1
|
Besteman SB, Bogaert D, Bont L, Mejias A, Ramilo O, Weinberger DM, Dagan R. Interactions between respiratory syncytial virus and Streptococcus pneumoniae in the pathogenesis of childhood respiratory infections: a systematic review. THE LANCET. RESPIRATORY MEDICINE 2024:S2213-2600(24)00148-6. [PMID: 38991585 DOI: 10.1016/s2213-2600(24)00148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/11/2024] [Accepted: 05/03/2024] [Indexed: 07/13/2024]
Abstract
Lower respiratory tract infections, commonly caused by respiratory syncytial virus (RSV) or Streptococcus pneumoniae (pneumococcus), pose a substantial global health burden, especially in children younger than 5 years of age. A deeper understanding of the relationship between RSV and pneumococcus would aid the development of health-care approaches to disease prevention and management. We completed a systematic review to identify and assess evidence pertaining to the relationship between RSV and pneumococcus in the pathogenesis of childhood respiratory infections. We found mechanistic evidence for direct pathogen-pathogen interactions and for indirect interactions involving host modulation. We found a strong seasonal epidemiological association between these two pathogens, which was recently confirmed by a parallel decrease and a subsequent resurgence of both RSV and pneumococcus-associated disease during the COVID-19 pandemic. Importantly, we found that pneumococcal vaccination was associated with reduced RSV hospitalisations in infants, further supporting the relevance of their interaction in modulating severe disease. Overall evidence supports a broad biological and clinical interaction between pneumococcus and RSV in the pathogenesis of childhood respiratory infections. We hypothesise that the implementation of next-generation pneumococcal and RSV vaccines and monoclonal antibodies targeting RSV will act synergistically to reduce global morbidity and mortality related to childhood respiratory infections.
Collapse
Affiliation(s)
- Sjanna B Besteman
- Department of Pediatrics, Onze Lieve Vrouwe Gasthuis Ziekenhuis, Amsterdam, Netherlands
| | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Louis Bont
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | - Asuncion Mejias
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Octavio Ramilo
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases and Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Ron Dagan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
2
|
Peng M, Zhao C, Lu F, Zhang X, Wang X, He L, Chen B. Role of Nedd4L in Macrophage Pro-Inflammatory Polarization Induced by Influenza A Virus and Lipopolysaccharide Stimulation. Microorganisms 2024; 12:1291. [PMID: 39065060 PMCID: PMC11279021 DOI: 10.3390/microorganisms12071291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza A virus (IAV) infection often leads to influenza-associated fatalities, frequently compounded by subsequent bacterial infections, particularly Gram-negative bacterial co-infections. Lipopolysaccharide (LPS), a primary virulence factor in Gram-negative bacteria, plays a crucial role in influenza-bacterial co-infections. However, the precise pathogenic mechanisms underlying the synergistic effects of viral-bacterial co-infections remain elusive, posing significant challenges for disease management. In our study, we administered a combination of IAV and LPS to mice and examined associated parameters, including the lung function, lung index, wet/dry ratio, serum inflammatory cytokines, Nedd4L expression in lung tissue, and mRNA levels of inflammatory cytokines. Co-infection with IAV and LPS exacerbated lung tissue inflammation and amplified M1 macrophage expression in lung tissue. Additionally, we stimulated macrophages with IAV and LPS in vitro, assessing the inflammatory cytokine content in the cell supernatant and cytokine mRNA expression within the cells. This combined stimulation intensified the inflammatory response in macrophages and upregulated Nedd4L protein and mRNA expression. Subsequently, we used siRNA to knockdown Nedd4L in macrophages, revealing that suppression of Nedd4L expression alleviated the inflammatory response triggered by concurrent IAV and LPS stimulation. Collectively, these results highlight the pivotal role of Nedd4L in mediating the exacerbated inflammatory responses observed in IAV and LPS co-infections.
Collapse
Affiliation(s)
- Meihong Peng
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (M.P.); (L.H.); (B.C.)
| | - Cheng Zhao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (C.Z.); (X.Z.); (X.W.)
| | - Fangguo Lu
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (M.P.); (L.H.); (B.C.)
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (C.Z.); (X.Z.); (X.W.)
| | - Xianggang Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (C.Z.); (X.Z.); (X.W.)
| | - Xiaoqi Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (C.Z.); (X.Z.); (X.W.)
| | - Li He
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (M.P.); (L.H.); (B.C.)
| | - Bei Chen
- Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (M.P.); (L.H.); (B.C.)
| |
Collapse
|
3
|
Geraghty K, Rooney D, Watson C, Ledwidge MT, Glynn L, Gallagher J. Non-specific effects of Pneumococcal and Haemophilus vaccines in children aged 5 years and under: a systematic review. BMJ Open 2023; 13:e077717. [PMID: 38101831 PMCID: PMC10729116 DOI: 10.1136/bmjopen-2023-077717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE To determine the evidence for non-specific effects of the Pneumococcal and Haemophilus influenza vaccine in children aged 5 years and under. DATA SOURCES A key word literature search of MEDLINE, EMBASE, The Cochrane Central Register of Controlled Trials, the European Union Clinical Trials Register and ClinicalTrials.gov up to June 2023. STUDY ELIGIBILITY CRITERIA Randomised controlled trials (RCTs), quasi-RCT or cohort studies. PARTICIPANTS Children aged 5 or under. STUDY APPRAISAL AND SYNTHESIS METHODS Studies were independently screened by two reviewers, with a third where disagreement arose. Risk of bias assessment was performed by one reviewer and confirmed by a second. Results were tabulated and a narrative description performed. RESULTS Four articles were identified and included in this review. We found a reduction in hospitalisations from influenza A (44%), pulmonary tuberculosis (42%), metapneumovirus (45%), parainfluenza virus type 1-3 (44%), along with reductions in mortality associated with pneumococcal vaccine. No data on the Haemophilus vaccine was found. CONCLUSIONS AND IMPLICATIONS In this systematic review, we demonstrate that there is a reduction in particular viral infections in children aged 5 years and under who received the 9-valent pneumococcal conjugate vaccine which differ from those for which the vaccine was designed to protect against. While limited studies have demonstrated a reduction in infections other than those which the vaccine was designed to protect against, substantial clinical trials are required to solidify these findings. PROSPERO REGISTRATION NUMBER CRD42020146640.
Collapse
Affiliation(s)
- Keith Geraghty
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Darragh Rooney
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Chris Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Mark T Ledwidge
- Health Research Institute, University College Dublin College of Health Sciences, Dun Laoghaire, Ireland
| | - Liam Glynn
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Joe Gallagher
- Global Health, Irish College of General Practitioners, Dublin, Ireland
| |
Collapse
|
4
|
Shmoury AH, Zakhour J, Sawma T, Haddad SF, Zahreddine N, Tannous J, Bou Fakhreddine H, Rizk N, Kanj SS. Bacterial respiratory infections in patients with COVID-19: A retrospective study from a tertiary care center in Lebanon. J Infect Public Health 2023; 16 Suppl 1:19-25. [PMID: 37923680 DOI: 10.1016/j.jiph.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Despite multiple reports of increased incidence of bacterial respiratory tract infections following COVID-19 globally, the microbiology is not yet fully elucidated. In this study, we describe the microbiology of bacterial infections and the prevalence of multidrug resistant organisms (MDROs) in hospitalized COVID-19 patients with community-acquired pneumonia (CAP), and hospital-acquired pneumonia (HAP) which includes both non-ventilated hospital acquired pneumonia (NVHAP) and ventilator-associated pneumonia (VAP). To our knowledge, this is the first study that compares the microbiology of VAP and NVHAP in COVID-19 patients. METHODS This is a longitudinal retrospective cohort study conducted at the American University of Beirut Medical Center (AUBMC), a tertiary-care centre in Lebanon. Adult patients with confirmed COVID-19 and concurrent bacterial respiratory infections with an identifiable causative organism who were hospitalized between March 2020 and September 2021 were included. Bacterial isolates identified in hospital-acquired pneumonia (HAP) were divided into 3 groups based on the time of acquisition of pneumonia after admission: hospital day 3-14, 15-28 and 29-42. RESULTS Out of 1674 patients admitted with COVID-19, 159 (9.5%) developed one or more respiratory infections with an identifiable causative organism. Overall, Gram-negative bacteria were predominant (84%) and Stenotrophomonas maltophilia was the most common pathogen, particularly in HAP. Among 231 obtained isolates, 59 (26%) were MDROs, seen in higher proportion in HAP, especially among patients with prolonged hospital stay (> 4 weeks). Non-fermenter Gram-negative bacilli (NFGNB) (OR = 3.52, p-value<0.001), particularly S. maltophilia (OR = 3.24, p-value = 0.02), were significantly more implicated in VAP compared to NVHAP. CONCLUSIONS NFGNB particularly S. maltophilia were significantly associated with COVID-19 VAP. A high rate of bacterial resistance (25%), especially among Gram-negative bacteria, was found which may compromise patients' outcomes and has important implications in guiding therapeutic decisions in COVID-19 patients who acquire bacterial respiratory infections.
Collapse
Affiliation(s)
- Abdel Hadi Shmoury
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Johnny Zakhour
- Department of Internal Medicine, Division of Infectious Diseases, Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tedy Sawma
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sara F Haddad
- Division of Infectious Diseases, Department of Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nada Zahreddine
- Infection Control and Prevention Program, American University of Beirut Medical Center, Beirut, Lebanon
| | - Joseph Tannous
- Infection Control and Prevention Program, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hisham Bou Fakhreddine
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nesrine Rizk
- Department of Internal Medicine, Division of Infectious Diseases, Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Souha S Kanj
- Department of Internal Medicine, Division of Infectious Diseases, Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
5
|
Taha S, Hong E, Denizon M, Falguières M, Terrade A, Deghmane AE, Taha MK. The rapid rebound of invasive meningococcal disease in France at the end of 2022. J Infect Public Health 2023; 16:1954-1960. [PMID: 37875044 DOI: 10.1016/j.jiph.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Invasive meningococcal disease (IMD) cases declined upon the implementation of non-pharmaceutical measures to control the COVID-19 pandemic. A rebound in IMD cases was feared upon easing these measures. METHODS We conducted a retrospective descriptive study using the French National Reference Center Database for meningococci between 2015 and 2022. We scored serogroups, sex, age groups, and clonal complexes of the corresponding isolates. FINDINGS Our data clearly show a decline in the number of IMD cases for all serogroups and age groups until 2021. This decline was mainly due to a decrease in IMD cases provoked by the hyperinvasive ST-11 clonal complex. However, since the fall of 2021, there has been an increase in IMD cases, which accelerated in the second half of 2022. This rebound concerned all age groups, in particular 16-24 years. The increase in cases due to serogroups B, W, and Y were mainly due to the expansion of isolates of the ST-7460, the clonal complex ST-9316 and the clonal complex ST-23, respectively. INTERPRETATION IMD epidemiology changes constantly and profound epidemiological changes have been recently observed. The surveillance of IMD needs to be enhanced using molecular tools. Additionally, vaccination strategies need to be updated to acknowledge recent epidemiological changes of these vaccine-preventable serogroups.
Collapse
Affiliation(s)
- Samy Taha
- Invasive Bacterial Infections Unit and National Reference Center for Meningococci and Haemophilus influnezae, Institut Pasteur, Université Paris Cité, France
| | - Eva Hong
- Invasive Bacterial Infections Unit and National Reference Center for Meningococci and Haemophilus influnezae, Institut Pasteur, Université Paris Cité, France
| | - Mélanie Denizon
- Invasive Bacterial Infections Unit and National Reference Center for Meningococci and Haemophilus influnezae, Institut Pasteur, Université Paris Cité, France
| | - Michael Falguières
- Invasive Bacterial Infections Unit and National Reference Center for Meningococci and Haemophilus influnezae, Institut Pasteur, Université Paris Cité, France
| | - Aude Terrade
- Invasive Bacterial Infections Unit and National Reference Center for Meningococci and Haemophilus influnezae, Institut Pasteur, Université Paris Cité, France
| | - Ala-Eddine Deghmane
- Invasive Bacterial Infections Unit and National Reference Center for Meningococci and Haemophilus influnezae, Institut Pasteur, Université Paris Cité, France
| | - Muhamed-Kheir Taha
- Invasive Bacterial Infections Unit and National Reference Center for Meningococci and Haemophilus influnezae, Institut Pasteur, Université Paris Cité, France.
| |
Collapse
|
6
|
Herrera AL, Potts R, Huber VC, Chaussee MS. Influenza enhances host susceptibility to non-pulmonary invasive Streptococcus pyogenes infections. Virulence 2023; 14:2265063. [PMID: 37772916 PMCID: PMC10566429 DOI: 10.1080/21505594.2023.2265063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
Streptococcus pyogenes (group A streptococcus; GAS) causes a variety of invasive diseases (iGAS) such as bacteremia, toxic shock syndrome, and pneumonia, which are associated with high mortality despite the susceptibility of the bacteria to penicillin ex vivo. Epidemiologic studies indicate that respiratory influenza virus infection is associated with an increase in the frequency of iGAS diseases, including those not directly involving the lung. We modified a murine model of influenza A (IAV)-GAS superinfection to determine if viral pneumonia increased the susceptibility of mice subsequently infected with GAS in the peritoneum. The results showed that respiratory IAV infection increased the morbidity (weight loss) of mice infected intraperitoneally (i.p.) with GAS 3, 5, and 10 d after the initial viral infection. Mortality was also significantly increased when mice were infected with GAS 3 and 5 d after pulmonary IAV infection. Increased mortality among mice infected with virus 5 d prior to bacterial infection correlated with increased dissemination of GAS from the peritoneum to the blood, spleen, and lungs. The interval was also associated with a significant increase in the pro-inflammatory cytokines IFN-γ, IL-12, TNF-α, MCP-1 and IL-27 in sera. We conclude, using a murine model, that respiratory influenza virus infection increases the likelihood and severity of systemic iGAS disease, even when GAS infection does not originate in the respiratory tract.
Collapse
Affiliation(s)
- Andrea L. Herrera
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Rashaun Potts
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Michael S. Chaussee
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
7
|
Ho EC, Cataldi JR, Silveira LJ, Birkholz M, Loi MM, Osborne CM, Dominguez SR. Outbreak of Invasive Group A Streptococcus in Children-Colorado, October 2022-April 2023. J Pediatric Infect Dis Soc 2023; 12:540-548. [PMID: 37792995 DOI: 10.1093/jpids/piad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND In the fall of 2022, we observed a sharp rise in pediatric Invasive Group A Streptococcus (iGAS) hospitalizations in Colorado. We compared the epidemiology, clinical features, and patient outcomes in this outbreak to prior years. METHODS Between October 2022 and April 2023, we prospectively identified and reviewed iGAS cases in hospitalized pediatric patients at Children's Hospital Colorado. Using laboratory specimen records, we also retrospectively compared the number of patients with sterile site GAS-positive cultures across three time periods: pre-COVID-19 (January 2015-March 2020), height of COVID-19 pandemic (April 2020-September 2022), and outbreak (October 2022-April 2023). RESULTS Among 96 prospectively identified iGAS cases, median age was 5.7 years old; 66% were male, 70% previously healthy, 39% required critical care, and four patients died. Almost 60% had associated respiratory viral symptoms, 10% had toxic shock syndrome, and 4% had necrotizing fasciitis. Leukopenia, bandemia, and higher C-reactive protein values were laboratory findings associated with need for critical care. There were significantly more cases during the outbreak (9.9/month outbreak vs 3.9/month pre-pandemic vs 1.3/month pandemic), including more cases with pneumonia (28% outbreak vs 15% pre-pandemic vs 0% pandemic) and multifocal disease (17% outbreak vs 3% pre-pandemic vs 0% pandemic), P < .001 for all. CONCLUSIONS Outbreak case numbers were almost triple the pre-pandemic baseline. The high percentage of cases with associated viral symptoms suggests a link to coinciding surges in respiratory viruses during this time. Invasive GAS can be severe and evolve rapidly; clinical and laboratory features may help in earlier identification of critically ill children.
Collapse
Affiliation(s)
- Erin C Ho
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Jessica R Cataldi
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Lori J Silveira
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Meghan Birkholz
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Michele M Loi
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Critical Care Medicine, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Christina M Osborne
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA and
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Samuel R Dominguez
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
- Section of Infectious Diseases, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
8
|
Gilbertson B, Subbarao K. What Have We Learned by Resurrecting the 1918 Influenza Virus? Annu Rev Virol 2023; 10:25-47. [PMID: 37774132 DOI: 10.1146/annurev-virology-111821-104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The 1918 Spanish influenza pandemic was one of the deadliest infectious disease events in recorded history, resulting in approximately 50-100 million deaths worldwide. The origins of the 1918 virus and the molecular basis for its exceptional virulence remained a mystery for much of the 20th century because the pandemic predated virologic techniques to isolate, passage, and store influenza viruses. In the late 1990s, overlapping fragments of influenza viral RNA preserved in the tissues of several 1918 victims were amplified and sequenced. The use of influenza reverse genetics then permitted scientists to reconstruct the 1918 virus entirely from cloned complementary DNA, leading to new insights into the origin of the virus and its pathogenicity. Here, we discuss some of the advances made by resurrection of the 1918 virus, including the rise of innovative molecular research, which is a topic in the dual use debate.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia;
| |
Collapse
|
9
|
Chen Y, Li L, Wang C, Zhang Y, Zhou Y. Necrotizing Pneumonia in Children: Early Recognition and Management. J Clin Med 2023; 12:jcm12062256. [PMID: 36983257 PMCID: PMC10051935 DOI: 10.3390/jcm12062256] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Necrotizing pneumonia (NP) is an uncommon complicated pneumonia with an increasing incidence. Early recognition and timely management can bring excellent outcomes. The diagnosis of NP depends on chest computed tomography, which has radiation damage and may miss the optimal treatment time. The present review aimed to elaborate on the reported predictors for NP. The possible pathogenesis of Streptococcus pneumoniae, Staphylococcus aureus, Mycoplasma pneumoniae and coinfection, clinical manifestations and management were also discussed. Although there is still a long way for these predictors to be used in clinical, it is necessary to investigate early predictors for NP in children.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Lanxin Li
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Chenlu Wang
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Yuanyuan Zhang
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- National Clinical Research Center for Child Health, Hangzhou 310052, China
- Correspondence: (Y.Z.); (Y.Z.)
| | - Yunlian Zhou
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
- National Clinical Research Center for Child Health, Hangzhou 310052, China
- Correspondence: (Y.Z.); (Y.Z.)
| |
Collapse
|
10
|
Alsayed AR, Abed A, Khader HA, Al-Shdifat LMH, Hasoun L, Al-Rshaidat MMD, Alkhatib M, Zihlif M. Molecular Accounting and Profiling of Human Respiratory Microbial Communities: Toward Precision Medicine by Targeting the Respiratory Microbiome for Disease Diagnosis and Treatment. Int J Mol Sci 2023; 24:4086. [PMID: 36835503 PMCID: PMC9966333 DOI: 10.3390/ijms24044086] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The wide diversity of microbiota at the genera and species levels across sites and individuals is related to various causes and the observed differences between individuals. Efforts are underway to further understand and characterize the human-associated microbiota and its microbiome. Using 16S rDNA as a genetic marker for bacterial identification improved the detection and profiling of qualitative and quantitative changes within a bacterial population. In this light, this review provides a comprehensive overview of the basic concepts and clinical applications of the respiratory microbiome, alongside an in-depth explanation of the molecular targets and the potential relationship between the respiratory microbiome and respiratory disease pathogenesis. The paucity of robust evidence supporting the correlation between the respiratory microbiome and disease pathogenesis is currently the main challenge for not considering the microbiome as a novel druggable target for therapeutic intervention. Therefore, further studies are needed, especially prospective studies, to identify other drivers of microbiome diversity and to better understand the changes in the lung microbiome along with the potential association with disease and medications. Thus, finding a therapeutic target and unfolding its clinical significance would be crucial.
Collapse
Affiliation(s)
- Ahmad R. Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Anas Abed
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 11931, Jordan
| | - Heba A. Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Laith M. H. Al-Shdifat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Luai Hasoun
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan
| | - Mamoon M. D. Al-Rshaidat
- Laboratory for Molecular and Microbial Ecology (LaMME), Department of Biological Sciences, School of Sciences, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Roma, Italy
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
11
|
Escuret V, Terrier O. Co-infection of the respiratory epithelium, scene of complex functional interactions between viral, bacterial, and human neuraminidases. Front Microbiol 2023; 14:1137336. [PMID: 37213507 PMCID: PMC10192862 DOI: 10.3389/fmicb.2023.1137336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/23/2023] Open
Abstract
The activity of sialic acids, known to play critical roles in biology and many pathological processes, is finely regulated by a class of enzymes called sialidases, also known as neuraminidases. These are present in mammals and many other biological systems, such as viruses and bacteria. This review focuses on the very particular situation of co-infections of the respiratory epithelium, the scene of complex functional interactions between viral, bacterial, and human neuraminidases. This intrinsically multidisciplinary topic combining structural biology, biochemistry, physiology, and the study of host-pathogen interactions, opens up exciting research perspectives that could lead to a better understanding of the mechanisms underlying virus-bacteria co-infections and their contribution to the aggravation of respiratory pathology, notably in the context of pre-existing pathological contexts. Strategies that mimic or inhibit the activity of the neuraminidases could constitute interesting treatment options for viral and bacterial infections.
Collapse
|
12
|
Keil J, Rafn GR, Turan IM, Aljohani MA, Sahebjam-Atabaki R, Sun XL. Sialidase Inhibitors with Different Mechanisms. J Med Chem 2022; 65:13574-13593. [PMID: 36252951 PMCID: PMC9620260 DOI: 10.1021/acs.jmedchem.2c01258] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Sialidases, or neuraminidases, are enzymes that catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly removal of the terminal Sia (desialylation). By desialylation, sialidase can modulate the functionality of the target compound and is thus often involved in biological pathways. Inhibition of sialidases with inhibitors is an important approach for understanding sialidase function and the underlying mechanisms and could serve as a therapeutic approach as well. Transition-state analogues, such as anti-influenza drugs oseltamivir and zanamivir, are major sialidase inhibitors. In addition, difluoro-sialic acids were developed as mechanism-based sialidase inhibitors. Further, fluorinated quinone methide-based suicide substrates were reported. Sialidase product analogue inhibitors were also explored. Finally, natural products have shown competitive inhibiton against viral, bacterial, and human sialidases. This Perspective describes sialidase inhibitors with different mechanisms and their activities and future potential, which include transition-state analogue inhibitors, mechanism-based inhibitors, suicide substrate inhibitors, product analogue inhibitors, and natural product inhibitors.
Collapse
Affiliation(s)
- Joseph
M. Keil
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Garrett R. Rafn
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Isaac M. Turan
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Majdi A. Aljohani
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Reza Sahebjam-Atabaki
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| | - Xue-Long Sun
- Department of Chemistry, Chemical and
Biomedical Engineering and Center for Gene Regulation in Health and
Disease (GRHD), Cleveland State University, Cleveland, Ohio 44115, United States
| |
Collapse
|
13
|
Guan X, Gao S, Zhao H, Zhou H, Yang Y, Yu S, Wang J. Clinical characteristics of hospitalized term and preterm infants with community-acquired viral pneumonia. BMC Pediatr 2022; 22:452. [PMID: 35897053 PMCID: PMC9325944 DOI: 10.1186/s12887-022-03508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pneumonia is a serious problem that threatens the health of newborns. This study aimed to investigate the clinical characteristics of hospitalized term and preterm infants with community-acquired viral pneumonia. METHODS This was a retrospective analysis of cases of community-acquired viral pneumonia in the Neonatal Department. Nasopharyngeal aspirate (NPA) samples were collected for pathogen detection, and clinical data were collected. We analysed pathogenic species and clinical characteristics among these infants. RESULTS RSV is the main virus in term infants, and parainfluenza virus (PIV) 3 is the main virus in preterm infants. Patients infected with PIV3 were more susceptible to coinfection with bacteria than those with respiratory syncytial virus (RSV) infection (p < 0.05). Preterm infants infected with PIV3 were more likely to be coinfected with bacteria than term infants (p < 0.05), mainly gram-negative bacteria (especially Klebsiella pneumonia). Term infants with bacterial infection were more prone to fever, cyanosis, moist rales, three concave signs, elevated C-reactive protein (CRP) levels, respiratory failure and the need for higher level of oxygen support and mechanical ventilation than those with simple viral infection (p < 0.05). The incidence of hyponatremia in neonatal community-acquired pneumonia (CAP) was high. CONCLUSIONS RSV and PIV3 were the leading causes of neonatal viral CAP. PIV3 infection is the main cause of viral CAP in preterm infants, and these individuals are more likely to be coinfected with bacteria than term infants, mainly gram-negative bacteria. Term infants with CAP coinfected with bacteria were more likely to have greater disease severity than those with single viral infections.
Collapse
Affiliation(s)
- Xinxian Guan
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Shasha Gao
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - He Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yan Yang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Shenglin Yu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China.
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Mifsud EJ, Farrukee R, Hurt AC, Reading PC, Barr IG. Infection with different human influenza A subtypes affects the period of susceptibility to secondary bacterial infections in ferrets. FEMS MICROBES 2022. [DOI: 10.1093/femsmc/xtac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
It is well established that influenza virus infections predispose individuals to secondary bacterial infections (SBIs), which may result in a range of clinical outcomes from relatively mild (e.g. sinusitis, otitis media) to severe (e.g. pneumonia and septicaemia). The most common bacterial pathogen associated with SBI following influenza virus infections is Streptococcus pneumoniae. Of circulating human seasonal influenza viruses, influenza A viruses (IAV) of both the A(H1N1)pdm09 and A(H3N2) subtypes are associated with severe disease but have differing hospitalisation and complication rates. To study the interplay of these two IAV subtypes with SBI, we used a ferret model of influenza infection followed by secondary challenge with a clinical strain of Streptococcus pneumoniae (SPN) to determine the severity and the period of susceptibility for SBI. Ferrets challenged with SPN 5 days after infection with A(H3N2) or A(H1N1)pdm09 viruses developed severe disease that required euthanasia. When the time between viral infection and bacterial challenge was extended, A/H1N1pdm09-infected animals remained susceptible to SBI- for up to 10 days after the viral infection. For A(H3N2)- but not A(H1N1)pdm09-infected ferrets, susceptibility to SBI-associated disease could be extended out to 16 days post viral infection. While caution should be taken when extrapolating animal models to human infections, the differences between A(H3N2) and A(H1N1)pdm09 strains in duration of susceptibility to SBI observed in the ferret model, may provide some insight regarding the higher rates of SBI-associated disease associated with some strains of A(H3N2) viruses in humans.
Collapse
Affiliation(s)
- Edin J Mifsud
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Rubaiyea Farrukee
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Patrick C Reading
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| |
Collapse
|
15
|
The Prevalence and Impact of Coinfection and Superinfection on the Severity and Outcome of COVID-19 Infection: An Updated Literature Review. Pathogens 2022; 11:pathogens11040445. [PMID: 35456120 PMCID: PMC9027948 DOI: 10.3390/pathogens11040445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Patients with viral illness are at higher risk of secondary infections—whether bacterial, viral, or parasitic—that usually lead to a worse prognosis. In the setting of Corona Virus Disease 2019 (COVID-19), the Severe Acute Respiratory Syndrome Coronavirus-type 2 (SARS-CoV-2) infection may be preceded by a prior microbial infection or has a concurrent or superinfection. Previous reports documented a significantly higher risk of microbial coinfection in SARS-CoV-2-positive patients. Initial results from the United States (U.S.) and Europe found a significantly higher risk of mortality and severe illness among hospitalized patients with SARS-CoV-2 and bacterial coinfection. However, later studies found contradictory results concerning the impact of coinfection on the outcomes of COVID-19. Thus, we conducted the present literature review to provide updated evidence regarding the prevalence of coinfection and superinfection amongst patients with SARS-CoV-2, possible mechanisms underlying the higher risk of coinfection and superinfection in SARS-CoV-2 patients, and the impact of coinfection and superinfection on the outcomes of patients with COVID-19.
Collapse
|
16
|
Myxovirus Resistance Protein A as a Marker of Viral Cause of Illness in Children Hospitalized with an Acute Infection. Microbiol Spectr 2022; 10:e0203121. [PMID: 35080443 PMCID: PMC8791186 DOI: 10.1128/spectrum.02031-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A biomarker for viral infection could improve the differentiation between viral and bacterial infections and reduce antibiotic overuse. We examined blood myxovirus resistance protein A (MxA) as a biomarker for viral infections in children with an acute infection. We recruited 251 children presenting with a clinical suspicion of serious bacterial infection, determined by need for a blood bacterial culture collection, and 14 children with suspected viral infection at two pediatric emergency departments. All children were aged between 4 weeks and 16 years. We classified cases according to the viral, bacterial, or other etiology of the final diagnosis. The ability of MxA to differentiate between viral and bacterial infections was assessed. The median blood MxA levels were 467 (interquartile range, 235 to 812) μg/L in 39 children with a viral infection, 469 (178 to 827) μg/L in 103 children with viral-bacterial coinfection, 119 (68 to 227) μg/L in 75 children with bacterial infection, and 150 (101 to 212) μg/L in 26 children with bacterial infection and coincidental virus finding (P < 0.001). In a receiver operating characteristics analysis, MxA cutoff level of 256 μg/L differentiated between children with viral and bacterial infections with an area under the curve of 0.81 (95% confidence interval [CI] = 0.73 to 0.90), a sensitivity of 74.4%, and a specificity of 80.0%. In conclusion, MxA protein showed moderate accuracy as a biomarker for symptomatic viral infections in children hospitalized with an acute infection. High prevalence of viral-bacterial coinfections supports the use of MxA in combination with biomarkers of bacterial infection. IMPORTANCE Due to the diagnostic uncertainty concerning the differentiation between viral and bacterial infections, children with viral infections are often treated with antibiotics, predisposing them to adverse effects and contributing to the emerging antibiotic resistance. Since currently available biomarkers only estimate the risk of bacterial infection, a biomarker for viral infection is needed in attempts of reducing antibiotic overuse. Blood MxA protein, which has broad antiviral activity and is rapidly induced in acute, symptomatic viral infections, is a potential biomarker for viral infection. In this diagnostic study of 265 children hospitalized because of an acute infection, blood MxA cutoff level of 256 μg/L discriminated between viral and bacterial infections with a sensitivity of 74% and specificity of 80%. MxA could improve the differential diagnostics of febrile children at the emergency department but, because of frequently detected viral-bacterial coinfections, a combination with biomarkers of bacterial infection may be needed.
Collapse
|
17
|
Han C, Zhang T, Zhao Y, Dong L, Li X, Zheng J, Guo W, Xu Y, Cai C. Successful treatment of pleural empyema and necrotizing pneumonia caused by methicillin-resistant Staphylococcus aureus infection following influenza A virus infection: A case report and literature review. Front Pediatr 2022; 10:959419. [PMID: 36090578 PMCID: PMC9462453 DOI: 10.3389/fped.2022.959419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
With the rapid increase in the number of infections, children with Staphylococcus aureus (S. aureus) infection secondary to Influenza A virus (IAV), appear to have a great possibility of causing severe complications and illness. Despite some cases and research findings regarding the death of children with IAV and S. aureus, coinfection included, there were few details about successful treatment of pleural empyema and necrotizing pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA) infection following IAV. In this case report, we describe the clinical symptoms and treatment of a teenager with pleural empyema and necrotizing pneumonia related to S. aureus secondary infection who was initially infected by IAV. This case highlights the importance of early recognition and application of thoracoscopy for this potentially fatal pleural empyema caused by MRSA and IAV coinfection. We conclude that this is a significant case that contributes to raising awareness regarding rarely occurring severe respiratory infections by MRSA in a child with normal immune function after IAV. In addition, further studies are needed to explore risk factors for IAV coinfection with S. aureus.
Collapse
Affiliation(s)
- Chunjiao Han
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China.,Department of Pulmonology, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China
| | - Tongqiang Zhang
- Department of Pulmonology, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China
| | - Yidi Zhao
- Clinical School of Pediatrics, Tianjin Medical University, Tianjin, China
| | - Lili Dong
- Department of Pulmonology, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China
| | - Xiaole Li
- Department of Pulmonology, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China
| | - Jiafeng Zheng
- Department of Pulmonology, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China
| | - Wei Guo
- Department of Pulmonology, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China
| | - Yongsheng Xu
- Department of Pulmonology, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China
| | - Chunquan Cai
- Institute of Pediatrics, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China
| |
Collapse
|
18
|
Gurov AV, Yushkina MA, Doronina OM. [Features of topical therapy of inflammatory pathology of nasal cavity]. Vestn Otorinolaringol 2022; 87:79-83. [PMID: 36107185 DOI: 10.17116/otorino20228704179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Treatment of inflammatory pathology of the nasal cavity at the present stage requires a doctor to clearly understand the physiological mechanisms that implement the main functions of the mucous membrane of the nasal cavity and upper respiratory tract. One of the most important processes that ensure the normal functioning of the respiratory tract is mucociliary clearance. Violations of its work leads to stagnation of mucus and the development of inflammation not only in the nasal cavity, but also in the lower respiratory tract and middle ear cavities. The authors of the article consider the main etiological factors and mechanisms of the pathogenesis of inflammatory diseases of the nasal cavity, discuss approaches to the treatment of these conditions. The authors conclude that in conditions of acute and chronic inflammation of the nasal mucosa, accompanied by the secretion of thick viscous mucus, the most effective topical use of the combined preparation, which includes acetylcysteine, tuaminoheptane and sodium hyaluronate. This combination has both mucolytic, vasoconstrictive and protective effects, which increases the effectiveness of the drug and the adherence of patients to therapy.
Collapse
Affiliation(s)
- A V Gurov
- Pirogov Russian National Research Medical University, Moscow, Russia
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - M A Yushkina
- Pirogov Russian National Research Medical University, Moscow, Russia
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - O M Doronina
- Pirogov Russian National Research Medical University, Moscow, Russia
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| |
Collapse
|
19
|
Nosulya EV, Kryukov AI, Kunelskaya NL, Kim IA. [Acute sinusitis: topical issues of terminology and diagnosis]. Vestn Otorinolaringol 2021; 86:72-77. [PMID: 34269028 DOI: 10.17116/otorino20218603172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To analyze and summarize data on terminology, etiology, diagnostic criteria for acute sinusitis. DATA SOURCES Publications (articles and related abstracts) submitted to the PubMed database. The choice of material was carried out, according to the keywords: cold, acute viral sinusitis, acute bacterial sinusitis, post-viral sinusitis, acute respiratory viral infection, diagnosis of acute sinusitis. RESULTS The published research results indicate the existence of certain disagreements regarding the terminology, diagnostic criteria, indications for diagnostic studies in acute sinusitis. The data on the etiology, pathogenesis, and diagnostic features of acute sinusitis are presented in the current guidelines, reviews and publications of the results of clinical trials.
Collapse
Affiliation(s)
- E V Nosulya
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia
| | - A I Kryukov
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - N L Kunelskaya
- Sverzhevsky Research Clinical Institute of Otorhinolaryngology, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - I A Kim
- Pirogov Russian National Research Medical University, Moscow, Russia.,National Medical Research Center of Otorhinolaryngology, Moscow, Russia
| |
Collapse
|
20
|
Increased Pulmonary Pneumococcal Clearance after Resolution of H9N2 Avian Influenza Virus Infection in Mice. Infect Immun 2021; 89:IAI.00062-21. [PMID: 33722928 PMCID: PMC8316151 DOI: 10.1128/iai.00062-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
H9N2 avian influenza virus has been continuously circulating among poultry and can infect mammals, indicating that this virus is a potential pandemic strain. During influenza pandemics, secondary bacterial (particularly pneumococcal) pneumonia usually contributes to excessive mortality. In the present study, we observed the dynamic effect of H9N2 virus infection on host defense against secondary pneumococcal infection in mice. BALB/c mice were intranasally inoculated with 1.2 × 105 PFU of H9N2 virus followed by 1 × 106 CFU of Streptococcus pneumoniae at 7, 14, or 28 days post-H9N2 infection (dpi). The bacterial load, histopathology, body weight, and survival were assessed after pneumococcal infection. Our results showed that H9N2 virus infection had no significant impact on host resistance to secondary pneumococcal infection at 7 dpi. However, H9N2 virus infection increased pulmonary pneumococcal clearance and reduced pneumococcal pneumonia-induced morbidity after secondary pneumococcal infection at 14 or 28 dpi, as reflected by significantly decreased bacterial loads, markedly alleviated pulmonary histopathological changes, and significantly reduced weight loss in mice infected with H9N2 virus followed by S. pneumoniae compared with mice infected only with S. pneumoniae. Further, the significantly decreased bacterial loads were observed when mice were previously infected with a high dose (1.2 × 106 PFU) of H9N2 virus. Also, similar to the results obtained in BALB/c mice, improvement in pulmonary pneumococcal clearance was observed in C57BL/6 mice. Overall, our results showed that pulmonary pneumococcal clearance is improved after resolution of H9N2 virus infection in mice.
Collapse
|
21
|
Feldman C, Anderson R. The role of co-infections and secondary infections in patients with COVID-19. Pneumonia (Nathan) 2021; 13:5. [PMID: 33894790 PMCID: PMC8068564 DOI: 10.1186/s41479-021-00083-w] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND It has been recognised for a considerable time-period, that viral respiratory infections predispose patients to bacterial infections, and that these co-infections have a worse outcome than either infection on its own. However, it is still unclear what exact roles co-infections and/or superinfections play in patients with COVID-19 infection. MAIN BODY This was an extensive review of the current literature regarding co-infections and superinfections in patients with SARS-CoV-2 infection. The definitions used were those of the Centers for Disease Control and Prevention (US), which defines coinfection as one occurring concurrently with the initial infection, while superinfections are those infections that follow on a previous infection, especially when caused by microorganisms that are resistant, or have become resistant, to the antibiotics used earlier. Some researchers have envisioned three potential scenarios of bacterial/SARS-CoV-2 co-infection; namely, secondary SARS-CoV-2 infection following bacterial infection or colonisation, combined viral/bacterial pneumonia, or secondary bacterial superinfection following SARS-CoV-2. There are a myriad of published articles ranging from letters to the editor to systematic reviews and meta-analyses describing varying ranges of co-infection and/or superinfection in patients with COVID-19. The concomitant infections described included other respiratory viruses, bacteria, including mycobacteria, fungi, as well as other, more unusual, pathogens. However, as will be seen in this review, there is often not a clear distinction made in the literature as to what the authors are referring to, whether true concomitant/co-infections or superinfections. In addition, possible mechanisms of the interactions between viral infections, including SARS-CoV-2, and other infections, particularly bacterial infections are discussed further. Lastly, the impact of these co-infections and superinfections in the severity of COVID-19 infections and their outcome is also described. CONCLUSION The current review describes varying rates of co-infections and/or superinfections in patients with COVID-19 infections, although often a clear distinction between the two is not clear in the literature. When they occur, these infections appear to be associated with both severity of COVID-19 as well as poorer outcomes.
Collapse
Affiliation(s)
- Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
22
|
Sartini S, Permana AD, Mitra S, Tareq AM, Salim E, Ahmad I, Harapan H, Emran TB, Nainu F. Current State and Promising Opportunities on Pharmaceutical Approaches in the Treatment of Polymicrobial Diseases. Pathogens 2021; 10:245. [PMID: 33672615 PMCID: PMC7924209 DOI: 10.3390/pathogens10020245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the emergence of newly identified acute and chronic infectious disorders caused by diverse combinations of pathogens, termed polymicrobial diseases, has had catastrophic consequences for humans. Antimicrobial agents have been clinically proven to be effective in the pharmacological treatment of polymicrobial diseases. Unfortunately, an increasing trend in the emergence of multi-drug-resistant pathogens and limited options for delivery of antimicrobial drugs might seriously impact humans' efforts to combat polymicrobial diseases in the coming decades. New antimicrobial agents with novel mechanism(s) of action and new pharmaceutical formulations or delivery systems to target infected sites are urgently required. In this review, we discuss the prospective use of novel antimicrobial compounds isolated from natural products to treat polymicrobial infections, mainly via mechanisms related to inhibition of biofilm formation. Drug-delivery systems developed to deliver antimicrobial compounds to both intracellular and extracellular pathogens are discussed. We further discuss the effectiveness of several biofilm-targeted delivery strategies to eliminate polymicrobial biofilms. At the end, we review the applications and promising opportunities for various drug-delivery systems, when compared to conventional antimicrobial therapy, as a pharmacological means to treat polymicrobial diseases.
Collapse
Affiliation(s)
- Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; or
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; or
| | - Emil Salim
- Faculty of Pharmacy, Universitas Sumatera Utara, North Sumatera 20155, Indonesia;
| | - Islamudin Ahmad
- Faculty of Pharmacy, Universitas Mulawarman, East Kalimantan 75119, Indonesia;
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; (S.S.); (A.D.P.)
| |
Collapse
|
23
|
Tzani-Tzanopoulou P, Skliros D, Megremis S, Xepapadaki P, Andreakos E, Chanishvili N, Flemetakis E, Kaltsas G, Taka S, Lebessi E, Doudoulakakis A, Papadopoulos NG. Interactions of Bacteriophages and Bacteria at the Airway Mucosa: New Insights Into the Pathophysiology of Asthma. FRONTIERS IN ALLERGY 2021; 1:617240. [PMID: 35386933 PMCID: PMC8974763 DOI: 10.3389/falgy.2020.617240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The airway epithelium is the primary site where inhaled and resident microbiota interacts between themselves and the host, potentially playing an important role on allergic asthma development and pathophysiology. With the advent of culture independent molecular techniques and high throughput technologies, the complex composition and diversity of bacterial communities of the airways has been well-documented and the notion of the lungs' sterility definitively rejected. Recent studies indicate that the microbial composition of the asthmatic airways across the spectrum of disease severity, differ significantly compared with healthy individuals. In parallel, a growing body of evidence suggests that bacterial viruses (bacteriophages or simply phages), regulating bacterial populations, are present in almost every niche of the human body and can also interact directly with the eukaryotic cells. The triptych of airway epithelial cells, bacterial symbionts and resident phages should be considered as a functional and interdependent unit with direct implications on the respiratory and overall homeostasis. While the role of epithelial cells in asthma pathophysiology is well-established, the tripartite interactions between epithelial cells, bacteria and phages should be scrutinized, both to better understand asthma as a system disorder and to explore potential interventions.
Collapse
Affiliation(s)
- Panagiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Spyridon Megremis
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Andreakos
- Center for Clinical, Experimental Surgery and Translational Research of the Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nina Chanishvili
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophage, Microbiology & Virology, Tbilisi, GA, United States
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Grigoris Kaltsas
- Department of Electrical and Electronic Engineering, University of West Attica, Athens, Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Lebessi
- Department of Microbiology, P. & A. Kyriakou Children's Hospital, Athens, Greece
| | | | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Molecular pathogenesis of secondary bacterial infection associated to viral infections including SARS-CoV-2. J Infect Public Health 2020; 13:1397-1404. [PMID: 32712106 PMCID: PMC7359806 DOI: 10.1016/j.jiph.2020.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/11/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Secondary bacterial infections are commonly associated with prior or concomitant respiratory viral infections. Viral infections damage respiratory airways and simultaneously defects both innate and acquired immune response that provides a favorable environment for bacterial growth, adherence, and facilitates invasion into healthy sites of the respiratory tract. Understanding the molecular mechanism of viral-induced secondary bacterial infections will provide us a chance to develop novel and effective therapeutic approaches for disease prevention. The present study describes details about the secondary bacterial infection during viral infections and their immunological changes.The outcome of discussion avails an opportunity to understand possible secondary bacterial infections associated with novel SARS-CoV-2, presently causing pandemic outbreak COVID-19.
Collapse
|
25
|
Tatarelli P, Magnasco L, Borghesi ML, Russo C, Marra A, Mirabella M, Sarteschi G, Ungaro R, Arcuri C, Murialdo G, Viscoli C, Del Bono V, Nicolini LA. Prevalence and clinical impact of VIral Respiratory tract infections in patients hospitalized for Community-Acquired Pneumonia: the VIRCAP study. Intern Emerg Med 2020; 15:645-654. [PMID: 31786751 PMCID: PMC7088538 DOI: 10.1007/s11739-019-02243-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 11/21/2019] [Indexed: 12/29/2022]
Abstract
Prevalence and clinical impact of viral respiratory tract infections (VRTIs) on community-acquired pneumonia (CAP) has not been well defined so far. The aims of this study were to investigate the prevalence and the clinical impact of VRTIs in patients with CAP. Prospective study involving adult patients consecutively admitted at medical wards for CAP and tested for VRTIs by real-time PCR on pharyngeal swab. Patients' features were evaluated with regard to the presence of VRTI and aetiology of CAP. Clinical failure was a composite endpoint defined by worsening of signs and symptoms requiring escalation of antibiotic treatment or ICU admission or death within 30 days. 91 patients were enrolled, mean age 65.7 ± 10.6 years, 50.5% female. 62 patients (68.2%) had no viral co-infection while in 29 patients (31.8%) a VRTI was detected; influenza virus was the most frequently identified (41.9%). The two groups were similar in terms of baseline features. In presence of a VRTI, pneumonia severity index (PSI) was more frequently higher than 91 and patients had received less frequently pre-admission antibiotic therapy (adjusted OR 2.689, 95% CI 1.017-7.111, p = 0.046; adjusted OR 0.143, 95% CI 0.030-0.670, p = 0.014). Clinical failure and antibiotic therapy duration were similar with regards to the presence of VRTI and the aetiology of CAP. VRTIs can be detected in almost a third of adults with CAP; influenza virus is the most relevant one. VRTI was associated with higher PSI at admission, but it does not affect patients' outcome.
Collapse
Affiliation(s)
- P Tatarelli
- Division of Infectious Diseases, Department of Health Sciences (DiSSal), San Martino Polyclinic Hospital and IRCCS, University of Genoa, Via Pastore, 1, 16132, Genoa, Italy.
- Department of Infectious Diseases, Ospedale Santa Maria Delle Croci, Ravenna, Italy.
| | - L Magnasco
- Division of Infectious Diseases, Department of Health Sciences (DiSSal), San Martino Polyclinic Hospital and IRCCS, University of Genoa, Via Pastore, 1, 16132, Genoa, Italy
| | - M L Borghesi
- Division of Infectious Diseases, Department of Health Sciences (DiSSal), San Martino Polyclinic Hospital and IRCCS, University of Genoa, Via Pastore, 1, 16132, Genoa, Italy
| | - C Russo
- Division of Infectious Diseases, Department of Health Sciences (DiSSal), San Martino Polyclinic Hospital and IRCCS, University of Genoa, Via Pastore, 1, 16132, Genoa, Italy
| | - A Marra
- Second Clinic of Internal Medicine, Department of Internal Medicine, San Martino Polyclinic Hospital and IRCCS, University of Genoa, Genoa, Italy
| | - M Mirabella
- Division of Infectious Diseases, Department of Health Sciences (DiSSal), San Martino Polyclinic Hospital and IRCCS, University of Genoa, Via Pastore, 1, 16132, Genoa, Italy
| | - G Sarteschi
- Division of Infectious Diseases, Department of Health Sciences (DiSSal), San Martino Polyclinic Hospital and IRCCS, University of Genoa, Via Pastore, 1, 16132, Genoa, Italy
| | - R Ungaro
- Division of Infectious Diseases, Department of Health Sciences (DiSSal), San Martino Polyclinic Hospital and IRCCS, University of Genoa, Via Pastore, 1, 16132, Genoa, Italy
| | - C Arcuri
- Department of Health Sciences (DiSSal), University of Genoa, Genoa, Italy
| | - G Murialdo
- Second Clinic of Internal Medicine, Department of Internal Medicine, San Martino Polyclinic Hospital and IRCCS, University of Genoa, Genoa, Italy
| | - C Viscoli
- Division of Infectious Diseases, Department of Health Sciences (DiSSal), San Martino Polyclinic Hospital and IRCCS, University of Genoa, Via Pastore, 1, 16132, Genoa, Italy
| | - V Del Bono
- Infectious Diseases Unit, Azienda Ospedaliera S. Croce E Carle, Cuneo, Italy
| | - L A Nicolini
- Division of Infectious Diseases, Department of Health Sciences (DiSSal), San Martino Polyclinic Hospital and IRCCS, University of Genoa, Via Pastore, 1, 16132, Genoa, Italy
| |
Collapse
|
26
|
Sigurdsson S, Eythorsson E, Erlendsdóttir H, Hrafnkelsson B, Kristinsson KG, Haraldsson Á. Impact of the 10-valent pneumococcal conjugate vaccine on hospital admissions in children under three years of age in Iceland. Vaccine 2020; 38:2707-2714. [PMID: 32063434 DOI: 10.1016/j.vaccine.2020.01.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Pneumococcus is an important respiratory pathogen. The 10-valent pneumococcal vaccine (PHiD-CV) was introduced into the Icelandic vaccination programme in 2011. The aim was to estimate the impact of PHiD-CV on paediatric hospitalisations for respiratory tract infections and invasive disease. METHODS The 2005-2015 birth-cohorts were followed until three years of age and hospitalisations were recorded for invasive pneumococcal disease (IPD), meningitis, sepsis, pneumonia and otitis media. Hospitalisations for upper- and lower respiratory tract infections (URTI, LRTI) were used as comparators. The 2005-2010 birth-cohorts were defined as vaccine non-eligible cohorts (VNEC) and 2011-2015 birth-cohorts as vaccine eligible cohorts (VEC). Incidence rates (IR) were estimated for diagnoses, birth-cohorts and age groups, and incidence rate ratios (IRR) between VNEC and VEC were calculated assuming Poisson variance. Cox regression was used to estimate the hazard ratio (HR) of hospitalisation between VNEC and VEC. RESULTS 51,264 children were followed for 142,315 person-years, accumulating 1,703 hospitalisations for the respective study diagnoses. Hospitalisations for pneumonia decreased by 20% (HR 0.80, 95%CI:0.67-0.95) despite a 32% increase in admissions for LRTI (HR 1.32, 95%CI:1.14-1.53). Hospital admissions for culture-confirmed IPD decreased by 93% (HR 0.07, 95%CI:0.01-0.50) and no hospitalisations for IPD with vaccine-type pneumococci were observed in the VEC. Hospitalisations for meningitis and sepsis did not change. A decrease in hospital admissions for otitis media was observed, but did not coincide with PHiD-CV introduction. CONCLUSION Following the introduction of PHiD-CV in Iceland, hospitalisations for pneumonia and culture confirmed IPD decreased. Admissions for other LRTIs and URTIs increased during this period.
Collapse
Affiliation(s)
| | | | - Helga Erlendsdóttir
- University of Iceland, Faculty of Medicine, Iceland; Department of Clinical Microbiology, Landspítali University Hospital, Iceland
| | | | - Karl G Kristinsson
- University of Iceland, Faculty of Medicine, Iceland; Department of Clinical Microbiology, Landspítali University Hospital, Iceland
| | - Ásgeir Haraldsson
- University of Iceland, Faculty of Medicine, Iceland; Children's Hospital Iceland, Landspítali University Hospital, Iceland.
| |
Collapse
|
27
|
Decline in childhood respiratory-related mortality after the introduction of the pneumococcal conjugate vaccine in Morocco. J Infect Public Health 2020; 13:402-406. [DOI: 10.1016/j.jiph.2019.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 11/22/2022] Open
|
28
|
Ishaqui AA, Khan AH, Sulaiman SAS, Alsultan MT, Khan I, Naqvi AA. Assessment of efficacy of Oseltamivir-Azithromycin combination therapy in prevention of Influenza-A (H1N1)pdm09 infection complications and rapidity of symptoms relief. Expert Rev Respir Med 2020; 14:533-541. [PMID: 32053044 DOI: 10.1080/17476348.2020.1730180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives: This study aimed to assess the efficacy of oseltamivir-Azithromycin combination therapy for prevention of Influenza-A (H1N1)pdm09 infection associated complications and early relief of influenza symptoms.Methods: In a retrospective observational cohort study, Influenza-A (H1N1)pdm09 infection hospitalized patients were identified and divided into two groups based on the initial therapy. Group-AV patients were initiated on Oseltamivir without any antibiotic in treatment regimen while Group-AV+AZ patients were initiated on Oseltamivir and Azithromycin combination therapy for at least 3-5 days. Patients were evaluated for different clinical outcomes.Results: A total of 227 and 102 patients were identified for Group-AV and Group-AV+AZ respectively. Multivariate regression analysis showed that incidences of secondary bacterial infections were significantly less frequent (23.4% vs 10.4%; P-value = 0.019) in Group-AV+AZ patients. Group-AV+AZ patients were associated with shorter length of hospitalization (6.58 vs 5.09 days; P-value = <0.0001) and less frequent incidences of respiratory support (38.3% vs 17.6%; P-value = 0.016). Overall influenza symptom severity score was statistically significant less for Group-AV+AZ patients on Day-5 (10.68 ± 2.09; P-value = 0.001) of hospitalization.Conclusion: Oseltamivir-Azithromycin combination therapy was found to be more efficacious as compared to oseltamivir alone in rapid recovery and prevention of Influenza associated complications especially in high risk patients.
Collapse
Affiliation(s)
- Azfar Athar Ishaqui
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia.,Department of Pharmacy, King Abdulaziz Hospital, Ministry of National Guard Health - Health Affairs, Alahsa, Saudi Arabia.,King Abdullah International Medical Research Center, Alahsa, Saudi Arabia
| | - Amer Hayat Khan
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Syed Azhar Syed Sulaiman
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Muhammad Taher Alsultan
- Department of Pharmacy, King Abdulaziz Hospital, Ministry of National Guard Health - Health Affairs, Alahsa, Saudi Arabia.,King Abdullah International Medical Research Center, Alahsa, Saudi Arabia
| | - Irfanullah Khan
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Atta Abbas Naqvi
- Discipline of Social & Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia.,Department of Pharmacy Practice, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
29
|
Abstract
Purpose of Review This investigation aims to understand the role and burden of viral co-infections for acute respiratory illnesses in children. Co-infection can be either viral-viral or viral-bacterial and with new technology there is more information on the role they play on the health of children. Recent Findings With the proliferation of multiplex PCR for rapid diagnosis of multiple viruses as well as innovations on identification of bacterial infections, research has been attempting to discover how these co-infections affect each other and the host. Studies are aiming to discern if the epidemiology of viruses seen at a population level is related to the interaction between different viruses on a host level. Studies are also attempting to discover the burden of morbidity and mortality of these viral-viral co-infections on the pediatric population. It is also becoming important to understand the interplay of certain viruses with specific bacteria and understanding the impact of viral-bacterial co-infections. Summary RSV continues to contribute to a large burden of disease for pediatric patients with acute respiratory illnesses. However, recent literature suggests that viral-viral co-infections do not add to this burden and might, in some cases, be protective of severe disease. Viral-bacterial co-infections, on the other hand, are most likely adding to the burden of morbidity in pediatric patients because of the synergistic way they can infect the nasopharyngeal space. Future research needs to focus on confirming these conclusions as it could affect hospital cohorting, role of molecular testing, and therapeutic interventions.
Collapse
Affiliation(s)
- Sarah D Meskill
- Department of Pediatrics, Sections of Emergency Medicine, Baylor College of Medicine, 6621 Fannin St. A2210, Houston, TX, USA.
| | - Shelease C O'Bryant
- Department of Pediatrics, Sections of Emergency Medicine, Baylor College of Medicine, 6621 Fannin St. A2210, Houston, TX, USA
| |
Collapse
|
30
|
Orihuela CJ, Maus UA, Brown JS. Can animal models really teach us anything about pneumonia? Pro. Eur Respir J 2020; 55:55/1/1901539. [DOI: 10.1183/13993003.01539-2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023]
|
31
|
Abstract
Streptococcus pneumoniae (the pneumoccus) is the leading cause of otitis media, community-acquired pneumonia, and bacterial meningitis. The success of the pneumococcus stems from its ability to persist in the population as a commensal and avoid killing by immune system. This chapter first reviews the molecular mechanisms that allow the pneumococcus to colonize and spread from one anatomical site to the next. Then, it discusses the mechanisms of inflammation and cytotoxicity during emerging and classical pneumococcal infections.
Collapse
|
32
|
Zhou L, Sun H, Song S, Liu J, Xia Z, Sun Y, Lyu Y. H3N2 canine influenza virus and Enterococcus faecalis coinfection in dogs in China. BMC Vet Res 2019; 15:113. [PMID: 30975135 PMCID: PMC6460796 DOI: 10.1186/s12917-019-1832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/01/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In May 2017, 17 dogs in a German Shepherd breeding kennel in northern China developed respiratory clinical signs. The owner treated the dogs with an intravenous injection of Shuang-Huang-lian, a traditional Chinese medicine, and azithromycin. The respiratory signs improved 3 days post-treatment, however, cysts were observed in the necks of eight dogs, and three of them died in the following 2 days. CASE PRESENTATION Quantitative real-time PCR was used to detect canine influenza virus (CIV). All of the dogs in this kennel were positive and the remaining 14 dogs had seroconverted. Two of the dogs were taken to the China Agricultural University Veterinary Teaching Hospital for further examination. Two strains of influenza virus (A/canine/Beijing/0512-133/2017 and A/canine/Beijing/0512-137/2017) isolated from the nasal swabs of these dogs were sequenced and identified as avian-origin H3N2 CIV. For the two dogs admitted to the hospital, hematology showed mild inflammation and radiograph results indicated pneumonia. Cyst fluid was plated for bacterial culture and bacterial 16 s rRNA gene PCR was performed, followed by Sanger sequencing. The results indicated an Enterococcus faecalis infection. Antimicrobial susceptibility tests were performed and dogs were treated with enrofloxacin. All 14 remaining dogs recovered within 16 days. CONCLUSIONS Coinfection of H3N2 CIV and Enterococcus faecalis was detected in dogs, which has not been reported previously. Our results highlight that CIV infection might promote the secondary infection of opportunistic bacteria and cause more severe and complicated clinical outcomes.
Collapse
Affiliation(s)
- Liwei Zhou
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Haoran Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shikai Song
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Yanli Lyu
- College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
33
|
Rijkers G, Croon S, Nguyen TA. Rocking Pneumonia and the Boogie Woogie Flu. EUROPEAN MEDICAL JOURNAL 2019. [DOI: 10.33590/emj/10311819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The relation between pneumonia and influenza is regularly addressed in modern music. Epidemiological data obtained during influenza pandemics, as well as during seasonal influenza, illustrate and underscore this association. Even though the number of pneumonia cases are generally under-reported and blood tests show a lack of sensitivity, a clear link between influenza and pneumonia can still be observed. In fact, the majority of mortality during influenza pandemics is due to pneumonia caused by a bacterial superinfection, in most cases Streptococcus pneumoniae. Vaccination is a powerful tool to prevent the development of both influenza and pneumonia in children, as well as in the elderly. Cellular and molecular data show that influenza can lead to changes in the integrity of lung epithelial cells, including desialysation of carbohydrate moieties, which favour attachment and invasion of S. pneumoniae. Further elucidation of these mechanisms could lead to targeted intervention strategies, in which universal influenza vaccines could play a role.
Collapse
Affiliation(s)
- Ger Rijkers
- Science Department, University College Roosevelt, Middelburg, Netherlands
| | - Sophie Croon
- Science Department, University College Roosevelt, Middelburg, Netherlands
| | - Thuc Anh Nguyen
- Science Department, University College Roosevelt, Middelburg, Netherlands
| |
Collapse
|
34
|
Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM, Fry AM, Gravenstein S, Hayden FG, Harper SA, Hirshon JM, Ison MG, Johnston BL, Knight SL, McGeer A, Riley LE, Wolfe CR, Alexander PE, Pavia AT. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis 2019; 68:e1-e47. [PMID: 30566567 PMCID: PMC6653685 DOI: 10.1093/cid/ciy866] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022] Open
Abstract
These clinical practice guidelines are an update of the guidelines published by the Infectious Diseases Society of America (IDSA) in 2009, prior to the 2009 H1N1 influenza pandemic. This document addresses new information regarding diagnostic testing, treatment and chemoprophylaxis with antiviral medications, and issues related to institutional outbreak management for seasonal influenza. It is intended for use by primary care clinicians, obstetricians, emergency medicine providers, hospitalists, laboratorians, and infectious disease specialists, as well as other clinicians managing patients with suspected or laboratory-confirmed influenza. The guidelines consider the care of children and adults, including special populations such as pregnant and postpartum women and immunocompromised patients.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Henry H Bernstein
- Division of General Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York
| | - John S Bradley
- Division of Infectious Diseases, Rady Children's Hospital
- University of California, San Diego
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Hospital
| | - Thomas M File
- Division of Infectious Diseases Summa Health, Northeast Ohio Medical University, Rootstown
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stefan Gravenstein
- Providence Veterans Affairs Medical Center and Center for Gerontology and Healthcare Research, Brown University, Providence, Rhode Island
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville
| | - Scott A Harper
- Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jon Mark Hirshon
- Department of Emergency Medicine, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - B Lynn Johnston
- Department of Medicine, Dalhousie University, Nova Scotia Health Authority, Halifax, Canada
| | - Shandra L Knight
- Library and Knowledge Services, National Jewish Health, Denver, Colorado
| | - Allison McGeer
- Division of Infection Prevention and Control, Sinai Health System, University of Toronto, Ontario, Canada
| | - Laura E Riley
- Department of Maternal-Fetal Medicine, Massachusetts General Hospital, Boston
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Paul E Alexander
- McMaster University, Hamilton, Ontario, Canada
- Infectious Diseases Society of America, Arlington, Virginia
| | - Andrew T Pavia
- Division of Pediatric Infectious Diseases, University of Utah, Salt Lake City
| |
Collapse
|
35
|
Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM, Fry AM, Gravenstein S, Hayden FG, Harper SA, Hirshon JM, Ison MG, Johnston BL, Knight SL, McGeer A, Riley LE, Wolfe CR, Alexander PE, Pavia AT. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis 2019; 68. [PMID: 30566567 PMCID: PMC6653685 DOI: 10.1093/cid/ciy866 10.1093/cid/ciz044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
These clinical practice guidelines are an update of the guidelines published by the Infectious Diseases Society of America (IDSA) in 2009, prior to the 2009 H1N1 influenza pandemic. This document addresses new information regarding diagnostic testing, treatment and chemoprophylaxis with antiviral medications, and issues related to institutional outbreak management for seasonal influenza. It is intended for use by primary care clinicians, obstetricians, emergency medicine providers, hospitalists, laboratorians, and infectious disease specialists, as well as other clinicians managing patients with suspected or laboratory-confirmed influenza. The guidelines consider the care of children and adults, including special populations such as pregnant and postpartum women and immunocompromised patients.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Henry H Bernstein
- Division of General Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York
| | - John S Bradley
- Division of Infectious Diseases, Rady Children's Hospital
- University of California, San Diego
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Hospital
| | - Thomas M File
- Division of Infectious Diseases Summa Health, Northeast Ohio Medical University, Rootstown
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stefan Gravenstein
- Providence Veterans Affairs Medical Center and Center for Gerontology and Healthcare Research, Brown University, Providence, Rhode Island
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville
| | - Scott A Harper
- Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jon Mark Hirshon
- Department of Emergency Medicine, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - B Lynn Johnston
- Department of Medicine, Dalhousie University, Nova Scotia Health Authority, Halifax, Canada
| | - Shandra L Knight
- Library and Knowledge Services, National Jewish Health, Denver, Colorado
| | - Allison McGeer
- Division of Infection Prevention and Control, Sinai Health System, University of Toronto, Ontario, Canada
| | - Laura E Riley
- Department of Maternal-Fetal Medicine, Massachusetts General Hospital, Boston
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Paul E Alexander
- McMaster University, Hamilton, Ontario, Canada
- Infectious Diseases Society of America, Arlington, Virginia
| | - Andrew T Pavia
- Division of Pediatric Infectious Diseases, University of Utah, Salt Lake City
| |
Collapse
|
36
|
Rodriguez AE, Bogart C, Gilbert CM, McCullers JA, Smith AM, Kanneganti TD, Lupfer CR. Enhanced IL-1β production is mediated by a TLR2-MYD88-NLRP3 signaling axis during coinfection with influenza A virus and Streptococcus pneumoniae. PLoS One 2019; 14:e0212236. [PMID: 30794604 PMCID: PMC6386446 DOI: 10.1371/journal.pone.0212236] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/29/2019] [Indexed: 12/31/2022] Open
Abstract
Viral-bacterial coinfections, such as with influenza A virus and Streptococcus pneumoniae (S.p.), are known to cause severe pneumonia. It is well known that the host response has an important role in disease. Interleukin-1β (IL-1β) is an important immune signaling cytokine responsible for inflammation and has been previously shown to contribute to disease severity in numerous infections. Other studies in mice indicate that IL-1β levels are dramatically elevated during IAV-S.p. coinfection. However, the regulation of IL-1β during coinfection is unknown. Here, we report the NLRP3 inflammasome is the major inflammasome regulating IL-1β activation during coinfection. Furthermore, elevated IL-1β mRNA expression is due to enhanced TLR2-MYD88 signaling, which increases the amount of pro-IL-1β substrate for the inflammasome to process. Finally, NLRP3 and high IL-1β levels were associated with increased bacterial load in the brain. Our results show the NLRP3 inflammasome is not protective during IAV-S.p. coinfection.
Collapse
Affiliation(s)
- Angeline E. Rodriguez
- Department of Biology, Missouri State University, Springfield, Missouri, United States of America
| | - Christopher Bogart
- Department of Biology, Missouri State University, Springfield, Missouri, United States of America
| | - Christopher M. Gilbert
- Department of Pathology, Cox Medical Center South, Springfield, Missouri, United States of America
| | - Jonathan A. McCullers
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Christopher R. Lupfer
- Department of Biology, Missouri State University, Springfield, Missouri, United States of America
- * E-mail:
| |
Collapse
|
37
|
Jia L, Zhao J, Yang C, Liang Y, Long P, Liu X, Qiu S, Wang L, Xie J, Li H, Liu H, Guo W, Wang S, Li P, Zhu B, Hao R, Ma H, Jiang Y, Song H. Severe Pneumonia Caused by Coinfection With Influenza Virus Followed by Methicillin-Resistant Staphylococcus aureus Induces Higher Mortality in Mice. Front Immunol 2019; 9:3189. [PMID: 30761162 PMCID: PMC6364753 DOI: 10.3389/fimmu.2018.03189] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/31/2018] [Indexed: 01/20/2023] Open
Abstract
Background: Coinfection with influenza virus and bacteria is a major cause of high mortality during flu pandemics. Understanding the mechanisms behind such coinfections is of utmost importance both for the clinical treatment of influenza and the prevention and control of epidemics. Methods: To investigate the cause of high mortality during flu pandemics, we performed coinfection experiments with H1N1 influenza virus and Staphylococcus aureus in which mice were infected with bacteria at time points ranging from 0 to 7 days after infection with influenza virus. Results: The mortality rates of mice infected with bacteria were highest 0-3 days after infection with influenza virus; lung tissues extracted from these co-infected mice showed higher infiltrating cells and thicker lung parenchyma than lung samples from coinfected mice in which influenza virus was introduced at other times and sequences. The levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-8, and IL-6 in the 0-3 day coinfected group were significantly higher than those in the other groups (p < 0.01), as were the mRNA levels of IFN-γ, IL-6, and TNF-α. Coinfection with influenza virus and S. aureus led to high mortality rates that are directly dependent on the sequence and timing of infection by both pathogens. Moreover, coinfection following this particular schedule induced severe pneumonia, leading to increased mortality. Conclusions: Our data suggest that prevention of bacterial co-infection in the early stage of influenza virus infection is critical to reducing the risk of clinical mortality.
Collapse
Affiliation(s)
- Leili Jia
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jiangyun Zhao
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chaojie Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yuan Liang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Pengwei Long
- Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Department of Health Care, Chinese PLA Joint Staff Headquarters Guard Bureau, Beijing, China
| | - Xiao Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shaofu Qiu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ligui Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jing Xie
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hao Li
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Hongbo Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Weiguang Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shan Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | | | - Rongzhang Hao
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hui Ma
- The 6th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongbin Song
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
38
|
Hľasová Z, Košík I, Ondrejovič M, Miertuš S, Katrlík J. Methods and Current Trends in Determination of Neuraminidase Activity and Evaluation of Neuraminidase Inhibitors. Crit Rev Anal Chem 2018; 49:350-367. [DOI: 10.1080/10408347.2018.1531692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zuzana Hľasová
- Department of Biotechnology, Faculty of Natural Sciences of University Ss. Cyril and Methodius, Trnava, Slovakia
| | - Ivan Košík
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, Bethesda, Maryland, USA
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences of University Ss. Cyril and Methodius, Trnava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences of University Ss. Cyril and Methodius, Trnava, Slovakia
- International Centre for Applied Research and Sustainable Technology, Bratislava, Slovakia
| | - Jaroslav Katrlík
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
39
|
The Streptococcus pyogenes fibronectin/tenascin-binding protein PrtF.2 contributes to virulence in an influenza superinfection. Sci Rep 2018; 8:12126. [PMID: 30108238 PMCID: PMC6092322 DOI: 10.1038/s41598-018-29714-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) and Streptococcus pyogenes (the group A Streptococcus; GAS) are important contributors to viral-bacterial superinfections, which result from incompletely defined mechanisms. We identified changes in gene expression following IAV infection of A549 cells. Changes included an increase in transcripts encoding proteins with fibronectin-type III (FnIII) domains, such as fibronectin (Fn), tenascin N (TNN), and tenascin C (TNC). We tested the idea that increased expression of TNC may affect the outcome of an IAV-GAS superinfection. To do so, we created a GAS strain that lacked the Fn-binding protein PrtF.2. We found that the wild-type GAS strain, but not the mutant, co-localized with TNC and bound to purified TNC. In addition, adherence of the wild-type strain to IAV-infected A549 cells was greater compared to the prtF.2 mutant. The wild-type strain was also more abundant in the lungs of mice 24 hours after superinfection compared to the mutant strain. Finally, all mice infected with IAV and the prtF.2 mutant strain survived superinfection compared to only 42% infected with IAV and the parental GAS strain, indicating that PrtF.2 contributes to virulence in a murine model of IAV-GAS superinfection.
Collapse
|
40
|
Crane MJ, Lee KM, FitzGerald ES, Jamieson AM. Surviving Deadly Lung Infections: Innate Host Tolerance Mechanisms in the Pulmonary System. Front Immunol 2018; 9:1421. [PMID: 29988424 PMCID: PMC6024012 DOI: 10.3389/fimmu.2018.01421] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Much research on infectious diseases focuses on clearing the pathogen through the use of antimicrobial drugs, the immune response, or a combination of both. Rapid clearance of pathogens allows for a quick return to a healthy state and increased survival. Pathogen-targeted approaches to combating infection have inherent limitations, including their pathogen-specific nature, the potential for antimicrobial resistance, and poor vaccine efficacy, among others. Another way to survive an infection is to tolerate the alterations to homeostasis that occur during a disease state through a process called host tolerance or resilience, which is independent from pathogen burden. Alterations in homeostasis during infection are numerous and include tissue damage, increased inflammation, metabolic changes, temperature changes, and changes in respiration. Given its importance and sensitivity, the lung is a good system for understanding host tolerance to infectious disease. Pneumonia is the leading cause of death for children under five worldwide. One reason for this is because when the pulmonary system is altered dramatically it greatly impacts the overall health and survival of a patient. Targeting host pathways involved in maintenance of pulmonary host tolerance during infection could provide an alternative therapeutic avenue that may be broadly applicable across a variety of pathologies. In this review, we will summarize recent findings on tolerance to host lung infection. We will focus on the involvement of innate immune responses in tolerance and how an initial viral lung infection may alter tolerance mechanisms in leukocytic, epithelial, and endothelial compartments to a subsequent bacterial infection. By understanding tolerance mechanisms in the lung we can better address treatment options for deadly pulmonary infections.
Collapse
Affiliation(s)
| | | | | | - Amanda M. Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
41
|
Klonoski JM, Watson T, Bickett TE, Svendsen JM, Gau TJ, Britt A, Nelson JT, Schlenker EH, Chaussee MS, Rynda-Apple A, Huber VC. Contributions of Influenza Virus Hemagglutinin and Host Immune Responses Toward the Severity of Influenza Virus: Streptococcus pyogenes Superinfections. Viral Immunol 2018; 31:457-469. [PMID: 29870311 PMCID: PMC6043403 DOI: 10.1089/vim.2017.0193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infections can be complicated by bacterial superinfections, which are medically relevant because of a complex interaction between the host, the virus, and the bacteria. Studies to date have implicated several influenza virus genes, varied host immune responses, and bacterial virulence factors, however, the host-pathogen interactions that predict survival versus lethal outcomes remain undefined. Previous work by our group showed that certain influenza viruses could yield a survival phenotype (A/swine/Texas/4199-2/98-H3N2, TX98), whereas others were associated with a lethal phenotype (A/Puerto Rico/8/34-H1N1, PR8). Based on this observation, we developed the hypothesis that individual influenza virus genes could contribute to a superinfection, and that the host response after influenza virus infection could influence superinfection severity. The present study analyzes individual influenza virus gene contributions to superinfection severity using reassortant viruses created using TX98 and PR8 viral genes. Host and pathogen interactions, relevant to survival and lethal phenotypes, were studied with a focus on pathogen clearance, host cellular infiltrates, and cytokine levels after infection. Specifically, we found that the hemagglutinin gene expressed by an influenza virus can contribute to the severity of a secondary bacterial infection, likely through modulation of host proinflammatory responses. Altogether, these results advance our understanding of molecular mechanisms underlying influenza virus-bacteria superinfections and identify viral and corresponding host factors that may contribute to morbidity and mortality.
Collapse
Affiliation(s)
- Joshua M. Klonoski
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Trevor Watson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Thomas E. Bickett
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Joshua M. Svendsen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Tonia J. Gau
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Alexandra Britt
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Jeff T. Nelson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Evelyn H. Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Michael S. Chaussee
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
42
|
Nunes MC, Cutland CL, Madhi SA. Influenza Vaccination during Pregnancy and Protection against Pertussis. N Engl J Med 2018; 378:1257-1258. [PMID: 29590549 PMCID: PMC5810468 DOI: 10.1056/nejmc1705208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Marta C Nunes
- University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
43
|
Droz N, Enouf V, Bidet P, Mohamed D, Behillil S, Simon AL, Bachy M, Caseris M, Bonacorsi S, Basmaci R. Temporal Association Between Rhinovirus Activity and Kingella kingae Osteoarticular Infections. J Pediatr 2018; 192:234-239.e2. [PMID: 29246347 DOI: 10.1016/j.jpeds.2017.09.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/21/2017] [Accepted: 09/21/2017] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To determine whether the seasonal distribution of Kingella kingae osteoarticular infections is similar to that of common respiratory viruses. STUDY DESIGN Between October 2009 and September 2016, we extracted the results of K kingae-specific real-time polymerase chain reaction analyses performed for bone or joint specimens in patients from 2 pediatric tertiary care centers in Paris. We used data of respiratory virus detection from the Réseau National des Laboratoires network with coordination with the National Influenza Center of France. The Spearman rank correlation was used to assess a correlation between weekly distributions, with P < .05 denoting a significant correlation. RESULTS During the 7-year study period, 322 children were diagnosed with K kingae osteoarticular infection, and 317 testing episodes were K kingae-negative. We observed high activity for both K kingae osteoarticular infection and human rhinovirus (HRV) during the fall (98 [30.4%] and 2401 [39.1%] cases, respectively) and low activity during summer (59 [18.3%] and 681 [11.1%] cases, respectively). Weekly distributions of K kingae osteoarticular infection and rhinovirus activity were significantly correlated (r = 0.30; P = .03). In contrast, no significant correlation was found between the weekly distribution of K kingae osteoarticular infection and other respiratory viruses (r = -0.17, P = .34 compared with respiratory syncytial virus; r = -0.13, P = .34 compared with influenza virus; and r = -0.22, P = .11 compared with metapneumovirus). CONCLUSION A significant temporal association was observed between HRV circulation and K kingae osteoarticular infection, strengthening the hypothesis of a role of viral infections in the pathophysiology of K kingae invasive infection.
Collapse
Affiliation(s)
- Nina Droz
- Pediatric-Emergency Department, Louis-Mourier Hospital, AP-HP, Colombes, France
| | - Vincent Enouf
- Coordinating Center of the National Reference Center for Influenza Viruses, Institut Pasteur, UMR 3569 CNRS, Paris Diderot-Paris 7 University, Sorbonne Paris Cité
| | - Philippe Bidet
- Department of Microbiology, Robert Debré Hospital, AP-HP, Associated-National Reference Center for Escherichia Coli, Paris, France; IAME, UMR 1137, INSERM, Paris Diderot University, Sorbonne Paris Cité
| | - Damir Mohamed
- Unit of Clinical Epidemiology, Robert Debré Hospital, AP-HP, Paris, France; Inserm, CIC-EC 1426, Paris, France
| | - Sylvie Behillil
- Coordinating Center of the National Reference Center for Influenza Viruses, Institut Pasteur, UMR 3569 CNRS, Paris Diderot-Paris 7 University, Sorbonne Paris Cité
| | - Anne-Laure Simon
- Department of Pediatric Orthopedic Surgery, Robert Debré Hospital, AP-HP, Paris, France
| | - Manon Bachy
- Department of Pediatric Orthopedic Surgery, Armand Trousseau Hospital, APHP, Pierre et Marie Curie Paris 6 University, Paris, France
| | - Marion Caseris
- Department of Pediatric Infectious Diseases, Robert Debré Hospital, AP-HP, Paris, France
| | - Stéphane Bonacorsi
- Department of Microbiology, Robert Debré Hospital, AP-HP, Associated-National Reference Center for Escherichia Coli, Paris, France; IAME, UMR 1137, INSERM, Paris Diderot University, Sorbonne Paris Cité
| | - Romain Basmaci
- Pediatric-Emergency Department, Louis-Mourier Hospital, AP-HP, Colombes, France; IAME, UMR 1137, INSERM, Paris Diderot University, Sorbonne Paris Cité.
| |
Collapse
|
44
|
Katz SE, Williams DJ. Pediatric Community-Acquired Pneumonia in the United States: Changing Epidemiology, Diagnostic and Therapeutic Challenges, and Areas for Future Research. Infect Dis Clin North Am 2017; 32:47-63. [PMID: 29269189 PMCID: PMC5801082 DOI: 10.1016/j.idc.2017.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Community-acquired pneumonia (CAP) is one of the most common serious infections in childhood. This review focuses on pediatric CAP in the United States and other industrialized nations, specifically highlighting the changing epidemiology of CAP, diagnostic and therapeutic challenges, and areas for further research.
Collapse
Affiliation(s)
- Sophie E Katz
- Division of Infectious Diseases, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, D-7235 Medical Center North, 1161 21st Avenue South, Nashville, TN 37232-2581, USA
| | - Derek J Williams
- Division of Hospital Medicine, Monroe Carell Jr. Children's Hospital at Vanderbilt, Vanderbilt University Medical Center, CCC 5324 Medical Center North, 1161 21st Avenue South, Nashville, TN 37232, USA.
| |
Collapse
|
45
|
Li W, Luo S, Zhu Y, Wen Y, Shu M, Wan C. C-reactive protein concentrations can help to determine which febrile infants under three months should receive blood cultures during influenza seasons. Acta Paediatr 2017; 106:2017-2024. [PMID: 28799220 DOI: 10.1111/apa.14022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/03/2017] [Accepted: 08/08/2017] [Indexed: 11/26/2022]
Abstract
AIM We explored whether C-reactive protein (CRP) concentrations could indicate which infants with fever without source (FWS) should receive undergo blood culture tests during influenza seasons. METHODS This retrospective study focused on patients under three months of age with FWS who had received blood culture tests at the West China Second University Hospital Paediatric Emergency Department during the influenza seasons from June 2013 to January 2015. The statistical analysis comprised specificity, sensitivity, multilevel likelihood ratios (LRs), receiver operating characteristic analysis and a multivariate logistic regression model. RESULTS We enrolled 592 febrile patients and 7.1% had bacteraemia, with levels falling with increasing age. According to the receiver operating characteristic analysis, the optimum threshold of CRP was 30.5 mg/L, and when the CRP level was higher than 30.5 mg/L, the positive LR of bacteraemia was 2.32. In patients aged 29-90 days, when the CRP level was higher than 5 mg/L, the negative LR of bacteraemia was 0.38. In the neonatal group, a CRP level of ≥30.5 mg/L had a positive LR of bacteraemia of 3.55. CONCLUSION We found that CRP concentrations could indicate which febrile children under three months of age should undergo blood culture tests during influenza seasons.
Collapse
Affiliation(s)
- Weiran Li
- Department of Paediatrics; West China Second Hospital; Sichuan University; Chengdu China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education; Chengdu China
| | - Shuanghong Luo
- Department of Paediatrics; West China Second Hospital; Sichuan University; Chengdu China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education; Chengdu China
| | - Yu Zhu
- Department of Paediatrics; West China Second Hospital; Sichuan University; Chengdu China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education; Chengdu China
| | - Yang Wen
- Department of Paediatrics; West China Second Hospital; Sichuan University; Chengdu China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education; Chengdu China
| | - Min Shu
- Department of Paediatrics; West China Second Hospital; Sichuan University; Chengdu China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education; Chengdu China
| | - Chaomin Wan
- Department of Paediatrics; West China Second Hospital; Sichuan University; Chengdu China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education; Chengdu China
| |
Collapse
|
46
|
Moorthy AN, Rai P, Jiao H, Wang S, Tan KB, Qin L, Watanabe H, Zhang Y, Teluguakula N, Chow VTK. Capsules of virulent pneumococcal serotypes enhance formation of neutrophil extracellular traps during in vivo pathogenesis of pneumonia. Oncotarget 2017; 7:19327-40. [PMID: 27034012 PMCID: PMC4991386 DOI: 10.18632/oncotarget.8451] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/18/2016] [Indexed: 11/25/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are released by activated neutrophils to ensnare and kill microorganisms. NETs have been implicated in tissue injury since they carry cytotoxic components of the activated neutrophils. We have previously demonstrated the generation of NETs in infected murine lungs during both primary pneumococcal pneumonia and secondary pneumococcal pneumonia after primary influenza. In this study, we assessed the correlation of pneumococcal capsule size with pulmonary NETs formation and disease severity. We compared NETs formation in the lungs of mice infected with three pneumococcal strains of varying virulence namely serotypes 3, 4 and 19F, as well as a capsule-deficient mutant of serotype 4. In primary pneumonia, NETs generation was strongly associated with the pneumococcal capsule thickness, and was proportional to the disease severity. Interestingly, during secondary pneumonia after primary influenza infection, intense pulmonary NETs generation together with elevated myeloperoxidase activity and cytokine dysregulation determined the disease severity. These findings highlight the crucial role played by the size of pneumococcal capsule in determining the extent of innate immune responses such as NETs formation that may contribute to the severity of pneumonia.
Collapse
Affiliation(s)
- Anandi Narayana Moorthy
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Prashant Rai
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Infectious Diseases Interdisciplinary Research Group, Singapore-Massachusetts Institute of Technology Alliance in Research and Technology, Singapore
| | - Huipeng Jiao
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital, Singapore
| | - Kong Bing Tan
- Department of Pathology, National University Hospital, Singapore
| | - Liang Qin
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, Japan
| | - Hiroshi Watanabe
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, Japan
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | | | - Vincent Tak Kwong Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore.,Infectious Diseases Interdisciplinary Research Group, Singapore-Massachusetts Institute of Technology Alliance in Research and Technology, Singapore
| |
Collapse
|
47
|
Oliveira LVN, Costa MC, Magalhães TFF, Bastos RW, Santos PC, Carneiro HCS, Ribeiro NQ, Ferreira GF, Ribeiro LS, Gonçalves APF, Fagundes CT, Pascoal-Xavier MA, Djordjevic JT, Sorrell TC, Souza DG, Machado AMV, Santos DA. Influenza A Virus as a Predisposing Factor for Cryptococcosis. Front Cell Infect Microbiol 2017; 7:419. [PMID: 29018774 PMCID: PMC5622999 DOI: 10.3389/fcimb.2017.00419] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
Influenza A virus (IAV) infects millions of people annually and predisposes to secondary bacterial infections. Inhalation of fungi within the Cryptococcus complex causes pulmonary disease with secondary meningo-encephalitis. Underlying pulmonary disease is a strong risk factor for development of C. gattii cryptococcosis though the effect of concurrent infection with IAV has not been studied. We developed an in vivo model of Influenza A H1N1 and C. gattii co-infection. Co-infection resulted in a major increase in morbidity and mortality, with severe lung damage and a high brain fungal burden when mice were infected in the acute phase of influenza multiplication. Furthermore, IAV alters the host response to C. gattii, leading to recruitment of significantly more neutrophils and macrophages into the lungs. Moreover, IAV induced the production of type 1 interferons (IFN-α4/β) and the levels of IFN-γ were significantly reduced, which can be associated with impairment of the immune response to Cryptococcus during co-infection. Phagocytosis, killing of cryptococci and production of reactive oxygen species (ROS) by IAV-infected macrophages were reduced, independent of previous IFN-γ stimulation, leading to increased proliferation of the fungus within macrophages. In conclusion, IAV infection is a predisposing factor for severe disease and adverse outcomes in mice co-infected with C. gattii.
Collapse
Affiliation(s)
- Lorena V N Oliveira
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marliete C Costa
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thaís F F Magalhães
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael W Bastos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia C Santos
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Hellem C S Carneiro
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Noelly Q Ribeiro
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriella F Ferreira
- Departamento de Farmácia, Universidade Federal de Juiz de Fora-Campus Governador Valadares, Centro, Governador Valadares, Brazil
| | - Lucas S Ribeiro
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana P F Gonçalves
- Centro de Pesquisas René Rachou (CPqRR)/Fundação Oswaldo Cruz (Fiocruz Minas), Belo Horizonte, Brazil
| | - Caio T Fagundes
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo A Pascoal-Xavier
- Centro de Pesquisas René Rachou (CPqRR)/Fundação Oswaldo Cruz (Fiocruz Minas), Belo Horizonte, Brazil
| | - Julianne T Djordjevic
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney and Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney and Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Daniele G Souza
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre M V Machado
- Centro de Pesquisas René Rachou (CPqRR)/Fundação Oswaldo Cruz (Fiocruz Minas), Belo Horizonte, Brazil
| | - Daniel A Santos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
48
|
Abstract
Influenza is an acute respiratory disease caused by influenza viruses. Evolutionarily, all influenza viruses are zoonoses, arising in the animal reservoir and spilling over into the human population. Several times a century, one of these zoonotic events results in a new influenza virus lineage becoming established in humans and circulating for years or decades as an endemic strain. The worldwide pandemic that occurs shortly after the nascent virus becomes established can have a profound impact on morbidity and mortality. Because influenza viruses continually evolve and the illness they engender can vary considerably based on characteristics of the strain, the weather, other circulating or endemic pathogens, as well as the number of susceptible hosts, the impact of each season on human health is unpredictable. Over time, the general pattern is for pandemic strains to adapt and gradually take on characteristics of seasonal strains with lower virulence and a diminished synergism with bacterial pathogens. Study of this punctuated evolution yields a number of insights into the overall pathogenicity of influenza viruses.
Collapse
|
49
|
Morris DE, Cleary DW, Clarke SC. Secondary Bacterial Infections Associated with Influenza Pandemics. Front Microbiol 2017; 8:1041. [PMID: 28690590 PMCID: PMC5481322 DOI: 10.3389/fmicb.2017.01041] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022] Open
Abstract
Lower and upper respiratory infections are the fourth highest cause of global mortality (Lozano et al., 2012). Epidemic and pandemic outbreaks of respiratory infection are a major medical concern, often causing considerable disease and a high death toll, typically over a relatively short period of time. Influenza is a major cause of epidemic and pandemic infection. Bacterial co/secondary infection further increases morbidity and mortality of influenza infection, with Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus reported as the most common causes. With increased antibiotic resistance and vaccine evasion it is important to monitor the epidemiology of pathogens in circulation to inform clinical treatment and development, particularly in the setting of an influenza epidemic/pandemic.
Collapse
Affiliation(s)
- Denise E. Morris
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
| | - David W. Cleary
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
| | - Stuart C. Clarke
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
- Global Health Research Institute, University of SouthamptonSouthampton, United Kingdom
- NIHR Southampton Respiratory Biomedical Research UnitSouthampton, United Kingdom
| |
Collapse
|
50
|
Hansen NS, Byberg S, Hervig Jacobsen L, Bjerregaard-Andersen M, Jensen AKG, Martins C, Aaby P, Skov Jensen J, Stabell Benn C, Whittle H. Effect of early measles vaccine on pneumococcal colonization: A randomized trial from Guinea-Bissau. PLoS One 2017; 12:e0177547. [PMID: 28545041 PMCID: PMC5435222 DOI: 10.1371/journal.pone.0177547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/27/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Measles vaccine (MV) may have non-specific beneficial effects for child health and particularly seems to prevent respiratory infections. Streptococcus pneumoniae is the leading cause of bacterial pneumonia among children worldwide, and nasopharyngeal colonization precedes infection. OBJECTIVE We investigated whether providing early MV at 18 weeks of age reduced pneumococcal colonization and/or density up to 9 months of age. METHOD The study was conducted in 2013-2014 in Guinea-Bissau. Pneumococcal vaccine was not part of the vaccination program. Infants aged 18 weeks were block-randomized 2:1 to early or no early MV; at age 9 months, all children were offered MV as per current policy. Nasopharyngeal swabs were taken at baseline, age 6.5 months, and age 9 months. Pneumococcal density was determined by q-PCR. Prevalence ratios of pneumococcal colonization and recent antibiotic treatment (yes/no) by age 6.5 months (PR6.5) and age 9 months (PR9) were estimated using Poisson regression with robust variance estimates while the pneumococcal geometric mean ratio (GMR6.5 and GMR9) was obtained using OLS regression. RESULTS Analyses included 512 children; 346 early MV-children and 166 controls. At enrolment, the pneumococcal colonization prevalence was 80% (411/512). Comparing early MV-children with controls, the PR6.5 was 1.02 (95%CI = 0.94-1.10), and the PR9 was 1.04 (0.96-1.12). The GMR6.5 was 1.02 (0.55-1.89), and the GMR9 was 0.69 (0.39-1.21). Early MV-children tended to be less frequently treated with antibiotics prior to follow up (PR6.5 0.60 (0.34-1.05) and PR9 0.87 (0.50-1.53)). Antibiotic treatment was associated with considerably lower colonization rates, PR6.5 0.85 (0.71-1.01) and PR9 0.66 (0.52-0.84), as well as lower pneumococcal density, GMR6.5 0.32 (0.12-0.86) and GMR9 0.52 (0.18-1.52). CONCLUSION Early MV at age 18 weeks had no measurable effect on pneumococcal colonization prevalence or density. Higher consumption of antibiotics among controls may have blurred an effect of early MV. TRIAL REGISTRATION clinicaltrials.gov NCT01486355.
Collapse
Affiliation(s)
- Nadja Skadkær Hansen
- Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Stine Byberg
- Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Lars Hervig Jacobsen
- Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Morten Bjerregaard-Andersen
- Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Aksel Karl Georg Jensen
- Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
- Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Cesario Martins
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Peter Aaby
- Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Jørgen Skov Jensen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Christine Stabell Benn
- Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
- Odense Patient data Explorative Network, Odense University Hospital/Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hilton Whittle
- The London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|