1
|
Guo X, Lee T, Sun J, Sun J, Cai W, Yang Q, Sun T. Molecular Lineages and Spatial Distributions of Subplate Neurons in the Human Fetal Cerebral Cortex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407137. [PMID: 39495628 DOI: 10.1002/advs.202407137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/22/2024] [Indexed: 11/06/2024]
Abstract
The expansion of neural progenitors and production of distinct neurons are crucial for architectural assembly and formation of connectivity in human brains. Subplate neurons (SPNs) are among the firstborn neurons in the human fetal cerebral cortex, and play a critical role in establishing intra- and extracortical connections. However, little is known about SPN origin and developmental lineages. In this study, spatial landscapes and molecular trajectories of SPNs in the human fetal cortices from gestational weeks (GW) 10 to 25 are created by performing spatial transcriptomics and single-cell RNA sequencing. Genes known to be evolutionarily human-specific and genes associated with extracellular matrices (ECMs) are found to maintain stable proportions of subplate neurons among other neuronal types. Enriched ECM gene expression in SPNs varies in distinct cortical regions, with the highest level in the frontal lobe of human fetal brains. This study reveals molecular origin and lineage specification of subplate neurons in the human fetal cerebral cortices, and highlights underpinnings of SPNs to cortical neurogenesis and early structural folding.
Collapse
Affiliation(s)
- Xueyu Guo
- Center for Precision Medicine, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Jason Sun
- Xiamen Institute of Technology Attached School, Xiamen, Fujian, 361005, China
| | - Julianne Sun
- Xiamen Institute of Technology Attached School, Xiamen, Fujian, 361005, China
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, 362046, China
| | - Qingwei Yang
- Department of Neurology, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361006, China
| | - Tao Sun
- Center for Precision Medicine, Huaqiao University, Xiamen, Fujian, 361021, China
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, 361021, China
| |
Collapse
|
2
|
Kjar A, Haschert MR, Zepeda JC, Simmons AJ, Yates A, Chavarria D, Fernandez M, Robertson G, Abdulrahman AM, Kim H, Marguerite NT, Moen RK, Drake LE, Curry CW, O'Grady BJ, Gama V, Lau KS, Grueter B, Brunger JM, Lippmann ES. Biofunctionalized gelatin hydrogels support development and maturation of iPSC-derived cortical organoids. Cell Rep 2024; 43:114874. [PMID: 39423129 DOI: 10.1016/j.celrep.2024.114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Human neural organoid models have become an important tool for studying neurobiology. However, improving the representativeness of neural cell populations in such organoids remains a major effort. In this work, we compared Matrigel, a commercially available matrix, to a neural cadherin (N-cadherin) peptide-functionalized gelatin methacryloyl hydrogel (termed GelMA-Cad) for culturing cortical neural organoids. We determined that peptide presentation can tune cell fate and diversity in gelatin-based matrices during differentiation. Of particular note, cortical organoids cultured in GelMA-Cad hydrogels mapped more closely to human fetal populations and produced neurons with more spontaneous excitatory postsynaptic currents relative to Matrigel. These results provide compelling evidence that matrix-tethered signaling peptides can influence neural organoid differentiation, opening an avenue to control stem cell fate. Moreover, outcomes from this work showcase the technical utility of GelMA-Cad as a simple and defined hydrogel alternative to Matrigel for neural organoid culture.
Collapse
Affiliation(s)
- Andrew Kjar
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Mia R Haschert
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - José C Zepeda
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - A Joey Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexis Yates
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
| | - Daniel Chavarria
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Melanie Fernandez
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Gabriella Robertson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Adam M Abdulrahman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nicole T Marguerite
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Rachel K Moen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Lauren E Drake
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Corinne W Curry
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Brian J O'Grady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA; Chemical and Physical Biology Program, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brad Grueter
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Anesthesiology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Schimek N, Wood TR, Beck DAC, McKenna M, Toghani A, Nance E. High-fidelity predictions of diffusion in the brain microenvironment. Biophys J 2024:S0006-3495(24)00664-7. [PMID: 39390745 DOI: 10.1016/j.bpj.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024] Open
Abstract
Multiple-particle tracking (MPT) is a microscopy technique capable of simultaneously tracking hundreds to thousands of nanoparticles in a biological sample and has been used extensively to characterize biological microenvironments, including the brain extracellular space (ECS). Machine learning techniques have been applied to MPT data sets to predict the diffusion mode of nanoparticle trajectories as well as more complex biological variables, such as biological age. In this study, we develop a machine learning pipeline to predict and investigate changes to the brain ECS due to injury using supervised classification and feature importance calculations. We first validate the pipeline on three related but distinct MPT data sets from the living brain ECS-age differences, region differences, and enzymatic degradation of ECS structure. We predict three ages with 86% accuracy, three regions with 90% accuracy, and healthy versus enzyme-treated tissue with 69% accuracy. Since injury across groups is normally compared with traditional statistical approaches, we first used linear mixed effects models to compare features between healthy control conditions and injury induced by two different oxygen glucose deprivation exposure times. We then used machine learning to predict injury state using MPT features. We show that the pipeline predicts between the healthy control, 0.5 h OGD treatment, and 1.5 h OGD treatment with 59% accuracy in the cortex and 66% in the striatum, and identifies nonlinear relationships between trajectory features that were not evident from traditional linear models. Our work demonstrates that machine learning applied to MPT data is effective across multiple experimental conditions and can find unique biologically relevant features of nanoparticle diffusion.
Collapse
Affiliation(s)
- Nels Schimek
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Thomas R Wood
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington
| | - David A C Beck
- Deparment of Computer Science and Engineering, University of Washington, Seattle, Washington; eScience Institute, University of Washington, Seattle, Washington; Department of Chemical Engineering, University of Washington, Seattle, Washington
| | - Michael McKenna
- Department of Chemical Engineering, University of Washington, Seattle, Washington
| | - Ali Toghani
- Deparment of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Elizabeth Nance
- eScience Institute, University of Washington, Seattle, Washington; Department of Chemical Engineering, University of Washington, Seattle, Washington; Department of Bioengineering, University of Washington, Seattle, Washington.
| |
Collapse
|
4
|
Xu R, Ning Y, Ren F, Gu C, Zhu Z, Pan X, Pshezhetsky AV, Ge J, Yu J. Structure and mechanism of lysosome transmembrane acetylation by HGSNAT. Nat Struct Mol Biol 2024; 31:1502-1508. [PMID: 38769387 DOI: 10.1038/s41594-024-01315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Lysosomal transmembrane acetylation of heparan sulfates (HS) is catalyzed by HS acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT), whose dysfunction leads to lysosomal storage diseases. The mechanism by which HGSNAT, the sole non-hydrolase enzyme in HS degradation, brings cytosolic acetyl-coenzyme A (Ac-CoA) and lysosomal HS together for N-acyltransferase reactions remains unclear. Here, we present cryogenic-electron microscopy structures of HGSNAT alone, complexed with Ac-CoA and with acetylated products. These structures explain that Ac-CoA binding from the cytosolic side causes dimeric HGSNAT to form a transmembrane tunnel. Within this tunnel, catalytic histidine and asparagine approach the lumen and instigate the transfer of the acetyl group from Ac-CoA to the glucosamine group of HS. Our study unveils a transmembrane acetylation mechanism that may help advance therapeutic strategies targeting lysosomal storage diseases.
Collapse
Affiliation(s)
- Ruisheng Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingjie Ning
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fandong Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chenxia Gu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xuefang Pan
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Alexey V Pshezhetsky
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| | - Jingpeng Ge
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Jie Yu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| |
Collapse
|
5
|
Bui KC, Kamiyama D. Adjacent Neuronal Fascicle Guides Motoneuron 24 Dendritic Branching and Axonal Routing Decisions through Dscam1 Signaling. eNeuro 2024; 11:ENEURO.0130-24.2024. [PMID: 39349058 PMCID: PMC11495862 DOI: 10.1523/eneuro.0130-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 10/02/2024] Open
Abstract
The formation and precise positioning of axons and dendrites are crucial for the development of neural circuits. Although juxtacrine signaling via cell-cell contact is known to influence these processes, the specific structures and mechanisms regulating neuronal process positioning within the central nervous system (CNS) remain to be fully identified. Our study investigates motoneuron 24 (MN24) in the Drosophila embryonic CNS, which is characterized by a complex yet stereotyped axon projection pattern, known as "axonal routing." In this motoneuron, the primary dendritic branches project laterally toward the midline, specifically emerging at the sites where axons turn. We observed that Scp2-positive neurons contribute to the lateral fascicle structure in the ventral nerve cord (VNC) near MN24 dendrites. Notably, the knockout of the Down syndrome cell adhesion molecule (Dscam1) results in the loss of dendrites and disruption of proper axonal routing in MN24, while not affecting the formation of the fascicle structure. Through cell-type specific knockdown and rescue experiments of Dscam1, we have determined that the interaction between MN24 and Scp2-positive fascicle, mediated by Dscam1, promotes the development of both dendrites and axonal routing. Our findings demonstrate that the holistic configuration of neuronal structures, such as axons and dendrites, within single motoneurons can be governed by local contact with the adjacent neuron fascicle, a novel reference structure for neural circuitry wiring.
Collapse
Affiliation(s)
- Kathy Clara Bui
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30605
| | - Daichi Kamiyama
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30605
| |
Collapse
|
6
|
Susanto TT, Hung V, Levine AG, Chen Y, Kerr CH, Yoo Y, Oses-Prieto JA, Fromm L, Zhang Z, Lantz TC, Fujii K, Wernig M, Burlingame AL, Ruggero D, Barna M. RAPIDASH: Tag-free enrichment of ribosome-associated proteins reveals composition dynamics in embryonic tissue, cancer cells, and macrophages. Mol Cell 2024; 84:3545-3563.e25. [PMID: 39260367 PMCID: PMC11460945 DOI: 10.1016/j.molcel.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translation. Nevertheless, a lack of technologies to enrich RAPs across sample types has prevented systematic analysis of RAP identities, dynamics, and functions. We have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including Dhx30 and Llph, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development linked to the translation of genes with long coding sequences. In addition, we showed that RAPIDASH can identify ribosome changes in cancer cells. Finally, we characterized ribosome composition remodeling during immune cell activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs in multiple cell types, tissues, and stimuli and is adaptable to characterize ribosome remodeling in several contexts.
Collapse
Affiliation(s)
- Teodorus Theo Susanto
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Victoria Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew G Levine
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yuxiang Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Craig H Kerr
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yongjin Yoo
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Fromm
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Zijian Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Travis C Lantz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kotaro Fujii
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Maria Barna
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Ramos M, Martín-García R, Curto MÁ, Gómez-Delgado L, Moreno MB, Sato M, Portales E, Osumi M, Rincón SA, Pérez P, Ribas JC, Cortés JC. Fission yeast Bgs1 glucan synthase participates in the control of growth polarity and membrane traffic. iScience 2024; 27:110477. [PMID: 39156640 PMCID: PMC11326927 DOI: 10.1016/j.isci.2024.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 07/05/2024] [Indexed: 08/20/2024] Open
Abstract
Rod-shaped fission yeast grows through cell wall expansion at poles and septum, synthesized by essential glucan synthases. Bgs1 synthesizes the linear β(1,3)glucan of primary septum at cytokinesis. Linear β(1,3)glucan is also present in the wall poles, suggesting additional Bgs1 roles in growth polarity. Our study reveals an essential collaboration between Bgs1 and Tea1-Tea4, but not other polarity factors, in controlling growth polarity. Simultaneous absence of Bgs1 function and Tea1-Tea4 causes complete loss of growth polarity, spread of other glucan synthases, and spherical cell formation, indicating this defect is specifically due to linear β(1,3)glucan absence. Furthermore, linear β(1,3)glucan absence induces actin patches delocalization and sterols spread, which are ultimately responsible for the growth polarity loss without Tea1-Tea4. This suggests strong similarities in Bgs1 functions controlling actin structures during cytokinesis and polarized growth. Collectively, our findings unveil that cell wall β(1,3)glucan regulates polarized growth, like the equivalent extracellular matrix in neuronal cells.
Collapse
Affiliation(s)
- Mariona Ramos
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - M. Ángeles Curto
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Laura Gómez-Delgado
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - M. Belén Moreno
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Mamiko Sato
- Laboratory of Electron Microscopy and Bio-imaging Center, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, Japan
| | - Elvira Portales
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Masako Osumi
- Laboratory of Electron Microscopy and Bio-imaging Center, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, Japan
- Integrated Imaging Research Support (IIRS), Villa Royal Hirakawa 103, 1-7-5 Hirakawa-cho, Chiyoda-ku, Tokyo, Japan
| | - Sergio A. Rincón
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Juan C. Ribas
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| | - Juan C.G. Cortés
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
8
|
Anitei M, Bruno F, Valkova C, Dau T, Cirri E, Mestres I, Calegari F, Kaether C. IER3IP1-mutations cause microcephaly by selective inhibition of ER-Golgi transport. Cell Mol Life Sci 2024; 81:334. [PMID: 39115595 PMCID: PMC11335259 DOI: 10.1007/s00018-024-05386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/22/2024]
Abstract
Mutations in the IER3IP1 (Immediate Early Response-3 Interacting Protein 1) gene can give rise to MEDS1 (Microcephaly with Simplified Gyral Pattern, Epilepsy, and Permanent Neonatal Diabetes Syndrome-1), a severe condition leading to early childhood mortality. The small endoplasmic reticulum (ER)-membrane protein IER3IP1 plays a non-essential role in ER-Golgi transport. Here, we employed secretome and cell-surface proteomics to demonstrate that the absence of IER3IP1 results in the mistrafficking of proteins crucial for neuronal development and survival, including FGFR3, UNC5B and SEMA4D. This phenomenon correlates with the distension of ER membranes and increased lysosomal activity. Notably, the trafficking of cargo receptor ERGIC53 and KDEL-receptor 2 are compromised, with the latter leading to the anomalous secretion of ER-localized chaperones. Our investigation extended to in-utero knock-down of Ier3ip1 in mouse embryo brains, revealing a morphological phenotype in newborn neurons. In summary, our findings provide insights into how the loss or mutation of a 10 kDa small ER-membrane protein can cause a fatal syndrome.
Collapse
Affiliation(s)
- Mihaela Anitei
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Francesca Bruno
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Christina Valkova
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Therese Dau
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Emilio Cirri
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Iván Mestres
- Center for Regenerative Therapies, TU-Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Federico Calegari
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Christoph Kaether
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany.
- Center for Regenerative Therapies, TU-Dresden, Fetscherstraße 105, 01307, Dresden, Germany.
| |
Collapse
|
9
|
Gribaudo S, Robert R, van Sambeek B, Mirdass C, Lyubimova A, Bouhali K, Ferent J, Morin X, van Oudenaarden A, Nedelec S. Self-organizing models of human trunk organogenesis recapitulate spinal cord and spine co-morphogenesis. Nat Biotechnol 2024; 42:1243-1253. [PMID: 37709912 DOI: 10.1038/s41587-023-01956-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Integrated in vitro models of human organogenesis are needed to elucidate the multi-systemic events underlying development and disease. Here we report the generation of human trunk-like structures that model the co-morphogenesis, patterning and differentiation of the human spine and spinal cord. We identified differentiation conditions for human pluripotent stem cells favoring the formation of an embryo-like extending antero-posterior (AP) axis. Single-cell and spatial transcriptomics show that somitic and spinal cord differentiation trajectories organize along this axis and can self-assemble into a neural tube surrounded by somites upon extracellular matrix addition. Morphogenesis is coupled with AP patterning mechanisms, which results, at later stages of organogenesis, in in vivo-like arrays of neural subtypes along a neural tube surrounded by spine and muscle progenitors contacted by neuronal projections. This integrated system of trunk development indicates that in vivo-like multi-tissue co-morphogenesis and topographic organization of terminal cell types can be achieved in human organoids, opening windows for the development of more complex models of organogenesis.
Collapse
Affiliation(s)
- Simona Gribaudo
- Institut du Fer à Moulin, Paris, France
- Inserm, UMR-S 1270, Paris, France
- Sorbonne Université, Science and Engineering Faculty, Paris, France
| | - Rémi Robert
- Institut du Fer à Moulin, Paris, France
- Inserm, UMR-S 1270, Paris, France
- Sorbonne Université, Science and Engineering Faculty, Paris, France
| | - Björn van Sambeek
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Camil Mirdass
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Anna Lyubimova
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kamal Bouhali
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Julien Ferent
- Institut du Fer à Moulin, Paris, France
- Inserm, UMR-S 1270, Paris, France
- Sorbonne Université, Science and Engineering Faculty, Paris, France
| | - Xavier Morin
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, The Netherlands
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stéphane Nedelec
- Institut du Fer à Moulin, Paris, France.
- Inserm, UMR-S 1270, Paris, France.
- Sorbonne Université, Science and Engineering Faculty, Paris, France.
| |
Collapse
|
10
|
Wan S, Aregueta Robles U, Poole-Warren L, Esrafilzadeh D. Advances in 3D tissue models for neural engineering: self-assembled versus engineered tissue models. Biomater Sci 2024; 12:3522-3549. [PMID: 38829222 DOI: 10.1039/d4bm00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Neural tissue engineering has emerged as a promising field that aims to create functional neural tissue for therapeutic applications, drug screening, and disease modelling. It is becoming evident in the literature that this goal requires development of three-dimensional (3D) constructs that can mimic the complex microenvironment of native neural tissue, including its biochemical, mechanical, physical, and electrical properties. These 3D models can be broadly classified as self-assembled models, which include spheroids, organoids, and assembloids, and engineered models, such as those based on decellularized or polymeric scaffolds. Self-assembled models offer advantages such as the ability to recapitulate neural development and disease processes in vitro, and the capacity to study the behaviour and interactions of different cell types in a more realistic environment. However, self-assembled constructs have limitations such as lack of standardised protocols, inability to control the cellular microenvironment, difficulty in controlling structural characteristics, reproducibility, scalability, and lengthy developmental timeframes. Integrating biomimetic materials and advanced manufacturing approaches to present cells with relevant biochemical, mechanical, physical, and electrical cues in a controlled tissue architecture requires alternate engineering approaches. Engineered scaffolds, and specifically 3D hydrogel-based constructs, have desirable properties, lower cost, higher reproducibility, long-term stability, and they can be rapidly tailored to mimic the native microenvironment and structure. This review explores 3D models in neural tissue engineering, with a particular focus on analysing the benefits and limitations of self-assembled organoids compared with hydrogel-based engineered 3D models. Moreover, this paper will focus on hydrogel based engineered models and probe their biomaterial components, tuneable properties, and fabrication techniques that allow them to mimic native neural tissue structures and environment. Finally, the current challenges and future research prospects of 3D neural models for both self-assembled and engineered models in neural tissue engineering will be discussed.
Collapse
Affiliation(s)
- Shuqian Wan
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ulises Aregueta Robles
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
11
|
Xu C, Alameri A, Leong W, Johnson E, Chen Z, Xu B, Leong KW. Multiscale engineering of brain organoids for disease modeling. Adv Drug Deliv Rev 2024; 210:115344. [PMID: 38810702 PMCID: PMC11265575 DOI: 10.1016/j.addr.2024.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Brain organoids hold great potential for modeling human brain development and pathogenesis. They recapitulate certain aspects of the transcriptional trajectory, cellular diversity, tissue architecture and functions of the developing brain. In this review, we explore the engineering strategies to control the molecular-, cellular- and tissue-level inputs to achieve high-fidelity brain organoids. We review the application of brain organoids in neural disorder modeling and emerging bioengineering methods to improve data collection and feature extraction at multiscale. The integration of multiscale engineering strategies and analytical methods has significant potential to advance insight into neurological disorders and accelerate drug development.
Collapse
Affiliation(s)
- Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Alia Alameri
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Wei Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Emily Johnson
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Zaozao Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Bin Xu
- Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
12
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
13
|
Broséus L, Guilbert A, Hough I, Kloog I, Chauvaud A, Seyve E, Vaiman D, Heude B, Chevrier C, Tost J, Slama R, Lepeule J. Placental DNA methylation signatures of prenatal air pollution exposure and potential effects on birth outcomes: an analysis of three prospective cohorts. Lancet Planet Health 2024; 8:e297-e308. [PMID: 38723642 DOI: 10.1016/s2542-5196(24)00045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Pregnancy air pollution exposure (PAPE) has been linked to a wide range of adverse birth and childhood outcomes, but there is a paucity of data on its influence on the placental epigenome, which can regulate the programming of physiological functions and affect child development. This study aimed to investigate the association between prenatal air pollutant exposure concentrations and changes in placental DNA methylation patterns, and to explore the potential windows of susceptibility and sex-specific alterations. METHODS This multi-site study used three prospective population-based mother-child cohorts: EDEN, PELAGIE, and SEPAGES, originating from four French geographical regions (Nancy, Poitiers, Brittany, and Grenoble). Pregnant women were included between 2003 and 2006 for EDEN and PELAGIE, and between 2014 and 2017 for SEPAGES. The main eligibility criteria were: being older than 18 years, having a singleton pregnancy, and living and planning to deliver in one of the maternity clinics in one of the study areas. A total of 1539 mother-child pairs were analysed, measuring placental DNA methylation using Illumina BeadChips. We used validated spatiotemporally resolved models to estimate PM2·5, PM10, and NO2 exposure over each trimester of pregnancy at the maternal residential address. We conducted a pooled adjusted epigenome-wide association study to identify differentially methylated 5'-C-phosphate-G-3' (CpG) sites and regions (assessed using the Infinium HumanMethylationEPIC BeadChip array, n=871), including sex-specific and sex-linked alterations, and independently validated our results (assessed using the Infinium HumanMethylation450 BeadChip array, n=668). FINDINGS We identified four CpGs and 28 regions associated with PAPE in the total population, 469 CpGs and 87 regions in male infants, and 150 CpGs and 66 regions in female infants. We validated 35% of the CpGs available. More than 30% of the identified CpGs were related to one (or more) birth outcome and most significant alterations were enriched for neural development, immunity, and metabolism related genes. The 28 regions identified for both sexes overlapped with imprinted genes (four genes), and were associated with neurodevelopment (nine genes), immune system (seven genes), and metabolism (five genes). Most associations were observed for the third trimester for female infants (134 of 150 CpGs), and throughout pregnancy (281 of 469 CpGs) and the first trimester (237 of 469 CpGs) for male infants. INTERPRETATION These findings highlight the molecular pathways through which PAPE might affect child health in a widespread and sex-specific manner, identifying the genes involved in the major physiological functions of a developing child. Further studies are needed to elucidate whether these epigenetic changes persist and affect health later in life. FUNDING French Agency for National Research, Fondation pour la Recherche Médicale, Fondation de France, and the Plan Cancer.
Collapse
Affiliation(s)
- Lucile Broséus
- Université Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Development and Respiratory Health, IAB, Grenoble, France.
| | - Ariane Guilbert
- Université Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Development and Respiratory Health, IAB, Grenoble, France
| | - Ian Hough
- Université Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Development and Respiratory Health, IAB, Grenoble, France; Institute of Environmental Geosciences, Université Grenoble Alpes, Grenoble, France; Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anath Chauvaud
- Université Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Development and Respiratory Health, IAB, Grenoble, France
| | - Emie Seyve
- Université Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Development and Respiratory Health, IAB, Grenoble, France
| | - Daniel Vaiman
- Institut Cochin, U1016 Inserm, Unité Mixte de Recherche 8104, CNRS, Paris-Descartes University, Paris, France
| | - Barbara Heude
- Université Paris Cité et Université Sorbonne Paris Nord, Inserm, INRAE, Centre de Recherche en Épidémiologie et Statistiques, Paris, France
| | - Cécile Chevrier
- University of Rennes, Inserm, Ecole des Hautes Etudes en Santé Publique, Institut de Recherche en Santé, Environnement et Travail, Unité Mixte de Recherche 1085, Rennes, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Rémy Slama
- Université Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Development and Respiratory Health, IAB, Grenoble, France
| | - Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Development and Respiratory Health, IAB, Grenoble, France.
| |
Collapse
|
14
|
Baig S, Nadaf J, Allache R, Le PU, Luo M, Djedid A, Nkili-Meyong A, Safisamghabadi M, Prat A, Antel J, Guiot MC, Petrecca K. Identity and nature of neural stem cells in the adult human subventricular zone. iScience 2024; 27:109342. [PMID: 38495819 PMCID: PMC10940989 DOI: 10.1016/j.isci.2024.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/26/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
The existence of neural stem cells (NSCs) in adult human brain neurogenic regions remains unresolved. To address this, we created a cell atlas of the adult human subventricular zone (SVZ) derived from fresh neurosurgical samples using single-cell transcriptomics. We discovered 2 adult radial glia (RG)-like populations, aRG1 and aRG2. aRG1 shared features with fetal early RG (eRG) and aRG2 were transcriptomically similar to fetal outer RG (oRG). We also captured early neuronal and oligodendrocytic NSC states. We found that the biological programs driven by their transcriptomes support their roles as early lineage NSCs. Finally, we show that these NSCs have the potential to transition between states and along lineage trajectories. These data reveal that multipotent NSCs reside in the adult human SVZ.
Collapse
Affiliation(s)
- Salma Baig
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Javad Nadaf
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Redouane Allache
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Phuong U. Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Michael Luo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Annisa Djedid
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Andriniaina Nkili-Meyong
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Maryam Safisamghabadi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Alex Prat
- Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC H2X0A9, Canada
| | - Jack Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Marie-Christine Guiot
- Department of Neuropathology, Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital McGill University, 3801 University Avenue, Montreal QC H3A2B4, Canada
| |
Collapse
|
15
|
Bui KC, Kamiyama D. Adjacent Neuronal Fascicle Guides Motoneuron 24 Dendritic Branching and Axonal Routing Decisions through Dscam1 Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588591. [PMID: 38645010 PMCID: PMC11030417 DOI: 10.1101/2024.04.08.588591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The formation and precise positioning of axons and dendrites are crucial for the development of neural circuits. Although juxtracrine signaling via cell-cell contact is known to influence these processes, the specific structures and mechanisms regulating neuronal process positioning within the central nervous system (CNS) remain to be fully identified. Our study investigates motoneuron 24 (MN24) in the Drosophila embryonic CNS, which is characterized by a complex yet stereotyped axon projection pattern, known as 'axonal routing.' In this motoneuron, the primary dendritic branches project laterally toward the midline, specifically emerging at the sites where axons turn. We observed that Scp2-positive neurons contribute to the lateral fascicle structure in the ventral nerve cord (VNC) near MN24 dendrites. Notably, the knockout of the Down syndrome cell adhesion molecule (dscam1) results in the loss of dendrites and disruption of proper axonal routing in MN24, while not affecting the formation of the fascicle structure. Through cell-type specific knockdown and rescue experiments of dscam1, we have determined that the interaction between MN24 and Scp2-positive fascicle, mediated by Dscam1, promotes the development of both dendrites and axonal routing. Our findings demonstrate that the holistic configuration of neuronal structures, such as axons and dendrites, within single motoneurons can be governed by local contact with the adjacent neuron fascicle, a novel reference structure for neural circuitry wiring.
Collapse
Affiliation(s)
- Kathy Clara Bui
- Department of Cellular Biology, University of Georgia, Athens, GA 30605, USA
| | - Daichi Kamiyama
- Department of Cellular Biology, University of Georgia, Athens, GA 30605, USA
| |
Collapse
|
16
|
Sosa-Acosta P, Quiñones-Vega M, Guedes JDS, Rocha D, Guida L, Vasconcelos Z, Nogueira FCS, Domont GB. Multiomics Approach Reveals Serum Biomarker Candidates for Congenital Zika Syndrome. J Proteome Res 2024; 23:1200-1220. [PMID: 38390744 DOI: 10.1021/acs.jproteome.3c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The Zika virus (ZIKV) can be vertically transmitted, causing congenital Zika syndrome (CZS) in fetuses. ZIKV infection in early gestational trimesters increases the chances of developing CZS. This syndrome involves several pathologies with a complex diagnosis. In this work, we aim to identify biological processes and molecular pathways related to CZS and propose a series of putative protein and metabolite biomarkers for CZS prognosis in early pregnancy trimesters. We analyzed serum samples of healthy pregnant women and ZIKV-infected pregnant women bearing nonmicrocephalic and microcephalic fetuses. A total of 1090 proteins and 512 metabolites were identified by bottom-up proteomics and untargeted metabolomics, respectively. Univariate and multivariate statistical approaches were applied to find CZS differentially abundant proteins (DAP) and metabolites (DAM). Enrichment analysis (i.e., biological processes and molecular pathways) of the DAP and the DAM allowed us to identify the ECM organization and proteoglycans, amino acid metabolism, and arachidonic acid metabolism as CZS signatures. Five proteins and four metabolites were selected as CZS biomarker candidates. Serum multiomics analysis led us to propose nine putative biomarkers for CZS prognosis with high sensitivity and specificity.
Collapse
Affiliation(s)
- Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mauricio Quiñones-Vega
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jéssica de S Guedes
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Danielle Rocha
- Fernandes Figueira Institute, Fiocruz, Rio de Janeiro 22250-020, Brazil
| | - Letícia Guida
- Fernandes Figueira Institute, Fiocruz, Rio de Janeiro 22250-020, Brazil
| | | | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
17
|
Staal L, Plösch T, Kunovac Kallak T, Sundström Poromaa I, Wertheim B, Olivier JDA. Sex-Specific Transcriptomic Changes in the Villous Tissue of Placentas of Pregnant Women Using a Selective Serotonin Reuptake Inhibitor. ACS Chem Neurosci 2024; 15:1074-1083. [PMID: 38421943 PMCID: PMC10958514 DOI: 10.1021/acschemneuro.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
About 5% of pregnant women are treated with selective serotonin reuptake inhibitor (SSRI) antidepressants to treat their depression. SSRIs influence serotonin levels, a key factor in neural embryonic development, and their use during pregnancy has been associated with adverse effects on the developing embryo. However, the role of the placenta in transmitting these negative effects is not well understood. In this study, we aim to elucidate how disturbances in the maternal serotonergic system affect the villous tissue of the placenta by assessing whole transcriptomes in the placentas of women with healthy pregnancies and women with depression and treated with the SSRI fluoxetine during pregnancy. Twelve placentas of the Biology, Affect, Stress, Imaging and Cognition in Pregnancy and the Puerperium (BASIC) project were selected for RNA sequencing to examine differentially expressed genes: six male infants and six female infants, equally distributed over women treated with SSRI and without SSRI treatment. Our results show that more genes in the placenta of male infants show changed expression associated with fluoxetine treatment than in placentas of female infants, stressing the importance of sex-specific analyses. In addition, we identified genes related to extracellular matrix organization to be significantly enriched in placentas of male infants born to women treated with fluoxetine. It remains to be established whether the differentially expressed genes that we found to be associated with SSRI treatment are the result of the SSRI treatment itself, the underlying depression, or a combination of the two.
Collapse
Affiliation(s)
- Laura Staal
- Neurobiology,
Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
- Department
of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Torsten Plösch
- Departments
of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Perinatal
Neurobiology, Department of Human Medicine, School of Medicine and
Health Sciences, Carl von Ossietzky University
Oldenburg, 26129 Oldenburg, Germany
| | | | | | - Bregje Wertheim
- Evolutionary
Genetics, Development & Behaviour, Groningen Institute for Evolutionary
Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Jocelien D. A. Olivier
- Neurobiology,
Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| |
Collapse
|
18
|
Rosh I, Tripathi U, Hussein Y, Rike WA, Djamus J, Shklyar B, Manole A, Houlden H, Winkler J, Gage FH, Stern S. Synaptic dysfunction and extracellular matrix dysregulation in dopaminergic neurons from sporadic and E326K-GBA1 Parkinson's disease patients. NPJ Parkinsons Dis 2024; 10:38. [PMID: 38374278 PMCID: PMC10876637 DOI: 10.1038/s41531-024-00653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with both genetic and sporadic origins. In this study, we investigated the electrophysiological properties, synaptic activity, and gene expression differences in dopaminergic (DA) neurons derived from induced pluripotent stem cells (iPSCs) of healthy controls, sporadic PD (sPD) patients, and PD patients with E326K-GBA1 mutations. Our results demonstrate reduced sodium currents and synaptic activity in DA neurons derived from PD patients with E326K-GBA1 mutations, suggesting a potential contribution to PD pathophysiology. We also observed distinct electrophysiological alterations in sPD DA neurons, which included a decrease in synaptic currents. RNA sequencing analysis revealed unique dysregulated pathways in sPD neurons and E326K-GBA1 neurons, further supporting the notion that molecular mechanisms driving PD may differ between PD patients. In agreement with our previous reports, Extracellular matrix and Focal adhesion pathways were among the top dysregulated pathways in DA neurons from sPD patients and from patients with E326K-GBA1 mutations. Overall, our study further confirms that impaired synaptic activity is a convergent functional phenotype in DA neurons derived from PD patients across multiple genetic mutations as well as sPD. At the transcriptome level, we find that the brain extracellular matrix is highly involved in PD pathology across multiple PD-associated mutations as well as sPD.
Collapse
Affiliation(s)
- Idan Rosh
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Utkarsh Tripathi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Wote Amelo Rike
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Jose Djamus
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Boris Shklyar
- Bioimaging Unit, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Andreea Manole
- Laboratory of Genetics, Gage, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Henry Houlden
- UCL Queen Square Institute of Neurology, University College London, London, England
| | | | - Fred H Gage
- Laboratory of Genetics, Gage, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shani Stern
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.
| |
Collapse
|
19
|
Rueda AD, Salvador-Martínez I, Sospedra-Arrufat I, Alcaina-Caro A, Fernández-Miñán A, Burgos-Ruiz AM, Cases I, Mohedano A, Tena JJ, Heyn H, Lopez-Rios J, Nusspaumer G. The cellular landscape of the endochondral bone during the transition to extrauterine life. Immunol Cell Biol 2024; 102:131-148. [PMID: 38184783 DOI: 10.1111/imcb.12718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024]
Abstract
The cellular complexity of the endochondral bone underlies its essential and pleiotropic roles during organismal life. While the adult bone has received significant attention, we still lack a deep understanding of the perinatal bone cellulome. Here, we have profiled the full composition of the murine endochondral bone at the single-cell level during the transition from fetal to newborn life and in comparison with the adult tissue, with particular emphasis on the mesenchymal compartment. The perinatal bone contains different fibroblastic clusters with blastema-like characteristics in organizing and supporting skeletogenesis, angiogenesis and hematopoiesis. Our data also suggest dynamic inter- and intra-compartment interactions, as well as a bone marrow milieu that seems prone to anti-inflammation, which we hypothesize is necessary to ensure the proper program of lymphopoiesis and the establishment of central and peripheral tolerance in early life. Our study provides an integrative roadmap for the future design of genetic and cellular functional assays to validate cellular interactions and lineage relationships within the perinatal bone.
Collapse
Affiliation(s)
- Alejandro Díaz Rueda
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Irepan Salvador-Martínez
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ismael Sospedra-Arrufat
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ana Alcaina-Caro
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ana Fernández-Miñán
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ana M Burgos-Ruiz
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Alberto Mohedano
- Intensive Care Unit, Severo Ochoa University Hospital Leganés, Madrid, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- Universidad Loyola Andalucía, School of Health Sciences, Dos Hermanas, Seville, Spain
| | - Gretel Nusspaumer
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| |
Collapse
|
20
|
Hendriks D, Pagliaro A, Andreatta F, Ma Z, van Giessen J, Massalini S, López-Iglesias C, van Son GJF, DeMartino J, Damen JMA, Zoutendijk I, Staliarova N, Bredenoord AL, Holstege FCP, Peters PJ, Margaritis T, Chuva de Sousa Lopes S, Wu W, Clevers H, Artegiani B. Human fetal brain self-organizes into long-term expanding organoids. Cell 2024; 187:712-732.e38. [PMID: 38194967 DOI: 10.1016/j.cell.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/27/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.
Collapse
Affiliation(s)
- Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| | - Anna Pagliaro
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Ziliang Ma
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Immunos, Singapore 138648, Singapore; Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Joey van Giessen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Simone Massalini
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Gijs J F van Son
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Jeff DeMartino
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - J Mirjam A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Iris Zoutendijk
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Nadzeya Staliarova
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Annelien L Bredenoord
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | | | | | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Immunos, Singapore 138648, Singapore; Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| | | |
Collapse
|
21
|
López-León CF, Planet R, Soriano J. Preparation and Mechano-Functional Characterization of PEGylated Fibrin Hydrogels: Impact of Thrombin Concentration. Gels 2024; 10:116. [PMID: 38391447 PMCID: PMC10888336 DOI: 10.3390/gels10020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Three-dimensional (3D) neuronal cultures grown in hydrogels are promising platforms to design brain-like neuronal networks in vitro. However, the optimal properties of such cultures must be tuned to ensure a hydrogel matrix sufficiently porous to promote healthy development but also sufficiently rigid for structural support. Such an optimization is difficult since it implies the exploration of different hydrogel compositions and, at the same time, a functional analysis to validate neuronal culture viability. To advance in this quest, here we present a combination of a rheological protocol and a network-based functional analysis to investigate PEGylated fibrin hydrogel networks with gradually higher stiffness, achieved by increasing the concentration of thrombin. We observed that moderate thrombin concentrations of 10% and 25% in volume shaped healthy networks, although the functional traits depended on the hydrogel stiffness, which was much higher for the latter concentration. Thrombin concentrations of 65% or higher led to networks that did not survive. Our results illustrate the difficulties and limitations in preparing 3D neuronal networks, and stress the importance of combining a mechano-structural characterization of a biomaterial with a functional one.
Collapse
Affiliation(s)
- Clara F López-León
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelon, E-08028 Barcelona, Spain
| | - Ramon Planet
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelon, E-08028 Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelon, E-08028 Barcelona, Spain
| |
Collapse
|
22
|
Martinez JL, Piciw JG, Crockett M, Sorci IA, Makwana N, Sirois CL, Giffin-Rao Y, Bhattacharyya A. Transcriptional consequences of trisomy 21 on neural induction. Front Cell Neurosci 2024; 18:1341141. [PMID: 38357436 PMCID: PMC10865501 DOI: 10.3389/fncel.2024.1341141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Down syndrome, caused by trisomy 21, is a complex developmental disorder associated with intellectual disability and reduced growth of multiple organs. Structural pathologies are present at birth, reflecting embryonic origins. A fundamental unanswered question is how an extra copy of human chromosome 21 contributes to organ-specific pathologies that characterize individuals with Down syndrome, and, relevant to the hallmark intellectual disability in Down syndrome, how trisomy 21 affects neural development. We tested the hypothesis that trisomy 21 exerts effects on human neural development as early as neural induction. Methods Bulk RNA sequencing was performed on isogenic trisomy 21 and euploid human induced pluripotent stem cells (iPSCs) at successive stages of neural induction: embryoid bodies at Day 6, early neuroectoderm at Day 10, and differentiated neuroectoderm at Day 17. Results Gene expression analysis revealed over 1,300 differentially expressed genes in trisomy 21 cells along the differentiation pathway compared to euploid controls. Less than 5% of the gene expression changes included upregulated chromosome 21 encoded genes at every timepoint. Genes involved in specific growth factor signaling pathways (WNT and Notch), metabolism (including oxidative stress), and extracellular matrix were altered in trisomy 21 cells. Further analysis uncovered heterochronic expression of genes. Conclusion Trisomy 21 impacts discrete developmental pathways at the earliest stages of neural development. The results suggest that metabolic dysfunction arises early in embryogenesis in trisomy 21 and may affect development and function more broadly.
Collapse
Affiliation(s)
- José L. Martinez
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Jennifer G. Piciw
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, United States
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Madeline Crockett
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Isabella A. Sorci
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Nikunj Makwana
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Carissa L. Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
23
|
Hidalgo-Alvarez V, Madl CM. Leveraging Biomaterial Platforms to Study Aging-Related Neural and Muscular Degeneration. Biomolecules 2024; 14:69. [PMID: 38254669 PMCID: PMC10813704 DOI: 10.3390/biom14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a complex multifactorial process that results in tissue function impairment across the whole organism. One of the common consequences of this process is the loss of muscle mass and the associated decline in muscle function, known as sarcopenia. Aging also presents with an increased risk of developing other pathological conditions such as neurodegeneration. Muscular and neuronal degeneration cause mobility issues and cognitive impairment, hence having a major impact on the quality of life of the older population. The development of novel therapies that can ameliorate the effects of aging is currently hindered by our limited knowledge of the underlying mechanisms and the use of models that fail to recapitulate the structure and composition of the cell microenvironment. The emergence of bioengineering techniques based on the use of biomimetic materials and biofabrication methods has opened the possibility of generating 3D models of muscular and nervous tissues that better mimic the native extracellular matrix. These platforms are particularly advantageous for drug testing and mechanistic studies. In this review, we discuss the developments made in the creation of 3D models of aging-related neuronal and muscular degeneration and we provide a perspective on the future directions for the field.
Collapse
Affiliation(s)
| | - Christopher M. Madl
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
24
|
Andrews MG, Pearson CA. Toward an understanding of glucose metabolism in radial glial biology and brain development. Life Sci Alliance 2024; 7:e202302193. [PMID: 37798120 PMCID: PMC10556723 DOI: 10.26508/lsa.202302193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Decades of research have sought to determine the intrinsic and extrinsic mechanisms underpinning the regulation of neural progenitor maintenance and differentiation. A series of precise temporal transitions within progenitor cell populations generates all the appropriate neural cell types while maintaining a pool of self-renewing progenitors throughout embryogenesis. Recent technological advances have enabled us to gain new insights at the single-cell level, revealing an interplay between metabolic state and developmental progression that impacts the timing of proliferation and neurogenesis. This can have long-term consequences for the developing brain's neuronal specification, maturation state, and organization. Furthermore, these studies have highlighted the need to reassess the instructive role of glucose metabolism in determining progenitor cell division, differentiation, and fate. This review focuses on glucose metabolism (glycolysis) in cortical progenitor cells and the emerging focus on glycolysis during neurogenic transitions. Furthermore, we discuss how the field can learn from other biological systems to improve our understanding of the spatial and temporal changes in glycolysis in progenitors and evaluate functional neurological outcomes.
Collapse
Affiliation(s)
- Madeline G Andrews
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Caroline A Pearson
- https://ror.org/02r109517 Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
25
|
Wallace JL, Pollen AA. Human neuronal maturation comes of age: cellular mechanisms and species differences. Nat Rev Neurosci 2024; 25:7-29. [PMID: 37996703 DOI: 10.1038/s41583-023-00760-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
The delayed and prolonged postmitotic maturation of human neurons, compared with neurons from other species, may contribute to human-specific cognitive abilities and neurological disorders. Here we review the mechanisms of neuronal maturation, applying lessons from model systems to understand the specific features of protracted human cortical maturation and species differences. We cover cell-intrinsic features of neuronal maturation, including transcriptional, epigenetic and metabolic mechanisms, as well as cell-extrinsic features, including the roles of activity and synapses, the actions of glial cells and the contribution of the extracellular matrix. We discuss evidence for species differences in biochemical reaction rates, the proposed existence of an epigenetic maturation clock and the contributions of both general and modular mechanisms to species-specific maturation timing. Finally, we suggest approaches to measure, improve and accelerate the maturation of human neurons in culture, examine crosstalk and interactions among these different aspects of maturation and propose conceptual models to guide future studies.
Collapse
Affiliation(s)
- Jenelle L Wallace
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Eşiyok N, Heide M. The SVZ stem cell niche-components, functions, and in vitro modelling. Front Cell Dev Biol 2023; 11:1332901. [PMID: 38188021 PMCID: PMC10766702 DOI: 10.3389/fcell.2023.1332901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Neocortical development depends on the intrinsic ability of neural stem and progenitor cells to proliferate and differentiate to generate the different kinds of neurons in the adult brain. These progenitor cells can be distinguished into apical progenitors, which occupy a stem cell niche in the ventricular zone and basal progenitors, which occupy a stem cell niche in the subventricular zone (SVZ). During development, the stem cell niche provided in the subventricular zone enables the increased proliferation and self-renewal of basal progenitors, which likely underlie the expansion of the human neocortex. However, the components forming the SVZ stem cell niche in the developing neocortex have not yet been fully understood. In this review, we will discuss potential components of the SVZ stem cell niche, i.e., extracellular matrix composition and brain vasculature, and their possible key role in establishing and maintaining this niche during fetal neocortical development. We will also emphasize the potential role of basal progenitor morphology in maintaining their proliferative capacity within the stem cell niche of the SVZ. Finally, we will focus on the use of brain organoids to i) understand the unique features of basal progenitors, notably basal radial glia; ii) study components of the SVZ stem cell niche; and iii) provide future directions on how to improve brain organoids, notably the organoid SVZ, and make them more reliable models of human neocortical development and evolution studies.
Collapse
Affiliation(s)
| | - Michael Heide
- Research Group Brain Development and Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
27
|
Akula SK, Exposito-Alonso D, Walsh CA. Shaping the brain: The emergence of cortical structure and folding. Dev Cell 2023; 58:2836-2849. [PMID: 38113850 PMCID: PMC10793202 DOI: 10.1016/j.devcel.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/08/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The cerebral cortex-the brain's covering and largest region-has increased in size and complexity in humans and supports higher cognitive functions such as language and abstract thinking. There is a growing understanding of the human cerebral cortex, including the diversity and number of cell types that it contains, as well as of the developmental mechanisms that shape cortical structure and organization. In this review, we discuss recent progress in our understanding of molecular and cellular processes, as well as mechanical forces, that regulate the folding of the cerebral cortex. Advances in human genetics, coupled with experimental modeling in gyrencephalic species, have provided insights into the central role of cortical progenitors in the gyrification and evolutionary expansion of the cerebral cortex. These studies are essential for understanding the emergence of structural and functional organization during cortical development and the pathogenesis of neurodevelopmental disorders associated with cortical malformations.
Collapse
Affiliation(s)
- Shyam K Akula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David Exposito-Alonso
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| |
Collapse
|
28
|
Massimo M, Long KR. In preprints: shaping the developing human brain. Development 2023; 150:dev202567. [PMID: 38078654 DOI: 10.1242/dev.202567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Affiliation(s)
- Marco Massimo
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Katherine R Long
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
29
|
Hamad MIK, Emerald BS, Kumar KK, Ibrahim MF, Ali BR, Bataineh MF. Extracellular molecular signals shaping dendrite architecture during brain development. Front Cell Dev Biol 2023; 11:1254589. [PMID: 38155836 PMCID: PMC10754048 DOI: 10.3389/fcell.2023.1254589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Proper growth and branching of dendrites are crucial for adequate central nervous system (CNS) functioning. The neuronal dendritic geometry determines the mode and quality of information processing. Any defects in dendrite development will disrupt neuronal circuit formation, affecting brain function. Besides cell-intrinsic programmes, extrinsic factors regulate various aspects of dendritic development. Among these extrinsic factors are extracellular molecular signals which can shape the dendrite architecture during early development. This review will focus on extrinsic factors regulating dendritic growth during early neuronal development, including neurotransmitters, neurotrophins, extracellular matrix proteins, contact-mediated ligands, and secreted and diffusible cues. How these extracellular molecular signals contribute to dendritic growth has been investigated in developing nervous systems using different species, different areas within the CNS, and different neuronal types. The response of the dendritic tree to these extracellular molecular signals can result in growth-promoting or growth-limiting effects, and it depends on the receptor subtype, receptor quantity, receptor efficiency, the animal model used, the developmental time windows, and finally, the targeted signal cascade. This article reviews our current understanding of the role of various extracellular signals in the establishment of the architecture of the dendrites.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kukkala K. Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marwa F. Ibrahim
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mo’ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
30
|
Susanto TT, Hung V, Levine AG, Kerr CH, Yoo Y, Chen Y, Oses-Prieto JA, Fromm L, Fujii K, Wernig M, Burlingame AL, Ruggero D, Barna M. RAPIDASH: A tag-free enrichment of ribosome-associated proteins reveals compositional dynamics in embryonic tissues and stimulated macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570613. [PMID: 38106052 PMCID: PMC10723405 DOI: 10.1101/2023.12.07.570613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translational control. However, a lack of technologies to enrich RAPs across many sample types has prevented systematic analysis of RAP number, dynamics, and functions. Here, we have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including DHX30 and LLPH, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development that is linked to the translation of genes with long coding sequences. Finally, we characterized ribosome composition remodeling during immune activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs ranging from those with neuroregulatory functions to those activated by immune stimuli, thereby providing critical insights into how ribosomes are remodeled.
Collapse
Affiliation(s)
- Teodorus Theo Susanto
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Victoria Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew G Levine
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Craig H Kerr
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yongjin Yoo
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuxiang Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Lisa Fromm
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Kotaro Fujii
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Maria Barna
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Han S, Kim J, Kim SH, Youn W, Kim J, Ji GY, Yang S, Park J, Lee GM, Kim Y, Choi IS. In vitro induction of in vivo-relevant stellate astrocytes in 3D brain-derived, decellularized extracellular matrices. Acta Biomater 2023; 172:218-233. [PMID: 37788738 DOI: 10.1016/j.actbio.2023.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
In vitro fabrication of 3D cell culture systems that could provide in vivo tissue-like, structural, and biochemical environments to neural cells is essential not only for fundamental studies on brain function and behavior, but also for tissue engineering and regenerative medicine applicable to neural injury and neurodegenerative diseases. In particular, for astrocytes-which actively respond to the surroundings and exhibit varied morphologies based on stimuli (e.g., stiffness and chemicals) in vitro, as well as physiological or pathological conditions in vivo-it is crucial to establish an appropriate milieu in in vitro culture platforms. Herein, we report the induction of in vivo-relevant, stellate-shaped astrocytes derived from cortices of Rattus norvegicus by constructing the 3D cell culture systems of brain-derived, decellularized extracellular matrices (bdECMs). The bdECM hydrogels were mechanically stable and soft, and the bdECM-based 3D scaffolds supplied biochemically active environments that astrocytes could interact with, leading to the development of in vivo-like stellate structures. In addition to the distinct morphology with actively elongated endfeet, the astrocytes, cultured in 3D bdECM scaffolds, would have neurosupportive characteristics, indicated by the accelerated neurite outgrowth in the astrocyte-conditioned media. Furthermore, next-generation sequencing showed that the gene expression profiles of astrocytes cultured in bdECMs were significantly different from those cultured on 2D surfaces. The stellate-shaped astrocytes in the bdECMs were analyzed to have reached a more mature state, for instance, with decreased expression of genes for scaffold ECMs, actin filaments, and cell division. The results suggest that the bdECM-based 3D culture system offers an advanced platform for culturing primary cortical astrocytes and their mixtures with other neural cells, providing a brain-like, structural and biochemical milieu that promotes the maturity and in vivo-like characteristics of astrocytes in both form and gene expression. STATEMENT OF SIGNIFICANCE: Decellularized extracellular matrices (dECMs) have emerged as strong candidates for the construction of three-dimensional (3D) cell cultures in vitro, owing to the potential to provide native biochemical and physical environments. In this study, we fabricated hydrogels of brain-derived dECMs (bdECMs) and cultured primary astrocytes within the bdECM hydrogels in a 3D context. The cultured astrocytes exhibited a stellate morphology distinct from conventional 2D cultures, featuring tridimensionally elongated endfeet. qRT-PCR and NGS-based transcriptomic analyses revealed gene expression patterns indicative of a more mature state, compared with the 2D culture. Moreover, astrocytes cultured in bdECMs showed neurosupportive characteristics, as demonstrated by the accelerated neurite outgrowth in astrocyte-conditioned media. We believe that the bdECM hydrogel-based culture system can serve as an in vitro model system for astrocytes and their coculture with other neural cells, holding significant potential for neural engineering and therapeutic applications.
Collapse
Affiliation(s)
- Sol Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Jungnam Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Jihoo Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Gil Yong Ji
- Cannabis Medical, Inc., Asan 31418, South Korea
| | - Seoin Yang
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Joohyouck Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | | | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea; Department of Bio and Brain Engineering, KAIST, Daejeon 34141, South Korea.
| |
Collapse
|
32
|
Zemke NR, Armand EJ, Wang W, Lee S, Zhou J, Li YE, Liu H, Tian W, Nery JR, Castanon RG, Bartlett A, Osteen JK, Li D, Zhuo X, Xu V, Chang L, Dong K, Indralingam HS, Rink JA, Xie Y, Miller M, Krienen FM, Zhang Q, Taskin N, Ting J, Feng G, McCarroll SA, Callaway EM, Wang T, Lein ES, Behrens MM, Ecker JR, Ren B. Conserved and divergent gene regulatory programs of the mammalian neocortex. Nature 2023; 624:390-402. [PMID: 38092918 PMCID: PMC10719095 DOI: 10.1038/s41586-023-06819-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
Divergence of cis-regulatory elements drives species-specific traits1, but how this manifests in the evolution of the neocortex at the molecular and cellular level remains unclear. Here we investigated the gene regulatory programs in the primary motor cortex of human, macaque, marmoset and mouse using single-cell multiomics assays, generating gene expression, chromatin accessibility, DNA methylome and chromosomal conformation profiles from a total of over 200,000 cells. From these data, we show evidence that divergence of transcription factor expression corresponds to species-specific epigenome landscapes. We find that conserved and divergent gene regulatory features are reflected in the evolution of the three-dimensional genome. Transposable elements contribute to nearly 80% of the human-specific candidate cis-regulatory elements in cortical cells. Through machine learning, we develop sequence-based predictors of candidate cis-regulatory elements in different species and demonstrate that the genomic regulatory syntax is highly preserved from rodents to primates. Finally, we show that epigenetic conservation combined with sequence similarity helps to uncover functional cis-regulatory elements and enhances our ability to interpret genetic variants contributing to neurological disease and traits.
Collapse
Affiliation(s)
- Nathan R Zemke
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Ethan J Armand
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Wenliang Wang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Seoyeon Lee
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Jingtian Zhou
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yang Eric Li
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Wei Tian
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Julia K Osteen
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Daofeng Li
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Xiaoyu Zhuo
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Vincent Xu
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Lei Chang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Keyi Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Hannah S Indralingam
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Jonathan A Rink
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yang Xie
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Michael Miller
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Genetics, Harvard Medical School, Boston, USA
| | - Qiangge Zhang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Naz Taskin
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ting Wang
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA.
- Institute of Genomic Medicine, Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Zhou W, Jiang Z, Yi Z, Ouyang J, Li X, Zhang Q, Wang P. Defect of TIMP4 Is Associated with High Myopia and Participates in Rat Ocular Development in a Dose-Dependent Manner. Int J Mol Sci 2023; 24:16928. [PMID: 38069250 PMCID: PMC10707432 DOI: 10.3390/ijms242316928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Thinning of the sclera happens in myopia eyes owing to extracellular matrix (ECM) remodeling, but the initiators of the ECM remodeling in myopia are mainly unknown. The matrix metalloproteinase (MMPs) and tissue inhibitors of matrix metalloproteinase (TIMPs) regulate the homeostasis of the ECM. However, genetic studies of the MMPs and TIMPs in the occurrence of myopia are poor and limited. This study systematically investigated the association between twenty-nine genes of the TIMPs and MMPs families and early-onset high myopia (eoHM) based on whole exome sequencing data. Two TIMP4 heterozygous loss-of-function (LoF) variants, c.528C>A in six patients and c.234_235insAA in one patient, were statistically enriched in 928 eoHM probands compared to that in 5469 non-high myopia control (p = 3.7 × 10-5) and that in the general population (p = 2.78 × 10-9). Consequently, the Timp4 gene editing rat was further evaluated to explore the possible role of Timp4 on ocular and myopia development. A series of ocular morphology abnormalities in a dose-dependent manner (Timp4-/- < Timp4+/- < Timp4+/+) were observed in a rat model, including the decline in the retinal thickness, the elongation in the axial length, more vulnerable to the form deprivation model, morphology changes in sclera collagen bundles, and the decrease in collagen contents of the sclera and retina. Electroretinogram revealed that the b-wave amplitudes of Timp4 defect rats were significantly reduced, consistent with the shorter length of the bipolar axons detected by HE and IF staining. Heterozygous LoF variants in the TIMP4 are associated with early onset high myopia, and the Timp4 defect disturbs ocular development by influencing the morphology and function of the ocular tissue.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510000, China; (W.Z.); (Z.J.); (Z.Y.); (J.O.); (X.L.)
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510000, China; (W.Z.); (Z.J.); (Z.Y.); (J.O.); (X.L.)
| |
Collapse
|
34
|
Martins‐Costa C, Pham VA, Sidhaye J, Novatchkova M, Wiegers A, Peer A, Möseneder P, Corsini NS, Knoblich JA. Morphogenesis and development of human telencephalic organoids in the absence and presence of exogenous extracellular matrix. EMBO J 2023; 42:e113213. [PMID: 37842725 PMCID: PMC10646563 DOI: 10.15252/embj.2022113213] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
The establishment and maintenance of apical-basal polarity is a fundamental step in brain development, instructing the organization of neural progenitor cells (NPCs) and the developing cerebral cortex. Particularly, basally located extracellular matrix (ECM) is crucial for this process. In vitro, epithelial polarization can be achieved via endogenous ECM production, or exogenous ECM supplementation. While neuroepithelial development is recapitulated in neural organoids, the effects of different ECM sources in tissue morphogenesis remain underexplored. Here, we show that exposure to a solubilized basement membrane matrix substrate, Matrigel, at early neuroepithelial stages causes rapid tissue polarization and rearrangement of neuroepithelial architecture. In cultures exposed to pure ECM components or unexposed to any exogenous ECM, polarity acquisition is slower and driven by endogenous ECM production. After the onset of neurogenesis, tissue architecture and neuronal differentiation are largely independent of the initial ECM source, but Matrigel exposure has long-lasting effects on tissue patterning. These results advance the knowledge on mechanisms of exogenously and endogenously guided morphogenesis, demonstrating the self-sustainability of neuroepithelial cultures by endogenous processes.
Collapse
Affiliation(s)
- Catarina Martins‐Costa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Vincent A Pham
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Jaydeep Sidhaye
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Andrea Wiegers
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Angela Peer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Paul Möseneder
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Nina S Corsini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| |
Collapse
|
35
|
Voelker P, Weible AP, Niell CM, Rothbart MK, Posner MI. Molecular Mechanisms for Changing Brain Connectivity in Mice and Humans. Int J Mol Sci 2023; 24:15840. [PMID: 37958822 PMCID: PMC10648558 DOI: 10.3390/ijms242115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The goal of this study was to examine commonalities in the molecular basis of learning in mice and humans. In previous work we have demonstrated that the anterior cingulate cortex (ACC) and hippocampus (HC) are involved in learning a two-choice visuospatial discrimination task. Here, we began by looking for candidate genes upregulated in mouse ACC and HC with learning. We then determined which of these were also upregulated in mouse blood. Finally, we used RT-PCR to compare candidate gene expression in mouse blood with that from humans following one of two forms of learning: a working memory task (network training) or meditation (a generalized training shown to change many networks). Two genes were upregulated in mice following learning: caspase recruitment domain-containing protein 6 (Card6) and inosine monophosphate dehydrogenase 2 (Impdh2). The Impdh2 gene product catalyzes the first committed step of guanine nucleotide synthesis and is tightly linked to cell proliferation. The Card6 gene product positively modulates signal transduction. In humans, Card6 was significantly upregulated, and Impdh2 trended toward upregulation with training. These genes have been shown to regulate pathways that influence nuclear factor kappa B (NF-κB), a factor previously found to be related to enhanced synaptic function and learning.
Collapse
Affiliation(s)
- Pascale Voelker
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
| | - Aldis P. Weible
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
| | - Cristopher M. Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Mary K. Rothbart
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
| | - Michael I. Posner
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
| |
Collapse
|
36
|
Chiaradia I, Imaz-Rosshandler I, Nilges BS, Boulanger J, Pellegrini L, Das R, Kashikar ND, Lancaster MA. Tissue morphology influences the temporal program of human brain organoid development. Cell Stem Cell 2023; 30:1351-1367.e10. [PMID: 37802039 PMCID: PMC10765088 DOI: 10.1016/j.stem.2023.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/22/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Progression through fate decisions determines cellular composition and tissue architecture, but how that same architecture may impact cell fate is less clear. We took advantage of organoids as a tractable model to interrogate this interaction of form and fate. Screening methodological variations revealed that common protocol adjustments impacted various aspects of morphology, from macrostructure to tissue architecture. We examined the impact of morphological perturbations on cell fate through integrated single nuclear RNA sequencing (snRNA-seq) and spatial transcriptomics. Regardless of the specific protocol, organoids with more complex morphology better mimicked in vivo human fetal brain development. Organoids with perturbed tissue architecture displayed aberrant temporal progression, with cells being intermingled in both space and time. Finally, encapsulation to impart a simplified morphology led to disrupted tissue cytoarchitecture and a similar abnormal maturational timing. These data demonstrate that cells of the developing brain require proper spatial coordinates to undergo correct temporal progression.
Collapse
Affiliation(s)
- Ilaria Chiaradia
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Benedikt S Nilges
- Resolve Biosciences GmbH, Alfred-Nobel-Strasse 10, 40789 Monheim am Rhein, Germany
| | - Jerome Boulanger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Laura Pellegrini
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Richa Das
- Resolve Biosciences GmbH, Alfred-Nobel-Strasse 10, 40789 Monheim am Rhein, Germany
| | - Nachiket D Kashikar
- Resolve Biosciences GmbH, Alfred-Nobel-Strasse 10, 40789 Monheim am Rhein, Germany
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
37
|
Polenghi M, Taverna E. Intracellular traffic and polarity in brain development. Front Neurosci 2023; 17:1172016. [PMID: 37859764 PMCID: PMC10583573 DOI: 10.3389/fnins.2023.1172016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/31/2023] [Indexed: 10/21/2023] Open
Abstract
Neurons forming the human brain are generated during embryonic development by neural stem and progenitor cells via a process called neurogenesis. A crucial feature contributing to neural stem cell morphological and functional heterogeneity is cell polarity, defined as asymmetric distribution of cellular components. Cell polarity is built and maintained thanks to the interplay between polarity proteins and polarity-generating organelles, such as the endoplasmic reticulum (ER) and the Golgi apparatus (GA). ER and GA affect the distribution of membrane components and work as a hub where glycans are added to nascent proteins and lipids. In the last decades our knowledge on the role of polarity in neural stem and progenitor cells have increased tremendously. However, the role of traffic and associated glycosylation in neural stem and progenitor cells is still relatively underexplored. In this review, we discuss the link between cell polarity, architecture, identity and intracellular traffic, and highlight how studies on neurons have shaped our knowledge and conceptual framework on traffic and polarity. We will then conclude by discussing how a group of rare diseases, called congenital disorders of glycosylation (CDG) offers the unique opportunity to study the contribution of traffic and glycosylation in the context of neurodevelopment.
Collapse
|
38
|
Rybachuk O, Nesterenko Y, Pinet É, Medvediev V, Yaminsky Y, Tsymbaliuk V. Neuronal differentiation and inhibition of glial differentiation of murine neural stem cells by pHPMA hydrogel for the repair of injured spinal cord. Exp Neurol 2023; 368:114497. [PMID: 37517459 DOI: 10.1016/j.expneurol.2023.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
Currently, several therapeutic methods of treating the effects of spinal cord injury (SCI) are being considered. On the one hand, transplantation of stem cells (SCs), in particular, neural stem/progenitor cells (NSPCs), is promising, as these cells have the potential to differentiate into nervous tissue cells, able to enhance endogenous regeneration and prevent the development of inflammatory processes. On the other hand, it is quite promising to replace the damaged nervous tissue with synthetic matrices, in particular hydrogels, which can create artificial conditions for the regenerative growth of injured nerve fibers through the spinal cord injury area, i.e. stimulate and support axonal regeneration and myelination. In this work, we combined both of these novel approaches by populating (injecting or rehydrating) a heteroporous pHPMA hydrogel (NeuroGel) with murine hippocampal NSPCs. Being inside the hydrogel (10 days of cultivation), NSPCs were more differentiated into neurons: 19.48% ± 1.71% (the NSPCs injection into the hydrogel) and 36.49% ± 4.20% (the hydrogel rehydration in the NSPCs suspension); in control cultures, the level of differentiation in neurons was only 2.40% ± 0.31%. Differentiation of NSPCs into glial cells, in particular into oligodendrocyte progenitor cells, was also observed - 8.89% ± 2.15% and 6.21% ± 0.80% for injection and rehydration variants, respectively; in control - 28.75% ± 2.08%. In the control NSPCs culture, there was a small number of astrocytes - 2.11% ± 0.43%. Inside the hydrogel, NSPCs differentiation in astrocytes was not observed. In vitro data showed that the hydrogel promotes the differentiation of NSPCs into neurons, and inhibits the differentiation into glial cells. And in vivo showed post-traumatic recovery of rat spinal cord tissue after injury followed by implantation of the hydrogel+NSPCs complex (approximately 7 months after SCI). The implant area was closely connected with the recipient tissue, and the recipient cells freely grew into the implant itself. Inside the implant, a formed dense neuronal network was visible. In summary, the results are primarily an experimental ground for further studies of implants based on pHPMA hydrogel with populated different origin SCs, and the data also indicate the feasibility and efficiency of using an integrated approach to reduce possible negative side effects and facilitate the rehabilitation process after a SCI.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv 01601, Ukraine; State Institution National Scientific Center the M.D. Strazhesko Institute of Cardiology, Clinical and Regenerative Medicine, NAMS of Ukraine, Kyiv 03680, Ukraine.
| | - Yuliia Nesterenko
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv 01601, Ukraine
| | | | - Volodymyr Medvediev
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv 01601, Ukraine; Bogomolets National Medical University, Kyiv 01601, Ukraine
| | - Yurii Yaminsky
- State Institution "Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine", Kyiv 04050, Ukraine
| | - Vitaliy Tsymbaliuk
- Bogomolets National Medical University, Kyiv 01601, Ukraine; State Institution "Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine", Kyiv 04050, Ukraine
| |
Collapse
|
39
|
Gong J, Gong Y, Zou T, Zeng Y, Yang C, Mo L, Kang J, Fan X, Xu H, Yang J. A controllable perfusion microfluidic chip for facilitating the development of retinal ganglion cells in human retinal organoids. LAB ON A CHIP 2023; 23:3820-3836. [PMID: 37496497 DOI: 10.1039/d3lc00054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Retinal organoids (ROs) derived from human pluripotent stem cells (hPSCs) have become a promising model in vitro to recapitulate human retinal development, which can be further employed to explore the mechanisms of retinal diseases. However, the current culture systems for ROs lack physiologically relevant microenvironments, such as controllable mechano-physiological cues and dynamic feedback between cells and the extracellular matrix (ECM), which limits the accurate control of RO development. Therefore, we designed a controllable perfusion microfluidic chip (CPMC) with the advantages of precisely controlling fluidic shear stress (FSS) and oxygen concentration distribution in a human embryonic stem cell (hESC)-derived RO culture system. We found that ROs cultured under this system allow for expanding the retinal progenitor cell (RPC) pool, orchestrating the retinal ganglion cell (RGC) specification, and axon growth without disturbing the spatial and temporal patterning events at the early stage of RO development. Furthermore, RNA sequencing data revealed that the activation of voltage-gated ion channels and the increased expression of ECM components synergistically improve the growth of ROs and facilitate the differentiation of RGCs. This study elaborates on the advantages of the designed CPMC to promote RO growth and provide a controllable and reliable platform for the efficient maturity of RGCs in the ROs, promising applications in modeling RGC-related disorders, drug screening, and cell transplantation.
Collapse
Affiliation(s)
- Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Lingyue Mo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 40038, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
40
|
López-León CF, Soriano J, Planet R. Rheological Characterization of Three-Dimensional Neuronal Cultures Embedded in PEGylated Fibrin Hydrogels. Gels 2023; 9:642. [PMID: 37623097 PMCID: PMC10454106 DOI: 10.3390/gels9080642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Three-dimensional (3D) neuronal cultures are valuable models for studying brain complexity in vitro, and the choice of the bulk material in which the neurons grow is a crucial factor in establishing successful cultures. Indeed, neuronal development and network functionality are influenced by the mechanical properties of the selected material; in turn, these properties may change due to neuron-matrix interactions that alter the microstructure of the material. To advance our understanding of the interplay between neurons and their environment, here we utilized a PEGylated fibrin hydrogel as a scaffold for mouse primary neuronal cultures and carried out a rheological characterization of the scaffold over a three-week period, both with and without cells. We observed that the hydrogels exhibited an elastic response that could be described in terms of the Young's modulus E. The hydrogels without neurons procured a stable E≃420 Pa, while the neuron-laden hydrogels showed a higher E≃590 Pa during the early stages of development that decreased to E≃340 Pa at maturer stages. Our results suggest that neurons and their processes dynamically modify the hydrogel structure during development, potentially compromising both the stability of the material and the functional traits of the developing neuronal network.
Collapse
Affiliation(s)
- Clara F. López-León
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| | - Ramon Planet
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, E-08028 Barcelona, Spain; (C.F.L.-L.); (J.S.)
- Universitat de Barcelona Institute of Complex Systems (UBICS), E-08028 Barcelona, Spain
| |
Collapse
|
41
|
Brambilla S, Guiotto M, Torretta E, Armenia I, Moretti M, Gelfi C, Palombella S, di Summa PG. Human platelet lysate stimulates neurotrophic properties of human adipose-derived stem cells better than Schwann cell-like cells. Stem Cell Res Ther 2023; 14:179. [PMID: 37480149 PMCID: PMC10362751 DOI: 10.1186/s13287-023-03407-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Trauma-associated peripheral nerve injury is a widespread clinical problem causing sensory and motor disabilities. Schwann cells (SCs) contribute to nerve regeneration, mainly by secreting nerve growth factor (NGF) and brain-derived neurotrophic factor. In the last years, adipose-derived stem cells (ASCs) differentiated into SCs (SC-ASCs) were considered as promising cell therapy. However, the cell trans-differentiation process has not been effectively showed and presents several drawbacks, thus an alternative approach for increasing ASCs neurotrophic properties is highly demanded. In the context of human cell-based therapies, Good Manufacturing Practice directions indicate that FBS should be substituted with a xenogeneic-free supplement, such as Human Platelet Lysate (HPL). Previously, we demonstrated that neurotrophic properties of HPL-cultured ASCs were superior compared to undifferentiated FBS-cultured ASCs. Therefore, as following step, here we compared the neurotrophic properties of differentiated SC-like ASCs and HPL-cultured ASCs. METHODS Both cell groups were investigated for gene expression level of neurotrophic factors, their receptors and neuronal markers. Moreover, the expression of nestin was quantitatively evaluated by flow cytometry. The commitment toward the SC phenotype was assessed with immunofluorescence pictures. Proteomics analysis was performed on both cells and their conditioned media to compare the differential protein profile. Finally, neurotrophic abilities of both groups were evaluated with a functional co-culture assay, assessing dorsal root ganglia survival and neurite outgrowth. RESULTS HPL-cultured ASCs demonstrated higher gene expression of NGF and lower expression of S100B. Moreover, nestin was present in almost all HPL-cultured ASCs and only in one quarter of SC-ASCs. Immunofluorescence confirmed that S100B was not present in HPL-cultured ASCs. Proteomics analysis validated the higher expression of nestin and the increase in cytoskeletal and ECM proteins involved in neural regeneration processes. The co-culture assay highlighted that neurite outgrowth was higher in the presence of HPL-ASCs or their conditioned medium compared to SC-ASCs. CONCLUSIONS All together, our results show that HPL-ASCs were more neurotrophic than SC-ASCs. We highlighted that the HPL triggers an immature neuro-induction state of ASCs, while keeping their stem properties, paving the way for innovative therapies for nerve regeneration.
Collapse
Affiliation(s)
- Stefania Brambilla
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157, Milan, Italy
| | - Martino Guiotto
- Department of Plastic and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157, Milan, Italy
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón, CSIC-University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157, Milan, Italy
- Regenerative Medicine Technologies Laboratory, Laboratories for Translational Research (LRT), Ente Ospedaliero Cantonale (EOC), Via F. Chiesa 5, 6500, Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Cecilia Gelfi
- Laboratory of Proteomics and Lipidomics, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Silvia Palombella
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Via C. Belgioioso 173, 20157, Milan, Italy.
| | - Pietro G di Summa
- Department of Plastic and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
42
|
Mullis AS, Kaplan DL. Functional bioengineered tissue models of neurodegenerative diseases. Biomaterials 2023; 298:122143. [PMID: 37146365 PMCID: PMC10209845 DOI: 10.1016/j.biomaterials.2023.122143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Aging-associated neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases remain poorly understood and no disease-modifying treatments exist despite decades of investigation. Predominant in vitro (e.g., 2D cell culture, organoids) and in vivo (e.g., mouse) models of these diseases are insufficient mimics of human brain tissue structure and function and of human neurodegenerative pathobiology, and have thus contributed to this collective translational failure. This has been a longstanding challenge in the field, and new strategies are required to address both fundamental and translational needs. Bioengineered tissue culture models constitute a class of promising alternatives, as they can overcome the low cell density, poor nutrient exchange, and long term culturability limitations of existing in vitro models. Further, they can reconstruct the structural, mechanical, and biochemical cues of native brain tissue, providing a better mimic of human brain tissues for in vitro pathobiological investigation and drug development. We discuss bioengineering techniques for the generation of these neurodegenerative tissue models, including biomaterials-, organoid-, and microfluidics-based approaches, and design considerations for their construction. To aid the development of the next generation of functional neurodegenerative disease models, we discuss approaches to incorporate greater cellular diversity and simulate aging processes within bioengineered brain tissues.
Collapse
Affiliation(s)
- Adam S Mullis
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
43
|
Fang L, Kuniya T, Harada Y, Yasuda O, Maeda N, Suzuki Y, Kawaguchi D, Gotoh Y. TIMP3 promotes the maintenance of neural stem-progenitor cells in the mouse subventricular zone. Front Neurosci 2023; 17:1149603. [PMID: 37456993 PMCID: PMC10338847 DOI: 10.3389/fnins.2023.1149603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Adult neural stem cells (NSCs) in the mouse subventricular zone (SVZ) serve as a lifelong reservoir for newborn olfactory bulb neurons. Recent studies have identified a slowly dividing subpopulation of embryonic neural stem-progenitor cells (NPCs) as the embryonic origin of adult NSCs. Yet, little is known about how these slowly dividing embryonic NPCs are maintained until adulthood while other NPCs are extinguished by the completion of brain development. The extracellular matrix (ECM) is an essential component of stem cell niches and thus a key determinant of stem cell fate. Here we investigated tissue inhibitors of metalloproteinases (TIMPs)-regulators of ECM remodeling-for their potential roles in the establishment of adult NSCs. We found that Timp2, Timp3, and Timp4 were expressed at high levels in slowly dividing NPCs compared to rapidly dividing NPCs. Deletion of TIMP3 reduced the number of adult NSCs and neuroblasts in the lateral SVZ. In addition, overexpression of TIMP3 in the embryonic NPCs suppressed neuronal differentiation and upregulated the expression levels of Notch signaling relating genes. These results thus suggest that TIMP3 keeps the undifferentiated state of embryonic NPCs, leading to the establishment and maintenance of adult NSCs.
Collapse
Affiliation(s)
- Lingyan Fang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takaaki Kuniya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yujin Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Osamu Yasuda
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kanoya, Japan
| | - Nobuyo Maeda
- Department of Sports and Life Sciences, National Institute of Fitness and Sports in Kanoya, Kanoya, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Daichi Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Sharma A, Hill KE, Schwarzbauer JE. Extracellular matrix composition affects outgrowth of dendrites and dendritic spines on cortical neurons. Front Cell Neurosci 2023; 17:1177663. [PMID: 37388410 PMCID: PMC10300442 DOI: 10.3389/fncel.2023.1177663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
The composition of the extracellular matrix (ECM) in nervous tissue plays an important role in controlling neuronal outgrowth and synapse development. Changes in both protein and glycosaminoglycan components of the ECM occur with tissue injury and may affect neuron growth. To investigate neuron responses to alterations in fibronectin (FN), a major component of the wound ECM, we grew cortical neurons on cell-derived decellularized matrices composed of wild type FN (FN+/+) or of a mutant form of FN (FNΔ/+) from which the III13 heparin-binding site had been deleted by CRISPR-Cas 9 gene editing. The most significant effect of the mutant FN was a reduction in dendrite outgrowth. Not only were dendrites shorter on mutant FNΔ/+-collagen (COL) matrix than on wild type (FN+/+-COL) matrix, but the number of dendrites and dendritic spines per neuron and the spine densities were also dramatically reduced on FNΔ/+-COL matrices. Mass spectrometry and immunostaining identified a reduction in tenascin-C (TN-C) levels in the mutant matrix. TN-C is an ECM protein that binds to the III13 site of FN and modulates cell-matrix interactions and has been linked to dendrite development. We propose that TN-C binding to FN in the wound matrix supports dendrite and spine development during repair of damaged neural tissue. Overall, these results show that changes in ECM composition can dramatically affect elaboration of neurites and support the idea that the ECM microenvironment controls neuron morphology and connectivity.
Collapse
Affiliation(s)
| | | | - Jean E. Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
45
|
Pipicelli F, Baumann N, Di Giaimo R, Forero-Echeverry A, Kyrousi C, Bonrath R, Maccarrone G, Jabaudon D, Cappello S. Non-cell-autonomous regulation of interneuron specification mediated by extracellular vesicles. SCIENCE ADVANCES 2023; 9:eadd8164. [PMID: 37205765 DOI: 10.1126/sciadv.add8164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Disruption in neurogenesis and neuronal migration can influence the assembly of cortical circuits, affecting the excitatory-inhibitory balance and resulting in neurodevelopmental and neuropsychiatric disorders. Using ventral cerebral organoids and dorsoventral cerebral assembloids with mutations in the extracellular matrix gene LGALS3BP, we show that extracellular vesicles released into the extracellular environment regulate the molecular differentiation of neurons, resulting in alterations in migratory dynamics. To investigate how extracellular vesicles affect neuronal specification and migration dynamics, we collected extracellular vesicles from ventral cerebral organoids carrying a mutation in LGALS3BP, previously identified in individuals with cortical malformations and neuropsychiatric disorders. These results revealed differences in protein composition and changes in dorsoventral patterning. Proteins associated with cell fate decision, neuronal migration, and extracellular matrix composition were altered in mutant extracellular vesicles. Moreover, we show that treatment with extracellular vesicles changes the transcriptomic profile in neural progenitor cells. Our results indicate that neuronal molecular differentiation can be influenced by extracellular vesicles.
Collapse
Affiliation(s)
- Fabrizia Pipicelli
- Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Rossella Di Giaimo
- Max Planck Institute of Psychiatry, Munich, Germany
- Department of Biology, University of Naples Federico II, Naples, Italy
- Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | - Andrea Forero-Echeverry
- Max Planck Institute of Psychiatry, Munich, Germany
- Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| | | | | | | | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Silvia Cappello
- Max Planck Institute of Psychiatry, Munich, Germany
- Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Großhaderner Straße 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
46
|
Alfadil E, Bradke F. Moving through the crowd. Where are we at understanding physiological axon growth? Semin Cell Dev Biol 2023; 140:63-71. [PMID: 35817655 DOI: 10.1016/j.semcdb.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/28/2023]
Abstract
Axon growth enables the rapid wiring of the central nervous system. Understanding this process is a prerequisite to retriggering it under pathological conditions, such as a spinal cord injury, to elicit axon regeneration. The last decades saw progress in understanding the mechanisms underlying axon growth. Most of these studies employed cultured neurons grown on flat surfaces. Only recently studies on axon growth were performed in 3D. In these studies, physiological environments exposed more complex and dynamic aspects of axon development. Here, we describe current views on axon growth and highlight gaps in our knowledge. We discuss how axons interact with the extracellular matrix during development and the role of the growth cone and its cytoskeleton within. Finally, we propose that the time is ripe to study axon growth in a more physiological setting. This will help us uncover the physiologically relevant mechanisms underlying axon growth, and how they can be reactivated to induce axon regeneration.
Collapse
Affiliation(s)
- Eissa Alfadil
- Laboratory of Axon Growth and Regeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany.
| | - Frank Bradke
- Laboratory of Axon Growth and Regeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| |
Collapse
|
47
|
Van Essen DC. Biomechanical models and mechanisms of cellular morphogenesis and cerebral cortical expansion and folding. Semin Cell Dev Biol 2023; 140:90-104. [PMID: 35840524 PMCID: PMC9942585 DOI: 10.1016/j.semcdb.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Morphogenesis of the nervous system involves a highly complex spatio-temporal pattern of physical forces (mainly tension and pressure) acting on cells and tissues that are pliable but have an intricately organized cytoskeletal infrastructure. This review begins by covering basic principles of biomechanics and the core cytoskeletal toolkit used to regulate the shapes of cells and tissues during embryogenesis and neural development. It illustrates how the principle of 'tensegrity' provides a useful conceptual framework for understanding how cells dynamically respond to forces that are generated internally or applied externally. The latter part of the review builds on this foundation in considering the development of mammalian cerebral cortex. The main focus is on cortical expansion and folding - processes that take place over an extended period of prenatal and postnatal development. Cortical expansion and folding are likely to involve many complementary mechanisms, some related to regulating cell proliferation and migration and others related to specific types and patterns of mechanical tension and pressure. Three distinct multi-mechanism models are evaluated in relation to a set of 18 key experimental observations and findings. The Composite Tension Plus (CT+) model is introduced as an updated version of a previous multi-component Differential Expansion Sandwich Plus (DES+) model (Van Essen, 2020); the new CT+ model includes 10 distinct mechanisms and has the greatest explanatory power among published models to date. Much needs to be done in order to validate specific mechanistic components and to assess their relative importance in different species, and important directions for future research are suggested.
Collapse
|
48
|
Rashid M, Olson EC. Delayed cortical development in mice with a neural specific deletion of β1 integrin. Front Neurosci 2023; 17:1158419. [PMID: 37250402 PMCID: PMC10213249 DOI: 10.3389/fnins.2023.1158419] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
The adhesion systems employed by migrating cortical neurons are not well understood. Genetic deletion studies of focal adhesion kinase (FAK) and paxillin in mice suggested that these classical focal adhesion molecules control the morphology and speed of cortical neuron migration, but whether β1 integrins also regulate migration morphology and speed is not known. We hypothesized that a β1 integrin adhesion complex is required for proper neuronal migration and for proper cortical development. To test this, we have specifically deleted β1 integrin from postmitotic migrating and differentiating neurons by crossing conditional β1 integrin floxed mice into the NEX-Cre transgenic line. Similar to our prior findings with conditional paxillin deficiency, we found that both homozygous and heterozygous deletion of β1 integrin causes transient mispositioning of cortical neurons in the developing cortex when analyzed pre- and perinatally. Paxillin and β1 integrin colocalize in the migrating neurons and deletion of paxillin in the migrating neuron causes an overall reduction of the β1 integrin immunofluorescence signal and reduction in the number of activated β1 integrin puncta in the migrating neurons. These findings suggest that these molecules may form a functional complex in migrating neurons. Similarly, there was an overall reduced number of paxillin+ puncta in the β1 integrin deficient neurons, despite the normal distribution of FAK and Cx26, a connexin required for cortical migration. The double knockout of paxillin and β1 integrin produces a cortical malpositioning phenotype similar to the paxillin or β1 integrin single knockouts, as would be expected if paxillin and β1 integrin function on a common pathway. Importantly, an isolation-induced pup vocalization test showed that β1 integrin mutants produced a significantly smaller number of calls compared to their littermate controls when analyzed at postnatal day 4 (P4) and revealed a several days trend in reduced vocalization development compared to controls. The current study establishes a role for β1 integrin in cortical development and suggests that β1 integrin deficiency leads to migration and neurodevelopmental delays.
Collapse
Affiliation(s)
- Mamunur Rashid
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Eric C. Olson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
49
|
Nigro P, Vamvini M, Yang J, Caputo T, Ho LL, Carbone NP, Papadopoulos D, Conlin R, He J, Hirshman MF, White JD, Robidoux J, Hickner RC, Nielsen S, Pedersen BK, Kellis M, Middelbeek RJW, Goodyear LJ. Exercise training remodels inguinal white adipose tissue through adaptations in innervation, vascularization, and the extracellular matrix. Cell Rep 2023; 42:112392. [PMID: 37058410 PMCID: PMC10374102 DOI: 10.1016/j.celrep.2023.112392] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/13/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Inguinal white adipose tissue (iWAT) is essential for the beneficial effects of exercise training on metabolic health. The underlying mechanisms for these effects are not fully understood, and here, we test the hypothesis that exercise training results in a more favorable iWAT structural phenotype. Using biochemical, imaging, and multi-omics analyses, we find that 11 days of wheel running in male mice causes profound iWAT remodeling including decreased extracellular matrix (ECM) deposition and increased vascularization and innervation. We identify adipose stem cells as one of the main contributors to training-induced ECM remodeling, show that the PRDM16 transcriptional complex is necessary for iWAT remodeling and beiging, and discover neuronal growth regulator 1 (NEGR1) as a link between PRDM16 and neuritogenesis. Moreover, we find that training causes a shift from hypertrophic to insulin-sensitive adipocyte subpopulations. Exercise training leads to remarkable adaptations to iWAT structure and cell-type composition that can confer beneficial changes in tissue metabolism.
Collapse
Affiliation(s)
- Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Maria Vamvini
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jiekun Yang
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tiziana Caputo
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Lun Ho
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas P Carbone
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Danae Papadopoulos
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Royce Conlin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Jie He
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Joseph D White
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, USA
| | - Jacques Robidoux
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, USA
| | - Robert C Hickner
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC, USA; Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente K Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Manolis Kellis
- Computational Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roeland J W Middelbeek
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Soles A, Selimovic A, Sbrocco K, Ghannoum F, Hamel K, Moncada EL, Gilliat S, Cvetanovic M. Extracellular Matrix Regulation in Physiology and in Brain Disease. Int J Mol Sci 2023; 24:7049. [PMID: 37108212 PMCID: PMC10138624 DOI: 10.3390/ijms24087049] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular matrix (ECM) surrounds cells in the brain, providing structural and functional support. Emerging studies demonstrate that the ECM plays important roles during development, in the healthy adult brain, and in brain diseases. The aim of this review is to briefly discuss the physiological roles of the ECM and its contribution to the pathogenesis of brain disease, highlighting the gene expression changes, transcriptional factors involved, and a role for microglia in ECM regulation. Much of the research conducted thus far on disease states has focused on "omic" approaches that reveal differences in gene expression related to the ECM. Here, we review recent findings on alterations in the expression of ECM-associated genes in seizure, neuropathic pain, cerebellar ataxia, and age-related neurodegenerative disorders. Next, we discuss evidence implicating the transcription factor hypoxia-inducible factor 1 (HIF-1) in regulating the expression of ECM genes. HIF-1 is induced in response to hypoxia, and also targets genes involved in ECM remodeling, suggesting that hypoxia could contribute to ECM remodeling in disease conditions. We conclude by discussing the role microglia play in the regulation of the perineuronal nets (PNNs), a specialized form of ECM in the central nervous system. We show evidence that microglia can modulate PNNs in healthy and diseased brain states. Altogether, these findings suggest that ECM regulation is altered in brain disease, and highlight the role of HIF-1 and microglia in ECM remodeling.
Collapse
Affiliation(s)
- Alyssa Soles
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Adem Selimovic
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Kaelin Sbrocco
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Ferris Ghannoum
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Katherine Hamel
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Emmanuel Labrada Moncada
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Stephen Gilliat
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|