarth B, Schmidt-Trucksäss A, Bauer G. Longitudinal observation of Epstein-Barr virus antibodies in athletes during a competitive season. J Med Virol 2012; 84:1415-22. [PMID: 22825820 DOI: 10.1002/jmv.23253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epstein-Barr virus (EBV) serology continues to be the first diagnostic test when infectious mononucleosis is suspected. Due to possible mild immunosuppression in competitive athletes, EBV reactivation determined by increases in salivary viral load have been identified as one possible cause in recurrent respiratory infections. The long-term variation in EBV antibody levels in athletes compared to a control group remains unclear. The purpose of the study was to investigate the time course of changes in concentration of EBV antibodies in athletes with special emphasis on antibodies against early antigens (EAs) and avidity determination. During a competition season of approximately 12 months, the serological status of 15 biathletes (age 27 ± 3 years, 7 female, 8 male, international to Olympic level) was compared with 11 controls (age 23 ± 1 years; 1 female 10 male) at multiple time points. In addition, 43 healthy swimmers (age 22 ± 4 years, 18 female, 25 male, national to international level) were tested to validate the results with only two time points interspersed by approximately 6 months of intensive physical exercise. Analysis of quantitative antibody intensity bands revealed stable values during a competition season. In particular, IgG-antibodies against EAs may persist and were found in 15% of past infections in swimmers exhibiting fluctuations in concentration after 6 months. These results provide evidence that positive Anti-EA-IgG may persist in healthy athletes and thus, should not be used to diagnose EBV reactivations or to identify a compromised immune function.
Collapse
Affiliation(s)
- Torben Pottgiesser
- Abteilung Rehabilitative und Präventive Sportmedizin, Medizinische Universitätsklinik, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
44
|
Hill JM, Nolan NM, McFerrin HE, Clement C, Foster TP, Halford WP, Kousoulas KG, Lukiw WJ, Thompson HW, Stern EM, Bhattacharjee PS. HSV-1 latent rabbits shed viral DNA into their saliva. Virol J 2012; 9:221. [PMID: 23021094 PMCID: PMC3519556 DOI: 10.1186/1743-422x-9-221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/21/2012] [Indexed: 12/04/2022] Open
Abstract
Background Rabbits latent with HSV-1 strain McKrae spontaneously shed infectious virus and viral DNA into their tears and develop recurrent herpetic-specific corneal lesions. The rabbit eye model has been used for many years to assess acute ocular infections and pathogenesis, antiviral efficacy, as well as latency, reactivation, and recurrent eye diseases. This study used real-time PCR to quantify HSV-1 DNA in the saliva and tears of rabbits latent with HSV-1 McKrae. Methods New Zealand white rabbits used were latent with HSV-1 strain McKrae and had no ocular or oral pathology. Scarified corneas were topically inoculated with HSV-1. Eye swabs and saliva were taken from post inoculation (PI) days 28 through 49 (22 consecutive days). Saliva samples were taken four times each day from each rabbit and the DNA extracted was pooled for each rabbit for each day; one swab was taken daily from each eye and DNA extracted. Real-time PCR was done on the purified DNA samples for quantification of HSV-1 DNA copy numbers. Data are presented as copy numbers for each individual sample, plus all the copy numbers designated as positive, for comparison between left eye (OS), right eye (OD), and saliva. Results The saliva and tears were taken from 9 rabbits and from 18 eyes and all tested positive at least once. Saliva was positive for HSV-1 DNA at 43.4% (86/198) and tears were positive at 28.0% (111/396). The saliva positives had 48 episodes and the tears had 75 episodes. The mean copy numbers ± the SEM for HSV-1 DNA in saliva were 3773 ± 2019 and 2294 ± 869 for tears (no statistical difference). Conclusion Rabbits latent with strain McKrae shed HSV-1 DNA into their saliva and tears. HSV-1 DNA shedding into the saliva was similar to humans. This is the first evidence that documents HSV-1 DNA in the saliva of latent rabbits.
Collapse
Affiliation(s)
- James M Hill
- Department of Ophthalmology LSUHSC School of Medicine, 533 Bolivar Street, Room 3D13, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mortatti AL, Moreira A, Aoki MS, Crewther BT, Castagna C, de Arruda AFS, Filho JM. Effect of Competition on Salivary Cortisol, Immunoglobulin A, and Upper Respiratory Tract Infections in Elite Young Soccer Players. J Strength Cond Res 2012; 26:1396-401. [DOI: 10.1519/jsc.0b013e31822e7b63] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
|
47
|
Wright PA, Innes KE, Alton J, Bovbjerg VE, Owens JE. A pilot study of qigong practice and upper respiratory illness in elite swimmers. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2011; 39:461-75. [PMID: 21598415 DOI: 10.1142/s0192415x11008968] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Upper respiratory tract infections (URIs) are a common complaint in competitive swimmers and can adversely affect performance. No intervention has yet been shown to reduce URI incidence in intensively trained athletes. The University of Virginia varsity swim team received three weeks of training in qigong for the purpose of reducing stress and improving health. Our primary objective was to assess the relationship between qigong practice and symptoms of URI during a time when swimmers would be at high URI risk. Secondary objectives were to assess degree of compliance with a qigong practice regimen, to evaluate differences between qigong practitioners and non-practitioners, and to determine the response-rate and reliability of a newly developed internet-based, self-report survey. The design was observational, cross-sectional, and prospective. Weekly data on cold and flu symptoms, concurrent health problems and medication use, and qigong practice were gathered for seven weeks. Retrospective information on health and qigong training response was also collected. Participants were 27 of the 55 members of the University of Virginia Swim Team in the Virginia Athletic Department. Main outcomes were measures of aggregated cold/flu symptoms and Qigong practice. Survey completion was 100%, with no missing data, and reliability of the instrument was acceptable. Cold and flu symptoms showed a significant non-linear association with frequency of qigong practice (R(2) = 0.33, p < 0.01), with a strong, inverse relationship between practice frequency and symptom scores in swimmers who practised qigong at least once per week (R(2) = 0.70, p < 0.01). Qigong practitioners did not differ from non-practitioners in demographic or lifestyle characteristics, medical history, supplement or medication use, or belief in qigong. These preliminary findings suggest that qigong practice may be protective against URIs among elite swimmers who practice at least once per week.
Collapse
Affiliation(s)
- Peggy A Wright
- Virginia Integrative Medicine, Charlottesville, VA 22903, USA.
| | | | | | | | | |
Collapse
|
48
|
Hellard P, Guimaraes F, Avalos M, Houel N, Hausswirth C, Toussaint JF. Modeling the association between HR variability and illness in elite swimmers. Med Sci Sports Exerc 2011; 43:1063-70. [PMID: 21085039 DOI: 10.1249/mss.0b013e318204de1c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To determine whether HR variability (HRV), an indirect measure of autonomic control, is associated with upper respiratory tract and pulmonary infections, muscular affections, and all-type pathologies in elite swimmers. METHODS For this study, 7 elite international and 11 national swimmers were observed weekly for 2 yr. The indexes of cardiac autonomic regulation in supine and orthostatic position were assessed as explanatory variables by time domain (SD1, SD2) and spectral analyses (high frequency [HF] = 0.15-0.40 Hz, low frequency [LF] = 0.04-0.15 Hz, and HF/LF ratio) of HRV. Logistic mixed models described the relationship between the explanatory variables and the risk of upper respiratory tract and pulmonary infections, muscular affections, and all-type pathologies. RESULTS The risk of all-type pathologies was higher for national swimmers and in winter (P < 0.01). An increase in the parasympathetic indexes (HF, SD1) in the supine position assessed 1 wk earlier was linked to a higher risk of upper respiratory tract and pulmonary infections (P < 0.05) and to a higher risk of muscular affections (increase in HF, P < 0.05). Multivariate analyses showed (1) a higher all-type pathologies risk in winter and for an increase in the total power of HRV associated with a decline SD1 in supine position, (2) a higher all-type pathologies risk in winter associated with a decline in HF assessed 1 wk earlier in orthostatic position, and (3) a higher risk of muscular affections in winter associated with a decrease SD1 and an increase LF in orthostatic position. CONCLUSIONS Swimmers' health maintenance requires particular attention when autonomic balance shows a sudden increase in parasympathetic indices in the supine position assessed 1 wk earlier evolving toward sympathetic predominance in supine and orthostatic positions.
Collapse
|
49
|
Gleeson M, Bishop N, Oliveira M, McCauley T, Tauler P, Muhamad AS. Respiratory infection risk in athletes: association with antigen-stimulated IL-10 production and salivary IgA secretion. Scand J Med Sci Sports 2011; 22:410-7. [PMID: 21385218 DOI: 10.1111/j.1600-0838.2010.01272.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to examine factors influencing susceptibility to upper respiratory tract infections (URTI) in 18-35-year-old men and women engaged in endurance-based physical activity during the winter months. Eighty individuals (46 males, 34 females) provided resting blood and saliva samples for determination of markers of systemic immunity. Weekly training and illness logs were kept for the following 4 months. Thirty subjects did not experience an URTI episode and 24 subjects experienced 3 or more weeks of URTI symptoms. These illness-prone subjects had higher training loads and had ∼2.5-fold higher interleukin (IL)-4 and IL-10 production by antigen-stimulated whole blood culture than the illness-free subjects. Illness-prone subjects also had significantly lower saliva S-IgA secretion rate and higher plasma IgM (but not IgA or IgG) concentration than the illness-free subjects. There were no differences in circulating numbers of leukocyte subtypes or lymphocyte subsets between the illness-prone and illness-free subjects. The production of IL-10 was positively correlated and the S-IgA secretion rate was negatively correlated with the number of weeks with infection symptoms. It is concluded that high IL-10 production in response to antigen challenge and low S-IgA secretion are risk factors for development of URTI in physically active individuals.
Collapse
Affiliation(s)
- M Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, UK.
| | | | | | | | | | | |
Collapse
|
50
|
|