1
|
Ji W, Zhu P, Wang Y, Zhang Y, Li Z, Yang H, Chen S, Jin Y, Duan G. The key mechanisms of multi-system responses triggered by central nervous system damage in hand, foot, and mouth disease severity. INFECTIOUS MEDICINE 2024; 3:100124. [PMID: 39314804 PMCID: PMC11417554 DOI: 10.1016/j.imj.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/10/2024] [Accepted: 07/23/2024] [Indexed: 09/25/2024]
Abstract
Hand, foot, and mouth disease (HFMD) is a prevalent infectious affliction primarily affecting children, with a small portion of cases progressing to neurological complications. Notably, in a subset of severe HFMD cases, neurological manifestations may result in significant sequelae and pose a risk of mortality. We systematically conducted literature retrieval from the databases PubMed (1957-2023), Embase (1957-2023), and Web of Science (1957-2023), in addition to consulting authoritative guidelines. Subsequently, we rigorously selected the most relevant articles within the scope of this review for comprehensive analysis. It is widely recognized that the severity of HFMD is attributed to a multifaceted array of pathophysiological mechanisms. The implication of multi-system dysfunction appears to be perturbances of the human defense system; therefore, it contributes to the severity of HFMD. In this review, we provide an overview and analysis of recent insights into the molecular mechanisms contributing to the severity of HFMD, with a particular focus on cytokine release syndrome, the involvement of the renin-angiotensin system, regional immunity, endothelial dysfunction, catecholamine storm, viral invasion, and the molecular mechanisms of neurological damage. We speculate that the domino effect of diverse physiological systems, initiated by damage to the central nervous system, serve as the primary mechanisms governing the severity of HFMD. Simultaneously, we emphasize the knowledge gaps and research urgently required to delineate a quick roadmap for ongoing and essential studies on HFMD.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| |
Collapse
|
2
|
Hu Y, Zhao W, Lv Y, Li H, Li J, Zhong M, Pu D, Jian F, Song J, Zhang Y. NLRP3-dependent pyroptosis exacerbates coxsackievirus A16 and coxsackievirus A10-induced inflammatory response and viral replication in SH-SY5Y cells. Virus Res 2024; 345:199386. [PMID: 38705479 PMCID: PMC11091677 DOI: 10.1016/j.virusres.2024.199386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Coxsackievirus A16 (CV-A16) and coxsackievirus A10 (CV-A10), more commonly etiological agents of hand, foot and mouth disease (HFMD), are capable of causing severe neurological syndromes with high fatalities, but their neuropathogenesis has rarely been studied. Mounting evidence indicated that pyroptosis is an inflammatory form of cell death that might be widely involved in the pathogenic mechanisms of neurotropic viruses. Our study was designed to examine the effects of NLRP3-mediated pyroptosis in CV-A16- and CV-A10-induced inflammatory neuropathologic formation. In this work, it was showed that SH-SY5Y cells were susceptible to CV-A16 and CV-A10, and meanwhile their infections could result in a decreasing cell viability and an increasing LDH release as well as Caspase1 activation. Moreover, CV-A16 and CV-A10 infections triggered NLRP3-mediated pyroptosis and promoted the release of inflammatory cytokines. Additionally, activated NLRP3 accelerated the pyroptosis formation and aggravated the inflammatory response, but inhibited NLRP3 had a dampening effect on the above situation. Finally, it was further revealed that NLRP3 agonist enhanced the viral replication, but NLRP3 inhibitor suppressed the viral replication, suggesting that NLRP3-driven pyroptosis might support CV-A16 and CV-A10 production in SH-SY5Y cells. Together, our findings demonstrated a mechanism by which CV-A16 and CV-A10 induce inflammatory responses by evoking NLRP3 inflammasome-regulated pyroptosis, which in turn further stimulated the viral replication, providing novel insights into the pathogenesis of CV-A16 and CV-A10 infections.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wei Zhao
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yaming Lv
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hui Li
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jiang Li
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Mingmei Zhong
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dandan Pu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Fuping Jian
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
4
|
You Q, Wu J, Liu Y, Zhang F, Jiang N, Tian X, Cai Y, Yang E, Lyu R, Zheng N, Chen D, Wu Z. HMGB1 Release Induced by EV71 Infection Exacerbates Blood-Brain Barrier Disruption via VE-cadherin Phosphorylation. Virus Res 2023; 338:199240. [PMID: 37832655 PMCID: PMC10587765 DOI: 10.1016/j.virusres.2023.199240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
PURPOSE EV71 (Enterovirus 71) is a major causative agent of the outbreaks of HFMD (hand, foot, and mouth disease), which is associated with neurological damage caused by permeability disruption of BBB (blood-brain barrier). HMGB1 (high-mobility group box 1) is a widely expressed nuclear protein that triggers host inflammatory responses. Our work aimed to explore the function of HMGB1 in EV71 infection and its contributions to EV71-related BBB damage. METHODS HeLa cells, HT-29 cells and AG6 mice were used to explore the translocation of HMGB1 in EV71 infection in vitro and in vivo. The roles of released HMGB1 on EV71 replication and associated inflammatory cytokines were investigated using recombinant HMGB1 in HeLa cells. The mechanisms of released HMGB1 in EV71-induced BBB injury were explored using recombinant HMGB1 and anti-HMGB1 neutralizing antibodies in monolayer HCMECs (immortalized human brain microvascular endothelial cells) and AG6 mice brain. RESULTS EV71 induced HMGB1 nucleocytoplasmic translocation and extracellular release in vitro and in vivo. Released HMGB1 acted as an inflammatory mediator in EV71 infection rather than affecting viral replication in vitro. Released HMGB1 disrupted BBB integrity by enhancing VE-cadherin phosphorylation at tyrosine 685 in HCMECs, and reducing total VE-cadherin levels in HCMECs and AG6 mice in EV71 infection. And released HMGB1 induced an increase in activated astrocytes. Neutralization of HMGB1 reversed the increased endothelial hyperpermeability and phosphorylation of VE-cadherin in HCMECs. CONCLUSION The inflammatory mediator HMGB1 released by EV71 exacerbated BBB disruption by enhancing VE-cadherin phosphorylation, which in turn aggravated EV71-induced neuroinflammation.
Collapse
Affiliation(s)
- Qiao You
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Jing Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Ye Liu
- China Department of Ophthalmology, Tianjin First Central Hospital, Tianjin, China
| | - Fang Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Na Jiang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Xiaoyan Tian
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Yurong Cai
- School of Life Sciences, Ningxia University, Yinchuan, PR China
| | - Enhui Yang
- Department of Child Healthcare, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Ruining Lyu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Nan Zheng
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, China.
| | - Zhiwei Wu
- School of Life Sciences, Ningxia University, Yinchuan, PR China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Zhu P, Ji W, Li D, Li Z, Chen Y, Dai B, Han S, Chen S, Jin Y, Duan G. Current status of hand-foot-and-mouth disease. J Biomed Sci 2023; 30:15. [PMID: 36829162 PMCID: PMC9951172 DOI: 10.1186/s12929-023-00908-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is a viral illness commonly seen in young children under 5 years of age, characterized by typical manifestations such as oral herpes and rashes on the hands and feet. These symptoms typically resolve spontaneously within a few days without complications. Over the past two decades, our understanding of HFMD has greatly improved and it has received significant attention. A variety of research studies, including epidemiological, animal, and in vitro studies, suggest that the disease may be associated with potentially fatal neurological complications. These findings reveal clinical, epidemiological, pathological, and etiological characteristics that are quite different from initial understandings of the illness. It is important to note that HFMD has been linked to severe cardiopulmonary complications, as well as severe neurological sequelae that can be observed during follow-up. At present, there is no specific pharmaceutical intervention for HFMD. An inactivated Enterovirus A71 (EV-A71) vaccine that has been approved by the China Food and Drug Administration (CFDA) has been shown to provide a high level of protection against EV-A71-related HFMD. However, the simultaneous circulation of multiple pathogens and the evolution of the molecular epidemiology of infectious agents make interventions based solely on a single agent comparatively inadequate. Enteroviruses are highly contagious and have a predilection for the nervous system, particularly in child populations, which contributes to the ongoing outbreak. Given the substantial impact of HFMD around the world, this Review synthesizes the current knowledge of the virology, epidemiology, pathogenesis, therapy, sequelae, and vaccine development of HFMD to improve clinical practices and public health efforts.
Collapse
Affiliation(s)
- Peiyu Zhu
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Wangquan Ji
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Dong Li
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Zijie Li
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Yu Chen
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Bowen Dai
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Shujie Han
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Shuaiyin Chen
- grid.207374.50000 0001 2189 3846Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001 China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China. .,Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
6
|
Wong KT, Tan CT, Lim T. Beyond Pattern Recognition. Neuroimaging Clin N Am 2023; 33:225-233. [DOI: 10.1016/j.nic.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Sun T, Li D, Dai X, Meng C, Li Y, Cheng C, Ji W, Zhu P, Chen S, Yang H, Jin Y, Zhang W, Duan G. Local immune dysregulation and subsequent inflammatory response contribute to pulmonary edema caused by Enterovirus infection in mice. J Med Virol 2023; 95:e28454. [PMID: 36597906 DOI: 10.1002/jmv.28454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/15/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Pulmonary edema that comes on suddenly is the leading cause of mortality in hand-foot-and-mouth disease (HFMD) patients; however, its pathogenesis is still largely unclear. A range of research suggest immunopathogenesis during the occurrence of pulmonary edema in severe HFMD patients. Herein, to investigate the potential mechanism of immune dysregulation in the development of pulmonary edema upon Enterovirus (EV) infection, we established mouse infection models for Enteroviruses (EVs) including Coxsackievirus (CV) A6, Enterovirus A71 (EVA71), and CVA2 exhibiting a high incidence of pulmonary edema. We found that EVs infection induced an immune system disorder by reducing the numbers of pulmonary and circulatory T cells, B cells, macrophages, and monocytes and increasing the numbers of lung neutrophils, myeloid-derived suppressor cells (MDSCs), and activated T cells. In addition, the concentrations of C-X-C motif chemokine ligand 1 (CXCL-1), tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and interleukin 6 were increased in EV-infected lungs. Moreover, we found that EVs replication in mice lungs lead to apoptosis of lung cells and degradation of tight junction proteins. In conclusion, EVs infection likely triggered a complexed immune defense mechanism and caused dysregulation of innate immune cells (MDSCs, neutrophils, monocytes, and macrophages) and adaptive cellular immunity (B cells, T cells). This dysregulation increased the release of cytokines and other inflammatory factors from activated immune-related cells and caused lung barrier damage and pulmonary edema.
Collapse
Affiliation(s)
- Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinchen Dai
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Caiyun Meng
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Yi Li
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Cheng Cheng
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weiguo Zhang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Xing J, Wang K, Wang G, Li N, Zhang Y. Recent advances in enterovirus A71 pathogenesis: a focus on fatal human enterovirus A71 infection. Arch Virol 2022; 167:2483-2501. [PMID: 36171507 DOI: 10.1007/s00705-022-05606-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
Enterovirus A71 (EV-A71) is one of the major pathogens responsible for hand, foot, and mouth disease (HFMD). Many HFMD outbreaks have been reported throughout the world in the past decades. Compared with other viruses, EV-A71 infection is more frequently associated with severe neurological complications and even death in children. EV-A71 can also infect adults and cause severe complications and death, although such cases are very uncommon. Although fatal cases of EV-A71 infection have been reported, the underlying mechanisms of EV-A71 infection, especially the mode of viral spread into the central nervous system (CNS) and mechanisms of pulmonary edema, which is considered to be the direct cause of death, have not yet been fully clarified, and more studies are needed. Here, we first summarize the pathological findings in various systems of patients with fatal EV-A71 infections, focussing in detail on gross changes, histopathological examination, tissue distribution of viral antigens and nucleic acids, systemic inflammatory cell infiltration, and tissue distribution of viral receptors and their co-localization with viral antigens. We then present our conclusions about viral dissemination, neuropathogenesis, and the mechanism of pulmonary edema in EV-A71 infection, based on pathological findings.
Collapse
Affiliation(s)
- Jingjun Xing
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China
| | - Ke Wang
- The Affiliated Hospital of Medical School, Ningbo University, No. 247 Renmin Road, Jiangbei District, Ningbo, 315020, Zhejiang Province, P. R. China
| | - Geng Wang
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China
| | - Na Li
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China
| | - Yanru Zhang
- Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Science, School of Medicine, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo, 315211, Zhejiang Province, P. R. China.
| |
Collapse
|
9
|
Nayak G, Bhuyan SK, Bhuyan R, Sahu A, Kar D, Kuanar A. Global emergence of Enterovirus 71: a systematic review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:78. [PMID: 35730010 PMCID: PMC9188855 DOI: 10.1186/s43088-022-00258-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/29/2022] [Indexed: 02/06/2023] Open
Abstract
Background Hand, foot, and mouth disease (HFMD) is a viral infection caused by a virus from the enterovirus genus of picornavirus family that majorly affects children. Though most cases of HFMD do not cause major problems, the outbreaks of Enterovirus 71 (EV71) can produce a high risk of neurological sequelae, including meningoencephalitis, lung difficulties, and mortality. In Asia, HFMD caused by EV71 has emerged as an acutely infectious disease of highly pathogenic potential, which demands the attention of the international medical community.
Main body of the abstract Some online databases including NCBI, PubMed, Google Scholar, ProQuest, Scopus, and EBSCO were also accessed using keywords relating to the topic for data mining. The paid articles were accessed through the Centre Library facility of Siksha O Anusandhan University. This work describes the structure, outbreak, molecular epidemiology of Enterovirus 71 along with different EV71 vaccines. Many vaccines have been developed such as inactivated whole-virus live attenuated, subviral particles, and DNA vaccines to cure the patients. In Asia–Pacific nations, inactivated EV71 vaccination still confronts considerable obstacles in terms of vaccine standardization, registration, price, and harmonization of pathogen surveillance and measurements. Short conclusion HFMD has emerged as a severe health hazard in Asia–Pacific countries in recent decades. In Mainland China and other countries with high HFMD prevalence, the inactivated EV71 vaccination will be a vital tool in safeguarding children's health. When creating inactivated EV71 vaccines, Mainland China ensured maintaining high standards of vaccine quality. The Phase III clinical studies were used to confirm the safety and effectiveness of vaccinations. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Gayatree Nayak
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be) University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha 751003 India
| | - Sanat Kumar Bhuyan
- Institute of Dental Sciences, Siksha 'O' Anusandhan (Deemed to Be) University, Bhubaneswar, Odisha 751003 India
| | - Ruchi Bhuyan
- Department of Medical Research, Health Science, IMS and SUM Hospital, Siksha O Anusandhan (Deemed to Be) University, Bhubaneswar, Odisha 751003 India
| | - Akankshya Sahu
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be) University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha 751003 India
| | - Dattatreya Kar
- Department of Medical Research, Health Science, IMS and SUM Hospital, Siksha O Anusandhan (Deemed to Be) University, Bhubaneswar, Odisha 751003 India
| | - Ananya Kuanar
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be) University, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha 751003 India
| |
Collapse
|
10
|
The CXCL10/CXCR3 Axis Promotes Disease Pathogenesis in Mice upon CVA2 Infection. Microbiol Spectr 2022; 10:e0230721. [PMID: 35604176 PMCID: PMC9241849 DOI: 10.1128/spectrum.02307-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus A2 (CVA2) is an emerging pathogen that results in hand-foot-and-mouth disease (HFMD) outbreaks. Systemic inflammatory response and central nervous system inflammation are the main pathological features of fatal HFMD. However, the immunopathogenesis of CVA2 infection is poorly understood. We first detected the transcriptional levels of 81 inflammation-related genes in neonatal mice with CVA2 infection. Remarkably, CVA2 induced higher expression of chemokine (C-X-C motif) ligand 10 (CXCL10) in multiple organs and tissues. CXCL10 acts through its cognate receptor chemokine (C-X-C motif) receptor 3 (CXCR3) and regulates immune responses. CXCL10/CXCR3 activation contributes to the pathogenesis of many inflammatory diseases. Next, we found CXCL10 and CXCR3 expression to be significantly elevated in the organs and tissues from CVA2-infected mice at 5 days postinfection (dpi) using immunohistochemistry (IHC). To further explore the role of CXCL10/CXCR3 in CVA2 pathogenesis, an anti-CXCR3 neutralizing antibody (αCXCR3) or IgG isotype control antibody was used to treat CVA2-infected mice on the same day as infection and every 24 h until 5 dpi. Our results showed that αCXCR3 therapy relieved the clinical manifestations and pathological damage and improved the survival rate of CVA2-infected mice. Additionally, αCXCR3 treatment reduced viral loads and reversed the proinflammatory cytokine (interleukin 6 [IL-6], tumor necrosis factor alpha [TNF-α], and IL-1β) expression, apoptosis, and inflammatory cell infiltration induced by CVA2. Collectively, our study presents evidence for the involvement of the CXCL10/CXCR3 axis in CVA2 pathogenesis. The activation of CXCL10/CXCR3 contributes to CVA2 pathogenesis by inducing apoptosis, proinflammatory cytokine expression, and inflammatory cell infiltration, which can be reversed by αCXCR3 therapy. This study provides new insight into the pathogenesis of HFMD, which has an important guiding significance for the treatment of HFMD. IMPORTANCE Systemic inflammatory response and central nervous system inflammation are the main pathological features of fatal HFMD cases. We detected the expression of 81 inflammation-related genes and found higher expression of CXCL10 in CVA2-infected mice. Next, we confirmed CXCL10/CXCR3 activation using immunohistochemistry and found that anti-CXCR3 neutralizing antibody (αCXCR3) therapy could relieve the clinical manifestations and pathological damage and improve the survival rate of CVA2-infected mice. Additionally, αCXCR3 treatment reduced viral loads and reversed the proinflammatory cytokine (IL-6, TNF-α, and IL-1β) expression, apoptosis, and inflammatory cell infiltration induced by CVA2. Collectively, our study presents the first evidence for the involvement of the CXCL10/CXCR3 axis in CVA2 pathogenesis. The activation of CXCL10/CXCR3 contributes to CVA2 pathogenesis via inducing apoptosis, proinflammatory cytokine expression, and inflammatory cell infiltration, which can be reversed by αCXCR3 therapy. This study provides new insight into the pathogenesis of HFMD, which has an important guiding significance for the treatment of HFMD.
Collapse
|
11
|
Gunaseelan S, Ariffin MZ, Khanna S, Ooi MH, Perera D, Chu JJH, Chua JJE. Pharmacological perturbation of CXCL1 signaling alleviates neuropathogenesis in a model of HEVA71 infection. Nat Commun 2022; 13:890. [PMID: 35173169 PMCID: PMC8850555 DOI: 10.1038/s41467-022-28533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Hand, foot and mouth disease (HFMD) caused by Human Enterovirus A71 (HEVA71) infection is typically a benign infection. However, in minority of cases, children can develop severe neuropathology that culminate in fatality. Approximately 36.9% of HEVA71-related hospitalizations develop neurological complications, of which 10.5% are fatal. Yet, the mechanism by which HEVA71 induces these neurological deficits remain unclear. Here, we show that HEVA71-infected astrocytes release CXCL1 which supports viral replication in neurons by activating the CXCR2 receptor-associated ERK1/2 signaling pathway. Elevated CXCL1 levels correlates with disease severity in a HEVA71-infected mice model. In humans infected with HEVA71, high CXCL1 levels are only present in patients presenting neurological complications. CXCL1 release is specifically triggered by VP4 synthesis in HEVA71-infected astrocytes, which then acts via its receptor CXCR2 to enhance viral replication in neurons. Perturbing CXCL1 signaling or VP4 myristylation strongly attenuates viral replication. Treatment with AZD5069, a CXCL1-specific competitor, improves survival and lessens disease severity in infected animals. Collectively, these results highlight the CXCL1-CXCR2 signaling pathway as a potential target against HFMD neuropathogenesis.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, 117456, Singapore
| | - Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, 117456, Singapore
| | - Mong How Ooi
- Department of Paediatrics, Sarawak General Hospital, Kuching, Sarawak, Malaysia
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Infectious Disease Translational Research Programme, National University of Singapore, Singapore, 117597, Singapore.
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- LSI Neurobiology Programme, National University of Singapore, Singapore, 117456, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Understanding the pathophysiology of COVID-19 and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that causes the disease has demonstrated the complexity of acute respiratory viruses that can cause neurologic manifestations. This article describes the most common respiratory viruses that have neurologic manifestations, with a focus on SARS-CoV-2 and COVID-19. RECENT FINDINGS In vitro and in vivo studies have better elucidated the neurotropism of various respiratory viruses. Understanding host cell receptors that mediate viral binding and entry not only demonstrates how viruses enter host cells but also provides possible mechanisms for therapeutic interventions. Elucidation of SARS-CoV-2 binding and fusion with host cells expressing the angiotensin-converting enzyme 2 (ACE2) receptor may also provide greater insights into its systemic and neurologic sequelae. Respiratory virus neurotropism and collateral injury due to concurrent inflammatory cascades result in various neurologic pathologies, including Guillain-Barré syndrome, encephalopathy, encephalitis, ischemic stroke, intracerebral hemorrhage, and seizures. SUMMARY Numerous respiratory viruses can infect the cells of the peripheral and central nervous systems, elicit inflammatory cascades, and directly and indirectly cause various neurologic manifestations. Patients with neurologic manifestations from respiratory viruses are often critically ill and require mechanical ventilation. Neurologists and neurointensivists should be familiar with the common neurologic manifestations of respiratory viruses and the unique and still-evolving sequelae associated with COVID-19.
Collapse
|
13
|
Yang Z, Zhuo Q, Qin W, Wang J, Wang L, Tien P. MicroRNAs miR-18a and miR-452 regulate the replication of enterovirus 71 by targeting the gene encoding VP3. Virus Genes 2021; 57:318-326. [PMID: 34002325 DOI: 10.1007/s11262-021-01842-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) are crucial in the process of host-pathogen interaction. In this study, we established a screening system for miRNAs of target genes to detect the effect of miRNAs on Enterovirus 71 (EV71) replication in rhabdomyosarcoma (RD) cells. A 3'-untranslated region (UTR) dual-luciferase assay was performed to confirm putative miRNA targets in EV71 genome. Firstly, 13 fragments of EV71 genome were inserted into the vector pMIR, and luciferase activities were analyzed to identify the putative miRNAs of target genes. The expression of the reporter protein was significantly downregulated in cells transfected with the vector containing gene VP3. Then we screened for miRNAs that might target to VP3 through online analysis software. In addition, Western blot, real-time PCR, virus titration, and morphological changes were considered to examine the effects of miRNAs on virus replication. The results suggested that miR-18a and miR-452 repress the reproduction of EV71 virus by binding to VP3. Moreover, EV71 infection also affected the expression of endogenous miR-18a and miR-452. In addition, no significant cytotoxic effects were observed. The results from this study suggest that the intracellular miRNAs may play vital roles in the host-virus interaction.
Collapse
Affiliation(s)
- Zhuo Yang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Qin Zhuo
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Wen Qin
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Jingbo Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Liyuan Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Po Tien
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
14
|
Jin Y, Sun T, Zhou G, Li D, Chen S, Zhang W, Li X, Zhang R, Yang H, Duan G. Pathogenesis Study of Enterovirus 71 Using a Novel Human SCARB2 Knock-In Mouse Model. mSphere 2021; 6:e01048-20. [PMID: 33692197 PMCID: PMC8546711 DOI: 10.1128/msphere.01048-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Enterovirus 71 (EV71) can cause a severe hand-foot-mouth disease in children. However, the precise mechanism of EV71-associated disease, particularly the neuropathogenesis and pulmonary disorder, is still not fully understood because no suitable animal models are available. The human scavenger receptor class B, member 2 (hSCARB2), is a cellular receptor for EV71. Here, we generated a novel knock-in (KI) mouse model using the CRISPR/Cas9 system to insert the hSCARB2 gene into the mouse Rosa26 locus to study the pathogenesis of EV71. The hSCARB2 KI mice infected with clinical isolates of EV71 showed neurological symptoms, such as ataxia, paralysis, and death. Viral replication was detected in mainly astrocytes and a limited number of neurons and microglia, accompanied by gliosis. Vascular leakage and alveoli filled with erythrocytes were detected, suggesting that edema and hemorrhage, which are observed in human patients, also occurred in EV71-infected KI mice. In addition, proinflammatory cytokines and chemokines were significantly increased in the serum of infected KI mice. These pathological features of the KI mice after infection resembled those of EV71 encephalomyelitis in humans. Therefore, our KI mouse model is suitable to study the pathogenesis of EV71 and is of great significance for development of antiviral drugs and vaccines to treat or prevent EV71 infection.IMPORTANCE Enterovirus 71 (EV71) is associated with severe hand-foot-mouth disease. Recently, outbreaks of EV71 infection with high mortality have been reported in the Asia-Pacific region, posing a great challenge for global public health. To date, the precise mechanism of EV71-induced disease, particularly the neuropathogenesis and respiratory disorders, is still not fully understood because no suitable animal models are available. Human scavenger receptor class B, member 2 (hSCARB2), has been identified as a cellular receptor for EV71. Here, we introduce a novel CRISPR/Cas9-mediated hSCARB2 knock-in (KI) mouse model for the study of EV71 pathogenesis, which is of great significance for the development of antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangyuan Zhou
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Tee HK, Zainol MI, Sam IC, Chan YF. Recent advances in the understanding of enterovirus A71 infection: a focus on neuropathogenesis. Expert Rev Anti Infect Ther 2021; 19:733-747. [PMID: 33183118 DOI: 10.1080/14787210.2021.1851194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Hand, foot, and mouth disease caused by enterovirus A71 (EV-A71) is more frequently associated with neurological complications and deaths compared to other enteroviruses.Areas covered: The authors discuss current understanding of the neuropathogenesis of EV-A71 based on various clinical, human, and animal model studies. The authors discuss the important advancements in virus entry, virus dissemination, and neuroinvasion. The authors highlight the role of host immune system, host genetic factors, viral quasispecies, and heparan sulfate in EV-A71 neuropathogenesis.Expert opinion: Comparison of EV-A71 with EV-D68 and PV shows similarity in primary target sites and dissemination to the central nervous system. More research is needed to understand cellular tropisms, persistence of EV-A71, and other possible invasion routes. EV-A71 infection has varied clinical manifestations which may be attributed to multiple receptors usage. Future development of antivirals and vaccines should target neurotropic enteroviruses. Repurposing drug and immunomodulators used in combination could reduce the severity of EV-A71 infection. Only a few drugs have been tested in clinical trials, and in the absence of antiviral and vaccines (except China), active virus surveillance, good hand hygiene, and physical distancing should be advocated. A better understanding of EV-A71 neuropathogenesis is critical for antiviral and multivalent vaccines development.
Collapse
Affiliation(s)
- Han Kang Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Izwan Zainol
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Singh H, Koury J, Kaul M. Innate Immune Sensing of Viruses and Its Consequences for the Central Nervous System. Viruses 2021; 13:170. [PMID: 33498715 PMCID: PMC7912342 DOI: 10.3390/v13020170] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections remain a global public health concern and cause a severe societal and economic burden. At the organismal level, the innate immune system is essential for the detection of viruses and constitutes the first line of defense. Viral components are sensed by host pattern recognition receptors (PRRs). PRRs can be further classified based on their localization into Toll-like receptors (TLRs), C-type lectin receptors (CLR), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), NOD-like receptors (NLRs) and cytosolic DNA sensors (CDS). TLR and RLR signaling results in production of type I interferons (IFNα and -β) and pro-inflammatory cytokines in a cell-specific manner, whereas NLR signaling leads to the production of interleukin-1 family proteins. On the other hand, CLRs are capable of sensing glycans present in viral pathogens, which can induce phagocytic, endocytic, antimicrobial, and pro- inflammatory responses. Peripheral immune sensing of viruses and the ensuing cytokine response can significantly affect the central nervous system (CNS). But viruses can also directly enter the CNS via a multitude of routes, such as the nasal epithelium, along nerve fibers connecting to the periphery and as cargo of infiltrating infected cells passing through the blood brain barrier, triggering innate immune sensing and cytokine responses directly in the CNS. Here, we review mechanisms of viral immune sensing and currently recognized consequences for the CNS of innate immune responses to viruses.
Collapse
Affiliation(s)
- Hina Singh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey Koury
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
17
|
Kohil A, Jemmieh S, Smatti MK, Yassine HM. Viral meningitis: an overview. Arch Virol 2021; 166:335-345. [PMID: 33392820 PMCID: PMC7779091 DOI: 10.1007/s00705-020-04891-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Abstract
Meningitis is a serious condition that affects the central nervous system. It is an inflammation of the meninges, which is the membrane that surrounds both the brain and the spinal cord. Meningitis can be caused by bacterial, viral, or fungal infections. Many viruses, such as enteroviruses, herpesviruses, and influenza viruses, can cause this neurological disorder. However, enteroviruses have been found to be the underlying cause of most viral meningitis cases worldwide. With few exceptions, the clinical manifestations and symptoms associated with viral meningitis are similar for the different causative agents, which makes it difficult to diagnose the disease at early stages. The pathogenesis of viral meningitis is not clearly defined, and more studies are needed to improve the health care of patients in terms of early diagnosis and management. This review article discusses the most common causative agents, epidemiology, clinical features, diagnosis, and pathogenesis of viral meningitis.
Collapse
Affiliation(s)
- Amira Kohil
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Sara Jemmieh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
18
|
Song C, Li Y, Zhou Y, Liang L, Turtle L, Wang F, Wu P, Qiu Q, Yang J, Wang K, Cui P, Cheng Y, Zhang T, Guo C, Zeng M, Long L, Peiris M, Zhou C, Cowling BJ, Yu H. Enterovirus genomic load and disease severity among children hospitalised with hand, foot and mouth disease. EBioMedicine 2020; 62:103078. [PMID: 33161231 PMCID: PMC7653080 DOI: 10.1016/j.ebiom.2020.103078] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Examining associations between viral genomic loads of enteroviruses and clinical severity is important for promoting and improving development of antiviral drugs related to hand, foot and mouth disease (HFMD). METHODS Throat swabs were collected from HFMD cases at acute phase of illness using a standardized technique in a prospective study. The viral genomic load was categorized into low, medium, and high groups using parameters of real-time reverse transcription-polymerase chain reaction. The clinical severities were assessed with four indicators, respectively. FINDINGS We analysed 1109 HFMD cases, including 538 children with CV-A6, 231 with CV-A16, 156 with EV-A71, 78 with CV-A10, 59 with CV-A4, and 47 with CV-A2. EV-A71 genomic load categories were associated with risks of diagnoses of CNS complications (p = 0.016), requiring systemic corticosteroids or IVIG (p = 0.011), intensive care unit admission (p = 0.002) and length of hospital stay over 5 days (p = 0.048). In the multivariate analyses, point estimates of adjusted odds ratio (OR) tended to increase with viral genomic loads for all four severe outcomes and ORs of highest viral genomic load were all significantly larger than one for EV-A71. INTERPRETATION HFMD clinical severities positively associate with viral genomic loads of EV-A71 in throat swabs. Specific antiviral drugs should be developed to reduce enterovirus load and to alleviate the clinical severities for HFMD cases. FUNDING National Science Fund for Distinguished Young Scholars.
Collapse
Affiliation(s)
- Chunlan Song
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Yu Li
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yonghong Zhou
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Lu Liang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lance Turtle
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom; Tropical & Infectious Disease Unit, Royal Liverpool University Hospital (member of Liverpool Health Partners), Liverpool, United Kingdom
| | - Fang Wang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Peng Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qi Qiu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jianli Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Kai Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Peng Cui
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yibing Cheng
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Tianchen Zhang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chun Guo
- School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyao Zeng
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China; NHC key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Medical School, Fudan University, Shanghai, China
| | - Lu Long
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Malik Peiris
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chongchen Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China.
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
19
|
Tyring SK. Hand foot and mouth disease: Enteroviral load and disease severity. EBioMedicine 2020; 62:103115. [PMID: 33181466 PMCID: PMC7658477 DOI: 10.1016/j.ebiom.2020.103115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
- Stephen K Tyring
- Center for Clinical Studies USA; University of Texas Health Science Center, Houston, TX 77030 USA.
| |
Collapse
|
20
|
Malekmohammad K, Rafieian-Kopaei M, Sardari S, Sewell RDE. Effective Antiviral Medicinal Plants and Biological Compounds Against Central Nervous System Infections: A Mechanistic Review. Curr Drug Discov Technol 2020; 17:469-483. [PMID: 31309894 DOI: 10.2174/1570163816666190715114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Infectious diseases are amongst the leading causes of death in the world and central nervous system infections produced by viruses may either be fatal or generate a wide range of symptoms that affect global human health. Most antiviral plants contain active phytoconstituents such as alkaloids, flavonoids, and polyphenols, some of which play an important antiviral role. Herein, we present a background to viral central nervous system (CNS) infections, followed by a review of medicinal plants and bioactive compounds that are effective against viral pathogens in CNS infections. METHODS A comprehensive literature search was conducted on scientific databases including: PubMed, Scopus, Google Scholar, and Web of Science. The relevant keywords used as search terms were: "myelitis", "encephalitis", "meningitis", "meningoencephalitis", "encephalomyelitis", "central nervous system", "brain", "spinal cord", "infection", "virus", "medicinal plants", and "biological compounds". RESULTS The most significant viruses involved in central nervous system infections are: Herpes Simplex Virus (HSV), Varicella Zoster Virus (VZV), West Nile Virus (WNV), Enterovirus 71 (EV71), Japanese Encephalitis Virus (JEV), and Dengue Virus (DENV). The inhibitory activity of medicinal plants against CNS viruses is mostly active through prevention of viral binding to cell membranes, blocking viral genome replication, prevention of viral protein expression, scavenging reactive Oxygen Species (ROS), and reduction of plaque formation. CONCLUSION Due to the increased resistance of microorganisms (bacteria, viruses, and parasites) to antimicrobial therapies, alternative treatments, especially using plant sources and their bioactive constituents, appear to be more fruitful.
Collapse
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sardari
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, Wales, United Kingdom
| |
Collapse
|
21
|
Hooi YT, Ong KC, Tan SH, Perera D, Wong KT. A novel orally infected hamster model for Coxsackievirus A16 hand-foot-and-mouth disease and encephalomyelitis. J Transl Med 2020; 100:1262-1275. [PMID: 32601355 DOI: 10.1038/s41374-020-0456-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Coxsackievirus A16 (CV-A16) is one of the major causes of mild and self-limiting hand-foot-and-mouth disease (HFMD) in young children, which may occasionally leads to serious neurological complications. In this study, we had developed a novel, consistent, orally infected CV-A16 HFMD hamster model with encephalomyelitis. Four groups of 7-day-old hamsters in a kinetic study were orally infected with mouse-adapted CV-A16 strains and sacrificed at 1-4 days post infection (dpi), respectively. Tissues were studied by light microscopy, immunohistochemistry to detect viral antigens, in situ hybridization to detect viral RNA, and by viral titration. In a separate transmission experiment, orally infected index hamsters were housed together with contact hamsters to investigate oral and fecal viral shedding by virus culture and reverse transcription polymerase chain reaction (RT-PCR). At severe infection/death endpoints, index and contact hamster infection were also histopathologically analyzed. In the kinetic study, infected hamsters developed signs of infection at 4 dpi. Viral antigens/RNA were localized to brainstem (medulla/pons; reticular formation and motor trigeminal nucleus) and spinal cord anterior horn neurons, oral squamous epithelia and epidermis from 3 to 4 dpi. Salivary and lacrimal glands, myocardium, brown adipose tissue, intestinal smooth muscle, and skeletal muscle infection was also demonstrated. Viremia at 1 dpi and increasing viral titers in various tissues were observed from 2 dpi. In the transmission study, all contact hamsters developed disease 3-5 days later than index hamsters, but demonstrated similar histopathological findings at endpoint. Viral culture and RT-PCR positive oral washes and feces confirmed viral shedding. Our hamster model, orally infected by the natural route for human infection, confirmed CV-A16 neurotropism and demonstrated squamous epitheliotropism reminiscent of HFMD, attributes not found in other animal models. It should be useful to investigate neuropathogenesis, model person-to-person transmission, and for testing antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Yuan Teng Hooi
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - David Perera
- Institute of Health & Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Al-Dalahmah O, Thakur KT, Nordvig AS, Prust ML, Roth W, Lignelli A, Uhlemann AC, Miller EH, Kunnath-Velayudhan S, Del Portillo A, Liu Y, Hargus G, Teich AF, Hickman RA, Tanji K, Goldman JE, Faust PL, Canoll P. Neuronophagia and microglial nodules in a SARS-CoV-2 patient with cerebellar hemorrhage. Acta Neuropathol Commun 2020; 8:147. [PMID: 32847628 PMCID: PMC7447601 DOI: 10.1186/s40478-020-01024-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
We document the neuropathologic findings of a 73-year old man who died from acute cerebellar hemorrhage in the context of relatively mild SARS-CoV2 infection. The patient developed sudden onset of headache, nausea, and vomiting, immediately followed by loss of consciousness on the day of admission. Emergency medical services found him severely hypoxemic at home, and the patient suffered a cardiac arrest during transport to the emergency department. The emergency team achieved return of spontaneous circulation after over 17 min of resuscitation. A chest radiograph revealed hazy bilateral opacities; and real-time-PCR for SARS-CoV-2 on the nasopharyngeal swab was positive. Computed tomography of the head showed a large right cerebellar hemorrhage, with tonsillar herniation and intraventricular hemorrhage. One day after presentation, he was transitioned to comfort care and died shortly after palliative extubation. Autopsy performed 3 h after death showed cerebellar hemorrhage and acute infarcts in the dorsal pons and medulla. Remarkably, there were microglial nodules and neuronophagia bilaterally in the inferior olives and multifocally in the cerebellar dentate nuclei. This constellation of findings has not been reported thus far in the context of SARS-CoV-2 infection.
Collapse
|
23
|
Fu TL, Ong KC, Tan SH, Wong KT. Japanese Encephalitis Virus Infects the Thalamus Early Followed by Sensory-Associated Cortex and Other Parts of the Central and Peripheral Nervous Systems. J Neuropathol Exp Neurol 2020; 78:1160-1170. [PMID: 31675093 DOI: 10.1093/jnen/nlz103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Japanese encephalitis (JE) is a known CNS viral infection that often involves the thalamus early. To investigate the possible role of sensory peripheral nervous system (PNS) in early neuroinvasion, we developed a left hindlimb footpad-inoculation mouse model to recapitulate human infection by a mosquito bite. A 1-5 days postinfection (dpi) study, demonstrated focal viral antigens/RNA in contralateral thalamic neurons at 3 dpi in 50% of the animals. From 4 to 5 dpi, gradual increase in viral antigens/RNA was observed in bilateral thalami, somatosensory, and piriform cortices, and then the entire CNS. Infection of neuronal bodies and adjacent nerves in dorsal root ganglia (DRGs), trigeminal ganglia, and autonomic ganglia (intestine, etc.) was also observed from 5 dpi. Infection of explant organotypic whole brain slice cultures demonstrated no viral predilection for the thalamus, while DRG and intestinal ganglia organotypic cultures confirmed sensory and autonomic ganglia susceptibility to infection, respectively. Early thalamus and sensory-associated cortex involvement suggest an important role for sensory pathways in neuroinvasion. Our results suggest that JE virus neuronotropism is much more extensive than previously known, and that the sensory PNS and autonomic system are susceptible to infection.
Collapse
Affiliation(s)
- Tzeh Long Fu
- Department of Pathology; and Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Pathology; and Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soon Hao Tan
- Department of Pathology; and Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kum Thong Wong
- Department of Pathology; and Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Zhang L, Lin D, Kusov Y, Nian Y, Ma Q, Wang J, von Brunn A, Leyssen P, Lanko K, Neyts J, de Wilde A, Snijder EJ, Liu H, Hilgenfeld R. α-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment. J Med Chem 2020; 63:4562-4578. [PMID: 32045235 PMCID: PMC7098070 DOI: 10.1021/acs.jmedchem.9b01828] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/26/2022]
Abstract
The main protease of coronaviruses and the 3C protease of enteroviruses share a similar active-site architecture and a unique requirement for glutamine in the P1 position of the substrate. Because of their unique specificity and essential role in viral polyprotein processing, these proteases are suitable targets for the development of antiviral drugs. In order to obtain near-equipotent, broad-spectrum antivirals against alphacoronaviruses, betacoronaviruses, and enteroviruses, we pursued a structure-based design of peptidomimetic α-ketoamides as inhibitors of main and 3C proteases. Six crystal structures of protease-inhibitor complexes were determined as part of this study. Compounds synthesized were tested against the recombinant proteases as well as in viral replicons and virus-infected cell cultures; most of them were not cell-toxic. Optimization of the P2 substituent of the α-ketoamides proved crucial for achieving near-equipotency against the three virus genera. The best near-equipotent inhibitors, 11u (P2 = cyclopentylmethyl) and 11r (P2 = cyclohexylmethyl), display low-micromolar EC50 values against enteroviruses, alphacoronaviruses, and betacoronaviruses in cell cultures. In Huh7 cells, 11r exhibits three-digit picomolar activity against the Middle East Respiratory Syndrome coronavirus.
Collapse
Affiliation(s)
- Linlin Zhang
- Institute of Biochemistry, Center for Structural and
Cell Biology in Medicine, University of Lübeck, 23562
Lübeck, Germany
- German Center for Infection Research (DZIF),
Hamburg-Lübeck-Borstel-Riems Site, University of
Lübeck, 23562 Lübeck, Germany
| | - Daizong Lin
- Institute of Biochemistry, Center for Structural and
Cell Biology in Medicine, University of Lübeck, 23562
Lübeck, Germany
- German Center for Infection Research (DZIF),
Hamburg-Lübeck-Borstel-Riems Site, University of
Lübeck, 23562 Lübeck, Germany
- Shanghai Institute of Materia
Medica, 201203 Shanghai, China
| | - Yuri Kusov
- Institute of Biochemistry, Center for Structural and
Cell Biology in Medicine, University of Lübeck, 23562
Lübeck, Germany
| | - Yong Nian
- Shanghai Institute of Materia
Medica, 201203 Shanghai, China
| | - Qingjun Ma
- Institute of Biochemistry, Center for Structural and
Cell Biology in Medicine, University of Lübeck, 23562
Lübeck, Germany
| | - Jiang Wang
- Shanghai Institute of Materia
Medica, 201203 Shanghai, China
| | - Albrecht von Brunn
- Max von Pettenkofer Institute,
Ludwig-Maximilians-University Munich, 80336 Munich,
Germany
| | - Pieter Leyssen
- Rega Institute for Medical Research,
University of Leuven, 3000 Leuven,
Belgium
| | - Kristina Lanko
- Rega Institute for Medical Research,
University of Leuven, 3000 Leuven,
Belgium
| | - Johan Neyts
- Rega Institute for Medical Research,
University of Leuven, 3000 Leuven,
Belgium
| | - Adriaan de Wilde
- Leiden University Medical Center,
2333 ZA Leiden, The Netherlands
| | - Eric J. Snijder
- Leiden University Medical Center,
2333 ZA Leiden, The Netherlands
| | - Hong Liu
- Shanghai Institute of Materia
Medica, 201203 Shanghai, China
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and
Cell Biology in Medicine, University of Lübeck, 23562
Lübeck, Germany
- German Center for Infection Research (DZIF),
Hamburg-Lübeck-Borstel-Riems Site, University of
Lübeck, 23562 Lübeck, Germany
- Shanghai Institute of Materia
Medica, 201203 Shanghai, China
| |
Collapse
|
25
|
Hooi YT, Ong KC, Tan SH, Perera D, Wong KT. Coxsackievirus A16 in a 1-Day-Old Mouse Model of Central Nervous System Infection Shows Lower Neurovirulence than Enterovirus A71. J Comp Pathol 2020; 176:19-32. [PMID: 32359633 DOI: 10.1016/j.jcpa.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) are the major causes of hand, foot and mouth disease in young children. Although less so with CV-A16, both viruses are associated with serious neurological syndromes, but the differences between their central nervous system infections remain unclear. We conducted a comparative infection study using clinically-isolated CV-A16 and EV-A71 strains in a 1-day-old mouse model to better understand the neuropathology and neurovirulence of the viruses. New serotype-specific probes for in situ hybridization were developed and validated to detect CV-A16 and EV-A71 RNA in infected tissues. Demonstration of CV-A16 virus antigens/RNA, mainly in the brainstem and spinal cord neurons, confirmed neurovirulence, but showed lower densities than in EV-A71 infected animals. A higher lethal dose50 for CV-A16 suggested that CV-A16 is less neurovirulent. Focal virus antigens/RNA in the anterior horn white matter and adjacent efferent motor nerves suggested that neuroinvasion is possibly via retrograde axonal transport in peripheral motor nerves.
Collapse
Affiliation(s)
- Y T Hooi
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | - K C Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S H Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - D Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - K T Wong
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
26
|
Huang HI, Lin JY, Chen SH. EV71 Infection Induces IFNβ Expression in Neural Cells. Viruses 2019; 11:v11121121. [PMID: 31817126 PMCID: PMC6950376 DOI: 10.3390/v11121121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/21/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Enterovirus 71 (EV71) can invade the central nervous system (CNS) and cause neurological disease. Accumulating evidence indicates that EV71 can directly infect neurons in the CNS. Innate immune responses in the CNS have been known to play an essential role in limiting pathogen infections. Thus, investigating the effects of EV71 infection of neural cells is important for understanding disease pathogenesis. In this study, human neural cells were infected with EV71, and interferonβ (IFNβ) expression was examined. Our results show that IFNβ expression was upregulated in EV71-infected neural cells via pattern recognition receptors (PRRs) sensing of virus RNA. The PRRs Toll-like receptor 3 (TLR3), Toll-like receptor 8 (TLR8), and melanoma differentiation-associated gene-5 (MDA-5), but not retinoic acid-inducible gene-I (RIG-I) and Toll-like receptor 7 (TLR7), were found to be EV71-mediated IFNβ induction. Although viral proteins exhibited the ability to cleave mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1 receptor (TIR) domain-containing adaptor-inducing IFN-β (TRIF) in neural cells, levels of viral protein expression were low in these cells. Furthermore, neural cells efficiently produced IFNβ transcripts upon EV71 vRNA stimulation. Treating infected cells with anti-IFNβ antibodies resulted in increased virus replication, indicating that IFNβ release may play a role in limiting viral growth. These results indicate that EV71 infection can induce IFNβ expression in neural cells through PRR pathways.
Collapse
Affiliation(s)
- Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan; (J.-Y.L.); (S.-H.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33303, Taiwan
- Correspondence:
| | - Jhao-Yin Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan; (J.-Y.L.); (S.-H.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
| | - Sheng-Hung Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan; (J.-Y.L.); (S.-H.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
| |
Collapse
|
27
|
Sun L, Tijsma A, Mirabelli C, Baggen J, Wahedi M, Franco D, De Palma A, Leyssen P, Verbeken E, van Kuppeveld FJM, Neyts J, Thibaut HJ. Intra-host emergence of an enterovirus A71 variant with enhanced PSGL1 usage and neurovirulence. Emerg Microbes Infect 2019; 8:1076-1085. [PMID: 31339457 PMCID: PMC6711088 DOI: 10.1080/22221751.2019.1644142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Enterovirus A71 (EV-A71) is one of the main causative agents of hand-foot-and-mouth disease and is occasionally associated with severe neurological complications. EV-A71 pathophysiology is poorly understood due to the lack of small animal models that robustly support viral replication in relevant organs/tissues. Here, we show that adult severe combined immune-deficient (SCID) mice can serve as an EV-A71 infection model to study neurotropic determinants and viral tropism. Mice inoculated intraperitoneally with an EV-A71 clinical isolate had an initial infection of the lung compartment, followed by neuroinvasion and infection of (motor)neurons, resulting in slowly progressing paralysis of the limbs. We identified a substitution (V135I) in the capsid protein VP2 as a key requirement for neurotropism. This substitution was also present in a mouse-adapted variant, obtained by passaging the clinical isolate in the brain of one-day-old mice, and induced exclusive neuropathology and rapid paralysis, confirming its role in neurotropism. Finally, we showed that this residue enhances the capacity of EV-A71 to use mouse PSGL1 for viral entry. Our data reveal that EV-A71 initially disseminates to the lung and identify viral and host determinants that define the neurotropic character of EV-A71, pointing to a hitherto understudied role of PSGL1 in EV-A71 tropism and neuropathology.
Collapse
Affiliation(s)
- Liang Sun
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Aloys Tijsma
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Carmen Mirabelli
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Jim Baggen
- b Department of Infectious Diseases & Immunology, Utrecht University , Utrecht , the Netherlands
| | - Maryam Wahedi
- b Department of Infectious Diseases & Immunology, Utrecht University , Utrecht , the Netherlands
| | - David Franco
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Armando De Palma
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Pieter Leyssen
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Erik Verbeken
- c Department of Imaging & Pathology, KU Leuven , Leuven , Belgium
| | - Frank J M van Kuppeveld
- b Department of Infectious Diseases & Immunology, Utrecht University , Utrecht , the Netherlands
| | - Johan Neyts
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium
| | - Hendrik Jan Thibaut
- a KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , Leuven , Belgium.,b Department of Infectious Diseases & Immunology, Utrecht University , Utrecht , the Netherlands
| |
Collapse
|
28
|
Okumura A, Mori H, Fee Chong P, Kira R, Torisu H, Yasumoto S, Shimizu H, Fujimoto T, Tanaka-Taya K. Serial MRI findings of acute flaccid myelitis during an outbreak of enterovirus D68 infection in Japan. Brain Dev 2019; 41:443-451. [PMID: 30594353 DOI: 10.1016/j.braindev.2018.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/21/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022]
Abstract
OBJECIVE To clarify the neuroimaging findings of children with acute flaccid myelitis during an outbreak of EV-D68 infection. METHODS We performed a detailed review of the spinal and cranial MRI results of 54 children with acute flaccid myelitis. We focused on the range of longitudinal lesions, the localization and appearance of lesions within a horizontal section, Gadolinium-enhancement, and changes over time. RESULTS All children had longitudinal spinal lesions involving central gray matter. Twenty-six children had lesions spanning the entire spine. Six of them had weakness in all limbs, whereas seven had weakness of only one limb. Thirty-eight children had lesions in both gray and white matter and limb weakness tended to be more severe in these children. During the acute period, spinal lesions showed bilateral ill-defined widespread T2 hyperintensity. During the subacute period, lesions were well defined and confined to the anterior horn. The distribution of limb weakness was correlated with the appearance of lesions during the subacute period. Gadolinium enhancement was performed in 37 children, and enhancement was seen in the cauda equina in 29 children. Enhancement was infrequent within 2 days after onset but was seen in almost all children thereafter. Twenty-two children had brainstem lesions continuous with spinal lesions. CONCLUSION Extensive longitudinal spinal lesions were characteristic in children with acute flaccid myelitis. Lesions were usually bilateral and widespread during the acute period, whereas localization to the anterior horn could become obvious. Although enhancement of the cauda equina was often observed, its appearance was sometimes delayed.
Collapse
Affiliation(s)
- Akihisa Okumura
- Department of Pediatrics, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Harushi Mori
- Department of Radiology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Pin Fee Chong
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Hiroyuki Torisu
- Department of Pediatrics, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan
| | - Sawa Yasumoto
- Medical Education Center, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuguto Fujimoto
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keiko Tanaka-Taya
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
29
|
MRI reveals segmental distribution of enterovirus lesions in the central nervous system: a probable clinical evidence of retrograde axonal transport of EV-A71. J Neurovirol 2019; 25:354-362. [DOI: 10.1007/s13365-019-00724-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/08/2018] [Accepted: 01/08/2019] [Indexed: 11/29/2022]
|
30
|
Clinical Value of Dorsal Medulla Oblongata Involvement Detected With Conventional Magnetic Resonance Imaging for Prediction of Outcome in Children With Enterovirus 71-Related Brainstem Encephalitis. Pediatr Infect Dis J 2019; 38:99-103. [PMID: 29624567 DOI: 10.1097/inf.0000000000002041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Brainstem encephalitis is the most common neurologic complication after enterovirus 71 infection. The involvement of brainstem, especially the dorsal medulla oblongata, can cause severe sequelae or death in children with enterovirus 71 infection. We aimed to determine the prevalence of dorsal medulla oblongata involvement in children with enterovirus 71-related brainstem encephalitis (EBE) by using conventional magnetic resonance imaging (MRI) and to evaluate the value of dorsal medulla oblongata involvement in outcome prediction. METHODS Forty-six children with EBE were enrolled in the study. All subjects underwent a 1.5 Tesla MRI examination of the brain. The disease distribution and clinical data were collected. Dichotomized outcomes (good vs. poor) at longer than 6 months were available for 28 patients. Logistic regression was used to determine whether the MRI-confirmed dorsal medulla oblongata involvement resulted in improved clinical outcome prediction when compared with other location involvement. RESULTS Of the 46 patients, 35 had MRI evidence of dorsal medulla oblongata involvement, 32 had pons involvement, 10 had midbrain involvement and 7 had dentate nuclei involvement. Patients with dorsal medulla oblongata involvement or multiple area involvement were significantly more often in the poor outcome group than in the good outcome group. Logistic regression analysis showed that dorsal medulla oblongata involvement was the most significant single variable in outcome prediction (predictive accuracy, 90.5%), followed by multiple area involvement, age and initial Glasgow Coma Scale score. CONCLUSIONS Dorsal medulla oblongata involvement on conventional MRI correlated significantly with poor outcomes in EBE children, improved outcome prediction when compared with other clinical and disease location variables, and was most predictive when combined with multiple area involvement, Glasgow Coma Scale score and age.
Collapse
|
31
|
Wright WF, Pinto CN, Palisoc K, Baghli S. Viral (aseptic) meningitis: A review. J Neurol Sci 2019; 398:176-183. [PMID: 30731305 DOI: 10.1016/j.jns.2019.01.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/17/2022]
Abstract
Viral meningitis is an inflammation of the meninges associated with acute onset of meningeal symptoms and fever, pleocytosis of the cerebrospinal fluid, and no growth on routine bacterial culture. It is sometimes associated with viral encephalitis and meningoencephalitis. Viruses reach the central nervous system (CNS) hematogenously or in a retrograde manner from nerve endings. The viral etiology varies according to age and country. Molecular diagnostics technology has helped improve the rate of pathogen detection reducing unnecessary antibiotic use and length of hospitalization. Most of the viral infections detailed in this article have no specific treatment other than supportive care. Many of the viruses discussed are preventable by vaccination and proper skin protection against transmitting vectors.
Collapse
Affiliation(s)
- William F Wright
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical Center, Pinnacle, United States.
| | - Casey N Pinto
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical Center, Pinnacle, United States; Department of Public Health Sciences, The Pennsylvania State University, United States.
| | - Kathryn Palisoc
- Division of Hospital Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pinnacle, United States
| | - Salim Baghli
- Division of Hospital Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pinnacle, United States
| |
Collapse
|
32
|
de Crom SC. Enterovirus and parechovirus infections in children: differences in clinical presentation, mechanisms for meningitis without pleocytosis and mechanisms involved in the neurological outcome. Minerva Pediatr 2018; 71:150-158. [PMID: 30511561 DOI: 10.23736/s0026-4946.18.05449-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enterovirus (EV) and Parechovirus (HPeV) are a frequent cause of infection in children. This review gives an overview of possible causes for differences in clinical presentation. EV and HPeV can cause a meningitis with or without pleocytosis. Different possible mechanisms for meningitis without pleocytosis are given. Little is known about the prognosis and long-term effects of EV and HPeV meningitis in children. Only some studies with a small number of children with EV or HPeV meningitis are reported. The different possible mechanisms involved in the neurological outcome after EV or HPeV meningitis will be discussed.
Collapse
|
33
|
Immunocompetent and Immunodeficient Mouse Models for Enterovirus 71 Pathogenesis and Therapy. Viruses 2018; 10:v10120674. [PMID: 30487421 PMCID: PMC6316343 DOI: 10.3390/v10120674] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022] Open
Abstract
Enterovirus 71 (EV71) is a global health threat. Children infected with EV71 could develop hand-foot-and-mouth disease (HFMD), encephalitis, paralysis, pulmonary edema, and death. At present, no effective treatment for EV71 is available. We reviewed here various mouse models for EV71 pathogenesis and therapy. Earlier studies relied on the use of mouse-adapted EV71 strains. To avoid artificial mutations arising de novo during the serial passages, recent studies used EV71 clinical isolates without adaptation. Several human receptors for EV71 were shown to facilitate viral entry in cell culture. However, in vivo infection with human SCARB2 receptor transgenic mice appeared to be more limited to certain strains and genotypes of EV71. Efficacy of oral infection in these transgenic models is extremely low. Intriguingly, despite the lack of human receptors, immunodeficient neonatal mouse models can still be infected with EV71 clinical isolates via oral or intraperitoneal routes. Crossbreeding between SCARB2 transgenic and stat1 knockout mice generated a more sensitive and user-friendly hybrid mouse model. Infected hybrid mice developed a higher incidence and earlier onset of CNS disease and death. Different pathogenesis profiles were observed in models deficient in various arms of innate or humoral immunity. These models are being actively used for antiviral research.
Collapse
|
34
|
Xing J, Wang K, Wei H, Wei D. Pathologic and molecular studies of enterovirus 71 infection in a fatal case from a recent epidemic in China: A case report. Medicine (Baltimore) 2018; 97:e13447. [PMID: 30508963 PMCID: PMC6283094 DOI: 10.1097/md.0000000000013447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Enterovirus 71 (EV71) is identified as the primary cause of hand, foot, and mouth disease (HFMD) and mainly infects the young infants. Though some fatal cases have been reported, the underlying mechanisms of EV71 infection remain elusive and more further pathologic and molecular studies of EV71 infection are needed. PATIENT CONCERNS A 26-month-old girl with a history of fever and lethargy for 3 days and intermittent seizures for 2 hours associated with rash on 4 limbs was brought to a hospital. DIAGNOSES The autopsy was performed to identify the cause of death for a medical dispute. The results of histologic examination, immunohistochemistry (IHC), nested reverse transcription polymerase chain reaction (RT-PCR), and viral isolation confirmed that this patient died of EV71 infection. INTERVENTIONS The patient was transferred to neonatal intensive care unit and was intubated and mechanically ventilated. The other treatment included cardiopulmonary resuscitation and intravenous injection of adrenaline. OUTCOMES The patient presented persistent coma and intermittent seizures and suddenly developed respiratory arrest and died 16 hours after admission. LESSONS Our results suggest that EV71 might invade into the central nervous system (CNS) through peripheral nerves which control the digestive tract in the early stage of infection. In addition, we successfully isolated one EV71 strain. Phylogenetic analysis showed that the isolated strain clustered in the C4a of C4 subgenotype. This case also highlights that rapid deterioration in HFMD cases is still a challenge to physicians and they must pay special attention to the infants with HFMD symptoms, particularly in EV71 epidemic areas for early diagnosis and treatment.
Collapse
Affiliation(s)
- Jingjun Xing
- Zhejiang Key Laboratory of Pathophysiology, Department of Pathology and Pathogen Biology, Medical School of Ningbo University
| | - Ke Wang
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang Province, China
| | - Hua Wei
- Zhejiang Key Laboratory of Pathophysiology, Department of Pathology and Pathogen Biology, Medical School of Ningbo University
| | - Dengming Wei
- Zhejiang Key Laboratory of Pathophysiology, Department of Pathology and Pathogen Biology, Medical School of Ningbo University
| |
Collapse
|
35
|
Soung A, Klein RS. Viral Encephalitis and Neurologic Diseases: Focus on Astrocytes. Trends Mol Med 2018; 24:950-962. [PMID: 30314877 DOI: 10.1016/j.molmed.2018.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
Neurotropic RNA virus infections cause a major neurological disease burden. Due to the morbidity and mortality rates of viral encephalitides worldwide, there is a need to develop clinical treatments. Features of the central nervous system (CNS), including interconnected cell types and limited regeneration, provide unique challenges. Viral encephalitis and antiviral immunity can disrupt the CNS environment, leaving patients with poor neurological outcomes despite virologic control. The cellular mechanism(s) underlying neurological recovery are not fully understood, but involve neuroimmune interactions that, until recently, primarily focused on microglia. With increasing evidence that astrocytes also have significant roles in inflammatory responses to viruses, here we summarize recent astrocyte contributions to acute virologic control and neurological impairments during recovery from viral infection.
Collapse
Affiliation(s)
- Allison Soung
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The focus of this review is on enterovirus (EV)-associated acute flaccid paralysis (AFP) due to spinal cord anterior horn cell disease. Emphasis is placed on the epidemiology, pathogenesis, diagnosis, treatment, and outcome of AFP caused by polioviruses, vaccine-derived polioviruses, EV-D68, and EV-A71. RECENT FINDINGS Since the launch of The Global Polio Eradication Initiative in 1988, the worldwide incidence of polio has been reduced by 99.9%, with small numbers of poliomyelitis cases being reported only in Afghanistan, Pakistan, and Nigeria. With the planned phaseout of oral polio vaccine, vaccine-associated poliomyelitis is also expected to be eliminated. In their place, other EVs, chiefly EV-D68 and EV-A71, have emerged as the principal causes of AFP. There is evidence that the emergence of EV-D68 as a cause of severe respiratory disease and AFP was due to recent genetic virus evolution. Antiviral medications targeting EV-D68, EV-A71, and other EVs will likely be available in the near future. An effective EV-A71 vaccine has been developed, and preliminary investigations suggest an EV-D68 vaccine could be on the horizon. The eradication of poliomyelitis and vaccine-associated poliomyelitis is near, after which other EVs, presently EV-D68 and EV-A71, will be the principle viral causes of AFP. Moving forward, it is essential that EV outbreaks, in particular those associated with neurologic complications, be investigated carefully and the causal strains identified, so that treatment and prevention efforts can be rapidly developed and implemented.
Collapse
Affiliation(s)
- Ari Bitnun
- Division of Infectious Diseases, The Hospital for Sick Children and Department of Pediatrics, University of Toronto, Toronto, ON, M5G 1X8, Canada.
| | - E Ann Yeh
- Division of Neurology, The Hospital for Sick Children and Department of Pediatrics, Division of Neurosciences and Mental Health, SickKids Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
Factors associated with fatal outcome of children with enterovirus A71 infection: a case series. Epidemiol Infect 2018. [DOI: 10.1017/s0950268818000468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractEnterovirus A-71 (EV-A71) may be fatal, but the natural history, symptoms, and signs are poorly understood. This study aimed to examine the natural history of fatal EV-A71 infection and to identify the symptoms and signs of early warning of deterioration. This was a clinical observational study of fatal cases of EV-A71 infection treated at five Chinese hospitals between 1 January 2010 and 31 December 2012. We recorded and analysed 91 manifestations of EV-A71 infection in order to identify early prognosis indicators. There were 54 fatal cases. Median age was 21.5 months (Q1−Q3: 12–36). The median duration from onset to death was 78.5 h (range, 6 to 432). The multilayer perceptron analysis showed that ataxia respiratory, ultrahyperpyrexia, excessive tachycardia, refractory shock, absent pharyngeal reflex, irregular respiratory rhythm, hyperventilation, deep coma, pulmonary oedema and/or haemorrhage, excessive hypertension, tachycardia, somnolence, CRT extension, fatigue or sleepiness and age were associated with death. Autopsy findings (n = 2) showed neuronal necrosis, softening, perivascular cuffing, colloid and neuronophagia phenomenon in the brainstem. The fatal cases of enterovirus A71 had neurologic involvement, even at the early stage. Direct virus invasion through the neural pathway and subsequent brainstem damage might explain the rapid progression to death.
Collapse
|
38
|
Yang ZY, Chen XQ, Sun D, Wei D. Mortality in Children with Severe Hand, Foot and Mouth Disease in Guangxi, China. Indian Pediatr 2017. [DOI: 10.1007/s13312-018-1247-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract
Objective
To analyze the clinical features of children with hand foot and mouth disease (HFMD) who died.
Methods
331 deaths due to HFMD between 2010 and 2014 were included in this retrospective study; 15 autopsies were performed.
Results
Most deaths were seen in children aged below 3 y, and with enterovirus 71 infection (91%). The mean (SD) duration of HFMD from onset to death was 3.7(2.9) d. The mean (SD) age of fast progressors (from onset to death less than 4 days) was 17.4 (9.2) mo. Most of them were diagnosed as stage 3 and stage 4 of HFMD. Various pathological changes were observed in brain after autopsy, especially in brain stem and medulla.
Conclusions
The brain stem encephalitis with the neurotropism of enteroviruses seems to be the main contributor to the death in HFMD.
Collapse
|
39
|
A Selective Bottleneck Shapes the Evolutionary Mutant Spectra of Enterovirus A71 during Viral Dissemination in Humans. J Virol 2017; 91:JVI.01062-17. [PMID: 28931688 DOI: 10.1128/jvi.01062-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/14/2017] [Indexed: 12/15/2022] Open
Abstract
RNA viruses accumulate mutations to rapidly adapt to environmental changes. Enterovirus A71 (EV-A71) causes various clinical manifestations with occasional severe neurological complications. However, the mechanism by which EV-A71 evolves within the human body is unclear. Utilizing deep sequencing and haplotype analyses of viruses from various tissues of an autopsy patient, we sought to define the evolutionary pathway by which enterovirus A71 evolves fitness for invading the central nervous system in humans. Broad mutant spectra with divergent mutations were observed at the initial infection sites in the respiratory and digestive systems. After viral invasion, we identified a haplotype switch and dominant haplotype, with glycine at VP1 residue 31 (VP1-31G) in viral particles disseminated into the integumentary and central nervous systems. In vitro viral growth and fitness analyses indicated that VP1-31G conferred growth and a fitness advantage in human neuronal cells, whereas VP1-31D conferred enhanced replication in human colorectal cells. A higher proportion of VP1-31G was also found among fatal cases, suggesting that it may facilitate central nervous system infection in humans. Our data provide the first glimpse of EV-A71 quasispecies from oral tissues to the central nervous system within humans, showing broad implications for the surveillance and pathogenesis of this reemerging viral pathogen.IMPORTANCE EV-A71 continues to be a worldwide burden to public health. Although EV-A71 is the major etiological agent of hand, foot, and mouth disease, it can also cause neurological pulmonary edema, encephalitis, and even death, especially in children. Understanding selection processes enabling dissemination and accurately estimating EV-A71 diversity during invasion in humans are critical for applications in viral pathogenesis and vaccine studies. Here, we define a selection bottleneck appearing in respiratory and digestive tissues. Glycine substitution at VP1 residue 31 helps viruses break through the bottleneck and invade the central nervous system. This substitution is also advantageous for replication in neuronal cells in vitro Considering that fatal cases contain enhanced glycine substitution at VP1-31, we suggest that the increased prevalence of VP1-31G may alter viral tropism and aid central nervous system invasion. Our findings provide new insights into a dynamic mutant spectral switch active during acute viral infection with emerging viral pathogens.
Collapse
|
40
|
Oslovsky VE, Drenichev MS, Sun L, Kurochkin NN, Kunetsky VE, Mirabelli C, Neyts J, Leyssen P, Mikhailov SN. Fluorination of Naturally Occurring N⁶-Benzyladenosine Remarkably Increased Its Antiviral Activity and Selectivity. Molecules 2017; 22:molecules22071219. [PMID: 28726764 PMCID: PMC6152005 DOI: 10.3390/molecules22071219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 11/16/2022] Open
Abstract
Recently, we demonstrated that the natural cytokinin nucleosides N⁶-isopentenyladenosine (iPR) and N⁶-benzyladenosine (BAPR) exert a potent and selective antiviral effect on the replication of human enterovirus 71. In order to further characterize the antiviral profile of this class of compounds, we generated a series of fluorinated derivatives of BAPR and evaluated their activity on the replication of human enterovirus 71 in a cytopathic effect (CPE) reduction assay. The monofluorination of the BAPR-phenyl group changed the selectivity index (SI) slightly because of the concomitant high cell toxicity. Interestingly, the incorporation of a second fluorine atom resulted in a dramatic improvement of selectivity. Moreover, N⁶-trifluoromethylbenzyladenosines derivatives (9-11) exhibited also a very interesting profile, with low cytotoxicity observed. In particular, the analogue N⁶-(3-trifluoromethylbenzyl)-adenosine (10) with a four-fold gain in potency as compared to BAPR and the best SI in the class represents a promising candidate for further development.
Collapse
Affiliation(s)
- Vladimir E Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Mikhail S Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Liang Sun
- Laboratory for Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium.
| | - Nikolay N Kurochkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Vladislav E Kunetsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Carmen Mirabelli
- Laboratory for Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium.
| | - Johan Neyts
- Laboratory for Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium.
| | - Pieter Leyssen
- Laboratory for Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Minderbroedersstraat 10, Leuven 3000, Belgium.
| | - Sergey N Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|
41
|
Yogarajah T, Ong KC, Perera D, Wong KT. AIM2 Inflammasome-Mediated Pyroptosis in Enterovirus A71-Infected Neuronal Cells Restricts Viral Replication. Sci Rep 2017; 7:5845. [PMID: 28724943 PMCID: PMC5517550 DOI: 10.1038/s41598-017-05589-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023] Open
Abstract
Encephalomyelitis is a well-known complication of hand, foot, and mouth disease (HFMD) due to Enterovirus 71 (EV71) infection. Viral RNA/antigens could be detected in the central nervous system (CNS) neurons in fatal encephalomyelitis but the mechanisms of neuronal cell death is not clearly understood. We investigated the role of absent in melanoma 2 (AIM2) inflammasome in neuronal cell death, and its relationship to viral replication. Our transcriptomic analysis, RT-qPCR, Western blot, immunofluorescence and flow cytometry studies consistently showed AIM2 gene up-regulation and protein expression in EV-A71-infected SK-N-SH cells. Downstream AIM2-induced genes, CARD16, caspase-1 and IL-1β were also up-regulated and caspase-1 was activated to form cleaved caspase-1 p20 subunits. As evidenced by 7-AAD positivity, pyroptosis was confirmed in infected cells. Overall, these findings have a strong correlation with decreases in viral titers, copy numbers and proteins, and reduced proportions of infected cells. AIM2 and viral antigens were detected by immunohistochemistry in infected neurons in inflamed areas of the CNS in EV-A71 encephalomyelitis. In infected AIM2-knockdown cells, AIM2 and related downstream gene expressions, and pyroptosis were suppressed, resulting in significantly increased virus infection. These results support the notion that AIM2 inflammasome-mediated pyroptosis is an important mechanism of neuronal cell death and it could play an important role in limiting EV-A71 replication.
Collapse
Affiliation(s)
- Thinesshwary Yogarajah
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - David Perera
- Institute of Health and Community Medicine, University Malaysia Sarawak, Sarawak, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
42
|
Machine Learning Algorithms for Risk Prediction of Severe Hand-Foot-Mouth Disease in Children. Sci Rep 2017; 7:5368. [PMID: 28710409 PMCID: PMC5511270 DOI: 10.1038/s41598-017-05505-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/06/2017] [Indexed: 11/08/2022] Open
Abstract
The identification of indicators for severe HFMD is critical for early prevention and control of the disease. With this goal in mind, 185 severe and 345 mild HFMD cases were assessed. Patient demographics, clinical features, MRI findings, and laboratory test results were collected. Gradient boosting tree (GBT) was then used to determine the relative importance (RI) and interaction effects of the variables. Results indicated that elevated white blood cell (WBC) count > 15 × 109/L (RI: 49.47, p < 0.001) was the top predictor of severe HFMD, followed by spinal cord involvement (RI: 26.62, p < 0.001), spinal nerve roots involvement (RI: 10.34, p < 0.001), hyperglycemia (RI: 3.40, p < 0.001), and brain or spinal meninges involvement (RI: 2.45, p = 0.003). Interactions between elevated WBC count and hyperglycemia (H statistic: 0.231, 95% CI: 0-0.262, p = 0.031), between spinal cord involvement and duration of fever ≥3 days (H statistic: 0.291, 95% CI: 0.035-0.326, p = 0.035), and between brainstem involvement and body temperature (H statistic: 0.313, 95% CI: 0-0.273, p = 0.017) were observed. Therefore, GBT is capable to identify the predictors for severe HFMD and their interaction effects, outperforming conventional regression methods.
Collapse
|
43
|
Anastasina M, Domanska A, Palm K, Butcher S. Human picornaviruses associated with neurological diseases and their neutralization by antibodies. J Gen Virol 2017. [PMID: 28631594 DOI: 10.1099/jgv.0.000780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Picornaviruses are the most commonly encountered infectious agents in mankind. They typically cause mild infections of the gastrointestinal or respiratory tract, but sometimes also invade the central nervous system. There, they can cause severe diseases with long-term sequelae and even be lethal. The most infamous picornavirus is poliovirus, for which significant epidemics of poliomyelitis were reported from the end of the nineteenth century. A successful vaccination campaign has brought poliovirus close to eradication, but neurological diseases caused by other picornaviruses have increasingly been reported since the late 1990s. In this review we focus on enterovirus 71, coxsackievirus A16, enterovirus 68 and human parechovirus 3, which have recently drawn attention because of their links to severe neurological diseases. We discuss the clinical relevance of these viruses and the primary role of humoral immunity in controlling them, and summarize current knowledge on the neutralization of such viruses by antibodies.
Collapse
Affiliation(s)
- Maria Anastasina
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland.,Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia
| | - Aušra Domanska
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| | - Kaia Palm
- Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia.,Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Sarah Butcher
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| |
Collapse
|
44
|
Squamous epitheliotropism of Enterovirus A71 in human epidermis and oral mucosa. Sci Rep 2017; 7:45069. [PMID: 28322333 PMCID: PMC5359612 DOI: 10.1038/srep45069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/16/2017] [Indexed: 12/31/2022] Open
Abstract
Hand-foot-and-mouth disease is a self-limiting paediatric infectious disease commonly caused by Enterovirus A71 (Genus: Enterovirus, Family: Picornaviridae). Typical lesions in and around the hands, feet, oral cavity and other places may rarely be complicated by acute flaccid paralysis and acute encephalomyelitis. Although virus is readily cultured from skin vesicles and oral secretions, the cellular target/s of Enterovirus A71 in human skin and oral mucosa are unknown. In Enterovirus A71-infected human skin and oral mucosa organotypic cultures derived from the prepuce and lip biopsies, focal viral antigens and viral RNA were localized to cytoplasm of epidermal and mucosal squamous cells as early as 2 days post-infection. Viral antigens/RNA were associated with cytoplasmic vacuolation and cellular necrosis. Infected primary prepuce epidermal keratinocyte cultures showed cytopathic effects with concomitant detection of viral antigens from 2 days post-infection. Supernatant and/or tissue homogenates from prepuce skin organotypic cultures and primary prepuce keratinocyte cultures showed viral titres consistent with active viral replication. Our data strongly support Enterovirus A71 squamous epitheliotropism in the human epidermis and oral mucosa, and suggest that these organs are important primary and/or secondary viral replication sites that contribute significantly to oral and cutaneous viral shedding resulting in person-to-person transmission, and viraemia, which could lead to neuroinvasion.
Collapse
|
45
|
Yang SD, Li PQ, Li YM, Li W, Lai WY, Zhu CP, Tao JP, Deng L, Liu HS, Ma WC, Lu JM, Hong Y, Liang YT, Shen J, Hu DD, Gao YY, Zhou Y, Situ MX, Chen YL. Clinical manifestations of severe enterovirus 71 infection and early assessment in a Southern China population. BMC Infect Dis 2017; 17:153. [PMID: 28212620 PMCID: PMC5316173 DOI: 10.1186/s12879-017-2228-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV-A71) shows a potential of rapid death, but the natural history of the infection is poorly known. This study aimed to examine the natural history of EV-A71 infection. METHODS This was a prospective longitudinal observational study performed between January 1st and October 31st, 2012, at three hospitals in Guangdong, China. Subjects with positive EV-A71 RNA laboratory test results were included. Disease progression was documented with MRI, autopsies, and follow-up. Symptoms/signs with potential association with risk of death were analyzed. RESULTS Among the 288 patients, neurologic symptoms and signs were observed (emotional movement disorders, dyskinesia, involuntary movements, autonomic dysfunction, and disturbance of consciousness). Some of them occurred as initial symptoms. Myoclonic jerks/tremors were observed among >50% of the patients; nearly 40% of patients presented fatigue and 25% were with vomiting. Twenty-eight patients (9.7%) presented poor peripheral perfusion within 53.4 ± 26.1 h; 23 patients (8.0%) presented pulmonary edema and/or hemorrhage within 62.9 ± 28.6 h. Seventeen (5.9%) patients were in a coma. Seven (2.4%) patients died within 62.9 ± 28.6 h. Seventy-seven survivors underwent head and spinal cord MRI and 37.7% (29/77) showed abnormalities. Two fatal cases showed neuronal necrosis, softening, perivascular cuffing, colloid, and neuronophagia phenomenon in the brainstem. CONCLUSIONS Patients with EV-A71 infection showed high complexity of symptoms and onset timing. Death risk may be indicated by autokinetic eyeball, eyeball ataxia, severe coma, respiratory rhythm abnormality, absent pharyngeal reflex, ultrahyperpyrexia, excessive tachycardia, pulmonary edema and/or hemorrhage, and refractory shock and ataxic respiration. Early assessment of these symptoms/signs is important for proper management.
Collapse
Affiliation(s)
- Si-da Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Pei-Qing Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yi-Min Li
- Respiratory Research Institute, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Wei Li
- Dongguan Taiping People's Hospital, Dongguan, 523905, China
| | - Wen-Ying Lai
- Zhongshan People's Hospital, Zhongshan, 528403, China
| | - Cui-Ping Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jian-Ping Tao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Li Deng
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Hong-Sheng Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wen-Cheng Ma
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jia-Ming Lu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yan Hong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yu-Ting Liang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jun Shen
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Dan-Dan Hu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yuan-Yuan Gao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yi Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Min-Xiong Situ
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yan-Ling Chen
- Dongguan Taiping People's Hospital, Dongguan, 523905, China
| |
Collapse
|
46
|
Chen MF, Weng KF, Huang SY, Liu YC, Tseng SN, Ojcius DM, Shih SR. Pretreatment with a heat-killed probiotic modulates monocyte chemoattractant protein-1 and reduces the pathogenicity of influenza and enterovirus 71 infections. Mucosal Immunol 2017; 10:215-227. [PMID: 27072606 DOI: 10.1038/mi.2016.31] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/29/2016] [Indexed: 02/04/2023]
Abstract
It has been proposed that inactivated probiotics may modulate the host immune system and contribute to mitigation of viral infections. This study demonstrated that administration of heat-killed Enterococcus faecalis, a widely used probiotic, can protect host animals against viral infections. The influenza-mediated morbidity and lung inflammation in E. faecalis-treated mice decreased significantly compared with those of the control mice. Furthermore, we found that the protection is associated with production of monocyte chemoattractant protein-1 (MCP-1). The intratracheal injection of a recombinant mouse MCP-1 protein abrogated the antiviral effects elicited by pretreatment with E. faecalis. CC chemokine receptor 2 (CCR2) is a receptor for MCP-1, and the intraperitoneal administration of a CCR2 antagonist effectively inhibited viral pathogenicity. The reduced pathogenicity was also observed in CCR2-deficient mice. Finally, E. faecalis significantly attenuated neuropathogenicity induced by another RNA virus, enterovirus 71. This study demonstrates that killed probiotics can reduce viral disease severity and identify that the MCP-1 pathway might act as a key mediator in the improved antiviral immune response. Our findings suggest that MCP-1 and its related signaling pathway can serve as critical therapeutic targets for development of new antiviral strategies.
Collapse
Affiliation(s)
- M-F Chen
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - K-F Weng
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - S-Y Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - Y-C Liu
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - S-N Tseng
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - D M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Tao-Yuan, Taiwan, ROC.,Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, California, USA
| | - S-R Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan, ROC.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Tao-Yuan, Taiwan, ROC.,Clinical Virology Laboratory, Department of Clinical Pathology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, ROC
| |
Collapse
|
47
|
Chen MF, Shih SR. Motor coordination and balance measurements reveal differential pathogenicity of currently spreading enterovirus 71 strains in human SCARB2 transgenic mice. J Gen Virol 2016; 97:3243-3247. [PMID: 27902385 DOI: 10.1099/jgv.0.000640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enterovirus 71 (EV71) has caused large-scale epidemics with neurological complications in the Asia-Pacific region. The C4a and B5 strains are the two major genotypes circulating in many countries recently. This study used a new protocol, a motor coordination task, to assess the differential pathogenicity of C4a and B5 strains in human SCARB2 transgenic mice. We found that the pathogenicity of C4a viruses was more severe than that of B5 viruses. Moreover, we discovered that an increased level of monocyte chemoattractant protein-1 was positively correlated with severely deficient motor function. This study provides a new method for evaluating EV71 infection in mice and distinguishing the severity of the symptoms caused by different clinical strains, which would contribute to studies of pathogenesis and development of vaccines and antivirals in EV71 infections.
Collapse
Affiliation(s)
- Mei-Feng Chen
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - Shin-Ru Shih
- Clinical Virology Laboratory, Department of Laboratory Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, ROC
- Graduate Institute of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan, ROC
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan, ROC
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan, ROC
| |
Collapse
|
48
|
Enterovirus A71 and coxsackievirus A16 show different replication kinetics in human neuronal and non-neuronal cell lines. Arch Virol 2016; 162:727-737. [DOI: 10.1007/s00705-016-3157-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 01/15/2023]
|
49
|
Chang PC, Chen SC, Chen KT. The Current Status of the Disease Caused by Enterovirus 71 Infections: Epidemiology, Pathogenesis, Molecular Epidemiology, and Vaccine Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E890. [PMID: 27618078 PMCID: PMC5036723 DOI: 10.3390/ijerph13090890] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/16/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022]
Abstract
Enterovirus 71 (EV71) infections have a major public health impact in the Asia-Pacific region. We reviewed the epidemiology, pathogenesis, and molecular epidemiology of EV71 infection as well as EV71 vaccine development. Previous studies were found using the search terms "enterovirus 71" and "epidemiology" or "pathogenesis" or "molecular epidemiology" or "vaccine" in Medline and PubMed. Articles that were not published in the English language, manuscripts without an abstract, and opinion articles were excluded from the review. The reported epidemiology of cases caused by EV71 infection varied from country to country; seasonal variations in incidence were observed. Most cases of EV71 infection that resulted in hospitalization for complications occurred in children less than five years old. The brainstem was the most likely major target of EV71 infection. The emergence of the EV71 epidemic in the Asia-Pacific region has been associated with the circulation of different genetic lineages (genotypes B3, B4, C1, C2, and C4) that appear to be undergoing rapid evolutionary changes. The relationship between the gene structure of the EV71 virus and the factors that ensure its survival, circulation, and evasion of immunity is still unknown. EV71 infection has emerged as an important global public health problem. Vaccine development, including the development of inactivated whole-virus live attenuated, subviral particles, and DNA vaccines, has been progressing.
Collapse
Affiliation(s)
- Ping-Chin Chang
- Division of Infectious Disease, Department of Internal Medicine, Chi-Mei Medical Center, Liouying, Tainan 736, Taiwan.
| | - Shou-Chien Chen
- Department of Family Medicine, Da-Chien General Hospital, Miaoli 237, Taiwan.
- General Education Center, Ta Tung University, Taipei 104, Taiwan.
| | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital, Tainan 701, Taiwan.
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
50
|
Xing J, Liu D, Shen S, Su Z, Zhang L, Duan Y, Tong F, Liang Y, Wang H, Deng F, Hu Z, Zhou Y. Pathologic Studies of Fatal Encephalomyelitis in Children Caused by Enterovirus 71. Am J Clin Pathol 2016; 146:95-106. [PMID: 27357294 DOI: 10.1093/ajcp/aqw089] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Enterovirus 71 (EV71) is the major pathogen of hand, foot, and mouth disease and can cause death; however, its pathogenesis remains elusive. METHODS We performed a detailed systematic histopathologic examination and molecular studies on six autopsy cases of EV71 infection using H&E, immunohistochemistry, double immunofluorescence staining, and nested reverse transcription polymerase chain reaction. RESULTS Characteristic features of acute encephalomyelitis were observed. Viral antigens were mainly detected in neuronal cytoplasm and processes in the different brainstem nuclei and spinal cord, including the anterior and posterior horn cells. Viral antigens were also positive in the nerve roots of spinal cord and autonomic ganglia of intestines. CONCLUSIONS Our study revealed direct pathologic evidence supporting viral entry into the central nervous system (CNS) through peripheral nerves. In addition to the major motor pathway, EV71 can also enter the CNS via peripheral sensory and autonomic pathways in retrograde axonal transport.
Collapse
Affiliation(s)
- Jingjun Xing
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Department of Pathology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhengyuan Su
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lin Zhang
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijie Duan
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Tong
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Liang
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yiwu Zhou
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|