1
|
Eggel A, Pennington LF, Jardetzky TS. Therapeutic monoclonal antibodies in allergy: Targeting IgE, cytokine, and alarmin pathways. Immunol Rev 2024. [PMID: 39158477 DOI: 10.1111/imr.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The etiology of allergy is closely linked to type 2 inflammatory responses ultimately leading to the production of allergen-specific immunoglobulin E (IgE), a key driver of many allergic conditions. At a high level, initial allergen exposure disrupts epithelial integrity, triggering local inflammation via alarmins including IL-25, IL-33, and TSLP, which activate type 2 innate lymphoid cells as well as other immune cells to secrete type 2 cytokines IL-4, IL-5 and IL-13, promoting Th2 cell development and eosinophil recruitment. Th2 cell dependent B cell activation promotes the production of allergen-specific IgE, which stably binds to basophils and mast cells. Rapid degranulation of these cells upon allergen re-exposure leads to allergic symptoms. Recent advances in our understanding of the molecular and cellular mechanisms underlying allergic pathophysiology have significantly shaped the development of therapeutic intervention strategies. In this review, we highlight key therapeutic targets within the allergic cascade with a particular focus on past, current and future treatment approaches using monoclonal antibodies. Specific targeting of alarmins, type 2 cytokines and IgE has shown varying degrees of clinical benefit in different allergic indications including asthma, chronic spontaneous urticaria, atopic dermatitis, chronic rhinosinusitis with nasal polyps, food allergies and eosinophilic esophagitis. While multiple therapeutic antibodies have been approved for clinical use, scientists are still working on ways to improve on current treatment approaches. Here, we provide context to understand therapeutic targeting strategies and their limitations, discussing both knowledge gaps and promising future directions to enhancing clinical efficacy in allergic disease management.
Collapse
Affiliation(s)
- Alexander Eggel
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | | | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Saadh MJ, Alfattah MA, Ismail AH, Saeed BA, Abbas HH, Elashmawy NF, Hashim GA, Ismail KS, Abo-Zaid MA, Waggiallah HA. The role of Interleukin-21 (IL-21) in allergic disorders: Biological insights and regulatory mechanisms. Int Immunopharmacol 2024; 134:111825. [PMID: 38723368 DOI: 10.1016/j.intimp.2024.111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 06/03/2024]
Abstract
In recent decades, allergic diseases subsequent from an IgE-mediated response to specific allergens have become a progressively public chronic disease worldwide. They have shaped an important medical and socio-economic burden. A significant proportion of allergic disorders are branded via a form 2 immune response relating Th2 cells, type 2 natural lymphoid cells, mast cells and eosinophils. Interleukin-21 (IL-21) is a participant of the type-I cytokine family manufactured through numerous subsets of stimulated CD4+ T cells and uses controlling properties on a diversity of immune cells. Increasingly, experimental sign suggests a character for IL-21 in the pathogenesis of numerous allergic disorders. The purpose of this review is to discuss the biological properties of IL-21 and to summaries current developments in its role in the regulation of allergic disorders.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Mohammed A Alfattah
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Bashar Abdullah Saeed
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | | | - Nabila F Elashmawy
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Ghassan A Hashim
- Department of Nursing, Al-Zahrawi University College, Karbala, Iraq
| | - Khatib Sayeed Ismail
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia.
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
3
|
Guo TJF, Singhera GK, Leung JM, Dorscheid DR. Airway Epithelial-Derived Immune Mediators in COVID-19. Viruses 2023; 15:1655. [PMID: 37631998 PMCID: PMC10458661 DOI: 10.3390/v15081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The airway epithelium, which lines the conducting airways, is central to the defense of the lungs against inhaled particulate matter and pathogens such as SARS-CoV-2, the virus that causes COVID-19. Recognition of pathogens results in the activation of an innate and intermediate immune response which involves the release of cytokines and chemokines by the airway epithelium. This response can inhibit further viral invasion and influence adaptive immunity. However, severe COVID-19 is characterized by a hyper-inflammatory response which can give rise to clinical presentations including lung injury and lead to acute respiratory distress syndrome, viral pneumonia, coagulopathy, and multi-system organ failure. In response to SARS-CoV-2 infection, the airway epithelium can mount a maladaptive immune response which can delay viral clearance, perpetuate excessive inflammation, and contribute to the pathogenesis of severe COVID-19. In this article, we will review the barrier and immune functions of the airway epithelium, how SARS-CoV-2 can interact with the epithelium, and epithelial-derived cytokines and chemokines and their roles in COVID-19 and as biomarkers. Finally, we will discuss these immune mediators and their potential as therapeutic targets in COVID-19.
Collapse
Affiliation(s)
- Tony J. F. Guo
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
| | - Gurpreet K. Singhera
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Janice M. Leung
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| | - Delbert R. Dorscheid
- Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul’s Hospital, University of British Columbia, 1081 Burrard St., Vancouver, BC V6Z 1Y6, Canada
- Department of Medicine, University of British Columbia, 2775 Laurel St., Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
4
|
Striz I, Golebski K, Strizova Z, Loukides S, Bakakos P, Hanania N, Jesenak M, Diamant Z. New insights into the pathophysiology and therapeutic targets of asthma and comorbid chronic rhinosinusitis with or without nasal polyposis. Clin Sci (Lond) 2023; 137:727-753. [PMID: 37199256 PMCID: PMC10195992 DOI: 10.1042/cs20190281] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Asthma and chronic rhinosinusitis with nasal polyps (CRSwNP) or without (CRSsNP) are chronic respiratory diseases. These two disorders often co-exist based on common anatomical, immunological, histopathological, and pathophysiological basis. Usually, asthma with comorbid CRSwNP is driven by type 2 (T2) inflammation which predisposes to more severe, often intractable, disease. In the past two decades, innovative technologies and detection techniques in combination with newly introduced targeted therapies helped shape our understanding of the immunological pathways underlying inflammatory airway diseases and to further identify several distinct clinical and inflammatory subsets to enhance the development of more effective personalized treatments. Presently, a number of targeted biologics has shown clinical efficacy in patients with refractory T2 airway inflammation, including anti-IgE (omalizumab), anti-IL-5 (mepolizumab, reslizumab)/anti-IL5R (benralizumab), anti-IL-4R-α (anti-IL-4/IL-13, dupilumab), and anti-TSLP (tezepelumab). In non-type-2 endotypes, no targeted biologics have consistently shown clinical efficacy so far. Presently, multiple therapeutical targets are being explored including cytokines, membrane molecules and intracellular signalling pathways to further expand current treatment options for severe asthma with and without comorbid CRSwNP. In this review, we discuss existing biologics, those under development and share some views on new horizons.
Collapse
Affiliation(s)
- Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Subdivision of Allergology and Clinical Immunology, Institute for Postgraduate Education in Medicine, Prague, Czech Republic
| | - Kornel Golebski
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Zuzana Strizova
- Institute of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Stelios Loukides
- Department of Respiratory Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Bakakos
- First Respiratory Medicine Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicola A. Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Milos Jesenak
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Pediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Slovakia
- Department of Clinical Immunology and Allergology, University Hospital in Martin, Slovakia
| | - Zuzana Diamant
- Department of Microbiology Immunology and Transplantation, KU Leuven, Catholic University of Leuven, Belgium
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Alsayed AR, Abu-Samak MS, Alkhatib M. Asthma-COPD Overlap in Clinical Practice (ACO_CP 2023): Toward Precision Medicine. J Pers Med 2023; 13:677. [PMID: 37109063 PMCID: PMC10146260 DOI: 10.3390/jpm13040677] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Asthma and COPD have characteristic symptoms, yet patients with both are prevalent. Despite this, there is currently no globally accepted definition for the overlap between asthma and COPD, commonly referred to as asthma-COPD overlap (ACO). Generally, ACO is not considered a distinct disease or symptom from either clinical or mechanistic perspectives. However, identifying patients who present with both conditions is crucial for guiding clinical therapy. Similar to asthma and COPD, ACO patients are heterogeneous and presumably have multiple underlying disease processes. The variability of ACO patients led to the establishment of multiple definitions describing the condition's essential clinical, physiological, and molecular characteristics. ACO comprises numerous phenotypes, which affects the optimal medication choice and can serve as a predictor of disease prognosis. Various phenotypes of ACO have been suggested based on host factors including but not limited to demographics, symptoms, spirometric findings, smoking history, and underlying airway inflammation. This review provides a comprehensive clinical guide for ACO patients to be used in clinical practice based on the available limited data. Future longitudinal studies must evaluate the stability of ACO phenotypes over time and explore their predictive powers to facilitate a more precise and effective management approach.
Collapse
Affiliation(s)
- Ahmad R Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Mahmoud S Abu-Samak
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Roma, Italy
| |
Collapse
|
6
|
Novel Lung Growth Strategy with Biological Therapy Targeting Airway Remodeling in Childhood Bronchial Asthma. CHILDREN 2022; 9:children9081253. [PMID: 36010143 PMCID: PMC9406359 DOI: 10.3390/children9081253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
Anti-inflammatory therapy, centered on inhaled steroids, suppresses airway inflammation in asthma, reduces asthma mortality and hospitalization rates, and achieves clinical remission in many pediatric patients. However, the spontaneous remission rate of childhood asthma in adulthood is not high, and airway inflammation and airway remodeling persist after remission of asthma symptoms. Childhood asthma impairs normal lung maturation, interferes with peak lung function in adolescence, reduces lung function in adulthood, and increases the risk of developing chronic obstructive pulmonary disease (COPD). Early suppression of airway inflammation in childhood and prevention of asthma exacerbations may improve lung maturation, leading to good lung function and prevention of adult COPD. Biological drugs that target T-helper 2 (Th2) cytokines are used in patients with severe pediatric asthma to reduce exacerbations and airway inflammation and improve respiratory function. They may also suppress airway remodeling in childhood and prevent respiratory deterioration in adulthood, reducing the risk of COPD and improving long-term prognosis. No studies have demonstrated a suppressive effect on airway remodeling in childhood severe asthma, and further clinical trials using airway imaging analysis are needed to ascertain the inhibitory effect of biological drugs on airway remodeling in severe childhood asthma. In this review, we describe the natural prognosis of lung function in childhood asthma and the risk of developing adult COPD, the pathophysiology of allergic airway inflammation and airway remodeling via Th2 cytokines, and the inhibitory effect of biological drugs on airway remodeling in childhood asthma.
Collapse
|
7
|
Noureddine N, Chalubinski M, Wawrzyniak P. The Role of Defective Epithelial Barriers in Allergic Lung Disease and Asthma Development. J Asthma Allergy 2022; 15:487-504. [PMID: 35463205 PMCID: PMC9030405 DOI: 10.2147/jaa.s324080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
The respiratory epithelium constitutes the physical barrier between the human body and the environment, thus providing functional and immunological protection. It is often exposed to allergens, microbial substances, pathogens, pollutants, and environmental toxins, which lead to dysregulation of the epithelial barrier and result in the chronic inflammation seen in allergic diseases and asthma. This epithelial barrier dysfunction results from the disturbed tight junction formation, which are multi-protein subunits that promote cell-cell adhesion and barrier integrity. The increasing interest and evidence of the role of impaired epithelial barrier function in allergy and asthma highlight the need for innovative approaches that can provide new knowledge in this area. Here, we review and discuss the current role and mechanism of epithelial barrier dysfunction in developing allergic diseases and the effect of current allergy therapies on epithelial barrier restoration.
Collapse
Affiliation(s)
- Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Maciej Chalubinski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Martin J, Townshend J, Brodlie M. Diagnosis and management of asthma in children. BMJ Paediatr Open 2022; 6:10.1136/bmjpo-2021-001277. [PMID: 35648804 PMCID: PMC9045042 DOI: 10.1136/bmjpo-2021-001277] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
Asthma is the the most common chronic respiratory condition of childhood worldwide, with around 14% of children and young people affected. Despite the high prevalence, paediatric asthma outcomes are inadequate, and there are several avoidable deaths each year. Characteristic asthma features include wheeze, shortness of breath and cough, which are typically triggered by a number of possible stimuli. There are several diagnostic challenges, and as a result, both overdiagnosis and underdiagnosis of paediatric asthma remain problematic.Effective asthma management involves a holistic approach addressing both pharmacological and non-pharmacological management, as well as education and self-management aspects. Working in partnership with children and families is key in promoting good outcomes. Education on how to take treatment effectively, trigger avoidance, modifiable risk factors and actions to take during acute attacks via personalised asthma action plans is essential.This review aimed to provide an overview of good clinical practice in the diagnosis and management of paediatric asthma. We discuss the current diagnostic challenges and predictors of life-threatening attacks. Additionally, we outline the similarities and differences in global paediatric asthma guidelines and highlight potential future developments in care. It is hoped that this review will be useful for healthcare providers working in a range of child health settings.
Collapse
Affiliation(s)
- Joanne Martin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Northern Foundation School, Health Education England North East, Newcastle upon Tyne, UK.,James Cook University Hospital, South Tees NHS Foundation Trust, Middlesbrough, UK
| | - Jennifer Townshend
- Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK .,Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Gallagher A, Edwards M, Nair P, Drew S, Vyas A, Sharma R, Marsden PA, Wang R, Evans DJ. Anti-interleukin-13 and anti-interleukin-4 agents versus placebo, anti-interleukin-5 or anti-immunoglobulin-E agents, for people with asthma. Cochrane Database Syst Rev 2021; 10:CD012929. [PMID: 34664263 PMCID: PMC8524317 DOI: 10.1002/14651858.cd012929.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Targeting the immunoglobulin E pathway and the interleukin-5 pathway with specific monoclonal antibodies directed against the cytokines or their receptors is effective in patients with severe asthma. However, there are patients who have suboptimal responses to these biologics. Since interleukin-4 and interleukin-13, signalling through the interleukin-4 receptor, have multiple effects on the biology of asthma, therapies targeting interleukin-4 and -13 (both individually and combined) have been developed. OBJECTIVES To assess the efficacy and safety of anti-interleukin-13 or anti-interleukin-4 agents, compared with placebo, anti-immunoglobulin E agents, or anti-interleukin-5 agents, for the treatment of children, adolescents, or adults with asthma. SEARCH METHODS We identified studies from the Cochrane Airways Trials Register, which is maintained by the Information Specialist for the Group and through searches of the US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform. The search was carried out on the 16 October 2020. SELECTION CRITERIA We included parallel-group randomised controlled trials that compared anti-interleukin-13 or -4 agents (or agents that target both interleukin-13 and interleukin-4) with placebo in adolescents and adults (aged 16 years or older) or children (younger than 16 years), with a diagnosis of asthma; participants could receive their usual short- or long-acting medications (e.g. inhaled corticosteroids (ICS), long-acting beta adrenoceptor agonists (LABA), long-acting muscarinic antagonists (LAMA), and/or leukotriene receptor antagonists) provided that they were not part of the randomised treatment. DATA COLLECTION AND ANALYSIS We used standard methods expected by Cochrane. MAIN RESULTS We identified and included 41 RCTs. Of these, 29 studies contributed data to the quantitative analyses, randomly assigning 10,604 people with asthma to receive an anti-interleukin-13 (intervention) or anti-interleukin-4 agent (intervention), or placebo (comparator). No relevant studies were identified where the comparator was an anti-immunoglobulin agent or an anti-interleukin-5 agent. Studies had a duration of between 2 and 52 (median 16) weeks. The mean age of participants across the included studies ranged from 22 to 55 years. Only five studies permitted enrolment of children and adolescents, accounting for less than 5% of the total participants contributing data to the present review. The majority of participants had moderate or severe uncontrolled asthma. Concomitant ICS use was permitted or required in the majority (21 of 29) of the included studies. The use of maintenance systemic corticosteroids was not permitted in 19 studies and was permitted or required in five studies (information not reported in five studies). Regarding the most commonly assessed anti-interleukin-13/-4 agents, four studies evaluated dupilumab (300 mg once every week (Q1W), 200 mg once every two weeks (Q2W), 300 mg Q2W, 200 mg once every four weeks (Q4W), 300 mg Q4W, each administered by subcutaneous (SC) injection); eight studies evaluated lebrikizumab (37.5 mg Q4W, 125 mg Q4W, 250 mg Q4W each administered by SC injection); and nine studies (3259 participants) evaluated tralokinumab (75 mg Q1W, 150 mg Q1W, 300 mg Q1W, 150 mg Q2W, 300 mg Q2W, 600 mg Q2W, 300 mg Q4W, each administered by SC injection; 1/5/10 mg/kg administered by intravenous (IV) injection); all anti-interleukin-13 or-4 agents were compared with placebo. The risk of bias was generally considered to be low or unclear (insufficient detail provided); nine studies were considered to be at high risk for attrition bias and three studies were considered to be at high risk for reporting bias. The following results relate to the primary outcomes. The rate of exacerbations requiring hospitalisation or emergency department (ED) visit was probably lower in participants receiving tralokinumab versus placebo (rate ratio 0.68, 95% CI 0.47 to 0.98; moderate-certainty evidence; data available for tralokinumab (anti-interleukin-13) only). In participants receiving an anti-interleukin-13/-4 agent, the mean improvement versus placebo in adjusted asthma quality of life questionnaire score was 0.18 units (95% CI 0.12 to 0.24; high-certainty evidence); however, this finding was deemed not to be a clinically relevant improvement. There was likely little or no difference between groups in the proportion of patients who reported all-cause serious adverse events (anti-interleukin-13/-4 agents versus placebo, OR 0.91, 95% CI 0.76 to 1.09; moderate-certainty evidence). In terms of secondary outcomes, there may be little or no difference between groups in the proportion of patients who experienced exacerbations requiring oral corticosteroids (anti-interleukin-13/-4 agents versus placebo, rate ratio 0.98, 95% CI 0.72 to 1.32; low-certainty evidence). Anti-interleukin-13/-4 agents probably improve asthma control based on asthma control questionnaire score (anti-interleukin-13/-4 agents versus placebo, mean difference -0.19; 95% CI -0.24 to -0.14); however, the magnitude of this result was deemed not to be a clinically relevant improvement. The proportion of patients experiencing any adverse event was greater in those receiving anti-interleukin-13/-4 agents compared with those receiving placebo (OR 1.16, 95% CI 1.04 to 1.30; high-certainty evidence); the most commonly reported adverse events in participants treated with anti-interleukin-13/-4 agents were upper respiratory tract infection, nasopharyngitis, headache and injection site reaction. The pooled results for the exploratory outcome, the rate of exacerbations requiring oral corticosteroids (OCS) or hospitalisation or emergency department visit, may be lower in participants receiving anti-interleukin-13/-4 agents versus placebo (rate ratio 0.71, 95% CI 0.65 to 0.77; low-certainty evidence). Results were generally consistent across subgroups for different classes of agent (anti-interleukin-13 or anti-interleukin-4), durations of study and severity of disease. Subgroup analysis based on category of T helper 2 (TH2) inflammation suggested greater efficacy in patients with higher levels of inflammatory biomarkers (blood eosinophils, exhaled nitric oxide and serum periostin). AUTHORS' CONCLUSIONS Based on the totality of the evidence, compared with placebo, anti-interleukin-13/-4 agents are probably associated with a reduction in exacerbations requiring hospitalisation or ED visit, at the cost of increased adverse events, in patients with asthma. No clinically relevant improvements in health-related quality of life or asthma control were identified. Therefore, anti-interleukin-13 or anti-interleukin-4 agents may be appropriate for adults with moderate-to-severe uncontrolled asthma who have not responded to other treatments. These conclusions are generally supported by moderate or high-certainty evidence based on studies with an observation period of up to one year.
Collapse
Affiliation(s)
| | - Michaela Edwards
- Nottingham Business School, Nottingham Trent University, Nottingham, UK
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, McMaster University & St Joseph`s Healthcare, Hamilton, Canada
| | - Stewart Drew
- Children's Physiotherapy Service, Lancashire Care NHS Foundation Trust, Preston, UK
| | - Aashish Vyas
- Department of Respiratory Medicine, Lancashire Teaching Hospitals Trust, Preston, UK
| | - Rashmi Sharma
- Department of Microbiology, BTH NHS Foundation Trust, Blackpool, UK
| | - Paul A Marsden
- Department of Respiratory Medicine, Lancashire Teaching Hospitals Trust, Preston, UK
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Ran Wang
- Department of Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - David Jw Evans
- Lancaster Medical School, Lancaster University, Lancaster, UK
| |
Collapse
|
10
|
Ochayon DE, Waggoner SN. The Effect of Unconventional Cytokine Combinations on NK-Cell Responses to Viral Infection. Front Immunol 2021; 12:645850. [PMID: 33815404 PMCID: PMC8017335 DOI: 10.3389/fimmu.2021.645850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Cytokines are soluble and membrane-bound factors that dictate immune responses. Dogmatically, cytokines are divided into families that promote type 1 cell-mediated immune responses (e.g., IL-12) or type 2 humoral responses (e.g., IL-4), each capable of antagonizing the opposing family of cytokines. The discovery of additional families of cytokines (e.g., IL-17) has added complexity to this model, but it was the realization that immune responses frequently comprise mixtures of different types of cytokines that dismantled this black-and-white paradigm. In some cases, one type of response may dominate these mixed milieus in disease pathogenesis and thereby present a clear therapeutic target. Alternatively, synergistic or blended cytokine responses may obfuscate the origins of disease and perplex clinical decision making. Most immune cells express receptors for many types of cytokines and can mediate a myriad of functions important for tolerance, immunity, tissue damage, and repair. In this review, we will describe the unconventional effects of a variety of cytokines on the activity of a prototypical type 1 effector, the natural killer (NK) cell, and discuss how this may impact the contributions of these cells to health and disease.
Collapse
Affiliation(s)
- David E. Ochayon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Stephen N. Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
11
|
A critical regulation of Th2 cell responses by RORα in allergic asthma. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1326-1335. [PMID: 33165810 DOI: 10.1007/s11427-020-1825-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Allergic asthma is a chronic inflammatory disease of the lung and the airway, which is characterized by aberrant type 2 immune responses to otherwise unharmful aeroallergens. While the central role of Th2 cells and type 2 cytokines in the pathogenesis of allergic asthma is well documented, the regulation and plasticity of Th2 cells remain incompletely understood. By using an animal model of allergic asthma in IL-4-reporter mice, we found that Th2 cells in the lung expressed higher levels of Rora than those in the lymph nodes, and that treatment with an RORα agonist SR1078 resulted in diminished Th2 cell responses in vivo. To determine the T cell-intrinsic role of RORα in allergic asthma in vivo, we established T cell-specific RORα-deficient (Cd4creRoraf/f) mice. Upon intranasal allergen challenges, Cd4creRoraf/f mice exhibited a significantly increased Th2 cells in the lungs and the airway and showed an enhanced eosinophilic inflammation compared to littermate control mice. Studies with Foxp3YFP-creRoraf/f mice and CD8+ T cell depletion showed that the increased Th2 cell responses in the Cd4creRoraf/f mice were independent of Treg cells and CD8+ T cells. Our findings demonstrate a critical regulatory role of RORα in Th2 cells, which suggest that RORα agonists could be effective for the treatment of allergic diseases.
Collapse
|
12
|
Yan P, Su Y, Shang C, Zhou X, Yang Y, An W, An W, Yu C, Wang S. The establishment of humanized IL-4/IL-4RA mouse model by gene editing and efficacy evaluation. Immunobiology 2020; 225:151998. [PMID: 32962818 DOI: 10.1016/j.imbio.2020.151998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/06/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022]
Abstract
Asthma is a common respiratory immune disease in children and adults, and interleukin-4 (IL-4) is one of the key factors for the onset of asthma. Therefore, targeting human IL-4 and IL-4 receptor alpha (IL-4RA) has become one of the strategies for targeted therapy of cytokines. Herein, we established an animal model of asthmatic airway inflammation using double humanized IL-4/IL-4RA (hIL-4/hIL-4RA) mice, where human IL-4 and IL-4RA replaced their murine counterparts, respectively. We successfully identified the phenotype by Southern blotting, ELISA, and flow cytometry. The hIL-4/hIL-4RA mice induced by ovalbumin (OVA) exhibited several important features of asthma, such as inflammatory cell infiltration, IgE release, goblet cell hyperplasia, and Th2 cytokine secretion. Furthermore, treatment of these humanized mice with anti-human IL-4RA antibodies significantly inhibited level of these pathological indicators. Thus, hIL-4/hIL-4RA mice provide a validated preclinical mouse model to interrogate new therapeutic agents targeting this specific cytokine pathway in asthma.
Collapse
Affiliation(s)
- Peili Yan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Youhong Su
- Beijing Biocytogen, Beijing 102600, China
| | | | | | - Yi Yang
- Beijing Biocytogen, Beijing 102600, China
| | - Wenqian An
- Beijing Biocytogen, Beijing 102600, China
| | - Wenlin An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shihui Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Qinhuangdao BohaiBiological Research Institute of BUCT, No.41 of Shugu Avenue, Qinghuangdao, Hebei, 066000, PR China.
| |
Collapse
|
13
|
Tison KL, Patrawala M, Blaiss MS. Monoclonal Antibody Therapy in Childhood Asthma. Curr Allergy Asthma Rep 2020; 20:26. [PMID: 32430808 DOI: 10.1007/s11882-020-00919-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW There has been an explosion of monoclonal antibodies in the treatment of severe uncontrolled adult asthma. Studies have now been published in severe pediatric asthma. There are numerous questions that need to be answered in determining whether these modalities are appropriate and safe in children. RECENT FINDINGS This is a narrative review examining the latest pediatric literature on monoclonal antibodies, both approved and in the pipeline, for uncontrolled asthma. Presently, all of the biologics are positioned to treat patients with underlying type 2 high disease. Two monoclonal antibodies are approved for children 6 years of age and older, omalizumab and mepolizumab, with more likely approved in the near future. The effect of these agents in controlling severe pediatric asthma is promising. Data is limited to long-term efficacy and safety, and whether any agent has an effect on the natural history of asthma.
Collapse
Affiliation(s)
- Katherine L Tison
- Emory University School of Medicine/Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Meera Patrawala
- Emory University School of Medicine/Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Michael S Blaiss
- Medical College of Georgia at Augusta University, Augusta, GA, USA. .,, Roswell, GA, USA.
| |
Collapse
|
14
|
Moran A, Pavord ID. Anti-IL-4/IL-13 for the treatment of asthma: the story so far. Expert Opin Biol Ther 2020; 20:283-294. [PMID: 31914819 DOI: 10.1080/14712598.2020.1714027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Severe asthma is a global health concern with high morbidity and mortality. Understanding of its complex pathophysiology continues to increase, providing specific immune targets for therapeutic intervention.Areas covered: In this review, we focus on the role of IL-4 and IL-13 in severe asthma and on the biologic therapies developed to target them, particularly dupilumab, a monoclonal antibody against the IL-4 receptor α subunit and IL-4/IL-13 receptor complex. A literature search was undertaken for all studies of monoclonal antibodies against IL-4 and IL-13.Expert Opinion: Dupilumab decreases the rate of severe asthma exacerbations and improves symptoms, lung function, and quality of life. Importantly, these effects are also observed during reduction of maintenance oral corticosteroid doses. Those with the highest T2 biomarkers derive the greatest benefit and the presence of atopic dermatitis or chronic rhinosinusitis with or without nasal polyposis may recommend dupilumab as the preferred biologic treatment for a patient.
Collapse
Affiliation(s)
- Angela Moran
- Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ian D Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR BRC, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Doroudchi A, Pathria M, Modena BD. Asthma biologics: Comparing trial designs, patient cohorts and study results. Ann Allergy Asthma Immunol 2020; 124:44-56. [PMID: 31655122 PMCID: PMC6911637 DOI: 10.1016/j.anai.2019.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Five biologic therapies have FDA-approved indications for difficult-to-control asthma. The clinical trials that proved the efficacy and safety of these biologics were often similar in their inclusion criteria, study designs, and endpoints. Many of these trials have been reanalyzed post hoc to identify subsets of subjects considered to be enhanced responders. As a result, keeping up with the literature and deciding on the most appropriate biologic for our patients has become increasingly difficult. This review summarizes and compares trial designs, patient cohorts, and study results of the major trials involving these therapies. DATA SOURCES Included are basic science articles, online Food and Drug Administration (FDA) applications, and all the published reports of phase II and phase III clinical trials for FDA-approved asthma biologics. STUDY SELECTIONS Included are the major phase II and phase III clinical trials of 5 asthma biologics. RESULTS Because of variations in inclusion criteria and natural variations in enrolled cohorts, the baseline clinical traits and severity of study populations in asthma biologic trials differed significantly, which is important because baseline annualized exacerbation rates and blood eosinophilia are both strong predictors of a biologic's success. Notwithstanding, the trial results, when considered together, can help guide care providers in choosing the most appropriate biologic for our patients. CONCLUSION Understanding the details and differences in asthma biologic trial designs, patient cohorts, and in study results will help care providers make more informed decisions when choosing a biologic. We are hopeful this review will serve as a reference to care providers for this purpose.
Collapse
Affiliation(s)
- Ali Doroudchi
- Department of Pediatrics, University of California Los Angeles, Los Angeles, California
| | - Mohini Pathria
- Division of Allergy, National Jewish Health, Denver, Colorado
| | - Brian D Modena
- Division of Allergy, National Jewish Health, Denver, Colorado.
| |
Collapse
|
16
|
Nasal Cytokine Profiles of Patients Hospitalised with Respiratory Wheeze Associated with Rhinovirus C. Viruses 2019; 11:v11111038. [PMID: 31703379 PMCID: PMC6893661 DOI: 10.3390/v11111038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
Background: Rhinovirus C is an important pathogen of asthmatic and non-asthmatic children hospitalised with episodic wheeze. Previous studies on other respiratory viruses have shown that several host cytokines correlate with duration of hospitalisation, but this has yet to be investigated in children with RV-C infection. We determined the nasal cytokine profiles of these children and investigated their relationship with RV-C load and clinical outcome. Flocked nasal swabs were collected from children aged 24–72 months presenting to the Emergency Department at Princess Margaret Hospital with a clinical diagnosis of acute wheeze and an acute upper respiratory tract viral infection. RV-C load was determined by quantitative RT-PCR and cytokine profiles were characterised by a commercial human cytokine 34-plex panel. RV-C was the most commonly detected virus in pre-school-aged children hospitalised with an episodic wheeze. RV-C load did not significantly differ between asthmatic and non-asthmatic patients. Both groups showed a Th2-based cytokine profile. However, Th17 response cytokines IL-17 and IL-1β were only elevated in RV-C-infected children with pre-existing asthma. Neither RV-C load nor any specific cytokines were associated illness severity in this study. Medically attended RV-C-induced wheeze is characterised by a Th2 inflammatory pattern, independent of viral load. Any therapeutic interventions should be aimed at modulating the host response following infection.
Collapse
|
17
|
Lightwood D, Tservistas M, Zehentleitner M, Sarkar K, Turner A, Bracher M, Smith B, Lamour S, Bourne T, Shaw S, Gozzard N, Palframan RT. Efficacy of an Inhaled IL-13 Antibody Fragment in a Model of Chronic Asthma. Am J Respir Crit Care Med 2019; 198:610-619. [PMID: 29883204 DOI: 10.1164/rccm.201712-2382oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RATIONALE IL-13 is an important cytokine implicated in the pathogenesis of allergic asthma and is an attractive target for an inhaled therapeutic. OBJECTIVE To investigate the efficacy of CDP7766, a nebulized inhaled anti-IL-13 monoclonal antibody Fab fragment, in a model of allergic asthma in cynomolgus macaques naturally sensitized to Ascaris suum. METHODS CDP7766 was nebulized using a vibrating-membrane nebulizer on the basis of eFlow technology. The aerosol generated was analyzed to determine the particle size profile and the biophysical and functional properties of CDP7766. Nebulized CDP7766 (0.1-60 mg/animal, once daily for 5 d) was delivered via the inhaled route. MEASUREMENTS AND MAIN RESULTS The investigational eFlow nebulizer used in this study generated a respirable aerosol of CDP7766 with no evidence of degradation, loss of potency, aggregation, or formation of particulates. Inhaled CDP7766 was well tolerated in the model (no adverse effects related to local irritation) and significantly inhibited BAL allergen-induced cytokine and chemokine upregulation (60 mg vs. vehicle: eotaxin-3, P < 0.0008; MIP [macrophage inflammatory protein]-1β, IL-8, IFN-γ, P ≤ 0.01). CDP7766 significantly inhibited the increase in pulmonary resistance stimulated by inhaled allergen, measured 15 minutes and 24 hours after allergen challenge. CONCLUSION Inhaled CDP7766 potently inhibited the function of IL-13 generated during the airway response to inhaled allergen in cynomolgus macaques, demonstrating the potential of inhaled anti-IL-13 therapeutics for the treatment of allergic asthma.
Collapse
Affiliation(s)
| | | | | | | | - Alison Turner
- 1 UCB Pharma, Slough, Berkshire, United Kingdom; and
| | | | - Bryan Smith
- 1 UCB Pharma, Slough, Berkshire, United Kingdom; and
| | | | - Tim Bourne
- 1 UCB Pharma, Slough, Berkshire, United Kingdom; and
| | - Stevan Shaw
- 1 UCB Pharma, Slough, Berkshire, United Kingdom; and
| | - Neil Gozzard
- 1 UCB Pharma, Slough, Berkshire, United Kingdom; and
| | | |
Collapse
|
18
|
Cheong SS, Dean CH. On the Move: The Commander IL-4 Leads the Cell Army in Collective Migration. Am J Respir Cell Mol Biol 2019; 60:377-378. [PMID: 30423257 PMCID: PMC6444625 DOI: 10.1165/rcmb.2018-0344ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Sek-Shir Cheong
- 1 National Heart and Lung Institute Imperial College London London, United Kingdom
| | - Charlotte H Dean
- 1 National Heart and Lung Institute Imperial College London London, United Kingdom
| |
Collapse
|
19
|
Lanz MJ, Gilbert I, Szefler SJ, Murphy KR. Can early intervention in pediatric asthma improve long-term outcomes? A question that needs an answer. Pediatr Pulmonol 2019; 54:348-357. [PMID: 30609252 PMCID: PMC6590791 DOI: 10.1002/ppul.24224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Although many children with asthma do not experience persistence into adulthood, recent studies have suggested that poorly controlled asthma in childhood may be associated with significant airflow obstruction in adulthood. However, data regarding disease progression are lacking, and clinicians are not yet able to predict the course of a child's asthma. The goal of this article was to assess the current understanding of childhood asthma treatment and progression and to highlight gaps in information that remain. DATA SOURCES Nonsystematic PubMed literature search and authors' expertise. STUDY SELECTION Articles were selected at the authors' discretion based on areas of interest in childhood asthma treatment and progression into adulthood. RESULTS Uncontrolled asthma in early childhood can potentially have lasting effects on lung development, but it is unclear whether traditional interventions in very young children preserve lung function. Although not all children respond to standard interventions, certain asthma phenotypes have been identified that can help to understand which children may respond to a particular treatment. CONCLUSION Clinicians should monitor children's asthma control and pulmonary function over time to assess the long-term impact of an intervention and to minimize the effect of uncontrolled asthma, especially exacerbations, on lung development. New biologic therapies have shown promise in treating adults with severe, uncontrolled asthma, and some of these therapies are approved in the United States for children as young as age 6. However, knowledge gaps regarding the efficacy and safety of these treatments in younger children hamper our understanding of their effect on long-term outcomes.
Collapse
Affiliation(s)
- Miguel J Lanz
- Allergy and Asthma, AAADRS Clinical Research Center, Coral Gables, Florida
| | | | - Stanley J Szefler
- The Breathing Institute, Children's Hospital Colorado and Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
20
|
Sanga ES, Mukumbang FC, Mushi AK, Olomi W, Lerebo W, Zarowsky C. Processes and dynamics of linkage to care from mobile/outreach and facility-based HIV testing models in hard-to-reach settings in rural Tanzania. Qualitative findings of a mixed methods study. AIDS Res Ther 2018; 15:21. [PMID: 30458874 DOI: 10.1186/s12981-018-0209-8n.pag-n.pag] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/08/2018] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Like other countries, Tanzania instituted mobile and outreach testing approaches to address low HIV testing rates at health facilities and enhance linkage to care. Available evidence from hard-to-reach rural settings of Mbeya region, Tanzania suggests that clients testing HIV+ at facility-based sites are more likely to link to care, and to link sooner, than those testing at mobile sites. This paper (1) describes the populations accessing HIV testing at mobile/outreach and facility-based testing sites, and (2) compares processes and dynamics from testing to linkage to care between these two testing models from the same study context. METHODS An explanatory sequential mixed-method study (a) reviewed records of all clients (n = 11,773) testing at 8 mobile and 8 facility-based testing sites over 6 months; (b), reviewed guidelines; (c) observed HIV testing sites (n = 10) and Care and Treatment Centers (CTCs) (n = 8); (d) applied questionnaires at 0, 3 and 6 months to a cohort of 1012 HIV newly-diagnosed clients from the 16 sites; and (e) conducted focus group discussions (n = 8) and in-depth qualitative interviews with cohort members (n = 10) and health care providers (n = 20). RESULTS More clients tested at mobile/outreach than facility-based sites (56% vs 44% of 11,733, p < 0.001). Mobile site clients were more likely to be younger and male (p < 0.001). More clients testing at facility sites were HIV positive (21.5% vs. 7.9% of 11,733, p < 0.001). All sites in both testing models adhered to national HIV testing and care guidelines. Staff at mobile sites showed more proactive efforts to support linkage to care, and clients report favouring the confidentiality of mobile sites to avoid stigma. Clients who tested at mobile/outreach sites faced longer delays and waiting times at treatment sites (CTCs). CONCLUSIONS Rural mobile/outreach HIV testing sites reach more people than facility based sites but they reach a different clientèle which is less likely to be HIV +ve and appears to be less "linkage-ready". Despite more proactive care and confidentiality at mobile sites, linkage to care is worse than for clients who tested at facility-based sites. Our findings highlight a combination of (a) patient-level factors, including stigma; and (b) well-established procedures and routines for each step between testing and initiation of treatment in facility-based sites. Long waiting times at treatment sites are a further barrier that must be addressed.
Collapse
Affiliation(s)
- Erica S Sanga
- NIMR-Mwanza Medical Research Centre (MMRC), Mwanza, Tanzania.
- School of Public Health, University of Western Cape, Cape Town, South Africa.
- NIMR-Mbeya Medical Research Centre (MMRC), Mbeya, Tanzania.
| | - Ferdinand C Mukumbang
- School of Public Health, University of Western Cape, Cape Town, South Africa
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Adiel K Mushi
- National Institute for Medical Research (NIMR), Dar-es-Salaam, Tanzania
| | | | - Wondwossen Lerebo
- School of Public Health, University of Western Cape, Cape Town, South Africa
- School of Public Health, Mekelle University, Mekelle, Ethiopia
| | - Christina Zarowsky
- School of Public Health, University of Western Cape, Cape Town, South Africa
- University of Montreal Hospital Research Centre and School of Public Health, Université de Montréal, Montreal, Canada
| |
Collapse
|
21
|
Processes and dynamics of linkage to care from mobile/outreach and facility-based HIV testing models in hard-to-reach settings in rural Tanzania. Qualitative findings of a mixed methods study. AIDS Res Ther 2018; 15:21. [PMID: 30458874 PMCID: PMC6247671 DOI: 10.1186/s12981-018-0209-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/08/2018] [Indexed: 12/23/2022] Open
Abstract
Background Like other countries, Tanzania instituted mobile and outreach testing approaches to address low HIV testing rates at health facilities and enhance linkage to care. Available evidence from hard-to-reach rural settings of Mbeya region, Tanzania suggests that clients testing HIV+ at facility-based sites are more likely to link to care, and to link sooner, than those testing at mobile sites. This paper (1) describes the populations accessing HIV testing at mobile/outreach and facility-based testing sites, and (2) compares processes and dynamics from testing to linkage to care between these two testing models from the same study context. Methods An explanatory sequential mixed-method study (a) reviewed records of all clients (n = 11,773) testing at 8 mobile and 8 facility-based testing sites over 6 months; (b), reviewed guidelines; (c) observed HIV testing sites (n = 10) and Care and Treatment Centers (CTCs) (n = 8); (d) applied questionnaires at 0, 3 and 6 months to a cohort of 1012 HIV newly-diagnosed clients from the 16 sites; and (e) conducted focus group discussions (n = 8) and in-depth qualitative interviews with cohort members (n = 10) and health care providers (n = 20). Results More clients tested at mobile/outreach than facility-based sites (56% vs 44% of 11,733, p < 0.001). Mobile site clients were more likely to be younger and male (p < 0.001). More clients testing at facility sites were HIV positive (21.5% vs. 7.9% of 11,733, p < 0.001). All sites in both testing models adhered to national HIV testing and care guidelines. Staff at mobile sites showed more proactive efforts to support linkage to care, and clients report favouring the confidentiality of mobile sites to avoid stigma. Clients who tested at mobile/outreach sites faced longer delays and waiting times at treatment sites (CTCs). Conclusions Rural mobile/outreach HIV testing sites reach more people than facility based sites but they reach a different clientèle which is less likely to be HIV +ve and appears to be less “linkage-ready”. Despite more proactive care and confidentiality at mobile sites, linkage to care is worse than for clients who tested at facility-based sites. Our findings highlight a combination of (a) patient-level factors, including stigma; and (b) well-established procedures and routines for each step between testing and initiation of treatment in facility-based sites. Long waiting times at treatment sites are a further barrier that must be addressed.
Collapse
|
22
|
Smith KA, Pulsipher A, Gabrielsen DA, Alt JA. Biologics in Chronic Rhinosinusitis: An Update and Thoughts for Future Directions. Am J Rhinol Allergy 2018; 32:412-423. [PMID: 30021447 DOI: 10.1177/1945892418787132] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Potential biologic therapies for chronic rhinosinusitis (CRS) is a growing field of interest and research. Biologics target specific immune cells or inflammatory pathways within a disease process, increasing drug efficacy while reducing complications. The success of biologics in other inflammatory conditions such as asthma and atopic dermatitis has spurred much of the corresponding research in CRS. A rapid expansion in the volume of research concerning biologic therapies with potential crossover to treating CRS has made it difficult to stay current. Furthermore, much of the literature has been focused on allergy, asthma, and immunology subspecialties. As the role for biologic therapies in CRS continues to expand, it is increasingly important for otolaryngologists to remain up to date on their progression. Objective The objectives of this review are to provide an update on the growing field of biologics for otolaryngologists who treat CRS and discuss potential future areas of research. Methods A literature review of biologic therapies studied in CRS was performed. In addition, a detailed review of all biologic therapies targeting inflammatory markers involved in Th1-, Th2-, and Th17-mediated inflammation was performed to identify potential areas for future research. The role for biologic therapies in CRS, endotypes of CRS, current biologic therapies studies in CRS, and future areas for research were reviewed. Results Sixty-nine unique biologic therapies have been developed for Th1-, Th2-, and Th17-mediated inflammation. Five biologics are currently being investigated for use in patients with CRS with nasal polyposis. Conclusions As the field of biologics continues to expand, remaining up to date on the current literature may help clinicians identify patients who may benefit from biologic therapies. In addition, ongoing research in other inflammatory disorders with shared pathophysiology to CRS may reveal other potential therapies for CRS that have not previously been investigated.
Collapse
Affiliation(s)
- Kristine A Smith
- 1 Division of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Abigail Pulsipher
- 1 Division of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, Utah.,2 GlycoMira Therapeutics, Inc., Salt Lake City, Utah
| | - David A Gabrielsen
- 1 Division of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jeremiah A Alt
- 1 Division of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
23
|
Edwards M, Gallagher A, Nair P, Drew S, Vyas A, Sharma R, Marsden PA, Evans DJW. Anti-interleukin-13 and anti-interleukin-4 agents versus placebo, anti-interleukin-5 or anti-immunoglobulin-E agents, for children and adults with asthma. Hippokratia 2018. [DOI: 10.1002/14651858.cd012929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michaela Edwards
- Lancaster University; Faculty of Health and Medicine; Lancaster UK
| | | | - Parameswaran Nair
- McMaster University & St Joseph`s Healthcare; Firestone Institute for Respiratory Health; Hamilton ON Canada
| | - Stewart Drew
- Lancashire Care NHS Foundation Trust; Children’s Physiotherapy Service; Preston UK
| | - Aashish Vyas
- Lancashire Teaching Hospitals Trust; Department of Respiratory Medicine; Preston UK
| | - Rashmi Sharma
- BTH NHS Foundation Trust; Department of Microbiology; Blackpool UK
| | - Paul A Marsden
- Lancaster University; Faculty of Health and Medicine; Lancaster UK
- Lancashire Teaching Hospitals Trust; Department of Respiratory Medicine; Preston UK
| | - David JW Evans
- Lancaster University; Lancaster Health Hub; Lancaster UK LA1 4YG
| |
Collapse
|
24
|
Reid AT, Veerati PC, Gosens R, Bartlett NW, Wark PA, Grainge CL, Stick SM, Kicic A, Moheimani F, Hansbro PM, Knight DA. Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. Pharmacol Ther 2017; 185:155-169. [PMID: 29287707 DOI: 10.1016/j.pharmthera.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Punnam Chander Veerati
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Chris L Grainge
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia; Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
25
|
Page C, Cazzola M. Bifunctional Drugs for the Treatment of Respiratory Diseases. Handb Exp Pharmacol 2017; 237:197-212. [PMID: 27787715 DOI: 10.1007/164_2016_69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last decade, there has been a steady increase in the use of fixed dose combinations for the treatment of a range of diseases, including cancer, AIDS, tuberculosis and other infectious diseases. It is now evident that patients with asthma or chronic obstructive pulmonary disease (COPD) can also benefit from the use of fixed dose combinations, including combinations of a long-acting β2-agonist (LABA) and an inhaled corticosteroid (ICS), and combinations of LABAs and long-acting muscarinic receptor antagonists (LAMAs). There are now also "triple inhaler" fixed dose combinations (containing a LABA, LAMA and ICS) under development and already being made available in clinical practice, with the first such triple combination having been approved in India. The use of combinations containing drugs with complementary pharmacological actions in the treatment of patients with asthma or COPD has led to the discovery and development of drugs having two different primary pharmacological actions in the same molecule that we have called "bifunctional drugs". In this review we have discussed the state of the art of bifunctional drugs that can be categorized as bifunctional bronchodilators, bifunctional bronchodilator/anti-inflammatory drugs, bifunctional anti-inflammatory drugs and bifunctional mucolytic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Mario Cazzola
- Division of Respiratory Medicine and Research Unit of Respiratory Clinical Pharmacology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
26
|
Immune monitoring for precision medicine in allergy and asthma. Curr Opin Immunol 2017; 48:82-91. [PMID: 28889067 DOI: 10.1016/j.coi.2017.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/01/2017] [Accepted: 08/16/2017] [Indexed: 11/22/2022]
Abstract
'Precision Medicine' embodies the analyses of extensive data collected from patients and their environments to identify and apply patient-specific prophylactic strategies and medical treatments to improve clinical outcomes and healthcare cost-effectiveness. Many new methods have been developed for evaluating the activity of the human immune system. Such 'immune monitoring' approaches are now being used in studies of allergy and asthma in the hope of identifying better correlates of disease status, predictors of therapeutic outcomes, and potential side-effects of treatment. Together with analyses of family histories, genetic and other biometric data, and measurements of exposures to environmental and other risk factors for developing or exacerbating disease, immune monitoring approaches promise to enable 'Precision Medicine' for allergic diseases and asthma.
Collapse
|
27
|
Koopmans T, Gosens R. Revisiting asthma therapeutics: focus on WNT signal transduction. Drug Discov Today 2017; 23:49-62. [PMID: 28890197 DOI: 10.1016/j.drudis.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/20/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Asthma is a complex disease of the airways that develops as a consequence of both genetic and environmental factors. This interaction has highlighted genes important in early life, particularly those that control lung development, such as the Wingless/Integrase-1 (WNT) signalling pathway. Although aberrant WNT signalling is involved with an array of human conditions, it has received little attention within the context of asthma. Yet it is highly relevant, driving events involved with inflammation, airway remodelling, and airway hyper-responsiveness (AHR). In this review, we revisit asthma therapeutics by examining whether WNT signalling is a valid therapeutic target for asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, The Netherlands.
| |
Collapse
|
28
|
Nhu QM, Aceves SS. Tissue Remodeling in Chronic Eosinophilic Esophageal Inflammation: Parallels in Asthma and Therapeutic Perspectives. Front Med (Lausanne) 2017; 4:128. [PMID: 28831387 PMCID: PMC5549614 DOI: 10.3389/fmed.2017.00128] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic eosinophilic inflammation is associated with tissue remodeling and fibrosis in a number of chronic T-helper 2 (Th2)-mediated diseases including eosinophilic esophagitis (EoE) and asthma. Chronic inflammation results in dysregulated tissue healing, leading to fibrosis and end organ dysfunction, manifesting clinically as irreversible airway obstruction in asthma and as esophageal rigidity, strictures, narrowing, dysmotility, dysphagia, and food impactions in EoE. Current therapies for EoE and asthma center on reducing inflammation-driven tissue remodeling and fibrosis with corticosteroids, coupled with symptomatic control and allergen avoidance. Additional control of Th2 inflammation can be achieved in select asthma patients with biologic therapies such as anti-IL-5 and anti-IL-13 antibodies, which have also been trialed in EoE. Recent molecular analysis suggests an emerging role for structural cell dysfunction, either inherited or acquired, in the pathogenesis and progression of EoE and asthma tissue remodeling. In addition, new data suggest that inflammation-independent end organ rigidity can alter structural cell function. Herein, we review emerging data and concepts for the pathogenesis of tissue remodeling and fibrosis primarily in EoE and relevant pathogenetic parallels in asthma, focusing additionally on emerging disease-specific therapies and the ability of these therapies to reduce tissue remodeling in subsets of patients.
Collapse
Affiliation(s)
- Quan M Nhu
- Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA, United States.,Division of Gastroenterology and Hepatology, Department of Medicine, Scripps Clinic - Scripps Green Hospital, La Jolla, CA, United States.,Division of Allergy and Immunology, Department of Medicine, Scripps Clinic-Scripps Green Hospital, La Jolla, CA, United States.,Division of Allergy and Immunology, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Seema S Aceves
- Division of Allergy and Immunology, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States.,Rady Children's Hospital - San Diego, San Diego, CA, United States
| |
Collapse
|
29
|
Heffler E, Terranova G, Chessari C, Frazzetto V, Crimi C, Fichera S, Picardi G, Nicolosi G, Porto M, Intravaia R, Crimi N. Point-of-care blood eosinophil count in a severe asthma clinic setting. Ann Allergy Asthma Immunol 2017; 119:16-20. [PMID: 28668237 DOI: 10.1016/j.anai.2017.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/18/2017] [Accepted: 05/15/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND One of the main severe asthma phenotypes is severe eosinophilic or eosinophilic refractory asthma for which novel biologic agents are emerging as therapeutic options. In this context, blood eosinophil counts are one of the most reliable biomarkers. OBJECTIVE To evaluate the performance of a point-of-care peripheral blood counter in a patients with severe asthma. METHODS The blood eosinophil counts of 76 patients with severe asthma were evaluated by point-of-care and standard analyzers. RESULTS A significant correlation between blood eosinophils assessed by the 2 devices was found (R2 = 0.854, P < .001); similar correlations were found also for white blood cells, neutrophils, and lymphocytes. The point-of-care device had the ability to predict blood eosinophil cutoffs used to select patients for biologic treatments for severe eosinophilic asthma and the ELEN index, a composite score useful to predict sputum eosinophilia. CONCLUSION The results of our study contribute to the validation of a point-of-care device to assess blood eosinophils and open the possibility of using this device for the management of severe asthma management.
Collapse
Affiliation(s)
- Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Personalized Medicine, Allergy and Asthma Clinic, Humanitas Clinical and Research Center, Milan, Italy.
| | - Giovanni Terranova
- Department of Clinical and Experimental Medicine-Respiratory Medicine & Allergy, University of Catania, Catania, Italy
| | - Carlo Chessari
- Department of Clinical and Experimental Medicine-Respiratory Medicine & Allergy, University of Catania, Catania, Italy
| | - Valentina Frazzetto
- Department of Clinical and Experimental Medicine-Respiratory Medicine & Allergy, University of Catania, Catania, Italy
| | - Claudia Crimi
- Respiratory Intensive Care Unit, Cannizzaro Hospital, Catania, Italy
| | - Silvia Fichera
- Department of Clinical and Experimental Medicine-Respiratory Medicine & Allergy, University of Catania, Catania, Italy
| | - Giuseppe Picardi
- Department of Clinical and Experimental Medicine-Respiratory Medicine & Allergy, University of Catania, Catania, Italy
| | - Giuliana Nicolosi
- Department of Clinical and Experimental Medicine-Respiratory Medicine & Allergy, University of Catania, Catania, Italy
| | - Morena Porto
- Department of Clinical and Experimental Medicine-Respiratory Medicine & Allergy, University of Catania, Catania, Italy
| | - Rossella Intravaia
- Department of Clinical and Experimental Medicine-Respiratory Medicine & Allergy, University of Catania, Catania, Italy
| | - Nunzio Crimi
- Department of Clinical and Experimental Medicine-Respiratory Medicine & Allergy, University of Catania, Catania, Italy
| |
Collapse
|
30
|
Galli SJ. Toward precision medicine and health: Opportunities and challenges in allergic diseases. J Allergy Clin Immunol 2017; 137:1289-300. [PMID: 27155026 DOI: 10.1016/j.jaci.2016.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 10/21/2022]
Abstract
Precision medicine (also called personalized, stratified, or P4 medicine) can be defined as the tailoring of preventive measures and medical treatments to the characteristics of each patient to obtain the best clinical outcome for each person while ideally also enhancing the cost-effectiveness of such interventions for patients and society. Clearly, the best clinical outcome for allergic diseases is not to get them in the first place. To emphasize the importance of disease prevention, a critical component of precision medicine can be referred to as precision health, which is defined herein as the use of all available information pertaining to specific subjects (including family history, individual genetic and other biometric information, and exposures to risk factors for developing or exacerbating disease), as well as features of their environments, to sustain and enhance health and prevent the development of disease. In this article I will provide a personal perspective on how the precision health-precision medicine approach can be applied to the related goals of preventing the development of allergic disorders and providing the most effective diagnosis, disease monitoring, and care for those with these prevalent diseases. I will also mention some of the existing and potential challenges to achieving these ambitious goals.
Collapse
Affiliation(s)
- Stephen Joseph Galli
- Department of Pathology, Stanford, Calif; Department of Microbiology & Immunology, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif; Stanford Center for Genomics and Personalized Medicine, Stanford, Calif.
| |
Collapse
|
31
|
Tripp CS, Cuff C, Campbell AL, Hendrickson BA, Voss J, Melim T, Wu C, Cherniack AD, Kim K. RPC4046, A Novel Anti-interleukin-13 Antibody, Blocks IL-13 Binding to IL-13 α1 and α2 Receptors: A Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation First-in-Human Study. Adv Ther 2017; 34:1364-1381. [PMID: 28455782 PMCID: PMC5487860 DOI: 10.1007/s12325-017-0525-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 11/27/2022]
Abstract
Introduction A unique anti-interleukin (IL)-13 monoclonal antibody, RPC4046, was generated on the basis of differential IL-13 receptor (R) blockade as assessed in a murine asthma model; the safety, tolerability, pharmacokinetics, and pharmacodynamics of RPC4046 were evaluated in a first-in-human study. Methods Anti-IL-13 antibodies with varying receptor blocking specificity were evaluated in the ovalbumin-induced murine asthma model. A randomized, double-blind, placebo-controlled, dose-escalation first-in-human study (NCT00986037) was conducted with RPC4046 in healthy adults and patients with mild to moderate controlled asthma. Results In the ovalbumin model, blocking IL-13 binding to both IL-13Rs (IL-13Rα1 and IL-13Rα2) inhibited more asthma phenotypic features and more fully normalized the distinct IL-13 gene transcription associated with asthma compared with blocking IL-13Rα1 alone. In humans, RPC4046 exposure increased dose-dependently; pharmacokinetics were similar in healthy and asthmatic subjects, and blockade of both IL-13Rs uniquely affected IL-13 gene transcription. A minority of participants (28%) had antidrug antibodies, which were transient and appeared not to affect pharmacokinetics. Adverse event profiles were similar in healthy and asthmatic subjects, without dose-related or administration route differences, systemic infusion-related reactions, or asthma symptom worsening. Adverse events were mild to moderate, with none reported as probably related to RPC4046 or leading to discontinuations. Non-serious upper respiratory tract infections were more frequent with RPC4046 versus placebo. Conclusion RPC4046 is a novel anti-IL-13 antibody that blocks IL-13 binding to both receptors and more fully blocks the asthma phenotype. These results support further investigation of RPC4046 for IL-13-related allergic/inflammatory diseases (e.g., asthma and eosinophilic esophagitis). Funding AbbVie Inc. sponsored the studies and contributed to the design and conduct of the studies, data management, data analysis, interpretation of the data, and in the preparation and approval of the manuscript.
Electronic supplementary material The online version of this article (doi:10.1007/s12325-017-0525-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Carolyn Cuff
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA.
| | | | | | - Jeff Voss
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
| | - Terry Melim
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
| | - Chengbin Wu
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
- EpimAb Biotherapeutics Inc., Shanghai, China
| | - Andrew D Cherniack
- AbbVie, Global Pharmaceutical R&D, Worcester, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | |
Collapse
|
32
|
Polk BI, Rosenwasser LJ. Biological Therapies of Immunologic Diseases: Strategies for Immunologic Interventions. Immunol Allergy Clin North Am 2017; 37:247-259. [PMID: 28366475 DOI: 10.1016/j.iac.2017.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The immune system possesses a vast number of potential targets for therapeutic intervention. Although therapies for many pathways have been pursued, only few have yielded significant success. Hindrances in altering biologic pathways include the potential for unwanted downstream effects, ineffectiveness owing to biological redundancy, recognition of a therapeutic molecule as foreign by the body's innate immune system, and the risks of subsequent malignancy and/or autoimmunity. This article covers currently available biotherapeutic agent classes as well as potential direction for future therapy.
Collapse
Affiliation(s)
- Brooke I Polk
- Division of Allergy, Asthma and Immunology, Children's Mercy Hospital, 2401 Gillham Road, Kansas City, MO 64108, USA.
| | - Lanny J Rosenwasser
- Department of Medicine, University of Missouri Kansas City School of Medicine, 2411 Holmes Street, Kansas City, MO 64108, USA
| |
Collapse
|
33
|
Guibas GV, Mathioudakis AG, Tsoumani M, Tsabouri S. Relationship of Allergy with Asthma: There Are More Than the Allergy "Eggs" in the Asthma "Basket". Front Pediatr 2017; 5:92. [PMID: 28503545 PMCID: PMC5408007 DOI: 10.3389/fped.2017.00092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/11/2017] [Indexed: 01/08/2023] Open
Abstract
Asthma and allergy share a similar and very close course, especially through childhood. Considerable research effort has been put in untangling these associations; however, it is now becoming obvious that this is an exceedingly difficult task. In fact, each research breakthrough further perplexes this picture, as we are steadily moving toward the era of personalized medicine and we begin to appreciate that what we thought to be a single disease, asthma, is in fact an accumulation of distinct entities. In the context of this "syndrome," which is characterized by several, as of yet poorly defined endotypes and phenotypes, the question of the link of "asthma" with allergy probably becomes non-relevant. In this review, we will revisit this question while putting the emphasis on the multifaceted nature of asthma.
Collapse
Affiliation(s)
- George V Guibas
- Division of Infection, Immunity and Respiratory Medicine, University Hospital of South Manchester, University of Manchester, Manchester, UK
| | - Alexander G Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, University Hospital of South Manchester, University of Manchester, Manchester, UK
| | - Marina Tsoumani
- Division of Infection, Immunity and Respiratory Medicine, University Hospital of South Manchester, University of Manchester, Manchester, UK
| | - Sophia Tsabouri
- Child Health Department, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
34
|
Kawakami T, Blank U. From IgE to Omalizumab. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4187-4192. [PMID: 27864548 PMCID: PMC5123831 DOI: 10.4049/jimmunol.1601476] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022]
Abstract
IgE is the least abundant Ig isotype, yet it plays a critical role in allergic reactions and host protection from helminth infection. Although IgE was discovered 50 years ago, the ultimate evidence for its role in human allergic diseases was obtained by the efficacy of anti-IgE therapy in many clinical trials on asthma and other allergic diseases. Beginning from the discovery of IgE 50 y ago, followed by studies of IgE receptors and activation mechanisms, this review provides a historic perspective of allergy research that has led to the development of anti-IgE therapy and other strategies targeting IgE and its receptors. Current IgE studies toward future precision medicine are also reviewed.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037;
- Department of Dermatology, University of California San Diego School of Medicine, La Jolla, CA 92093
| | - Ulrich Blank
- INSERM Unité 1149, Centre de Recherche sur I'Inflammation, 75018 Paris, France
- CNRS Equipe de Recherche Labellisée 8252, 75018 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, 75018 Paris, France; and
- Inflamex Laboratory of Excellence, Xavier Bichat Site, 75018 Paris, France
| |
Collapse
|
35
|
Berker M, Frank LJ, Geßner AL, Grassl N, Holtermann AV, Höppner S, Kraef C, Leclaire MD, Maier P, Messerer DAC, Möhrmann L, Nieke JP, Schoch D, Soll D, Woopen CMP. Allergies - A T cells perspective in the era beyond the T H1/T H2 paradigm. Clin Immunol 2016; 174:73-83. [PMID: 27847316 DOI: 10.1016/j.clim.2016.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 11/02/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022]
Abstract
Allergic diseases have emerged as a major health care burden, especially in the western hemisphere. They are defined by overshooting reactions of an aberrant immune system to harmless exogenous stimuli. The TH1/TH2 paradigm assumes that a dominance of TH2 cell activation and an inadequate TH1 cell response are responsible for the development of allergies. However, the characterization of additional T helper cell subpopulations such as TH9, TH17, TH22, THGM-CSF and their interplay with regulatory T cells suggest further layers of complexity. This review summarizes state-of-the-art knowledge on T cell diversity and their induction, while revisiting the TH1/TH2 paradigm. With respect to these numerous contributors, it offers a new perspective on the pathogenesis of asthma, allergic rhinitis (AR) and atopic dermatitis (AD) incorporating recent discoveries in the field of T cell plasticity.
Collapse
Affiliation(s)
- Moritz Berker
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Larissa Johanna Frank
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Anja Lidwina Geßner
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Niklas Grassl
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Anne Verena Holtermann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Stefanie Höppner
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Christian Kraef
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany.
| | - Martin Dominik Leclaire
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Pia Maier
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | | | - Lino Möhrmann
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Jan Philipp Nieke
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Diana Schoch
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | - Dominik Soll
- German Academic Scholarship Foundation - Studienstiftung des deutschen Volkes, Bonn, Germany
| | | |
Collapse
|
36
|
Lan F, Zhang N, Gevaert E, Zhang L, Bachert C. Viruses and bacteria in Th2-biased allergic airway disease. Allergy 2016; 71:1381-92. [PMID: 27188632 DOI: 10.1111/all.12934] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 01/24/2023]
Abstract
Allergic airway diseases are typically characterized by a type 2-biased inflammation. Multiple distinct viruses and bacteria have been detected in the airways. Recently, it has been confirmed that the microbiome of allergic individuals differs from that of healthy subjects, showing a close relationship with the type 2 response in allergic airway disease. In this review, we summarize the recent findings on the prevalence of viruses and bacteria in type 2-biased airway diseases and on the mechanisms employed by viruses and bacteria in propagating type 2 responses. The understanding of the microbial composition and postinfectious immune programming is critical for the reconstruction of the normal microflora and immune status in allergic airway diseases.
Collapse
Affiliation(s)
- F. Lan
- Upper Airways Research Laboratory; ENT Department; Ghent University; Gent Belgium
- Department of Otolaryngology Head and Neck Surgery; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - N. Zhang
- Upper Airways Research Laboratory; ENT Department; Ghent University; Gent Belgium
| | - E. Gevaert
- Upper Airways Research Laboratory; ENT Department; Ghent University; Gent Belgium
| | - L. Zhang
- Department of Otolaryngology Head and Neck Surgery; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - C. Bachert
- Upper Airways Research Laboratory; ENT Department; Ghent University; Gent Belgium
- Division of ENT Diseases; Clintec; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
37
|
McCormick SM, Gowda N, Fang JX, Heller NM. Suppressor of Cytokine Signaling (SOCS)1 Regulates Interleukin-4 (IL-4)-activated Insulin Receptor Substrate (IRS)-2 Tyrosine Phosphorylation in Monocytes and Macrophages via the Proteasome. J Biol Chem 2016; 291:20574-87. [PMID: 27507812 DOI: 10.1074/jbc.m116.746164] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 11/06/2022] Open
Abstract
Allergic asthma is a chronic lung disease initiated and driven by Th2 cytokines IL-4/-13. In macrophages, IL-4/-13 bind IL-4 receptors, which signal through insulin receptor substrate (IRS)-2, inducing M2 macrophage differentiation. M2 macrophages correlate with disease severity and poor lung function, although the mechanisms that regulate M2 polarization are not understood. Following IL-4 exposure, suppressor of cytokine signaling (SOCS)1 is highly induced in human monocytes. We found that siRNA knockdown of SOCS1 prolonged IRS-2 tyrosine phosphorylation and enhanced M2 differentiation, although siRNA knockdown of SOCS3 did not affect either. By co-immunoprecipitation, we found that SOCS1 complexes with IRS-2 at baseline, and this association increased after IL-4 stimulation. Because SOCS1 is an E3 ubiquitin ligase, we examined the effect of proteasome inhibitors on IL-4-induced IRS-2 phosphorylation. Proteasomal inhibition prolonged IRS-2 tyrosine phosphorylation, increased ubiquitination of IRS-2, and enhanced M2 gene expression. siRNA knockdown of SOCS1 inhibited ubiquitin accumulation on IRS-2, although siRNA knockdown of SOCS3 had no effect on ubiquitination of IRS-2. Monocytes from healthy and allergic individuals revealed that SOCS1 is induced by IL-4 in healthy monocytes but not allergic cells, whereas SOCS3 is highly induced in allergic monocytes. Healthy monocytes displayed greater ubiquitination of IRS-2 and lower M2 polarization than allergic monocytes in response to IL-4 stimulation. Here, we identify SOCS1 as a key negative regulator of IL-4-induced IRS-2 signaling and M2 differentiation. Our findings provide novel insight into how dysregulated expression of SOCS increases IL-4 responses in allergic monocytes, and this may represent a new therapeutic avenue for managing allergic disease.
Collapse
Affiliation(s)
- Sarah M McCormick
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Nagaraj Gowda
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Jessie X Fang
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Nicola M Heller
- From the Department of Anesthesiology and Critical Care Medicine and Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Asthma is quite common and is better described as a syndrome with a heterogeneous presentation than as a single disease. Although most individuals can be effectively managed using a guideline-directed approach to care, those with the most severe illness may benefit from a more targeted therapy. The review describes our current understanding of how asthma phenotypes (observable characteristics) and endotypes (specific biologic mechanisms) can be employed to gain insight into asthma pathobiology and personalized therapy. RECENT FINDINGS Our understanding of the heterogeneity of asthma is increasing. The concept of asthma phenotype has become more complex, incorporating both clinical and biologic features. Several asthma endotypes (e.g., allergic bronchopulmonary mycosis, aspirin-exacerbated respiratory disease, severe late-onset hypereosinophilic asthma, etc.) have been proposed, but further research is needed to delineate specific mechanisms underlying asthma pathogenesis. Several biologic therapies targeting certain phenotypes are in development and are expected to broaden our armamentarium for treatment of severe asthma. SUMMARY Asthma is a heterogeneous condition with diverse characteristics and biologic mechanisms. Severe asthma is associated with significant morbidity and even mortality and represents a major unmet need. Stratification of asthma subtypes into phenotypes and endotypes should move the field forward in terms of more effective and personalized treatment.
Collapse
|
39
|
Evaluating results of outcome studies of biological drugs. THE LANCET RESPIRATORY MEDICINE 2015; 3:664-665. [PMID: 26231287 DOI: 10.1016/s2213-2600(15)00276-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 11/21/2022]
|