1
|
Shen J, Yang Q, Xu F, Han Y, Li Y, Zheng M. Effects of Amino Acid Mutation in Cytochrome P450 (CYP96A146) of Descurainia sophia on the Metabolism and Resistance to Tribenuron-Methyl. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39698796 DOI: 10.1021/acs.jafc.4c10217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Cytochrome P450 monooxygenases (P450s) play important roles in herbicide resistance. In this study, there are four amino acid mutations (F39Y, H163Y, S203A, and V361E) between CYP96A146-S and CYP96A146-R, which were cloned, respectively, from susceptible (S) and tribenuron-methyl-resistant (TR) Descurainia sophia. The Arabidopsis expressing CYP96A146-S or CYP96A146-R showed resistance to tribenuron-methyl, carfentrazone-ethyl, and oxyfluorfen, while Arabidopsis transformed with CYP96A146-R or CYP96A146 with any two or three mutations of H163Y, S203A, or V361E exhibited significantly higher resistance to tribenuron-methyl than Arabidopsis expressing CYP96A146-S. The metabolic rates of tribenuron-methyl were significantly faster in Arabidopsis expressing CYP96A146-R than that with CYP96A146-S. The molecular dynamics simulation demonstrated that amino acid mutations did not affect the domain of the HEM ring, which could significantly enhance the volume of the catalytic pocket in P450 (CYP96A146), thereby increasing the collision rate between the catalytic pocket and tribenuron-methyl. Hence, the amino acid mutations may be one of the mechanisms underlying P450-mediated herbicide resistance.
Collapse
Affiliation(s)
- Jing Shen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Qian Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Fan Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yuxin Han
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yubin Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Mingqi Zheng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
2
|
de Vries J, de Vries S, Fernie AR. Current and future perspectives for enhancing our understanding of the evolution of plant metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20240253. [PMID: 39343013 PMCID: PMC11439503 DOI: 10.1098/rstb.2024.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 10/01/2024] Open
Abstract
The special issue 'The evolution of plant metabolism' has brought together original research, reviews and opinions that cover various aspects from the full breath of plant metabolism including its interaction with the environment including other species. Here, we briefly summarize these efforts and attempts to extract a consensus opinion of the best manner in which to tackle this subject both now and in the future. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr.1, Goettingen37077, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, Goettingen37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm14476, Germany
| |
Collapse
|
3
|
de Vries S, Feussner I. Biotic interactions, evolutionary forces and the pan-plant specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230362. [PMID: 39343027 PMCID: PMC11449213 DOI: 10.1098/rstb.2023.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 10/01/2024] Open
Abstract
Plant specialized metabolism has a complex evolutionary history. Some aspects are conserved across the green lineage, but many metabolites are unique to certain lineages. The network of specialized metabolism continuously diversified, simplified or reshaped during the evolution of streptophytes. Many routes of pan-plant specialized metabolism are involved in plant defence. Biotic interactions are recalled as major drivers of lineage-specific metabolomic diversification. However, the consequences of this diversity of specialized metabolism in the context of plant terrestrialization and land plant diversification into the major lineages of bryophytes, lycophytes, ferns, gymnosperms and angiosperms remain only little explored. Overall, this hampers conclusions on the evolutionary scenarios that shaped specialized metabolism. Recent efforts have brought forth new streptophyte model systems, an increase in genetically accessible species from distinct major plant lineages, and new functional data from a diversity of land plants on specialized metabolic pathways. In this review, we will integrate the recent data on the evolution of the plant immune system with the molecular data of specialized metabolism and its recognition. Based on this we will provide a contextual framework of the pan-plant specialized metabolism, the evolutionary aspects that shape it and the impact on adaptation to the terrestrial environment.This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, Goettingen 37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, Goettingen 37077, Germany
| |
Collapse
|
4
|
Forman V, Luo D, Kampranis SC, Stærk D, Møller BL, Pateraki I. Not all cytochrome b5s are created equal: How a specific CytB5 boosts forskolin biosynthesis in Saccharomyces cerevisiae. Metab Eng 2024; 86:288-299. [PMID: 39454871 DOI: 10.1016/j.ymben.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Cytochrome B5s, or CytB5s, are small heme-binding proteins, ubiquitous across all kingdoms of life that serve mainly as electron donors to enzymes engaged in oxidative reactions. They often function as redox partners of the cytochrome P450s (CYPs), a superfamily of enzymes participating in multiple biochemical processes. In plants, CYPs catalyze key reactions in the biosynthesis of plant specialized metabolites with their activity dependent on electron donation often from cytochrome P450 oxidoreductases (CPRs or PORs). In eukaryotic microsomal CYPs, CytB5s frequently participate in the electron transfer process although their exact role remains understudied, especially in plant systems. In this study, we assess the role of CytB5s in the heterologous biotechnological production of plant specialized metabolites in yeast. For this, we used as a case-study the biosynthesis of forskolin - a bioactive diterpenoid produced exclusively from the plant Coleus forskohlii. The complete biosynthetic pathway for forskolin is known and includes three CYP enzymes. We reconstructed the entire forskolin pathway in the yeast Saccharomyces cerevisiae, and upon co-expression of the three CytB5s - identified in C. forskohlii transcriptomes - alleviation of a CYP-related bottleneck step was noticed only when a specific CytB5, CfCytB5A, was used. Co-expression of CfCytB5A in yeast, in combination with forskolin pathway engineering, resulted in forskolin production at titers of 1.81 g/L in a bioreactor. Our findings demonstrate that CytB5s not only play an important role in plant specialized metabolism but also, they can interact with precision with specific CYPs, indicating that the properties of CytB5s are far from understood. Moreover, our work highlights how CytB5s may act as indispensable components in the sustainable microbial production of plant metabolites, when their biosynthetic pathways involve CYP enzymes.
Collapse
Affiliation(s)
- Victor Forman
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark; EvodiaBio ApS, Islevdalvej 211, DK-2610, Rødovre, Denmark.
| | - Dan Luo
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark; European Innovation Center, FMC corporation, Genvej 2, DK-2970, Hørsholm, Denmark
| | - Sotirios C Kampranis
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Dan Stærk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, Building 22, DK-2100, Copenhagen Ø, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Irini Pateraki
- Plant Biochemistry Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
5
|
Cheng Y, Luo L, Tang H, Wang J, Ren L, Cui G, Zhao Y, Tang J, Su P, Wang Y, Hu Y, Ma Y, Guo J, Huang L. Engineering the microenvironment of P450s to enhance the production of diterpenoids in Saccharomyces cerevisiae. Acta Pharm Sin B 2024; 14:4608-4618. [PMID: 39525594 PMCID: PMC11544389 DOI: 10.1016/j.apsb.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/17/2024] [Accepted: 05/18/2024] [Indexed: 11/16/2024] Open
Abstract
Cytochrome P450 enzymes play a crucial role as catalysts in the biosynthesis of numerous plant natural products (PNPs). Enhancing the catalytic activity of P450s in host microorganisms is essential for the efficient production of PNPs through synthetic biology. In this study, we engineered Saccharomyces cerevisiae to optimize the microenvironment for boosting the activities of P450s, including coexpression with the redox partner genes, enhancing NADPH supply, expanding the endoplasmic reticulum (ER), strengthening heme biosynthesis, and regulating iron uptake. This created a platform for the efficient production 11,20-dihydroxyferruginol, a key intermediate of the bioactive compound tanshinones. The yield was enhanced by 42.1-fold through 24 effective genetic edits. The optimized strain produced up to 67.69 ± 1.33 mg/L 11,20-dihydroxyferruginol in shake flasks. Our work represents a promising advancement toward constructing yeast cell factories containing P450s and paves the way for microbial biosynthesis of tanshinones in the future.
Collapse
Affiliation(s)
- Yatian Cheng
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Linglong Luo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Hao Tang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Li Ren
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Guanghong Cui
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Yujun Zhao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Jinfu Tang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Ping Su
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Yanan Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Yating Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Ying Ma
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Juan Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| |
Collapse
|
6
|
Galitz A, Vargas S, Thomas OP, Reddy MM, Wörheide G, Erpenbeck D. Genomics of Terpene Biosynthesis in Dictyoceratid Sponges (Porifera) - What Do We (Not) Know? Chem Biodivers 2024; 21:e202400549. [PMID: 39177427 DOI: 10.1002/cbdv.202400549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/04/2024] [Indexed: 08/24/2024]
Abstract
Sponges are recognized as promising sources for novel bioactive metabolites. Among them are terpenoid metabolites that constitute key biochemical defense mechanisms in several sponge taxa. Despite their significance, the genetic basis for terpenoid biosynthesis in sponges remains poorly understood. Dictyoceratida comprise demosponges well-known for their bioactive terpenoids. In this study, we explored the currently available genomic data for insights into the metabolic pathways of dictyoceratid terpenoids. We first identified prenyltransferase (PT) and terpene cyclase (TC) enzymes essential for the terpenoid biosynthetic processes in the terrestrial realm by analyzing available transcriptomic and genomic data of Dictyoceratida sponges and 10 other sponge species. All Dictyoceratida sponges displayed various PTs involved in either sesqui- or diterpene, steroid and carotenoid production. Additionally, it was possible to identify a potential candidate for a dictyoceratid sesterterpene PT. However, analogs of common terrestrial TCs were absent, suggesting the existence of a distinct or convergently evolved sponge-specific TC. Our study aims to contribute to the foundational understanding of terpene biosynthesis in sponges, unveiling the currently evident genetic components for terpenoid production in species not previously studied. Simultaneously, it aims to identify the known and unknown factors, as a starting point for biochemical and genetic investigations in sponge terpenoid production.
Collapse
Affiliation(s)
- Adrian Galitz
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Sergio Vargas
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Olivier P Thomas
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, H91TK33, Galway, Ireland
| | - Maggie M Reddy
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, H91TK33, Galway, Ireland
- Department of Biological Sciences, University of Cape Town, Private Bag X3, 7701, Rondebosch, South Africa
| | - Gert Wörheide
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
- SNSB-Bavarian State Collection of Palaeontology and Geology, 80333, Munich, Germany
| | - Dirk Erpenbeck
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| |
Collapse
|
7
|
Knosp S, Kriegshauser L, Tatsumi K, Malherbe L, Erhardt M, Wiedemann G, Bakan B, Kohchi T, Reski R, Renault H. An ancient role for CYP73 monooxygenases in phenylpropanoid biosynthesis and embryophyte development. EMBO J 2024; 43:4092-4109. [PMID: 39090438 PMCID: PMC11405693 DOI: 10.1038/s44318-024-00181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The phenylpropanoid pathway is one of the plant metabolic pathways most prominently linked to the transition to terrestrial life, but its evolution and early functions remain elusive. Here, we show that activity of the t-cinnamic acid 4-hydroxylase (C4H), the first plant-specific step in the pathway, emerged concomitantly with the CYP73 gene family in a common ancestor of embryophytes. Through structural studies, we identify conserved CYP73 residues, including a crucial arginine, that have supported C4H activity since the early stages of its evolution. We further demonstrate that impairing C4H function via CYP73 gene inactivation or inhibitor treatment in three bryophyte species-the moss Physcomitrium patens, the liverwort Marchantia polymorpha and the hornwort Anthoceros agrestis-consistently resulted in a shortage of phenylpropanoids and abnormal plant development. The latter could be rescued in the moss by exogenous supply of p-coumaric acid, the product of C4H. Our findings establish the emergence of the CYP73 gene family as a foundational event in the development of the plant phenylpropanoid pathway, and underscore the deep-rooted function of the C4H enzyme in embryophyte biology.
Collapse
Affiliation(s)
- Samuel Knosp
- IBMP | Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, Strasbourg, France
| | - Lucie Kriegshauser
- IBMP | Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, Strasbourg, France
- Amatera Biosciences, Pépinière Genopole Entreprise, 91000, Evry, France
| | - Kanade Tatsumi
- IBMP | Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, Strasbourg, France
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Ludivine Malherbe
- IBMP | Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, Strasbourg, France
| | - Mathieu Erhardt
- IBMP | Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, Strasbourg, France
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Inselspital, University of Bern, 3010, Bern, Switzerland
| | - Bénédicte Bakan
- INRAE, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière, Nantes, France
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Hugues Renault
- IBMP | Institut de biologie moléculaire des plantes, CNRS, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
8
|
Liu Z, Pang J, Li Y, Wei D, Yang J, Wang X, Luo Y. Catalytic selectivity and evolution of cytochrome P450 enzymes involved in monoterpene indole alkaloids biosynthesis. PHYSIOLOGIA PLANTARUM 2024; 176:e14515. [PMID: 39252390 DOI: 10.1111/ppl.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Cytochrome P450 enzyme (CYP)-catalyzed functional group transformations are pivotal in the biosynthesis of metabolic intermediates and products, as exemplified by the CYP-catalyzed C7-hydroxylation and the subsequent C7-C8 bond cleavage reaction responsible for the biosynthesis of the well-known antitumor monoterpene indole alkaloid (MIA) camptothecin. To determine the key amino acid residues responsible for the catalytic selectivity of the CYPs involved in MIA biosynthesis, we characterized the enzymes CYP72A728 and CYP72A729 as stereoselective 7-deoxyloganic acid 7-hydroxylases (7DLHs). We then conducted a comparative analysis of the amino acid sequences and the predicted structures of the CYP72A homologs involved in camptothecin biosynthesis, as well as those of the CYP72A homologs implicated in the pharmaceutically significant MIAs biosynthesis in Catharanthus roseus. The crucial amino acid residues for the catalytic selectivity of the CYP72A-catalyzed reactions were identified through fragmental and individual residue replacement, catalytic activity assays, molecular docking, and molecular dynamic simulations analysis. The fragments 1 and 3 of CYP72A565 were crucial for its C7-hydroxylation and C7-C8 bond cleavage activities. Mutating fragments 1 and 2 of CYP72A565 transformed the bifunctional CYP72A565 into a monofunctional 7DLH. Evolutionary analysis of the CYP72A homologs suggested that the bifunctional CYP72A in MIA-producing plants may have evolved into a monofunctional CYP72A. The gene pairs CYP72A728-CYP72A610 and CYP72A729-CYP72A565 may have originated from a whole genome duplication event. This study provides a molecular basis for the CYP72A-catalyzed hydroxylation and C-C bond cleavage activities of CYP72A565, as well as evolutionary insights of CYP72A homologs involved in MIAs biosynthesis.
Collapse
Affiliation(s)
- Zhan Liu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Pang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daijing Wei
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Yang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuefei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinggang Luo
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
9
|
Sousa RCN, Confessor VPP, Da Silva AKB, Almeida AR, Pinheiro FASD, Ferreira LS. Biomimetic Chemical Reactions with Natural Products Using Metalloporphyrins and Salen Complexes as Catalysts: A Brief Review. Chem Biodivers 2024; 21:e202400668. [PMID: 38763894 DOI: 10.1002/cbdv.202400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
The cytochrome P450 is a superfamily of hemoproteins mainly present in the liver and are versatile biocatalysts. They participate in the primary metabolism and biosynthesis of various secondary metabolites. Chemical catalysts are utilized to replicate the activities of enzymes. Metalloporphyrins and Salen complexes can contribute to the products' characterization and elucidate biotransformation processes, which are investigated during pre-clinical trials. These catalysts also help discover biologically active compounds and get better yields of products of industrial interest. This review aims to investigate which natural product classes are being investigated by biomimetic chemical models and the functionalities applied in the use of these catalysts. A limited number of studies were observed, with terpenes and alkaloids being the most investigated natural product classes. The research also revealed that Metalloporphyrins are still the most popular in the studies, and the identity and yield of the products obtained depend on the reaction system conditions.
Collapse
Affiliation(s)
- Rita C N Sousa
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, 59078-900, Natal-RN, Brazil
| | - Vitor P P Confessor
- Pharmacy Department, Federal University of Rio Grande do Norte, 59012-570, Natal-RN, Brazil
| | - Antonio K B Da Silva
- Pharmacy Department, Federal University of Rio Grande do Norte, 59012-570, Natal-RN, Brazil
| | - Addison R Almeida
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, 59078-900, Natal-RN, Brazil
- Pharmacy Department, Federal University of Rio Grande do Norte, 59012-570, Natal-RN, Brazil
| | | | - Leandro S Ferreira
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, 59078-900, Natal-RN, Brazil
- Pharmacy Department, Federal University of Rio Grande do Norte, 59012-570, Natal-RN, Brazil
| |
Collapse
|
10
|
Tang M, Zhang W, Lin R, Li L, He L, Yu J, Zhou Y. Genome-wide characterization of cytochrome P450 genes reveals the potential roles in fruit ripening and response to cold stress in tomato. PHYSIOLOGIA PLANTARUM 2024; 176:e14332. [PMID: 38710502 DOI: 10.1111/ppl.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
Plant cytochrome P450 (CYP) superfamily, the largest enzyme metabolism family, has been identified in many species and plays a vital role in plant development and stress response via secondary metabolite biosynthesis. A comprehensive identification and functional investigation of CYPs in tomato plants would contribute to deeper understanding of their biological significance. In this study, 268 tomato CYP genes were identified and found to be unevenly located on 12 chromosomes. Based on the phylogenetic analysis, these 268 SlCYPs were classed into two distinct clades (A-type and non-A-type) and nine clans, including 48 families. Moreover, 67 tandem and 22 WGD (whole genome duplication)/segmental duplication events were detected, of which 12 SlCYP genes experienced both WGD/segmental and tandem duplication events, indicating that tandem duplication plays a major role in the expansion of the SlCYP family. Besides, 48 pairs containing 41 SlCYP and 44 AtCYP genes were orthologous, while 216 orthologous pairs were obtained between tomato and potato. The expression level of all SlCYP genes in tomato tissues at different development stages was analyzed, and most expressed SlCYPs showed a tissue-specific pattern. Meanwhile, 143 differentially expressed SlCYPs were identified under cold stress. Furthermore, the RT-qPCR results indicated that SlCYPs may be involved in fruit ripening and cold tolerance in tomato seedlings. These findings provide valuable insights into the evolutionary relationships and functional characteristics of SlCYPs, which can be utilized for further investigation of fruit metabolic pathways and cold tolerance in tomato.
Collapse
Affiliation(s)
- Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenjing Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Lan Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Liqun He
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China
| |
Collapse
|
11
|
Liu J, Yin X, Kou C, Thimmappa R, Hua X, Xue Z. Classification, biosynthesis, and biological functions of triterpene esters in plants. PLANT COMMUNICATIONS 2024; 5:100845. [PMID: 38356259 PMCID: PMC11009366 DOI: 10.1016/j.xplc.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Triterpene esters comprise a class of secondary metabolites that are synthesized by decorating triterpene skeletons with a series of oxidation, glycosylation, and acylation modifications. Many triterpene esters with important bioactivities have been isolated and identified, including those with applications in the pesticide, pharmaceutical, and cosmetic industries. They also play essential roles in plant defense against pests, diseases, physical damage (as part of the cuticle), and regulation of root microorganisms. However, there has been no recent summary of the biosynthetic pathways and biological functions of plant triterpene esters. Here, we classify triterpene esters into five categories based on their skeletons and find that C-3 oxidation may have a significant effect on triterpenoid acylation. Fatty acid and aromatic moieties are common ligands present in triterpene esters. We further analyze triterpene ester synthesis-related acyltransferases (TEsACTs) in the triterpene biosynthetic pathway. Using an evolutionary classification of BAHD acyltransferases (BAHD-ATs) and serine carboxypeptidase-like acyltransferases (SCPL-ATs) in Arabidopsis thaliana and Oryza sativa, we classify 18 TEsACTs with identified functions from 11 species. All the triterpene-skeleton-related TEsACTs belong to BAHD-AT clades IIIa and I, and the only identified TEsACT from the SCPL-AT family belongs to the CP-I subfamily. This comprehensive review of the biosynthetic pathways and bioactivities of triterpene esters provides a foundation for further study of their bioactivities and applications in industry, agricultural production, and human health.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xue Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chengxi Kou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ramesha Thimmappa
- Amity Institute of Genome Engineering, Amity University, Noida, UP India 201313, India
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, P.R. China.
| |
Collapse
|
12
|
Liu X, Ma Y, Bu J, Lian C, Ma R, Li Q, Jiao X, Hu Z, Chen Y, Chen S, Guo J, Huang L. Characterization of CYP82 genes involved in the biosynthesis of structurally diverse benzylisoquinoline alkaloids in Corydalis yanhusuo. PLANT MOLECULAR BIOLOGY 2024; 114:23. [PMID: 38453737 DOI: 10.1007/s11103-023-01397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/27/2023] [Indexed: 03/09/2024]
Abstract
Benzylisoquinoline alkaloids (BIAs) represent a significant class of secondary metabolites with crucial roles in plant physiology and substantial potential for clinical applications. CYP82 genes are involved in the formation and modification of various BIA skeletons, contributing to the structural diversity of compounds. In this study, Corydalis yanhusuo, a traditional Chinese medicine rich in BIAs, was investigated to identify the catalytic function of CYP82s during BIA formation. Specifically, 20 CyCYP82-encoding genes were cloned, and their functions were identified in vitro. Ten of these CyCYP82s were observed to catalyze hydroxylation, leading to the formation of protopine and benzophenanthridine scaffolds. Furthermore, the correlation between BIA accumulation and the expression of CyCYP82s in different tissues of C. yanhusuo was assessed their. The identification and characterization of CyCYP82s provide novel genetic elements that can advance the synthetic biology of BIA compounds such as protopine and benzophenanthridine, and offer insights into the biosynthesis of BIAs with diverse structures in C. yanhusuo.
Collapse
Affiliation(s)
- Xiuyu Liu
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450046, China
| | - Ying Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinan Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Junling Bu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinan Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Conglong Lian
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450046, China
| | - Rui Ma
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450046, China
| | - Qishuang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinan Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Xiang Jiao
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Zhimin Hu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinan Academy of Chinese Medical Sciences, Beijing, 100000, China
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Suiqing Chen
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450046, China.
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinan Academy of Chinese Medical Sciences, Beijing, 100000, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinan Academy of Chinese Medical Sciences, Beijing, 100000, China.
| |
Collapse
|
13
|
Dhabalia Ashok A, Freitag JN, Irisarri I, de Vries S, de Vries J. Sequence similarity networks bear out hierarchical relationships of green cytochrome P450. PHYSIOLOGIA PLANTARUM 2024; 176:e14244. [PMID: 38480467 DOI: 10.1111/ppl.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
Land plants have diversified enzyme families. One of the most prominent is the cytochrome P450 (CYP or CYP450) family. With over 443,000 CYP proteins sequenced across the tree of life, CYPs are ubiquitous in archaea, bacteria, and eukaryotes. Here, we focused on land plants and algae to study the role of CYP diversification. CYPs, acting as monooxygenases, catalyze hydroxylation reactions crucial for specialized plant metabolic pathways, including detoxification and phytohormone production; the CYPome consists of one enormous superfamily that is divided into clans and families. Their evolutionary history speaks of high substrate promiscuity; radiation and functional diversification have yielded numerous CYP families. To understand the evolutionary relationships within the CYPs, we employed sequence similarity network analyses. We recovered distinct clusters representing different CYP families, reflecting their diversified sequences that we link to the prediction of functionalities. Hierarchical clustering and phylogenetic analysis further elucidated relationships between CYP clans, uncovering their shared deep evolutionary history. We explored the distribution and diversification of CYP subfamilies across plant and algal lineages, uncovering novel candidates and providing insights into the evolution of these enzyme families. This identified unexpected relationships between CYP families, such as the link between CYP82 and CYP74, shedding light on their roles in plant defense signaling pathways. Our approach provides a methodology that brings insights into the emergence of new functions within the CYP450 family, contributing to the evolutionary history of plants and algae. These insights can be further validated and implemented via experimental setups under various external conditions.
Collapse
Affiliation(s)
- Amra Dhabalia Ashok
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Jella N Freitag
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Iker Irisarri
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Germany
| | - Sophie de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Jan de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettinzgen, Goettingen, Germany
| |
Collapse
|
14
|
Thon FM, Müller C, Wittmann MJ. The evolution of chemodiversity in plants-From verbal to quantitative models. Ecol Lett 2024; 27:e14365. [PMID: 38362774 DOI: 10.1111/ele.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/31/2023] [Accepted: 12/09/2023] [Indexed: 02/17/2024]
Abstract
Plants harbour a great chemodiversity, that is diversity of specialised metabolites (SMs), at different scales. For instance, individuals can produce a large number of SMs, and populations can differ in their metabolite composition. Given the ecological and economic importance of plant chemodiversity, it is important to understand how it arises and is maintained over evolutionary time. For other dimensions of biodiversity, that is species diversity and genetic diversity, quantitative models play an important role in addressing such questions. Here, we provide a synthesis of existing hypotheses and quantitative models, that is mathematical models and computer simulations, for the evolution of plant chemodiversity. We describe each model's ingredients, that is the biological processes that shape chemodiversity, the scales it considers and whether it has been formalized as a quantitative model. Although we identify several quantitative models, not all are dynamic and many influential models have remained verbal. To fill these gaps, we outline our vision for the future of chemodiversity modelling. We identify quantitative models used for genetic variation that may be adapted for chemodiversity, and we present a flexible framework for the creation of individual-based models that address different scales of chemodiversity and combine different ingredients that bring this chemodiversity about.
Collapse
Affiliation(s)
- Frans M Thon
- Faculty of Biology, Theoretical Biology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Faculty of Biology, Chemical Ecology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| | - Meike J Wittmann
- Faculty of Biology, Theoretical Biology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| |
Collapse
|
15
|
Sun L, Li SD, Li Y, Wang L, Pu XM, Ge YP, Na Q, Li WH, Cheng XH. Population genetics provides insights into the important agronomic traits of Ganoderma cultivation varieties in China. Gene 2024; 893:147938. [PMID: 38381508 DOI: 10.1016/j.gene.2023.147938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 02/22/2024]
Abstract
This study aimed to investigate the species diversity and genetic differentiation of the genome of the main cultivated strains of Ganoderma in China. Population genomics analysis was conducted based on 150 cultivated strains of Ganoderma collected nationwide. The results indicated that the main species currently cultivated in China were Ganoderma sichuanense and Ganoderma lucidum, with a minor proportion of Ganoderma sessile, Ganoderma weberianum, Ganoderma sinense, Ganoderma gibbosum and Ganoderma australe. A total of 336,506 high-quality single nucleotide polymorphism (SNP) loci were obtained through population evolution analysis. The Fst values were calculated using a 5-kb sliding window, which ranged from 0.11 to 0.74. This suggests varying degrees of genetic differentiation between populations and genetic exchange among varieties. On this basis, the genes related to the stipe length, cap color and branch phenotypes of Ganoderma were excavated, and the region with the top 1% ZFst value region was used as a candidate region. A total of 137, 270 and 222 candidate genes were identified in the aforementioned 3 phenotypes, respectively. Gene annotation revealed that genes associated with stipe length were mainly related to cell division and differentiation, including proteins such as Nse4 protein and DIM1 protein. The genes related to Ganoderma red color were mainly related to the metabolism of tryptophan and flavonoids. The genes related to the branch were mainly related to cytokinin synthesis, ABC transporter and cytochrome P450. This study provided 150 valuable genome resequencing data in assessing the diversity and genetic differentiation of Ganoderma and laid a foundation for agronomic trait analysis and the development of new varieties of Ganoderma.
Collapse
Affiliation(s)
- Lei Sun
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China
| | - Shi-da Li
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China
| | - Yin Li
- Yantai Hospital of Traditional Chinese Medicine, Yantai 264013, China
| | - Lei Wang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiu-Min Pu
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China
| | - Yu-Peng Ge
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China
| | - Qin Na
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China
| | - Wei-Huan Li
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China.
| | - Xian-Hao Cheng
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai 264025, China.
| |
Collapse
|
16
|
Bai M, Jiang S, Chu S, Yu Y, Shan D, Liu C, Zong L, Liu Q, Liu N, Xu W, Mei Z, Jian J, Zhang C, Zhao S, Chiu TY, Simonsen HT. The telomere-to-telomere (T2T) genome of Peucedanum praeruptorum Dunn provides insights into the genome evolution and coumarin biosynthesis. Gigascience 2024; 13:giae025. [PMID: 38837945 PMCID: PMC11152176 DOI: 10.1093/gigascience/giae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Traditional Chinese medicine has used Peucedanum praeruptorum Dunn (Apiaceae) for a long time. Various coumarins, including the significant constituents praeruptorin (A-E), are the active constituents in the dried roots of P. praeruptorum. Previous transcriptomic and metabolomic studies have attempted to elucidate the distribution and biosynthetic network of these medicinal-valuable compounds. However, the lack of a high-quality reference genome impedes an in-depth understanding of genetic traits and thus the development of better breeding strategies. RESULTS A telomere-to-telomere (T2T) genome was assembled for P. praeruptorum by combining PacBio HiFi, ONT ultra-long, and Hi-C data. The final genome assembly was approximately 1.798 Gb, assigned to 11 chromosomes with genome completeness >98%. Comparative genomic analysis suggested that P. praeruptorum experienced 2 whole-genome duplication events. By the transcriptomic and metabolomic analysis of the coumarin metabolic pathway, we presented coumarins' spatial and temporal distribution and the expression patterns of critical genes for its biosynthesis. Notably, the COSY and cytochrome P450 genes showed tandem duplications on several chromosomes, which may be responsible for the high accumulation of coumarins. CONCLUSIONS A T2T genome for P. praeruptorum was obtained, providing molecular insights into the chromosomal distribution of the coumarin biosynthetic genes. This high-quality genome is an essential resource for designing engineering strategies for improving the production of these valuable compounds.
Collapse
Affiliation(s)
- Mingzhou Bai
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Sanjie Jiang
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230000, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230000, China
| | - Yangyang Yu
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Dai Shan
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Chun Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Liang Zong
- Wuhan BGI Technology Service Co., Ltd. BGI-Wuhan, Wuhan 430000, China
| | - Qun Liu
- Wuhan BGI Technology Service Co., Ltd. BGI-Wuhan, Wuhan 430000, China
| | - Nana Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310000, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310000, China
| | - Weisong Xu
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Zhanlong Mei
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Jianbo Jian
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Chi Zhang
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Shancen Zhao
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Tsan-Yu Chiu
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310000, China
| | - Henrik Toft Simonsen
- Laboratoire Biotechnologies Végétales Plantes aromatiques et médicinales, Université Jean Monnet, St. Étienne 42023, France
| |
Collapse
|
17
|
Guedes JG, Ribeiro R, Carqueijeiro I, Guimarães AL, Bispo C, Archer J, Azevedo H, Fonseca NA, Sottomayor M. The leaf idioblastome of the medicinal plant Catharanthus roseus is associated with stress resistance and alkaloid metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:274-299. [PMID: 37804484 PMCID: PMC10735432 DOI: 10.1093/jxb/erad374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
Catharanthus roseus leaves produce a range of monoterpenoid indole alkaloids (MIAs) that include low levels of the anticancer drugs vinblastine and vincristine. The MIA pathway displays a complex architecture spanning different subcellular and cell type localizations, and is under complex regulation. As a result, the development of strategies to increase the levels of the anticancer MIAs has remained elusive. The pathway involves mesophyll specialized idioblasts where the late unsolved biosynthetic steps are thought to occur. Here, protoplasts of C. roseus leaf idioblasts were isolated by fluorescence-activated cell sorting, and their differential alkaloid and transcriptomic profiles were characterized. This involved the assembly of an improved C. roseus transcriptome from short- and long-read data, IDIO+. It was observed that C. roseus mesophyll idioblasts possess a distinctive transcriptomic profile associated with protection against biotic and abiotic stresses, and indicative that this cell type is a carbon sink, in contrast to surrounding mesophyll cells. Moreover, it is shown that idioblasts are a hotspot of alkaloid accumulation, suggesting that their transcriptome may hold the key to the in-depth understanding of the MIA pathway and the success of strategies leading to higher levels of the anticancer drugs.
Collapse
Affiliation(s)
- Joana G Guedes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Rogério Ribeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Inês Carqueijeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Ana Luísa Guimarães
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Cláudia Bispo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - John Archer
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Herlander Azevedo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Nuno A Fonseca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Mariana Sottomayor
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
18
|
Zhang S, Wang B, Li Q, Hui W, Yang L, Wang Z, Zhang W, Yue F, Liu N, Li H, Lu F, Zhang K, Zeng Q, Wu AM. CRISPR/Cas9 mutated p-coumaroyl shikimate 3'-hydroxylase 3 gene in Populus tomentosa reveals lignin functioning on supporting tree upright. Int J Biol Macromol 2023; 253:126762. [PMID: 37683750 DOI: 10.1016/j.ijbiomac.2023.126762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
The lignin plays one of the most important roles in plant secondary metabolism. However, it is still unclear how lignin can contribute to the impressive height of wood growth. In this study, C3'H, a rate-limiting enzyme of the lignin pathway, was used as the target gene. C3'H3 was knocked out by CRISPR/Cas9 in Populus tomentosa. Compared with wild-type popular trees, c3'h3 mutants exhibited dwarf phenotypes, collapsed xylem vessels, weakened phloem thickening, decreased hydraulic conductivity and photosynthetic efficiency, and reduced auxin content, except for reduced total lignin content and significantly increased H-subunit lignin. In the c3'h3 mutant, the flavonoid biosynthesis genes CHS, CHI, F3H, DFR, ANR, and LAR were upregulated, and flavonoid metabolite accumulations were detected, indicating that decreasing the lignin biosynthesis pathway enhanced flavonoid metabolic flux. Furthermore, flavonoid metabolites, such as naringenin and hesperetin, were largely increased, while higher hesperetin content suppressed plant cell division. Thus, studying the c3'h3 mutant allows us to deduce that lignin deficiency suppresses tree growth and leads to the dwarf phenotype due to collapsed xylem and thickened phloem, limiting material exchanges and transport.
Collapse
Affiliation(s)
- Sufang Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Bo Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qian Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wenkai Hui
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Linjie Yang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhihua Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wenjuan Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Fengxia Yue
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Nian Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Fachuang Lu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Department of Biochemistry and Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA
| | - Kewei Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Qingyin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Kamaraj C, Naveenkumar S, Prem P, Ragavendran C, Subramaniyan V, Al-Ghanim KA, Malafaia G, Nicoletti M, Govindarajan M. Green synthesis and biophysical characterization of silver and palladium nanoparticles using Laureliopsis philippiana: A potent eco-friendly larvicide with negligible impact on zebrafish (Danio rerio). JOURNAL OF ASIA-PACIFIC ENTOMOLOGY 2023; 26:102164. [DOI: 10.1016/j.aspen.2023.102164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
20
|
Nagayoshi H, Murayama N, Kim V, Kim D, Takenaka S, Yamazaki H, Guengerich FP, Shimada T. Oxidation of Naringenin, Apigenin, and Genistein by Human Family 1 Cytochrome P450 Enzymes and Comparison of Interaction of Apigenin with Human P450 1B1.1 and Scutellaria P450 82D.1. Chem Res Toxicol 2023; 36:1778-1788. [PMID: 37783573 PMCID: PMC11497155 DOI: 10.1021/acs.chemrestox.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Naringenin, an initial synthesized flavanone in various plant species, is further utilized for production of many biologically active flavonoids, e.g., apigenin, eriodictyol, and genistein, by various plant enzymes including cytochrome P450s (P450s or CYPs). We examined how these flavonoids are oxidized by human P450 family 1 and 2A enzymes. Naringenin was principally oxidized at the 3'-position to form eriodictyol by CYP1 enzymes more efficiently than by CYP2A enzymes, and the resulting eriodictyol was further oxidized to two penta-hydroxylated products. In contrast to plant P450 enzymes, these human P450s did not mediate the desaturation of naringenin and eriodictyol to give apigenin and luteolin, respectively. Apigenin was oxidized at the C3' and C6 positions to form luteolin and scutellarein by these P450s. CYP1B1.1 and 1B1.3 had high activities in apigenin 6-hydroxylation with a homotropic cooperative manner, as has been observed previously in chrysin 6-hydroxylation (Nagayoshi et al., Chem. Res. Toxicol. 2019, 32, 1268-1280). Molecular docking analysis suggested that CYP1B1 had two apigenin binding sites and showed similarities in substrate recognition sites to plant CYP82D.1, one of the enzymes in catalyzing apigenin and chrysin 6-hydroxylations in Scutellaria baicalensis. The present results suggest that human CYP1 enzymes and CYP2A13 in some reactions have important roles in the oxidation of naringenin, eriodictyol, apigenin, and genistein and that human CYP1B1 and Scutellaria CYP82D.1 have similarities in their SRS regions, catalyzing 6-hydroxylation of both apigenin and chrysin.
Collapse
Affiliation(s)
- Haruna Nagayoshi
- Food Chemistry Section, Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka 537-0025, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Shigeo Takenaka
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Metropolitan University, Habikino, Osaka 583-8555, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Tsutomu Shimada
- Department of Clinical Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Metropolitan University, Habikino, Osaka 583-8555, Japan
| |
Collapse
|
21
|
Florean M, Luck K, Hong B, Nakamura Y, O’Connor SE, Köllner TG. Reinventing metabolic pathways: Independent evolution of benzoxazinoids in flowering plants. Proc Natl Acad Sci U S A 2023; 120:e2307981120. [PMID: 37812727 PMCID: PMC10589660 DOI: 10.1073/pnas.2307981120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/30/2023] [Indexed: 10/11/2023] Open
Abstract
Benzoxazinoids (BXDs) form a class of indole-derived specialized plant metabolites with broad antimicrobial and antifeedant properties. Unlike most specialized metabolites, which are typically lineage-specific, BXDs occur sporadically in a number of distantly related plant orders. This observation suggests that BXD biosynthesis arose independently numerous times in the plant kingdom. However, although decades of research in the grasses have led to the elucidation of the BXD pathway in the monocots, the biosynthesis of BXDs in eudicots is unknown. Here, we used a metabolomic and transcriptomic-guided approach, in combination with pathway reconstitution in Nicotiana benthamiana, to identify and characterize the BXD biosynthetic pathways from both Aphelandra squarrosa and Lamium galeobdolon, two phylogenetically distant eudicot species. We show that BXD biosynthesis in A. squarrosa and L. galeobdolon utilize a dual-function flavin-containing monooxygenase in place of two distinct cytochrome P450s, as is the case in the grasses. In addition, we identified evolutionarily unrelated cytochrome P450s, a 2-oxoglutarate-dependent dioxygenase, a UDP-glucosyltransferase, and a methyltransferase that were also recruited into these BXD biosynthetic pathways. Our findings constitute the discovery of BXD pathways in eudicots. Moreover, the biosynthetic enzymes of these pathways clearly demonstrate that BXDs independently arose in the plant kingdom at least three times. The heterogeneous pool of identified BXD enzymes represents a remarkable example of metabolic plasticity, in which BXDs are synthesized according to a similar chemical logic, but with an entirely different set of metabolic enzymes.
Collapse
Affiliation(s)
- Matilde Florean
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Katrin Luck
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Benke Hong
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Yoko Nakamura
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Sarah E. O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Tobias G. Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| |
Collapse
|
22
|
Liu J, Shi K, Wang S, Zhu J, Wang X, Hong J, Wang Z. MsCYP71 is a positive regulator for drought resistance in alfalfa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107999. [PMID: 37678089 DOI: 10.1016/j.plaphy.2023.107999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Cytochrome P450 (CYP450) family proteins play key roles in plant growth, development, stress responses, and other physiological processes. Here, we cloned the cytochrome P450 gene MsCYP71 in alfalfa and found that the expression of MsCYP71 was induced by drought stress. Silencing the MsCYP71 gene using virus-induced gene silencing technology significantly decreased the drought resistance of alfalfa, as indicated by their lower relative water content, net photosynthetic rate, and chlorophyll fluorescence maximum (Fm); further, the heterologous overexpression of MsCYP71 in tobacco significantly enhanced the drought resistance and Fm of transgenic tobacco. Furthermore, the expression of MsCYP71 across 45 alfalfa accessions under drought stress was investigated. A significant positive correlation between drought resistance and MsCYP71 expression was observed. The 45 alfalfa accessions were clustered into four groups, and drought resistance, Fm, and MsCYP71 were higher in group I than in the other groups, indicating that group I accessions can be used as candidate germplasm resources for the breeding of drought-resistant alfalfa varieties. Overall, our findings indicated that MsCYP71 is a positive regulator of drought resistance in alfalfa, and its expression can be used to evaluate the drought resistance of alfalfa.
Collapse
Affiliation(s)
- Jia Liu
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kun Shi
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shaopeng Wang
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiahao Zhu
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xijuan Wang
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jun Hong
- National Animal Husbandry Services, Beijing, 100125, China
| | - Zan Wang
- College of Grass Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Zhao D, Zhang Y, Ren H, Shi Y, Dong D, Li Z, Cui G, Shen Y, Mou Z, Kennelly EJ, Huang L, Ruan J, Chen S, Yu D, Cun Y. Multi-omics analysis reveals the evolutionary origin of diterpenoid alkaloid biosynthesis pathways in Aconitum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2320-2335. [PMID: 37688324 DOI: 10.1111/jipb.13565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/10/2023]
Abstract
Diterpenoid alkaloids (DAs) have been often utilized in clinical practice due to their analgesic and anti-inflammatory properties. Natural DAs are prevalent in the family Ranunculaceae, notably in the Aconitum genus. Nevertheless, the evolutionary origin of the biosynthesis pathway responsible for DA production remains unknown. In this study, we successfully assembled a high-quality, pseudochromosome-level genome of the DA-rich species Aconitum vilmorinianum (A. vilmorinianum) (5.76 Gb). An A. vilmorinianum-specific whole-genome duplication event was discovered using comparative genomic analysis, which may aid in the evolution of the DA biosynthesis pathway. We identified several genes involved in DA biosynthesis via integrated genomic, transcriptomic, and metabolomic analyses. These genes included enzymes encoding target ent-kaurene oxidases and aminotransferases, which facilitated the activation of diterpenes and insertion of nitrogen atoms into diterpene skeletons, thereby mediating the transformation of diterpenes into DAs. The divergence periods of these genes in A. vilmorinianum were further assessed, and it was shown that two major types of genes were involved in the establishment of the DA biosynthesis pathway. Our integrated analysis offers fresh insights into the evolutionary origin of DAs in A. vilmorinianum as well as suggestions for engineering the biosynthetic pathways to obtain desired DAs.
Collapse
Affiliation(s)
- Dake Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Ya Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Huanxing Ren
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yana Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ding Dong
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Zonghang Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Guanghong Cui
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Zongmin Mou
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, 10468, New York, USA
- Graduate Center, City University of New York, Bronx, 10468, New York, USA
| | - Luqi Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jue Ruan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Suiyun Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Yupeng Cun
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
24
|
Akbarabadi A, Ismaili A, Nazarian Firouzabadi F, Ercisli S, Kahrizi D. Assessment of ACC and P450 Genes Expression in Wild Oat (Avena ludoviciana) in Different Tissues Under Herbicide Application. Biochem Genet 2023; 61:1867-1879. [PMID: 36877417 DOI: 10.1007/s10528-023-10357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/15/2023] [Indexed: 03/07/2023]
Abstract
Target-site resistance (TSR) and non-target-site resistance (NTSR) to herbicides in arable weeds are increasing rapidly all over the world and threatening universal food safety. Resistance to herbicides that inhibit ACCase activity has been identified in wild oat. In this study, expression of ACC1, ACC2, CYP71R4 and CYP81B1 genes under herbicide stress conditions were studied in two TSR (resistant in the residue Ile1781-Leu and Ile2041-Asn of ACCase) biotypes, two NTSR biotypes and one susceptible biotype of A. ludoviciana for the first time. Treated and untreated biotypes with ACCase-inhibitor clodinafop propargyl herbicide were sampled from the stem and leaf tissues at 24 h after treatment. Our results showed an increase in gene expression levels in different tissues of both types of resistance biotypes that occurred under herbicide treatment compared with non-herbicide treatment. In all samples, the expression levels of leaf tissue in all studied genes were higher than in stem tissue. The results of ACC gene expression showed that the expression level of ACC1 was significantly higher than that of ACC2. Also, expression levels of TSR biotypes were higher than NTSR biotypes for the ACC1 gene. For both CYP71R4 and CYP81B1 genes, the expression ratio increased significantly in TSR and NTSR biotypes in different tissues after herbicide treatment. In contrast, the expression levels of CYP genes in NTSR biotypes were higher than in TSR biotypes. Our results support the hypothesis that the reaction of plants to herbicide is carried out through a different regulation of genes, which can be the result of the interaction of resistance type in the target or non-target-site.
Collapse
Affiliation(s)
- Ali Akbarabadi
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Ahmad Ismaili
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Farhad Nazarian Firouzabadi
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Danial Kahrizi
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
25
|
Ikram NKK, Zakariya AM, Saiman MZ, Kashkooli AB, Simonsen HT. Heterologous Production of Artemisinin in Physcomitrium patens by Direct in vivo Assembly of Multiple DNA Fragments. Bio Protoc 2023; 13:e4719. [PMID: 37497445 PMCID: PMC10366679 DOI: 10.21769/bioprotoc.4719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/19/2023] [Accepted: 05/03/2023] [Indexed: 07/28/2023] Open
Abstract
The sesquiterpene lactone compound artemisinin is a natural medicinal product of commercial importance. This Artemisia annua-derived secondary metabolite is well known for its antimalarial activity and has been studied in several other biological assays. However, the major shortcoming in its production and commercialization is its low accumulation in the native plant. Moreover, the chemical synthesis of artemisinin is difficult and expensive due to its complex structure. Hence, an alternative and sustainable production system of artemisinin in a heterologous host is required. Previously, heterologous production of artemisinin was achieved by Agrobacterium-mediated transformation. However, this requires extensive bioengineering of modified Nicotiana plants. Recently, a technique involving direct in vivo assembly of multiple DNA fragments in the moss, P. patens, has been successfully established. We utilized this technique to engineer artemisinin biosynthetic pathway genes into the moss, and artemisinin was obtained without further modifications with high initial production. Here, we provide protocols for establishing moss culture accumulating artemisinin, including culture preparation, transformation method, and compound detection via HS-SPME, UPLC-MRM-MS, and LC-QTOF-MS. The bioengineering of moss opens up a more sustainable, cost effective, and scalable platform not only in artemisinin production but also other high-value specialized metabolites in the future.
Collapse
Affiliation(s)
- Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ali Muhammad Zakariya
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Biological Sciences, Faculty of Natural and Applied Science, Sule Lamido University Kafin Hausa, Jigawa State, Nigeria
| | - Mohd Zuwairi Saiman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Arman Beyraghdar Kashkooli
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Tehran, Iran
| | - Henrik Toft Simonsen
- Laboratory of Plant Biotechnology, Université Jean Monnet, 23 Rue du Dr Michelon, 42000 Saint-Etienne, France
| |
Collapse
|
26
|
Lanier ER, Andersen TB, Hamberger B. Plant terpene specialized metabolism: complex networks or simple linear pathways? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1178-1201. [PMID: 36891828 PMCID: PMC11166267 DOI: 10.1111/tpj.16177] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
From the perspectives of pathway evolution, discovery and engineering of plant specialized metabolism, the nature of the biosynthetic routes represents a critical aspect. Classical models depict biosynthesis typically from an end-point angle and as linear, for example, connecting central and specialized metabolism. As the number of functionally elucidated routes increased, the enzymatic foundation of complex plant chemistries became increasingly well understood. The perception of linear pathway models has been severely challenged. With a focus on plant terpenoid specialized metabolism, we review here illustrative examples supporting that plants have evolved complex networks driving chemical diversification. The completion of several diterpene, sesquiterpene and monoterpene routes shows complex formation of scaffolds and their subsequent functionalization. These networks show that branch points, including multiple sub-routes, mean that metabolic grids are the rule rather than the exception. This concept presents significant implications for biotechnological production.
Collapse
Affiliation(s)
| | | | - Björn Hamberger
- Department of Biochemistry and Molecular Biology, Michigan State University, Molecular Plant Sciences Building, 1066 Bogue Street, East Lansing, Michigan, 48824, USA
| |
Collapse
|
27
|
Qu Y, Shang X, Zeng Z, Yu Y, Bian G, Wang W, Liu L, Tian L, Zhang S, Wang Q, Xie D, Chen X, Liao Z, Wang Y, Qin J, Yang W, Sun C, Fu X, Zhang X, Fang S. Whole-genome Duplication Reshaped Adaptive Evolution in A Relict Plant Species, Cyclocarya paliurus. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:455-469. [PMID: 36775057 PMCID: PMC10787019 DOI: 10.1016/j.gpb.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/07/2022] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Cyclocarya paliurus is a relict plant species that survived the last glacial period and shows a population expansion recently. Its leaves have been traditionally used to treat obesity and diabetes with the well-known active ingredient cyclocaric acid B. Here, we presented three C. paliurus genomes from two diploids with different flower morphs and one haplotype-resolved tetraploid assembly. Comparative genomic analysis revealed two rounds of recent whole-genome duplication events and identified 691 genes with dosage effects that likely contribute to adaptive evolution through enhanced photosynthesis and increased accumulation of triterpenoids. Resequencing analysis of 45 C. paliurus individuals uncovered two bottlenecks, consistent with the known events of environmental changes, and many selectively swept genes involved in critical biological functions, including plant defense and secondary metabolite biosynthesis. We also proposed the biosynthesis pathway of cyclocaric acid B based on multi-omics data and identified key genes, in particular gibberellin-related genes, associated with the heterodichogamy in C. paliurus species. Our study sheds light on evolutionary history of C. paliurus and provides genomic resources to study the medicinal herbs.
Collapse
Affiliation(s)
- Yinquan Qu
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xulan Shang
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Ziyan Zeng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yanhao Yu
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Guoliang Bian
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Wenling Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Liu
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Li Tian
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qian Wang
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Dejin Xie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xuequn Chen
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenyang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jian Qin
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Wanxia Yang
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Caowen Sun
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China
| | - Xiangxiang Fu
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China.
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Shengzuo Fang
- Nanjing Forestry University, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing 210037, China.
| |
Collapse
|
28
|
Das A, Begum K, Akhtar S, Ahmed R, Tamuli P, Kulkarni R, Banu S. Genome-wide investigation of Cytochrome P450 superfamily of Aquilaria agallocha: Association with terpenoids and phenylpropanoids biosynthesis. Int J Biol Macromol 2023; 234:123758. [PMID: 36812976 DOI: 10.1016/j.ijbiomac.2023.123758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/12/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Agarwood is a dark resinous wood, produced when Aquilaria tree responds to wounding and microbial infection resulting in the accumulation of fragrant metabolites. Sesquiterpenoids and 2-(2-phenylethyl) chromones are the major phytochemicals in agarwood and Cytochrome P450s (CYPs) are one of the important enzymes in the biosynthesis of these fragrant chemicals. Thus, understanding the repertoire of CYP superfamily in Aquilaria can not only give insights into the fundamentals of agarwood formation, but can also provide a tool for the overproduction of the aroma chemicals. Therefore, current study was designed to investigate CYPs of an agarwood producing plant, Aquilaria agallocha. We identified 136 CYP genes from A. agallocha genome (AaCYPs) and classified them into 8 clans and 38 families. The promoter regions had stress and hormone-related cis-regulatory elements which indicate their participation in the stress response. Duplication and synteny analysis revealed segmental and tandem duplicated and evolutionary related CYP members in other plants. Potential members involved in the biosynthesis of sesquiterpenoids and phenylpropanoids were identified and found to be upregulated in methyl jasmonate-induced callus and infected Aquilaria trees by real-time quantitative PCR analyses. This study highlights the possible involvement of AaCYPs in agarwood resin development and their complex regulation during stress exposure.
Collapse
Affiliation(s)
- Ankur Das
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Khaleda Begum
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Suraiya Akhtar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | - Raja Ahmed
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India
| | | | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 411042, India
| | - Sofia Banu
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam 781014, India.
| |
Collapse
|
29
|
Wang Z, Nelson DR, Zhang J, Wan X, Peters RJ. Plant (di)terpenoid evolution: from pigments to hormones and beyond. Nat Prod Rep 2023; 40:452-469. [PMID: 36472136 PMCID: PMC9945934 DOI: 10.1039/d2np00054g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2014-2022.Diterpenoid biosynthesis in plants builds on the necessary production of (E,E,E)-geranylgeranyl diphosphate (GGPP) for photosynthetic pigment production, with diterpenoid biosynthesis arising very early in land plant evolution, enabling stockpiling of the extensive arsenal of (di)terpenoid natural products currently observed in this kingdom. This review will build upon that previously published in the Annual Review of Plant Biology, with a stronger focus on enzyme structure-function relationships, as well as additional insights into the evolution of (di)terpenoid metabolism since generated.
Collapse
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.,Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Juan Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| |
Collapse
|
30
|
Liu X, Jiao X, Cheng Y, Ma Y, Bu J, Jin B, Li Q, Hu Z, Tang J, Lai C, Wang J, Cui G, Chen Y, Guo J, Huang L. Structure-function analysis of CYP719As involved in methylenedioxy bridge-formation in the biosynthesis of benzylisoquinoline alkaloids and its de novo production. Microb Cell Fact 2023; 22:23. [PMID: 36737755 PMCID: PMC9898898 DOI: 10.1186/s12934-023-02024-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Benzylisoquinoline alkaloids (BIAs) are a type of secondary metabolite with clinical application value. (S)-stylopine is a special BIA which contains methylenedioxy bridge structures. CYP719As could catalyze the methylenedioxy bridge-formation on the A or D rings of protoberberine alkaloids, while displaying significant substrate regiospecificity. To explore the substrate preference of CYP719As, we cloned and identified five CyCYP719A candidates from Corydalis yanhusuo. Two CyCYP719As (CyCYP719A39 and CyCYP719A42) with high catalytic efficiency for the methylenedioxy bridge-formation on the D or A rings were characterized, respectively. The residues (Leu 294 for CyCYP719A42 and Asp 289 for CyCYP719A39) were identified as the key to controlling the regioselectivity of CYP719As affecting the methylenedioxy bridge-formation on the A or D rings by homology modeling and mutation analysis. Furthermore, for de novo production of BIAs, CyCYP719A39, CyCYP719A42, and their mutants were introduced into the (S)-scoulerine-producing yeast to produce 32 mg/L (S)-stylopine. These results lay a foundation for understanding the structure-function relationship of CYP719A-mediated methylenedioxy bridge-formation and provide yeast strains for the BIAs production by synthetic biology.
Collapse
Affiliation(s)
- Xiuyu Liu
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China ,grid.256922.80000 0000 9139 560XSchool of Pharmaceutical Sciences, Henan University of Chinese Medicine, No. 156 Jinshuidong Road, Zhengzhou, 450046 China
| | - Xiang Jiao
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Yatian Cheng
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Ying Ma
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Junling Bu
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Baolong Jin
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Qishuang Li
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Zhimin Hu
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Jinfu Tang
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Changjiangsheng Lai
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Jian Wang
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Guanghong Cui
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Yun Chen
- grid.5371.00000 0001 0775 6028Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Juan Guo
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| | - Luqi Huang
- grid.410318.f0000 0004 0632 3409State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Neinanxiaojie, Dongzhimen, Beijing, 100700 China
| |
Collapse
|
31
|
Liu X, Zhang P, Zhao Q, Huang AC. Making small molecules in plants: A chassis for synthetic biology-based production of plant natural products. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:417-443. [PMID: 35852486 DOI: 10.1111/jipb.13330] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant natural products have been extensively exploited in food, medicine, flavor, cosmetic, renewable fuel, and other industrial sectors. Synthetic biology has recently emerged as a promising means for the cost-effective and sustainable production of natural products. Compared with engineering microbes for the production of plant natural products, the potential of plants as chassis for producing these compounds is underestimated, largely due to challenges encountered in engineering plants. Knowledge in plant engineering is instrumental for enabling the effective and efficient production of valuable phytochemicals in plants, and also paves the way for a more sustainable future agriculture. In this manuscript, we briefly recap the biosynthesis of plant natural products, focusing primarily on industrially important terpenoids, alkaloids, and phenylpropanoids. We further summarize the plant hosts and strategies that have been used to engineer the production of natural products. The challenges and opportunities of using plant synthetic biology to achieve rapid and scalable production of high-value plant natural products are also discussed.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peijun Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiao Zhao
- Shenzhen Institutes of Advanced Technology (SIAT), the Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ancheng C Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
32
|
Zhang S, Qu-Bie JZ, Feng MK, Qu-Bie AX, Huang Y, Zhang ZF, Yan XJ, Liu Y. Illuminating the biosynthesis pathway genes involved in bioactive specific monoterpene glycosides in Paeonia veitchii Lynch by a combination of sequencing platforms. BMC Genomics 2023; 24:45. [PMID: 36698081 PMCID: PMC9878870 DOI: 10.1186/s12864-023-09138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Paeonia veitchii Lynch, a well-known herb from the Qinghai-Tibet Plateau south of the Himalayas, can synthesize specific monoterpene glycosides (PMGs) with multiple pharmacological activities, and its rhizome has become an indispensable ingredient in many clinical drugs. However, little is known about the molecular background of P. veitchii, especially the genes involved in the biosynthetic pathway of PMGs. RESULTS A corrective full-length transcriptome with 30,827 unigenes was generated by combining next-generation sequencing (NGS) and single-molecule real-time sequencing (SMRT) of six tissues (leaf, stem, petal, ovary, phloem and xylem). The enzymes terpene synthase (TPS), cytochrome P450 (CYP), UDP-glycosyltransferase (UGT), and BAHD acyltransferase, which participate in the biosynthesis of PMGs, were systematically characterized, and their functions related to PMG biosynthesis were analysed. With further insight into TPSs, CYPs, UGTs and BAHDs involved in PMG biosynthesis, the weighted gene coexpression network analysis (WGCNA) method was used to identify the relationships between these genes and PMGs. Finally, 8 TPSs, 22 CYPs, 7 UGTs, and 2 BAHD genes were obtained, and these putative genes were very likely to be involved in the biosynthesis of PMGs. In addition, the expression patterns of the putative genes and the accumulation of PMGs in tissues suggested that all tissues are capable of biosynthesizing PMGs and that aerial plant parts could also be used to extract PMGs. CONCLUSION We generated a large-scale transcriptome database across the major tissues in P. veitchii, providing valuable support for further research investigating P. veitchii and understanding the genetic information of plants from the Qinghai-Tibet Plateau. TPSs, CYPs, UGTs and BAHDs further contribute to a better understanding of the biology and complexity of PMGs in P. veitchii. Our study will help reveal the mechanisms underlying the biosynthesis pathway of these specific monoterpene glycosides and aid in the comprehensive utilization of this multifunctional plant.
Collapse
Affiliation(s)
- Shaoshan Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Jun-zhang Qu-Bie
- grid.412723.10000 0004 0604 889XCollege of Pharmacy, Southwest Minzu University, Chengdu, 610041 China
| | - Ming-kang Feng
- grid.412723.10000 0004 0604 889XCollege of Pharmacy, Southwest Minzu University, Chengdu, 610041 China
| | - A-xiang Qu-Bie
- grid.412723.10000 0004 0604 889XCollege of Pharmacy, Southwest Minzu University, Chengdu, 610041 China
| | - Yanfei Huang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Zhi-feng Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Xin-jia Yan
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Chengdu, 610225 China ,Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| | - Yuan Liu
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu, 610225 China
| |
Collapse
|
33
|
Hu QY, Pu XJ, Li GH, Li CQ, Lei HM, Zhang KQ, Zhao PJ. Identification and Mechanism of Action of the Global Secondary Metabolism Regulator SaraC in Stereum hirsutum. Microbiol Spectr 2022; 10:e0262422. [PMID: 36409127 PMCID: PMC9769804 DOI: 10.1128/spectrum.02624-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
DNA methylation is an important factor in the regulation of gene expression. In analyzing genomic data of Stereum hirsutum FP-91666, we found a hypothetical bifunctional transcription regulator/O6Meguanine-DNA methyltransferase (named SaraC), which is widely present in both bacteria and fungi, and confirmed that its function in bacteria is mainly for DNA reparation. In this paper, we confirmed that SaraC has the function of DNA binding and demethylation through surface plasma resonance and reaction experiments in vitro. Then, we achieved the overexpression of SaraC (OES) in S. hirsutum, sequenced the methylation and transcription levels of the whole-genome, and further conducted untargeted metabolomics analyses of the OES transformants and the wild type (WT). The results confirmed that the overall-methylation levels of the transformants were significantly downregulated, and various genes related to secondary metabolism were upregulated. Through comparative untargeted metabolomic analyses, it showed that OES SA6 transformant produced a greater number of hybrid polyketides, and we identified 2 novel hybrid polyketides from the fermentation products of SA6. Our results show that overexpression SaraC can effectively stimulate the expression of secondary-metabolism-related genes, which could be a broad-spectrum tool for discovery of metabolites due to its cross-species conservation. IMPORTANCE Fungi are one of the important sources of active compounds. However, in fungi, most of the secondary metabolic biosynthetic gene clusters are weakly expressed or silenced under conventional culture conditions. How to efficiently excavate potential new compounds contained in fungi is becoming a research hot spot in the world. In this study, we found a DNA demethylation protein (SaraC) and confirmed that it is a global secondary metabolism regulator in Stereum hirsutum FP-91666. In the past, SaraC-like proteins were mainly regarded as DNA repair proteins, but our findings proved that it will be a powerful tool for mining secondary metabolites for overexpression of SaraC, which can effectively stimulate the expression of genes related to secondary metabolism.
Collapse
Affiliation(s)
- Qian-Yi Hu
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xue-Juan Pu
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Guo-Hong Li
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Chun-Qiang Li
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Hong-Mei Lei
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Pei-Ji Zhao
- State key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
34
|
Miranda S, Lagrèze J, Knoll AS, Angeli A, Espley RV, Dare AP, Malnoy M, Martens S. De novo transcriptome assembly and functional analysis reveal a dihydrochalcone 3-hydroxylase(DHC3H) of wild Malus species that produces sieboldin in vivo. FRONTIERS IN PLANT SCIENCE 2022; 13:1072765. [PMID: 36589107 PMCID: PMC9800874 DOI: 10.3389/fpls.2022.1072765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Sieboldin is a specialised secondary metabolite of the group of dihydrochalcones (DHC), found in high concentrations only in some wild Malus species, closely related to the domesticated apple (Malus × domestica L.). To date, the first committed step towards the biosynthesis of sieboldin remains unknown. In this study, we combined transcriptomic analysis and a de novo transcriptome assembly to identify two putative 3-hydroxylases in two wild Malus species (Malus toringo (K. Koch) Carriere syn. sieboldii Rehder, Malus micromalus Makino) whose DHC profile is dominated by sieboldin. We assessed the in vivo activity of putative candidates to produce 3-hydroxyphloretin and sieboldin by de novo production in Saccharomyces cerevisiae. We found that CYP98A proteins of wild Malus accessions (CYP98A195, M. toringo and CYP98A196, M. micromalus) were able to produce 3-hydroxyphloretin, ultimately leading to sieboldin accumulation by co-expression with PGT2. CYP98A197-198 genes of M. × domestica, however, were unable to hydroxylate phloretin in vivo. CYP98A195-196 proteins exerting 3-hydroxylase activity co-localised with an endoplasmic reticulum marker. CYP98A protein model from wild accessions showed mutations in key residues close to the ligand pocket predicted using phloretin for protein docking modelling. These mutations are located within known substrate recognition sites of cytochrome P450s, which could explain the acceptance of phloretin in CYP98A protein of wild accessions. Screening a Malus germplasm collection by HRM marker analysis for CYP98A genes identified three clusters that correspond to the alleles of domesticated and wild species. Moreover, CYP98A isoforms identified in M. toringo and M. micromalus correlate with the accumulation of sieboldin in other wild and hybrid Malus genotypes. Taken together, we provide the first evidence of an enzyme producing sieboldin in vivo that could be involved in the key hydroxylation step towards the synthesis of sieboldin in Malus species.
Collapse
Affiliation(s)
- Simón Miranda
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Center Agriculture Food and Environment (C3A), University of Trento, Trento, Italy
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Jorge Lagrèze
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Center Agriculture Food and Environment (C3A), University of Trento, Trento, Italy
| | - Anne-Sophie Knoll
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Andrea Angeli
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Andrew P. Dare
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Mickael Malnoy
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Stefan Martens
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| |
Collapse
|
35
|
Wang J, Yuan M, Feng Y, Zhang Y, Bao S, Hao Y, Ding Y, Gao X, Yu Z, Xu Q, Zhao J, Zhu Q, Wang P, Wu C, Wang J, Li Y, Xu C, Wang J. A common whole-genome paleotetraploidization in Cucurbitales. PLANT PHYSIOLOGY 2022; 190:2430-2448. [PMID: 36053177 PMCID: PMC9706448 DOI: 10.1093/plphys/kiac410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/10/2022] [Indexed: 06/01/2023]
Abstract
Cucurbitales are an important order of flowering plants known for encompassing edible plants of economic and medicinal value and numerous ornamental plants of horticultural value. By reanalyzing the genomes of two representative families (Cucurbitaceae and Begoniaceae) in Cucurbitales, we found that the previously identified Cucurbitaceae common paleotetraploidization that occurred shortly after the core-eudicot-common hexaploidization event is shared by Cucurbitales, including Begoniaceae. We built a multigenome alignment framework for Cucurbitales by identifying orthologs and paralogs and systematically redating key evolutionary events in Cucurbitales. Notably, characterizing the gene retention levels and genomic fractionation patterns between subgenomes generated from different polyploidizations in Cucurbitales suggested the autopolyploid nature of the Begoniaceae common tetraploidization and the allopolyploid nature of the Cucurbitales common tetraploidization and the Cucurbita-specific tetraploidization. Moreover, we constructed the ancestral Cucurbitales karyotype comprising 17 proto-chromosomes, confirming that the most recent common ancestor of Cucurbitaceae contained 15 proto-chromosomes and rejecting the previous hypothesis for an ancestral Cucurbitaceae karyotype with 12 proto-chromosomes. In addition, we found that the polyploidization and tandem duplication events promoted the expansion of gene families involved in the cucurbitacin biosynthesis pathway; however, gene loss and chromosomal rearrangements likely limited the expansion of these gene families.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Min Yuan
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yishan Feng
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yan Zhang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Shoutong Bao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yanan Hao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Yue Ding
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Xintong Gao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Zijian Yu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Qiang Xu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Junxin Zhao
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Qianwen Zhu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Ping Wang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Chunyang Wu
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | - Jianyu Wang
- Department of Bioinformatics, School of Life Sciences, Norch China University of Science and Technology, Tangshan 063000, China
| | | | | | | |
Collapse
|
36
|
Molecular Characterization of an Isoflavone 2'-Hydroxylase Gene Revealed Positive Insights into Flavonoid Accumulation and Abiotic Stress Tolerance in Safflower. Molecules 2022; 27:molecules27228001. [PMID: 36432102 PMCID: PMC9697648 DOI: 10.3390/molecules27228001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Flavonoids with significant therapeutic properties play an essential role in plant growth, development, and adaptation to various environments. The biosynthetic pathway of flavonoids has long been studied in plants; however, its regulatory mechanism in safflower largely remains unclear. Here, we carried out comprehensive genome-wide identification and functional characterization of a putative cytochrome P45081E8 gene encoding an isoflavone 2'-hydroxylase from safflower. A total of 15 CtCYP81E genes were identified from the safflower genome. Phylogenetic classification and conserved topology of CtCYP81E gene structures, protein motifs, and cis-elements elucidated crucial insights into plant growth, development, and stress responses. The diverse expression pattern of CtCYP81E genes in four different flowering stages suggested important clues into the regulation of secondary metabolites. Similarly, the variable expression of CtCYP81E8 during multiple flowering stages further highlighted a strong relationship with metabolite accumulation. Furthermore, the orchestrated link between transcriptional regulation of CtCYP81E8 and flavonoid accumulation was further validated in the yellow- and red-type safflower. The spatiotemporal expression of CtCYP81E8 under methyl jasmonate, polyethylene glycol, light, and dark conditions further highlighted its likely significance in abiotic stress adaption. Moreover, the over-expressed transgenic Arabidopsis lines showed enhanced transcript abundance in OE-13 line with approximately eight-fold increased expression. The upregulation of AtCHS, AtF3'H, and AtDFR genes and the detection of several types of flavonoids in the OE-13 transgenic line also provides crucial insights into the potential role of CtCYP81E8 during flavonoid accumulation. Together, our findings shed light on the fundamental role of CtCYP81E8 encoding a putative isoflavone 2'-hydroxylase via constitutive expression during flavonoid biosynthesis.
Collapse
|
37
|
Singh G, Sharma S, Rawat S, Sharma RK. Plant Specialised Glycosides (PSGs): their biosynthetic enzymatic machinery, physiological functions and commercial potential. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:1009-1028. [PMID: 36038144 DOI: 10.1071/fp21294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Plants, the primary producers of our planet, have evolved from simple aquatic life to very complex terrestrial habitat. This habitat transition coincides with evolution of enormous chemical diversity, collectively termed as 'Plant Specialised Metabolisms (PSMs)', to cope the environmental challenges. Plant glycosylation is an important process of metabolic diversification of PSMs to govern their in planta stability, solubility and inter/intra-cellular transport. Although, individual category of PSMs (terpenoids, phenylpropanoids, flavonoids, saponins, alkaloids, phytohormones, glucosinolates and cyanogenic glycosides) have been well studied; nevertheless, deeper insights of physiological functioning and genomic aspects of plant glycosylation/deglycosylation processes including enzymatic machinery (CYPs, GTs, and GHs) and regulatory elements are still elusive. Therefore, this review discussed the paradigm shift on genomic background of enzymatic machinery, transporters and regulatory mechanism of 'Plant Specialised Glycosides (PSGs)'. Current efforts also update the fundamental understanding about physiological, evolutionary and adaptive role of glycosylation/deglycosylation processes during the metabolic diversification of PSGs. Additionally, futuristic considerations and recommendations for employing integrated next-generation multi-omics (genomics, transcriptomics, proteomics and metabolomics), including gene/genome editing (CRISPR-Cas) approaches are also proposed to explore commercial potential of PSGs.
Collapse
Affiliation(s)
- Gopal Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India; and Present address: Department of Plant Functional Metabolomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Shikha Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Sandeep Rawat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Present address: G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Sikkim Regional Centre, Pangthang, Gangtok 737101, Sikkim, India
| | - Ram Kumar Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; and Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
38
|
Geng X, Tang R, Zhang A, Du Z, Yang L, Xu Y, Zhong Y, Yang R, Chen W, Pu C. Mining, expression, and phylogenetic analysis of volatile terpenoid biosynthesis-related genes in different tissues of ten Elsholtzia species based on transcriptomic analysis. PHYTOCHEMISTRY 2022; 203:113419. [PMID: 36055426 DOI: 10.1016/j.phytochem.2022.113419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
We sequenced the leaf and inflorescence transcriptomes of 10 Elsholtzia species to mine genes related to the volatile terpenoid metabolic pathway. A total of 184.68 GB data and 1,231,162,678 clean reads were obtained from 20 Elsholtzia samples, and 333,848 unigenes with an average length of at least 1440 bp were obtained by Trinity assembly. KEGG pathway analysis showed that there were three pathways related to volatile terpene metabolism: terpenoid backbone biosynthesis (No. ko00900), monoterpenoid biosynthesis (No. ko00902), and sesquiterpenoid and triterpenoid biosynthesis (No. ko00909), with 437, 125, and 121 related unigenes, respectively. The essential oil content and composition in 20 Elsholtzia samples were determined by gas chromatography-mass spectrometry. The results showed that there were obvious interspecific differences among the 10 Elsholtzia species, but there were no significant differences between the different tissues among species. The expression levels of seven candidate genes involved in volatile terpenoid biosynthesis in Elsholtzia were further analyzed by quantitative real-time PCR. The results showed that HMGS had the highest expression among all genes, followed by GGPS4. In addition, there was not a significant correlation between the seven genes and the components with high essential oil contents. Combined with the essential oil components detected in this study, the possible biosynthetic pathway of the characteristic components in Elsholtzia plants was speculated to be a metabolic pathway with geraniol as the starting point and elsholtzione as the end product. Phylogenetic analysis was conducted using the nucleotide sequences of the geranyl diphosphate synthase candidate genes, and the results showed that genes related to the volatile terpenoid biosynthetic pathway may be more suitable gene fragments for resolving the Elsholtzia phylogeny.
Collapse
Affiliation(s)
- Xiuwen Geng
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Renhua Tang
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Aili Zhang
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Zhizhi Du
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lipan Yang
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Yuqi Xu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Yiling Zhong
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Run Yang
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Wenyun Chen
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Chunxia Pu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
| |
Collapse
|
39
|
Szenteczki MA, Godschalx AL, Gauthier J, Gibernau M, Rasmann S, Alvarez N. Transcriptomic analysis of deceptively pollinated Arum maculatum (Araceae) reveals association between terpene synthase expression in floral trap chamber and species-specific pollinator attraction. G3 (BETHESDA, MD.) 2022; 12:jkac175. [PMID: 35861391 PMCID: PMC9434142 DOI: 10.1093/g3journal/jkac175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Deceptive pollination often involves volatile organic compound emissions that mislead insects into performing nonrewarding pollination. Among deceptively pollinated plants, Arum maculatum is particularly well-known for its potent dung-like volatile organic compound emissions and specialized floral chamber, which traps pollinators-mainly Psychoda phalaenoides and Psychoda grisescens-overnight. However, little is known about the genes underlying the production of many Arum maculatum volatile organic compounds, and their influence on variation in pollinator attraction rates. Therefore, we performed de novo transcriptome sequencing of Arum maculatum appendix and male floret tissue collected during anthesis and postanthesis, from 10 natural populations across Europe. These RNA-seq data were paired with gas chromatography-mass spectrometry analyses of floral scent composition and pollinator data collected from the same inflorescences. Differential expression analyses revealed candidate transcripts in appendix tissue linked to malodourous volatile organic compounds including indole, p-cresol, and 2-heptanone. In addition, we found that terpene synthase expression in male floret tissue during anthesis significantly covaried with sex- and species-specific attraction of Psychoda phalaenoides and Psychoda grisescens. Taken together, our results provide the first insights into molecular mechanisms underlying pollinator attraction patterns in Arum maculatum and highlight floral chamber sesquiterpene (e.g. bicyclogermacrene) synthases as interesting candidate genes for further study.
Collapse
Affiliation(s)
- Mark A Szenteczki
- Corresponding author: Université de Neuchâtel, Institut de Biologie, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland. E-mail
| | | | | | | | | | | |
Collapse
|
40
|
Zhou GL, Li Y, Pei F, Gong T, Chen TJ, Chen JJ, Yang JL, Li QH, Yu SS, Zhu P. Chromosome-scale genome assembly of Rhododendron molle provides insights into its evolution and terpenoid biosynthesis. BMC PLANT BIOLOGY 2022; 22:342. [PMID: 35836128 PMCID: PMC9284817 DOI: 10.1186/s12870-022-03720-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/28/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND Rhododendron molle (Ericaceae) is a traditional Chinese medicine, which has been used to treat rheumatism and relieve pain since ancient times. The characteristic grayanoids of this plant have been demonstrated to be the chemical basis for the analgesic activity. Moreover, unlike morphine, these diterpenoids are non-addictive. Grayanoids mainly distribute in the leaves, flowers, roots, and fruits of R. molle, with low content. Currently the research on the biosynthesis of grayanoids is hindered, partially due to lack of the genomic information. RESULTS In the present study, a total of 744 Mb sequences were generated and assembled into 13 chromosomes. An ancient whole-genome duplication event (Ad-β) was discovered that occurred around 70 million years ago. Tandem and segmental gene duplications led to specific gene expansions in the terpene synthase and cytochrome P450 (CYP450) gene families. Two diterpene synthases were demonstrated to be responsible for the biosynthesis of 16α-hydroxy-ent-kaurane, the key precursor for grayanoids. Phylogenetic analysis revealed a species-specific bloom of the CYP71AU subfamily, which may involve the candidate CYP450s responsible for the biosynthesis of grayanoids. Additionally, three putative terpene biosynthetic gene clusters were found. CONCLUSIONS We reported the first genome assembly of R. molle and investigated the molecular basis underpinning terpenoids biosynthesis. Our work provides a foundation for elucidating the complete biosynthetic pathway of grayanoids and studying the terpenoids diversity in R. molle.
Collapse
Affiliation(s)
- Guo-Lin Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Fei Pei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Tian-Jiao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Jing-Jing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Jin-Ling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Qi-Han Li
- Institute of medical biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Street, Kunming, 650118, Yunnan Province, China.
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
41
|
Sørensen M, Andersen-Ranberg J, Hankamer B, Møller BL. Circular biomanufacturing through harvesting solar energy and CO 2. TRENDS IN PLANT SCIENCE 2022; 27:655-673. [PMID: 35396170 DOI: 10.1016/j.tplants.2022.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Using synthetic biology, it is now time to expand the biosynthetic repertoire of plants and microalgae by utilizing the chloroplast to augment the production of desired high-value compounds and of oil-, carbohydrate-, or protein-enriched biomass based on direct harvesting of solar energy and the consumption of CO2. Multistream product lines based on separate commercialization of the isolated high-value compounds and of the improved bulk products increase the economic potential of the light-driven production system and accelerate commercial scale up. Here we outline the scientific basis for the establishment of such green circular biomanufacturing systems and highlight recent results that make this a realistic option based on cross-disciplinary basic and applied research to advance long-term solutions.
Collapse
Affiliation(s)
- Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johan Andersen-Ranberg
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
42
|
Yang L, Gu Y, Zhou J, Yuan P, Jiang N, Wu Z, Tan X. Whole-Genome Identification and Analysis of Multiple Gene Families Reveal Candidate Genes for Theasaponin Biosynthesis in Camellia oleifera. Int J Mol Sci 2022; 23:ijms23126393. [PMID: 35742835 PMCID: PMC9223445 DOI: 10.3390/ijms23126393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 01/27/2023] Open
Abstract
Camellia oleifera is an economically important oilseed tree. Seed meals of C. oleifera have a long history of use as biocontrol agents in shrimp farming and as cleaning agents in peoples’ daily lives due to the presence of theasaponins, the triterpene saponins from the genus Camellia. To characterize the biosynthetic pathway of theasaponins in C. oleifera, members of gene families involved in triterpenoid biosynthetic pathways were identified and subjected to phylogenetic analysis with corresponding members in Arabidopsis thaliana, Camellia sinensis, Actinidia chinensis, Panax ginseng, and Medicago truncatula. In total, 143 triterpenoid backbone biosynthetic genes, 1169 CYP450s, and 1019 UGTs were identified in C. oleifera. The expression profiles of triterpenoid backbone biosynthetic genes were analyzed in different tissue and seed developmental stages of C. oleifera. The results suggested that MVA is the main pathway for triterpenoid backbone biosynthesis. Moreover, the candidate genes for theasaponin biosynthesis were identified by WGCNA and qRT-PCR analysis; these included 11 CYP450s, 14 UGTs, and eight transcription factors. Our results provide valuable information for further research investigating the biosynthetic and regulatory network of theasaponins.
Collapse
Affiliation(s)
- Liying Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Yiyang Gu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
- Correspondence: (J.Z.); (X.T.)
| | - Ping Yuan
- Hunan Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Nan Jiang
- School of Packing and Material Engineering, Hunan University of Technology, Zhuzhou 412000, China;
| | - Zelong Wu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
- Correspondence: (J.Z.); (X.T.)
| |
Collapse
|
43
|
Brazier-Hicks M, Franco-Ortega S, Watson P, Rougemont B, Cohn J, Dale R, Hawkes TR, Goldberg-Cavalleri A, Onkokesung N, Edwards R. Characterization of Cytochrome P450s with Key Roles in Determining Herbicide Selectivity in Maize. ACS OMEGA 2022; 7:17416-17431. [PMID: 35647462 PMCID: PMC9134415 DOI: 10.1021/acsomega.2c01705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 06/08/2023]
Abstract
Safeners such as metcamifen and benoxacor are widely used in maize to enhance the selectivity of herbicides through the induction of key detoxifying enzymes, notably cytochrome P450 monooxygenases (CYPs). Using a combination of transcriptomics, proteomics, and functional assays, the safener-inducible CYPs responsible for herbicide metabolism in this globally important crop have been identified. A total of 18 CYPs belonging to clans 71, 72, 74, and 86 were safener-induced, with the respective enzymes expressed in yeast and screened for activity toward thiadiazine (bentazon), sulfonylurea (nicosulfuron), and triketone (mesotrione and tembotrione) chemistries. Herbicide metabolism was largely restricted to family CYP81A members from clan 71, notably CYP81A9, CYP81A16, and CYP81A2. Quantitative transcriptomics and proteomics showed that CYP81A9/CYP81A16 were dominant enzymes in safener-treated field maize, whereas only CYP81A9 was determined in sweet corn. The relationship between CYP81A sequence and activities were investigated by splicing CYP81A2 and CP81A9 together as a series of recombinant chimeras. CYP81A9 showed wide ranging activities toward the three herbicide chemistries, while CYP81A2 uniquely hydroxylated bentazon in multiple positions. The plasticity in substrate specificity of CYP81A9 toward multiple herbicides resided in the second quartile of its N terminal half. Further phylogenetic analysis of CYP81A9 showed that the maize enzyme was related to other CYP81As linked to agrochemical metabolism in cereals and wild grasses, suggesting this clan 71 CYP has a unique function in determining herbicide selectivity in arable crops.
Collapse
Affiliation(s)
- Melissa Brazier-Hicks
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
- Syngenta,
Jealott’s Hill, Bracknell, Berkshire RG42 6EY, U.K.
| | - Sara Franco-Ortega
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Philip Watson
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | | | - Jonathan Cohn
- Syngenta
Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, Durham, North Carolina 27709-2257, United States
| | - Richard Dale
- Syngenta,
Jealott’s Hill, Bracknell, Berkshire RG42 6EY, U.K.
| | - Tim R. Hawkes
- Syngenta,
Jealott’s Hill, Bracknell, Berkshire RG42 6EY, U.K.
| | - Alina Goldberg-Cavalleri
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Nawaporn Onkokesung
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| | - Robert Edwards
- Agriculture,
School of Natural and Environmental Sciences, Newcastle University, Newcastle
upon Tyne NE1 7RU, U.K.
| |
Collapse
|
44
|
Cloning and Functional Characterization of Two Germacrene A Oxidases Isolated from Xanthium sibiricum. Molecules 2022; 27:molecules27103322. [PMID: 35630799 PMCID: PMC9145264 DOI: 10.3390/molecules27103322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023] Open
Abstract
Sesquiterpene lactones (STLs) from the cocklebur Xanthium sibiricum exhibit significant anti-tumor activity. Although germacrene A oxidase (GAO), which catalyzes the production of Germacrene A acid (GAA) from germacrene A, an important precursor of germacrene-type STLs, has been reported, the remaining GAOs corresponding to various STLs’ biosynthesis pathways remain unidentified. In this study, 68,199 unigenes were studied in a de novo transcriptome assembly of X. sibiricum fruits. By comparison with previously published GAO sequences, two candidate X. sibiricum GAO gene sequences, XsGAO1 (1467 bp) and XsGAO2 (1527 bp), were identified, cloned, and predicted to encode 488 and 508 amino acids, respectively. Their protein structure, motifs, sequence similarity, and phylogenetic position were similar to those of other GAO proteins. They were most strongly expressed in fruits, according to a quantitative real-time polymerase chain reaction (qRT-PCR), and both XsGAO proteins were localized in the mitochondria of tobacco leaf epidermal cells. The two XsGAO genes were cloned into the expression vector for eukaryotic expression in Saccharomyces cerevisiae, and the enzyme reaction products were detected by gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) methods. The results indicated that both XsGAO1 and XsGAO2 catalyzed the two-step conversion of germacrene A (GA) to GAA, meaning they are unlike classical GAO enzymes, which catalyze a three-step conversion of GA to GAA. This cloning and functional study of two GAO genes from X. sibiricum provides a useful basis for further elucidation of the STL biosynthesis pathway in X. sibiricum.
Collapse
|
45
|
The Metabolism of a Novel Cytochrome P450 (CYP77B34) in Tribenuron-Methyl-Resistant Descurainia sophia L. to Herbicides with Different Mode of Actions. Int J Mol Sci 2022; 23:ijms23105812. [PMID: 35628621 PMCID: PMC9147942 DOI: 10.3390/ijms23105812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Descurainia sophia L. (flixweeds) is a noxious broad-leaf weed infesting winter wheat fields in China that has evolved high resistance to tribenuron-methyl. In this work, a brand new gene CYP77B34 was cloned from tribenuron-methyl-resistant (TR) D. sophia and transferred into Arabidopsis thaliana, and the sensitivities of Arabidopsis with or without the CYP77B34 transgene to herbicides with a different mode of actions (MoAs) were tested. Compared to Arabidopsis expressing pCAMBIA1302-GFP (empty plasmid), Arabidopsis transferring pCAMBIA1302-CYP77B34 (recombinant plasmid) became resistant to acetolactate synthase (ALS)-inhibiting herbicide tribenuron-methyl, protoporphyrinogen oxidase (PPO)-inhibiting herbicides carfentrazone-ethyl and oxyfluorfen. Cytochrome P450 inhibitor malathion could reverse the resistance to tribenuron-methyl, carfentrazone-ethyl and oxyfluorfen in transgenic Arabidopsis plants. In addition, the metabolic rates of tribenuron-methyl in Arabidopsis expressing CYP77B34 were significantly higher than those in Arabidopsis expressing pCAMBIA1302-GFP. Other than that, the transgenic plants showed some tolerance to very-long-chain fatty acid synthesis (VLCFAs)-inhibiting herbicide pretilachlor and photosystem (PS) II-inhibiting herbicide bromoxynil. Subcellular localization revealed that the CYP77B34 protein was located in the endoplasmic reticulum (ER). These results clearly indicated that CYP77B34 mediated D. sophia resistance to tribenuron-methyl and may have been involved in D. sophia cross-resistance to carfentrazone-ethyl, oxyfluorfen, pretilachlor and bromoxynil.
Collapse
|
46
|
Zhang F, Fang H, Wang M, He F, Tao H, Wang R, Long J, Wang J, Wang GL, Ning Y. APIP5 functions as a transcription factor and an RNA-binding protein to modulate cell death and immunity in rice. Nucleic Acids Res 2022; 50:5064-5079. [PMID: 35524572 PMCID: PMC9122607 DOI: 10.1093/nar/gkac316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 01/13/2023] Open
Abstract
Many transcription factors (TFs) in animals bind to both DNA and mRNA, regulating transcription and mRNA turnover. However, whether plant TFs function at both the transcriptional and post-transcriptional levels remains unknown. The rice (Oryza sativa) bZIP TF AVRPIZ-T-INTERACTING PROTEIN 5 (APIP5) negatively regulates programmed cell death and blast resistance and is targeted by the effector AvrPiz-t of the blast fungus Magnaporthe oryzae. We demonstrate that the nuclear localization signal of APIP5 is essential for APIP5-mediated suppression of cell death and blast resistance. APIP5 directly targets two genes that positively regulate blast resistance: the cell wall-associated kinase gene OsWAK5 and the cytochrome P450 gene CYP72A1. APIP5 inhibits OsWAK5 expression and thus limits lignin accumulation; moreover, APIP5 inhibits CYP72A1 expression and thus limits reactive oxygen species production and defense compounds accumulation. Remarkably, APIP5 acts as an RNA-binding protein to regulate mRNA turnover of the cell death- and defense-related genes OsLSD1 and OsRac1. Therefore, APIP5 plays dual roles, acting as TF to regulate gene expression in the nucleus and as an RNA-binding protein to regulate mRNA turnover in the cytoplasm, a previously unidentified regulatory mechanism of plant TFs at the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Min Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Tao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiawei Long
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiyang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
47
|
Zhao N, Yan Y, Liu W, Wang J. Cytochrome P450 CYP709C56 metabolizing mesosulfuron-methyl confers herbicide resistance in Alopecurus aequalis. Cell Mol Life Sci 2022; 79:205. [PMID: 35334005 PMCID: PMC11072224 DOI: 10.1007/s00018-022-04171-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Multiple herbicide resistance in diverse weed species endowed by enhanced herbicide detoxification or degradation is rapidly growing into a great threat to herbicide sustainability and global food safety. Although metabolic resistance is frequently documented in the economically damaging arable weed species shortawn foxtail (Alopecurus aequalis Sobol.), relevant molecular knowledge has been lacking. Previously, we identified a field population of A. aequalis (R) that had evolved metabolic resistance to the commonly used acetolactate synthase (ALS)-inhibiting herbicide mesosulfuron-methyl. RNA sequencing was used to discover potential herbicide metabolism-related genes, and four cytochrome P450s (CYP709C56, CYP71R18, CYP94C117, and CYP94E14) were identified with higher expressions in the R vs. susceptible (S) plants. Here the full-length P450 complementary DNA transcripts were each cloned with identical sequences between the S and R plants. Transgenic Arabidopsis overexpressing CYP709C56 became resistant to the sulfonylurea herbicide mesosulfuron-methyl and the triazolo-pyrimidine herbicide pyroxsulam. This resistance profile generally but does not completely in accordance with what is evident in the R A. aequalis. Transgenic lines exhibited enhanced capacity for detoxifying mesosulfuron-methyl into O-demethylated metabolite, which is in line with the detection of O-demethylated herbicide metabolite in vitro in transformed yeast. Structural modeling predicted that mesosulfuron-methyl binds to CYP709C56 involving amino acid residues Thr-328, Thr-500, Asn-129, Gln-392, Phe-238, and Phe-242 for achieving O-demethylation. Constitutive expression of CYP709C56 was highly correlated with the metabolic mesosulfuron-methyl resistance in A. aequalis. These results indicate that CYP709C56 degrades mesosulfuron-methyl and its up-regulated expression in A. aequalis confers resistance to mesosulfuron-methyl.
Collapse
Affiliation(s)
- Ning Zhao
- Anhui Province Key Laboratory of Integrated Pest Management On Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanyan Yan
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Weitang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jinxin Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
48
|
Günther J, Erthmann PØ, Khakimov B, Bak S. Reciprocal mutations of two multifunctional β-amyrin synthases from Barbarea vulgaris shift α/β-amyrin ratios. PLANT PHYSIOLOGY 2022; 188:1483-1495. [PMID: 34865155 PMCID: PMC8896598 DOI: 10.1093/plphys/kiab545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/25/2021] [Indexed: 05/09/2023]
Abstract
In the wild cruciferous wintercress (Barbarea vulgaris), β-amyrin-derived saponins are involved in resistance against insect herbivores like the major agricultural pest diamondback moth (Plutella xylostella). Enzymes belonging to the 2,3-oxidosqualene cyclase family have been identified and characterized in B. vulgaris G-type and P-type plants that differ in their natural habitat, insect resistance and saponin content. Both G-type and P-type plants possess highly similar 2,3-oxidosqualene cyclase enzymes that mainly produce β-amyrin (Barbarea vulgaris Lupeol synthase 5 G-Type; BvLUP5-G) or α-amyrin (Barbarea vulgaris Lupeol synthase 5 P-Type; BvLUP5-P), respectively. Despite the difference in product formation, the two BvLUP5 enzymes are 98% identical at the amino acid level. This provides a unique opportunity to investigate determinants of product formation, using the B. vulgaris 2,3-oxidosqualene cyclase enzymes as a model for studying amino acid residues that determine differences in product formation. In this study, we identified two amino acid residues at position 121 and 735 that are responsible for the dominant changes in generated product ratios of β-amyrin and α-amyrin in both BvLUP5 enzymes. These amino acid residues have not previously been highlighted as directly involved in 2,3-oxidosqualene cyclase product specificity. Our results highlight the functional diversity and promiscuity of 2,3-oxidosqualene cyclase enzymes. These enzymes serve as important mediators of metabolic plasticity throughout plant evolution.
Collapse
Affiliation(s)
- Jan Günther
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
| | - Pernille Østerbye Erthmann
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
| | - Bekzod Khakimov
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
- Department of Food Science, University of Copenhagen, Denmark
| | - Søren Bak
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Denmark
- Author for communication:
| |
Collapse
|
49
|
Fessner ND, Weber H, Glieder A. Regiospecific 7-hydroxylation of ten-carbon monoterpenes by detoxifying CYP5035S7 monooxygenase of the white-rot fungus Polyporus arcularius. Biochem Biophys Res Commun 2022; 595:35-40. [DOI: 10.1016/j.bbrc.2022.01.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
|
50
|
A flavin-dependent monooxygenase produces nitrogenous tomato aroma volatiles using cysteine as a nitrogen source. Proc Natl Acad Sci U S A 2022; 119:2118676119. [PMID: 35131946 PMCID: PMC8851548 DOI: 10.1073/pnas.2118676119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Aroma is an important factor in consumer perception and acceptance of fresh tomatoes and involves a cocktail of several dozen compounds. Tomato fruits produce uncommon nitrogen-containing volatiles derived mainly from the amino acids leucine and phenylalanine. These volatiles have strong positive correlations with consumer liking. We show that an enzyme active in ripening tomatoes is responsible for the production of all nitrogenous volatiles in tomato fruit, at the expense of substrates derived from cysteine and volatile aldehydes. This discovery defines a cysteine-dependent route to nitrogenous volatiles in plants, prompting a reconsideration of the impact of sulfur metabolism on tomato flavor and quality. Tomato (Solanum lycopersicum) produces a wide range of volatile chemicals during fruit ripening, generating a distinct aroma and contributing to the overall flavor. Among these volatiles are several aromatic and aliphatic nitrogen-containing compounds for which the biosynthetic pathways are not known. While nitrogenous volatiles are abundant in tomato fruit, their content in fruits of the closely related species of the tomato clade is highly variable. For example, the green-fruited species Solanum pennellii are nearly devoid, while the red-fruited species S. lycopersicum and Solanum pimpinellifolium accumulate high amounts. Using an introgression population derived from S. pennellii, we identified a locus essential for the production of all the detectable nitrogenous volatiles in tomato fruit. Silencing of the underlying gene (SlTNH1;Solyc12g013690) in transgenic plants abolished production of aliphatic and aromatic nitrogenous volatiles in ripe fruit, and metabolomic analysis of these fruit revealed the accumulation of 2-isobutyl-tetrahydrothiazolidine-4-carboxylic acid, a known conjugate of cysteine and 3-methylbutanal. Biosynthetic incorporation of stable isotope-labeled precursors into 2-isobutylthiazole and 2-phenylacetonitrile confirmed that cysteine provides the nitrogen atom for all nitrogenous volatiles in tomato fruit. Nicotiana benthamiana plants expressing SlTNH1 readily transformed synthetic 2-substituted tetrahydrothiazolidine-4-carboxylic acid substrates into a mixture of the corresponding 2-substituted oxime, nitro, and nitrile volatiles. Distinct from other known flavin-dependent monooxygenase enzymes in plants, this tetrahydrothiazolidine-4-carboxylic acid N-hydroxylase catalyzes sequential hydroxylations. Elucidation of this pathway is a major step forward in understanding and ultimately improving tomato flavor quality.
Collapse
|