1
|
Pande S, Vary C, Yang X, Liaw L, Gower L, Friesel R, Prudovsky I, Ryzhov S. Endothelial IL17RD promotes Western diet-induced aortic myeloid cell infiltration. Biochem Biophys Res Commun 2024; 701:149552. [PMID: 38335918 PMCID: PMC10936543 DOI: 10.1016/j.bbrc.2024.149552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The Interleukin-17 (IL17) family is a group of cytokines implicated in the etiology of several inflammatory diseases. Interleukin-17 receptor D (IL17RD), also known as Sef (similar expression to fibroblast growth factor) belonging to the family of IL17 receptors, has been shown to modulate IL17A-associated inflammatory phenotypes. The objective of this study was to test the hypothesis that IL17RD promotes endothelial cell activation and consequent leukocyte adhesion. We utilized primary human aortic endothelial cells and demonstrated that RNAi targeting of IL17RD suppressed transcript levels by 83 % compared to non-targeted controls. Further, RNAi knockdown of IL17RD decreased the adhesion of THP-1 monocytic cells onto a monolayer of aortic endothelial cells in response to IL17A. Additionally, we determined that IL17A did not significantly enhance the activation of canonical MAPK and NFκB pathways in endothelial cells, and further did not significantly affect the expression of VCAM-1 and ICAM-1 in aortic endothelial cells, which is contrary to previous findings. We also determined the functional relevance of our findings in vivo by comparing the expression of endothelial VCAM-1 and ICAM-1 and leukocyte infiltration in the aorta in Western diet-fed Il17rd null versus wild-type mice. Our results showed that although Il17rd null mice do not have significant alteration in aortic expression of VCAM-1 and ICAM-1 in endothelial cells, they exhibit decreased accumulation of proinflammatory monocytes and neutrophils, suggesting that endothelial IL17RD induced in vivo myeloid cell accumulation is not dependent on upregulation of VCAM-1 and ICAM-1 expression. We further performed proteomics analysis to identify potential molecular mediators of the IL17A/IL17RD signaling axis. Collectively, our results underscore a critical role for Il17rd in the regulation of aortic myeloid cell infiltration in the context of Western diet feeding.
Collapse
Affiliation(s)
- Shivangi Pande
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA
| | - Calvin Vary
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA
| | - Xuehui Yang
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Lucy Liaw
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA
| | - Lindsey Gower
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Robert Friesel
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA.
| | - Igor Prudovsky
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA.
| | - Sergey Ryzhov
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA.
| |
Collapse
|
2
|
Smit V, de Mol J, Schaftenaar FH, Depuydt MAC, Postel RJ, Smeets D, Verheijen FWM, Bogers L, van Duijn J, Verwilligen RAF, Grievink HW, Bernabé Kleijn MNA, van Ingen E, de Jong MJM, Goncalves L, Peeters JAHM, Smeets HJ, Wezel A, Polansky JK, de Winther MPJ, Binder CJ, Tsiantoulas D, Bot I, Kuiper J, Foks AC. Single-cell profiling reveals age-associated immunity in atherosclerosis. Cardiovasc Res 2023; 119:2508-2521. [PMID: 37390467 PMCID: PMC10676459 DOI: 10.1093/cvr/cvad099] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/07/2023] [Accepted: 05/12/2023] [Indexed: 07/02/2023] Open
Abstract
AIMS Aging is a dominant driver of atherosclerosis and induces a series of immunological alterations, called immunosenescence. Given the demographic shift towards elderly, elucidating the unknown impact of aging on the immunological landscape in atherosclerosis is highly relevant. While the young Western diet-fed Ldlr-deficient (Ldlr-/-) mouse is a widely used model to study atherosclerosis, it does not reflect the gradual plaque progression in the context of an aging immune system as occurs in humans. METHODS AND RESULTS Here, we show that aging promotes advanced atherosclerosis in chow diet-fed Ldlr-/- mice, with increased incidence of calcification and cholesterol crystals. We observed systemic immunosenescence, including myeloid skewing and T-cells with more extreme effector phenotypes. Using a combination of single-cell RNA-sequencing and flow cytometry on aortic leucocytes of young vs. aged Ldlr-/- mice, we show age-related shifts in expression of genes involved in atherogenic processes, such as cellular activation and cytokine production. We identified age-associated cells with pro-inflammatory features, including GzmK+CD8+ T-cells and previously in atherosclerosis undefined CD11b+CD11c+T-bet+ age-associated B-cells (ABCs). ABCs of Ldlr-/- mice showed high expression of genes involved in plasma cell differentiation, co-stimulation, and antigen presentation. In vitro studies supported that ABCs are highly potent antigen-presenting cells. In cardiovascular disease patients, we confirmed the presence of these age-associated T- and B-cells in atherosclerotic plaques and blood. CONCLUSIONS Collectively, we are the first to provide comprehensive profiling of aged immunity in atherosclerotic mice and reveal the emergence of age-associated T- and B-cells in the atherosclerotic aorta. Further research into age-associated immunity may contribute to novel diagnostic and therapeutic tools to combat cardiovascular disease.
Collapse
Affiliation(s)
- Virginia Smit
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jill de Mol
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Frank H Schaftenaar
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marie A C Depuydt
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Rimke J Postel
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Diede Smeets
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Fenne W M Verheijen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Laurens Bogers
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Janine van Duijn
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Robin A F Verwilligen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hendrika W Grievink
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Centre for Human Drug Research, Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Mireia N A Bernabé Kleijn
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Eva van Ingen
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Maaike J M de Jong
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Lauren Goncalves
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Judith A H M Peeters
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Harm J Smeets
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Anouk Wezel
- Department of Surgery, Haaglanden Medical Center—location Westeinde, Lijnbaan 32, 2515 VA The Hague, The Netherlands
| | - Julia K Polansky
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Menno P J de Winther
- Amsterdam University Medical Centers—location AMC, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT25.2, 1090 Vienna, Austria
| | - Dimitrios Tsiantoulas
- Department of Laboratory Medicine, Medical University of Vienna, Lazarettgasse 14, AKH BT25.2, 1090 Vienna, Austria
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Amanda C Foks
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
3
|
Yan A, Gotlieb AI. The microenvironment of the atheroma expresses phenotypes of plaque instability. Cardiovasc Pathol 2023; 67:107572. [PMID: 37595697 DOI: 10.1016/j.carpath.2023.107572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
Data from histopathology studies of human atherosclerotic tissue specimens and from vascular imaging studies support the concept that the local arterial microenvironment of a stable atheroma promotes destabilizing conditions that result in the transition to an unstable atheroma. Destabilization is characterized by several different plaque phenotypes that cause major clinical events such as acute coronary syndrome and cerebrovascular strokes. There are several rupture-associated phenotypes causing thrombotic vascular occlusion including simple fibrous cap rupture of an atheroma, fibrous cap rupture at site of previous rupture-and-repair of an atheroma, and nodular calcification with rupture. Endothelial erosion without rupture has more recently been shown to be a common phenotype to promote thrombosis as well. Microenvironment features that are linked to these phenotypes of plaque instability are neovascularization arising from the vasa vasorum network leading to necrotic core expansion, intraplaque hemorrhage, and cap rupture; activation of adventitial and perivascular adipose tissue cells leading to secretion of cytokines, growth factors, adipokines in the outer artery wall that destabilize plaque structure; and vascular smooth muscle cell phenotypic switching through transdifferentiation and stem/progenitor cell activation resulting in the promotion of inflammation, calcification, and secretion of extracellular matrix, altering fibrous cap structure, and necrotic core growth. As the technology evolves, studies using noninvasive vascular imaging will be able to investigate the transition of stable to unstable atheromas in real time. A limitation in the field, however, is that reliable and predictable experimental models of spontaneous plaque rupture and/or erosion are not currently available to study the cell and molecular mechanisms that regulate the conversion of the stable atheroma to an unstable plaque.
Collapse
Affiliation(s)
- Angela Yan
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Hulsmans M, Schloss MJ, Lee IH, Bapat A, Iwamoto Y, Vinegoni C, Paccalet A, Yamazoe M, Grune J, Pabel S, Momin N, Seung H, Kumowski N, Pulous FE, Keller D, Bening C, Green U, Lennerz JK, Mitchell RN, Lewis A, Casadei B, Iborra-Egea O, Bayes-Genis A, Sossalla S, Ong CS, Pierson RN, Aster JC, Rohde D, Wojtkiewicz GR, Weissleder R, Swirski FK, Tellides G, Tolis G, Melnitchouk S, Milan DJ, Ellinor PT, Naxerova K, Nahrendorf M. Recruited macrophages elicit atrial fibrillation. Science 2023; 381:231-239. [PMID: 37440641 PMCID: PMC10448807 DOI: 10.1126/science.abq3061] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2023] [Indexed: 07/15/2023]
Abstract
Atrial fibrillation disrupts contraction of the atria, leading to stroke and heart failure. We deciphered how immune and stromal cells contribute to atrial fibrillation. Single-cell transcriptomes from human atria documented inflammatory monocyte and SPP1+ macrophage expansion in atrial fibrillation. Combining hypertension, obesity, and mitral valve regurgitation (HOMER) in mice elicited enlarged, fibrosed, and fibrillation-prone atria. Single-cell transcriptomes from HOMER mouse atria recapitulated cell composition and transcriptome changes observed in patients. Inhibiting monocyte migration reduced arrhythmia in Ccr2-∕- HOMER mice. Cell-cell interaction analysis identified SPP1 as a pleiotropic signal that promotes atrial fibrillation through cross-talk with local immune and stromal cells. Deleting Spp1 reduced atrial fibrillation in HOMER mice. These results identify SPP1+ macrophages as targets for immunotherapy in atrial fibrillation.
Collapse
Affiliation(s)
- Maarten Hulsmans
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maximilian J. Schloss
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - I-Hsiu Lee
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Claudio Vinegoni
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandre Paccalet
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Masahiro Yamazoe
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jana Grune
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steffen Pabel
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Noor Momin
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hana Seung
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nina Kumowski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fadi E. Pulous
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel Keller
- Department of Thoracic and Cardiovascular Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Constanze Bening
- Department of Thoracic and Cardiovascular Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jochen K. Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard N. Mitchell
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew Lewis
- Radcliffe Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Barbara Casadei
- Radcliffe Department of Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Oriol Iborra-Egea
- Institut del Cor Germans Trias i Pujol, CIBERCV, Badalona, Barcelona, Spain
| | - Antoni Bayes-Genis
- Institut del Cor Germans Trias i Pujol, CIBERCV, Badalona, Barcelona, Spain
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
- Department of Cardiology and Angiology, University of Giessen/DZHK, Partner Site Rhein-Main, Germany
| | - Chin Siang Ong
- Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Richard N. Pierson
- Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jon C. Aster
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - David Rohde
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory R. Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Filip K. Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - George Tolis
- Department of Cardiac Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Serguei Melnitchouk
- Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Kamila Naxerova
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
5
|
Orecchioni M, Wolf D, Suryawanshi V, Winkels H, Kobiyama K, Makings J, Kiosses WB, Ley K. Deleting interleukin-10 from myeloid cells exacerbates atherosclerosis in Apoe -/- mice. Cell Mol Life Sci 2022; 80:10. [PMID: 36496494 PMCID: PMC10141524 DOI: 10.1007/s00018-022-04649-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/05/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is initiated by subendothelial retention of lipoproteins and cholesterol, which triggers a non-resolving inflammatory process that over time leads to plaque progression in the artery wall. Myeloid cells and in particular macrophages are the primary drivers of the inflammatory response and plaque formation. Several immune cells including macrophages, T cells and B cells secrete the anti-inflammatory cytokine IL-10, known to be essential for the atherosclerosis protection. The cellular source of IL-10 in natural atherosclerosis progression is unknown. This study aimed to determine the main IL10-producing cell type in atherosclerosis. To do so, we crossed VertX mice, in which IRES-green fluorescent protein (eGFP) was placed downstream of exon 5 of the Il10 gene, with atherosclerosis-prone Apoe-/- mice. We found that myeloid cells express high levels of IL-10 in VertX Apoe-/- mice in both chow and western-diet fed mice. By single cell RNA sequencing and flow cytometry analysis, we identified resident and inflammatory macrophages in atherosclerotic plaques as the main IL-10 producers. To address whether IL-10 secreted by myeloid cells is essential for the protection, we utilized LyzMCre+Il10fl/fl mice crossed into the Apoe-/- background and confirmed that macrophages were unable to secrete IL-10. Chow and western diet-fed LyzMCre+Il10fl/fl Apoe-/- mice developed significantly larger atherosclerotic plaques as measured by en face morphometry than LyzMCre-Il10 fl/flApoe-/-. Flow cytometry and cytokine measurements suggest that the depletion of IL-10 in myeloid cells increases Th17 cells with elevated CCL2, and TNFα in blood plasma. We conclude that macrophage-derived IL-10 is critical for limiting atherosclerosis in mice.
Collapse
Affiliation(s)
- Marco Orecchioni
- La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA.
| | - Dennis Wolf
- Cardiology and Angiology I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vasantika Suryawanshi
- La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kouji Kobiyama
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jeffrey Makings
- La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - William B Kiosses
- Histology and Microscopy Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Immunology Center of Georgia (IMMCG), Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
6
|
Casteel JL, Keever KR, Ardell CL, Williams DL, Gao D, Podrez EA, Byzova TV, Yakubenko VP. Modification of Extracellular Matrix by the Product of DHA Oxidation Switches Macrophage Adhesion Patterns and Promotes Retention of Macrophages During Chronic Inflammation. Front Immunol 2022; 13:867082. [PMID: 35720381 PMCID: PMC9204313 DOI: 10.3389/fimmu.2022.867082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Oxidation of polyunsaturated fatty acids contributes to different aspects of the inflammatory response due to the variety of products generated. Specifically, the oxidation of DHA produces the end-product, carboxyethylpyrrole (CEP), which forms a covalent adduct with proteins via an ϵ-amino group of lysines. Previously, we found that CEP formation is dramatically increased in inflamed tissue and CEP-modified albumin and fibrinogen became ligands for αDβ2 (CD11d/CD18) and αMβ2 (CD11b/CD18) integrins. In this study, we evaluated the effect of extracellular matrix (ECM) modification with CEP on the adhesive properties of M1-polarized macrophages, particularly during chronic inflammation. Using digested atherosclerotic lesions and in vitro oxidation assays, we demonstrated the ability of ECM proteins to form adducts with CEP, particularly, DHA oxidation leads to the formation of CEP adducts with collagen IV and laminin, but not with collagen I. Using integrin αDβ2-transfected HEK293 cells, WT and α D - / - mouse M1-polarized macrophages, we revealed that CEP-modified proteins support stronger cell adhesion and spreading when compared with natural ECM ligands such as collagen IV, laminin, and fibrinogen. Integrin αDβ2 is critical for M1 macrophage adhesion to CEP. Based on biolayer interferometry results, the isolated αD I-domain demonstrates markedly higher binding affinity to CEP compared to the "natural" αDβ2 ligand fibrinogen. Finally, the presence of CEP-modified proteins in a 3D fibrin matrix significantly increased M1 macrophage retention. Therefore, CEP modification converts ECM proteins to αDβ2-recognition ligands by changing a positively charged lysine to negatively charged CEP, which increases M1 macrophage adhesion to ECM and promotes macrophage retention during detrimental inflammation, autoimmunity, and chronic inflammation.
Collapse
Affiliation(s)
- Jared L. Casteel
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kasey R. Keever
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Christopher L. Ardell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Detao Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Eugene A. Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Tatiana V. Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Valentin P. Yakubenko
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
7
|
Khare HA, Døssing KBV, Ringgaard L, Christensen E, Urbak L, Sillesen H, Ripa RS, Binderup T, Pedersen SF, Kjaer A. In vivo detection of urokinase-type plasminogen activator receptor (uPAR) expression in arterial atherogenesis using [64Cu]Cu-DOTA-AE105 positron emission tomography (PET). Atherosclerosis 2022; 352:103-111. [DOI: 10.1016/j.atherosclerosis.2022.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 12/21/2022]
|
8
|
Fredman G, MacNamara KC. Atherosclerosis is a major human killer and non-resolving inflammation is a prime suspect. Cardiovasc Res 2021; 117:2563-2574. [PMID: 34609505 PMCID: PMC8783387 DOI: 10.1093/cvr/cvab309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
The resolution of inflammation (or inflammation-resolution) is an active and highly coordinated process. Inflammation-resolution is governed by several endogenous factors, and specialized pro-resolving mediators (SPMs) are one such class of molecules that have robust biological function. Non-resolving inflammation is associated with a variety of human diseases, including atherosclerosis. Moreover, non-resolving inflammation is a hallmark of ageing, an inevitable process associated with increased risk for cardiovascular disease. Uncovering mechanisms as to why inflammation-resolution is impaired in ageing and in disease and identifying useful biomarkers for non-resolving inflammation are unmet needs. Recent work has pointed to a critical role for balanced ratios of SPMs and pro-inflammatory lipids (i.e. leucotrienes and/or specific prostaglandins) as a key determinant of timely inflammation resolution. This review will focus on the accumulating findings that support the role of non-resolving inflammation and imbalanced pro-resolving and pro-inflammatory mediators in atherosclerosis. We aim to provide insight as to why these imbalances occur, the importance of ageing in disease progression, and how haematopoietic function impacts inflammation-resolution and atherosclerosis. We highlight open questions regarding therapeutic strategies and mechanisms of disease to provide a framework for future studies that aim to tackle this important human disease.
Collapse
Affiliation(s)
- Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Katherine C MacNamara
- The Department of Immunology and Infectious Disease, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
9
|
Geng S, Zhang Y, Yi Z, Lu R, Li L. Resolving monocytes generated through TRAM deletion attenuate atherosclerosis. JCI Insight 2021; 6:e149651. [PMID: 34499622 PMCID: PMC8564896 DOI: 10.1172/jci.insight.149651] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Polarization of low-grade inflammatory monocytes facilitates the pathogenesis of atherosclerosis. However, underlying mechanisms as well as approaches for resolving monocyte polarization conducive to the regression of atherosclerosis are not well established. In this report, we demonstrate that TRIF-related adaptor molecule (TRAM) mediated monocyte polarization in vivo and in vitro. TRAM controlled monocyte polarization through activating Src family kinase c-SRC, which not only induces STAT1/STAT5-regulated inflammatory mediators CCR2 and SIRP-α but also suppresses PPARγ-regulated resolving mediator CD200R. Enhanced PPARγ and Pex5 due to TRAM deficiency facilitated peroxisome homeostasis and reduction of cellular reactive oxygen species, further contributing to the establishment of a resolving monocyte phenotype. TRAM-deficient monocytes propagated the resolving phenotype to neighboring monocytes through CD200R-mediated intercellular communication. At the translational level, we show that TRAM-deficient mice were resistant to high-fat diet-induced pathogenesis of atherosclerosis. We further document that intravenous transfusion of TRAM-deficient resolving monocytes into atherosclerotic mice potently reduced the progression of atherosclerosis. Together, our data reveal that targeting TRAM may facilitate the effective generation of resolving monocytes conducive for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences and
| | - Yao Zhang
- Department of Biological Sciences and
| | - Ziyue Yi
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| | - Ran Lu
- Department of Biological Sciences and
| | - Liwu Li
- Department of Biological Sciences and
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
10
|
Choi YY, Kim A, Seong KM. Chronic radiation exposure aggravates atherosclerosis by stimulating neutrophil infiltration. Int J Radiat Biol 2021; 97:1270-1281. [PMID: 34032557 DOI: 10.1080/09553002.2021.1934750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiation exposure is known to increase the risk of chronic inflammatory diseases, such as atherosclerosis, by modulating inflammation. METHODS To investigate the infiltration of leukocytes in radiation-aggravated atherosclerosis, we examined low-density lipoprotein receptor-deficient (Ldlr-/-) mice and C57BL/6j mice after exposure to 0.5 or 1 Gy radiation over 16 weeks. RESULTS We found that radiation exposure induced atherosclerosis development in Ldlr-/- mice, as demonstrated by increased lipid-laden plaque size, reactive oxygen species levels, and levels of the pro-inflammatory cytokines, IL-1β and TNF-α, in the aortas and spleens. Total plasma cholesterol, triglyceride, and LDL cholesterol levels were also increased by radiation exposure, along with cardiovascular risk. We also showed dose-dependent increases in neutrophils and monocytes that coincided with a reduction in lymphocytes in the spleens of Ldlr-/- mice. The correlation between the infiltration of leukocytes and cytokine production was also confirmed in the hearts and spleens of these mice. CONCLUSIONS We concluded that chronic radiation exposure increased the production of pro-inflammatory mediators, which was associated with the migration of neutrophils and inflammatory monocytes into sites of atherosclerosis. Thus, our data suggest that the accumulation of neutrophils and inflammatory monocytes, together with the reduction of lymphocytes, contribute to aggravated atherosclerosis in Ldlr-/- mice under prolonged exposure to radiation.
Collapse
Affiliation(s)
- You Yeon Choi
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Areumnuri Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| |
Collapse
|
11
|
Assessment of medullary and extramedullary myelopoiesis in cardiovascular diseases. Pharmacol Res 2021; 169:105663. [PMID: 33979688 DOI: 10.1016/j.phrs.2021.105663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022]
Abstract
Recruitment of innate immune cells and their accumulation in the arterial wall and infarcted myocardium has been recognized as a central feature of atherosclerosis and cardiac ischemic injury, respectively. In both, steady state and under pathological conditions, majority of these cells have a finite life span and are continuously replenished from haematopoietic stem/progenitor cell pool residing in the bone marrow and extramedullary sites. While having a crucial role in the cardiovascular disease development, proliferation and differentiation of innate immune cells within haematopoietic compartments is greatly affected by the ongoing cardiovascular pathology. In the current review, we summarize key cells, processes and tissue compartments that are involved in myelopoiesis under the steady state, during atherosclerosis development and in myocardial infarction.
Collapse
|
12
|
Nilchian A, Plant E, Parniewska MM, Santiago A, Rossignoli A, Skogsberg J, Hedin U, Matic L, Fuxe J. Induction of the Coxsackievirus and Adenovirus Receptor in Macrophages During the Formation of Atherosclerotic Plaques. J Infect Dis 2021; 222:2041-2051. [PMID: 32852032 PMCID: PMC7661765 DOI: 10.1093/infdis/jiaa418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 11/14/2022] Open
Abstract
Multiple viruses are implicated in atherosclerosis, but the mechanisms by which they infect cells and contribute to plaque formation in arterial walls are not well understood. Based on reports showing the presence of enterovirus in atherosclerotic plaques we hypothesized that the coxsackievirus and adenovirus receptor (CXADR/CAR), although absent in normal arteries, could be induced during plaque formation. Large-scale microarray and mass spectrometric analyses revealed significant up-regulation of CXADR messenger RNA and protein levels in plaque-invested carotid arteries compared with control arteries. Macrophages were identified as a previously unknown cellular source of CXADR in human plaques and plaques from Ldr-/-Apob100/100 mice. CXADR was specifically associated with M1-polarized macrophages and foam cells and was experimentally induced during macrophage differentiation. Furthermore, it was significantly correlated with receptors for other viruses linked to atherosclerosis. The results show that CXADR is induced in macrophages during plaque formation, suggesting a mechanism by which enterovirus infect cells in atherosclerotic plaques.
Collapse
Affiliation(s)
- Azadeh Nilchian
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Estelle Plant
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malgorzata M Parniewska
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ana Santiago
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aránzazu Rossignoli
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Josefin Skogsberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jonas Fuxe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Vacante F, Rodor J, Lalwani MK, Mahmoud AD, Bennett M, De Pace AL, Miller E, Van Kuijk K, de Bruijn J, Gijbels M, Williams TC, Clark MB, Scanlon JP, Doran AC, Montgomery R, Newby DE, Giacca M, O'Carroll D, Hadoke PWF, Denby L, Sluimer JC, Baker AH. CARMN Loss Regulates Smooth Muscle Cells and Accelerates Atherosclerosis in Mice. Circ Res 2021; 128:1258-1275. [PMID: 33622045 DOI: 10.1161/circresaha.120.318688] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Francesca Vacante
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Julie Rodor
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Mukesh K Lalwani
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Amira D Mahmoud
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Matthew Bennett
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Azzurra L De Pace
- Institute for Regeneration and Repair, Centre for Regenerative Medicine (A.D.P., D.O.), University of Edinburgh, Scotland
| | - Eileen Miller
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Kim Van Kuijk
- Pathology, Maastricht Medical Center, the Netherlands (K.V.K., J.d., J.C.S., A.H.B.)
| | - Jenny de Bruijn
- Pathology, Maastricht Medical Center, the Netherlands (K.V.K., J.d., J.C.S., A.H.B.)
| | - Marion Gijbels
- Pathology CARIM, Cardiovascular Research Institute Maastricht, GROW-School for Oncology and Developmental Biology, Maastricht University, the Netherlands (M. Gijbels)
| | - Thomas C Williams
- Insitute of Genetics and Molecular Medicine (T.C.W.), University of Edinburgh, Scotland
| | - Michael B Clark
- Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, The University of Melbourne, Australia (M.B.C.)
| | - Jessica P Scanlon
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Amanda C Doran
- Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (A.C.D)
| | | | - David E Newby
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Mauro Giacca
- Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, the Netherlands (M. Gijbels).,King's College London, England (M. Giacca)
| | - Dónal O'Carroll
- Institute for Regeneration and Repair, Centre for Regenerative Medicine (A.D.P., D.O.), University of Edinburgh, Scotland
| | - Patrick W F Hadoke
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Laura Denby
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland
| | - Judith C Sluimer
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland.,Pathology, Maastricht Medical Center, the Netherlands (K.V.K., J.d., J.C.S., A.H.B.)
| | - Andrew H Baker
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences (F.V., J.R., M.K.L., A.D.M., M.B., E.M., J.P.S., D.E.N., P.W.F.H., L.D., J.C.S., A.H.B.), University of Edinburgh, Scotland.,Pathology, Maastricht Medical Center, the Netherlands (K.V.K., J.d., J.C.S., A.H.B.)
| |
Collapse
|
14
|
Bowman ER, Cameron CM, Richardson B, Kulkarni M, Gabriel J, Cichon MJ, Riedl KM, Mustafa Y, Cartwright M, Snyder B, Raman SV, Zidar DA, Koletar SL, Playford MP, Mehta NN, Sieg SF, Freeman ML, Lederman MM, Cameron MJ, Funderburg NT. Macrophage maturation from blood monocytes is altered in people with HIV, and is linked to serum lipid profiles and activation indices: A model for studying atherogenic mechanisms. PLoS Pathog 2020; 16:e1008869. [PMID: 33002093 PMCID: PMC7553323 DOI: 10.1371/journal.ppat.1008869] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/13/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
People with HIV (PWH) are at increased risk for atherosclerotic cardiovascular disease (ASCVD). Proportions of vascular homing monocytes are enriched in PWH; however, little is known regarding monocyte-derived macrophages (MDMs) that may drive atherosclerosis in this population. We isolated PBMCs from people with and without HIV, and cultured these cells for 5 days in medium containing autologous serum to generate MDMs. Differential gene expression (DGE) analysis of MDMs from PWH identified broad alterations in innate immune signaling (IL-1β, TLR expression, PPAR βδ) and lipid processing (LXR/RXR, ACPP, SREBP1). Transcriptional changes aligned with the functional capabilities of these cells. Expression of activation markers and innate immune receptors (CD163, TLR4, and CD300e) was altered on MDMs from PWH, and these cells produced more TNFα, reactive oxygen species (ROS), and matrix metalloproteinases (MMPs) than did cells from people without HIV. MDMs from PWH also had greater lipid accumulation and uptake of oxidized LDL. PWH had increased serum levels of free fatty acids (FFAs) and ceramides, with enrichment of saturated FAs and a reduction in polyunsaturated FAs. Levels of lipid classes and species that are associated with CVD correlated with unique DGE signatures and altered metabolic pathway activation in MDMs from PWH. Here, we show that MDMs from PWH display a pro-atherogenic phenotype; they readily form foam cells, have altered transcriptional profiles, and produce mediators that likely contribute to accelerated ASCVD. People with HIV (PWH) are at greater risk for developing cardiovascular disease (CVD) than the general public, but the mechanisms underlying this increased risk are poorly understood. Macrophages play key roles in the pathogenesis of atherosclerosis, and are potential targets for therapeutic intervention. Here, we investigate phenotypic and functional abnormalities in monocyte-derived macrophages (MDMs) isolated from PWH that may drive CVD risk in this population. MDMs were differentiated in the presence of autologous serum, enabling us to explore the contributions of serum components (lipids, inflammatory cytokines, microbial products) as drivers of altered MDM function. We link serum levels of inflammatory biomarkers and CVD-associated lipid species to MDM activation. Our study provides new insight into drivers of pro-atherogenic MDM phenotype in PWH, and identifies directions for future study and potential intervention strategies to mitigate CVD risk.
Collapse
Affiliation(s)
- Emily R. Bowman
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Cheryl M. Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Manjusha Kulkarni
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Janelle Gabriel
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Morgan J. Cichon
- Department of Food Science & Technology and the Nutrient & Phytochemical Shared Resource, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Kenneth M. Riedl
- Department of Food Science & Technology and the Nutrient & Phytochemical Shared Resource, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Yousef Mustafa
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael Cartwright
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brandon Snyder
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Subha V. Raman
- Department of Internal Medicine, Division of Cardiovascular Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - David A. Zidar
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Susan L. Koletar
- Department of Medicine, Division of Infectious Diseases, Ohio State University, Columbus, Ohio, United States of America
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Scott F. Sieg
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Michael L. Freeman
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Michael M. Lederman
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Mark J. Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nicholas T. Funderburg
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
15
|
Pan Y, Yu C, Huang J, Rong Y, Chen J, Chen M. Bioinformatics analysis of vascular RNA-seq data revealed hub genes and pathways in a novel Tibetan minipig atherosclerosis model induced by a high fat/cholesterol diet. Lipids Health Dis 2020; 19:54. [PMID: 32213192 PMCID: PMC7098151 DOI: 10.1186/s12944-020-01222-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Atherosclerosis is a major contributor to cardiovascular events, however, its molecular mechanism remains poorly known. Animal models of atherosclerosis can be a valuable tool to provide insights into the etiology, pathophysiology, and complications of atherosclerosis. In particular, Tibetan minipigs are a feasible model for studying diet-related metabolic and atherosclerotic diseases. METHODS We used vascular transcriptomics to identify differentially expressed genes (DEGs) in high fat/cholesterol (HFC) diet-fed Tibetan minipig atherosclerosis models, analyzed the DEGs gene ontology (GO) terms, pathways and protein-protein interactions (PPI) networks, and identified hub genes and key modules using molecular complex detection (MCODE), Centiscape and CytoHubba plugin. The identified genes were validated using the human carotid atherosclerosis database (GSEA 43292) and RT-PCR methods. RESULTS Our results showed that minipigs displayed obvious dyslipidemia, oxidative stress, inflammatory response, atherosclerotic plaques, as well as increased low-density lipoprotein (LDL) and leukocyte recruitment after 24 weeks of HFC diet feeding compared to those under a regular diet. Our RNA-seq results revealed 1716 DEGs in the atherosclerotic/NC group, of which 1468 genes were up-regulated and 248 genes were down-regulated. Functional enrichment analysis of DEGs showed that the HFC diet-induced changes are related to vascular immune-inflammatory responses, lipid metabolism and muscle contraction, indicating that hypercholesterolemia caused by HFC diet can activate innate and adaptive immune responses to drive atherosclerosis development. Furthermore, we identified four modules from the major PPI network, which are implicated in cell chemotaxis, myeloid leukocyte activation, cytokine production, and lymphocyte activation. Fifteen hub genes were discovered, including TNF, PTPRC, ITGB2, ITGAM, VCAM1, CXCR4, TYROBP, TLR4, LCP2, C5AR1, CD86, MMP9, PTPN6, C3, and CXCL10, as well as two transcription factors (TF), i.e. NF-ĸB1 and SPI1. These results are consistent with the expression patterns in human carotid plaque and were validated by RT-PCR. CONCLUSIONS The identified DEGs and their enriched pathways provide references for the development and progression mechanism of Tibetan minipig atherosclerosis model induced by the HFC diet.
Collapse
Affiliation(s)
- Yongming Pan
- Comparative Medical Research Institute, Experimental Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Chen Yu
- Comparative Medical Research Institute, Experimental Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Junjie Huang
- Comparative Medical Research Institute, Experimental Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Yili Rong
- Comparative Medical Research Institute, Experimental Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Jiaojiao Chen
- Comparative Medical Research Institute, Experimental Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Minli Chen
- Comparative Medical Research Institute, Experimental Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| |
Collapse
|
16
|
McArdle S, Buscher K, Ghosheh Y, Pramod AB, Miller J, Winkels H, Wolf D, Ley K. Migratory and Dancing Macrophage Subsets in Atherosclerotic Lesions. Circ Res 2019; 125:1038-1051. [PMID: 31594470 DOI: 10.1161/circresaha.119.315175] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE Macrophages are essential regulators of atherosclerosis. They secrete cytokines, process lipoproteins and cholesterol, and take up apoptotic cells. Multiple subsets of plaque macrophages exist and their differential roles are emerging. OBJECTIVE Here, we explore macrophage heterogeneity in atherosclerosis plaques using transgenic fluorescent mice in which subsets of macrophages are labeled by GFP (green fluorescent protein), YFP (yellow fluorescent protein), neither, or both. The objective was to define migration patterns of the visible subsets and relate them to their phenotypes and transcriptomes. METHODS AND RESULTS Apoe-/- Cx3cr1GFP Cd11cYFP mice have 4 groups of macrophages in their aortas. The 3 visible subsets show varying movement characteristics. GFP and GFP+YFP+ macrophages extend and retract dendritic processes, dancing on the spot with little net movement while YFP macrophages have a more rounded shape and migrate along the arteries. RNA sequencing of sorted cells revealed significant differences in the gene expression patterns of the 4 subsets defined by GFP and YFP expression, especially concerning chemokine and cytokine expression, matrix remodeling, and cell shape dynamics. Gene set enrichment analysis showed that GFP+ cells have similar transcriptomes to cells found in arteries with tertiary lymphoid organs and regressing plaques while YFP+ cells were associated with progressing and stable plaques. CONCLUSIONS The combination of quantitative intravital imaging with deep transcriptomes identified 4 subsets of vascular macrophages in atherosclerosis that have unique transcriptomic profiles. Our data link vascular macrophage transcriptomes to their in vivo migratory function. Future work on the functional significance of the change in gene expression and motility characteristics will be needed to fully understand how these subsets contribute to disease progression.
Collapse
Affiliation(s)
- Sara McArdle
- From the Microscopy Core Facility (S.M.), La Jolla Institute for Immunology, San Diego, CA.,Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA
| | - Konrad Buscher
- Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA.,Department of Nephrology and Rheumatology, University Hospital Muenster, German (K.B.)
| | - Yanal Ghosheh
- Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA
| | - Akula Bala Pramod
- Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA
| | - Jacqueline Miller
- Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA
| | - Holger Winkels
- Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA
| | - Dennis Wolf
- Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA.,University Heart Center and Medical Center, University of Freiburg, Germany (D.W.)
| | - Klaus Ley
- Division of Inflammation Biology (S.M., K.B., Y.G., A.B.P., J.M., H.W., D.W., K.L.), La Jolla Institute for Immunology, San Diego, CA.,Department of Bioengineering, University of California, San Diego (K.L.)
| |
Collapse
|
17
|
Yamamoto H, Kawamura M, Kochi I, Imai M, Murata Y, Suzuki T, Chen Y, Hashimoto K, Kihara S. Serum Anti-Apo B Antibody Level as Residual CVD Marker in DM Patients under Statin Treatment. J Atheroscler Thromb 2019; 26:931-943. [PMID: 30867375 PMCID: PMC6800396 DOI: 10.5551/jat.46797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM In the pathogenesis of atherosclerosis, autoantibodies have two-facedness of progression and protection. Previous reports have indicated that low autoantibody levels against apolipoprotein B-100 (apo B-100) could increase the risk of atherosclerotic cardiovascular diseases (CVD) in healthy subjects. In this study, we investigated the relationship between circulating anti-apo B-100 autoantibodies and the clinical parameters in Japanese diabetic patients with or without CVD. METHODS We measured the serum levels of anti-apo B-100 autoantibodies against native and malondialdehyde (MDA)-modified p45 or p210 epitopes, as well as anti-apo E autoantibodies, using enzyme-linked immunosorbent assay. RESULTS In patients with CVD, the circulating levels of IgG against native p45, MDA-modified p45, and MDA-modified p210 (IgGN-45, IgGMDA-45, and IgGMDA-210) were significantly lower than those in patients without CVD, whereas no difference was observed in anti-apo E autoantibody levels. In addition, IgMN-45, IgMMDA-45, and IgGMDA-45 were negatively correlated with LDL-C levels, whereas IgGN-45 and IgGN-210 were positively correlated with HbA1c levels. No correlation was observed between autoantibody levels and diabetic microangiopathy. In the statin-treated subgroup, IgGMDA-45 and IgGMDA-210 were significantly lower in patients with CVD than in those without CVD. CONCLUSION Measurement of serum anti-apo B-100 autoantibodies can be useful for the evaluation of CVD risk in patients with diabetes receiving statin treatment.
Collapse
Affiliation(s)
- Hiroyasu Yamamoto
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Mari Kawamura
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Ikoi Kochi
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Minami Imai
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Yukie Murata
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Toshinobu Suzuki
- Department of Endocrinology and Diabetes in NTT West Osaka Hospital
| | - Yingchao Chen
- Department of Endocrinology and Diabetes in NTT West Osaka Hospital
| | | | - Shinji Kihara
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine
| |
Collapse
|
18
|
The association of plasma lipids with white blood cell counts: Results from the Multi-Ethnic Study of Atherosclerosis. J Clin Lipidol 2019; 13:812-820. [DOI: 10.1016/j.jacl.2019.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023]
|
19
|
Immune-Mediated Inflammation in Vulnerable Atherosclerotic Plaques. Molecules 2019; 24:molecules24173072. [PMID: 31450823 PMCID: PMC6749340 DOI: 10.3390/molecules24173072] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023] Open
Abstract
Atherosclerosis is a chronic long-lasting vascular disease leading to myocardial infarction and stroke. Vulnerable atherosclerotic (AS) plaques are responsible for these life-threatening clinical endpoints. To more successfully work against atherosclerosis, improvements in early diagnosis and treatment of AS plaque lesions are required. Vulnerable AS plaques are frequently undetectable by conventional imaging because they are non-stenotic. Although blood biomarkers like lipids, C-reactive protein, interleukin-6, troponins, and natriuretic peptides are in pathological ranges, these markers are insufficient in detecting the critical perpetuation of AS anteceding endpoints. Thus, chances to treat the patient in a preventive way are wasted. It is now time to solve this dilemma because clear results indicate a benefit of anti-inflammatory therapy per se without modification of blood lipids (CANTOS Trial, NCT01327846). This fact identifies modulation of immune-mediated inflammation as a new promising point of action for the eradication of fatal atherosclerotic endpoints.
Collapse
|
20
|
von Vietinghoff S, Koltsova EK. Inflammation in atherosclerosis: A key role for cytokines. Cytokine 2019; 122:154819. [PMID: 31447282 DOI: 10.1016/j.cyto.2019.154819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sibylle von Vietinghoff
- Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | - Ekaterina K Koltsova
- Blood Cell Development and Function Program, Fox Chase Cancer Center, PA 19111, USA.
| |
Collapse
|
21
|
Getz GS, Reardon CA. Apoproteins E, A-I, and SAA in Macrophage Pathobiology Related to Atherogenesis. Front Pharmacol 2019; 10:536. [PMID: 31231209 PMCID: PMC6558525 DOI: 10.3389/fphar.2019.00536] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/29/2019] [Indexed: 01/10/2023] Open
Abstract
Macrophages are core cellular elements of both early and advanced atherosclerosis. They take up modified lipoproteins and become lipid-loaded foam cells and secrete factors that influence other cell types in the artery wall involved in atherogenesis. Apoproteins E, AI, and SAA are all found on HDL which can enter the artery wall. In addition, apoE is synthesized by macrophages. These three apoproteins can promote cholesterol efflux from lipid-loaded macrophages and have other functions that modulate macrophage biology. Mimetic peptides based on the sequence or structure of these apoproteins replicate some of these properties and are potential therapeutic agents for the treatment of atherosclerosis to reduce cardiovascular diseases.
Collapse
Affiliation(s)
- Godfrey S Getz
- Department of Pathology, The University of Chicago, Chicago, IL, United States
| | - Catherine A Reardon
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
22
|
Halu A, Wang JG, Iwata H, Mojcher A, Abib AL, Singh SA, Aikawa M, Sharma A. Context-enriched interactome powered by proteomics helps the identification of novel regulators of macrophage activation. eLife 2018; 7:37059. [PMID: 30303482 PMCID: PMC6179386 DOI: 10.7554/elife.37059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
The role of pro-inflammatory macrophage activation in cardiovascular disease (CVD) is a complex one amenable to network approaches. While an indispensible tool for elucidating the molecular underpinnings of complex diseases including CVD, the interactome is limited in its utility as it is not specific to any cell type, experimental condition or disease state. We introduced context-specificity to the interactome by combining it with co-abundance networks derived from unbiased proteomics measurements from activated macrophage-like cells. Each macrophage phenotype contributed to certain regions of the interactome. Using a network proximity-based prioritization method on the combined network, we predicted potential regulators of macrophage activation. Prediction performance significantly increased with the addition of co-abundance edges, and the prioritized candidates captured inflammation, immunity and CVD signatures. Integrating the novel network topology with transcriptomics and proteomics revealed top candidate drivers of inflammation. In vitro loss-of-function experiments demonstrated the regulatory role of these proteins in pro-inflammatory signaling. When human cells or tissues are injured, the body triggers a response known as inflammation to repair the damage and protect itself from further harm. However, if the same issue keeps recurring, the tissues become inflamed for longer periods of time, which may ultimately lead to health problems. This is what could be happening in cardiovascular diseases, where long-term inflammation could damage the heart and blood vessels. Many different proteins interact with each other to control inflammation; gaining an insight into the nature of these interactions could help to pinpoint the role of each molecular actor. Researchers have used a combination of unbiased, large-scale experimental and computational approaches to develop the interactome, a map of the known interactions between all proteins in humans. However, interactions between proteins can change between cell types, or during disease. Here, Halu et al. aimed to refine the human interactome and identify new proteins involved in inflammation, especially in the context of cardiovascular disease. Cells called macrophages produce signals that trigger inflammation whey they detect damage in other cells or tissues. The experiments used a technique called proteomics to measure the amounts of all the proteins in human macrophages. Combining these data with the human interactome made it possible to predict new links between proteins known to have a role in inflammation and other proteins in the interactome. Further analysis using other sets of data from macrophages helped identify two new candidate proteins – GBP1 and WARS – that may promote inflammation. Halu et al. then used a genetic approach to deactivate the genes and decrease the levels of these two proteins in macrophages, which caused the signals that encourage inflammation to drop. These findings suggest that GBP1 and WARS regulate the activity of macrophages to promote inflammation. The two proteins could therefore be used as drug targets to treat cardiovascular diseases and other disorders linked to inflammation, but further studies will be needed to precisely dissect how GBP1 and WARS work in humans.
Collapse
Affiliation(s)
- Arda Halu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States.,Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Jian-Guo Wang
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Hiroshi Iwata
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Alexander Mojcher
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Ana Luisa Abib
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Amitabh Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
23
|
Helmke A, Casper J, Nordlohne J, David S, Haller H, Zeisberg EM, Vietinghoff S. Endothelial‐to‐mesenchymal transition shapes the atherosclerotic plaque and modulates macrophage function. FASEB J 2018; 33:2278-2289. [DOI: 10.1096/fj.201801238r] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alexandra Helmke
- Division of Nephrology and HypertensionDepartment of Internal MedicineHannover Medical SchoolHannoverGermany
| | - Janis Casper
- Division of Nephrology and HypertensionDepartment of Internal MedicineHannover Medical SchoolHannoverGermany
| | - Johannes Nordlohne
- Division of Nephrology and HypertensionDepartment of Internal MedicineHannover Medical SchoolHannoverGermany
| | - Sascha David
- Division of Nephrology and HypertensionDepartment of Internal MedicineHannover Medical SchoolHannoverGermany
| | - Hermann Haller
- Division of Nephrology and HypertensionDepartment of Internal MedicineHannover Medical SchoolHannoverGermany
| | - Elisabeth M. Zeisberg
- Department of Cardiology and PneumologyUniversity Medical Center of GöttingenGöttingenGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GöttingenGöttingenGermany
| | - Sibylle Vietinghoff
- Division of Nephrology and HypertensionDepartment of Internal MedicineHannover Medical SchoolHannoverGermany
| |
Collapse
|
24
|
Decano JL, Aikawa M. Dynamic Macrophages: Understanding Mechanisms of Activation as Guide to Therapy for Atherosclerotic Vascular Disease. Front Cardiovasc Med 2018; 5:97. [PMID: 30123798 PMCID: PMC6086112 DOI: 10.3389/fcvm.2018.00097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
An emerging theory is that macrophages are heterogenous; an attribute that allows them to change behavior and execute specific functions in disease processes. This review aims to describe the current understanding on factors that govern their phenotypic changes, and provide insights for intervention beyond managing classical risk factors. Evidence suggests that metabolic reprogramming of macrophages triggers either a pro-inflammatory, anti-inflammatory or pro-resolving behavior. Dynamic changes in bioenergetics, metabolome or influence from bioactive lipids may promote resolution or aggravation of inflammation. Direct cell-to-cell interactions with other immune cells can also influence macrophage activation. Both paracrine signaling and intercellular molecular interactions either co-stimulate or co-inhibit activation of macrophages as well as their paired immune cell collaborator. More pathways of activation can even be uncovered by inspecting macrophages in the single cell level, since differential expression in key gene regulators can be screened in higher resolution compared to conventional averaged gene expression readouts. All these emerging macrophage activation mechanisms may be further explored and consolidated by using approaches in network biology. Integrating these insights can unravel novel and safer drug targets through better understanding of the pro-inflammatory activation circuitry.
Collapse
Affiliation(s)
- Julius L. Decano
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Adamson SE, Polanowska-Grabowska R, Marqueen K, Griffiths R, Angdisen J, Breevoort SR, Schulman IG, Leitinger N. Deficiency of Dab2 (Disabled Homolog 2) in Myeloid Cells Exacerbates Inflammation in Liver and Atherosclerotic Plaques in LDLR (Low-Density Lipoprotein Receptor)-Null Mice-Brief Report. Arterioscler Thromb Vasc Biol 2018; 38:1020-1029. [PMID: 29599136 PMCID: PMC5920703 DOI: 10.1161/atvbaha.117.310467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/06/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Inflammatory macrophages promote the development of atherosclerosis. We have identified the adaptor protein Dab2 (disabled homolog 2) as a regulator of phenotypic polarization in macrophages. The absence of Dab2 in myeloid cells promotes an inflammatory phenotype, but the impact of myeloid Dab2 deficiency on atherosclerosis has not been shown. APPROACH AND RESULTS To determine the role of myeloid Dab2 in atherosclerosis, Ldlr-/- mice were reconstituted with either Dab2-positive or Dab2-deficient bone marrow and fed a western diet. Consistent with our previous finding that Dab2 inhibits NFκB (nuclear factor κ-light-chain-enhancer of activated B cells) signaling in macrophages, Ldlr-/- mice reconstituted with Dab2-deficient bone marrow had increased systemic inflammation as evidenced by increased serum IL-6 (interleukin-6) levels and increased inflammatory cytokine expression levels in liver. Serum lipid levels were significantly lower in Ldlr-/- mice reconstituted with Dab2-deficient bone marrow, and further examination of livers from these mice revealed drastically increased inflammatory tissue damage and massive infiltration of immune cells. Surprisingly, the atherosclerotic lesion burden in Ldlr-/- mice reconstituted with Dab2-deficient bone marrow was decreased compared with Ldlr-/- mice reconstituted with wild-type bone marrow. Further analysis of aortic root sections revealed increased macrophage content and evidence of increased apoptosis in lesions from Ldlr-/- mice reconstituted with Dab2-deficient bone marrow but no difference in collagen or α-smooth muscle actin content. CONCLUSIONS Dab2 deficiency in myeloid cells promotes inflammation in livers and atherosclerotic plaques in a mouse model of atherosclerosis. Nevertheless, decreased serum lipids as a result of massive inflammatory liver damage may preclude an appreciable increase in atherosclerotic lesion burden in mice reconstituted with Dab2-deficient bone marrow.
Collapse
Affiliation(s)
- Samantha E Adamson
- From the Department of Pharmacology (S.E.A., R.P.-G., K.M., R.G., J.A., S.R.B., I.G.S., N.L.)
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (S.E.A., R.P.-G., R.G., N.L.)
| | - Renata Polanowska-Grabowska
- From the Department of Pharmacology (S.E.A., R.P.-G., K.M., R.G., J.A., S.R.B., I.G.S., N.L.)
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (S.E.A., R.P.-G., R.G., N.L.)
| | - Kathryn Marqueen
- From the Department of Pharmacology (S.E.A., R.P.-G., K.M., R.G., J.A., S.R.B., I.G.S., N.L.)
| | - Rachael Griffiths
- From the Department of Pharmacology (S.E.A., R.P.-G., K.M., R.G., J.A., S.R.B., I.G.S., N.L.)
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (S.E.A., R.P.-G., R.G., N.L.)
| | - Jerry Angdisen
- From the Department of Pharmacology (S.E.A., R.P.-G., K.M., R.G., J.A., S.R.B., I.G.S., N.L.)
| | - Sarah R Breevoort
- From the Department of Pharmacology (S.E.A., R.P.-G., K.M., R.G., J.A., S.R.B., I.G.S., N.L.)
| | - Ira G Schulman
- From the Department of Pharmacology (S.E.A., R.P.-G., K.M., R.G., J.A., S.R.B., I.G.S., N.L.)
| | - Norbert Leitinger
- From the Department of Pharmacology (S.E.A., R.P.-G., K.M., R.G., J.A., S.R.B., I.G.S., N.L.)
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (S.E.A., R.P.-G., R.G., N.L.)
| |
Collapse
|
26
|
Nordlohne J, Helmke A, Ge S, Rong S, Chen R, Waisman A, Haller H, von Vietinghoff S. Aggravated Atherosclerosis and Vascular Inflammation With Reduced Kidney Function Depend on Interleukin-17 Receptor A and Are Normalized by Inhibition of Interleukin-17A. JACC Basic Transl Sci 2018; 3:54-66. [PMID: 30062194 PMCID: PMC6058956 DOI: 10.1016/j.jacbts.2017.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/25/2022]
Abstract
Moderate renal impairment significantly increases atherosclerotic lesion size and leukocyte numbers, most markedly macrophages and T cells, in LDLr–/– mice. IL-17 receptor A–deficient LDLr–/– mice are protected from the growth in lesion size and leukocyte infiltrate in renal impairment. Monocytes, especially Ly6C/GR1HIGH cells, express high levels of IL-17 receptor A. IL-17A increases monocyte adhesion to the aortic wall and enhances endothelial cell pro-inflammatory cytokine production. Ablation of IL-17A or IL-17A blockade normalizes the inflammatory aortic wall infiltrate even in established atherosclerosis.
Effective therapy of atherosclerotic complications in patients with chronic kidney disease (CKD) is an unmet clinical need. Cardiovascular events are the most common cause of death. At a glomerular filtration rate ≤60 ml/min, these events are increased also after correction for common risk factors. Previous studies have reported enhanced vascular inflammation in mice and recently also in humans. Our current data show, in a mouse model of atherosclerosis in moderate renal impairment, that interleukin-17 receptor A is instrumental in this condition, and blockade of this pathway can normalize arterial inflammation even in advanced atherosclerosis.
Collapse
Affiliation(s)
- Johannes Nordlohne
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Alexandra Helmke
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Shuwang Ge
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Department of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Huazhong, People's Republic of China
| | - Song Rong
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Rongjun Chen
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University of Mainz, Mainz, Germany
| | - Hermann Haller
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Sibylle von Vietinghoff
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Gil-Pulido J, Zernecke A. Antigen-presenting dendritic cells in atherosclerosis. Eur J Pharmacol 2017; 816:25-31. [DOI: 10.1016/j.ejphar.2017.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 11/29/2022]
|
28
|
Nordlohne J, von Vietinghoff S. Interleukin 17A in atherosclerosis - Regulation and pathophysiologic effector function. Cytokine 2017; 122:154089. [PMID: 28663097 DOI: 10.1016/j.cyto.2017.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/01/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
This review summarizes the current data on the interleukin (IL)-17A pathway in experimental atherosclerosis and clinical data. IL-17A is a prominent cytokine for early T cell response produced by both innate and adaptive leukocytes. In atherosclerosis, increased total IL-17A levels and expression in CD4+ T helper and γδ T cells have been demonstrated. Cytokines including IL-6 and TGFβ that increase IL-17A expression are elevated. Many other factors such as lipids, glucose and sodium chloride concentrations as well as vitamins and arylhydrocarbon receptor agonists that promote IL-17A expression are closely associated with cardiovascular risk in the human population. In acute inflammation models, IL-17A mediates innate leukocyte recruitment of both neutrophils and monocytes. In atherosclerosis, IL-17A increased aortic macrophage and T cell infiltration in most models. Secondary recruitment effects via the endothelium and according to recent data also pericytes have been demonstrated. IL-17 receptor A is highly expressed on monocytes and direct effects have been reported as well. Beyond leukocyte accumulation, IL-17A may affect other factors of plaque formation such as endothelial function, and according to some reports, fibrous cap formation and vascular relaxation with an increase in blood pressure. Anti-IL-17A agents are now available for clinical use. Cardiovascular side effect profiles are benign at this point. IL-17A appears to be a differential regulator of atherosclerosis and its effects in mouse models suggest that its modulation may have contradictory effects on plaque size and possibly stability in different patient populations.
Collapse
Affiliation(s)
- Johannes Nordlohne
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Sibylle von Vietinghoff
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
29
|
Anzinger JJ, Jin X, Palmer CS, Dagur P, Barthwal MK, Kruth HS. Measurement of Aortic Cell Fluid-Phase Pinocytosis in vivo by Flow Cytometry. J Vasc Res 2017; 54:195-199. [PMID: 28618422 DOI: 10.1159/000475934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Fluid-phase pinocytosis is a receptor-independent mechanism of endocytosis that occurs in all mammalian cells and may be a mechanism for the uptake of LDL by macrophages. As there are currently no methods for the measurement of fluid-phase pinocytosis by individual aortic cells in vivo, we sought to identify a suitable method. METHODS ApoE-/- mice were retro-orbitally injected with AngioSPARK fluorescent nanoparticles specifically designed to not interact with cells. After 24 h, mice were sacrificed, and the aortas were isolated and then digested to analyze aortic cell uptake of AngioSPARK by flow cytometry. RESULTS CD11b-expressing aortic macrophages from mice injected with AngioSPARK showed high levels of fluid-phase pinocytosis compared to aortic cells not expressing CD11b (4,393.7 vs. 408.3 mean fluorescence intensity [MFI], respectively). CONCLUSION This new technique allows for the measurement of fluid-phase pinocytosis by aortic cells in vivo, making it possible to examine the cell-signaling molecules and drugs that affect this process. Published by S. Karger AG, Basel.
Collapse
Affiliation(s)
- Joshua J Anzinger
- Section of Experimental Atherosclerosis, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
30
|
IL-27R signaling controls myeloid cells accumulation and antigen-presentation in atherosclerosis. Sci Rep 2017; 7:2255. [PMID: 28536468 PMCID: PMC5442117 DOI: 10.1038/s41598-017-01828-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/03/2017] [Indexed: 01/24/2023] Open
Abstract
Myeloid cells, key players in atherosclerosis, take up and present antigens, leading to systemic and local T cell activation. The recruitment and activation of immune cells to the aorta in atherosclerosis is regulated by adhesion molecules, chemokines and cytokines. IL-27R is an immunoregulatory signaling nod in autoimmune and infectious pathologies. IL-27R was shown to suppress T cells activation in atherosclerosis, however it’s possible role in myeloid cell accumulation and activation is not understood. Here we demonstrate that Apoe−/−Il27ra−/− mice fed with “Western Diet” for 7 or 18 weeks developed significantly more atherosclerosis compared to Apoe−/−Il27ra+/− controls. Accelerated disease was driven by enhanced expression of adhesion molecules and chemokines causing the accumulation of immune cells. Myeloid cells produced more inflammatory cytokines and upregulated MHCII. Multiphoton microscopy revealed more efficient interactions between aortic myeloid cells and CD4+ T cells. Overall, we show that IL-27R signaling controls endothelial cells activation and myeloid cell recruitment at early and advanced stages of atherosclerosis. In the absence of IL-27R myeloid cells become hyperactivated, produce pro-inflammatory cytokines and act as more potent antigen presenting cells. Enhanced interactions between Il27ra−/− APC and CD4+ T cells in the aortic wall contribute to T cells re-activation and pro-atherogenic cytokine production.
Collapse
|
31
|
Xu Y, Wang Y, Zhi J, Qi L, Zhang T, Li X. Impact of matrix metalloproteinase 9 rs3918242 genetic variant on lipid-lowering efficacy of simvastatin therapy in Chinese patients with coronary heart disease. BMC Pharmacol Toxicol 2017; 18:28. [PMID: 28390432 PMCID: PMC5385050 DOI: 10.1186/s40360-017-0132-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 03/28/2017] [Indexed: 01/05/2023] Open
Abstract
Background Genetic variation of matrix metalloproteinase 9 (MMP-9) gene polymorphism has been suggested to modulate coronary heart diseases (CHD), yet the underlying mechanisms are not well understood. Methods We investigated the association of MMP9 rs3918242 single nucleotide polymorphism with inflammation and lipid-lowering efficacy after simvastatin treatment in Chinese patients with CHD. Fasting serum lipid profile and plasma inflammatory mediators were determined at baseline in 264 patients with CHD and 186 healthy control subjects, and after HMG-CoA reductase inhibitor simvastatin treatment (20 mg/day) for 12 weeks in CHD subjects. Results We found that plasma MMP-9, TNF-α and IL-10 levels were significantly elevated in patients with CHD compared to control subjects before treatment. The plasma MMP9 in CHD patients carrying rs3918242 CC, CT and TT genotypes were comparable. Interestingly, CHD patients carrying TT genotype had significantly higher level of triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) than those carrying CC genotype (P <0.05). Simvastatin treatment significantly reduced LDL-C, TG and plasma inflammatory mediator levels in CHD patients. The reduction of LDL-C upon simvastatin therapy was significantly greater in patients carrying TT genotype than those carrying CC genotype (P <0.05). Conclusions MMP9 rs3918242 TT genotype is associated with elevated serum TG and LDL-C, and enhanced LDL-C-lowering response upon simvastatin treatment in Chinese patients with CHD. Clinical trial registration This study was retrospectively registered at Chinese Clinical Trial Registry (Registration number: ChiCTR-ROC-17010971) on March 23rd 2017.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Rd, Nangang Region, Heilongjiang, Harbin, 150001, China
| | - Yan Wang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Rd, Nangang Region, Heilongjiang, Harbin, 150001, China
| | - Jixin Zhi
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Rd, Nangang Region, Heilongjiang, Harbin, 150001, China
| | - Lichun Qi
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Rd, Nangang Region, Heilongjiang, Harbin, 150001, China
| | - Tong Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Rd, Nangang Region, Heilongjiang, Harbin, 150001, China
| | - Xueqi Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Rd, Nangang Region, Heilongjiang, Harbin, 150001, China.
| |
Collapse
|
32
|
Tabas I. 2016 Russell Ross Memorial Lecture in Vascular Biology: Molecular-Cellular Mechanisms in the Progression of Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:183-189. [PMID: 27979856 PMCID: PMC5269511 DOI: 10.1161/atvbaha.116.308036] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is initiated by the subendothelial accumulation of apoB-lipoproteins, which initiates a sterile inflammatory response dominated by monocyte-macrophages but including all classes of innate and adaptive immune cells. These inflammatory cells, together with proliferating smooth muscle cells and extracellular matrix, promote the formation of subendothelial lesions or plaques. In the vast majority of cases, these lesions do not cause serious clinical symptoms, which is due in part to a resolution-repair response that limits tissue damage. However, a deadly minority of lesions progress to the point where they can trigger acute lumenal thrombosis, which may then cause unstable angina, myocardial infarction, sudden cardiac death, or stroke. Many of these clinically dangerous lesions have hallmarks of defective inflammation resolution, including defective clearance of dead cells (efferocytosis), necrosis, a defective scar response, and decreased levels of lipid mediators of the resolution response. Efferocytosis is both an effector arm of the resolution response and an inducer of resolution mediators, and thus its defect in advanced atherosclerosis amplifies plaque progression. Preclinical causation/treatment studies have demonstrated that replacement therapy with exogenously administered resolving mediators can improve lesional efferocytosis and prevent plaque progression. Work in this area has the potential to potentiate the cardiovascular benefits of apoB-lipoprotein-lowering therapy.
Collapse
Affiliation(s)
- Ira Tabas
- From the Departments of Medicine, Pathology and Cell Biology, and Physiology, Columbia University, New York.
| |
Collapse
|
33
|
Zhu D, Yang N, Liu YY, Zheng J, Ji C, Zuo PP. M2 Macrophage Transplantation Ameliorates Cognitive Dysfunction in Amyloid-β-Treated Rats Through Regulation of Microglial Polarization. J Alzheimers Dis 2017; 52:483-95. [PMID: 27003214 DOI: 10.3233/jad-151090] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly population. Neuroinflammation induced by amyloid-β (Aβ) aggregation is considered to be the critical factor underlying AD pathological mechanisms. Alternatively activated (M2) macrophages/microglia have been reported to have neuroprotective effects in neurodegenerative disease. In this study, we characterized the neuroprotective effects of M2 macrophage transplantation in AD model rats and investigated the underlying mechanisms. Intracerebroventricular injection of Aβ1 - 42 to rats was used to model AD and resulted in cognitive impairment, neuronal damage, and inflammatory changes in the brain microenvironment. We observed an increased interferon regulatory factor (IRF) 5/IRF4 ratio, resulting in greater production of classically activated (M1) versus M2 microglia. M2 macrophage transplantation attenuated inflammation in the brain, reversed Aβ1 - 42-induced changes in the IRF4-IRF5 ratio, drove endogenous microglial polarization toward the M2 phenotype, and ameliorated cognitive impairment. Nerve growth factor (NGF) treatment reduced the IRF5/IRF4 ratio and induced primary microglial polarization to the M2 phenotype in vitro; these effects were prevented by tyrosine Kinase Receptor A (TrkA) inhibition. M2 macrophage transplantation restored the balance of IRF4-IRF5 by affecting the expression of NGF and inflammatory cytokines in the brains of AD model rats. This drove microglial polarization to the M2 phenotype, promoted termination of neuroinflammation, and resulted in improved cognitive abilities.
Collapse
|
34
|
Fatkhullina AR, Peshkova IO, Koltsova EK. The Role of Cytokines in the Development of Atherosclerosis. BIOCHEMISTRY (MOSCOW) 2017; 81:1358-1370. [PMID: 27914461 DOI: 10.1134/s0006297916110134] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atherosclerosis contributes to the development of many cardiovascular diseases, which remain the leading cause of death in developed countries. Atherosclerosis is a chronic inflammatory disease of large and medium-sized arteries. It is caused by dyslipidemia and mediated by both innate and adaptive immune responses. Inflammation is a key factor at all stages of atherosclerosis progression. Cells involved in pathogenesis of atherosclerosis were shown to be activated by soluble factors, cytokines, that strongly influence the disease development. Pro-inflammatory cytokines accelerate atherosclerosis progression, while anti-inflammatory cytokines ameliorate the disease. In this review, we discuss the latest findings on the role of cytokines in the development and progression of atherosclerosis.
Collapse
|
35
|
Iwata H, Goettsch C, Sharma A, Ricchiuto P, Goh WWB, Halu A, Yamada I, Yoshida H, Hara T, Wei M, Inoue N, Fukuda D, Mojcher A, Mattson PC, Barabási AL, Boothby M, Aikawa E, Singh SA, Aikawa M. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation. Nat Commun 2016; 7:12849. [PMID: 27796300 PMCID: PMC5095532 DOI: 10.1038/ncomms12849] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/03/2016] [Indexed: 12/23/2022] Open
Abstract
Despite the global impact of macrophage activation in vascular disease, the underlying mechanisms remain obscure. Here we show, with global proteomic analysis of macrophage cell lines treated with either IFNγ or IL-4, that PARP9 and PARP14 regulate macrophage activation. In primary macrophages, PARP9 and PARP14 have opposing roles in macrophage activation. PARP14 silencing induces pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells, whereas it suppresses anti-inflammatory gene expression and STAT6 phosphorylation in M(IL-4) cells. PARP9 silencing suppresses pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells. PARP14 induces ADP-ribosylation of STAT1, which is suppressed by PARP9. Mutations at these ADP-ribosylation sites lead to increased phosphorylation. Network analysis links PARP9-PARP14 with human coronary artery disease. PARP14 deficiency in haematopoietic cells accelerates the development and inflammatory burden of acute and chronic arterial lesions in mice. These findings suggest that PARP9 and PARP14 cross-regulate macrophage activation.
Collapse
Affiliation(s)
- Hiroshi Iwata
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Claudia Goettsch
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Amitabh Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Physics, Center for Complex Network Research, Northeastern University, Boston, Massachusetts 02115, USA
| | - Piero Ricchiuto
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wilson Wen Bin Goh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Arda Halu
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Iwao Yamada
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hideo Yoshida
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Takuya Hara
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mei Wei
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Noriyuki Inoue
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daiju Fukuda
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alexander Mojcher
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter C Mattson
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Albert-László Barabási
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Physics, Center for Complex Network Research, Northeastern University, Boston, Massachusetts 02115, USA
| | - Mark Boothby
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
36
|
Helmke A, von Vietinghoff S. Extracellular vesicles as mediators of vascular inflammation in kidney disease. World J Nephrol 2016; 5:125-38. [PMID: 26981436 PMCID: PMC4777783 DOI: 10.5527/wjn.v5.i2.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/18/2015] [Accepted: 01/08/2016] [Indexed: 02/06/2023] Open
Abstract
Vascular inflammation is a common cause of renal impairment and a major cause of morbidity and mortality of patients with kidney disease. Current studies consistently show an increase of extracellular vesicles (EVs) in acute vasculitis and in patients with atherosclerosis. Recent research has elucidated mechanisms that mediate vascular wall leukocyte accumulation and differentiation. This review addresses the role of EVs in this process. Part one of this review addresses functional roles of EVs in renal vasculitis. Most published data address anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitis and indicate that the number of EVs, mostly of platelet origin, is increased in active disease. EVs generated from neutrophils by activation by ANCA can contribute to vessel damage. While EVs are also elevated in other types of autoimmune vasculitis with renal involvement such as systemic lupus erythematodes, functional consequences beyond intravascular thrombosis remain to be established. In typical hemolytic uremic syndrome secondary to infection with shiga toxin producing Escherichia coli, EV numbers are elevated and contribute to toxin distribution into the vascular wall. Part two addresses mechanisms how EVs modulate vascular inflammation in atherosclerosis, a process that is aggravated in uremia. Elevated numbers of circulating endothelial EVs were associated with atherosclerotic complications in a number of studies in patients with and without kidney disease. Uremic endothelial EVs are defective in induction of vascular relaxation. Neutrophil adhesion and transmigration and intravascular thrombus formation are critically modulated by EVs, a process that is amenable to therapeutic interventions. EVs can enhance monocyte adhesion to the endothelium and modulate macrophage differentiation and cytokine production with major influence on the local inflammatory milieu in the plaque. They significantly influence lipid phagocytosis and antigen presentation by mononuclear phagocytes. Finally, platelet, erythrocyte and monocyte EVs cooperate in shaping adaptive T cell immunity. Future research is needed to define changes in uremic EVs and their differential effects on inflammatory leukocytes in the vessel wall.
Collapse
|
37
|
Tsaousi A, Hayes EM, Di Gregoli K, Bond AR, Bevan L, Thomas AC, Newby AC. Plaque Size Is Decreased but M1 Macrophage Polarization and Rupture Related Metalloproteinase Expression Are Maintained after Deleting T-Bet in ApoE Null Mice. PLoS One 2016; 11:e0148873. [PMID: 26886778 PMCID: PMC4757422 DOI: 10.1371/journal.pone.0148873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 01/23/2016] [Indexed: 12/02/2022] Open
Abstract
Background Thelper1 (Th1) lymphocytes have been previously implicated in atherosclerotic plaque growth but their role in plaque vulnerability to rupture is less clear. We investigated whether T-bet knockout that prevents Th1 lymphocyte differentiation modulates classical (M1) macrophage activation or production of matrix degrading metalloproteinases (MMPs) and their tissue inhibitors, TIMPs. Methods & Results We studied the effect of T-bet deletion in apolipoproteinE (ApoE) knockout mice fed a high fat diet (HFD) or normal chow diet (ND). Transcript levels of M1/M2 macrophage polarization markers, selected MMPs and TIMPs were measured by RT-qPCR in macrophages isolated from subcutaneous granulomas or in whole aortae. Immunohistochemistry of aortic sinus (AS) and brachiocephalic artery (BCA) plaques was conducted to quantify protein expression of the same factors. Deletion of T-bet decreased mRNA for the M1 marker NOS-2 in granuloma macrophages but levels of M2 markers (CD206, arginase-1 and Ym-1), MMPs-2, -9, -12, -13, -14 and -19 or TIMPs-1 to -3 were unchanged. No mRNA differences were observed in aortic extracts from mice fed a HFD for 12 weeks. Moreover, AS and BCA plaques were similarly sized between genotypes, and had similar areas stained for NOS-2, COX-2, MMP-12 and MMP-14 proteins. T-bet deletion increased MMP-13, MMP-14 and arginase-1 in AS plaques. After 35 weeks of ND, T-bet deletion reduced the size of AS and BCA plaques but there were no differences in the percentage areas stained for M1 or M2 markers, MMPs-12, -13, -14, or TIMP-3. Conclusions Absence of Th1 lymphocytes is associated with reduced plaque size in ApoE knockout mice fed a normal but not high fat diet. In either case, M1 macrophage polarization and expression of several MMPs related to plaque instability are either maintained or increased.
Collapse
Affiliation(s)
- Aikaterini Tsaousi
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Elaine M. Hayes
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Karina Di Gregoli
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew R. Bond
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Laura Bevan
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Anita C. Thomas
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew C. Newby
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
38
|
Bennett BJ, Davis RC, Civelek M, Orozco L, Wu J, Qi H, Pan C, Packard RRS, Eskin E, Yan M, Kirchgessner T, Wang Z, Li X, Gregory JC, Hazen SL, Gargalovic PS, Lusis AJ. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains. PLoS Genet 2015; 11:e1005711. [PMID: 26694027 PMCID: PMC4687930 DOI: 10.1371/journal.pgen.1005711] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/06/2015] [Indexed: 12/15/2022] Open
Abstract
Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression showed that the combined variations in plasma metabolites, including LDL/VLDL-cholesterol, trimethylamine N-oxide (TMAO), arginine, glucose and insulin, account for approximately 30 to 40% of the variation in atherosclerotic lesion area. Overall, our data provide a rich resource for studies of complex interactions underlying atherosclerosis. While recent genetic association studies in human populations have succeeded in identifying genetic loci that contribute to coronary artery disease (CAD) and related phenotypes, these loci explain only a small fraction of the genetic variation in CAD and associated traits. Here, we present a complementary approach using association analysis of atherosclerotic traits among inbred strains of mice. A strength of this approach is that it enables in-depth phenotypic characterization including gene expression and metabolic profiling across a variety of tissues, and integration of these molecular phenotypes with coronary artery disease itself. A striking finding was the large fraction of atherosclerosis that was explained by genetic interactions. Association analysis allowed us to identify genetic loci for atherosclerotic lesion area as well as transcript, cytokine and metabolite levels, and relationships among the traits were examined by correlation and network modeling. The plasma metabolites associated with atherosclerosis in mice, namely, LDL/VLDL-cholesterol, TMAO, arginine, glucose and insulin, overlapped with those observed in humans and accounted for approximately 30 to 40% of the observed variation in atherosclerotic lesion area. In summary, our data provide a detailed overview of the genetic architecture of atherosclerosis in mice and a rich resource for studies of the complex genetic and metabolic interactions that underlie the disease.
Collapse
Affiliation(s)
- Brian J. Bennett
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Richard C. Davis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Mete Civelek
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Luz Orozco
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Judy Wu
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Hannah Qi
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Calvin Pan
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - René R. Sevag Packard
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Eleazar Eskin
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Mujing Yan
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Princeton, New Jersey, United States of America
| | - Todd Kirchgessner
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Princeton, New Jersey, United States of America
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Xinmin Li
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Jill C. Gregory
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Stanley L. Hazen
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Peter S. Gargalovic
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Princeton, New Jersey, United States of America
| | - Aldons J. Lusis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Wolf D, Zirlik A, Ley K. Beyond vascular inflammation--recent advances in understanding atherosclerosis. Cell Mol Life Sci 2015; 72:3853-69. [PMID: 26100516 PMCID: PMC4577451 DOI: 10.1007/s00018-015-1971-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 12/23/2022]
Abstract
Atherosclerosis is the most life-threatening pathology worldwide. Its major clinical complications, stroke, myocardial infarction, and heart failure, are on the rise in many regions of the world--despite considerable progress in understanding cause, progression, and consequences of atherosclerosis. Originally perceived as a lipid-storage disease of the arterial wall (Die cellularpathologie in ihrer begründung auf physiologische und pathologische gewebelehre. August Hirschwald Verlag Berlin, [1871]), atherosclerosis was recognized as a chronic inflammatory disease in 1986 (New Engl J Med 314:488-500, 1986). The presence of lymphocytes in atherosclerotic lesions suggested autoimmune processes in the vessel wall (Clin Exp Immunol 64:261-268, 1986). Since the advent of suitable mouse models of atherosclerosis (Science 258:468-471, 1992; Cell 71:343-353, 1992; J Clin Invest 92:883-893, 1993) and the development of flow cytometry to define the cellular infiltrate in atherosclerotic lesions (J Exp Med 203:1273-1282, 2006), the origin, lineage, phenotype, and function of distinct inflammatory cells that trigger or inhibit the inflammatory response in the atherosclerotic plaque have been studied. Multiphoton microscopy recently enabled direct visualization of antigen-specific interactions between T cells and antigen-presenting cells in the vessel wall (J Clin Invest 122:3114-3126, 2012). Vascular immunology is now emerging as a new field, providing evidence for protective as well as damaging autoimmune responses (Int Immunol 25:615-622, 2013). Manipulating inflammation and autoimmunity both hold promise for new therapeutic strategies in cardiovascular disease. Ongoing work (J Clin Invest 123:27-36, 2013; Front Immunol 2013; Semin Immunol 31:95-101, 2009) suggests that it may be possible to develop antigen-specific immunomodulatory prevention and therapy-a vaccine against atherosclerosis.
Collapse
Affiliation(s)
- Dennis Wolf
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA
| | - Andreas Zirlik
- Atherogenesis Research Group, Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
40
|
Fond AM, Lee CS, Schulman IG, Kiss RS, Ravichandran KS. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1. J Clin Invest 2015; 125:2748-58. [PMID: 26075824 DOI: 10.1172/jci80300] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/12/2015] [Indexed: 01/15/2023] Open
Abstract
Macrophages clear millions of apoptotic cells daily and, during this process, take up large quantities of cholesterol. The membrane transporter ABCA1 is a key player in cholesterol efflux from macrophages and has been shown via human genetic studies to provide protection against cardiovascular disease. How the apoptotic cell clearance process is linked to macrophage ABCA1 expression is not known. Here, we identified a plasma membrane-initiated signaling pathway that drives a rapid upregulation of ABCA1 mRNA and protein. This pathway involves the phagocytic receptor brain-specific angiogenesis inhibitor 1 (BAI1), which recognizes phosphatidylserine on apoptotic cells, and the intracellular signaling intermediates engulfment cell motility 1 (ELMO1) and Rac1, as ABCA1 induction was attenuated in primary macrophages from mice lacking these molecules. Moreover, this apoptotic cell-initiated pathway functioned independently of the liver X receptor (LXR) sterol-sensing machinery that is known to regulate ABCA1 expression and cholesterol efflux. When placed on a high-fat diet, mice lacking BAI1 had increased numbers of apoptotic cells in their aortic roots, which correlated with altered lipid profiles. In contrast, macrophages from engineered mice with transgenic BAI1 overexpression showed greater ABCA1 induction in response to apoptotic cells compared with those from control animals. Collectively, these data identify a membrane-initiated pathway that is triggered by apoptotic cells to enhance ABCA1 within engulfing phagocytes and with functional consequences in vivo.
Collapse
|
41
|
Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation. Immunobiology 2015; 220:833-44. [DOI: 10.1016/j.imbio.2014.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/07/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022]
|
42
|
Abstract
M1 and M2 macrophage-type responses kill or repair in vivo. The unique ability of macrophages to make these polar opposite type of responses provides primary host protection and maintains tissue homeostasis throughout the animal kingdom. In humans and other higher animals, M1 and M2-type macrophage responses also initiate and direct T cells/adaptive immunity to provide additional protection such as Th1 (cytotoxic) or Th2 (antibody-mediated) type responses. Hence, macrophages were renamed M1 and M2 to indicate the central role of macrophages/innate immunity in immune systems. These findings indicate that the long held notion that adaptive immunity controls innate immunity was backward: a sea change in understanding how immune responses occur. The clinical impact of M1/kill and M2/repair responses is immense playing pivotal roles in curing (or causing) many diseases including infections, cancer, autoimmunity, and atherosclerosis. How M1/M2 came to be is an interesting story that, like life, involved Direction, Determination, Discouragement, and Discovery.
Collapse
|
43
|
Ebrahimian T, Simon D, Lemarié CA, Simeone S, Heidari M, Mann KK, Wassmann S, Lehoux S. Absence of Four-and-a-Half LIM Domain Protein 2 Decreases Atherosclerosis in ApoE
−/−
Mice. Arterioscler Thromb Vasc Biol 2015; 35:1190-7. [DOI: 10.1161/atvbaha.114.305071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 03/01/2015] [Indexed: 02/07/2023]
Abstract
Objective—
Four-and-a-half LIM domain protein-2 (FHL2) is expressed in endothelial cells, vascular smooth muscle cells, and leukocytes. It regulates cell survival, migration, and inflammatory response, but its role in atherogenesis is unknown.
Approach and Results—
To investigate the role of FHL2 in atherosclerosis, FHL2-deficient mice were crossed with ApoE-deficient mice, to generate ApoE/FHL2−/− mice. After high-fat diet, ApoE/FHL2−/− mice had significantly smaller atherosclerotic plaques than ApoE−/− mice in the aortic sinus, the brachiocephalic artery, and the aorta. This was associated with enhanced collagen and smooth muscle cell contents and a 2-fold reduction in macrophage content within the plaques of ApoE/FHL-2−/− versus ApoE−/− mice. This could be explained, in part, by the reduction in aortic ICAM-1 (intracellular adhesion molecule) mRNA and VCAM-1 (vascular cell adhesion molecule) protein expression in the plaque. Aortic gene expression of the chemokines CX3CL1 and CCL5 was increased in ApoE/FHL2−/− versus ApoE−/− mice. Peritoneal thioglycollate injection elicited equivalent numbers of monocytes and macrophages in both groups, but a significantly lower number of proinflammatory Ly6C high monocytes were recruited in ApoE/FHL2−/− versus ApoE−/− mice. Furthermore, mRNA levels of CX3CR1 were 2-fold higher in monocytes from ApoE/FHL2−/− versus ApoE−/− mice. Finally, we investigated the potential importance of myeloid cell FHL2 deficiency in atherosclerosis. After being irradiated, ApoE−/− or ApoE/FHL2−/− mice were transplanted with ApoE−/− or ApoE/FHL2−/− bone marrow. After high-fat diet, both chimeric groups developed smaller plaques than ApoE−/− transplanted with ApoE−/− bone marrow.
Conclusions—
These results suggest that FHL2 in both myeloid and vascular cells may play an important role in atherosclerosis by promoting proinflammatory chemokine production, adhesion molecule expression, and proinflammatory monocyte recruitment.
Collapse
Affiliation(s)
- Talin Ebrahimian
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - David Simon
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Catherine A. Lemarié
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Stefania Simeone
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Maryam Heidari
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Koren K. Mann
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sven Wassmann
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Stephanie Lehoux
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
44
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the artery wall. Adaptive immunity plays a key role in the pathogenesis of atherosclerosis. Recently, modulation of the immune response against atherosclerotic plaque antigen(s) has attracted attention as a potentially preventive and therapeutic approach. Here, we review a series of studies on immunization with various antigens targeting treatment and prevention of atherosclerosis. Atherosclerosis-related antigens include oxidized low-density lipoprotein (LDL), apolipoprotein B-100 (ApoB-100) and heat shock protein (HSP) 60/65. Accumulating evidence supports the idea that immunization with these antigenic proteins or peptides may reduce atherosclerosis. In this review, we discuss the current status of immunization studies and possible associated mechanisms of atheroprotection.
Collapse
|
45
|
Abstract
Cardiovascular disease is the major cause of death in most developed nations and the social and economic burden of this disease is quite high. Atherosclerosis is a major underlying basis for most cardiovascular diseases including myocardial infarction and stroke. Genetically modified mouse models, particularly mice deficient in apoprotein E or the LDL receptor, have been widely used in preclinical atherosclerosis studies to gain insight into the mechanisms underlying this pathology. This chapter reviews several mouse models of atherosclerosis progression and regression as well as the role of immune cells in disease progression and the genetics of murine atherogenesis.
Collapse
Affiliation(s)
- Godfrey S Getz
- Department of Pathology, University of Chicago, Box MC 1089, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA.
| | - Catherine A Reardon
- Department of Pathology, University of Chicago, Box MC 1089, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
46
|
Zhang Y, Kundu B, Zhong M, Huang T, Li J, Chordia MD, Chen MH, Pan D, He J, Shi W. PET imaging detection of macrophages with a formyl peptide receptor antagonist. Nucl Med Biol 2014; 42:381-6. [PMID: 25532700 DOI: 10.1016/j.nucmedbio.2014.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/04/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
Macrophages are a major inflammatory cell type involved in the development and progression of many important chronic inflammatory diseases. We previously found that apolipoprotein E-deficient (Apoe(-/-)) mice with the C57BL/6 (B6) background develop type 2 diabetes mellitus (T2DM) and accelerated atherosclerosis when fed a Western diet and that there are increased macrophage infiltrations in pancreatic islets and aorta. The formyl peptide receptor 1 (FPR1) is abundantly expressed on the surface of macrophages. The purpose of this study was to evaluate the applicability of cinnamoyl-F-(D)L-F-(D)L-F (cFLFLF), a natural FPR1 antagonist, to detection of macrophages in the pancreatic islets and aorta. (64)Cu labeled cFLFLF and (18)F-fluorodeoxyglucose (FDG) were administered to mice with or without T2DM. Diabetic mice showed an increased (18)FDG uptake in the subcutaneous fat compared with control mice, but pancreatic uptake was minimal for either group. In contrast, diabetic mice exhibited visually noticeable more cFLFLF-(64)Cu retention in pancreas and liver than control mice. The heart and pancreas isolated from diabetic mice contained more macrophages and showed stronger PET signals than those of control mice. Flow cytometry analysis revealed the presence of macrophages but not neutrophils in pancreatic islets. Real-time PCR analysis revealed much higher FPR1 expression in pancreatic islets of diabetic over control mice. Autoradiography and immunohistochemical analysis confirmed abundant FPR1 expression in atherosclerotic lesions. Thus, (64)Cu-labeled cFLFLF peptide is a more effective PET agent for detecting macrophages compared to FDG.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Bijoy Kundu
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Min Zhong
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Tao Huang
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Jing Li
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Mahendra D Chordia
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Mei-Hua Chen
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Dongfeng Pan
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Jiang He
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908
| | - Weibin Shi
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA 22908.
| |
Collapse
|
47
|
Hayes EM, Tsaousi A, Di Gregoli K, Jenkinson SR, Bond AR, Johnson JL, Bevan L, Thomas AC, Newby AC. Classical and Alternative Activation and Metalloproteinase Expression Occurs in Foam Cell Macrophages in Male and Female ApoE Null Mice in the Absence of T and B Lymphocytes. Front Immunol 2014; 5:537. [PMID: 25389425 PMCID: PMC4211548 DOI: 10.3389/fimmu.2014.00537] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/10/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Rupture of advanced atherosclerotic plaques accounts for most life-threatening myocardial infarctions. Classical (M1) and alternative (M2) macrophage activation could promote atherosclerotic plaque progression and rupture by increasing production of proteases, including matrix metalloproteinases (MMPs). Lymphocyte-derived cytokines may be essential for generating M1 and M2 phenotypes in plaques, although this has not been rigorously tested until now. METHODS AND RESULTS We validated the expression of M1 markers (iNOS and COX-2) and M2 markers (arginase-1, Ym-1, and CD206) and then measured MMP mRNA levels in mouse macrophages during classical and alternative activation in vitro. We then compared mRNA expression of these genes ex vivo in foam cells from subcutaneous granulomas in fat-fed immune-competent ApoE knockout (KO) and immune-compromised ApoE/Rag-1 double-KO mice, which lack all T and B cells. Furthermore, we performed immunohistochemistry in subcutaneous granulomas and in aortic root and brachiocephalic artery atherosclerotic plaques to measure the extent of M1/M2 marker and MMP protein expression in vivo. Classical activation of mouse macrophages with bacterial lipopolysaccharide in vitro increased MMPs-13, -14, and -25 but decreased MMP-19 and TIMP-2 mRNA expressions. Alternative activation with IL-4 increased MMP-19 expression. Foam cells in subcutaneous granulomas expressed all M1/M2 markers and MMPs at ex vivo mRNA and in vivo protein levels, irrespective of Rag-1 genotype. There were also similar percentages of foam cell macrophages (FCMs) carrying M1/M2 markers and MMPs in atherosclerotic plaques from ApoE KO and ApoE/Rag-1 double-KO mice. CONCLUSION Classical and alternative activation leads to distinct MMP expression patterns in mouse macrophages in vitro. M1 and M2 polarization in vivo occurs in the absence of T and B lymphocytes in either granuloma or plaque FCMs.
Collapse
Affiliation(s)
- Elaine Mo Hayes
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Aikaterini Tsaousi
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Karina Di Gregoli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - S Rhiannon Jenkinson
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Andrew R Bond
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Jason L Johnson
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Laura Bevan
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Anita C Thomas
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Andrew C Newby
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| |
Collapse
|
48
|
|
49
|
Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Dendritic cells in atherosclerotic inflammation: the complexity of functions and the peculiarities of pathophysiological effects. Front Physiol 2014; 5:196. [PMID: 24904430 PMCID: PMC4034414 DOI: 10.3389/fphys.2014.00196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/09/2014] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is considered as a chronic disease of arterial wall, with a strong contribution of inflammation. Dendritic cells (DCs) play a crucial role in the initiation of proatherogenic inflammatory response. Mature DCs present self-antigens thereby supporting differentiation of naïve T cells to effector cells that further propagate atherosclerotic inflammation. Regulatory T cells (Tregs) can suppress proinflammatory function of mature DCs. In contrast, immature DCs are able to induce Tregs and prevent differentiation of naïve T cells to proinflammatory effector T cells by initiating apoptosis and anergy in naïve T cells. Indeed, immature DCs showed tolerogenic and anti-inflammatory properties. Thus, DCs play a double role in atherosclerosis: mature DCs are proatherogenic while immature DCs appear to be anti-atherogenic. Tolerogenic and anti-inflammatory capacity of immature DCs can be therefore utilized for the development of new immunotherapeutic strategies against atherosclerosis.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical University Moscow, Russia
| | - Igor A Sobenin
- Skolkovo Innovative Center, Institute for Atherosclerosis Research Moscow, Russia ; Institute of General Pathology and Pathophysiology, Russian Academy of Sciences Moscow, Russia ; Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex Moscow, Russia
| | - Alexander N Orekhov
- Skolkovo Innovative Center, Institute for Atherosclerosis Research Moscow, Russia ; Institute of General Pathology and Pathophysiology, Russian Academy of Sciences Moscow, Russia
| | - Yuri V Bobryshev
- Skolkovo Innovative Center, Institute for Atherosclerosis Research Moscow, Russia ; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Kensington, Sydney NSW, Australia
| |
Collapse
|
50
|
Rogers NM, Sharifi-Sanjani M, Csányi G, Pagano PJ, Isenberg JS. Thrombospondin-1 and CD47 regulation of cardiac, pulmonary and vascular responses in health and disease. Matrix Biol 2014; 37:92-101. [PMID: 24418252 DOI: 10.1016/j.matbio.2014.01.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 01/10/2023]
Abstract
Cardiovascular homeostasis and health is maintained through the balanced interactions of cardiac generated blood flow and cross-talk between the cellular components that comprise blood vessels. Central to this cross-talk is endothelial generated nitric oxide (NO) that stimulates relaxation of the contractile vascular smooth muscle (VSMC) layer of blood vessels. In cardiovascular disease this balanced interaction is disrupted and NO signaling is lost. Work over the last several years indicates that regulation of NO is much more complex than previously believed. It is now apparent that the secreted protein thrombospondin-1 (TSP1), that is upregulated in cardiovascular disease and animal models of the same, on activating cell surface receptor CD47, redundantly inhibits NO production and NO signaling. This inhibitory event has implications for baseline and disease-related responses mediated by NO. Further work has identified that TSP1-CD47 signaling stimulates enzymatic reactive oxygen species (ROS) production to further limit blood flow and promote vascular disease. Herein consideration is given to the most recent discoveries in this regard which identify the TSP1-CD47 axis as a major proximate governor of cardiovascular health.
Collapse
Affiliation(s)
- Natasha M Rogers
- Vascular Medicine Institute, University of Pittsburgh School of Medicine; Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | | | - Gábor Csányi
- Vascular Medicine Institute, University of Pittsburgh School of Medicine; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine
| | - Patrick J Pagano
- Vascular Medicine Institute, University of Pittsburgh School of Medicine; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine
| | - Jeffrey S Isenberg
- Vascular Medicine Institute, University of Pittsburgh School of Medicine; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine; Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|