1
|
Yurchenko SB. Panpsychism and dualism in the science of consciousness. Neurosci Biobehav Rev 2024; 165:105845. [PMID: 39106941 DOI: 10.1016/j.neubiorev.2024.105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
A resurgence of panpsychism and dualism is a matter of ongoing debate in modern neuroscience. Although metaphysically hostile, panpsychism and dualism both persist in the science of consciousness because the former is proposed as a straightforward answer to the problem of integrating consciousness into the fabric of physical reality, whereas the latter proposes a simple solution to the problem of free will by endowing consciousness with causal power as a prerequisite for moral responsibility. I take the Integrated Information Theory (IIT) as a paradigmatic exemplar of a theory of consciousness (ToC) that makes its commitments to panpsychism and dualism within a unified framework. These features are not, however, unique for IIT. Many ToCs are implicitly prone to some degree of panpsychism whenever they strive to propose a universal definition of consciousness, associated with one or another known phenomenon. Yet, those ToCs that can be characterized as strongly emergent are at risk of being dualist. A remedy against both covert dualism and uncomfortable corollaries of panpsychism can be found in the evolutionary theory of life, called here "bioprotopsychism" and generalized in terms of autopoiesis and the free energy principle. Bioprotopsychism provides a biologically inspired basis for a minimalist approach to consciousness via the triad "chemotaxis-efference copy mechanism-counterfactual active inference" by associating the stream of weakly emergent conscious states with an amount of information (best guesses) of the brain, engaged in unconscious predictive processing.
Collapse
Affiliation(s)
- Sergey B Yurchenko
- Brain and Consciousness Independent Research Center, Andijan 710132, Uzbekistan.
| |
Collapse
|
2
|
Cao CE, Raja V. Mechanisms after the end of New Mechanism. Cogn Neurosci 2024; 15:100-101. [PMID: 39314011 DOI: 10.1080/17588928.2024.2405193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
Mougenot and Matheson provide an interesting analysis on how some core ideas of the 'New Mechanists' - the proponents of a normative framework for scientific explanations based on the identification and description of mechanisms - might be relevant for the development of an embodied approach to cognitive neuroscience. Although we are highly sympathetic to such an approach, we struggle to identify the benefits of adopting the notion of mechanism for such enterprise.
Collapse
Affiliation(s)
- Carla E Cao
- Department of Philosophy, Universidad de Murcia, Murcia, Spain
| | - Vicente Raja
- Department of Philosophy, Universidad de Murcia, Murcia, Spain
- Rotman Institute of Philosophy, Western University, London (Ontario), Canada
| |
Collapse
|
3
|
Sadras V, Guirao M, Moreno A, Fereres A. Inter-virus relationships in mixed infections and virus-drought relationships in plants: a quantitative review. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1786-1799. [PMID: 37902568 DOI: 10.1111/tpj.16516] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
Inter-virus relationships in mixed infections and virus-drought relationships are important in agriculture and natural vegetation. In this quantitative review, we sampled published factorial experiments to probe for relationships against the null hypothesis of additivity. Our sample captured antagonistic, additive and synergistic inter-virus relationships in double infections. Virus-drought relationships in our sample were additive or antagonistic, reinforcing the notion that viruses have neutral or positive effects on droughted plants, or that drought enhances plant tolerance to viruses. Both inter-virus and virus-drought relationships vary with virus species, host plant to the level of cultivar or accession, timing of infection, plant age and trait and growing conditions. The trait-dependence of these relationships has implications for resource allocation in plants. Owing to lagging theories, more experimental research in these fields is bound to return phenomenological outcomes. Theoretical work can advance in two complementary directions. First, the effective theory models the behaviour of the system without specifying all the underlying causes that lead to system state change. Second, mechanistic theory based on a nuanced view of the plant phenotype that explicitly considers downward causation; the influence of the plant phenotype on inter-virus relations and vice versa; the impact of timing, intensity and duration of drought interacting with viruses to modulate the plant phenotype; both the soil (moisture) and atmospheric (vapour pressure deficit) aspects of drought. Theories should scale in time, from short term to full growing season, and in levels of organisation up to the relevant traits: crop yield in agriculture and fitness in nature.
Collapse
Affiliation(s)
- Victor Sadras
- South Australian Research and Development Institute, and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Adelaide, Australia
| | - Maria Guirao
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, ICA-CSIC, Madrid, Spain
| |
Collapse
|
4
|
Long C, Deng J, Nguyen J, Liu YY, Alm EJ, Solé R, Saavedra S. Structured community transitions explain the switching capacity of microbial systems. Proc Natl Acad Sci U S A 2024; 121:e2312521121. [PMID: 38285940 PMCID: PMC10861894 DOI: 10.1073/pnas.2312521121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Microbial systems appear to exhibit a relatively high switching capacity of moving back and forth among few dominant communities (taxon memberships). While this switching behavior has been mainly attributed to random environmental factors, it remains unclear the extent to which internal community dynamics affect the switching capacity of microbial systems. Here, we integrate ecological theory and empirical data to demonstrate that structured community transitions increase the dependency of future communities on the current taxon membership, enhancing the switching capacity of microbial systems. Following a structuralist approach, we propose that each community is feasible within a unique domain in environmental parameter space. Then, structured transitions between any two communities can happen with probability proportional to the size of their feasibility domains and inversely proportional to their distance in environmental parameter space-which can be treated as a special case of the gravity model. We detect two broad classes of systems with structured transitions: one class where switching capacity is high across a wide range of community sizes and another class where switching capacity is high only inside a narrow size range. We corroborate our theory using temporal data of gut and oral microbiota (belonging to class 1) as well as vaginal and ocean microbiota (belonging to class 2). These results reveal that the topology of feasibility domains in environmental parameter space is a relevant property to understand the changing behavior of microbial systems. This knowledge can be potentially used to understand the relevant community size at which internal dynamics can be operating in microbial systems.
Collapse
Affiliation(s)
- Chengyi Long
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jie Deng
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jen Nguyen
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA02115
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL61801
| | - Eric J. Alm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ricard Solé
- Complex Systems Lab, Universitat Pompeu Fabra, Barcelona08003, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona08010, Spain
- Institute of Evolutionary Biology, Spanish National Research Council (CSIC)-Universitat Pompeu Fabra, Barcelona08003, Spain
- Santa Fe Institute, Santa Fe, NM87501
| | - Serguei Saavedra
- Institució Catalana de Recerca i Estudis Avançats, Barcelona08010, Spain
- Santa Fe Institute, Santa Fe, NM87501
| |
Collapse
|
5
|
Doehne M, McFarland DA, Moody J. Network ecology: Tie fitness in social context(s). SOCIAL NETWORKS 2024; 76:174-190. [PMID: 39006096 PMCID: PMC11243588 DOI: 10.1016/j.socnet.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Social relations are embedded in material, cultural, and institutional settings that affect network dynamics and the resulting topologies. For example, romantic entanglements are subject to social and cultural norms, interfirm alliances are constrained by country-specific legislation, and adolescent friendships are conditioned by classroom settings and neighborhood effects. In short, social contexts shape social relations and the networks they give rise to. However, how and when they do so remain to be established. This paper presents network ecology as a general framework for identifying how the proximal environment shapes social networks by focusing interactions and social relations, and how these interactions and relations in turn shape the environment in which social networks form. Tie fitness is introduced as a metric that quantifies how well particular dyadic social relations would align with the setting. Using longitudinal networks collected on two cohorts each in 18 North American schools, i.e., 36 settings, we develop five generalizable observations about the time-varying fitness of adolescent friendship. Across all 252 analyzed networks, tie fitness predicted new tie formation, tie longevity, and tie survival. Dormant fit ties cluster in relational niches, thereby establishing a resource base for social identities competing for increased representation in the relational system.
Collapse
Affiliation(s)
- Malte Doehne
- University of Zurich, Department of Sociology, Andreasstr. 15, CH-8050 Zürich, Switzerland
| | | | - James Moody
- Duke University, 268 Soc/Psych Building, 27708 Durham, NC, United States
| |
Collapse
|
6
|
Ellis GFR. Efficient, Formal, Material, and Final Causes in Biology and Technology. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1301. [PMID: 37761600 PMCID: PMC10529506 DOI: 10.3390/e25091301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
This paper considers how a classification of causal effects as comprising efficient, formal, material, and final causation can provide a useful understanding of how emergence takes place in biology and technology, with formal, material, and final causation all including cases of downward causation; they each occur in both synchronic and diachronic forms. Taken together, they underlie why all emergent levels in the hierarchy of emergence have causal powers (which is Noble's principle of biological relativity) and so why causal closure only occurs when the upwards and downwards interactions between all emergent levels are taken into account, contra to claims that some underlying physics level is by itself causality complete. A key feature is that stochasticity at the molecular level plays an important role in enabling agency to emerge, underlying the possibility of final causation occurring in these contexts.
Collapse
Affiliation(s)
- George F R Ellis
- Mathematics Department, The New Institute, University of Cape Town, 20354 Hamburg, Germany
| |
Collapse
|
7
|
Ferdinand V, Pattenden E, Brightsmith DJ, Hobson EA. Inferring the decision rules that drive co-foraging affiliations in wild mixed-species parrot groups. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220101. [PMID: 37066652 PMCID: PMC10107227 DOI: 10.1098/rstb.2022.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/09/2023] [Indexed: 04/18/2023] Open
Abstract
Animals gathered around a specific location or resource may represent mixed-species aggregations or mixed-species groups. Patterns of individuals choosing to join these groups can provide insight into the information processing underlying these decisions. However, we still have little understanding of how much information these decisions are based upon. We used data on 12 parrot species to test what kind of information each species may use about others to make decisions about which mixed-species aggregations to participate in. We used co-presence and joining patterns with categorization and model fitting methods to test how these species could be making grouping decisions. Species generally used a simpler lower-category method to choose which other individuals to associate with, rather than basing these decisions on species-level information. We also found that the best-fit models for decision-making differed across the 12 species and included different kinds of information. We found that not only does this approach provide a framework to test hypotheses about why individuals join or leave mixed-species aggregations, it also provides insight into what features each parrot could have been using to make their decisions. While not exhaustive, this approach provides a novel examination of the potential features that species could use to make grouping decisions and could provide a link to the perceptive and cognitive abilities of the animals making these minute-by-minute decisions. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.
Collapse
Affiliation(s)
- Vanessa Ferdinand
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Elle Pattenden
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Donald J. Brightsmith
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Elizabeth A. Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
8
|
Sims R. Minimal cognition and stigmergic coordination: An everyday tale of building and bacteria. COGN SYST RES 2023. [DOI: 10.1016/j.cogsys.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Yurchenko SB. Is information the other face of causation in biological systems? Biosystems 2023; 229:104925. [PMID: 37182834 DOI: 10.1016/j.biosystems.2023.104925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Is information the other face of causation? This issue cannot be clarified without discussing how these both are related to physical laws, logic, computation, networks, bio-signaling, and the mind-body problem. The relation between information and causation is also intrinsically linked to many other concepts in complex systems theory such as emergence, self-organization, synergy, criticality, and hierarchy, which in turn involve various notions such as observer-dependence, dimensionality reduction, and especially downward causation. A canonical example proposed for downward causation is the collective behavior of the whole system at a macroscale that may affect the behavior of each its member at a microscale. In neuroscience, downward causation is suggested as a strong candidate to account for mental causation (free will). However, this would be possible only on the condition that information might have causal power. After introducing the Causal Equivalence Principle expanding the relativity principle for coarse-grained and fine-grained linear causal chains, and a set-theoretical definition of multiscale nested hierarchy composed of modular ⊂-chains, it is shown that downward causation can be spurious. It emerges only in the eyes of an observer, though, due to information that could not be obtained by "looking" exclusively at the behavior of a system at a microscale. On the other hand, since biological systems are hierarchically organized, this information gain is indicative of how information can be a function of scale in these systems and a prerequisite for scale-dependent emergence of cognition and consciousness in neural networks.
Collapse
Affiliation(s)
- Sergey B Yurchenko
- Brain and Consciousness Independent Research Center, Andijan, Uzbekistan.
| |
Collapse
|
10
|
Levin M. Darwin's agential materials: evolutionary implications of multiscale competency in developmental biology. Cell Mol Life Sci 2023; 80:142. [PMID: 37156924 PMCID: PMC10167196 DOI: 10.1007/s00018-023-04790-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
A critical aspect of evolution is the layer of developmental physiology that operates between the genotype and the anatomical phenotype. While much work has addressed the evolution of developmental mechanisms and the evolvability of specific genetic architectures with emergent complexity, one aspect has not been sufficiently explored: the implications of morphogenetic problem-solving competencies for the evolutionary process itself. The cells that evolution works with are not passive components: rather, they have numerous capabilities for behavior because they derive from ancestral unicellular organisms with rich repertoires. In multicellular organisms, these capabilities must be tamed, and can be exploited, by the evolutionary process. Specifically, biological structures have a multiscale competency architecture where cells, tissues, and organs exhibit regulative plasticity-the ability to adjust to perturbations such as external injury or internal modifications and still accomplish specific adaptive tasks across metabolic, transcriptional, physiological, and anatomical problem spaces. Here, I review examples illustrating how physiological circuits guiding cellular collective behavior impart computational properties to the agential material that serves as substrate for the evolutionary process. I then explore the ways in which the collective intelligence of cells during morphogenesis affect evolution, providing a new perspective on the evolutionary search process. This key feature of the physiological software of life helps explain the remarkable speed and robustness of biological evolution, and sheds new light on the relationship between genomes and functional anatomical phenotypes.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave. 334 Research East, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St., Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Gershenson C. Emergence in Artificial Life. ARTIFICIAL LIFE 2023; 29:153-167. [PMID: 36787448 DOI: 10.1162/artl_a_00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Even when concepts similar to emergence have been used since antiquity, we lack an agreed definition. However, emergence has been identified as one of the main features of complex systems. Most would agree on the statement "life is complex." Thus understanding emergence and complexity should benefit the study of living systems. It can be said that life emerges from the interactions of complex molecules. But how useful is this to understanding living systems? Artificial Life (ALife) has been developed in recent decades to study life using a synthetic approach: Build it to understand it. ALife systems are not so complex, be they soft (simulations), hard (robots), or wet(protocells). Thus, we can aim at first understanding emergence in ALife, to then use this knowledge in biology. I argue that to understand emergence and life, it becomes useful to use information as a framework. In a general sense, I define emergence as information that is not present at one scale but present at another. This perspective avoids problems of studying emergence from a materialist framework and can also be useful in the study of self-organization and complexity.
Collapse
Affiliation(s)
- Carlos Gershenson
- Universidad Nacional, Autánoma de México.
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
- Centro de Ciencias de la Complejidad
- Lakeside Labs GmbH
- Santa Fe Institute
| |
Collapse
|
12
|
High-accuracy model-based reinforcement learning, a survey. Artif Intell Rev 2023. [DOI: 10.1007/s10462-022-10335-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
13
|
Incorporating human behaviour into Earth system modelling. Nat Hum Behav 2022; 6:1493-1502. [DOI: 10.1038/s41562-022-01478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
|
14
|
Aphalo PJ, Sadras VO. Explaining pre-emptive acclimation by linking information to plant phenotype. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5213-5234. [PMID: 34915559 PMCID: PMC9440433 DOI: 10.1093/jxb/erab537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
We review mechanisms for pre-emptive acclimation in plants and propose a conceptual model linking developmental and evolutionary ecology with the acquisition of information through sensing of cues and signals. The idea is that plants acquire much of the information in the environment not from individual cues and signals but instead from their joint multivariate properties such as correlations. If molecular signalling has evolved to extract such information, the joint multivariate properties of the environment must be encoded in the genome, epigenome, and phenome. We contend that multivariate complexity explains why extrapolating from experiments done in artificial contexts into natural or agricultural systems almost never works for characters under complex environmental regulation: biased relationships among the state variables in both time and space create a mismatch between the evolutionary history reflected in the genotype and the artificial growing conditions in which the phenotype is expressed. Our model can generate testable hypotheses bridging levels of organization. We describe the model and its theoretical bases, and discuss its implications. We illustrate the hypotheses that can be derived from the model in two cases of pre-emptive acclimation based on correlations in the environment: the shade avoidance response and acclimation to drought.
Collapse
Affiliation(s)
| | - Victor O Sadras
- South Australian Research and Development Institute, and School of Agriculture, Food and Wine, The University of Adelaide, Australia
| |
Collapse
|
15
|
Clejan I, Congleton CD, Lerch BA. The emergence of group fitness. Evolution 2022; 76:1689-1705. [PMID: 35767747 DOI: 10.1111/evo.14549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 01/22/2023]
Abstract
Whether and how selection can act on collectives rather than single entities has been a tumultuous issue in evolutionary biology for decades. Despite examples of multilevel selection, a simple framework is needed that makes explicit the constraints that lead to the emergence of a "group fitness function." We use evolutionary game theory to show that two constraints are sufficient for the emergence of a well-defined group fitness, which could even apply to multispecies groups. First, different parts of the group contribute to one another's growth via resources produced proportionally to the density of each resource producer (not the density of the population receiving benefits). Second, invading groups do not share these resources with resident groups. Jointly, these two constraints lead to the "entanglement" of invading individuals' outcomes such that individual fitness can no longer be defined and group fitness predicts evolutionary dynamics through the emergence of a higher level evolutionary individual. Group fitness is an emergent property, irreducible to the fitness of the group's parts and exhibiting downward causality on the parts. By formalizing group fitness as a model for evolutionary transitions in individuality, these results open up a broad class of models under the multilevel-selection framework.
Collapse
Affiliation(s)
| | | | - Brian A Lerch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| |
Collapse
|
16
|
Stevens R, Galloway TL. Exploring how healthcare teams balance the neurodynamics of autonomous and collaborative behaviors: a proof of concept. Front Hum Neurosci 2022; 16:932468. [PMID: 35966993 PMCID: PMC9365959 DOI: 10.3389/fnhum.2022.932468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Team members co-regulate their activities and move together at the collective level of behavior while coordinating their actions toward shared goals. In parallel with team processes, team members need to resolve uncertainties arising from the changing task and environment. In this exploratory study we have measured the differential neurodynamics of seven two-person healthcare teams across time and brain regions during autonomous (taskwork) and collaborative (teamwork) segments of simulation training. The questions posed were: (1) whether these abstract and mostly integrated constructs could be separated neurodynamically; and, (2) what could be learned about taskwork and teamwork by trying to do so? The taskwork and teamwork frameworks used were Neurodynamic Information (NI), an electroencephalography (EEG) derived measure shown to be a neurodynamic proxy for the pauses and hesitations associated with individual uncertainty, and inter-brain EEG coherence (IBC) which is a required component of social interactions. No interdependency was observed between NI and IBC, and second-by-second dynamic comparisons suggested mutual exclusivity. These studies show that proxies for fundamental properties of teamwork and taskwork can be separated neurodynamically during team performances of ecologically valid tasks. The persistent expression of NI and IBC were not simultaneous suggesting that it may be difficult for team members to maintain inter-brain coherence while simultaneously reducing their individual uncertainties. Lastly, these separate dynamics occur over time frames of 15-30 s providing time for real-time detection and mitigation of individual and collaborative complications during training or live patient encounters.
Collapse
Affiliation(s)
- Ronald Stevens
- UCLA School of Medicine, Brain Research Institute, Los Angeles, CA, United States
- The Learning Chameleon, Inc., Culver City, CA, United States
| | | |
Collapse
|
17
|
Swain A, Williams SD, Di Felice LJ, Hobson EA. Interactions and information: exploring task allocation in ant colonies using network analysis. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Doctor T, Witkowski O, Solomonova E, Duane B, Levin M. Biology, Buddhism, and AI: Care as the Driver of Intelligence. ENTROPY (BASEL, SWITZERLAND) 2022; 24:710. [PMID: 35626593 PMCID: PMC9140411 DOI: 10.3390/e24050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Intelligence is a central feature of human beings' primary and interpersonal experience. Understanding how intelligence originated and scaled during evolution is a key challenge for modern biology. Some of the most important approaches to understanding intelligence are the ongoing efforts to build new intelligences in computer science (AI) and bioengineering. However, progress has been stymied by a lack of multidisciplinary consensus on what is central about intelligence regardless of the details of its material composition or origin (evolved vs. engineered). We show that Buddhist concepts offer a unique perspective and facilitate a consilience of biology, cognitive science, and computer science toward understanding intelligence in truly diverse embodiments. In coming decades, chimeric and bioengineering technologies will produce a wide variety of novel beings that look nothing like familiar natural life forms; how shall we gauge their moral responsibility and our own moral obligations toward them, without the familiar touchstones of standard evolved forms as comparison? Such decisions cannot be based on what the agent is made of or how much design vs. natural evolution was involved in their origin. We propose that the scope of our potential relationship with, and so also our moral duty toward, any being can be considered in the light of Care-a robust, practical, and dynamic lynchpin that formalizes the concepts of goal-directedness, stress, and the scaling of intelligence; it provides a rubric that, unlike other current concepts, is likely to not only survive but thrive in the coming advances of AI and bioengineering. We review relevant concepts in basal cognition and Buddhist thought, focusing on the size of an agent's goal space (its cognitive light cone) as an invariant that tightly links intelligence and compassion. Implications range across interpersonal psychology, regenerative medicine, and machine learning. The Bodhisattva's vow ("for the sake of all sentient life, I shall achieve awakening") is a practical design principle for advancing intelligence in our novel creations and in ourselves.
Collapse
Affiliation(s)
- Thomas Doctor
- Centre for Buddhist Studies, Rangjung Yeshe Institute, Kathmandu University, Kathmandu 44600, Nepal; (T.D.); (B.D.)
- Center for the Study of Apparent Selves, Rangjung Yeshe Institute, Kathmandu 44600, Nepal; (O.W.); (E.S.)
| | - Olaf Witkowski
- Center for the Study of Apparent Selves, Rangjung Yeshe Institute, Kathmandu 44600, Nepal; (O.W.); (E.S.)
- Cross Labs, Cross Compass Ltd., Kyoto 604-8206, Japan
- College of Arts and Sciences, University of Tokyo, Tokyo 113-8654, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 145-0061, Japan
| | - Elizaveta Solomonova
- Center for the Study of Apparent Selves, Rangjung Yeshe Institute, Kathmandu 44600, Nepal; (O.W.); (E.S.)
- Neurophilosophy Lab, Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Bill Duane
- Centre for Buddhist Studies, Rangjung Yeshe Institute, Kathmandu University, Kathmandu 44600, Nepal; (T.D.); (B.D.)
- Center for the Study of Apparent Selves, Rangjung Yeshe Institute, Kathmandu 44600, Nepal; (O.W.); (E.S.)
- Bill Duane and Associates LLC, San Francisco, CA 94117, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
19
|
Levin M. Technological Approach to Mind Everywhere: An Experimentally-Grounded Framework for Understanding Diverse Bodies and Minds. Front Syst Neurosci 2022; 16:768201. [PMID: 35401131 PMCID: PMC8988303 DOI: 10.3389/fnsys.2022.768201] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Synthetic biology and bioengineering provide the opportunity to create novel embodied cognitive systems (otherwise known as minds) in a very wide variety of chimeric architectures combining evolved and designed material and software. These advances are disrupting familiar concepts in the philosophy of mind, and require new ways of thinking about and comparing truly diverse intelligences, whose composition and origin are not like any of the available natural model species. In this Perspective, I introduce TAME-Technological Approach to Mind Everywhere-a framework for understanding and manipulating cognition in unconventional substrates. TAME formalizes a non-binary (continuous), empirically-based approach to strongly embodied agency. TAME provides a natural way to think about animal sentience as an instance of collective intelligence of cell groups, arising from dynamics that manifest in similar ways in numerous other substrates. When applied to regenerating/developmental systems, TAME suggests a perspective on morphogenesis as an example of basal cognition. The deep symmetry between problem-solving in anatomical, physiological, transcriptional, and 3D (traditional behavioral) spaces drives specific hypotheses by which cognitive capacities can increase during evolution. An important medium exploited by evolution for joining active subunits into greater agents is developmental bioelectricity, implemented by pre-neural use of ion channels and gap junctions to scale up cell-level feedback loops into anatomical homeostasis. This architecture of multi-scale competency of biological systems has important implications for plasticity of bodies and minds, greatly potentiating evolvability. Considering classical and recent data from the perspectives of computational science, evolutionary biology, and basal cognition, reveals a rich research program with many implications for cognitive science, evolutionary biology, regenerative medicine, and artificial intelligence.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, MA, United States
| |
Collapse
|
20
|
Farrera A, Ramos-Fernández G. Collective Rhythm as an Emergent Property During Human Social Coordination. Front Psychol 2022; 12:772262. [PMID: 35222144 PMCID: PMC8868940 DOI: 10.3389/fpsyg.2021.772262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
The literature on social interactions has shown that participants coordinate not only at the behavioral but also at the physiological and neural levels, and that this coordination gives a temporal structure to the individual and social dynamics. However, it has not been fully explored whether such temporal patterns emerge during interpersonal coordination beyond dyads, whether this phenomenon arises from complex cognitive mechanisms or from relatively simple rules of behavior, or which are the sociocultural processes that underlie this phenomenon. We review the evidence for the existence of group-level rhythmic patterns that result from social interactions and argue that the complexity of group dynamics can lead to temporal regularities that cannot be predicted from the individual periodicities: an emergent collective rhythm. Moreover, we use this interpretation of the literature to discuss how taking into account the sociocultural niche in which individuals develop can help explain the seemingly divergent results that have been reported on the social influences and consequences of interpersonal coordination. We make recommendations on further research to test these arguments and their relationship to the feeling of belonging and assimilation experienced during group dynamics.
Collapse
Affiliation(s)
- Arodi Farrera
- Mathematical Modeling of Social Systems Department, Institute for Research on Applied Mathematics and Systems, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gabriel Ramos-Fernández
- Mathematical Modeling of Social Systems Department, Institute for Research on Applied Mathematics and Systems, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
21
|
Dehnen T, Arbon JJ, Farine DR, Boogert NJ. How feedback and feed-forward mechanisms link determinants of social dominance. Biol Rev Camb Philos Soc 2022; 97:1210-1230. [PMID: 35150197 DOI: 10.1111/brv.12838] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/21/2022]
Abstract
In many animal societies, individuals differ consistently in their ability to win agonistic interactions, resulting in dominance hierarchies. These differences arise due to a range of factors that can influence individuals' abilities to win agonistic interactions, spanning from genetically driven traits through to individuals' recent interaction history. Yet, despite a century of study since Schjelderup-Ebbe's seminal paper on social dominance, we still lack a general understanding of how these different factors work together to determine individuals' positions in hierarchies. Here, we first outline five widely studied factors that can influence interaction outcomes: intrinsic attributes, resource value asymmetry, winner-loser effects, dyadic interaction-outcome history and third-party support. A review of the evidence shows that a variety of factors are likely important to interaction outcomes, and thereby individuals' positions in dominance hierarchies, in diverse species. We propose that such factors are unlikely to determine dominance outcomes independently, but rather form part of feedback loops whereby the outcomes of previous agonistic interactions (e.g. access to food) impact factors that might be important in subsequent interactions (e.g. body condition). We provide a conceptual framework that illustrates the multitude potential routes through which such feedbacks can occur, and how the factors that determine the outcomes of dominance interactions are highly intertwined and thus rarely act independently of one another. Further, we generalise our framework to include multi-generational feed-forward mechanisms: how interaction outcomes in one generation can influence the factors determining interaction outcomes in the next generation via a range of parental effects. This general framework describes how interaction outcomes and the factors determining them are linked within generations via feedback loops, and between generations via feed-forward mechanisms. We then highlight methodological approaches that will facilitate the study of feedback loops and dominance dynamics. Lastly, we discuss how our framework could shape future research, including: how feedbacks generate variation in the factors discussed, and how this might be studied experimentally; how the relative importance of different feedback mechanisms varies across timescales; the role of social structure in modulating the effect of feedbacks on hierarchy structure and stability; and the routes of parental influence on the dominance status of offspring. Ultimately, by considering dominance interactions as part of a dynamic feedback system that also feeds forward into subsequent generations, we will understand better the factors that structure dominance hierarchies in animal groups.
Collapse
Affiliation(s)
- Tobit Dehnen
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, 78464, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Josh J Arbon
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K
| | - Damien R Farine
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, Konstanz, 78464, Germany.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, Konstanz, 78464, Germany
| | - Neeltje J Boogert
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE, U.K
| |
Collapse
|
22
|
Manicka S, Levin M. Minimal Developmental Computation: A Causal Network Approach to Understand Morphogenetic Pattern Formation. ENTROPY (BASEL, SWITZERLAND) 2022; 24:107. [PMID: 35052133 PMCID: PMC8774453 DOI: 10.3390/e24010107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022]
Abstract
What information-processing strategies and general principles are sufficient to enable self-organized morphogenesis in embryogenesis and regeneration? We designed and analyzed a minimal model of self-scaling axial patterning consisting of a cellular network that develops activity patterns within implicitly set bounds. The properties of the cells are determined by internal 'genetic' networks with an architecture shared across all cells. We used machine-learning to identify models that enable this virtual mini-embryo to pattern a typical axial gradient while simultaneously sensing the set boundaries within which to develop it from homogeneous conditions-a setting that captures the essence of early embryogenesis. Interestingly, the model revealed several features (such as planar polarity and regenerative re-scaling capacity) for which it was not directly selected, showing how these common biological design principles can emerge as a consequence of simple patterning modes. A novel "causal network" analysis of the best model furthermore revealed that the originally symmetric model dynamically integrates into intercellular causal networks characterized by broken-symmetry, long-range influence and modularity, offering an interpretable macroscale-circuit-based explanation for phenotypic patterning. This work shows how computation could occur in biological development and how machine learning approaches can generate hypotheses and deepen our understanding of how featureless tissues might develop sophisticated patterns-an essential step towards predictive control of morphogenesis in regenerative medicine or synthetic bioengineering contexts. The tools developed here also have the potential to benefit machine learning via new forms of backpropagation and by leveraging the novel distributed self-representation mechanisms to improve robustness and generalization.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
| |
Collapse
|
23
|
Gershenson C. Intelligence as Information Processing: Brains, Swarms, and Computers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.755981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is no agreed definition of intelligence, so it is problematic to simply ask whether brains, swarms, computers, or other systems are intelligent or not. To compare the potential intelligence exhibited by different cognitive systems, I use the common approach used by artificial intelligence and artificial life: Instead of studying the substrate of systems, let us focus on their organization. This organization can be measured with information. Thus, I apply an informationist epistemology to describe cognitive systems, including brains and computers. This allows me to frame the usefulness and limitations of the brain-computer analogy in different contexts. I also use this perspective to discuss the evolution and ecology of intelligence.
Collapse
|
24
|
Charlat S, Ariew A, Bourrat P, Ferreira Ruiz M, Heams T, Huneman P, Krishna S, Lachmann M, Lartillot N, Le Sergeant d’Hendecourt L, Malaterre C, Nghe P, Rajon E, Rivoire O, Smerlak M, Zeravcic Z. Natural Selection beyond Life? A Workshop Report. Life (Basel) 2021; 11:life11101051. [PMID: 34685422 PMCID: PMC8538383 DOI: 10.3390/life11101051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Natural selection is commonly seen not just as an explanation for adaptive evolution, but as the inevitable consequence of “heritable variation in fitness among individuals”. Although it remains embedded in biological concepts, such a formalisation makes it tempting to explore whether this precondition may be met not only in life as we know it, but also in other physical systems. This would imply that these systems are subject to natural selection and may perhaps be investigated in a biological framework, where properties are typically examined in light of their putative functions. Here we relate the major questions that were debated during a three-day workshop devoted to discussing whether natural selection may take place in non-living physical systems. We start this report with a brief overview of research fields dealing with “life-like” or “proto-biotic” systems, where mimicking evolution by natural selection in test tubes stands as a major objective. We contend the challenge may be as much conceptual as technical. Taking the problem from a physical angle, we then discuss the framework of dissipative structures. Although life is viewed in this context as a particular case within a larger ensemble of physical phenomena, this approach does not provide general principles from which natural selection can be derived. Turning back to evolutionary biology, we ask to what extent the most general formulations of the necessary conditions or signatures of natural selection may be applicable beyond biology. In our view, such a cross-disciplinary jump is impeded by reliance on individuality as a central yet implicit and loosely defined concept. Overall, these discussions thus lead us to conjecture that understanding, in physico-chemical terms, how individuality emerges and how it can be recognised, will be essential in the search for instances of evolution by natural selection outside of living systems.
Collapse
Affiliation(s)
- Sylvain Charlat
- Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France; (N.L.); (E.R.)
- Correspondence:
| | - André Ariew
- Department of Philosophy, University of Missouri, 438 Strickland Hall, Columbia, MO 65211, USA;
| | - Pierrick Bourrat
- Department of Philosophy, Macquarie University, Balaclava Road, North Ryde, NSW 2109, Australia;
- Charles Perkins Centre, Department of Philosophy, The University of Sydney, Camperdown, NSW 2006, Australia
| | - María Ferreira Ruiz
- Department of Philosophy, University of Bielefeld, 33615 Bielefeld, Germany;
| | - Thomas Heams
- INRAE, Domaine de Vilvert Bâtiment 211, 78352 Jouy-en-Josas, France;
| | - Philippe Huneman
- Institut d’Histoire et de Philosophie des Sciences et des Techniques, CNRS (Centre National de la Recherche Scientifique), Université Paris I Sorbonne, 13 Rue du Four, 75006 Paris, France;
| | - Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India;
| | | | - Nicolas Lartillot
- Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France; (N.L.); (E.R.)
| | - Louis Le Sergeant d’Hendecourt
- Centre de St-Jérôme, Laboratoire de Physique des Interactions Ioniques et Moléculaires, Aix-Marseille Université, CNRS, UMR 7345, 13013 Marseille, France;
| | - Christophe Malaterre
- Centre de Recherche Interuniversitaire sur la Science et la Technologie (CIRST), Département de Philosophie, Université du Québec à Montréal (UQAM), 455 Boulevard René-Lévesque Est, Montréal, QC H3C 3P8, Canada;
| | - Philippe Nghe
- Laboratoire Biophysique et Evolution, CNRS UMR Chimie Biologie Innovation 8231, ESPCI Paris, Université PSL, 10 Rue Vauquelin, 75005 Paris, France;
| | - Etienne Rajon
- Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France; (N.L.); (E.R.)
| | - Olivier Rivoire
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75005 Paris, France;
| | - Matteo Smerlak
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103 Leipzig, Germany;
| | - Zorana Zeravcic
- Gulliver Lab, CNRS UMR 7083, ESPCI Paris, PSL University, 75005 Paris, France;
| |
Collapse
|
25
|
Abstract
Technologies, from molecular genetics to precision agriculture, are outpacing theory, which is becoming a bottleneck for crop improvement. Here, we outline theoretical insights on the wheat phenotype from the perspective of three evolutionary and ecologically important relations-mother-offspring, plant-insect and plant-plant. The correlation between yield and grain number has been misinterpreted as cause-and-effect; an evolutionary perspective shows a striking similarity between crop and fishes. Both respond to environmental variation through offspring number; seed and egg size are conserved. The offspring of annual plants and semelparous fishes, lacking parental care, are subject to mother-offspring conflict and stabilizing selection. Labile reserve carbohydrates do not fit the current model of wheat yield; they can stabilize grain size, but involve trade-offs with root growth and grain number, and are at best neutral for yield. Shifting the focus from the carbon balance to an ecological role, we suggest that labile carbohydrates may disrupt aphid osmoregulation, and thus contribute to wheat agronomic adaptation. The tight association between high yield and low competitive ability justifies the view of crop yield as a population attribute whereby the behaviour of the plant becomes subordinated within that of the population, with implications for genotyping, phenotyping and plant breeding.
Collapse
Affiliation(s)
- Victor O Sadras
- South Australian Research and Development Institute, and School of Agriculture, Food and Wine, The University of Adelaide, Australia
| |
Collapse
|
26
|
Cazalis R, Cottam R. An approach to the plant body: Assessing concrete and abstract aspects. Biosystems 2021; 207:104461. [PMID: 34166731 DOI: 10.1016/j.biosystems.2021.104461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/29/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023]
Abstract
The paper aims at proposing a representation of plants as individuals. The first section selects the population of plants to which this study is addressed. The second section describes the effective architecture of plants as modular systems with fixed and mobile elements, in other words, plants and their extensions. The third section presents how plants integrate the fixed and mobile modules into functional units through three areas of particular relevance to plant growth and development: nutrition, defence and pollination. Based on the tangible elements introduced in the previous sections, the fourth section presents the main issue of the proposal which is not apparent at first glance, namely, the local-global relationship in plants' architecture that determines their individuality as organisms. Finally, in the conclusion, we issue the challenge of developing a collective presentation of plants which satisfies their complementary dimension.
Collapse
Affiliation(s)
- Roland Cazalis
- Dept. of 'Sciences, Philosophies, Societies', ESPHIN, NAXYS, University of Namur, Namur, Belgium
| | - Ron Cottam
- The Living Systems Project, Department of Electronics and Informatics, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
27
|
Anthropological Prosociality via Sub-Group Level Selection. Integr Psychol Behav Sci 2021; 56:180-205. [PMID: 33893612 DOI: 10.1007/s12124-021-09606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
A perennial challenge of evolutionary psychology is explaining prosocial traits such as a preference for fairness rather than inequality, compassion towards suffering, and an instinctive ability to coordinate within small teams. Considering recent fossil evidence and a novel logical test, we deem present explanations insufficiently explanatory of the divergence of hominins. In answering this question, we focus on the divergence of hominins from the last common ancestor (LCA) shared with Pan. We consider recent fossil discoveries that indicate the LCA was bipedal, which reduces the cogency of this explanation for hominin development. We also review evolutionary theory that claims to explain how hominins developed into modern humans, however it is found that no mechanism differentiates hominins from other primates. Either the mechanism was available to the last common ancestor (LCA) (with P. troglodytes as its proxy), or because early hominins had insufficient cognition to utilise the mechanism. A novel mechanism, sub-group level selection (sGLS) is hypothesised by triangulating two pieces of data rarely considered by evolutionary biologists. These are behavioural dimorphism of Pan (chimpanzees and bonobos) that remain identifiable in modern humans, and the social behaviour of primate troops in a savannah ecology. We then contend that sGLS supplied an exponential effect which was available to LCA who left the forest, but was not sufficiently available to any other primates. In conclusion, while only indirectly supported by various evidence, sGLS is found to be singularly and persuasively explanatory of human's unique evolutionary story.
Collapse
|
28
|
Gomez-Marin A. Promisomics and the Short-Circuiting of Mind. eNeuro 2021; 8:ENEURO.0521-20.2021. [PMID: 33648976 PMCID: PMC8114901 DOI: 10.1523/eneuro.0521-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Affiliation(s)
- Alex Gomez-Marin
- Instituto de Neurociencias de Alicante, CSIC-UMH, 03550 San Juan de Alicante, Spain
| |
Collapse
|
29
|
Stevens RH, Galloway TL. Parsing Neurodynamic Information Streams to Estimate the Frequency, Magnitude and Duration of Team Uncertainty. Front Syst Neurosci 2021; 15:606823. [PMID: 33597850 PMCID: PMC7882625 DOI: 10.3389/fnsys.2021.606823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022] Open
Abstract
Neurodynamic organizations are information-based abstractions, expressed in bits, of the structure of long duration EEG amplitude levels. Neurodynamic information (NI, the variable of neurodynamic organization) is thought to continually accumulate as EEG amplitudes cycle through periods of persistent activation and deactivation in response to the activities and uncertainties of teamwork. Here we show that (1) Neurodynamic information levels were a better predictor of uncertainty and novice and expert behaviors than were the EEG power levels from which NI was derived. (2) Spatial and temporal parsing of team NI from experienced submarine navigation and healthcare teams showed that it was composed of discrete peaks with durations up to 20–60 s, and identified the involvement of activated delta waves when precise motor control was needed. (3) The relationship between NI and EEG power was complex varying by brain regions, EEG frequencies, and global vs. local brain interactions. The presence of an organizational system of information that parallels the amplitude of EEG rhythms is important as it provides a greatly reduced data dimension while retaining the essential system features, i.e., linkages to higher scale behaviors that span temporal and spatial scales of teamwork. In this way the combinatorial explosion of EEG rhythmic variables at micro levels become compressed into an intermediate system of information and organization which links to macro-scale team and team member behaviors. These studies provide an avenue for understanding how complex organizations arise from the dynamics of underlying micro-scale variables. The study also has practical implications for how micro-scale variables might be better represented, both conceptually and in terms of parsimony, for training machines to recognize human behaviors that span scales of teams.
Collapse
Affiliation(s)
- Ronald H Stevens
- University of California Los Angeles (UCLA) School of Medicine, Brain Research Institute, Culver City, CA, United States.,The Learning Chameleon, Inc., Culver City, CA, United States
| | | |
Collapse
|
30
|
Abstract
Humanity faces serious social and environmental problems, including climate change and biodiversity loss. Increasingly, scientists, global policy experts, and the general public conclude that incremental approaches to reduce risk are insufficient and transformative change is needed across all sectors of society. However, the meaning of transformation is still unsettled in the literature, as is the proper role of science in fostering it. This paper is the first in a three-part series that adds to the discussion by proposing a novel science-driven research-and-development program aimed at societal transformation. More than a proposal, it offers a perspective and conceptual framework from which societal transformation might be approached. As part of this, it advances a formal mechanics with which to model and understand self-organizing societies of individuals. While acknowledging the necessity of reform to existing societal systems (e.g., governance, economic, and financial systems), the focus of the series is on transformation understood as systems change or systems migration—the de novo development of and migration to new societal systems. The series provides definitions, aims, reasoning, worldview, and a theory of change, and discusses fitness metrics and design principles for new systems. This first paper proposes a worldview, built using ideas from evolutionary biology, complex systems science, cognitive sciences, and information theory, which is intended to serve as the foundation for the R&D program. Subsequent papers in the series build on the worldview to address fitness metrics, system design, and other topics.
Collapse
|
31
|
Ramos-Fernandez G, Smith Aguilar SE, Krakauer DC, Flack JC. Collective Computation in Animal Fission-Fusion Dynamics. Front Robot AI 2020; 7:90. [PMID: 33501257 PMCID: PMC7805913 DOI: 10.3389/frobt.2020.00090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/05/2020] [Indexed: 11/15/2022] Open
Abstract
Recent work suggests that collective computation of social structure can minimize uncertainty about the social and physical environment, facilitating adaptation. We explore these ideas by studying how fission-fusion social structure arises in spider monkey (Ateles geoffroyi) groups, exploring whether monkeys use social knowledge to collectively compute subgroup size distributions adaptive for foraging in variable environments. We assess whether individual decisions to stay in or leave subgroups are conditioned on strategies based on the presence or absence of others. We search for this evidence in a time series of subgroup membership. We find that individuals have multiple strategies, suggesting that the social knowledge of different individuals is important. These stay-leave strategies provide microscopic inputs to a stochastic model of collective computation encoded in a family of circuits. Each circuit represents an hypothesis for how collectives combine strategies to make decisions, and how these produce various subgroup size distributions. By running these circuits forward in simulation we generate new subgroup size distributions and measure how well they match food abundance in the environment using transfer entropies. We find that spider monkeys decide to stay or go using information from multiple individuals and that they can collectively compute a distribution of subgroup size that makes efficient use of ephemeral sources of nutrition. We are able to artificially tune circuits with subgroup size distributions that are a better fit to the environment than the observed. This suggests that a combination of measurement error, constraint, and adaptive lag are diminishing the power of collective computation in this system. These results are relevant for a more general understanding of the emergence of ordered states in multi-scale social systems with adaptive properties-both natural and engineered.
Collapse
Affiliation(s)
- Gabriel Ramos-Fernandez
- Departamento de Modelación Matemática de Sistemas Sociales, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | | | | |
Collapse
|
32
|
Abstract
Abstract“Big” digital behavioral data increasingly allows large-scale and high-resolution analyses of the behavior and performance of persons or aggregated identities in whole fields. Often the desired system of study is only a subset of a larger database. The task of drawing a field boundary is complicated because socio-cultural systems are highly overlapping. Here, I propose a sociologically enhanced information retrieval method to delineate fields that is based on the reproductive mechanism of fields, able to account for field heterogeneity, and generally applicable also outside scientometric, e.g., in social media, contexts. The method is demonstrated in a delineation of the multidisciplinary and very heterogeneous Social Network Science field using the Web of Science database. The field consists of 25,760 publications and has a historical dimension (1916–2012). This set has high face validity and exhibits expected statistical properties like systemic growth and power law size distributions. Data is clean and disambiguated. The dataset with 45,580 author names and 23,026 linguistic concepts is publically available and supposed to enable high-quality analyses of an evolving complex socio-cultural system.
Collapse
|
33
|
Krakauer D, Bertschinger N, Olbrich E, Flack JC, Ay N. The information theory of individuality. Theory Biosci 2020; 139:209-223. [PMID: 32212028 PMCID: PMC7244620 DOI: 10.1007/s12064-020-00313-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 12/02/2022]
Abstract
Despite the near universal assumption of individuality in biology, there is little agreement about what individuals are and few rigorous quantitative methods for their identification. Here, we propose that individuals are aggregates that preserve a measure of temporal integrity, i.e., "propagate" information from their past into their futures. We formalize this idea using information theory and graphical models. This mathematical formulation yields three principled and distinct forms of individuality-an organismal, a colonial, and a driven form-each of which varies in the degree of environmental dependence and inherited information. This approach can be thought of as a Gestalt approach to evolution where selection makes figure-ground (agent-environment) distinctions using suitable information-theoretic lenses. A benefit of the approach is that it expands the scope of allowable individuals to include adaptive aggregations in systems that are multi-scale, highly distributed, and do not necessarily have physical boundaries such as cell walls or clonal somatic tissue. Such individuals might be visible to selection but hard to detect by observers without suitable measurement principles. The information theory of individuality allows for the identification of individuals at all levels of organization from molecular to cultural and provides a basis for testing assumptions about the natural scales of a system and argues for the importance of uncertainty reduction through coarse-graining in adaptive systems.
Collapse
Affiliation(s)
| | - Nils Bertschinger
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Eckehard Olbrich
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | | | - Nihat Ay
- Santa Fe Institute, Santa Fe, USA
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| |
Collapse
|
34
|
|
35
|
Levin M. The Computational Boundary of a "Self": Developmental Bioelectricity Drives Multicellularity and Scale-Free Cognition. Front Psychol 2019; 10:2688. [PMID: 31920779 PMCID: PMC6923654 DOI: 10.3389/fpsyg.2019.02688] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
All epistemic agents physically consist of parts that must somehow comprise an integrated cognitive self. Biological individuals consist of subunits (organs, cells, and molecular networks) that are themselves complex and competent in their own native contexts. How do coherent biological Individuals result from the activity of smaller sub-agents? To understand the evolution and function of metazoan creatures' bodies and minds, it is essential to conceptually explore the origin of multicellularity and the scaling of the basal cognition of individual cells into a coherent larger organism. In this article, I synthesize ideas in cognitive science, evolutionary biology, and developmental physiology toward a hypothesis about the origin of Individuality: "Scale-Free Cognition." I propose a fundamental definition of an Individual based on the ability to pursue goals at an appropriate level of scale and organization and suggest a formalism for defining and comparing the cognitive capacities of highly diverse types of agents. Any Self is demarcated by a computational surface - the spatio-temporal boundary of events that it can measure, model, and try to affect. This surface sets a functional boundary - a cognitive "light cone" which defines the scale and limits of its cognition. I hypothesize that higher level goal-directed activity and agency, resulting in larger cognitive boundaries, evolve from the primal homeostatic drive of living things to reduce stress - the difference between current conditions and life-optimal conditions. The mechanisms of developmental bioelectricity - the ability of all cells to form electrical networks that process information - suggest a plausible set of gradual evolutionary steps that naturally lead from physiological homeostasis in single cells to memory, prediction, and ultimately complex cognitive agents, via scale-up of the basic drive of infotaxis. Recent data on the molecular mechanisms of pre-neural bioelectricity suggest a model of how increasingly sophisticated cognitive functions emerge smoothly from cell-cell communication used to guide embryogenesis and regeneration. This set of hypotheses provides a novel perspective on numerous phenomena, such as cancer, and makes several unique, testable predictions for interdisciplinary research that have implications not only for evolutionary developmental biology but also for biomedicine and perhaps artificial intelligence and exobiology.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
36
|
|
37
|
Tempos and modes of collectivity in the history of life. Theory Biosci 2019; 140:343-351. [PMID: 31529373 DOI: 10.1007/s12064-019-00303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
Collective integration and processing of information have increased through the history of life, through both the formation of aggregates in which the entities may have very different properties and which jointly coarse-grained environmental variables (ranging from widely varying metabolism in microbial consortia to the ecological diversity of species on reefs) and through collectives of similar entities (such as cells within an organism or social groups). Such increases have been implicated in significant transitions in the history of life, including aspects of the origin of life, the generation of pangenomes among microbes and microbial communities such as stromatolites, multicellularity and social insects. This contribution provides a preliminary overview of the dominant modes of collective information processing in the history of life, their phylogenetic distribution and extent of convergence, and the effects of new modes for integrating and acting upon information on the tempo of evolutionary change.
Collapse
|
38
|
Hobson EA, Ferdinand V, Kolchinsky A, Garland J. Rethinking animal social complexity measures with the help of complex systems concepts. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
McIntosh AR, Jirsa VK. The hidden repertoire of brain dynamics and dysfunction. Netw Neurosci 2019; 3:994-1008. [PMID: 31637335 PMCID: PMC6777946 DOI: 10.1162/netn_a_00107] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/10/2019] [Indexed: 11/04/2022] Open
Abstract
The purpose of this paper is to describe a framework for the understanding of rules that govern how neural system dynamics are coordinated to produce behavior. The framework, structured flows on manifolds (SFM), posits that neural processes are flows depicting system interactions that occur on relatively low-dimension manifolds, which constrain possible functional configurations. Although this is a general framework, we focus on the application to brain disorders. We first explain the Epileptor, a phenomenological computational model showing fast and slow dynamics, but also a hidden repertoire whose expression is similar to refractory status epilepticus. We suggest that epilepsy represents an innate brain state whose potential may be realized only under certain circumstances. Conversely, deficits from damage or disease processes, such as stroke or dementia, may reflect both the disease process per se and the adaptation of the brain. SFM uniquely captures both scenarios. Finally, we link neuromodulation effects and switches in functional network configurations to fast and slow dynamics that coordinate the expression of SFM in the context of cognition. The tools to measure and model SFM already exist, giving researchers access to the dynamics of neural processes that support the concomitant dynamics of the cognitive and behavioral processes.
Collapse
Affiliation(s)
- Anthony R McIntosh
- Rotman Research Institute, Baycrest, University of Toronto, Toronto, Canada
| | - Viktor K Jirsa
- Institut de Neurosciences des Systemes, INSERM, Aix-Marseille Universite, Marseille, France
| |
Collapse
|
40
|
Newman EA, Kennedy MC, Falk DA, McKenzie D. Scaling and Complexity in Landscape Ecology. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00293] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Strauss ED, Holekamp KE. Inferring longitudinal hierarchies: Framework and methods for studying the dynamics of dominance. J Anim Ecol 2019; 88:521-536. [PMID: 30664242 DOI: 10.1111/1365-2656.12951] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/09/2019] [Indexed: 12/31/2022]
Abstract
Social inequality is a consistent feature of animal societies, often manifesting as dominance hierarchies, in which each individual is characterized by a dominance rank denoting its place in the network of competitive relationships among group members. Most studies treat dominance hierarchies as static entities despite their true longitudinal, and sometimes highly dynamic, nature. To guide study of the dynamics of dominance, we propose the concept of a longitudinal hierarchy: the characterization of a single, latent hierarchy and its dynamics over time. Longitudinal hierarchies describe the hierarchy position (r) and dynamics (∆) associated with each individual as a property of its interaction data, the periods into which these data are divided based on a period delineation rule (p) and the method chosen to infer the hierarchy. Hierarchy dynamics result from both active (∆a) and passive (∆p) processes. Methods that infer longitudinal hierarchies should optimize accuracy of rank dynamics as well as of the rank orders themselves, but no studies have yet evaluated the accuracy with which different methods infer hierarchy dynamics. We modify three popular ranking approaches to make them better suited for inferring longitudinal hierarchies. Our three "informed" methods assign ranks that are informed by data from the prior period rather than calculating ranks de novo in each observation period and use prior knowledge of dominance correlates to inform placement of new individuals in the hierarchy. These methods are provided in an R package. Using both a simulated dataset and a long-term empirical dataset from a species with two distinct sex-based dominance structures, we compare the performance of these methods and their unmodified counterparts. We show that choice of method has dramatic impacts on inference of hierarchy dynamics via differences in estimates of ∆a. Methods that calculate ranks de novo in each period overestimate hierarchy dynamics, but incorporation of prior information leads to more accurately inferred ∆a. Of the modified methods, Informed MatReorder infers the most conservative estimates of hierarchy dynamics and Informed Elo infers the most dynamic hierarchies. This work provides crucially needed conceptual framing and methodological validation for studying social dominance and its dynamics.
Collapse
Affiliation(s)
- Eli D Strauss
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan
| |
Collapse
|
42
|
Ellis GFR, Kopel J. The Dynamical Emergence of Biology From Physics: Branching Causation via Biomolecules. Front Physiol 2019; 9:1966. [PMID: 30740063 PMCID: PMC6355675 DOI: 10.3389/fphys.2018.01966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/31/2018] [Indexed: 01/30/2023] Open
Abstract
Biology differs fundamentally from the physics that underlies it. This paper proposes that the essential difference is that while physics at its fundamental level is Hamiltonian, in biology, once life has come into existence, causation of a contextual branching nature occurs at every level of the hierarchy of emergence at each time. The key feature allowing this to happen is the way biomolecules such as voltage-gated ion channels can act to enable branching logic to arise from the underlying physics, despite that physics per se being of a deterministic nature. Much randomness occurs at the molecular level, which enables higher level functions to select lower level outcomes according to higher level needs. Intelligent causation occurs when organisms engage in deduction, enabling prediction and planning. This is possible because ion channels enable action potentials to propagate in axons. The further key feature is that such branching biological behavior acts down to cause the underlying physical interactions to also exhibit a contextual branching behavior.
Collapse
Affiliation(s)
- George F. R. Ellis
- Mathematics Department, University of Cape Town, Cape Town, South Africa
| | - Jonathan Kopel
- Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, United States
| |
Collapse
|
43
|
Mazurek KA, Berger M, Bollu T, Chowdhury RH, Elangovan N, Kuling IA, Sohn MH. Highlights from the 28th Annual Meeting of the Society for the Neural Control of Movement. J Neurophysiol 2018; 120:1671-1679. [PMID: 30020841 PMCID: PMC6230782 DOI: 10.1152/jn.00475.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Kevin A Mazurek
- Department of Neuroscience, University of Rochester , Rochester, New York
- Del Monte Institute for Neuroscience, University of Rochester , Rochester, New York
| | - Michael Berger
- Cognitive Neuroscience Laboratory, German Primate Center-Leibniz-Institute for Primate Research, Göttingen , Germany
- Faculty of Biology and Psychology, University of Göttingen , Göttingen , Germany
| | - Tejapratap Bollu
- Department of Neurobiology and Behavior, Cornell University , Ithaca, New York
| | - Raeed H Chowdhury
- Department of Biomedical Engineering, Northwestern University , Evanston, Illinois
- Department of Physiology, Northwestern University , Chicago, Illinois
| | - Naveen Elangovan
- Human Sensorimotor Control Lab, University of Minnesota , Minneapolis, Minnesota
| | - Irene A Kuling
- Department of Human Movement Sciences, VU University , Amsterdam , The Netherlands
| | - M Hongchul Sohn
- Department of Biomedical Engineering, Northwestern University , Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
| |
Collapse
|
44
|
Abstract
Network theory provides an intuitively appealing framework for studying relationships among interconnected brain mechanisms and their relevance to behaviour. As the space of its applications grows, so does the diversity of meanings of the term network model. This diversity can cause confusion, complicate efforts to assess model validity and efficacy, and hamper interdisciplinary collaboration. In this Review, we examine the field of network neuroscience, focusing on organizing principles that can help overcome these challenges. First, we describe the fundamental goals in constructing network models. Second, we review the most common forms of network models, which can be described parsimoniously along the following three primary dimensions: from data representations to first-principles theory; from biophysical realism to functional phenomenology; and from elementary descriptions to coarse-grained approximations. Third, we draw on biology, philosophy and other disciplines to establish validation principles for these models. We close with a discussion of opportunities to bridge model types and point to exciting frontiers for future pursuits.
Collapse
Affiliation(s)
- Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Perry Zurn
- Department of Philosophy, American University, Washington, DC, USA
| | - Joshua I Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
|
46
|
Radzvilavicius AL, Blackstone NW. The evolution of individuality revisited. Biol Rev Camb Philos Soc 2018; 93:1620-1633. [DOI: 10.1111/brv.12412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 12/28/2022]
Affiliation(s)
| | - Neil W. Blackstone
- Department of Biological Sciences; Northern Illinois University; DeKalb IL 60115 U.S.A
| |
Collapse
|
47
|
Walker SI, Packard N, Cody GD. Re-conceptualizing the origins of life. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0337. [PMID: 29133439 PMCID: PMC5686397 DOI: 10.1098/rsta.2016.0337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Over the last several hundred years of scientific progress, we have arrived at a deep understanding of the non-living world. We have not yet achieved an analogous, deep understanding of the living world. The origins of life is our best chance at discovering scientific laws governing life, because it marks the point of departure from the predictable physical and chemical world to the novel, history-dependent living world. This theme issue aims to explore ways to build a deeper understanding of the nature of biology, by modelling the origins of life on a sufficiently abstract level, starting from prebiotic conditions on Earth and possibly on other planets and bridging quantitative frameworks approaching universal aspects of life. The aim of the editors is to stimulate new directions for solving the origins of life. The present introduction represents the point of view of the editors on some of the most promising future directions.This article is part of the themed issue 'Reconceptualizing the origins of life'.
Collapse
Affiliation(s)
- Sara I Walker
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ, USA
- Blue Marble Space Institute for Science, Seattle, WA, USA
| | | | - G D Cody
- Geophysical Laboratory, Carnegie Institution for Science, Washington, DC, USA
| |
Collapse
|