1
|
Karin M, Kim JY. MASH as an emerging cause of hepatocellular carcinoma: current knowledge and future perspectives. Mol Oncol 2025; 19:275-294. [PMID: 38874196 PMCID: PMC11793012 DOI: 10.1002/1878-0261.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
Hepatocellular carcinoma is one of the deadliest and fastest-growing cancers. Among HCC etiologies, metabolic dysfunction-associated fatty liver disease (MAFLD) has served as a major HCC driver due to its great potential for increasing cirrhosis. The obesogenic environment fosters a positive energy balance and results in a continuous rise of obesity and metabolic syndrome. However, it is difficult to understand how metabolic complications lead to the poor prognosis of liver diseases and which molecular mechanisms are underpinning MAFLD-driven HCC development. Thus, suitable preclinical models that recapitulate human etiologies are essentially required. Numerous preclinical models have been created but not many mimicked anthropometric measures and the course of disease progression shown in the patients. Here we review the literature on adipose tissues, liver-related HCC etiologies and recently discovered genetic mutation signatures found in MAFLD-driven HCC patients. We also critically review current rodent models suggested for MAFLD-driven HCC study.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Ju Youn Kim
- Department of Molecular and Life ScienceHanyang University ERICAAnsanKorea
| |
Collapse
|
2
|
Kurowska P, Berthet L, Ramé C, Węgiel M, Maślanka A, Guérif F, Froment P, Rak A, Dupont J. Polycyclic aromatic hydrocarbons in human granulosa cells: first in vivo presence and positive correlation with body mass index and in vitro ovarian cell steroidogenesis regulation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104611. [PMID: 39674531 DOI: 10.1016/j.etap.2024.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) exposure leads to disorders reported in female infertility patients. Our hypothesis is that PAHs accumulate in granulosa cells (Gc) according to body mass index (BMI) and directly affects its functions. All 16 high-priority PAHs were in human FF, Gc and blood plasma with the highest concentration in Gc (GC-MS/MS). Their highest concentration was in obese Gc, except for acenaphthene and acenaphthylene, and positively correlated with BMI. In FF, we noted only positive correlation between naphthalene and BMI, whereas in blood plasma positive correlation between naphthalene, acenaphthene, pyrene and BMI. Phenanthrene and naphthalene but not fluoranthene inhibited totally steroidogenesis (ELISA), CYP19A1 mRNA expression (real-time PCR) and increased oxidative stress index and catalase expression in Gc independently on BMI. While all studied PAHs decreased Gc proliferation (BrdU assay) and viability (Cell Count kit-8 assay). Thus, Gc PAHs concentrations are positively correlated with BMI and alter ovarian functions.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, Krakow 30-387, Poland.
| | - Lucille Berthet
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Christelle Ramé
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Małgorzata Węgiel
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, Kracow 31-155, Poland.
| | - Anna Maślanka
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, Kracow 31-155, Poland.
| | - Fabrice Guérif
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France.
| | - Pascal Froment
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, Krakow 30-387, Poland.
| | - Joelle Dupont
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| |
Collapse
|
3
|
Guerra B, Jurcic K, van der Poel R, Cousineau SL, Doktor TK, Buchwald LM, Roffey SE, Lindegaard CA, Ferrer AZ, Siddiqui MA, Gyenis L, Andresen BS, Litchfield DW. Protein kinase CK2 sustains de novo fatty acid synthesis by regulating the expression of SCD-1 in human renal cancer cells. Cancer Cell Int 2024; 24:432. [PMID: 39726006 DOI: 10.1186/s12935-024-03611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a type of cancer characterized by a vast intracellular accumulation of lipids that are critical to sustain growth and viability of the cells in the tumour microenvironment. Stearoyl-CoA 9-desaturase 1 (SCD-1) is an essential enzyme for the synthesis of monounsaturated fatty acids and consistently overexpressed in all stages of ccRCC growth. METHODS Human clear cell renal cell carcinoma lines were treated with small-molecule inhibitors of protein kinase CK2. Effects on the expression levels of SCD-1 were investigated by RNA-sequencing, RT-qPCR, Western blot, and in vivo studies in mice. Phase-contrast microscopy, fluorescence microscopy, flow cytometry, and MALDI-mass spectrometry analysis were carried out to study the effects on endogenous lipid accumulation, induction of endoplasmic reticulum stress, rescue effects induced by exogenous MUFAs, and the identity of lipid populations. Cell proliferation and survival were investigated in real time employing the Incucyte® live-cell analysis system. Statistical significance was determined by applying the two-tailed Student's t test when comparing two groups of data whereas the two-way ANOVA, multiple Tukey's test was employed for multiple comparisons. RESULTS Here, we show that protein kinase CK2 is critical for preserving the expression of SCD-1 in ccRCC lines maintained in culture and heterotransplanted into nude mice. Consistent with this, pharmacological inhibition of CK2 leads to induction of endoplasmic reticulum stress linked to unfolded protein response activation and decreased proliferation of the cells. Both effects could be reversed by supplementing the growth medium with oleic acid indicating that these effects are specifically caused by reduced expression of SCD-1. Analysis of lipid composition by MALDI-mass spectrometry revealed that inhibition of CK2 results in a significant accumulation of the saturated palmitic- and stearic acids. CONCLUSIONS Collectively, our results revealed a previously unidentified molecular mechanism regulating the synthesis of monounsaturated fatty acids corroborating the notion that novel therapeutic approaches that include CK2 targeting, may offer a greater synergistic anti-tumour effect for cancers that are highly dependent on fatty acid metabolism.
Collapse
Affiliation(s)
- Barbara Guerra
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark.
| | - Kristina Jurcic
- Department of Biochemistry, Western University, London, ON, Canada
| | - Rachelle van der Poel
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | | | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Laura M Buchwald
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Scott E Roffey
- Department of Biochemistry, Western University, London, ON, Canada
| | - Caroline A Lindegaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Anna Z Ferrer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Mohammad A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Laszlo Gyenis
- Department of Biochemistry, Western University, London, ON, Canada
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | | |
Collapse
|
4
|
Zhang F, Zhang Y, Li Z, Wu X, Wang D, He Y, Cheng H, Fan B, Zhu D, Li M, Tang BZ. Engineered Strategies for Lipid Droplets-Targeted AIEgens Based on Tetraphenylethene. Molecules 2024; 29:5904. [PMID: 39769993 PMCID: PMC11676262 DOI: 10.3390/molecules29245904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Lipid droplets (LDs), once regarded as inert fat particles, have been ignored by scientific researchers for a long time. Now, studies have shown that LDs are dynamic organelles used to store neutral lipids in cells and maintain cell stability. The abnormality of intracellular LDs usually causes metabolic disorders in the body, such as obesity, atherosclerosis, diabetes, and cancer, so the LDs have attracted wide attention. The traditional small molecules used for LDs recognition seriously affect the imaging effect due to their poor photo-stability, low signal-to-noise ratios, and aggregation-induced quenching (ACQ). In contrast to ACQ, aggregation-induced emission (AIE) materials, with structural modifiability, can make up for the aforementioned deficiencies in the field of fluorescence imaging and have attracted much attention. In this review, the importance of LDs in vivo, the design principles for LDs recognition, and the recent research progress of AIE compounds with tetraphenylethene (TPE) structure in LDs targets are reviewed. We expect this review to further provide researchers with feasible methods and protocols for expanding LDs identification, imaging, and other applications.
Collapse
Affiliation(s)
- Fei Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437000, China; (F.Z.); (H.C.); (B.F.)
| | - Yao Zhang
- School of Health Service and Management, Shanxi University of Chinese Medicine, 121 University Street, Jinzhong 030619, China;
| | - Zhuoxia Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.L.); (M.L.)
| | - Xiaoxiao Wu
- Xianning Public Inspection and Testing Center, Xianning 437000, China;
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Youling He
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Hong Cheng
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437000, China; (F.Z.); (H.C.); (B.F.)
| | - Baolei Fan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437000, China; (F.Z.); (H.C.); (B.F.)
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China;
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.L.); (M.L.)
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
5
|
Chen J, Markworth JF, Ferreira C, Zhang C, Kuang S. Lipid droplets as cell fate determinants in skeletal muscle. Trends Endocrinol Metab 2024:S1043-2760(24)00274-1. [PMID: 39613547 DOI: 10.1016/j.tem.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 12/01/2024]
Abstract
Lipid droplets (LDs) are dynamic organelles that communicate with other cellular components to orchestrate energetic homeostasis and signal transduction. In skeletal muscle, the presence and importance of LDs have been widely studied in myofibers of both rodents and humans under physiological conditions and in metabolic disorders. However, the role of LDs in myogenic stem cells has only recently begun to be unveiled. In this review we briefly summarize the process of LD biogenesis and degradation in the most prevalent model. We then review recent knowledge on LDs in skeletal muscle and muscle stem cells. We further introduce advanced methodologies for LD imaging and mass spectrometry that have propelled our understanding of the dynamics and heterogeneity of LDs.
Collapse
Affiliation(s)
- Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA
| | - James F Markworth
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Christina Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
6
|
Wang Y, Wang X, Zeng L. Lipid Accumulation Product as a Predictor of Prediabetes and Diabetes: Insights From NHANES Data (1999-2018). J Diabetes Res 2024; 2024:2874122. [PMID: 39559713 PMCID: PMC11573446 DOI: 10.1155/2024/2874122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 07/08/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Background: The study investigates the association between lipid accumulation product (LAP) and the risk of prediabetes and diabetes. LAP, a measure indicating lipid overaccumulation, is hypothesized to be a significant predictor for these conditions. This research utilizes data from the National Health and Nutrition Examination Survey (NHANES) conducted between 1999 and 2018. Methods: The study followed a structured methodology, starting with data extraction from the NHANES database. Participants' eligibility was determined based on specific inclusion and exclusion criteria, resulting in a final sample size of 24,121 individuals. LAP was calculated using established formulas for men and women. The diagnosis of prediabetes and diabetes was based on standard medical criteria, including HbA1c levels, fasting plasma glucose, and oral glucose tolerance test (OGTT) results. Covariates like demographic variables, lifestyle factors, and other health indicators were also considered. Statistical analysis involved categorizing LAP into quartiles and employing logistic regression models to examine the relationship between LAP and the risk of prediabetes and diabetes. Results: Participants in the highest LAP quartile exhibited distinct characteristics: older age, lower education levels, more former smokers and drinkers, higher blood pressure and cholesterol levels, and greater use of medications. A positive association was observed between LAP and the incidence of prediabetes and diabetes across all models. Specifically, each 10-unit increase in LAP was linked to a 22% increase in risk. Nonlinear relationships were also explored, revealing an inflection point in the risk correlation at an LAP value of 68.1. Conclusion: The study concludes that LAP is a significant predictor of prediabetes and diabetes risk, with higher LAP levels correlating with increased risk. This finding underscores the potential of LAP as a useful marker in identifying individuals at higher risk for these conditions. It also highlights the importance of considering LAP in preventive health strategies.
Collapse
Affiliation(s)
- Yan Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiaolan Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Ling Zeng
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Peng CC, Chen ECY, Chen CR, Chyau CC, Chen KC, Peng RY. Molecular mechanism of ectopic lipid accumulation induced by methylglyoxal via activation of the NRF2/PI3K/AKT pathway implicates renal lipotoxicity caused by diabetes mellitus. PLoS One 2024; 19:e0306575. [PMID: 39413106 PMCID: PMC11482718 DOI: 10.1371/journal.pone.0306575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/19/2024] [Indexed: 10/18/2024] Open
Abstract
Patients with chronic kidney disease (CKD) have a high incidence of dyslipidemia comprising high triglyceride (TG) and low high-density lipoprotein (HDL)-cholesterol levels. An abnormal increase of TGs within cells can lead to intracellular lipid accumulation. In addition to dyslipidemia, hyperglycemia in diabetes may elicit ectopic lipid deposition in non-adipose tissues. Hyperglycemia increases intracellular levels of methylglyoxal (MG) leading to cellular dysfunction. A deficit of glyoxalase I (GLO1) contributes to dicarbonyl stress. Whether dicarbonyl stress induced by MG causes renal lipotoxicity through alteration of lipid metabolism signaling is still unknown. In this study, mice with high fat diet-induced diabetes were used to investigate the renal pathology induced by MG. NRK52E cells treated with MG were further used in vitro to delineate the involvement of lipogenic signaling. After treatment with MG for 12 weeks, plasma TG levels, renal fatty changes, and tubular injuries were aggravated in diabetic mice. In NRK52E cells, MG activated the nuclear factor erythroid 2-related factor 2 (Nrf2)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and sterol regulatory element-binding protein 1 (SREBP1), resulting in stimulation of fatty acid synthase. The intracellular accumulation of lipid droplets was mainly contributed by TGs, which increased the oxidative stress accompanied by high Nrf2 expression. In addition, MG time-dependently activated cyclin D, cyclin-dependent kinase 4 (CDK4), and cleaved caspase-3, evidencing that G0/G1 arrest was associated with apoptosis of NRK52E cells. In conclusion, our studies revealed the mechanism of lipotoxicity caused by MG. The target of such dicarbonyl stress may become a promising therapy for diabetic CKD.
Collapse
Affiliation(s)
- Chiung Chi Peng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Eugene Chang Yu Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- MD Program, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Chang-Rong Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Charng-Cherng Chyau
- Department of Biotechnology, College of Medical and Health Care, Hungkuang University, Shalu District, Taichung, Taiwan
| | - Kuan-Chou Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Urology, Taipei Medical University Shuang-Ho Hospital, Zhong-He District, New Taipei City, Taiwan
- TMU-Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Robert Y. Peng
- Department of Biotechnology, College of Medical and Health Care, Hungkuang University, Shalu District, Taichung, Taiwan
| |
Collapse
|
8
|
Poh KK, Panday VB, Shabbir A, Ngiam JN, Sia CH, Chan SP, Tan SY, Kong WKF, Richards AM, Thomas JD. Impact of surgical and non-surgical weight loss on echocardiographic and strain parameters in Asian patients. Sci Rep 2024; 14:24157. [PMID: 39406757 PMCID: PMC11480092 DOI: 10.1038/s41598-024-69586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/06/2024] [Indexed: 10/19/2024] Open
Abstract
Surgical weight loss (SWL) improves myocardial mechanics as measured by speckle-tracking imaging. However non-surgical versus SWL and the subsequent impact on myocardial function in overweight Asian subjects has not been evaluated. 66 patients underwent a 16-week lifestyle intervention (LSI) programme consisting of dietary interventions and exercise prescription. Echocardiography with speckle tracking was performed at baseline and post-intervention. This group was compared against a group of 12 subjects who had undergone bariatric surgery and a control group of 10 lean Asian subjects. A generalised structural equation model (gSEM) was constructed to ascertain the effect of modality of weight loss on strain parameters, adjusting for BMI. Participants attained significant weight loss after LSI (28.2 ± 2.66 kg/m2 vs. 25.8 ± 2.84 kg/m2, p = 0.001). This was associated with a non-significant trend towards improvement in strain parameters. SWL participants had significant improvement in the left ventricular global longitudinal strain (- 20.52 ± 3.34 vs. - 16.68 ± 4.15, p < 0.01) and left atrium reservoir strain (44.32 ± 14.23 vs. 34.3 ± 19.31, p = 0.02). Lean subjects had significantly higher strain parameters than overweight subjects. The gSEM model demonstrated surgical modality of weight loss as an independent predictor of improvement in strain parameters. Significant improvement in echocardiographic parameters were documented in patients who underwent bariatric surgery.
Collapse
Affiliation(s)
- Kian Keong Poh
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Vinay Bahadur Panday
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
| | - Asim Shabbir
- Department of Surgery, National University Hospital, Singapore, Singapore
| | - Jinghao Nicholas Ngiam
- Department of Medicine, National University Health System Singapore, Singapore, Singapore
| | - Ching-Hui Sia
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siew-Pang Chan
- Cardiovascular Research Institute, National University Heart Centre Singapore, National University Health System, Singapore, Singapore
- Centre for Behavioural and Implementation Science Interventions, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Geriatrics and Active Ageing, Tan Tock Seng Hospital, Singapore, Singapore
| | - Sik Yin Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - William K F Kong
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arthur Mark Richards
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore, National University Health System, Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - James D Thomas
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
9
|
Lawson EF, Pickford R, Aitken RJ, Gibb Z, Grupen CG, Swegen A. Mapping the lipidomic secretome of the early equine embryo. Front Vet Sci 2024; 11:1439550. [PMID: 39430383 PMCID: PMC11486720 DOI: 10.3389/fvets.2024.1439550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
The lipidomic secretions of embryos provide a unique opportunity to examine the cellular processes of the early conceptus. In this study we profiled lipids released by the early equine conceptus, using high-resolution mass spectrometry to detect individual lipid species. This study examined the lipidomic profile in embryo-conditioned media from in vivo-produced, 8-9 day-old equine embryos (n = 3) cultured in vitro for 36 h, analyzed over 3 timepoints. A total of 1,077 lipid IDs were recorded across all samples, containing predominantly glycerolipids. Seventy-nine of these were significantly altered in embryo conditioned-media versus media only control (p < 0.05, fold-change >2 or < 0.5). Fifty-five lipids were found to be released into the embryo-conditioned media, of which 54.5% were triacylglycerols and 23.6% were ceramides. The sterol lipid, cholesterol, was also identified and secreted in significant amounts as embryos developed. Further, 24 lipids were found to be depleted from the media during culture, of which 70.8% were diacylglycerols, 16.7% were triacylglycerols and 12.5% were ceramides. As lipid-free media contained consistently detectable lipid peaks, a further profile analysis of the various components of non-embryo-conditioned media consistently showed the presence of 137 lipids. Lipid peaks in non-embryo-conditioned media increased in response to incubation under mineral oil, and contained ceramides, diacylglycerols and triacylglycerols. These results emphasize the importance of a defined embryo culture medium and a need to identify the lipid requirements of the embryo precisely. This study sheds light on early embryo lipid metabolism and the transfer of lipids during in vitro culture.
Collapse
Affiliation(s)
- Edwina F. Lawson
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Robert John Aitken
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Zamira Gibb
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher G. Grupen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
10
|
Abolfazli S, Butler AE, Kesharwani P, Sahebkar A. The beneficial impact of curcumin on cardiac lipotoxicity. J Pharm Pharmacol 2024; 76:1269-1283. [PMID: 39180454 DOI: 10.1093/jpp/rgae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/02/2024] [Indexed: 08/26/2024]
Abstract
Lipotoxicity is defined as a prolonged metabolic imbalance of lipids that results in ectopic fat distribution in peripheral organs such as the liver, heart, and kidney. The harmful consequences of excessive lipid accumulation in cardiomyocytes cause cardiac lipotoxicity, which alters the structure and function of the heart. Obesity and diabetes are linked to lipotoxic cardiomyopathy. These anomalies might be caused by a harmful metabolic shift that accumulates toxic lipids and shifts glucose oxidation to less fatty acid oxidation. Research has linked fatty acids, fatty acyl coenzyme A, diacylglycerol, and ceramide to lipotoxic stress in cells. This stress can be brought on by apoptosis, impaired insulin signaling, endoplasmic reticulum stress, protein kinase C activation, p38 Ras-mitogen-activated protein kinase (MAPK) activation, or modification of peroxisome proliferator-activated receptors (PPARs) family members. Curcuma longa is used to extract curcumin, a hydrophobic polyphenol derivative with a variety of pharmacological characteristics. Throughout the years, curcumin has been utilized as an anti-inflammatory, antioxidant, anticancer, hepatoprotective, cardioprotective, anti-diabetic, and anti-obesity drug. Curcumin reduces cardiac lipotoxicity by inhibiting apoptosis and decreasing the expression of apoptosis-related proteins, reducing the expression of inflammatory cytokines, activating the autophagy signaling pathway, and inhibiting the expression of endoplasmic reticulum stress marker proteins.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University Medical Science, Sari, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Zhang H, Jin C, Hua J, Chen Z, Gao W, Xu W, Zhou L, Shan L. Roles of Microenvironment on Mesenchymal Stem Cells Therapy for Osteoarthritis. J Inflamm Res 2024; 17:7069-7079. [PMID: 39377043 PMCID: PMC11457791 DOI: 10.2147/jir.s475617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
Osteoarthritis (OA) induced microenvironmental alterations are a common and unavoidable phenomenon that greatly exacerbate the pathologic process of OA. Imbalances in the synthesis and degradation of cartilage extracellular matrix (ECM) have been reported to be associated with an adverse microenvironment. Stem cell therapy is a promising treatment for OA, and mesenchymal stem cells (MSCs) are the main cell sources for this therapy. With multispectral differentiation and immunomodulation, MSCs can effectively regulate the microenvironment of articular cartilage, ameliorate inflammation, promote regeneration of damaged cartilage, and ultimately alleviate OA symptoms. However, the efficacy of MSCs in the treatment of OA is greatly influenced by articular cavity microenvironments. This article reviews the five microenvironments of OA articular cavity, including inflammatory microenvironment, senescence microenvironment, hypoxic microenvironment, high glucose microenvironment and high lipid environment, focus on the positive and negative effects of OA microenvironments on the fate of MSCs. In this regard, we emphasize the mechanisms of the current use of MSCs in OA treatment, as well as its limitations and challenges.
Collapse
Affiliation(s)
- Haiyan Zhang
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chaoying Jin
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiaqing Hua
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zuxiang Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenxin Gao
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenting Xu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Letian Shan
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
12
|
Hajri T, Gharib M, Fungwe T, M'Koma A. Very low-density lipoprotein receptor mediates triglyceride-rich lipoprotein-induced oxidative stress and insulin resistance. Am J Physiol Heart Circ Physiol 2024; 327:H733-H748. [PMID: 38787383 DOI: 10.1152/ajpheart.00425.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Obesity is associated with excess lipid deposition in nonadipose tissues, leading to increased oxidative stress and insulin resistance. Very low-density lipoprotein receptor (VLDLR), a member of the LDL receptor family, binds and increases the catabolism of triglyceride-rich lipoproteins. Although VLDLR is highly expressed in the heart, its role in obesity-associated oxidative stress and insulin resistance is unclear. Here, we used lean (wild type), genetically obese leptin-deficient (ob/ob), and leptin-VLDLR double-null (ob/ob-VLDLR-/-) mice to determine the impact of VLDLR deficiency on obesity-induced oxidative stress and insulin resistance in the heart. Although insulin sensitivity and glucose uptake were reduced in the hearts of ob/ob mice, VLDLR expression was upregulated and was associated with increased VLDL uptake and excess lipid deposition. This was accompanied by an upregulation of cardiac NADPH oxidase (Nox) expression and increased production of Nox-dependent superoxides. Silencing the VLDLR in ob/ob mice had reduced VLDL uptake and prevented excess lipid deposition in the heart, in addition to a reduction of superoxide overproduction and the normalization of insulin sensitivity and glucose uptake. In isolated cardiomyocytes, VLDLR deficiency had prevented VLDL-mediated induction of Nox activity and superoxide overproduction while improving insulin sensitivity and glucose uptake. Our findings indicate that VLDLR deficiency prevents excess lipid accumulation and moderates oxidative stress and insulin resistance in the hearts of obese mice. This effect is linked to the active role of VLDLR in VLDL uptake, which triggers a cascade of events leading to increased Nox activity, superoxide overproduction, and insulin resistance.NEW & NOTEWORTHY Obesity is associated with excess lipid deposition in muscles, which is considered as a leading cause of metabolic dysfunction and oxidative stress. Cellular uptake of lipids is regulated by several membrane receptors, among which is the very low-density lipoprotein receptor (VLDLR). This article provides information on the role of VLDLR in cardiac muscle and how its expression regulates insulin resistance and oxidative stress in the obese mouse model.
Collapse
Affiliation(s)
- Tahar Hajri
- Department of Nutritional Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, District of Columbia, United States
- AdventHealth Tampa, Tampa, Florida, United States
| | | | - Thomas Fungwe
- Department of Nutritional Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, District of Columbia, United States
| | - Amosy M'Koma
- AdventHealth Tampa, Tampa, Florida, United States
- School of Medicine, Meharry Medical College, Nashville, Tennessee, United States
| |
Collapse
|
13
|
Dinh DT, Li CY, Wu MW, Hsieh CF, Chen XY, Chang CC. An acridone based fluorescent dye for lipid droplet tracking and cancer diagnosis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:113000. [PMID: 39121718 DOI: 10.1016/j.jphotobiol.2024.113000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Lipid droplets (LDs) are spherical organelles that localize in the cytosol of eukaryotic cells. Different proteins are embedded on the surface of LDs, so LDs play a vital role in the physiological activities of cells. The dysregulation of LDs is associated with various human diseases, such as diabetes and obesity. Therefore, it is essential to develop a fluorescent dye that labels LDs to detect and monitor illnesses. In this study, we developed the compound BDAA12C for staining LDs in cells. BDAA12C exhibits excellent LD specificity and low toxicity, enabling us to successfully stain and observe the fusion of LDs in A549 cancer cells. Furthermore, we also successfully distinguished A549 cancer cells and MRC-5 normal cells in a co-culture experiment and in normal and tumour tissues. Interestingly, we found different localizations of BDAA12C in well-fed and starved A549 cancer cells and consequently illustrated the transfer of fatty acids (FAs) from LDs to mitochondria to supply energy for β-oxidation upon starvation. Therefore, BDAA12C is a promising LD-targeted probe for cancer diagnosis and tracking lipid trafficking within cells.
Collapse
Affiliation(s)
- Dat Thanh Dinh
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Ying Li
- Department of Surgery, Show Chwan Memorial Hospital, Changhua City, Taiwan; PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Wei Wu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Feng Hsieh
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Xuan-Yu Chen
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Cheng-Chung Chang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan; Intelligent Minimally-Invasive Device Center, National Chung Hsing University, Taichung 402, Taiwan..
| |
Collapse
|
14
|
Garaiova M, Ding Y, Holic R, Valachovic M, Zhang C, Hapala I, Liu P. Yeast perilipin Pet10p/Pln1p interacts with Erg6p in ergosterol metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159506. [PMID: 38734059 DOI: 10.1016/j.bbalip.2024.159506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Lipid droplets (LD) are highly dynamic organelles specialized for the regulation of energy storage and cellular homeostasis. LD consist of a neutral lipid core surrounded by a phospholipid monolayer membrane with embedded proteins, most of which are involved in lipid homeostasis. In this study, we focused on one of the major LD proteins, sterol C24-methyltransferase, encoded by ERG6. We found that the absence of Erg6p resulted in an increased accumulation of yeast perilipin Pet10p in LD, while the disruption of PET10 was accompanied by Erg6p LD over-accumulation. An observed reciprocal enrichment of Erg6p and Pet10p in pet10Δ and erg6Δ mutants in LD, respectively, was related to specific functional changes in the LD and was not due to regulation on the expression level. The involvement of Pet10p in neutral lipid homeostasis was observed in experiments that focused on the dynamics of neutral lipid mobilization as time-dependent changes in the triacylglycerols (TAG) and steryl esters (SE) content. We found that the kinetics of SE hydrolysis was reduced in erg6Δ cells and the mobilization of SE was completely lost in mutants that lacked both Erg6p and Pet10p. In addition, we observed that decreased levels of SE in erg6Δpet10Δ was linked to an overexpression of steryl ester hydrolase Yeh1p. Lipid analysis of erg6Δpet10Δ showed that PET10 deletion altered the composition of ergosterol intermediates which had accumulated in erg6Δ. In conclusion, yeast perilipin Pet10p functionally interacts with Erg6p during the metabolism of ergosterol.
Collapse
Affiliation(s)
- Martina Garaiova
- Department of Biochemistry of Biomembranes, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia.
| | - Yunfeng Ding
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Roman Holic
- Department of Biochemistry of Biomembranes, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia
| | - Martin Valachovic
- Department of Biochemistry of Biomembranes, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia
| | - Congyan Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ivan Hapala
- Department of Biochemistry of Biomembranes, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Zhang Z, Yu Z, Liang D, Song K, Kong X, He M, Liao X, Huang Z, Kang A, Bai R, Ren Y. Roles of lipid droplets and related proteins in metabolic diseases. Lipids Health Dis 2024; 23:218. [PMID: 39030618 PMCID: PMC11264848 DOI: 10.1186/s12944-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Lipid droplets (LDs), which are active organelles, derive from the monolayer membrane of the endoplasmic reticulum and encapsulate neutral lipids internally. LD-associated proteins like RAB, those in the PLIN family, and those in the CIDE family participate in LD formation and development, and they are active players in various diseases, organelles, and metabolic processes (i.e., obesity, non-alcoholic fatty liver disease, and autophagy). Our synthesis on existing research includes insights from the formation of LDs to their mechanisms of action, to provide an overview needed for advancing research into metabolic diseases and lipid metabolism.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Zhenghang Yu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Dianyuan Liang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ke Song
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiangxin Kong
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ming He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China
| | - Xinxin Liao
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Ziyan Huang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Aijia Kang
- Institute of Hepatobiliary Pancreatic Intestinal Diseases, North Sichuan Medical College, Nanchong, 637000, China
| | - Rubing Bai
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
| | - Yixing Ren
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, South Maoyuan Road, Shunqing District, Nanchong, Sichuan Province, 637000, China.
- General Surgery, Chengdu XinHua Hospital Affiliated to North Sichuan Medical College, Chengdu, 610000, China.
| |
Collapse
|
16
|
Mthembu SX, Mazibuko-Mbeje SE, Silvestri S, Orlando P, Marcheggiani F, Cirilli I, Nkambule BB, Muller CJ, Tiano L, Dludla PV. Low levels and partial exposure to palmitic acid improves mitochondrial function and the oxidative status of cultured cardiomyoblasts. Toxicol Rep 2024; 12:234-243. [PMID: 38356855 PMCID: PMC10864757 DOI: 10.1016/j.toxrep.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Lipid overload or metabolic stress has gained popularity in research that explores pathological mechanisms that may drive enhanced oxidative myocardial damage. Here, H9c2 cardiomyoblasts were exposed to various doses of palmitic acid (0.06 to 1 mM) for either 4 or 24 h to study its potential physiological response to cardiac cells. Briefly, assays performed included metabolic activity, cholesterol content, mitochondrial respiration, and prominent markers of oxidative stress, as well as determining changes in mitochondrial potential, mitochondrial production of reactive oxygen species, and intracellular antioxidant levels like glutathione, glutathione peroxidase and superoxide dismutase. Cellular damage was probed using fluorescent stains, annexin V and propidium iodide. Our results indicated that prolonged exposure (24-hours) to palmitic acid doses ≥ 0.5 mM significantly impaired mitochondrial oxidative status, leading to enhanced mitochondrial membrane potential and increased mitochondrial ROS production. While palmitic acid dose of 1 mM appeared to induce prominent cardiomyoblasts damage, likely because of its capacity to increase cholesterol content/ lipid peroxidation and severely suppressing intracellular antioxidants. Interestingly, short-term (4-hours) exposure to palmitic acid, especially for lower doses (≤ 0.25 mM), could improve metabolic activity, mitochondrial function and protect against oxidative stress induced myocardial damage. Potentially suggesting that, depending on the dose consumed or duration of exposure, consumption of saturated fatty acids such as palmitic acid can differently affect the myocardium. However, these results are still preliminary, and in vivo research is required to understand the significance of maintaining intracellular antioxidants to protect against oxidative stress induced by lipid overload.
Collapse
Affiliation(s)
- Sinenhlanhla X.H. Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry, Mafikeng Campus, Northwest University, Mmabatho 2735, South Africa
| | | | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Ilenia Cirilli
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, Ancona 60131, Italy
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Christo J.F. Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
- Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V. Dludla
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
| |
Collapse
|
17
|
Arrari F, Jabri MA, Ayari A, Dakhli N, Ben Fayala C, Boubaker S, Sebai H. Amino acid HPLC-FLD analysis of spirulina and its protective mechanism against the combination of obesity and colitis in wistar rats. Heliyon 2024; 10:e30103. [PMID: 38694088 PMCID: PMC11061748 DOI: 10.1016/j.heliyon.2024.e30103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Objective The cafeteria diet (CD), designed as an experimental diet mimicking the obesogenic diet, may contribute to the pathogenesis of inflammatory bowel diseases (IBD). This study delves into the influence of spirulina (SP) on obesity associated with colitis in Wistar rats. Methods The amino acids composition of SP was analyzed using HPLC-FLD. Animals were equally separated into eight groups, each containing seven animals and treated daily for eight weeks as follows: Control diet (SD), cafeteria diet (CD) group, CD + SP (500 mg/kg) and SD + SP. Ulcerative colitis was provoked by rectal injection of acetic acid (AA) (3 % v/v, 5 ml/kg b.w.) on the last day of treatment in the following groups: SD + AA, SD + AA + SP, CD + AA, and CD + AA + SP. Results Findings revealed that UC and/or CD increased the abdominal fat, weights gain, and colons. Moreover, severe colonic alteration, perturbations in the serum metabolic parameters associated with an oxidative stress state in the colonic mucosa, defined by overproduction of reactive oxygen species (ROS) and increased levels of plasma scavenging activity (PSA). Additionally, obesity exacerbated the severity of AA-induced UC promoting inflammation marked by the overexpression of pro-inflammatory cytokines. Significantly, treatment with SP provided notable protection against inflammation severity, reduced histopathological alterations, attenuated lipid peroxidation (MDA), and enhanced antioxidant enzyme activities (CAT, SOD, and GPX) along with non-enzymatic antioxidants (GSH and SH-G). Conclusions Thus, the antioxidant effects and anti-inflammatory proprieties of SP could be attributed to its richness in amino acids, which could potentially mitigate inflammation severity in obese subjects suffering from ulcerative colitis. These results imply that SP hold promise as a therapeutic agent for managing of UC, particularly in individuals with concomitant obesity. Understanding SP's mechanisms of action may lead novel treatment strategies for inflammatory bowel diseases and hyperlipidemia in medical research.
Collapse
Affiliation(s)
- Fatma Arrari
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Mohamed-Amine Jabri
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Ala Ayari
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Nouha Dakhli
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Chayma Ben Fayala
- Laboratoire d'anatomie Pathologique Humaine et Expérimentale, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis, 1002, Tunisia
| | - Samir Boubaker
- Laboratoire d'anatomie Pathologique Humaine et Expérimentale, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis, 1002, Tunisia
| | - Hichem Sebai
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| |
Collapse
|
18
|
Obaseki E, Adebayo D, Bandyopadhyay S, Hariri H. Lipid droplets and fatty acid-induced lipotoxicity: in a nutshell. FEBS Lett 2024; 598:1207-1214. [PMID: 38281809 PMCID: PMC11126361 DOI: 10.1002/1873-3468.14808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Lipid droplets (LDs) are fat storage organelles that are conserved from bacteria to humans. LDs are broken down to supply cells with fatty acids (FAs) that can be used as an energy source or membrane synthesis. An overload of FAs disrupts cellular functions and causes lipotoxicity. Thus, by acting as hubs for storing excess fat, LDs prevent lipotoxicity and preserve cellular homeostasis. LD synthesis and turnover have to be precisely regulated to maintain a balanced lipid distribution and allow for cellular adaptation during stress. Here, we discuss how prolonged exposure to excess lipids affects cellular functions, and the roles of LDs in buffering cellular stress focusing on lipotoxicity.
Collapse
Affiliation(s)
- Eseiwi Obaseki
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Daniel Adebayo
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Sumit Bandyopadhyay
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| | - Hanaa Hariri
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202 USA
| |
Collapse
|
19
|
D’Elia JA, Weinrauch LA. Lipid Toxicity in the Cardiovascular-Kidney-Metabolic Syndrome (CKMS). Biomedicines 2024; 12:978. [PMID: 38790940 PMCID: PMC11118768 DOI: 10.3390/biomedicines12050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies of Cardiovascular-Kidney-Metabolic Syndrome (CKMS) indicate that elevated concentrations of derivatives of phospholipids (ceramide, sphingosine), oxidized LDL, and lipoproteins (a, b) are toxic to kidney and heart function. Energy production for renal proximal tubule resorption of critical fuels and electrolytes is required for homeostasis. Cardiac energy for ventricular contraction/relaxation is preferentially supplied by long chain fatty acids. Metabolism of long chain fatty acids is accomplished within the cardiomyocyte cytoplasm and mitochondria by means of the glycolytic, tricarboxylic acid, and electron transport cycles. Toxic lipids and excessive lipid concentrations may inhibit cardiac function. Cardiac contraction requires calcium movement from the sarcoplasmic reticulum from a high to a low concentration at relatively low energy cost. Cardiac relaxation involves calcium return to the sarcoplasmic reticulum from a lower to a higher concentration and requires more energy consumption. Diastolic cardiac dysfunction occurs when cardiomyocyte energy conversion is inadequate. Diastolic dysfunction from diminished ATP availability occurs in the presence of inadequate blood pressure, glycemia, or lipid control and may lead to heart failure. Similar disruption of renal proximal tubular resorption of fuels/electrolytes has been found to be associated with phospholipid (sphingolipid) accumulation. Elevated concentrations of tissue oxidized low-density lipoprotein cholesterols are associated with loss of filtration efficiency at the level of the renal glomerular podocyte. Macroscopically excessive deposits of epicardial and intra-nephric adipose are associated with vascular pathology, fibrosis, and inhibition of essential functions in both heart and kidney. Chronic triglyceride accumulation is associated with fibrosis of the liver, cardiac and renal structures. Successful liver, kidney, or cardiac allograft of these vital organs does not eliminate the risk of lipid toxicity. Lipid lowering therapy may assist in protecting vital organ function before and after allograft transplantation.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
20
|
Mann V, Sundaresan A, Shishodia S. Overnutrition and Lipotoxicity: Impaired Efferocytosis and Chronic Inflammation as Precursors to Multifaceted Disease Pathogenesis. BIOLOGY 2024; 13:241. [PMID: 38666853 PMCID: PMC11048223 DOI: 10.3390/biology13040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Overnutrition, driven by the consumption of high-fat, high-sugar diets, has reached epidemic proportions and poses a significant global health challenge. Prolonged overnutrition leads to the deposition of excessive lipids in adipose and non-adipose tissues, a condition known as lipotoxicity. The intricate interplay between overnutrition-induced lipotoxicity and the immune system plays a pivotal role in the pathogenesis of various diseases. This review aims to elucidate the consequences of impaired efferocytosis, caused by lipotoxicity-poisoned macrophages, leading to chronic inflammation and the subsequent development of severe infectious diseases, autoimmunity, and cancer, as well as chronic pulmonary and cardiovascular diseases. Chronic overnutrition promotes adipose tissue expansion which induces cellular stress and inflammatory responses, contributing to insulin resistance, dyslipidemia, and metabolic syndrome. Moreover, sustained exposure to lipotoxicity impairs the efferocytic capacity of macrophages, compromising their ability to efficiently engulf and remove dead cells. The unresolved chronic inflammation perpetuates a pro-inflammatory microenvironment, exacerbating tissue damage and promoting the development of various diseases. The interaction between overnutrition, lipotoxicity, and impaired efferocytosis highlights a critical pathway through which chronic inflammation emerges, facilitating the development of severe infectious diseases, autoimmunity, cancer, and chronic pulmonary and cardiovascular diseases. Understanding these intricate connections sheds light on potential therapeutic avenues to mitigate the detrimental effects of overnutrition and lipotoxicity on immune function and tissue homeostasis, thereby paving the way for novel interventions aimed at reducing the burden of these multifaceted diseases on global health.
Collapse
Affiliation(s)
| | | | - Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, TX 77004, USA; (V.M.); (A.S.)
| |
Collapse
|
21
|
Sakboonyarat B, Poovieng J, Rangsin R. Association between obesity and new-onset heart failure among patients with hypertension in Thailand. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:33. [PMID: 38424593 PMCID: PMC10905941 DOI: 10.1186/s41043-024-00530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND In Thailand, the epidemiological data on the relationship between obesity and heart failure (HF) among high-risk populations was limited. We assessed the association between body mass index (BMI) and the new-onset HF among people with hypertension (HTN), and also assessed the effect modifier of uncontrolled HTN on this association. METHODS We analyzed the data obtained from the 2018 Thailand DM/HT study database. Thai people with HTN aged 20 years and older receiving continuous care at outpatient clinics in hospitals nationwide were included. The new-onset HF was defined regarding the ICD-10 as I50 in the medical records within 12 months. Obesity was defined as BMI ≥ 25 kg/m2. Multivariable log-binomial regression analysis was used to determine the association between BMI and new-onset HF and presented as the adjusted risk ratio (aRR) and 95% confidence interval (CI). RESULTS A total of 35,756 participants were included in the analysis. In all, 50.0% of the participants had BP control for the last two consecutive visits. The mean BMI was 25.1 ± 4.7 kg/m2. New-onset HF occurred in 75 participants (0.21%; 95% CI 0.17-0.26). After adjusting for potential confounders, an elevated BMI was associated with new-onset HF (p value for quadratic trend < 0.001). In comparison with participants with normal BMI (18.5-22.9 kg/m2), the aRR for new-onset HF was 1.57 (95% CI 0.80-3.07) and 3.97 (95% CI 1.95-8.10) in those with BMI 25.0-29.9, and ≥ 30.0 kg/m2. For participants with obesity, aRR for new-onset HF was 2.05 (95% CI 1.24-3.39) compared to non-obese participants. The study found that among patients with control BP, obesity was associated with a higher risk of new-onset HF with an adjusted RR of 2.33 (95% CI 1.12-4.83). For those with uncontrolled BP, the adjusted RR was 1.83 (95% CI 0.93-3.58), but there was no heterogeneity with p value = 0.642. CONCLUSION An increased BMI had a higher risk for new-onset HF among Thai people with HTN. Obesity was independently associated with new-onset HF among people with HTN, regardless of uncontrolled HTN. Our findings highlight that weight reduction is crucial for mitigating the risk of HF development in HTN patients, regardless of their BP control status.
Collapse
Affiliation(s)
- Boonsub Sakboonyarat
- Department of Military and Community Medicine, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Jaturon Poovieng
- Pulmonary and Critical Care Division, Department of Medicine, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Ram Rangsin
- Department of Military and Community Medicine, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand.
| |
Collapse
|
22
|
Taheripak G, Sabeti N, Najar N, Razavi Z, Saharkhiz S, Alipourfard I. SIRT1 activation attenuates palmitate induced apoptosis in C 2C 12 muscle cells. Mol Biol Rep 2024; 51:354. [PMID: 38400872 DOI: 10.1007/s11033-024-09250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Type 2 diabetes is characterized by insulin resistance, which manifests mainly in skeletal muscles. SIRT1 has been found to play a role in the insulin signaling pathway. However, the molecular underpinnings of SIRT1's function in palmitate fatty acid-induced apoptosis still need to be better understood. METHODS In this research, skeletal muscle cells are treated with palmitate to be insulin resistant. It is approached that SIRT1 is downregulated in C2C12 muscle cells during palmitate-induced apoptosis and that activating SIRT1 mitigates this effect. RESULTS Based on these findings, palmitate-induced apoptosis suppressed mitochondrial biogenesis by lowering PGC-1 expression, while SIRT1 overexpression boosted. The SIRT1 inhibitor sirtinol, on the other hand, decreased mitochondrial biogenesis under the same conditions. This research also shows that ROS levels rise in the conditions necessary for apoptosis induction by palmitate, and ROS inhibitors can mitigate this effect. This work demonstrated that lowering ROS levels by boosting SIRT1 expression inhibited apoptotic induction in skeletal muscle cells. CONCLUSION This study's findings suggested that SIRT1 can improve insulin resistance in type 2 diabetes by slowing the rate of lipo-apoptosis and boosting mitochondrial biogenesis, among other benefits.
Collapse
Affiliation(s)
- Gholamreza Taheripak
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niusha Sabeti
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Naba Najar
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahrasadat Razavi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saber Saharkhiz
- Division of Neuroscience, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, Warsaw, 01-224, Poland.
| |
Collapse
|
23
|
Otunla AA, Shanmugarajah K, Davies AH, Shalhoub J. Lipotoxicity and immunometabolism in ischemic acute kidney injury: current perspectives and future directions. Front Pharmacol 2024; 15:1355674. [PMID: 38464721 PMCID: PMC10924325 DOI: 10.3389/fphar.2024.1355674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Dysregulated lipid metabolism is implicated in the pathophysiology of a range of kidney diseases. The specific mechanisms through which lipotoxicity contributes to acute kidney injury (AKI) remain poorly understood. Herein we review the cardinal features of lipotoxic injury in ischemic kidney injury; lipid accumulation and mitochondrial lipotoxicity. We then explore a new mechanism of lipotoxicity, what we define as "immunometabolic" lipotoxicity, and discuss the potential therapeutic implications of targeting this lipotoxicity using lipid lowering medications.
Collapse
Affiliation(s)
- Afolarin A. Otunla
- Department of Surgical Biotechnology, University College London, London, United Kingdom
| | | | - Alun H. Davies
- UK and Imperial Vascular Unit, Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Joseph Shalhoub
- UK and Imperial Vascular Unit, Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
24
|
Rajput MD, Mahalingavelar P, Patel MD, Bait A, Mandal P, Soppina V, Kanvah S. Lipid Droplets Specific Fluorophore for Demarcation of Normal and Diseased Tissues. Chembiochem 2024; 25:e202300698. [PMID: 37889156 DOI: 10.1002/cbic.202300698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Using high-fidelity, permeable, lipophilic, and bright fluorophores for imaging lipid droplets (LDs) in tissues holds immense potential in diagnosing conditions such as diabetic or alcoholic fatty liver disease. In this work, we utilized linear and Λ-shaped polarity-sensitive fluorescent probes for imaging LDs in both cellular and tissue environments, specifically in rats with diabetic and alcoholic fatty liver disease. The fluorescent probes possess several key characteristics, including high permeability, lipophilicity, and brightness, which make them well-suited for efficient LD imaging. Notably, the probes exhibit a substantial Stokes shift, with 143 nm for DCS and 201 nm for DCN with selective targeting of the lipid droplets. Our experimental investigations successfully differentiated morphological variations between diseased and normal tissues in three distinct tissue types: liver, adipose, and small intestine. They could help provide pointers for improved detection and understanding of LD-related pathologies.
Collapse
Affiliation(s)
- Ms Deeksha Rajput
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382055, India
| | - Paramasivam Mahalingavelar
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta, Atlanta, Georgia, 30332, USA
| | - Ms Dhara Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology Changa, 388421, Anand, Gujarat, India
| | - Amey Bait
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382055, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology Changa, 388421, Anand, Gujarat, India
| | - Virupakshi Soppina
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Palaj, Gandhinagar, Gujarat, 382055, India
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382055, India
| |
Collapse
|
25
|
Skouloudi M, Bonou MS, Adamantou M, Parastatidou D, Kapelios C, Masoura K, Efstathopoulos E, Aggeli C, Papatheodoridis GV, Barbetseas J, Cholongitas E. Left atrial strain and ventricular global longitudinal strain in cirrhotic patients using the new criteria of Cirrhotic Cardiomyopathy Consortium. Liver Int 2023; 43:2727-2742. [PMID: 37641813 DOI: 10.1111/liv.15714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The new criteria of Cirrhotic Cardiomyopathy Consortium (CCC) propose the use of left ventricular global longitudinal strain (LV-GLS) for evaluation of systolic function in patients with cirrhosis. The aim of this study was to evaluate LV-GLS and left atrial (LA) strain in association with the severity of liver disease and to assess the characteristics of cirrhotic cardiomyopathy (CCM). METHODS One hundred and thirty-five cirrhotic patients were included. Standard echocardiography and speckle tracking echocardiography (2D-STE) were performed, and dual X-ray absorptiometry was used to quantify the total and regional fat mass. CCM was defined, based on the criteria of CCC, as having advanced diastolic dysfunction, left ventricular ejection fraction ≤50% and/or a GLS <18%. RESULTS LV-GLS lower or higher than the absolute mean value (22.7%) was not associated with mortality (logrank, p = 0.96). LV-GLS was higher in patients with Model for end stage liver disease (MELD) score ≥15 compared to MELD score <15 (p = 0.004). MELD score was the only factor independently associated with systolic function (LV-GLS <22.7% vs. ≥22.7%) (Odds Ratio:1.141, p = 0.032). Patients with CCM (n = 11) had higher values of estimated volume of visceral adipose tissue compared with patients without CCM (median: 735 vs. 641 cm3 , p = 0.039). On multivariable Cox regression analysis, MELD score [Hazard Ratio (HR):1.26, p < 0.001] and LA reservoir strain (HR:0.96, p = 0.017) were the only factors independently associated with the outcome. CONCLUSION In our study, absolute LV-GLS was higher in more severe liver disease, and LA reservoir strain was significantly associated with the outcome in patients with end-stage liver disease.
Collapse
Affiliation(s)
- Marina Skouloudi
- Department of Cardiology, General Hospital of Athens "Laiko", Athens, Greece
| | - Maria S Bonou
- Department of Cardiology, General Hospital of Athens "Laiko", Athens, Greece
| | - Magdalini Adamantou
- First Department of Internal Medicine, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece
| | - Despoina Parastatidou
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece
| | - Christos Kapelios
- Department of Cardiology, General Hospital of Athens "Laiko", Athens, Greece
| | - Konstantina Masoura
- Department of Cardiology, General Hospital of Athens "Laiko", Athens, Greece
| | - Efstathios Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantina Aggeli
- First Department of Cardiology, General Hospital of Athens "Hippokration", National and Kapodistrian University Athens School of Medicine, Athens, Greece
| | - George V Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece
| | - John Barbetseas
- Department of Cardiology, General Hospital of Athens "Laiko", Athens, Greece
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece
| |
Collapse
|
26
|
Reed RM, Whyte MB, Goff LM. Cardiometabolic disease in Black African and Caribbean populations: an ethnic divergence in pathophysiology? Proc Nutr Soc 2023:1-11. [PMID: 38230432 DOI: 10.1017/s0029665123004895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In the UK, populations of Black African and Caribbean (BAC) ethnicity suffer higher rates of cardiometabolic disease than White Europeans (WE). Obesity, leading to increased visceral adipose tissue (VAT) and intrahepatic lipid (IHL), has long been associated with cardiometabolic risk, driving insulin resistance and defective fatty acid/lipoprotein metabolism. These defects are compounded by a state of chronic low-grade inflammation, driven by dysfunctional adipose tissue. Emerging evidence has highlighted associations between central complement system components and adipose tissue, fatty acid metabolism and inflammation; it may therefore sit at the intersection of various cardiometabolic disease risk factors. However, increasing evidence suggests an ethnic divergence in pathophysiology, whereby current theories fail to explain the high rates of cardiometabolic disease in BAC populations. Lower fasting and postprandial TAG has been reported in BAC, alongside lower VAT and IHL deposition, which are paradoxical to the high rates of cardiometabolic disease exhibited by this ethnic group. Furthermore, BAC have been shown to exhibit a more anti-inflammatory profile, with lower TNF-α and greater IL-10. In contrast, recent evidence has revealed greater complement activation in BAC compared to WE, suggesting its dysregulation may play a greater role in the high rates of cardiometabolic disease experienced by this population. This review outlines the current theories of how obesity is proposed to drive cardiometabolic disease, before discussing evidence for ethnic differences in disease pathophysiology between BAC and WE populations.
Collapse
Affiliation(s)
- Reuben M Reed
- Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Martin B Whyte
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7WG, UK
| | - Louise M Goff
- Leicester Diabetes Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
27
|
Martin SD, Connor T, Sanigorski A, McEwen KA, Henstridge DC, Nijagal B, De Souza D, Tull DL, Meikle PJ, Kowalski GM, Bruce CR, Gregorevic P, Febbraio MA, Collier FM, Walder KR, McGee SL. Class IIa HDACs inhibit cell death pathways and protect muscle integrity in response to lipotoxicity. Cell Death Dis 2023; 14:787. [PMID: 38040704 PMCID: PMC10692215 DOI: 10.1038/s41419-023-06319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Lipotoxicity, the accumulation of lipids in non-adipose tissues, alters the metabolic transcriptome and mitochondrial metabolism in skeletal muscle. The mechanisms involved remain poorly understood. Here we show that lipotoxicity increased histone deacetylase 4 (HDAC4) and histone deacetylase 5 (HDAC5), which reduced the expression of metabolic genes and oxidative metabolism in skeletal muscle, resulting in increased non-oxidative glucose metabolism. This metabolic reprogramming was also associated with impaired apoptosis and ferroptosis responses, and preserved muscle cell viability in response to lipotoxicity. Mechanistically, increased HDAC4 and 5 decreased acetylation of p53 at K120, a modification required for transcriptional activation of apoptosis. Redox drivers of ferroptosis derived from oxidative metabolism were also reduced. The relevance of this pathway was demonstrated by overexpression of loss-of-function HDAC4 and HDAC5 mutants in skeletal muscle of obese db/db mice, which enhanced oxidative metabolic capacity, increased apoptosis and ferroptosis and reduced muscle mass. This study identifies HDAC4 and HDAC5 as repressors of skeletal muscle oxidative metabolism, which is linked to inhibition of cell death pathways and preservation of muscle integrity in response to lipotoxicity.
Collapse
Affiliation(s)
- Sheree D Martin
- Institute for Mental and Physical Heath and Clinical Translation (IMPACT) and Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
| | - Timothy Connor
- Institute for Mental and Physical Heath and Clinical Translation (IMPACT) and Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
| | - Andrew Sanigorski
- Institute for Mental and Physical Heath and Clinical Translation (IMPACT) and Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
| | - Kevin A McEwen
- Institute for Mental and Physical Heath and Clinical Translation (IMPACT) and Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
| | - Darren C Henstridge
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Brunda Nijagal
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - David De Souza
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dedreia L Tull
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Greg M Kowalski
- Institute for Mental and Physical Heath and Clinical Translation (IMPACT) and Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
- Institute of Physical Activity and Nutrition (IPAN) and School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Clinton R Bruce
- Institute of Physical Activity and Nutrition (IPAN) and School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Ken R Walder
- Institute for Mental and Physical Heath and Clinical Translation (IMPACT) and Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
| | - Sean L McGee
- Institute for Mental and Physical Heath and Clinical Translation (IMPACT) and Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, 3216, Australia.
| |
Collapse
|
28
|
Wilkins AA, Schwarz B, Torres-Escobar A, Castore R, Landry L, Latimer B, Bohrnsen E, Bosio CM, Dragoi AM, Ivanov SS. The intracellular growth of the vacuolar pathogen Legionella pneumophila is dependent on the acyl chain composition of host membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567753. [PMID: 38045297 PMCID: PMC10690232 DOI: 10.1101/2023.11.19.567753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Legionella pneumophila is an accidental human bacterial pathogen that infects and replicates within alveolar macrophages causing a severe atypical pneumonia known as Legionnaires' disease. As a prototypical vacuolar pathogen L. pneumophila establishes a unique endoplasmic reticulum (ER)-derived organelle within which bacterial replication takes place. Bacteria-derived proteins are deposited in the host cytosol and in the lumen of the pathogen-occupied vacuole via a type IVb (T4bSS) and a type II (T2SS) secretion system respectively. These secretion system effector proteins manipulate multiple host functions to facilitate intracellular survival of the bacteria. Subversion of host membrane glycerophospholipids (GPLs) by the internalized bacteria via distinct mechanisms feature prominently in trafficking and biogenesis of the Legionella -containing vacuole (LCV). Conventional GPLs composed of a glycerol backbone linked to a polar headgroup and esterified with two fatty acids constitute the bulk of membrane lipids in eukaryotic cells. The acyl chain composition of GPLs dictates phase separation of the lipid bilayer and therefore determines the physiochemical properties of biological membranes - such as membrane disorder, fluidity and permeability. In mammalian cells, fatty acids esterified in membrane GPLs are sourced endogenously from de novo synthesis or via internalization from the exogenous pool of lipids present in serum and other interstitial fluids. Here, we exploited the preferential utilization of exogenous fatty acids for GPL synthesis by macrophages to reprogram the acyl chain composition of host membranes and investigated its impact on LCV homeostasis and L. pneumophila intracellular replication. Using saturated fatty acids as well as cis - and trans - isomers of monounsaturated fatty acids we discovered that under conditions promoting lipid packing and membrane rigidification L. pneumophila intracellular replication was significantly reduced. Palmitoleic acid - a C16:1 monounsaturated fatty acid - that promotes membrane disorder when enriched in GPLs significantly increased bacterial replication within human and murine macrophages but not in axenic growth assays. Lipidome analysis of infected macrophages showed that treatment with exogenous palmitoleic acid resulted in membrane acyl chain reprogramming in a manner that promotes membrane disorder and live-cell imaging revealed that the consequences of increasing membrane disorder impinge on several LCV homeostasis parameters. Collectively, we provide experimental evidence that L. pneumophila replication within its intracellular niche is a function of the lipid bilayer disorder and hydrophobic thickness.
Collapse
|
29
|
Bamgbose TT, Schilke RM, Igiehon OO, Nkadi EH, Custis D, Bharrhan S, Schwarz B, Bohrnsen E, Bosio CM, Scott RS, Yurdagul A, Finck BN, Woolard MD. Lipin-1 restrains macrophage lipid synthesis to promote inflammation resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563587. [PMID: 37961352 PMCID: PMC10634750 DOI: 10.1101/2023.10.23.563587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Macrophages are critical to maintaining and restoring tissue homeostasis during inflammation. The lipid metabolic state of macrophages influences their function, but a deeper understanding of how lipid metabolism is regulated in pro-resolving macrophage responses is needed. Lipin-1 is a phosphatidic acid phosphatase with a transcriptional coregulatory activity (TC) that regulates lipid metabolism. We previously demonstrated that lipin-1 supports pro-resolving macrophage responses, and here, myeloid-associated lipin-1 is required for inflammation resolution, yet how lipin-1-regulated cellular mechanisms promote macrophage pro-resolution responses is unknown. We demonstrated that the loss of lipin-1 in macrophages led to increased free fatty acid, neutral lipid, and ceramide content and increased phosphorylation of acetyl-CoA carboxylase. The inhibition of the first step of lipid synthesis and transport of citrate from the mitochondria in macrophages reduced lipid content and restored efferocytosis and inflammation resolution in lipin-1mKO macrophages and mice. Our findings suggest macrophage-associated lipin-1 restrains lipid synthesis, promoting pro-resolving macrophage function in response to pro-resolving stimuli.
Collapse
Affiliation(s)
- Temitayo T. Bamgbose
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Robert M. Schilke
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Oluwakemi O. Igiehon
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ebubechukwu H. Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - David Custis
- Research Core Facility, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Sushma Bharrhan
- Center for Applied Immunology and Pathological Processes (CAIPP), Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Benjamin Schwarz
- Proteins & Chemistry Section, Research and Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Eric Bohrnsen
- Proteins & Chemistry Section, Research and Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Applied Immunology and Pathological Processes (CAIPP), Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Brian N. Finck
- Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Matthew D. Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Applied Immunology and Pathological Processes (CAIPP), Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
30
|
Rath S, Maiti D, Modi M, Pal P, Munan S, Mohanty B, Bhatia A, Bhowal R, Priyadarshini R, Samanta A, Munshi P, Sen S. Metal-free synthesis and study of glycine betaine derivatives in water for antimicrobial and anticancer applications. iScience 2023; 26:107285. [PMID: 37575199 PMCID: PMC10415718 DOI: 10.1016/j.isci.2023.107285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023] Open
Abstract
A sustainable synthesis of interesting glycine betaine derivatives from cyclic 3°-amines viz. N-methyl morpholine (NMM), N-methyl piperidine (NMP), and 1,4-diazabicyclo[2.2.2]octane (DABCO) with numerous aryl diazoacetates 1 in water and under blue LED is reported. Generally, 3°-amines and metal carbenoids (from diazoacetates with transition metal catalysts) provide C-H insertion at the α-position of the amines. Computational comparison of the metal carbenoid with the singlet carbene (metal free and generated under blue LED) realized the difference in reactivity. Next, experimental results corroborated the preliminary findings. The products were isolated either by precipitation of the solid or gel-like final products from the aqueous reaction mixture without any chromatographic purification. The reaction mechanism was realized by control experiments. These compounds exhibit selective bactericidal properties against Gram-positive S. aureus, induce lipid droplets (LDs) formation in HePG2 cells and single crystal X-ray diffraction study of their halogenated analogs reveal interesting Hal … Hal contacts.
Collapse
Affiliation(s)
- Suchismita Rath
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Gautam Buddha Nagar, Chithera, Dadri, UP 201310, India
| | - Debajit Maiti
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Gautam Buddha Nagar, Chithera, Dadri, UP 201310, India
| | - Malvika Modi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Gautam Buddha Nagar, Chithera, Dadri, UP 201310, India
| | - Parul Pal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Gautam Buddha Nagar, Chithera, Dadri, UP 201310, India
| | - Subrata Munan
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Gautam Buddha Nagar, Chithera, Dadri, UP 201310, India
| | - Biswajit Mohanty
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Gautam Buddha Nagar, Chithera, Dadri, UP 201310, India
| | - Anjani Bhatia
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Gautam Buddha Nagar, Chithera, Dadri, UP 201310, India
| | - Rohit Bhowal
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Gautam Buddha Nagar, Chithera, Dadri, UP 201310, India
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Gautam Buddha Nagar, Chithera, Dadri, UP 201310, India
| | - Animesh Samanta
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Gautam Buddha Nagar, Chithera, Dadri, UP 201310, India
| | - Parthapratim Munshi
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Gautam Buddha Nagar, Chithera, Dadri, UP 201310, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Gautam Buddha Nagar, Chithera, Dadri, UP 201310, India
| |
Collapse
|
31
|
Daehn IS, Ekperikpe US, Stadler K. Redox regulation in diabetic kidney disease. Am J Physiol Renal Physiol 2023; 325:F135-F149. [PMID: 37262088 PMCID: PMC10393330 DOI: 10.1152/ajprenal.00047.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most devastating complications of diabetes mellitus, where currently there is no cure available. Several important mechanisms contribute to the pathogenesis of this complication, with oxidative stress being one of the key factors. The past decades have seen a large number of publications with various aspects of this topic; however, the specific details of redox regulation in DKD are still unclear. This is partly because redox biology is very complex, coupled with a complex and heterogeneous organ with numerous cell types. Furthermore, often times terms such as "oxidative stress" or reactive oxygen species are used as a general term to cover a wide and rich variety of reactive species and their differing reactions. However, no reactive species are the same, and not all of them are capable of biologically relevant reactions or "redox signaling." The goal of this review is to provide a biochemical background for an array of specific reactive oxygen species types with varying reactivity and specificity in the kidney as well as highlight some of the advances in redox biology that are paving the way to a better understanding of DKD development and risk.
Collapse
Affiliation(s)
- Ilse S Daehn
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Ubong S Ekperikpe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
32
|
Schindler M, Geisler SM, Seeling T, Navarrete Santos A. Ectopic Lipid Accumulation Correlates with Cellular Stress in Rabbit Blastocysts from Diabetic Mothers. Int J Mol Sci 2023; 24:11776. [PMID: 37511535 PMCID: PMC10380447 DOI: 10.3390/ijms241411776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Maternal diabetes mellitus in early pregnancy leads to hyperlipidemia in reproductive tract organs and an altered embryonic environment. To investigate the consequences on embryonic metabolism, the effect of high environmental-lipid levels was studied in rabbit blastocysts cultured with a lipid mixture in vitro and in blastocysts from diabetic, hyperlipidemic rabbits in vivo. The gene and protein expression of marker molecules involved in lipid metabolism and stress response were analyzed. In diabetic rabbits, the expression of embryoblast genes encoding carnitine palmityl transferase 1 and peroxisome proliferator-activated receptors α and γ increased, whereas trophoblast genes encoding for proteins associated with fatty acid synthesis and β-oxidation decreased. Markers for endoplasmic (activating transcription factor 4) and oxidative stress (nuclear factor erythroid 2-related factor 2) were increased in embryoblasts, while markers for cellular redox status (superoxide dismutase 2) and stress (heat shock protein 70) were increased in trophoblasts from diabetic rabbits. The observed regulation pattern in vivo was consistent with an adaptation response to the hyperlipidemic environment, suggesting that maternal lipids have an impact on the intracellular metabolism of the preimplantation embryo in diabetic pregnancy and that embryoblasts are particularly vulnerable to metabolic stress.
Collapse
Affiliation(s)
- Maria Schindler
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University, 06108 Halle, Germany
| | - Sophia Mareike Geisler
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University, 06108 Halle, Germany
| | - Tom Seeling
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University, 06108 Halle, Germany
| | - Anne Navarrete Santos
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University, 06108 Halle, Germany
| |
Collapse
|
33
|
Abstract
Cellular membranes are essential components of all living organisms. They are composed of a complex mixture of lipids with diverse chemical structures and crucial biological functions. The dynamic and heterogeneous nature of cellular membranes presents a challenge for studying their biophysical properties and organization in vivo. Raman imaging, particularly coherent Raman scattering techniques such as stimulated Raman scattering (SRS) microscopy, have emerged as powerful tools for studying cellular membranes with high spatial and temporal resolution and minimal perturbation. In this Review, we discuss the scientific importance and technical challenges of characterizing membrane composition in cellular contexts and how the advances of Raman imaging can provide unique insights into membrane phase behavior and organization. We also highlight recent applications of Raman imaging in studying cellular membranes and implications in diseases. In particular, the discovery of phase separation and a solid-phase intracellular membrane on endoplasmic reticulum is reviewed in detail, shedding light on the biology of lipotoxicity.
Collapse
Affiliation(s)
- Yihui Shen
- Chemistry and Lewis Sigler Institute of Genomics, Princeton University, Princeton, NJ, 08540, United States
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States, 91125
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
34
|
Jin Y, Tan Y, Wu J, Ren Z. Lipid droplets: a cellular organelle vital in cancer cells. Cell Death Discov 2023; 9:254. [PMID: 37474495 PMCID: PMC10359296 DOI: 10.1038/s41420-023-01493-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Lipid droplets (LDs) are cellular organelles comprising a core of neutral lipids (glycerides, sterols) encased within a single phospholipid membrane, responsible for storing surplus lipids and furnishing cellular energy. LDs engage in lipid synthesis, catabolism, and transport processes by interacting with other organelles (e.g., endoplasmic reticulum, mitochondria), and they play critical roles in regulating cellular stress and immunity. Recent research has uncovered that an elevated number of LDs is a hallmark of cancer cells, attributable to their enhanced lipid uptake and synthesis capacity, with lipids stored as LDs. Depletion of LDs in cancer cells induces apoptosis, prompting the emergence of small molecule antitumor drugs targeting LDs or key factors (e.g., FASN, SCD1) within the lipid synthesis pathway. Advancements in LD isolation and artificial synthesis have demonstrated their potential applicability in antitumor research. LDs extracted from murine adipose tissue and incubated with lipophilic antitumor drugs yield drug-coated LDs, which promote apoptosis in cancer cells. Furthermore, LDs have been employed as biological lenses to augment the resolution of subcellular structures (microfilaments, microtubules), facilitating the observation of intricate structures within thicker cells, including cancer cells. This review delineates the functional and metabolic mechanisms of LDs in cancer cells and encapsulates recent progress in LD-centered antitumor research, offering novel insights for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Yanjie Tan
- Institute of Biomedical Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, P. R. China
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, P. R. China.
- Hubei Hongshan Laboratory, Wuhan, P. R. China.
| |
Collapse
|
35
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
36
|
Abstract
Cardiometabolic diseases, including cardiovascular disease and diabetes, are major causes of morbidity and mortality worldwide. Despite progress in prevention and treatment, recent trends show a stalling in the reduction of cardiovascular disease morbidity and mortality, paralleled by increasing rates of cardiometabolic disease risk factors in young adults, underscoring the importance of risk assessments in this population. This review highlights the evidence for molecular biomarkers for early risk assessment in young individuals. We examine the utility of traditional biomarkers in young individuals and discuss novel, nontraditional biomarkers specific to pathways contributing to early cardiometabolic disease risk. Additionally, we explore emerging omic technologies and analytical approaches that could enhance risk assessment for cardiometabolic disease.
Collapse
Affiliation(s)
- Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School
| |
Collapse
|
37
|
Kolleritsch S, Pajed L, Tilp A, Hois V, Pototschnig I, Kien B, Diwoky C, Hoefler G, Schoiswohl G, Haemmerle G. Adverse cardiac remodeling augments adipose tissue ß-adrenergic signaling and lipolysis counteracting diet-induced obesity. J Biol Chem 2023; 299:104788. [PMID: 37150323 PMCID: PMC10318461 DOI: 10.1016/j.jbc.2023.104788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023] Open
Abstract
Cardiac triacylglycerol accumulation is a common characteristic of obesity and type 2 diabetes and strongly correlates with heart morbidity and mortality. We have previously shown that cardiomyocyte-specific perilipin 5 overexpression (Plin5-Tg) provokes significant cardiac steatosis via lowering cardiac lipolysis and fatty acid (FA) oxidation. In strong contrast to cardiac steatosis and lethal heart dysfunction in adipose triglyceride lipase deficiency, Plin5-Tg mice do not develop heart dysfunction and show a normal life span on chow diet. This finding prompted us to study heart function and energy metabolism in Plin5-Tg mice fed high-fat diet (HFD). Plin5-Tg mice showed adverse cardiac remodeling on HFD with heart function only being compromised in one-year-old mice, likely due to reduced cardiac FA uptake, thereby delaying deleterious cardiac lipotoxicity. Notably, Plin5-Tg mice were less obese and protected from glucose intolerance on HFD. Changes in cardiac energy catabolism in Plin5-Tg mice increased ß-adrenergic signaling, lipolytic, and thermogenic protein expression in adipose tissue ultimately counteracting HFD-induced obesity. Acute cold exposure further augmented ß-adrenergic signaling in Plin5-Tg mice, whereas housing at thermoneutrality did not protect Plin5-Tg mice from HFD-induced obesity albeit blood glucose and insulin levels remained low in transgenic mice. Overall, our data suggest that the limited capacity for myocardial FA oxidation on HFD increases cardiac stress in Plin5-Tg mice, thereby stimulating adipose tissue ß-adrenergic signaling, triacylglycerol catabolism, and thermogenesis. However, long-term HFD-mediated metabolic stress causes contractile dysfunction in Plin5-Tg mice, which emphasizes the importance of a carefully controlled dietary regime in patients with cardiac steatosis and hypertrophy.
Collapse
Affiliation(s)
| | - Laura Pajed
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Anna Tilp
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Victoria Hois
- Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | | | - Benedikt Kien
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Clemens Diwoky
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria; BioTechMed, Graz, Graz, Austria
| | - Gabriele Schoiswohl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed, Graz, Graz, Austria; Department of Pharmacology and Toxicology, University of Graz, Graz, Austria.
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed, Graz, Graz, Austria.
| |
Collapse
|
38
|
Han Y, Wu H, Sun S, Zhao R, Deng Y, Zeng S, Chen J. Effect of High Fat Diet on Disease Development of Polycystic Ovary Syndrome and Lifestyle Intervention Strategies. Nutrients 2023; 15:2230. [PMID: 37432488 PMCID: PMC10180647 DOI: 10.3390/nu15092230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder that affects premenopausal women. The etiology of PCOS is multifaceted, involving various genetic and epigenetic factors, hypothalamic-pituitary-ovarian dysfunction, androgen excess, insulin resistance, and adipose-related mechanisms. High-fat diets (HFDs) has been linked to the development of metabolic disorders and weight gain, exacerbating obesity and impairing the function of the hypothalamic-pituitary-ovarian axis. This results in increased insulin resistance, hyperinsulinemia, and the release of inflammatory adipokines, leading to heightened fat synthesis and reduced fat breakdown, thereby worsening the metabolic and reproductive consequences of PCOS. Effective management of PCOS requires lifestyle interventions such as dietary modifications, weight loss, physical activity, and psychological well-being, as well as medical or surgical interventions in some cases. This article systematically examines the pathological basis of PCOS and the influence of HFDs on its development, with the aim of raising awareness of the connection between diet and reproductive health, providing a robust approach to lifestyle interventions, and serving as a reference for the development of targeted drug treatments.
Collapse
Affiliation(s)
- Yingxue Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| | - Rong Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifan Deng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100190, China
| |
Collapse
|
39
|
Lu X, Huang L, Chen Y, Hu L, Zhong R, Chen L, Cheng W, Zheng B, Liang P. Effect of DHA-Enriched Phospholipids from Fish Roe on Rat Fecal Metabolites: Untargeted Metabolomic Analysis. Foods 2023; 12:foods12081687. [PMID: 37107484 PMCID: PMC10137559 DOI: 10.3390/foods12081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Lipid metabolism disorder has become an important hidden danger threatening human health, and various supplements to treat lipid metabolism disorder have been studied. Our previous studies have shown that DHA-enriched phospholipids from large yellow croaker (Larimichthys Crocea) roe (LYCRPLs) have lipid-regulating effects. To better explain the effect of LYCRPLs on lipid regulation in rats, the fecal metabolites of rats were analyzed from the level of metabolomics in this study, and GC/MS metabolomics measurements were performed to figure out the effect of LYCRPLs on fecal metabolites in rats. Compared with the control (K) group, 101 metabolites were identified in the model (M) group. There were 54, 47, and 57 metabolites in the low-dose (GA), medium-dose (GB), and high-dose (GC) groups that were significantly different from that of group M, respectively. Eighteen potential biomarkers closely related to lipid metabolism were screened after intervention with different doses of LYCRPLs on rats, which were classified into several metabolic pathways in rats, including pyrimidine metabolism, the citric acid cycle (TCA cycle), the metabolism of L-cysteine, carnitine synthesis, pantothenate and CoA biosynthesis, glycolysis, and bile secretion. L-cysteine was speculated to be a useful biomarker of LYCRPLs acting on rat fecal metabolites. Our findings indicated that LYCRPLs may regulate lipid metabolism disorders in SD rats by activating these metabolic pathways.
Collapse
Affiliation(s)
- Xiaodan Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Luyao Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanjun Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Liang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
40
|
Liu B, He S, Li C, Feng C, Wang H, Zhang H, Tu C, Li Z. Integration analysis based on fatty acid metabolism robustly predicts prognosis, dissecting immunity microenvironment and aiding immunotherapy for soft tissue sarcoma. Front Genet 2023; 14:1161791. [PMID: 37065471 PMCID: PMC10097927 DOI: 10.3389/fgene.2023.1161791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Soft tissue sarcoma (STS) is a highly malignant tumor with a dismal prognosis. Presently, the dysregulation of fatty acid metabolism has received increasing attention in tumor research, but fewer reports are relevant to STS.Methods: Based on fatty acid metabolism-related genes (FRGs), a novel risk score for STS was developed utilizing univariate analysis and least absolute shrinkage selection operator (LASSO) Cox regression analyses in the STS cohort, which were further validated using the external validation cohort from other databases. Furthermore, independent prognostic analysis, C-index, ROC curves, and nomogram were carried out to investigate the predictive performance of fatty acid-related risk scores. We also analysed the differences in enrichment pathways, the immune microenvironment, gene mutations, and immunotherapy response between the two distinct fatty acid score groups. Moreover, the real-time quantitative polymerase chain reaction (RT-qPCR) was used to further verify the expression of FRGs in STS.Results: A total of 153 FRGs were retrieved in our study. Next, a novel fatty acid metabolism-related risk score (FAS) was constructed based on 18 FRGs. The predictive performance of FAS was also verified in external cohorts. In addition, the independent analysis, C-index, ROC curve, and nomograph also revealed that FAS could serve as an independent prognostic factor for the STS patients. Meanwhile, our results demonstrated that the STS cohort in two distinct FAS groups had different copy number variations, immune cell infiltration, and immunotherapy responses. Finally, the in vitro validation results demonstrated that several FRGs included in the FAS exhibited abnormal expression in STS.Conclusion: Altogether, our work comprehensively and systematically clarifies fatty acid metabolism’s potential roles and clinical significance in STS. The novel individualized score based on fatty acid metabolism may be provided as a potential marker and treatment strategy in STS.
Collapse
Affiliation(s)
- Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chengyao Feng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haixia Zhang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- *Correspondence: Chao Tu, ; Zhihong Li,
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- *Correspondence: Chao Tu, ; Zhihong Li,
| |
Collapse
|
41
|
A Perspective on the Link between Mitochondria-Associated Membranes (MAMs) and Lipid Droplets Metabolism in Neurodegenerative Diseases. BIOLOGY 2023; 12:biology12030414. [PMID: 36979106 PMCID: PMC10045954 DOI: 10.3390/biology12030414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Mitochondria interact with the endoplasmic reticulum (ER) through contacts called mitochondria-associated membranes (MAMs), which control several processes, such as the ER stress response, mitochondrial and ER dynamics, inflammation, apoptosis, and autophagy. MAMs represent an important platform for transport of non-vesicular phospholipids and cholesterol. Therefore, this region is highly enriched in proteins involved in lipid metabolism, including the enzymes that catalyze esterification of cholesterol into cholesteryl esters (CE) and synthesis of triacylglycerols (TAG) from fatty acids (FAs), which are then stored in lipid droplets (LDs). LDs, through contact with other organelles, prevent the toxic consequences of accumulation of unesterified (free) lipids, including lipotoxicity and oxidative stress, and serve as lipid reservoirs that can be used under multiple metabolic and physiological conditions. The LDs break down by autophagy releases of stored lipids for energy production and synthesis of membrane components and other macromolecules. Pathological lipid deposition and autophagy disruption have both been reported to occur in several neurodegenerative diseases, supporting that lipid metabolism alterations are major players in neurodegeneration. In this review, we discuss the current understanding of MAMs structure and function, focusing on their roles in lipid metabolism and the importance of autophagy in LDs metabolism, as well as the changes that occur in neurogenerative diseases.
Collapse
|
42
|
Mukherjee S, Maheshwari D, Pal R, Sachdeva N. Pancreatic fat in type 2 diabetes: Causal or coincidental? World J Meta-Anal 2023; 11:68-78. [DOI: 10.13105/wjma.v11.i3.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/27/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Type 2 diabetes (T2D) is a multifactorial metabolic disorder affecting more than 450 million people across the globe. With the increasing prevalence of T2D and obesity, the role of fat accumulation at sites other than subcutaneous adipose tissue has received significant attention in the pathophysiology of T2D. Over the past decade and a half, a pressing concern has emerged on investigating the association of pancreatic fat accumulation or pancreatic steatosis with the development of disease. While a few reports have suggested a possible association between pancreatic fat and T2D and/or impaired glucose metabolism, a few reports suggest a lack of such association. Pancreatic fat has also been linked with genetic risk of developing T2D, prediabetes, reduced insulin secretion, and beta cell dysfunction albeit some confounding factors such as age and ethnicity may affect the outcome. With the technological advancements in clinical imaging and progress in assessment of pancreatic beta cell function, our understanding of the role of pancreatic fat in causing insulin resistance and development of various etiologies of T2D has significantly improved. This review summarizes various findings on the possible association of pancreatic fat accumulation with the pathophysiology of T2D.
Collapse
Affiliation(s)
- Soham Mukherjee
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deep Maheshwari
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rimesh Pal
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
43
|
Contini C, Kuntz J, Massing U, Merfort I, Winkler K, Pütz G. On the validity of fluorimetric intracellular calcium detection: Impact of lipid components. Biochem Biophys Res Commun 2023; 643:186-191. [PMID: 36621114 DOI: 10.1016/j.bbrc.2022.12.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
We investigated the effects of different lipids on the activity of the angiotensin II type 1 receptor (AT1R). As calcium plays a key role in the signaling of the AT1R, we used the calcium-sensitive fluorescence indicators fura-2 to detect intracellular calcium release upon stimulation with the agonist angiotensin II. At first sight, cells preincubated with Very low-density lipoprotein (VLDL) showed a reduced calcium release triggered by angiontensin II compared to untreated control. However, on closer examination, this result seemed to be an artifact. Incubation with VLDL reduced also the amount of intracellular fura-2, as measured by fluorescence in the isosbestic point. Additionally, the maximal obtainable ratio, obtained after complete saturation with calcium ions, was reduced in cells preincubated with VLDL. These findings rendered our initial results questionable. We report the results of our work and our suggestions regarding the experimental setup to contribute to the understanding of the interpretation of fura-2 measurements and to avoid erroneous conclusions.
Collapse
Affiliation(s)
- Christine Contini
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg im Breisgau, Germany.
| | - Julia Kuntz
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg im Breisgau, Germany
| | - Ulrich Massing
- Andreas Hettich GmbH & Co KG, Bismarckallee 7, 79098 Freiburg im Breisgau, Germany
| | - Irmgard Merfort
- Institute of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Straße 19 VF, 79104 Freiburg im Breisgau, Germany
| | - Karl Winkler
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg im Breisgau, Germany
| | - Gerhard Pütz
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg im Breisgau, Germany
| |
Collapse
|
44
|
Li X, Liu Q, Pan Y, Chen S, Zhao Y, Hu Y. New insights into the role of dietary triglyceride absorption in obesity and metabolic diseases. Front Pharmacol 2023; 14:1097835. [PMID: 36817150 PMCID: PMC9932209 DOI: 10.3389/fphar.2023.1097835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The incidence of obesity and associated metabolic diseases is increasing globally, adversely affecting human health. Dietary fats, especially triglycerides, are an important source of energy for the body, and the intestine absorbs lipids through a series of orderly and complex steps. A long-term high-fat diet leads to intestinal dysfunction, inducing obesity and metabolic disorders. Therefore, regulating dietary triglycerides absorption is a promising therapeutic strategy. In this review, we will discuss diverse aspects of the dietary triglycerides hydrolysis, fatty acid uptake, triglycerides resynthesis, chylomicron assembly, trafficking, and secretion processes in intestinal epithelial cells, as well as potential targets in this process that may influence dietary fat-induced obesity and metabolic diseases. We also mention the possible shortcomings and deficiencies in modulating dietary lipid absorption targets to provide a better understanding of their administrability as drugs in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaohong Liu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| |
Collapse
|
45
|
Rose TD, Köhler N, Falk L, Klischat L, Lazareva OE, Pauling JK. Lipid network and moiety analysis for revealing enzymatic dysregulation and mechanistic alterations from lipidomics data. Brief Bioinform 2023; 24:bbac572. [PMID: 36592059 PMCID: PMC9851308 DOI: 10.1093/bib/bbac572] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 01/03/2023] Open
Abstract
Lipidomics is of growing importance for clinical and biomedical research due to many associations between lipid metabolism and diseases. The discovery of these associations is facilitated by improved lipid identification and quantification. Sophisticated computational methods are advantageous for interpreting such large-scale data for understanding metabolic processes and their underlying (patho)mechanisms. To generate hypothesis about these mechanisms, the combination of metabolic networks and graph algorithms is a powerful option to pinpoint molecular disease drivers and their interactions. Here we present lipid network explorer (LINEX$^2$), a lipid network analysis framework that fuels biological interpretation of alterations in lipid compositions. By integrating lipid-metabolic reactions from public databases, we generate dataset-specific lipid interaction networks. To aid interpretation of these networks, we present an enrichment graph algorithm that infers changes in enzymatic activity in the context of their multispecificity from lipidomics data. Our inference method successfully recovered the MBOAT7 enzyme from knock-out data. Furthermore, we mechanistically interpret lipidomic alterations of adipocytes in obesity by leveraging network enrichment and lipid moieties. We address the general lack of lipidomics data mining options to elucidate potential disease mechanisms and make lipidomics more clinically relevant.
Collapse
Affiliation(s)
- Tim D Rose
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Nikolai Köhler
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Lisa Falk
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Lucie Klischat
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Olga E Lazareva
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Junior Clinical Cooperation Unit Multiparametric methods for early detection of prostate cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
46
|
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone involved in energy homeostasis that protects against the development of obesity and diabetes in animal models. Its level is elevated in atherosclerotic cardiovascular diseases (CVD) in humans. However, little is known about the role of FGF21 in heart failure (HF). HF is a major global health problem with a prevalence that is predicted to rise, especially in ageing populations. Despite improved therapies, mortality due to HF remains high, and given its insidious onset, prediction of its development is challenging for physicians. The emergence of cardiac biomarkers to improve prediction, diagnosis, and prognosis of HF has received much attention over the past decade. Recent studies have suggested FGF21 is a promising biomarker candidate for HF. Preclinical research has shown that FGF21 is involved in the pathophysiology of HF through the prevention of oxidative stress, cardiac hypertrophy, and inflammation in cardiomyocytes. However, in the available clinical literature, FGF21 levels appear to be paradoxically raised in HF, potentially implying a FGF21 resistant state as occurs in obesity. Several potential confounding variables complicate the verdict on whether FGF21 is of clinical value as a biomarker. Further research is thus needed to evaluate whether FGF21 has a causal role in HF, and whether circulating FGF21 can be used as a biomarker to improve the prediction, diagnosis, and prognosis of HF. This review draws from preclinical and clinical studies to explore the role of FGF21 in HF.
Collapse
Affiliation(s)
- William Tucker
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Bradley Tucker
- Rural Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kwok Leung Ong
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
47
|
Krawczyk K, Marynowicz W, Pich K, Jedruch O, Kania G, Gogola-Mruk J, Tworzydlo W, Polanski Z, Ptak A. Persistent organic pollutants affect steroidogenic and apoptotic activities in granulosa cells and reactive oxygen species concentrations in oocytes in the mouse. Reprod Fertil Dev 2023; 35:294-305. [PMID: 36403477 DOI: 10.1071/rd21326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
Abstract
CONTEXT The destruction of granulosa cells (GCs), the main functional cell type in the ovary, prevents steroid hormone production, which in turn may damage oocytes, resulting in ovarian failure. The accumulation of a number of persistent organic pollutants (POPs) in the ovarian follicular fluid (FF) has been documented, which raises serious questions regarding their impact on female fertility. AIMS We aimed to determine whether a mixture of POPs reflecting the profile found in FF influences mouse GCs or oocyte function and viability. METHODS A mixture of POPs, comprising perfluorooctanoate, perfluorooctane sulfonate, 2,2-dichlorodiphenyldichloroethylene, polychlorinated biphenyl 153, and hexachlorobenzene, was used. In addition to using the exact concentration of POPs previously measured in human FF, we tested two other mixtures, one with10-fold lower and another with 10-fold higher concentrations of each POP. KEY RESULTS Steroidogenesis was disrupted in GCs by the POP mixture, as demonstrated by lower oestradiol and progesterone secretion and greater lipid droplet accumulation. Furthermore, the POP mixture reduced GC viability and increased apoptosis, assessed using caspase-3 activity. The POP mixture significantly increased the number of oocytes that successfully progressed to the second meiotic metaphase and the oocyte reactive oxygen species (ROS) concentration. CONCLUSIONS Thus, a mixture of POPs that are typically present in human FF has detrimental effects on ovarian function: it reduces the viability of GCs, and increases the oocyte concentrations of ROS. IMPLICATIONS These results indicate that chronic exposure to POPs adversely affects female reproductive health.
Collapse
Affiliation(s)
- Kinga Krawczyk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Oliwia Jedruch
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Gabriela Kania
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Zbigniew Polanski
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
48
|
Efficient oral delivery of water-soluble CT contrast agent using an W1/O/W2 alginate hydrogel matrix. Colloids Surf B Biointerfaces 2022; 220:112862. [DOI: 10.1016/j.colsurfb.2022.112862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
|
49
|
Liu H, Witzigreuter L, Sathiaseelan R, Agbaga MP, Brush RS, Stout MB, Zhu S. Obesity promotes lipid accumulation in mouse cartilage-A potential role of acetyl-CoA carboxylase (ACC) mediated chondrocyte de novo lipogenesis. J Orthop Res 2022; 40:2771-2779. [PMID: 35279877 PMCID: PMC9647658 DOI: 10.1002/jor.25322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Abstract
Obesity promotes the development of osteoarthritis (OA). It is also well-established that obesity leads to excessive lipid deposition in nonadipose tissues, which often induces lipotoxicity. The objective of this study was to investigate changes in the levels of various lipids in mouse cartilage in the context of obesity and determine if chondrocyte de novo lipogenesis is altered. We used Oil Red O to determine the accumulation of lipid droplets in cartilage from mice fed high-fat diet (HFD) or low-fat diet (LFD). We further used mass spectrometry-based lipidomic analyses to quantify levels of different lipid species. Expression of genes involving in fatty acid (FA) uptake, synthesis, elongation, and desaturation were examined using quantitative polymerase chain reaction. To further study the potential mechanisms, we cultured primary mouse chondrocytes under high-glucose and high-insulin conditions to mimic the local microenvironment associated with obesity and subsequently examined the abundance of cellular lipid droplets. The acetyl-CoA carboxylase (ACC) inhibitor, ND-630, was added to the culture medium to examine the effect of inhibiting de novo lipogenesis on lipid accumulation in chondrocytes. When compared to the mice receiving LFD, the HFD group displayed more chondrocytes with visible intracellular lipid droplets. Significantly higher amounts of total FAs were also detected in the HFD group. Five out of six significantly upregulated FAs were ω-6 FAs, while the two significantly downregulated FAs were ω-3 FAs. Consequently, the HFD group displayed a significantly higher ω-6/ω-3 FA ratio. Ether linked phosphatidylcholine was also found to be higher in the HFD group. Fatty acid desaturase (Fad1-3), fatty acid-binding protein 4 (Fabp4), and fatty acid synthase (Fasn) transcripts were not found to be different between the treatment groups and fatty acid elongase (Elovl1-7) transcripts were undetectable in cartilage. Ceramide synthase 2 (Cers-2), the only transcript found to be changed in these studies, was significantly upregulated in the HFD group. In vitro, chondrocytes upregulated de novo lipogenesis when cultured under high-glucose, high-insulin conditions, and this observation was associated with the activation of ACC, which was attenuated by the addition of ND-630. This study provides the first evidence that lipid deposition is increased in cartilage with obesity and that this is associated with the upregulation of ACC-mediated de novo lipogenesis. This was supported by our observation that ACC inhibition ameliorated lipid accumulation in chondrocytes, thereby suggesting that ACC could potentially be targeted to treat obesity-associated OA.
Collapse
Affiliation(s)
- Huanhuan Liu
- Department of Biomedical Sciences, Ohio University, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, OH, 45701, USA
| | - Luke Witzigreuter
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Roshini Sathiaseelan
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, OK, 73117, USA
| | - Martin-Paul Agbaga
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, OK, 73104, USA
- Dean A. McGee Eye Institute, OK, 73104, USA
| | - Richard S. Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, OK, 73104, USA
- Dean A. McGee Eye Institute, OK, 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Shouan Zhu
- Department of Biomedical Sciences, Ohio University, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, OH, 45701, USA
| |
Collapse
|
50
|
Leiu KH, Poppitt SD, Miles-Chan JL, Sequeira IR. Fatty Pancreas and Cardiometabolic Risk: Response of Ectopic Fat to Lifestyle and Surgical Interventions. Nutrients 2022; 14:nu14224873. [PMID: 36432559 PMCID: PMC9693202 DOI: 10.3390/nu14224873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Ectopic fat accumulation in non-adipose organs, such as the pancreas and liver, is associated with an increased risk of cardiometabolic disease. While clinical trials have focused on interventions to decrease body weight and liver fat, ameliorating pancreatic fat can be crucial but successful intervention strategies are not yet defined. We identified twenty-two published studies which quantified pancreatic fat during dietary, physical activity, and/or bariatric surgery interventions targeted at body weight and adipose mass loss alongside their subsequent effect on metabolic outcomes. Thirteen studies reported a significant decrease in body weight, utilising weight-loss diets (n = 2), very low-energy diets (VLED) (n = 2), isocaloric diets (n = 1), a combination of diet and physical activity (n = 2), and bariatric surgery (n = 5) including a comparison with VLED (n = 1). Surgical intervention achieved the largest decrease in pancreatic fat (range: -18.2% to -67.2%) vs. a combination of weight-loss diets, isocaloric diets, and/or VLED (range: -10.2% to -42.3%) vs. diet and physical activity combined (range: -0.6% to -3.9%), with a concurrent decrease in metabolic outcomes. While surgical intervention purportedly is the most effective strategy to decrease pancreas fat content and improve cardiometabolic health, the procedure is invasive and may not be accessible to most individuals. Given that dietary intervention is the cornerstone for the prevention of adverse metabolic health, the alternative approaches appear to be the use of weight-loss diets or VLED meal replacements, which are shown to decrease pancreatic fat and associated cardiometabolic risk.
Collapse
Affiliation(s)
- Kok Hong Leiu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High Value Nutrition, National Science Challenge, Auckland 1010, New Zealand
| | - Sally D. Poppitt
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High Value Nutrition, National Science Challenge, Auckland 1010, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
- Riddet Centre of Research Excellence (CoRE) for Food and Nutrition, Palmerston North 4442, New Zealand
| | - Jennifer L. Miles-Chan
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High Value Nutrition, National Science Challenge, Auckland 1010, New Zealand
- Riddet Centre of Research Excellence (CoRE) for Food and Nutrition, Palmerston North 4442, New Zealand
| | - Ivana R. Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High Value Nutrition, National Science Challenge, Auckland 1010, New Zealand
- Correspondence: ; Tel.: +64-09-6301162
| |
Collapse
|