1
|
Wang Y, Chen M, Wang L, Wu Y. Cardiometabolic traits mediating the effect of education on the risk of DKD and CKD: a Mendelian randomization study. Front Nutr 2024; 11:1400577. [PMID: 39193563 PMCID: PMC11347428 DOI: 10.3389/fnut.2024.1400577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Background Both diabetic kidney disease (DKD) and chronic kidney disease (CKD) are more prevalent among individuals with lower levels of education in observational studies. To quantify the mediation effect of recognized cardiometabolic traits, we obtain causal estimates between education and DKD as well as CKD. Materials and methods We assessed the causal effect of education on DKD and CKD, separately estimated the causal effect of 26 cardiometabolic traits on DKD and CKD, and finally calculated the mediating effects and mediating proportions of each using two-step, two-sample multivariable Mendelian randomization (MVMR). Furthermore, the genetic association between exposure, mediators, and outcomes was investigated using linkage disequilibrium score (LDSC) regression analysis. Expression quantitative trait loci (eQTL) were retrieved from the Genotype-Tissue Expression Project (GTEx) v8 to serve as genetic instrumental variables. Transcriptome-wide association studies (TWAS), Bayesian colocalization analysis, and Summary-data-based Mendelian Randomization (SMR) analysis were performed to explore underlying susceptibility genes between education, mediators, and kidney diseases. Results Higher education with a genetically predicted 1-SD (4.2 years) was linked to a 48.64% decreased risk of DKD and a 29.08% decreased risk of CKD. After extensive evaluation of 26 cardiometabolic traits, 7 and 6 causal mediators were identified as mediating the effects of education on DKD and CKD, respectively. The largest mediating factor between education and DKD was BMI, which was followed by WHR, T2D, fasting insulin, SBP, fasting glucose, and DBP. In contrast, candidate mediators in the education-to-CKD pathway included BMI, followed by cigarettes smoked per day, WHR, SBP, T2D, and DBP. MR analysis revealed that TP53INP1 was found to be a shared susceptibility gene for cardiometabolic traits and DKD, while L3MBTL3 was found to be a shared susceptibility gene for cardiometabolic traits and CKD. Conclusion Our findings provide solid evidence that education has a causally protective effect on the development of DKD and CKD. We additionally reveal significant directions for intervention on cardiometabolic traits that mitigate the negative effects of educational inequities on the onset of DKD and CKD. Our work demonstrates a shared genetic basis between education, cardiometabolic traits, and kidney diseases. Future research aiming at lowering kidney risk may benefit from these findings.
Collapse
Affiliation(s)
- Yukai Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengmeng Chen
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Center for Scientific Research of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Lin IC, Wu KLH, Cheng HH, Tsai CC, Yu HR, Hsu TY, Tain YL, Huang LT, Lai YJ. Association of Perinatal Cardiovascular Features with Angiotensin System Expressions in Maternal Preeclampsia. Int J Mol Sci 2024; 25:7426. [PMID: 39000532 PMCID: PMC11242154 DOI: 10.3390/ijms25137426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
We hypothesized and investigated whether prenatal exposure to preeclampsia (PE) would simultaneously affect perinatal cardiovascular features and angiotensin system expressions. This prospective study was composed of mother-neonate dyads with (n = 49) and without maternal preeclampsia (n = 48) in a single tertiary medical center. The neonates exposed to PE had significantly larger relative sizes for the left and right coronary arteries and a higher cord plasma level of aminopeptidase-N, which positively correlated with the maternal diastolic blood pressures and determined the relative sizes of the left and right coronary arteries, whereas the encoding aminopeptidase-N (ANPEP) mRNA level in the PE cord blood leukocytes was significantly decreased, positively correlated with the neonatal systolic blood pressures (SBPs), and negatively correlated with the cord plasma-induced endothelial vascular cell adhesion molecule-1 mRNA levels. The PE cord plasma significantly induced higher endothelial mRNA levels of angiotensin II type 1 receptor (AT1R) and AT4R, whereas in the umbilical arteries, the protein expressions of AT2R and AT4R were significantly decreased in the PE group. The endothelial AT1R mRNA level positively determined the maternal SBPs, and the AT4R mRNA level positively determined the neonatal chamber size and cardiac output. In conclusion, PE may influence perinatal angiotensin system and cardiovascular manifestations of neonates across placentae. Intriguing correlations between these two warrant further mechanistic investigation.
Collapse
Affiliation(s)
- I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Hsin-Hsin Cheng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
3
|
Clark CR, Khalil RA. Regulation of vascular angiotensin II type 1 and type 2 receptor and angiotensin-(1-7)/MasR signaling in normal and hypertensive pregnancy. Biochem Pharmacol 2024; 220:115963. [PMID: 38061417 PMCID: PMC10860599 DOI: 10.1016/j.bcp.2023.115963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024]
Abstract
Normal pregnancy (Norm-Preg) is associated with a slight reduction in blood pressure (BP) and decreased BP response to vasoconstrictor stimuli such as angiotensin II (Ang II), although the renin-angiotensin-aldosterone system (RAAS) is upregulated. Preeclampsia (PE) is a complication of pregnancy manifested as hypertension-in-pregnancy (HTN-Preg), and dysregulation of angiotensin biosynthesis and signaling have been implicated. Ang II activates vascular Ang II type-1 receptor (AT1R) and Ang II type-2 receptor (AT2R), while angiotensin-(1-7) promotes Ang-(1-7)/MasR signaling. The role of AT1R in vasoconstriction and the activated cellular mechanisms are well-characterized. The sensitivity of vascular AT1R to Ang II and consequent activation of vasoconstrictor mechanisms decrease during Norm-Preg, but dramatically increase in HTN-Preg. Placental ischemia in late pregnancy could also initiate the release of AT1R agonistic autoantibodies (AT1AA) with significant impact on endothelial dysfunction and activation of contraction pathways in vascular smooth muscle including [Ca2+]c and protein kinase C. On the other hand, the role of AT2R and Ang-(1-7)/MasR in vascular relaxation, particularly during Norm-Preg and PE, is less clear. During Norm-Preg, increases in the expression/activity of vascular AT2R and Ang-(1-7)/MasR promote the production of endothelium-derived relaxing factors such as nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor leading to generalized vasodilation. Aortic segments of Preg rats show prominent endothelial AT2R staining and increased relaxation and NO production in response to AT2R agonist CGP42112A, and treatment with AT2R antagonist PD123319 enhances phenylephrine-induced contraction. Decreased vascular AT2R and Ang-(1-7)/MasR expression and receptor-mediated mechanisms of vascular relaxation have been suggested in HTN-Preg animal models, but their role in human PE needs further testing. Changes in angiotensin-converting enzyme-2 (ACE2) have been observed in COVID-19 patients, and whether ACE2 influences the course of COVID-19 viral infection/immunity in Norm-Preg and PE is an intriguing area for research.
Collapse
Affiliation(s)
- Caroline R Clark
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Deng Y, Ding W, Peng Q, Wang W, Duan R, Zhang Y. Advancement in Beneficial Effects of AVE 0991: A Brief Review. Mini Rev Med Chem 2024; 24:139-158. [PMID: 36998128 DOI: 10.2174/1389557523666230328134932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 04/01/2023]
Abstract
AVE 0991, a non-peptide analogue of Angiotensin-(1-7) [Ang-(1-7)], is orally active and physiologically well tolerated. Several studies have demonstrated that AVE 0991 improves glucose and lipid metabolism, and contains anti-inflammatory, anti-apoptotic, anti-fibrosis, and anti-oxidant effects. Numerous preclinical studies have also reported that AVE 0991 appears to have beneficial effects on a variety of systemic diseases, including cardiovascular, liver, kidney, cancer, diabetes, and nervous system diseases. This study searched multiple literature databases, including PubMed, Web of Science, EMBASE, Google Scholar, Cochrane Library, and the ClinicalTrials.gov website from the establishment to October 2022, using AVE 0991 as a keyword. This literature search revealed that AVE 0991 could play different roles via various signaling pathways. However, the potential mechanisms of these effects need further elucidation. This review summarizes the benefits of AVE 0991 in several medical problems, including the COVID-19 pandemic. The paper also describes the underlying mechanisms of AVE 0991, giving in-depth insights and perspectives on the pharmaceutical value of AVE 0991 in drug discovery and development.
Collapse
Affiliation(s)
- Yang Deng
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wangli Ding
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Wei Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
5
|
Kartchner D, McCoy K, Dubey J, Zhang D, Zheng K, Umrani R, Kim JJ, Mitchell CS. Literature-Based Discovery to Elucidate the Biological Links between Resistant Hypertension and COVID-19. BIOLOGY 2023; 12:1269. [PMID: 37759668 PMCID: PMC10526006 DOI: 10.3390/biology12091269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Multiple studies have reported new or exacerbated persistent or resistant hypertension in patients previously infected with COVID-19. We used literature-based discovery to identify and prioritize multi-scalar explanatory biology that relates resistant hypertension to COVID-19. Cross-domain text mining of 33+ million PubMed articles within a comprehensive knowledge graph was performed using SemNet 2.0. Unsupervised rank aggregation determined which concepts were most relevant utilizing the normalized HeteSim score. A series of simulations identified concepts directly related to COVID-19 and resistant hypertension or connected via one of three renin-angiotensin-aldosterone system hub nodes (mineralocorticoid receptor, epithelial sodium channel, angiotensin I receptor). The top-ranking concepts relating COVID-19 to resistant hypertension included: cGMP-dependent protein kinase II, MAP3K1, haspin, ral guanine nucleotide exchange factor, N-(3-Oxododecanoyl)-L-homoserine lactone, aspartic endopeptidases, metabotropic glutamate receptors, choline-phosphate cytidylyltransferase, protein tyrosine phosphatase, tat genes, MAP3K10, uridine kinase, dicer enzyme, CMD1B, USP17L2, FLNA, exportin 5, somatotropin releasing hormone, beta-melanocyte stimulating hormone, pegylated leptin, beta-lipoprotein, corticotropin, growth hormone-releasing peptide 2, pro-opiomelanocortin, alpha-melanocyte stimulating hormone, prolactin, thyroid hormone, poly-beta-hydroxybutyrate depolymerase, CR 1392, BCR-ABL fusion gene, high density lipoprotein sphingomyelin, pregnancy-associated murine protein 1, recQ4 helicase, immunoglobulin heavy chain variable domain, aglycotransferrin, host cell factor C1, ATP6V0D1, imipramine demethylase, TRIM40, H3C2 gene, COL1A1+COL1A2 gene, QARS gene, VPS54, TPM2, MPST, EXOSC2, ribosomal protein S10, TAP-144, gonadotropins, human gonadotropin releasing hormone 1, beta-lipotropin, octreotide, salmon calcitonin, des-n-octanoyl ghrelin, liraglutide, gastrins. Concepts were mapped to six physiological themes: altered endocrine function, 23.1%; inflammation or cytokine storm, 21.3%; lipid metabolism and atherosclerosis, 17.6%; sympathetic input to blood pressure regulation, 16.7%; altered entry of COVID-19 virus, 14.8%; and unknown, 6.5%.
Collapse
Affiliation(s)
- David Kartchner
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kevin McCoy
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Janhvi Dubey
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Dongyu Zhang
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kevin Zheng
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Rushda Umrani
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James J. Kim
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Center for Machine Learning at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Singh S, Moodley J, Naicker T. Differential expression of the angiotensin receptors (AT1, AT2, and AT4) in the placental bed of HIV-infected preeclamptic women of African ancestry. Hypertens Res 2023; 46:1970-1982. [PMID: 37308552 PMCID: PMC10404513 DOI: 10.1038/s41440-023-01314-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/05/2023] [Accepted: 04/28/2023] [Indexed: 06/14/2023]
Abstract
The Renin-Angiotensin-Aldosterone System (RAAS) is implicated in the pathophysiology of preeclampsia (PE). There is a paucity of data on uteroplacental angiotensin receptors AT1-2 and 4. We evaluated the immunoexpression of AT1R, AT2R, and AT4R within the placental bed of PE vs. normotensive (N) pregnancies stratified by HIV status. Placental bed (PB) biopsies (n = 180) were obtained from N and PE women. Both groups were stratified by HIV status and gestational age into early-and late onset-PE. Immuno-labeling of AT1R, AT2R, and AT4R was quantified using morphometric image analysis. Immunostaining of PB endothelial cells (EC) and smooth muscle cells of spiral arteries (VSMC) displayed an upregulation of AT1R expression compared to the N group (p < 0.0001). Downregulation of AT2R and AT4R expression was observed in PE vs. N group (p = 0.0042 and p < 0.0001), respectively. AT2R immunoexpression declined between HIV+ve and HIV-ve groups, while AT1R and AT4R displayed an increase. An increase in AT1R expression was noted in the EOPE-ve/+ve and LOPE-ve/+ve compared to N-ve/N+ve. In contrast, AT2R and AT4R expression decreased in EOPE-ve/+ve and LOPE-ve/+ve compared to N-ve/N+ve. We demonstrate a significant downregulation of AT2R and AT4R with a concomitant elevated AT1R immunoexpression within PB of HIV-infected PE women. In addition, a decline in AT2R and AT4R with an increase in AT1R immunoexpression in PE, EOPE, and LOPE vs. normotensive pregnancies, irrespective of HIV status. Thus highlighting differential immunoexpression of uteroplacental RAAS receptors based on pregnancy type, HIV status, and gestational age.
Collapse
Affiliation(s)
- Shoohana Singh
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Department of Obstetrics and Gynaecology, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Colin M, Delaitre C, Foulquier S, Dupuis F. The AT 1/AT 2 Receptor Equilibrium Is a Cornerstone of the Regulation of the Renin Angiotensin System beyond the Cardiovascular System. Molecules 2023; 28:5481. [PMID: 37513355 PMCID: PMC10383525 DOI: 10.3390/molecules28145481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The AT1 receptor has mainly been associated with the pathological effects of the renin-angiotensin system (RAS) (e.g., hypertension, heart and kidney diseases), and constitutes a major therapeutic target. In contrast, the AT2 receptor is presented as the protective arm of this RAS, and its targeting via specific agonists is mainly used to counteract the effects of the AT1 receptor. The discovery of a local RAS has highlighted the importance of the balance between AT1/AT2 receptors at the tissue level. Disruption of this balance is suggested to be detrimental. The fine tuning of this balance is not limited to the regulation of the level of expression of these two receptors. Other mechanisms still largely unexplored, such as S-nitrosation of the AT1 receptor, homo- and heterodimerization, and the use of AT1 receptor-biased agonists, may significantly contribute to and/or interfere with the settings of this AT1/AT2 equilibrium. This review will detail, through several examples (the brain, wound healing, and the cellular cycle), the importance of the functional balance between AT1 and AT2 receptors, and how new molecular pharmacological approaches may act on its regulation to open up new therapeutic perspectives.
Collapse
Affiliation(s)
- Mélissa Colin
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France
- Department of Pharmacology and Toxicology, MHeNS-School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, MHeNS-School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | |
Collapse
|
8
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
9
|
Kang JO, Ha TW, Jung HU, Lim JE, Oh B. A cardiac-null mutation of Prdm16 causes hypotension in mice with cardiac hypertrophy via increased nitric oxide synthase 1. PLoS One 2022; 17:e0267938. [PMID: 35862303 PMCID: PMC9302805 DOI: 10.1371/journal.pone.0267938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Hypertension or hypotension prevails as a comorbidity in patients with heart failure (HF). Although blood pressure (BP) is an important factor in managing the mortality of HF, the molecular mechanisms of changes in BP have not been clearly understood in cases of HF. We and others have demonstrated that a loss in PRDM16 causes hypertrophic cardiomyopathy, leading to HF. We aimed to determine whether BP is altered in mice that experience cardiac loss of Prdm16 and identify the underlying mechanism of BP-associated changes. BP decreased significantly only in female mice with a cardiac-null mutation of Prdm16 compared with controls, by an invasive protocol under anesthesia and by telemetric method during conscious, unrestrained status. Mice with a cardiac loss of Prdm16 had higher heart-to-body weight ratios and upregulated atrial natriuretic peptide, suggesting cardiac hypertrophy. Plasma aldosterone-to-renin activity ratios and plasma sodium levels decreased in Prdm16-deficient mice versus control. By RNA-seq and in subsequent functional analyses, Prdm16-null hearts were enriched in factors that regulate BP, including Adra1a, Nos1, Nppa, and Nppb. The inhibition of nitric oxide synthase 1 (NOS1) reverted the decrease in BP in cardiac-specific Prdm16 knockout mice. Mice with cardiac deficiency of Prdm16 present with hypotension and cardiac hypertrophy. Further, our findings suggest that the increased expression of NOS1 causes hypotension in mice with a cardiac-null mutation of Prdm16. These results provide novel insights into the molecular mechanisms of hypotension in subjects with HF and contribute to our understanding of how hypotension develops in patients with HF.
Collapse
Affiliation(s)
- Ji-One Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
- * E-mail:
| | - Tae Woong Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Hae-Un Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Bermseok Oh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
10
|
Advances in the Treatment Strategies in Hypertension: Present and Future. J Cardiovasc Dev Dis 2022; 9:jcdd9030072. [PMID: 35323620 PMCID: PMC8949859 DOI: 10.3390/jcdd9030072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Hypertension is the most frequent chronic and non-communicable disease all over the world, with about 1.5 billion affected individuals worldwide. Its impact is currently growing, particularly in low-income countries. Even in high-income countries, hypertension remains largely underdiagnosed and undertreated, with consequent low rates of blood pressure (BP) control. Notwithstanding the large number of clinical observational studies and randomized trials over the past four decades, it is sad to note that in the last few years there has been an impressive paucity of innovative studies. Research focused on BP mechanisms and novel antihypertensive drugs is slowing dramatically. The present review discusses some advances in the management of hypertensive patients, and could play a clinical role in the years to come. First, digital/health technology is expected to be increasingly used, although some crucial points remain (development of non-intrusive and clinically validated devices for ambulatory BP measurement, robust storing systems enabling rapid analysis of accrued data, physician-patient interactions, etc.). Second, several areas should be better outlined with regard to BP diagnosis and treatment targets. Third, from a therapeutic standpoint, existing antihypertensive drugs, which are generally effective and well tolerated, should be better used by exploiting available and novel free and fixed combinations. In particular, spironolactone and other mineral-corticoid receptor antagonists should be used more frequently to improve BP control. In particular, some drugs initially developed for conditions different from hypertension including heart failure and diabetes have demonstrated to lower BP significantly and should therefore be considered. Finally, renal artery denervation is another procedure that has proven effective in the management of hypertension.
Collapse
|
11
|
Affiliation(s)
- Tianxin Yang
- Internal Medicine, University of Utah, Salt Lake City, Utah.,Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
12
|
Su C, Xue J, Ye C, Chen A. Role of the central renin‑angiotensin system in hypertension (Review). Int J Mol Med 2021; 47:95. [PMID: 33846799 PMCID: PMC8041481 DOI: 10.3892/ijmm.2021.4928] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Present in more than one billion adults, hypertension is the most significant modifiable risk factor for mortality resulting from cardiovascular disease. Although its pathogenesis is not yet fully understood, the disruption of the renin-angiotensin system (RAS), consisting of the systemic and brain RAS, has been recognized as one of the primary reasons for several types of hypertension. Therefore, acquiring sound knowledge of the basic science of RAS and the under- lying mechanisms of the signaling pathways associated with RAS may facilitate the discovery of novel therapeutic targets with which to promote the management of patients with cardiovascular and kidney disease. In total, 4 types of angiotensin II receptors have been identified (AT1R-AT4R), of which AT1R plays the most important role in vasoconstriction and has been most extensively studied. It has been found in several regions of the brain, and its distribution is highly associated with that of angiotensin-like immunoreactivity in nerve terminals. The effect of AT1R involves the activation of multiple media and signaling pathways, among which the most important signaling pathways are considered to be AT1R/JAK/STAT and Ras/Raf/MAPK pathways. In addition, the regulation of the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and cyclic AMP response element-binding (CREB) pathways is also closely related to the effect of ATR1. Their mechanisms of action are related to pro-inflammatory and sympathetic excitatory effects. Central AT1R is involved in almost all types of hypertension, including spontaneous hypertension, salt-sensitive hypertension, obesity-induced hypertension, renovascular hypertension, diabetic hypertension, L-NAME-induced hypertension, stress-induced hypertension, angiotensin II-induced hyper- tension and aldosterone-induced hypertension. There are 2 types of central AT1R blockade, acute blockade and chronic blockade. The latter can be achieved by chemical blockade or genetic engineering. The present review article aimed to high- light the prevalence, functions, interactions and modulation means of central AT-1R in an effort to assist in the treatment of several pathological conditions. The identification of angiotensin-derived peptides and the development of AT-2R agonists may provide a wider perspective on RAS, as well as novel therapeutic strategies.
Collapse
Affiliation(s)
- Chuanxin Su
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Jinhua Xue
- Research Center for Cardiovascular and Cerebrovascular Diseases, The University of Duisburg‑Essen, Duisburg‑Essen University, D-45122 Essen, Germany
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Aidong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
13
|
Novel therapeutics for the treatment of hypertension and its associated complications: peptide- and nonpeptide-based strategies. Hypertens Res 2021; 44:740-755. [PMID: 33731923 PMCID: PMC7967108 DOI: 10.1038/s41440-021-00643-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is responsible for maintaining blood pressure and vascular tone. Modulation of the RAAS, therefore, interferes with essential cellular processes and leads to high blood pressure, oxidative stress, inflammation, fibrosis, and hypertrophy. Consequently, these conditions cause fatal cardiovascular and renal complications. Thus, the primary purpose of hypertension treatment is to diminish or inhibit overactivated RAAS. Currently available RAAS inhibitors have proven effective in reducing blood pressure; however, beyond hypertension, they have failed to treat end-target organ injury. In addition, RAAS inhibitors have some intolerable adverse effects, such as hyperkalemia and hypotension. These gaps in the available treatment for hypertension require further investigation of the development of safe and effective therapies. Current research is focused on the combination of existing and novel treatments that neutralize the angiotensin II type I (AT1) receptor-mediated action of the angiotensin II peptide. Preclinical studies of peptide- and nonpeptide-based therapeutic agents demonstrate their conspicuous impact on the treatment of cardiovascular diseases in animal models. In this review, we will discuss novel therapeutic agents being developed as RAAS inhibitors that show prominent effects in both preclinical and clinical studies. In addition, we will also highlight the need for improvement in the efficacy of existing drugs in the absence of new prominent antihypertensive drugs.
Collapse
|
14
|
McFall A, Nicklin SA, Work LM. The counter regulatory axis of the renin angiotensin system in the brain and ischaemic stroke: Insight from preclinical stroke studies and therapeutic potential. Cell Signal 2020; 76:109809. [PMID: 33059037 PMCID: PMC7550360 DOI: 10.1016/j.cellsig.2020.109809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
Stroke is the 2nd leading cause of death worldwide and the leading cause of physical disability and cognitive issues. Although we have made progress in certain aspects of stroke treatment, the consequences remain substantial and new treatments are needed. Hypertension has long been recognised as a major risk factor for stroke, both haemorrhagic and ischaemic. The renin angiotensin system (RAS) plays a key role in blood pressure regulation and this, plus local expression and signalling of RAS in the brain, both support the potential for targeting this axis therapeutically in the setting of stroke. While historically, focus has been on suppressing classical RAS signalling through the angiotensin type 1 receptor (AT1R), the identification of a counter-regulatory axis of the RAS signalling via the angiotensin type 2 receptor (AT2R) and Mas receptor has renewed interest in targeting the RAS. This review describes RAS signalling in the brain and the potential of targeting the Mas receptor and AT2R in preclinical models of ischaemic stroke. The animal and experimental models, and the route and timing of intervention, are considered from a translational perspective.
Collapse
Affiliation(s)
- Aisling McFall
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Lorraine M Work
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
15
|
Royea J, Hamel E. Brain angiotensin II and angiotensin IV receptors as potential Alzheimer's disease therapeutic targets. GeroScience 2020; 42:1237-1256. [PMID: 32700176 DOI: 10.1007/s11357-020-00231-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is multifactorial in nature. Yet, despite being the most common form of dementia in the elderly, AD's primary cause remains unknown. As such, there is currently little to offer AD patients as the vast majority of recently tested therapies have either failed in well-controlled clinical trials or inadequately treat AD. Recently, emerging preclinical and clinical evidence has associated the brain renin angiotensin system (RAS) to AD pathology. Accordingly, various components of the brain RAS were shown to be altered in AD patients and mouse models, including the angiotensin II type 1 (AT1R), angiotensin IV receptor (AT4R), and Mas receptors. Collectively, the changes observed within the RAS have been proposed to contribute to many of the neuropathological hallmarks of AD, including the neuronal, cognitive, and vascular dysfunctions. Accumulating evidence has additionally identified antihypertensive medications targeting the RAS, particularly angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs), to delay AD onset and progression. In this review, we will discuss the emergence of the RAS's involvement in AD and highlight putative mechanisms of action underlying ARB's beneficial effects that may explain their ability to modify the risk of developing AD or AD progression. The RAS may provide novel molecular targets for recovering memory pathways, cerebrovascular function, and other pathological landmarks of AD.
Collapse
Affiliation(s)
- Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
16
|
Patel DM, Bose M, Cooper ME. Glucose and Blood Pressure-Dependent Pathways-The Progression of Diabetic Kidney Disease. Int J Mol Sci 2020; 21:ijms21062218. [PMID: 32210089 PMCID: PMC7139394 DOI: 10.3390/ijms21062218] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
The major clinical associations with the progression of diabetic kidney disease (DKD) are glycemic control and systemic hypertension. Recent studies have continued to emphasize vasoactive hormone pathways including aldosterone and endothelin which suggest a key role for vasoconstrictor pathways in promoting renal damage in diabetes. The role of glucose per se remains difficult to define in DKD but appears to involve key intermediates including reactive oxygen species (ROS) and dicarbonyls such as methylglyoxal which activate intracellular pathways to promote fibrosis and inflammation in the kidney. Recent studies have identified a novel molecular interaction between hemodynamic and metabolic pathways which could lead to new treatments for DKD. This should lead to a further improvement in the outlook of DKD building on positive results from RAAS blockade and more recently newer classes of glucose-lowering agents such as SGLT2 inhibitors and GLP1 receptor agonists.
Collapse
Affiliation(s)
- Devang M. Patel
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
- Correspondence: (D.M.P.); (M.E.C.)
| | - Madhura Bose
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
| | - Mark E. Cooper
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
- Department of Endocrinology and Diabetes, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Correspondence: (D.M.P.); (M.E.C.)
| |
Collapse
|
17
|
Wen J, Li P, Cheng J, Wang N, Mao L, Tan X, Zeng X, Xia D, Zhou Y, Yang Q, Yang Y. Downregulation of AT 2R decreases the responsiveness of BK Ca channels to angiotensin II in patients with hypertension. J Mol Cell Cardiol 2019; 131:20-28. [PMID: 30998981 DOI: 10.1016/j.yjmcc.2019.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 01/23/2023]
Abstract
Angiotensin II (Ang II) modulates blood pressure via Ang II type 1 receptor (AT1R) and type 2 receptor (AT2R). The activation of AT2R relaxes vascular tone through opening large-conductance Ca2+-activated potassium (BKCa) channels in vascular smooth muscle cells (SMCs). In the present study, we studied the role of the AT2R-BKCa pathway in patients with hypertension. The mesenteric arterial SMCs (MSMCs) were obtained from normotensive patients (NP) and hypertensive patients (HP). BKCa currents were recorded with patch clamp and the expressions of mRNAs and proteins of AT1R/AT2R were analyzed by RT-PCR and Western blotting, respectively. Ang II significantly increased the macroscopic BKCa currents at the whole cell level, while increased the open probability and decreased the mean close time of BKCa channels at the single channel level with AT1R blockade by valsartan in NP. However, Ang II had no effect on the BKCa currents at the same condition in HP. Furthermore, the expressions of mRNA and protein of AT2R but not AT1R were markedly decreased in the MSMCs of HP compared to that of NP. The data suggest that AT2R is well functioned in the MSMCs in NP but not in HP and deficiency in the AT2R-BKCa pathway may contribute to the development of hypertension.
Collapse
Affiliation(s)
- Jing Wen
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Cheng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Na Wang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Liang Mao
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoqiu Tan
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaorong Zeng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Dong Xia
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yejiang Zhou
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qingqiang Yang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
18
|
Castoldi G, di Gioia CRT, Roma F, Carletti R, Manzoni G, Stella A, Zerbini G, Perseghin G. Activation of angiotensin type 2 (AT2) receptors prevents myocardial hypertrophy in Zucker diabetic fatty rats. Acta Diabetol 2019; 56:97-104. [PMID: 30187136 DOI: 10.1007/s00592-018-1220-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/26/2018] [Indexed: 12/14/2022]
Abstract
AIMS Compound 21 (C21), selective AT2 receptor agonist, has cardioprotective effects in experimental models of hypertension and myocardial infarction. The aims of the study was to evaluate the effect of C21, losartan, or both in Zucker diabetic fatty (ZDF) rats (type 2 diabetes) on (1) the prevention of myocardial hypertrophy; (2) myocardial expression of phosphatase and tensin homolog (PTEN), a target gene of miR-30a-3p, involved in myocardial remodelling. METHODS Experiments were performed in ZDF (n = 33) and in control Lean (8) rats. From the 6th to the 20th week of age, we administered C21 (0.3 mg/kg/day) to 8 ZDF rats. 8 ZDF rats were treated with losartan (10 mg/kg/day), 8 rats underwent combination treatment, C21+ losartan, and 9 ZDF rats were left untreated. Blood glucose and blood pressure were measured every 4 weeks. At the end of the study the hearts were removed, the apex was cut for the quantification of PTEN mRNA and miR-30a-3p expression (realtime-PCR). Myocardial hypertrophy was evaluated by histomorphometric analysis, and nitrotyrosine expression (as marker of oxidative stress) by immunohistochemistry. RESULTS ZDF rats had higher blood glucose (p < 0.0001) with respect to control Lean rats, while blood pressure did not change. Both parameters were not modified by C21 treatment, while losartan and losartan + C21 reduced blood pressure in ZDF rats (p < 0.05). miR-30a-3p expression was increased in ZDF rats (p < 0.01) and PTEN mRNA expression was decreased (p < 0.05). ZDF rats developed myocardial hypertrophy (p < 0.01) and increased oxidative stress (p < 0.01), both were prevented by C21 or losartan, or combination treatment. C21 or losartan normalized the expression of miR-30a-3p and PTEN. CONCLUSIONS Activation of AT2 receptors or AT1 receptor blockade prevents the development of myocardial hypertrophy in ZDF rats. This occurs through the modulation of the miR-30a-3p/PTEN interaction.
Collapse
MESH Headings
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cardiomegaly/etiology
- Cardiomegaly/pathology
- Cardiomegaly/prevention & control
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/pathology
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/prevention & control
- Losartan/pharmacology
- Male
- Obesity/complications
- Obesity/drug therapy
- Obesity/pathology
- Oxidative Stress/drug effects
- Rats
- Rats, Zucker
- Receptor, Angiotensin, Type 2/agonists
- Sulfonamides/therapeutic use
- Thiophenes/therapeutic use
Collapse
Affiliation(s)
- Giovanna Castoldi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore, 48, 20900, Monza, MB, Italy.
| | - Cira R T di Gioia
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomopatologiche, Istituto di Anatomia Patologica, Sapienza Universita' di Roma, Rome, Italy
| | - Francesca Roma
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore, 48, 20900, Monza, MB, Italy
| | - Raffaella Carletti
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomopatologiche, Istituto di Anatomia Patologica, Sapienza Universita' di Roma, Rome, Italy
| | - Giuseppina Manzoni
- Dipartimento di Medicina Interna e Riabilitazione, Policlinico di Monza, Monza, Italy
| | - Andrea Stella
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore, 48, 20900, Monza, MB, Italy
| | - Gianpaolo Zerbini
- Unità Complicanze del Diabete, Diabetes Research Institute, Istituto Scientifico San Raffaele, Milan, Italy
| | - Gianluca Perseghin
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore, 48, 20900, Monza, MB, Italy
- Dipartimento di Medicina Interna e Riabilitazione, Policlinico di Monza, Monza, Italy
| |
Collapse
|
19
|
de Morais SDB, Shanks J, Zucker IH. Integrative Physiological Aspects of Brain RAS in Hypertension. Curr Hypertens Rep 2018; 20:10. [PMID: 29480460 DOI: 10.1007/s11906-018-0810-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) plays an important role in modulating cardiovascular function and fluid homeostasis. While the systemic actions of the RAS are widely accepted, the role of the RAS in the brain, its regulation of cardiovascular function, and sympathetic outflow remain controversial. In this report, we discuss the current understanding of central RAS on blood pressure (BP) regulation, in light of recent literature and new experimental techniques. RECENT FINDINGS Studies using neuronal or glial-specifc mouse models have allowed for greater understanding into the site-specific expression and role centrally expressed RAS proteins have on BP regulation. While all components of the RAS have been identified in cardiovascular regulatory regions of the brain, their actions may be site specific. In a number of animal models of hypertension, reduction in Ang II-mediated signaling, or upregulation of the central ACE2/Ang 1-7 pathway, has been shown to reduce BP, via a reduction in sympathetic signaling and increase parasympathetic tone, respectively. Emerging evidence also suggests that, in part, the female protective phenotype against hypertension may be due to inceased ACE2 activity within cardiovascular regulatory regions of the brain, potentially mediated by estrogen. Increasing evidence suggests the importance of a central renin-angiotensin pathway, although its localization and the mechanisms involved in its expression and regulation still need to be clarified and more precisely defined. All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).
Collapse
Affiliation(s)
- Sharon D B de Morais
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Julia Shanks
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
20
|
Khayat RN, Varadharaj S, Porter K, Sow A, Jarjoura D, Gavrilin MA, Zweier JL. Angiotensin Receptor Expression and Vascular Endothelial Dysfunction in Obstructive Sleep Apnea. Am J Hypertens 2018; 31:355-361. [PMID: 29036393 DOI: 10.1093/ajh/hpx174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/25/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is associated with vascular endothelial dysfunction (VED) in otherwise healthy patients. The role of renin-angiotensin system (RAS) in the OSA induced VED is not well understood. METHODS Recently diagnosed OSA patients with very low cardiovascular disease (CVD) risk (Framingham score <5%) were studied at diagnosis and after 12 weeks of verified continuous positive airway pressure (CPAP) therapy. Participants underwent biopsy of gluteal subcutaneous tissue at baseline and after CPAP. Microcirculatory endothelial expression of angiotensin receptors type-1 (AT-1) and type-2 (AT-2) was measured in the subcutaneous tissue using quantitative confocal microscopy techniques. The ex-vivo effect of AT-1 receptor blockade (ARB) on endothelial superoxide production was also measured before and after CPAP treatment. RESULTS In OSA patients (n = 11), microcirculatory endothelial AT1 expression decreased from 873 (200) (fluorescence units) at baseline to 393 (59) units after 12 weeks of CPAP (P = 0.02). AT2 expression did not decrease significantly in these patients (479 (75) to 329 (58) post CPAP (P = 0.08)). The ex-vivo addition of the losartan to the microcirculatory endothelium resulted in decreased superoxide expression in the vascular walls from 14.2 (2.2) units to 4.2 (0.8) P < 0.001; while it had no effect on post-CPAP patient tissue (P = 0.64). CONCLUSIONS In OSA patients with no to minimal CVD risk, VED is associated with upregulation of AT-1 expression that is reversible with CPAP. Endothelial oxidative stress was reversible with ARB. RAS activation may play an important role in the development of early CVD risk in OSA patients.
Collapse
Affiliation(s)
- Rami N Khayat
- Department of Internal Medicine, The Sleep Heart Program, The Ohio State University, USA
- Division of Pulmonary Critical Care and Sleep, The Ohio State University, USA
| | - Saradhadevi Varadharaj
- Department of Internal Medicine, The Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University, USA
| | - Kyle Porter
- The Center for Biostatistics, The Ohio State University, USA
| | - Angela Sow
- Department of Internal Medicine, The Sleep Heart Program, The Ohio State University, USA
- Department of Internal Medicine, The Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University, USA
| | - David Jarjoura
- Department of Internal Medicine, The Sleep Heart Program, The Ohio State University, USA
| | - Mikhail A Gavrilin
- Division of Pulmonary Critical Care and Sleep, The Ohio State University, USA
| | - Jay L Zweier
- Department of Internal Medicine, The Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, The Ohio State University, USA
| |
Collapse
|
21
|
Microvascular vasodilator properties of the angiotensin II type 2 receptor in a mouse model of type 1 diabetes. Sci Rep 2017; 7:45625. [PMID: 28361992 PMCID: PMC5374544 DOI: 10.1038/srep45625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 03/01/2017] [Indexed: 12/02/2022] Open
Abstract
Diabetes Mellitus is associated with severe cardiovascular disorders involving the renin-angiotensin system, mainly through activation of the angiotensin II type 1 receptor (AT1R). Although the type 2 receptor (AT2R) opposes the effects of AT1R, with vasodilator and anti-trophic properties, its role in diabetes is debatable. Thus we investigated AT2R-mediated dilatation in a model of type 1 diabetes induced by streptozotocin in 5-month-old male mice lacking AT2R (AT2R−/y). Glucose tolerance was reduced and markers of inflammation and oxidative stress (cyclooxygenase-2, gp91phox p22phox and p67phox) were increased in AT2R−/y mice compared to wild-type (WT) animals. Streptozotocin-induced hyperglycaemia was higher in AT2R−/y than in WT mice. Arterial gp91phox and MnSOD expression levels in addition to blood 8-isoprostane and creatinine were further increased in diabetic AT2R−/y mice compared to diabetic WT mice. AT2R-dependent dilatation in both isolated mesenteric resistance arteries and perfused kidneys was greater in diabetic mice than in non-diabetic animals. Thus, in type 1 diabetes, AT2R may reduce glycaemia and display anti-oxidant and/or anti-inflammatory properties in association with greater vasodilatation in mesenteric arteries and in the renal vasculature, a major target of diabetes. Therefore AT2R might represent a new therapeutic target in diabetes.
Collapse
|
22
|
Bai HY, Mogi M, Nakaoka H, Kan-No H, Tsukuda K, Wang XL, Shan BS, Kukida M, Yamauchi T, Higaki A, Min LJ, Iwanami J, Horiuchi M. Synergistic Inhibitory Effect of Rosuvastatin and Angiotensin II Type 2 Receptor Agonist on Vascular Remodeling. J Pharmacol Exp Ther 2016; 358:352-8. [PMID: 27225894 DOI: 10.1124/jpet.116.233148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
We investigated the possibility that coadministration of rosuvastatin and compound 21 (C21), a selective angiotensin II type 2 (AT2) receptor agonist, could exert synergistic preventive effects on vascular injury. Vascular injury was induced by polyethylene cuff placement on the femoral artery in 9-week-old male C57BL/6J mice. Mice were treated with rosuvastatin and/or with C21 after cuff placement. Neointima formation was determined 14 days after the operation and cell proliferation, and superoxide anion production and expression of inflammatory cytokines were examined 7 days after cuff placement. Neointima formation was significantly attenuated by the treatment of rosuvastatin (5 mg kg(-1) day(-1)) or C21 (10 μg kg(-1) day(-1)), associated with the decreases in proliferating cell nuclear antigen (PCNA) labeling index, oxidative stress, and the expression of inflammatory markers. Treatment with a noneffective dose of rosuvastatin (0.5 mg kg(-1) day(-1)) plus a low dose of C21 (1 μg kg(-1) day(-1)) inhibited the PCNA labeling index, superoxide anion production, mRNA expressions of NAD(P)H subunits, and mRNA and protein expressions of inflammatory markers associated with marked inhibition of neointima formation. Angiotensin II type 1 (AT1) receptor mRNA expression did not differ the groups. By contrast, AT2 receptor mRNA expression was increased by administration of C21 at the dose of 10 μg kg(-1) day(-1) but not by C21 at the dose of 1 μg kg(-1) day(-1) or rosuvastatin. The combination of rosuvastatin and AT2 receptor agonist exerted synergistic preventive effects on vascular remodeling associated with the decreases in cell proliferation, oxidative stress, and inflammatory reaction. That could be a powerful approach to vascular disease prevention.
Collapse
Affiliation(s)
- Hui-Yu Bai
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Hirotomo Nakaoka
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Harumi Kan-No
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Kana Tsukuda
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Xiao-Li Wang
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Masayoshi Kukida
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Toshifumi Yamauchi
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Akinori Higaki
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Li-Juan Min
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology (H.-Y.B., M.M., H.N., H.K., K.T., X.-L.W., B.-S.S., M.K., T.Y., A.H., L.M., J.I., M.H.), Department of Cardiology, Pulmonology, Hypertension, and Nephrology (M.K., A.H.), and Department of Pediatrics (T.Y.), Graduate School of Medicine, Ehime University, Shitsukawa, Japan
| |
Collapse
|
23
|
Novel players in cardioprotection: Insulin like growth factor-1, angiotensin-(1–7) and angiotensin-(1–9). Pharmacol Res 2015; 101:41-55. [DOI: 10.1016/j.phrs.2015.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 06/27/2015] [Accepted: 06/28/2015] [Indexed: 12/14/2022]
|
24
|
Halls ML, Bathgate RAD, Sutton SW, Dschietzig TB, Summers RJ. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev 2015; 67:389-440. [PMID: 25761609 DOI: 10.1124/pr.114.009472] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gα(s)- and Gα(o)-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gα(i)/Gα(o) proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1-4, the challenges facing the field, and current prospects for new therapeutics.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Ross A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Steve W Sutton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Thomas B Dschietzig
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| |
Collapse
|
25
|
Mendoza-Torres E, Oyarzún A, Mondaca-Ruff D, Azocar A, Castro PF, Jalil JE, Chiong M, Lavandero S, Ocaranza MP. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension. Ther Adv Cardiovasc Dis 2015; 9:217-37. [PMID: 26275770 DOI: 10.1177/1753944715597623] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key component of cardiovascular physiology and homeostasis due to its influence on the regulation of electrolyte balance, blood pressure, vascular tone and cardiovascular remodeling. Deregulation of this system contributes significantly to the pathophysiology of cardiovascular and renal diseases. Numerous studies have generated new perspectives about a noncanonical and protective RAS pathway that counteracts the proliferative and hypertensive effects of the classical angiotensin-converting enzyme (ACE)/angiotensin (Ang) II/angiotensin type 1 receptor (AT1R) axis. The key components of this pathway are ACE2 and its products, Ang-(1-7) and Ang-(1-9). These two vasoactive peptides act through the Mas receptor (MasR) and AT2R, respectively. The ACE2/Ang-(1-7)/MasR and ACE2/Ang-(1-9)/AT2R axes have opposite effects to those of the ACE/Ang II/AT1R axis, such as decreased proliferation and cardiovascular remodeling, increased production of nitric oxide and vasodilation. A novel peptide from the noncanonical pathway, alamandine, was recently identified in rats, mice and humans. This heptapeptide is generated by catalytic action of ACE2 on Ang A or through a decarboxylation reaction on Ang-(1-7). Alamandine produces the same effects as Ang-(1-7), such as vasodilation and prevention of fibrosis, by interacting with Mas-related GPCR, member D (MrgD). In this article, we review the key roles of ACE2 and the vasoactive peptides Ang-(1-7), Ang-(1-9) and alamandine as counter-regulators of the ACE-Ang II axis as well as the biological properties that allow them to regulate blood pressure and cardiovascular and renal remodeling.
Collapse
Affiliation(s)
- Evelyn Mendoza-Torres
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra Oyarzún
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David Mondaca-Ruff
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrés Azocar
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile Division Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge E Jalil
- Division Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - María Paz Ocaranza
- Advanced Center for Chronic Diseases(ACCDiS), Facultad de Medicina, PontificiaUniversidad Católica de Chile, Santiago, Chile.Division Enfermedades Cardiovasculares,Facultad de Medicina, Pontificia UniversidadCatólica de Chile, Santiago, Chile
| |
Collapse
|
26
|
Chow BSM, Kocan M, Bosnyak S, Sarwar M, Wigg B, Jones ES, Widdop RE, Summers RJ, Bathgate RA, Hewitson TD, Samuel CS. Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis. Kidney Int 2014; 86:75-85. [DOI: 10.1038/ki.2013.518] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/23/2013] [Accepted: 10/17/2013] [Indexed: 02/06/2023]
|
27
|
Brouwers S, Smolders I, Massie A, Dupont AG. Angiotensin II type 2 receptor-mediated and nitric oxide-dependent renal vasodilator response to compound 21 unmasked by angiotensin-converting enzyme inhibition in spontaneously hypertensive rats in vivo. Hypertension 2013; 62:920-6. [PMID: 24041944 DOI: 10.1161/hypertensionaha.112.00762] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II type 2 receptor (AT2R)-mediated vasodilation has been demonstrated in different vascular beds in vitro and in perfused organs. In vivo studies, however, consistently failed to disclose renal vasodilator responses to compound 21, a selective AT2R agonist, even after angiotensin II type 1 receptor blockade. Here, we investigated in vivo whether angiotensin-converting enzyme inhibition, reducing endogenous angiotensin II levels, could unmask the effects of selective AT2R stimulation on blood pressure and renal hemodynamics in normotensive and hypertensive rats. After pretreatment with the angiotensin-converting enzyme inhibitor captopril, intravenous administration of compound 21 did not affect blood pressure and induced dose-dependent renal vasodilator responses in spontaneously hypertensive but not in normotensive rats. The D1 receptor agonist fenoldopam, used as positive control, reduced blood pressure and renal vascular resistance in both strains. The AT2R antagonist PD123319 and the nitric oxide synthase inhibitor L-NMMA (N(G)-monomethyl-L-arginine acetate) abolished the renal vasodilator response to compound 21 without affecting responses to fenoldopam. The cyclooxygenase inhibitor indomethacin partially inhibited the renal vascular response to compound 21, whereas the bradykinin B2 receptor antagonist icatibant was without effect. Angiotensin-converting enzyme inhibition unmasked a renal vasodilator response to selective AT2R stimulation in vivo, mediated by nitric oxide and partially by prostaglandins. AT2R may have a pathophysiological role to modulate renal hemodynamic effects of angiotensin II in the hypertensive state.
Collapse
Affiliation(s)
- Sofie Brouwers
- Department of Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | |
Collapse
|
28
|
Gao S, Park BM, Cha SA, Park WH, Park BH, Kim SH. Angiotensin AT2 receptor agonist stimulates high stretch induced- ANP secretion via PI3K/NO/sGC/PKG/pathway. Peptides 2013; 47:36-44. [PMID: 23791669 DOI: 10.1016/j.peptides.2013.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II) type 1 receptor (AT1R) mediates the major cardiovascular effects of Ang II. However, the effects mediated via AT2R are still controversial. The aim of the present study is to define the effect of AT2R agonist CGP42112A (CGP) on high stretch-induced ANP secretion and its mechanism using in vitro and in vivo experiments. CGP (0.01, 0.1 and 1μM) stimulated high stretch-induced ANP secretion and concentration from isolated perfused rat atria. However, atrial contractility and the translocation of extracellular fluid did not change. The augmented effect of CGP (0.1μM) on high stretch-induced ANP secretion was attenuated by the pretreatment with AT2R antagonist or inhibitor for phosphoinositol 3-kinase (PI3K), nitric oxide (NO), soluble guanylyl cyclase (sGC), or protein kinase G (PKG). However, antagonist for AT1R or Mas receptor did not influence CGP-induced ANP secretion. In vivo study, acute infusion of CGP for 10min increased plasma ANP level without blood pressure change. In renal hypertensive rat atria, AT2R mRNA and protein levels were up-regulated and the response of plasma ANP level to CGP infusion in renal hypertensive rats augmented. The pretreatment with AT2R antagonist for 10min followed by CGP infusion attenuated an increased plasma ANP level induced by CGP. However, pretreatment with AT1R or Mas receptor antagonist unaffected CGP-induced increase in plasma ANP level. Therefore, we suggest that AT2R agonist CGP stimulates high stretch-induced ANP secretion through PI3K/NO/sGC/PKG pathway and these effects are augmented in renal hypertensive rats.
Collapse
MESH Headings
- Angiotensin II/analogs & derivatives
- Angiotensin II/pharmacology
- Animals
- Atrial Natriuretic Factor/metabolism
- Atrial Pressure/drug effects
- Cyclic GMP-Dependent Protein Kinases/genetics
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Gene Expression Regulation
- Guanylate Cyclase/genetics
- Guanylate Cyclase/metabolism
- Heart Atria/drug effects
- Heart Atria/metabolism
- Hypertension, Renal/genetics
- Hypertension, Renal/metabolism
- Hypertension, Renal/physiopathology
- Imidazoles/pharmacology
- Losartan/pharmacology
- Male
- Nitric Oxide/metabolism
- Oligopeptides/pharmacology
- Peptide Fragments/pharmacology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- Soluble Guanylyl Cyclase
- Tissue Culture Techniques
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmacology, Taishan Medical University, Shandong, China
| | | | | | | | | | | |
Collapse
|
29
|
Carey RM. The intrarenal renin-angiotensin and dopaminergic systems: control of renal sodium excretion and blood pressure. Hypertension 2013; 61:673-80. [PMID: 23407646 DOI: 10.1161/hypertensionaha.111.00241] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Robert M Carey
- University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
30
|
AT2 receptors: beneficial counter-regulatory role in cardiovascular and renal function. Pflugers Arch 2012; 465:99-110. [PMID: 22949090 DOI: 10.1007/s00424-012-1146-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 01/11/2023]
Abstract
The renin-angiotensin system (RAS) is a coordinated hormonal cascade intimately involved in cardiovascular and renal control and blood pressure regulation. Angiotensin II (Ang II), the major RAS effector peptide, binds two distinct receptors, the angiotensin type-1 receptor (AT(1)R) and the angiotensin type-2 (AT(2)R) receptor. The vast majority of the physiological actions of Ang II, almost all of them detrimental, are mediated by AT(1)Rs. In contrast, AT(2)Rs negatively modulate the actions of AT(1)Rs under the majority of circumstances and generally possess beneficial effects. AT(2)Rs induce vasodilation in both resistance and capacitance vessels, mediating natriuresis directly and via interactions with dopamine D1 receptors in the renal proximal tubule. AT(2)Rs inhibit renin biosynthesis and secretion and protect the kidneys from inflammation and ischemic injury. Our understanding of the exact role of AT(2)Rs in physiology and pathophysiology continues to expand; the purpose of this review is to provide an up-to-date summary of the functional role of AT(2)Rs at the organ, tissue, cellular, and subcellular levels with emphasis on the vascular and renal actions that bear on blood pressure regulation and hypertension.
Collapse
|
31
|
Verdonk K, Durik M, Abd-Alla N, Batenburg WW, van den Bogaerdt AJ, van Veghel R, Roks AJ, Danser AJ, van Esch JH. Compound 21 Induces Vasorelaxation via an Endothelium- and Angiotensin II Type 2 Receptor-Independent Mechanism. Hypertension 2012; 60:722-9. [DOI: 10.1161/hypertensionaha.112.196022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II type 2 (AT
2
) receptor stimulation has been linked to vasodilation. Yet, AT
2
receptor-independent hypertension and hypotension (or no effect on blood pressure) have been observed in vivo after application of the AT
2
receptor agonist compound 21 (C21). We, therefore, studied its effects in vitro, using preparations known to display AT
2
receptor-mediated responses. Hearts of Wistar rats, spontaneously hypertensive rats (SHRs), C57Bl/6 mice, and AT
2
receptor knockout mice were perfused according to Langendorff. Mesenteric and iliac arteries of these animals, as well as coronary microarteries from human donor hearts, were mounted in Mulvany myographs. In the coronary vascular bed of Wistar rats, C57Bl/6 mice, and AT
2
receptor knockout mice, C21 induced constriction followed by dilation. SHR hearts displayed enhanced constriction and no dilation. Irbesartan (angiotensin II type 1 receptor blocker) abolished the constriction and enhanced or (in SHRs) reintroduced dilation, and PD123319 (AT
2
receptor blocker) did not block the latter. C21 relaxed preconstricted vessels of all species, and this did not depend on angiotensin II receptors, the endothelium, or the NO-guanylyl cyclase-cGMP pathway. C21 constricted SHR iliac arteries but none of the other vessels, and irbesartan prevented this. C21 shifted the concentration-response curves to U46619 (thromboxane A
2
analog) and phenylephrine (α-adrenoceptor agonist) but not ionomycine (calcium ionophore) to the right. In conclusion, C21 did not cause AT
2
receptor-mediated vasodilation. Yet, it did induce vasodilation by blocking calcium transport into the cell and constriction via angiotensin II type 1 receptor stimulation. The latter effect is enhanced in SHRs. These data may explain the varying effects of C21 on blood pressure in vivo.
Collapse
Affiliation(s)
- Koen Verdonk
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Matej Durik
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Nalina Abd-Alla
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Wendy W. Batenburg
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Antoon J. van den Bogaerdt
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Richard van Veghel
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Anton J.M. Roks
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - A.H. Jan Danser
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Joep H.M. van Esch
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
32
|
Angiotensin II AT(2) receptor decreases AT(1) receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar-Kyoto rats. J Hypertens 2012; 30:1176-84. [PMID: 22504846 DOI: 10.1097/hjh.0b013e3283532099] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The renin-angiotensin (Ang) system controls blood pressure, in part, by regulating renal tubular sodium transport. In the kidney, activation of the angiotensin II type 1 (AT(1)) receptor increases renal sodium reabsorption, whereas the angiotensin II type 2 (AT(2)) receptor produces the opposite effect. We hypothesized that the AT(2) receptor regulates AT(1) receptor expression and function in the kidney. METHODS AND RESULTS In immortalized renal proximal tubule (RPT) cells from Wistar-Kyoto rats, CGP42112, an AT(2) receptor agonist, decreased AT(1) receptor mRNA and protein expression (P < 0.05), as assessed by reverse transcriptase-polymerase chain reaction and immunoblotting. The inhibitory effect of the AT(2) receptor on AT(1) receptor expression was blocked by the AT(2) receptor antagonist, PD123319 (10 (-6)mol/l), the nitric oxide synthase inhibitor N(w)-nitro-L-arginine methyl ester (10(-4) mol/l), or the nitric oxide-dependent soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (10(-5) mol/l), indicating that both nitric oxide and cyclic guanosine monophosphate (cGMP) were involved in the signaling pathway. Furthermore, CGP42112 decreased Sp1 serine phosphorylation and reduced the binding of Sp1 to AT(1) receptor DNA. Stimulation with Ang II (10(-11) mol/l per 30 min) enhanced Na(+)-K(+)-ATPase activity in RPT cells, which was prevented by pretreatment with CGP42112 (10(-7) mol/l per 24 h) (P < 0.05). The above-mentioned results were confirmed in RPT cells from AT(2) receptor knockout mice; AT(1) receptor expression and Ang II-stimulated Na-K-ATPase activity were greater in these cells than in RPT cells from wild-type mice (P < 0.05). AT(1)/AT(2) receptors co-localized and co-immunoprecipitated in RPT cells; short-term CGP42112 (10 mol/l per 30 min) treatment increased AT(1)/AT(2) receptor co-immunoprecipitation (P < 0.05). CONCLUSIONS These results indicate that the renal AT(2) receptor, via nitric oxide/cGMP/Sp1 pathway, regulates AT(1 )receptor expression and function, which may be important in the regulation of sodium excretion and blood pressure.
Collapse
|
33
|
Hisham NF, Bayraktutan U. Epidemiology, pathophysiology, and treatment of hypertension in ischaemic stroke patients. J Stroke Cerebrovasc Dis 2012; 22:e4-14. [PMID: 22682972 DOI: 10.1016/j.jstrokecerebrovasdis.2012.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/05/2012] [Accepted: 05/06/2012] [Indexed: 12/20/2022] Open
Abstract
Stroke continues to be one of the leading causes of mortality and morbidity worldwide. There are 2 main types of stroke: ischaemic strokes, which are caused by obstruction of the blood vessels leading to or within the brain, and haemorrhagic strokes, which are induced by the disruption of blood vessels. Stroke is a disease of multifactorial aetiology that may develop as an end state in patients with serious vascular conditions--most notably, uncontrolled arterial hypertension--thereby necessitating the effective control of this risk factor to prevent stroke or its recurrence. This paper focuses specifically on the epidemiology and pathogenesis of ischaemic stroke mainly in chronically hypertensive patients and pays particular attention to the efficacy of a select group of routinely used major antihypertensive drugs (i.e., angiotensin-converting enzyme inhibitors, angiotensin II type 1 receptor blockers, and calcium channel blockers) in the treatment of strokes.
Collapse
Affiliation(s)
- Nur Fatirul Hisham
- Division of Stroke, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
34
|
Wang G, Coleman CG, Glass MJ, Zhou P, Yu Q, Park L, Anrather J, Pickel VM, Iadecola C. Angiotensin II type 2 receptor-coupled nitric oxide production modulates free radical availability and voltage-gated Ca2+ currents in NTS neurons. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1076-83. [PMID: 22378773 PMCID: PMC3362142 DOI: 10.1152/ajpregu.00571.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 02/25/2012] [Indexed: 02/07/2023]
Abstract
The medial region of the nucleus tractus solitarius (mNTS) is a key brain stem site controlling cardiovascular function, wherein ANG II modulates neuronal L-type Ca(2+) currents via activation of ANG II type 1 receptors (AT(1)R) and production of reactive oxygen species (ROS). ANG II type 2 receptors (AT(2)R) induce production of nitric oxide (NO), which may interact with ROS and modulate AT(1)R signaling. We sought to determine whether AT(2)R-mediated NO production occurs in mNTS neurons and, if so, to elucidate the NO source and the functional interaction with AT(1)R-induced ROS or Ca(2+) influx. Electron microscopic (EM) immunolabeling showed that AT(2)R and neuronal NO synthase (nNOS) are coexpressed in neuronal somata and dendrites receiving synapses in the mNTS. In the presence of the AT(1)R antagonist losartan, ANG II increased NO production in isolated mNTS neurons, an effect blocked by the AT(2)R antagonist PD123319, but not the angiotensin (1-7) antagonist D-Ala. Studies in mNTS neurons of nNOS-null or endothelial NOS (eNOS)-null mice established nNOS as the source of NO. ANG II-induced ROS production was enhanced by PD123319, the NOS inhibitor N(G)-nitro-l-arginine (LNNA), or in nNOS-null mice. Moreover, in the presence of losartan, ANG II reduced voltage-gated L-type Ca(2+) current, an effect blocked by PD123319 or LNNA. We conclude that AT(2)R are closely associated and functionally coupled with nNOS in mNTS neurons. The resulting NO production antagonizes AT(1)R-mediated ROS and dampens L-type Ca(2+) currents. The ensuing signaling changes in the NTS may counteract the deleterious effects of AT(1)R on cardiovascular function.
Collapse
Affiliation(s)
- Gang Wang
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, New York 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nistri S, Di Cesare Mannelli L, Mazzetti L, Feil R, Bani D, Failli P. Restoring nitric oxide cytosolic calcium regulation by cyclic guanosine monophosphate protein kinase I alpha transfection in coronary endothelial cells of spontaneously hypertensive rats. J Vasc Res 2012; 49:221-30. [PMID: 22433666 DOI: 10.1159/000332911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/01/2011] [Indexed: 12/20/2022] Open
Abstract
In microcoronary endothelial cells (RCEs) from spontaneously hypertensive rats (SHR), the nitric oxide (NO)/cyclic guanosine monophosphate (GMP)-dependent proteinkinase I (cGKI) pathway cannot regulate the cytosolic calcium ([Ca2+]i) dynamic as in RCEs from Wistar Kyoto rats (WKY). We investigated the altered downstream NO target in SHR cells and, since cGKI expression was low, whether the re-expression of cGKIα in SHR RCEs could restore NO calcium responsiveness. We measured [Ca2+]i dynamic by fura-2 imaging analysis and the cGKI level by RT-PCR and Western blot in SHR and WKY RCEs. Plasmids encoding for enhanced green fluorescence protein or cGKIα-enhanced green fluorescence protein were transiently transfected in SHR RCEs, and [Ca2+]i was evaluated. Angiotensin-II (AT-II) increased [Ca2+]i in a concentration-dependent way in both strains. Whereas in WKY, endogenously produced NO and cyclic GMP analog decreased the AT-II-induced [Ca2+]i transient, they were ineffective in SHR RCEs. The cGKI level was low in SHR cells. However, after cGKIα re-expression, endogenous NO decreased the AT-II-induced [Ca2+]i transient, while endothelial NO synthase and cGKI inhibition prevented it. The low expression of cGKI in SHR accounts for the absent regulation of the agonist-induced [Ca2+]i transient by the NO/cyclic GMP pathway. Studies on cGKI in humans could contribute to a better understanding of cardiovascular pathologies.
Collapse
Affiliation(s)
- Silvia Nistri
- Department of Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Ernesto L. Schiffrin
- From the Department of Medicine, Sir Mortimer B. Davis Jewish General Hospital and Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, McGill University, Montreal, Québec, Canada
| |
Collapse
|
37
|
Protective Role of the ACE2/Ang-(1-9) Axis in Cardiovascular Remodeling. Int J Hypertens 2012; 2012:594361. [PMID: 22315665 PMCID: PMC3270559 DOI: 10.1155/2012/594361] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/05/2011] [Accepted: 10/09/2011] [Indexed: 12/21/2022] Open
Abstract
Despite reduction in cardiovascular (CV) events and end-organ damage with the current pharmacologic strategies, CV disease remains the primary cause of death in the world. Pharmacological therapies based on the renin angiotensin system (RAS) blockade are used extensively for the treatment of hypertension, heart failure, and CV remodeling but in spite of their success the prevalence of end-organ damage and residual risk remain still high. Novel approaches must be discovered for a more effective treatment of residual CV remodeling and risk. The ACE2/Ang-(1–9) axis is a new and important target to counterbalance the vasoconstrictive/proliferative RAS axis. Ang-(1–9) is hydrolyzed slower than Ang-(1–7) and is able to bind the Ang II type 2 receptor. We review here the current experimental evidence suggesting that activation of the ACE2/Ang-(1–9) axis protects the heart and vessels (and possibly the kidney) from adverse cardiovascular remodeling in hypertension as well as in heart failure.
Collapse
|
38
|
Rehman A, Leibowitz A, Yamamoto N, Rautureau Y, Paradis P, Schiffrin EL. Angiotensin type 2 receptor agonist compound 21 reduces vascular injury and myocardial fibrosis in stroke-prone spontaneously hypertensive rats. Hypertension 2011; 59:291-9. [PMID: 22184324 DOI: 10.1161/hypertensionaha.111.180158] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
-Angiotensin type 2 receptor-mediated effects of angiotensin II appear to counteract many of the effects mediated via the angiotensin type 1 receptor. Compound 21 (C21), a selective angiotensin type 2 receptor agonist, has demonstrated beneficial effects on cardiac function after myocardial infarction in rodents. We hypothesized that C21 alone or in combination with an angiotensin type 1 receptor antagonist would blunt the development of hypertension and vascular damage in stroke-prone spontaneously hypertensive rats. Six-week-old stroke-prone spontaneously hypertensive rats received C21 (1 mg/kg per day), the angiotensin type 1 receptor antagonist losartan (10 mg/kg per day), C21 plus losartan, or vehicle PO for 6 weeks. Systolic blood pressure was lower in losartan and C21-losartan combination groups (P<0.001). Endothelium-dependent relaxation was enhanced (P<0.001) in the C21-losartan combination group at lower acetylcholine concentrations. C21 or C21-losartan combination reduced vascular stiffness, aortic medial and myocardial interstitial collagen content, and aortic fibronectin (P<0.05). C21 and losartan decreased the expression of 2 genes associated with cardiac hypertrophy, myosin heavy chain-β (myh7) by 30 to 50%, and α-skeletal muscle actin by 30% to 35% (P<0.05). C21-losartan combination caused an additional 40% reduction in myh7 compared with C21 (P<0.01). Aortic superoxide generation was reduced equally by the 3 treatments (P<0.001). Monocyte/macrophage infiltration in the aorta and kidney (P<0.001) and T-lymphocyte infiltration in the renal cortex (P<0.05) were lowered similarly by the 3 treatments. These data suggest that C21 alone or in combination with losartan may improve endothelial function and vascular composition and mechanics by reducing oxidative stress, collagen content, fibronectin, and inflammatory cell infiltration in stroke-prone spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Asia Rehman
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
BACKGROUND Angiotensin II (Ang II) induces constriction (AT(1)) and dilation (AT(2) receptors) of cerebral arterioles. High sodium intake induces changes in receptors expression and loss of AT(2)-mediated vasodilation in extracerebral vessels. We investigated whether high salt modifies the AT(2)-mediated response of cerebral arterioles. METHODS Three-month-old male Wistar rats received drinking water supplemented or not with 1% NaCl. We measured at day 4 or 30 plasma aldosterone concentration, AT receptors expression (brain microvessels, western blot, RT-qPCR), internal diameter of pial arterioles (cranial window) following suffusion with Ang II (10(-6) mol/l, or 10(-8) mol/l + losartan 10(-5) mol/l), serotonin (5-HT, 10(-6) mol/l), sodium nitroprusside (10(-5) mol/l) and adenosine diphosphate (ADP, 10(-4) mol/l). RESULTS High salt did not modify arterial pressure, baseline arteriolar diameter, vasoconstriction to Ang II or 5-HT, nor vasodilation to SNP. High salt lowered plasma aldosterone concentration (d4 138 ± 71 not significant vs. control 338 ± 73; d30 150 ± 21 P < 0.05 vs. control 517 ± 79 μmol/l). AT receptors mRNA did not change while protein level of AT(2) receptors decreased at d4 (64 ± 9% of control, P < 0.05). AT(2)-mediated vasodilation (control d4; d30 8 ± 2; 5 ± 2%) was abolished at d4 (-2 ± 2%, P < 0.05) and reversed to vasoconstriction at d30 (-7 ± 2%, P < 0.05). ADP-induced vasodilation is abolished at d30 (2 ± 2, P < 0.05 vs. control 19 ± 4%). CONCLUSION High salt specifically abolishes AT(2)-mediated vasodilation, immediately, via decreased level of AT(2) receptor protein, and after 30 days, in association with abolition of endothelial vasodilation. Such loss of AT(2)-mediated vasodilation may be deleterious in case of stroke.
Collapse
|
40
|
Nguyen Dinh Cat A, Touyz RM. A new look at the renin-angiotensin system--focusing on the vascular system. Peptides 2011; 32:2141-50. [PMID: 21945916 DOI: 10.1016/j.peptides.2011.09.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/07/2011] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS), critically involved in the control of blood pressure and volume homeostasis, is a dual system comprising a circulating component and a local tissue component. The rate limiting enzyme is renin, which in the circulating RAS derives from the kidney to generate Ang II, which in turn regulates cardiovascular function by binding to AT(1) and AT(2) receptors on cardiac, renal and vascular cells. The tissue RAS can operate independently of the circulating RAS and may be activated even when the circulating RAS is suppressed or normal. A functional tissue RAS has been identified in brain, kidney, heart, adipose tissue, hematopoietic tissue, gastrointestinal tract, liver, endocrine system and blood vessels. Whereas angiotensinsinogen, angiotensin converting enzyme (ACE), Ang I and Ang II are synthesized within these tissues, there is still controversy as to whether renin is produced locally or whether it is taken up from the circulation, possibly by the (pro)renin receptor. This is particularly true in the vascular wall, where expression of renin is very low. The exact function of the vascular RAS remains elusive, but may contribute to fine-tuning of vascular tone and arterial structure and may amplify vascular effects of the circulating RAS, particularly in pathological conditions, such as in hypertension, atherosclerosis and diabetes. New concepts relating to the vascular RAS have recently been elucidated including: (1) the presence of functionally active Ang-(1-7)-Mas axis in the vascular system, (2) the importance of the RAS in perivascular adipose tissue and cross talk with vessels, and (3) the contribution to vascular RAS of Ang II derived from immune and inflammatory cells within the vascular wall. The present review highlights recent progress in the RAS field, focusing on the tissue system and particularly on the vascular RAS.
Collapse
Affiliation(s)
- Aurelie Nguyen Dinh Cat
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
41
|
Rautureau Y, Paradis P, Schiffrin EL. Cross-talk between aldosterone and angiotensin signaling in vascular smooth muscle cells. Steroids 2011; 76:834-9. [PMID: 21371487 DOI: 10.1016/j.steroids.2011.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/17/2011] [Accepted: 02/16/2011] [Indexed: 01/13/2023]
Abstract
In hypertension or other forms of cardiovascular disease, the chronic activation of the renin-angiotensin-aldosterone system (RAAS) leads to dysfunction of the vasculature, including, increased vascular tone, inflammation, fibrosis and thrombosis. Cross-talk between the main mediators of the RAAS, aldosterone and angiotensin (Ang) II, participates in the development of this vascular dysfunction. Recent studies have highlighted the molecular mechanisms supporting this cross-talk in vascular smooth muscle cells (VSMCs). Some of the signaling pathways activated by the Ang II type 1 receptor (AT(1)R) are dependent on the mineralocorticoid receptor (MR) and vice versa. VSMC signaling pathways involved in migration and growth are under the control of cross-talk between aldosterone and Ang II. A synergistic mechanism leads to potentiation of signaling pathways activated by each agent. The genomic and non-genomic mechanisms activated by aldosterone cooperate with Ang II to regulate vascular tone and gene expression of pro-inflammatory and pro-fibrotic molecules. This cross-talk is dependent on the non-receptor tyrosine kinase c-Src, and on receptor tyrosine kinases, EGFR and PDGFR, and leads to activation of MAP kinases and growth, migration and inflammatory effects. These new findings will contribute to development of better treatments for conditions in which the RAAS is excessively activated.
Collapse
MESH Headings
- Aldosterone/metabolism
- Aldosterone/physiology
- Angiotensins/metabolism
- Angiotensins/physiology
- Animals
- Gene Expression
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Receptors, Angiotensin/metabolism
- Receptors, Angiotensin/physiology
- Receptors, Mineralocorticoid/metabolism
- Receptors, Mineralocorticoid/physiology
- Signal Transduction
- Transcriptional Activation
Collapse
Affiliation(s)
- Yohann Rautureau
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
42
|
Abstract
Hypertension is associated with vascular changes characterised by remodelling, endothelial dysfunction and hyperreactivity. Cellular processes underlying these perturbations include altered vascular smooth muscle cell growth and apoptosis, fibrosis, hypercontractility and calcification. Inflammation, associated with macrophage infiltration and increased expression of redox-sensitive pro-inflammatory genes, also contributes to vascular remodelling. Many of these features occur with ageing, and the vascular phenotype in hypertension is considered a phenomenon of ‘premature vascular ageing’. Among the many factors involved in the hypertensive vascular phenotype, angiotensin II (Ang II) is especially important. Ang II, previously thought to be the sole effector of the renin–angiotensin system (RAS), is converted to smaller peptides [Ang III, Ang IV, Ang-(1-7)] that are biologically active in the vascular system. Another new component of the RAS is the (pro)renin receptor, which signals through Ang-II-independent mechanisms and might influence vascular function. Ang II mediates effects through complex signalling pathways on binding to its G-protein-coupled receptors (GPCRs) AT1R and AT2R. These receptors are regulated by the GPCR-interacting proteins ATRAP, ARAP1 and ATIP. AT1R activation induces effects through the phospholipase C pathway, mitogen-activated protein kinases, tyrosine kinases/phosphatases, RhoA/Rhokinase and NAD(P)H-oxidase-derived reactive oxygen species. Here we focus on recent developments and new research trends related to Ang II and the RAS and involvement in the hypertensive vascular phenotype.
Collapse
|
43
|
|
44
|
Margolis DJ, Hoffstad O, Thom S, Bilker W, Maldonado AR, Cohen RM, Aronow BJ, Crombleholme T. The differential effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers with respect to foot ulcer and limb amputation in those with diabetes. Wound Repair Regen 2011; 18:445-51. [PMID: 20840518 DOI: 10.1111/j.1524-475x.2010.00624.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Diabetic foot ulcers (DFU) or lower extremity amputation (LEA) are complications of diabetes. In those with diabetes, angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARB) are commonly used to prevent the progression of kidney disease. Recent studies have indicated that angiotensin may affect angiogenesis and wound repair. Our goal was to evaluate in those with diabetes the likelihood of developing a DFU or LEA among users of ACEi or ARB using a retrospective cohort design of general practices in the United Kingdom. We studied 40,342 individuals at least 35 years of age with diabetes who were first prescribed ACEi or ARB between 1995 and 2006. A total of 35,153 individuals were treated with ACEi, 12,437 individuals with ARB, and 7,310 both. The hazard ratio for DFU was 0.50 (95% confidence intervals: 0.43, 0.59), showing an increased risk of DFU for those using ACEi vs. ARB. The hazard ratio for LEA was 0.72 (0.48, 1.01). However, among those with lower extremity peripheral arterial disease the hazard ratio was 0.45 (0.22, 0.91) for the new onset of a LEA. In conclusion, among those with diabetes, exposure to ACEi as compared with ARB increases the risk of developing a DFU or LEA.
Collapse
Affiliation(s)
- David J Margolis
- Department of Dermatology and Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Countervailing vascular effects of rosiglitazone in high cardiovascular risk mice: role of oxidative stress and PRMT-1. Clin Sci (Lond) 2010; 118:583-92. [DOI: 10.1042/cs20090289] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, we tested the hypothesis that the PPARγ (peroxisome-proliferator-activated receptor γ) activator rosiglitazone improves vascular structure and function in aged hyperhomocysteinaemic MTHFR (methylene tetrahydrofolate reductase) gene heterozygous knockout (mthfr+/−) mice fed a HCD (high-cholesterol diet), a model of high cardiovascular risk. One-year-old mthfr+/− mice were fed or not HCD (6 mg·kg−1 of body weight·day−1) and treated or not with rosiglitazone (20 mg·kg−1 of body weight·day−1) for 90 days and compared with wild-type mice. Endothelium-dependent relaxation of carotid arteries was significantly impaired (−40%) only in rosiglitazone-treated HCD-fed mthfr+/− mice. Carotid M/L (media-to-lumen ratio) and CSA (cross-sectional area) were increased (2-fold) in mthfr+/− mice fed or not HCD compared with wild-type mice (P<0.05). Rosiglitazone reduced M/L and CSA only in mthfr+/− mice fed a normal diet. Superoxide production was increased in mthfr+/− mice fed HCD treated or not with rosiglitazone, whereas plasma nitrite was decreased by rosiglitazone in mice fed or not HCD. PRMT-1 (protein arginine methyltransferase-1), involved in synthesis of the NO (nitric oxide) synthase inhibitor ADMA (asymmetric ω-NG,NG-dimethylarginine), and ADMA were increased only in rosiglitazone-treated HCD-fed mthfr+/− mice. Rosiglitazone had both beneficial and deleterious vascular effects in this animal model of high cardiovascular risk: it prevented carotid remodelling, but impaired endothelial function in part through enhanced oxidative stress and increased ADMA production in mice at high cardiovascular risk.
Collapse
|
46
|
Gelosa P, Pignieri A, Fändriks L, de Gasparo M, Hallberg A, Banfi C, Castiglioni L, Turolo L, Guerrini U, Tremoli E, Sironi L. Stimulation of AT2 receptor exerts beneficial effects in stroke-prone rats: focus on renal damage. J Hypertens 2010; 27:2444-51. [PMID: 19680135 DOI: 10.1097/hjh.0b013e3283311ba1] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIM Angiotensin II acts through two major receptors: AT1-R and AT2-R. It is known that the stimulation of AT1-R mediates vasoconstriction, cell proliferation and fibrosis, aldosterone release and inflammatory response but, although the stimulation of AT2-R is thought to promote vasodilation and anti-inflammatory effects, its real in-vivo functions are still unclear. The aim of this study was to investigate the effects of specific and selective AT2-R stimulation on the pathological events occurring in spontaneously hypertensive stroke-prone rats (SHRSPs). METHODS AND RESULTS SHRSPs who were fed a high-salt diet underwent long-term treatment with vehicle or compound 21 (C21), a nonpeptide selective AT2-R agonist, at doses of 0.75, 5 and 10 mg/kg per day. The vehicle-treated rats developed brain abnormalities detectable by magnetic resonance imaging after 42.5 +/- 7.5 days, and died 43 +/- 9.5 days after the start of the dietary treatment. The highest C21 dose delayed the occurrence of brain damage (P < 0.001 vs. vehicle-treated SHRSPs) and prolonged survival (P < 0.001) without affecting blood pressure. These beneficial effects of C21 were abolished by the administration of PD123319, an AT2-R antagonist. C21 treatment preserved renal structure by preventing inflammatory cell infiltration, collagen accumulation, and the neo-expression of vimentin; it also prevented the increased plasma renin activity and accumulation of urinary acute-phase proteins observed in the vehicle-treated rats. CONCLUSION Specific and selective AT2-R stimulation has beneficial effects on the pathological events occurring in SHRSPs. These data indicate a new avenue for the pharmacological treatment of diseases in which modulation of the renin-angiotensin system is required.
Collapse
Affiliation(s)
- Paolo Gelosa
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kutcher ME, Herman IM. The pericyte: cellular regulator of microvascular blood flow. Microvasc Res 2009; 77:235-46. [PMID: 19323975 DOI: 10.1016/j.mvr.2009.01.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 01/03/2023]
Abstract
The vascular system - through its development, response to injury, and remodeling during disease - constitutes one of the key organ systems sustaining normal human physiology; conversely, its dysregulation also underlies multiple pathophysiologic processes. Regulation of vascular endothelial cell function requires the integration of complex signals via multiple cell types, including arterial smooth muscle, capillary and post-capillary pericytes, and other perivascular cells such as glial and immune cells. Here, we focus on the pericyte and its roles in microvascular remodeling, reviewing current concepts in microvascular pathophysiology and offering new insights into the specific roles that pericyte-dependent signaling pathways may play in modulating endothelial growth and microvascular tone during pathologic angiogenesis and essential hypertension.
Collapse
Affiliation(s)
- Matthew E Kutcher
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
48
|
Stennett AK, Qiao X, Falone AE, Koledova VV, Khalil RA. Increased vascular angiotensin type 2 receptor expression and NOS-mediated mechanisms of vascular relaxation in pregnant rats. Am J Physiol Heart Circ Physiol 2009; 296:H745-55. [PMID: 19151255 DOI: 10.1152/ajpheart.00861.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal pregnancy is associated with reduced blood pressure (BP) and decreased pressor response to vasoconstrictors, even though the renin-angiotensin system is upregulated. Angiotensin II (ANG II) activates both angiotensin type 1 receptors (AT(1)Rs) and angiotensin type 2 receptors (AT(2)Rs). Although the role of the AT(1)R in vascular contraction is well documented, the role of the AT(2)R in vascular relaxation, particularly during pregnancy, is less clear. It was hypothesized that the decreased BP and vasoconstriction during pregnancy was, at least in part, due to changes in AT(2)R amount, distribution, and/or postreceptor mechanisms of vascular relaxation. To test this hypothesis, systolic BP was measured in virgin and pregnant (day 19) Sprague-Dawley rats. Isometric contraction/relaxation was measured in isolated aortic rings, and nitric oxide (NO) production was measured using 4-amino-5-methylamino-2',7'-difluorescein fluorescence. AT(1)R and AT(2)R mRNA expression and protein amount were measured in tissue homogenates using real-time RT-PCR and Western blots, and their local distribution was visualized in cryosections using immunohistochemistry and immunofluorescence. BP was lower in pregnant than virgin rats. Phenylephrine (Phe) caused concentration-dependent contraction that was reduced in the aorta of pregnant compared with virgin rats. Treatment with the AT(2)R antagonist PD-123319 caused greater enhancement of Phe contraction, and the AT(2)R agonist CGP-42112A caused greater relaxation of Phe contraction in the aorta of pregnant than virgin rats. ANG II plus the AT(1)R blocker losartan induced greater NO production in the aorta of pregnant than virgin rats. RT-PCR revealed increased mRNA expression of vascular endothelial NO synthase (eNOS), little change in AT(1)Rs, and increased AT(2)Rs in pregnant compared with virgin rats. Western blots revealed an increased protein amount of activated phospho-eNOS, little change in AT(1)Rs, and increased AT(2)Rs in pregnant compared with virgin rats. Immunohistochemistry and immunofluorescence analysis in aortic sections of virgin rats revealed abundant AT(1)R staining in tunica media that largely colocalized with actin in vascular smooth muscle and less AT(2)Rs mainly in the tunica intima and endothelium. In pregnant rats, AT(1)R staining in the smooth muscle layer and adventitia was reduced, and endothelial AT(2)R staining was enhanced. These data suggest an enhanced AT(2)R-mediated vascular relaxation pathway involving increased expression/activity of endothelial AT(2)Rs and increased postreceptor activated phospho-eNOS, which may contribute to the decreased BP during pregnancy.
Collapse
Affiliation(s)
- Amanda K Stennett
- Div. of Vascular Surgery, Harvard Medical School and Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
49
|
Guan H, Wang P, Hui R, Edin ML, Zeldin DC, Wang DW. Adeno-associated virus-mediated human C-reactive protein gene delivery causes endothelial dysfunction and hypertension in rats. Clin Chem 2008; 55:274-84. [PMID: 19056836 DOI: 10.1373/clinchem.2008.115857] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Prospective studies have shown that C-reactive protein (CRP) is a predictor of hypertension. Because of confounding variables, a causal linkage between CRP and hypertension has not been clearly shown. We investigated whether high circulating concentrations of human CRP can induce hypertension in rats. METHODS We administered a single intravenous injection of adeno-associated virus-green fluorescent protein (AAV-GFP) or AAV-hCRP and measured blood pressure. Using ELISA, we measured serum hCRP, serum endothelin 1 (ET-1), and urine cGMP, and we measured serum nitric oxide (NO) using the Griess method. We recorded heart rate, maximum pressure, arterial elastance, mean aortic pressure, cardiac output, and maximum rate of rise in left ventricular pressure (dP/dt max). RESULTS A single injection of AAV-hCRP resulted in efficient and sustained hCRP expression and led to increased blood pressure 2 months after gene transfer that persisted for another 2 months. This effect was associated with decreased NO production, as demonstrated by decreased serum NO concentration and urinary cGMP excretion, and impairment of endothelial-dependent vascular relaxation. CRP transduction also increased expression of angiotensin type 1 receptor, ET-1, and endothelin type A receptor, decreased expression of angiotensin type 2 receptor and endothelial NO synthase in thoracic aortas, and increased arterial stiffness. Ex vivo studies indicated a similar detrimental effect of CRP that was reversed by the NO donor. CONCLUSION AAV vector-mediated CRP expression resulted in hypertension mediated through reduced NO production and subsequent alteration in ET-1 and renin-angiotensin system activation. Impaired arterial elasticity may also contribute to CRP-induced hypertension. These results support a causal role for CRP in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Hongjing Guan
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
50
|
Matsuhisa S, Otani H, Okazaki T, Yamashita K, Akita Y, Sato D, Moriguchi A, Iwasaka T. N-acetylcysteine abolishes the protective effect of losartan against left ventricular remodeling in cardiomyopathy hamster. Antioxid Redox Signal 2008; 10:1999-2008. [PMID: 18665799 DOI: 10.1089/ars.2008.2069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oxidative stress mediated by activation of angiotensin II type-1 receptor (AT(1)R) plays a crucial role in the progression of heart failure. We investigated the effect of N-acetylcysteine (NAC) and an AT(1)R blocker on oxidative stress and left ventricular (LV) remodeling in BIO14.6 cardiomyopathy hamsters. The cardiomyopathy hamsters were treated with NAC or the AT(1)R blocker losartan for 20 weeks. Although NAC and losartan inhibited oxidative stress and upregulation of iNOS in the cardiomyopathy hamster heart, only losartan inhibited LV chamber dilation, myocardial fibrosis, and LV dysfunction in the cardiomyopathy hamster. Co-treatment with NAC abolished the protective effect of losartan against LV remodeling associated with inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt and eNOS activation. An iNOS inhibitor 1400W or a nonselective NOS inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) exacerbated LV remodeling in the cardiomyopathy hamster. However, L-NAME but not 1400W abrogated losartan-mediated inhibition of LV remodeling. These results suggest that redox-sensitive upregulation of iNOS plays a crucial role in preventing LV remodeling in the BIO14.6 cardiomyopathy hamster. Losartan inhibits LV remodeling by switching the cardioprotective mechanism from iNOS- to eNOS-dependence, but NAC abolishes the protective effect of losartan by inhibiting redox-sensitive activation of PI3K/Akt and eNOS in the cardiomyopathy hamster.
Collapse
Affiliation(s)
- Seiji Matsuhisa
- The Second Department of Internal Medicine, Division of Cardiology, Kansai Medical University, Moriguchi City, Japan
| | | | | | | | | | | | | | | |
Collapse
|