1
|
Zhang X, Yang W, Tahir MM, Chen X, Saudreau M, Zhang D, Costes E. Contributions of leaf distribution and leaf functions to photosynthesis and water-use efficiency from leaf to canopy in apple: A comparison of interstocks and cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1117051. [PMID: 37123856 PMCID: PMC10146243 DOI: 10.3389/fpls.2023.1117051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Grafting has been widely used in horticulture to induce dwarfing and avoid stress-derived limitations on plant growth and yield by affecting plant architecture and leaf functions. However, the respective effects on plant photosynthesis and water use efficiency (WUE) of leaf distribution and functions that depend on both rootstock and scion have not been fully elucidated. This study aimed to (i) clarify the scion × interstock impacts on the variability of leaf photosynthetic traits and WUE, and (ii) decipher the respective effects of leaf distribution and functions on canopy photosynthesis and WUE (WUEc). Leaf gas exchange over light gradients and responses to light, CO2, temperature, and vapor pressure deficit were measured in two apple cultivars, 'Liquan Fuji' ('Fuji') and 'Regal Gala' ('Gala'), grafted onto rootstocks combined with interstocks: a vigorous (VV, 'Qinguan'), or a dwarf one (VD, M26). The 3D architecture-based RATP model was parameterized to estimate the canopy photosynthesis rate (Ac ), transpiration rate (E c), and WUEc. Then, virtual scenarios were used to compare the relative contributions of cultivar and interstock to canopy A c, E c, and WUE c. These scenarios changed the leaf distribution and functions of either cultivar or interstock. At the leaf scale, VD trees had significantly higher leaf nitrogen per area but a lower maximum carboxylation rate and dark respiration in both cultivars. In parallel with higher leaf stomatal conductance (gs ) and transpiration in VD 'Fuji' and similar gs in VD 'Gala', VD trees showed significantly lower leaf photosynthesis rate and WUE than VV trees. However, lower leaf photosynthetic capacities in VD trees were compensated at the canopy scale, with A c and WUE c for 'Fuji' significantly improved in VD trees under both sunny and cloudy conditions, and for 'Gala' significantly improved in VD trees under cloudy conditions compared with VV trees. Switching scenarios highlighted that 'Gala' leaf functions and distribution and VD leaf distributions enhanced A c and WUE c simultaneously, irrespective of weather conditions. Up-scaling leaf gas exchange to the canopy scale by utilizing 3D architecture-based modeling and reliable measurements of tree architecture and leaf functional traits provides insights to explore the influence of genetic materials and tree management practices.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- College of Agriculture, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| | - Weiwei Yang
- College of Agriculture, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- *Correspondence: Weiwei Yang,
| | | | - Xilong Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Marc Saudreau
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Evelyne Costes
- UMR AGAP Institute, University of Montpellier, INRAE, Institut Agro, CIRAD, Equipe ‘Architecture et Floraison des Especes Fruiteres’, Montpellier, France
| |
Collapse
|
2
|
Novick KA, Ficklin DL, Baldocchi D, Davis KJ, Ghezzehei TA, Konings AG, MacBean N, Raoult N, Scott RL, Shi Y, Sulman BN, Wood JD. Confronting the water potential information gap. NATURE GEOSCIENCE 2022; 15:158-164. [PMID: 35300262 PMCID: PMC8923290 DOI: 10.1038/s41561-022-00909-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Water potential directly controls the function of leaves, roots, and microbes, and gradients in water potential drive water flows throughout the soil-plant-atmosphere continuum. Notwithstanding its clear relevance for many ecosystem processes, soil water potential is rarely measured in-situ, and plant water potential observations are generally discrete, sparse, and not yet aggregated into accessible databases. These gaps limit our conceptual understanding of biophysical responses to moisture stress and inject large uncertainty into hydrologic and land surface models. Here, we outline the conceptual and predictive gains that could be made with more continuous and discoverable observations of water potential in soils and plants. We discuss improvements to sensor technologies that facilitate in situ characterization of water potential, as well as strategies for building new networks that aggregate water potential data across sites. We end by highlighting novel opportunities for linking more representative site-level observations of water potential to remotely-sensed proxies. Together, these considerations offer a roadmap for clearer links between ecohydrological processes and the water potential gradients that have the 'potential' to substantially reduce conceptual and modeling uncertainties.
Collapse
Affiliation(s)
- Kimberly A. Novick
- O’Neill School of Public and Environmental Affairs, Indiana University – Bloomington. Bloomington, IN USA
| | - Darren L. Ficklin
- Department of Geography, Indiana University – Bloomington. Bloomington, IN USA
| | - Dennis Baldocchi
- Department of Environmental Science, Policy, and Management. University of California, Berkeley. Berkeley, CA, USA
| | - Kenneth J. Davis
- Department of Meteorology and Atmospheric Science and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA, USA
| | - Teamrat A. Ghezzehei
- Life and Environmental Sciences Department, University of California – Merced. Merced, CA, USA
| | | | - Natasha MacBean
- Department of Geography, Indiana University – Bloomington. Bloomington, IN USA
| | - Nina Raoult
- Laboratoire des Sciences du Climat et de l’Environnement. Paris, France
| | - Russell L. Scott
- Southwest Watershed Research Center, USDA – Agricultural Research Service. Tucson, AZ, USA
| | - Yuning Shi
- Department of Plant Science. The Pennsylvania State University, University Park, PA, USA
| | - Benjamin N. Sulman
- Environmental Sciences Division, Oak Ridge National Laboratory. Oak Ridge, TN, USA
| | - Jeffrey D. Wood
- School of Natural Resources, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Barradas VL, Esperon-Rodriguez M. Ecophysiological Vulnerability to Climate Change in Mexico City’s Urban Forest. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.732250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Urban forests play an important role in regulating urban climate while providing multiple environmental services. These forests, however, are threatened by changes in climate, as plants are exposed not only to global climate change but also to urban climate, having an impact on physiological functions. Here, we selected two physiological variables (stomatal conductance and leaf water potential) and four environmental variables (air temperature, photosynthetically active radiation, vapor pressure deficit, and water availability) to compare and evaluate the ecophysiological vulnerability to climate change of 15 dominant tree species from Mexico City’s urban forest. The stomatal conductance response was evaluated using the boundary-line analysis, which allowed us to compare the stomatal response to changes in the environment among species. Our results showed differential species responses to the environmental variables and identified Buddleja cordata and Populus deltoides as the least and most vulnerable species, respectively. Air temperatures above 33°C and vapor pressure deficit above 3.5 kPa limited the stomatal function of all species. Stomatal conductance was more sensitive to changes in leaf water potential, followed by vapor pressure deficit, indicating that water is a key factor for tree species performance in Mexico City’s urban forest. Our findings can help to optimize species selection considering future climate change by identifying vulnerable and resilient species.
Collapse
|
4
|
Galmarini S, Makar P, Clifton OE, Hogrefe C, Bash JO, Bellasio R, Bianconi R, Bieser J, Butler T, Ducker J, Flemming J, Hodzic A, Holmes CD, Kioutsioukis I, Kranenburg R, Lupascu A, Perez-Camanyo JL, Pleim J, Ryu YH, Jose RS, Schwede D, Silva S, Wolke R. Technical note: AQMEII4 Activity 1: evaluation of wet and dry deposition schemes as an integral part of regional-scale air quality models. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:1-15663. [PMID: 34824572 PMCID: PMC8609478 DOI: 10.5194/acp-21-15663-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present in this technical note the research protocol for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This research initiative is divided into two activities, collectively having three goals: (i) to define the current state of the science with respect to representations of wet and especially dry deposition in regional models, (ii) to quantify the extent to which different dry deposition parameterizations influence retrospective air pollutant concentration and flux predictions, and (iii) to identify, through the use of a common set of detailed diagnostics, sensitivity simulations, model evaluation, and reduction of input uncertainty, the specific causes for the current range of these predictions. Activity 1 is dedicated to the diagnostic evaluation of wet and dry deposition processes in regional air quality models (described in this paper), and Activity 2 to the evaluation of dry deposition point models against ozone flux measurements at multiple towers with multiyear observations (to be described in future submissions as part of the special issue on AQMEII4). The scope of this paper is to present the scientific protocols for Activity 1, as well as to summarize the technical information associated with the different dry deposition approaches used by the participating research groups of AQMEII4. In addition to describing all common aspects and data used for this multi-model evaluation activity, most importantly, we present the strategy devised to allow a common process-level comparison of dry deposition obtained from models using sometimes very different dry deposition schemes. The strategy is based on adding detailed diagnostics to the algorithms used in the dry deposition modules of existing regional air quality models, in particular archiving diagnostics specific to land use-land cover (LULC) and creating standardized LULC categories to facilitate cross-comparison of LULC-specific dry deposition parameters and processes, as well as archiving effective conductance and effective flux as means for comparing the relative influence of different pathways towards the net or total dry deposition. This new approach, along with an analysis of precipitation and wet deposition fields, will provide an unprecedented process-oriented comparison of deposition in regional air quality models. Examples of how specific dry deposition schemes used in participating models have been reduced to the common set of comparable diagnostics defined for AQMEII4 are also presented.
Collapse
Affiliation(s)
| | - Paul Makar
- Air Quality Modelling and Integration Section, Environment and Climate Change Canada, Toronto, Canada
| | - Olivia E. Clifton
- National Center for Atmospheric Research, Boulder, CO, USA
- NASA Goddard Institute for Space Studies, New York, NY, USA
| | - Christian Hogrefe
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jesse O. Bash
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | - Johannes Bieser
- Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Tim Butler
- Institute for Advanced Sustainability Studies, Potsdam, Germany
| | - Jason Ducker
- Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | | | - Alma Hodzic
- National Center for Atmospheric Research, Boulder, CO, USA
| | - Christopher D. Holmes
- Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | - Ioannis Kioutsioukis
- Laboratory of Atmospheric Physics, Department of Physics, University of Patras, Patras, Greece
| | - Richard Kranenburg
- Netherlands Organization for Applied Scientific Research (TNO), Utrecht, the Netherlands
| | - Aurelia Lupascu
- Institute for Advanced Sustainability Studies, Potsdam, Germany
| | | | - Jonathan Pleim
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Young-Hee Ryu
- Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | | | - Donna Schwede
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Sam Silva
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ralf Wolke
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
| |
Collapse
|
5
|
Wu Z, Zhang L, Walker JT, Makar PA, Perlinger JA, Wang X. Extension of a gaseous dry deposition algorithm to oxidized volatile organic compounds and hydrogen cyanide for application in chemistry transport models. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS 2021; 14:5093-5105. [PMID: 34721762 PMCID: PMC8549847 DOI: 10.5194/gmd-14-5093-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The dry deposition process refers to flux loss of an atmospheric pollutant due to uptake of the pollutant by the Earth's surfaces, including vegetation, underlying soil, and any other surface types. In chemistry transport models (CTMs), the dry deposition flux of a chemical species is typically calculated as the product of its surface layer concentration and its dry deposition velocity (V d); the latter is a variable that needs to be highly empirically parameterized due to too many meteorological, biological, and chemical factors affecting this process. The gaseous dry deposition scheme of Zhang et al. (2003) parameterizes V d for 31 inorganic and organic gaseous species. The present study extends the scheme of Zhang et al. (2003) to include an additional 12 oxidized volatile organic compounds (oVOCs) and hydrogen cyanide (HCN), while keeping the original model structure and formulas, to meet the demand of CTMs with increasing complexity. Model parameters for these additional chemical species are empirically chosen based on their physicochemical properties, namely the effective Henry's law constants and oxidizing capacities. Modeled V d values are compared against field flux measurements over a mixed forest in the southeastern US during June 2013. The model captures the basic features of the diel cycles of the observed V d. Modeled V d values are comparable to the measurements for most of the oVOCs at night. However, modeled V d values are mostly around 1 cm s-1 during daytime, which is much smaller than the observed daytime maxima of 2-5 cm s-1. Analysis of the individual resistance terms and uptake pathways suggests that flux divergence due to fast atmospheric chemical reactions near the canopy was likely the main cause of the large model-measurement discrepancies during daytime. The extended dry deposition scheme likely provides conservative V d values for many oVOCs. While higher V d values and bidirectional fluxes can be simulated by coupling key atmospheric chemical processes into the dry deposition scheme, we suggest that more experimental evidence of high oVOC V d values at additional sites is required to confirm the broader applicability of the high values studied here. The underlying processes leading to high measured oVOC V d values require further investigation.
Collapse
Affiliation(s)
- Zhiyong Wu
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
- ORISE Fellow at the US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27711, USA
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - John T. Walker
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27711, USA
| | - Paul A. Makar
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - Judith A. Perlinger
- Civil and Environmental Engineering Department, Michigan Technological University, Houghton, MI 49931, USA
| | - Xuemei Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
6
|
Cloud cooling effects of afforestation and reforestation at midlatitudes. Proc Natl Acad Sci U S A 2021; 118:2026241118. [PMID: 34373327 DOI: 10.1073/pnas.2026241118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Because of the large carbon sequestration potential, reforestation and afforestation (R&A) are among the most prominent natural climate solutions. However, while their effectiveness is well established for wet tropics, it is often argued that R&A are less advantageous or even detrimental at higher latitudes, where the reduction of forest albedo (the amount of reflected solar radiation by a surface) tends to nullify or even overcome the carbon benefits. Here, we carefully analyze the situation for R&A at midlatitudes, where the warming effects due to vegetation albedo are regarded to be almost balanced by the cooling effects from an increased carbon storage. Using both satellite data and atmospheric boundary-layer models, we show that by including cloud-albedo effects due to land-atmosphere interactions, the R&A cooling at midlatitudes becomes prevalent. This points to a much greater potential of R&A for wet temperate regions than previously considered.
Collapse
|
7
|
Suárez JC, Casanoves F, Bieng MAN, Melgarejo LM, Di Rienzo JA, Armas C. Prediction model for sap flow in cacao trees under different radiation intensities in the western Colombian Amazon. Sci Rep 2021; 11:10512. [PMID: 34006966 PMCID: PMC8131689 DOI: 10.1038/s41598-021-89876-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, we measured diurnal patterns of sap flow (Vs) in cacao trees growing in three types of agroforestry systems (AFs) that differ in the incident solar radiation they receive. We modeled the relationship of Vs with several microclimatic characteristics of the AFs using mixed linear models. We characterized microclimatic variables that may have an effect on diurnal patterns of sap flow: air relative humidity, air temperature, photosynthetically active radiation and vapor pressure deficit. Overall, our model predicted the differences between cacao Vs in the three different AFs, with cacao plants with dense Musaceae plantation and high mean diurnal incident radiation (HPAR) displaying the highest differences compared to the other agroforestry arrangements. The model was also able to predict situations such as nocturnal transpiration in HPAR and inverse nocturnal sap flows indicative of hydraulic redistribution in the other AFs receiving less incident radiation. Overall, the model we present here can be a useful and cost-effective tool for predicting transpiration and water use in cacao trees, as well as for managing cacao agroforestry systems in the Amazon rainforest.
Collapse
Affiliation(s)
- Juan Carlos Suárez
- Facultad de Ingeniería, Programa de Ingeniería Agroecológica, Universidad de la Amazonia, Florencia-Caquetá, Colombia. .,Facultad de Ciencias Agropecuarias, Maestría Sistemas Sostenibles de Producción, Universidad de la Amazonia, Florencia-Caquetá, Colombia. .,Centro de Investigaciónes Amazónicas CIMAZ Macagual, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Florencia, Caqueta ́, Colombia.
| | - Fernando Casanoves
- CATIE - Centro Agronómico Tropical de Investigación y Enseñanza , Turrialba, 30501, Costa Rica
| | - Marie Ange Ngo Bieng
- CATIE - Centro Agronómico Tropical de Investigación y Enseñanza , Turrialba, 30501, Costa Rica.,CIRAD, UR Forêts et Sociétés, 34398, Montpellier Cedex 5, France
| | - Luz Marina Melgarejo
- Departamento de Biología, Laboratorio de Fisiología y Bioquímica Vegetal, Universidad Nacional de Colombia - Sede Bogotá, Bogotá, Colombia
| | - Julio A Di Rienzo
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cristina Armas
- Estación Experimental de Zonas Áridas, Spanish National Research Council (CSIC), Carretera de Sacramento s/n, E-04120 La Cañada de San Urbano, Almería, Spain
| |
Collapse
|
8
|
Toriyama J, Hashimoto S, Osone Y, Yamashita N, Tsurita T, Shimizu T, Saitoh TM, Sawano S, Lehtonen A, Ishizuka S. Estimating spatial variation in the effects of climate change on the net primary production of Japanese cedar plantations based on modeled carbon dynamics. PLoS One 2021; 16:e0247165. [PMID: 33596265 PMCID: PMC7888599 DOI: 10.1371/journal.pone.0247165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/02/2021] [Indexed: 11/24/2022] Open
Abstract
Spatiotemporal prediction of the response of planted forests to a changing climate is increasingly important for the sustainable management of forest ecosystems. In this study, we present a methodology for estimating spatially varying productivity in a planted forest and changes in productivity with a changing climate in Japan, with a focus on Japanese cedar (Cryptomeria japonica D. Don) as a representative tree species of this region. The process-based model Biome-BGC was parameterized using a plant trait database for Japanese cedar and a Bayesian optimization scheme. To compare productivity under historical (1996–2000) and future (2096–2100) climatic conditions, the climate scenarios of two representative concentration pathways (i.e., RCP2.6 and RCP8.5) were used in five global climate models (GCMs) with approximately 1-km resolution. The seasonality of modeled fluxes, namely gross primary production, ecosystem respiration, net ecosystem exchange, and soil respiration, improved after two steps of parameterization. The estimated net primary production (NPP) of stands aged 36–40 years under the historical climatic conditions of the five GCMs was 0.77 ± 0.10 kgC m-2 year-1 (mean ± standard deviation), in accordance with the geographical distribution of forest NPP estimated in previous studies. Under the RCP2.6 and RCP8.5 scenarios, the mean NPP of the five GCMs increased by 0.04 ± 0.07 and 0.14 ± 0.11 kgC m-2 year-1, respectively. The increases in annual NPP were small in the southwestern region because of the decreases in summer NPP and the small increases in winter NPP under the RCP2.6 and RCP8.5 scenarios, respectively. Under the RCP2.6 scenario, Japanese cedar was at risk in the southwestern region, in accordance with previous studies, and monitoring and silvicultural practices should be modified accordingly.
Collapse
Affiliation(s)
- Jumpei Toriyama
- Kyushu Research Center, Forestry and Forest Products Research Institute (FFPRI), Kumamoto-city, Kumamoto, Japan
- * E-mail:
| | - Shoji Hashimoto
- Department of Forest Soils, FFPRI, Tsukuba, Ibaraki, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoko Osone
- Department of Forest Soils, FFPRI, Tsukuba, Ibaraki, Japan
| | | | | | - Takanori Shimizu
- Department of Disaster Prevention, Meteorology and Hydrology, FFPRI, Tsukuba, Ibaraki, Japan
| | - Taku M. Saitoh
- River Basin Research Center, Gifu University, Gifu-city, Gifu, Japan
| | - Shinji Sawano
- Hokkaido Research Center, FFPRI, Sapporo, Hokkaido, Japan
| | | | | |
Collapse
|
9
|
Andriyas T, Leksungnoen N, Tor-Ngern P. Comparison of water-use characteristics of tropical tree saplings with implications for forest restoration. Sci Rep 2021; 11:1745. [PMID: 33462324 PMCID: PMC7813824 DOI: 10.1038/s41598-021-81334-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/06/2021] [Indexed: 11/10/2022] Open
Abstract
Tropical forests are experiencing reduced productivity and will need restoration with suitable species. Knowledge of species-specific responses to changing environments during early stage can help identify the appropriate species for sustainable planting. Hence, we investigated the variability in whole-tree canopy conductance and transpiration (Gt and EL) in potted saplings of common urban species in Thailand, viz., Pterocarpus indicus, Lagerstroemia speciosa, and Swietenia macrophylla, across wet and dry seasons in 2017-2018. Using a Bayesian modeling framework, Gt and EL were estimated from sap flux density, informed by the soil, atmospheric and tree measurements. Subsequently, we evaluated their variations with changing vapor pressure deficit (VPD) and soil moisture across timescales and season. We found that Gt and EL were higher and highly variable in L. speciosa across seasons than S. macrophylla and P. indicus. Our results implied that water-use in these species was sensitive to seasonal VPD. L. speciosa may be suitable under future climate variability, given its higher Gt and EL across atmospheric and soil moisture conditions. With their lower Gt and EL, P. indicus and S. macrophylla may photosynthesize throughout the year, maintaining their stomatal opening even under high VPD. These findings benefit reforestation and reclamation programs of degraded lands.
Collapse
Affiliation(s)
- Tushar Andriyas
- Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nisa Leksungnoen
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, 10900, Thailand
| | - Pantana Tor-Ngern
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Environment, Health and Social Data Analytics Research Group, Chulalongkorn University, Bangkok, 10330, Thailand.
- Water Science and Technology for Sustainable Environment Research Group, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Miralles DG, Brutsaert W, Dolman AJ, Gash JH. On the Use of the Term "Evapotranspiration". WATER RESOURCES RESEARCH 2020; 56:e2020WR028055. [PMID: 33380753 PMCID: PMC7757266 DOI: 10.1029/2020wr028055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 06/06/2023]
Abstract
Evaporation is the phenomenon by which a substance is converted from its liquid into its vapor phase, independently of where it lies in nature. However, language is alive, and just like regular speech, scientific terminology changes. Frequently, those changes are grounded on a solid rationale, but sometimes these semantic transitions have a fragile foundation. That is the case with "evapotranspiration." A growing generation of scientists have been educated on using this terminology and are unaware of the historical controversy and physical inconsistency that surrounds it. Here, we present what may appear to some as an esoteric linguistic discussion, yet it was originally triggered by the increasing time some of us have devoted to justifying our word choice to reviewers, editors, and peers. By clarifying our arguments for using the term "evaporation," we also seek to prevent having to revive this discussion every time a new article is submitted, so that we can move directly on to more scientifically relevant matters.
Collapse
Affiliation(s)
- D. G. Miralles
- Hydro‐Climate Extremes Lab (H‐CEL)Ghent UniversityGhentBelgium
| | - W. Brutsaert
- School of Civil and Environmental EngineeringCornell UniversityIthacaNYUSA
| | - A. J. Dolman
- Department of Earth Sciences, Faculty of ScienceVU University AmsterdamAmsterdamThe Netherlands
- School of GeographyNanjing University of Science and TechnologyNanjingChina
| | - J. H. Gash
- Centro de Estudos Florestais, Instituto Superior de AgronomiaUniversidade de LisboaLisbonPortugal
| |
Collapse
|
11
|
Chen C, Li D, Li Y, Piao S, Wang X, Huang M, Gentine P, Nemani RR, Myneni RB. Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. SCIENCE ADVANCES 2020; 6:6/47/eabb1981. [PMID: 33219018 PMCID: PMC7679158 DOI: 10.1126/sciadv.abb1981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/07/2020] [Indexed: 05/19/2023]
Abstract
Satellite observations show widespread increasing trends of leaf area index (LAI), known as the Earth greening. However, the biophysical impacts of this greening on land surface temperature (LST) remain unclear. Here, we quantify the biophysical impacts of Earth greening on LST from 2000 to 2014 and disentangle the contributions of different factors using a physically based attribution model. We find that 93% of the global vegetated area shows negative sensitivity of LST to LAI increase at the annual scale, especially for semiarid woody vegetation. Further considering the LAI trends (P ≤ 0.1), 30% of the global vegetated area is cooled by these trends and 5% is warmed. Aerodynamic resistance is the dominant factor in controlling Earth greening's biophysical impacts: The increase in LAI produces a decrease in aerodynamic resistance, thereby favoring increased turbulent heat transfer between the land and the atmosphere, especially latent heat flux.
Collapse
Affiliation(s)
- Chi Chen
- Department of Earth and Environment, Boston University, Boston, MA 02215, USA.
| | - Dan Li
- Department of Earth and Environment, Boston University, Boston, MA 02215, USA.
| | - Yue Li
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xuhui Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Maoyi Huang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | | | - Ranga B Myneni
- Department of Earth and Environment, Boston University, Boston, MA 02215, USA
| |
Collapse
|
12
|
Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proc Natl Acad Sci U S A 2020; 117:8532-8538. [PMID: 32229563 DOI: 10.1073/pnas.1917521117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Understanding the driving mechanisms behind existing patterns of vegetation hydraulic traits and community trait diversity is critical for advancing predictions of the terrestrial carbon cycle because hydraulic traits affect both ecosystem and Earth system responses to changing water availability. Here, we leverage an extensive trait database and a long-term continental forest plot network to map changes in community trait distributions and quantify "trait velocities" (the rate of change in community-weighted traits) for different regions and different forest types across the United States from 2000 to the present. We show that diversity in hydraulic traits and photosynthetic characteristics is more related to local water availability than overall species diversity. Finally, we find evidence for coordinated shifts toward communities with more drought-tolerant traits driven by tree mortality, but the magnitude of responses differs depending on forest type. The hydraulic trait distribution maps provide a publicly available platform to fundamentally advance understanding of community trait change in response to climate change and predictive abilities of mechanistic vegetation models.
Collapse
|
13
|
Abstract
Temporal dynamics of urban warming have been extensively studied at the diurnal scale, but the impact of background climate on the observed seasonality of surface urban heat islands (SUHIs) remains largely unexplored. On seasonal time scales, the intensity of urban-rural surface temperature differences ([Formula: see text]) exhibits distinctive hysteretic cycles whose shape and looping direction vary across climatic zones. These observations highlight possible delays underlying the dynamics of the coupled urban-biosphere system. However, a general argument explaining the observed hysteretic patterns remains elusive. A coarse-grained model of SUHI coupled with a stochastic soil water balance is developed to demonstrate that the time lags between radiation forcing, air temperature, and rainfall generate a rate-dependent hysteresis, explaining the observed seasonal variations of [Formula: see text] If solar radiation is in phase with water availability, summer conditions cause strong SUHI intensities due to high rural evaporative cooling. Conversely, cities in seasonally dry regions where evapotranspiration is out of phase with radiation show a summertime oasis effect controlled by background climate and vegetation properties. These seasonal patterns of warming and cooling have significant implications for heat mitigation strategies as urban green spaces can reduce [Formula: see text] during summertime, while potentially negative effects of albedo management during winter are mitigated by the seasonality of solar radiation.
Collapse
|
14
|
Clifton OE, Fiore AM, Massman WJ, Baublitz CB, Coyle M, Emberson L, Fares S, Farmer DK, Gentine P, Gerosa G, Guenther AB, Helmig D, Lombardozzi DL, Munger JW, Patton EG, Pusede SE, Schwede DB, Silva SJ, Sörgel M, Steiner AL, Tai APK. Dry Deposition of Ozone over Land: Processes, Measurement, and Modeling. REVIEWS OF GEOPHYSICS (WASHINGTON, D.C. : 1985) 2020; 58:10.1029/2019RG000670. [PMID: 33748825 PMCID: PMC7970530 DOI: 10.1029/2019rg000670] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/24/2020] [Indexed: 05/21/2023]
Abstract
Dry deposition of ozone is an important sink of ozone in near surface air. When dry deposition occurs through plant stomata, ozone can injure the plant, altering water and carbon cycling and reducing crop yields. Quantifying both stomatal and nonstomatal uptake accurately is relevant for understanding ozone's impact on human health as an air pollutant and on climate as a potent short-lived greenhouse gas and primary control on the removal of several reactive greenhouse gases and air pollutants. Robust ozone dry deposition estimates require knowledge of the relative importance of individual deposition pathways, but spatiotemporal variability in nonstomatal deposition is poorly understood. Here we integrate understanding of ozone deposition processes by synthesizing research from fields such as atmospheric chemistry, ecology, and meteorology. We critically review methods for measurements and modeling, highlighting the empiricism that underpins modeling and thus the interpretation of observations. Our unprecedented synthesis of knowledge on deposition pathways, particularly soil and leaf cuticles, reveals process understanding not yet included in widely-used models. If coordinated with short-term field intensives, laboratory studies, and mechanistic modeling, measurements from a few long-term sites would bridge the molecular to ecosystem scales necessary to establish the relative importance of individual deposition pathways and the extent to which they vary in space and time. Our recommended approaches seek to close knowledge gaps that currently limit quantifying the impact of ozone dry deposition on air quality, ecosystems, and climate.
Collapse
Affiliation(s)
| | - Arlene M Fiore
- Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - William J Massman
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| | - Colleen B Baublitz
- Department of Earth and Environmental Sciences, Columbia University, and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Mhairi Coyle
- Centre for Ecology and Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian, UK and The James Hutton Institute, Craigibuckler, Aberdeen, UK
| | - Lisa Emberson
- Stockholm Environment Institute, Environment Department, University of York, York, UK
| | - Silvano Fares
- Council of Agricultural Research and Economics, Research Centre for Forestry and Wood, and National Research Council, Institute of Bioeconomy, Rome, Italy
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA
| | - Giacomo Gerosa
- Dipartimento di Matematica e Fisica, Università Cattolica del S. C., Brescia, Italy
| | - Alex B Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | - Detlev Helmig
- Institute of Alpine and Arctic Research, University of Colorado at Boulder, Boulder, CO, USA
| | | | - J William Munger
- School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | | | - Sally E Pusede
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Donna B Schwede
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC, USA
| | - Sam J Silva
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthias Sörgel
- Max Plank Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Allison L Steiner
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Amos P K Tai
- Earth System Science Programme, Faculty of Science, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Yoshifuji N, Kumagai T, Ichie T, Kume T, Tateishi M, Inoue Y, Yoneyama A, Nakashizuka T. Limited stomatal regulation of the largest-size class of Dryobalanops aromatica in a Bornean tropical rainforest in response to artificial soil moisture reduction. JOURNAL OF PLANT RESEARCH 2020; 133:175-191. [PMID: 31858360 DOI: 10.1007/s10265-019-01161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
The physiological response of trees to drought is crucial for understanding the risk of mortality and its feedbacks to climate under the increase in droughts due to climate change, especially for the largest trees in tropical rainforests because of their large contribution to total carbon storage and water use. We determined the response of the mean canopy stomatal conductance per unit leaf area (gs) and whole-tree hydraulic conductance (Gp) of the largest individuals (38-53 m in height) of a typical canopy tree species in a Bornean tropical rainforest, Dryobalanops aromatica C.F.Gaertn., to soil moisture reduction by a 4-month rainfall exclusion experiment (REE) based on the measurements of sap flux and leaf water potentials at midday and dawn. In the mesic condition, the gs at vapor pressure deficit (D) = 1 kPa (gsref) was small compared with the reported values in various biomes. The sensitivity of gs to D (m) at a given gsref (m/gsref) was ≥ 0.6 irrespective of soil moisture conditions, indicating intrinsically sensitive stomatal control with increasing D. The REE caused greater soil drought and decreased the mean leaf water potentials at midday and dawn to the more negative values than the control under the relatively dry conditions due to natural reduction in rainfall. However, the REE did not cause a greater decrease in gs nor any clear alteration in the sensitivity of gs to D compared with the control, and induced greater decreases in Gp during REE than the control. Thus, though the small gs and the sensitive stomatal response to D indicate the water saving characteristics of the studied trees under usual mesic conditions, their limited stomatal regulation in response to soil drought by REE and the resulting decline in Gp might suggest a poor resistance to the unusually severe drought expected in the future.
Collapse
Affiliation(s)
- Natsuko Yoshifuji
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, 305-8687, Japan.
- Kasuya Research Forest, Kyushu University, Sasaguri, Fukuoka, 811-2415, Japan.
| | - Tomo'omi Kumagai
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomoaki Ichie
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Tomonori Kume
- Kasuya Research Forest, Kyushu University, Sasaguri, Fukuoka, 811-2415, Japan
| | - Makiko Tateishi
- Kyoto University Research Administration Office, Kyoto, 606-8501, Japan
| | - Yuta Inoue
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, 305-8687, Japan
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime, 790-8566, Japan
| | - Aogu Yoneyama
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Tohru Nakashizuka
- Research Institute for Humanity and Nature, Kamigamo-Motoyama, Kyoto, 603-8047, Japan
| |
Collapse
|
16
|
Ding J, Johnson EA, Martin YE. Optimization of leaf morphology in relation to leaf water status: A theory. Ecol Evol 2020; 10:1510-1525. [PMID: 32076530 PMCID: PMC7029057 DOI: 10.1002/ece3.6004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
The leaf economic traits such as leaf area, maximum carbon assimilation rate, and venation are all correlated and related to water availability. Furthermore, leaves are often broad and large in humid areas and narrower in arid/semiarid and hot and cold areas. We use optimization theory to explain these patterns. We have created a constrained optimization leaf model linking leaf shape to vein structure that is integrated into coupled transpiration and carbon assimilation processes. The model maximizes net leaf carbon gain (NPPleaf) over the loss of xylem water potential. Modeled relations between leaf traits are consistent with empirically observed patterns. As the results of the leaf shape-venation relation, our model further predicts that a broadleaf has overall higher NPPleaf compared to a narrowleaf. In addition, a broadleaf has a lower stomatal resistance compared to a narrowleaf under the same level of constraint. With the same leaf area, a broadleaf will have, on average, larger conduits and lower total leaf xylem resistance and thus be more efficient in water transportation but less resistant to cavitation. By linking venation structure to leaf shape and using water potential as the constraint, our model provides a physical explanation for the general pattern of the covariance of leaf traits through the safety-efficiency trade-off of leaf hydraulic design.
Collapse
Affiliation(s)
- Junyan Ding
- Biogeoscience InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Lawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Edward A. Johnson
- Biogeoscience InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Yvonne E. Martin
- Biogeoscience InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of GeographyUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
17
|
Bellasio C. A generalised dynamic model of leaf-level C 3 photosynthesis combining light and dark reactions with stomatal behaviour. PHOTOSYNTHESIS RESEARCH 2019; 141:99-118. [PMID: 30471008 DOI: 10.1007/s11120-018-0601-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/27/2018] [Indexed: 05/16/2023]
Abstract
Global food demand is rising, impelling us to develop strategies for improving the efficiency of photosynthesis. Classical photosynthesis models based on steady-state assumptions are inherently unsuitable for assessing biochemical and stomatal responses to rapid variations in environmental drivers. To identify strategies to increase photosynthetic efficiency, we need models that account for the timing of CO2 assimilation responses to dynamic environmental stimuli. Herein, I present a dynamic process-based photosynthetic model for C3 leaves. The model incorporates both light and dark reactions, coupled with a hydro-mechanical model of stomatal behaviour. The model achieved a stable and realistic rate of light-saturated CO2 assimilation and stomatal conductance. Additionally, it replicated complete typical assimilatory response curves (stepwise change in CO2 and light intensity at different oxygen levels) featuring both short lag times and full photosynthetic acclimation. The model also successfully replicated transient responses to changes in light intensity (light flecks), CO2 concentration, and atmospheric oxygen concentration. This dynamic model is suitable for detailed ecophysiological studies and has potential for superseding the long-dominant steady-state approach to photosynthesis modelling. The model runs as a stand-alone workbook in Microsoft® Excel® and is freely available to download along with a video tutorial.
Collapse
Affiliation(s)
- Chandra Bellasio
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia.
- University of the Balearic Islands, 07122, Palma, Illes Balears, Spain.
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino, 50019, Florence, Italy.
| |
Collapse
|
18
|
Miyauchi T, Machimura T, Saito M. Estimating carbon fixation of plant organs for afforestation monitoring using a process-based ecosystem model and ecophysiological parameter optimization. Ecol Evol 2019; 9:8025-8041. [PMID: 31380069 PMCID: PMC6662426 DOI: 10.1002/ece3.5328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/07/2019] [Accepted: 05/07/2019] [Indexed: 11/09/2022] Open
Abstract
Afforestation projects for mitigating CO2 emissions require to monitor the carbon fixation and plant growth as key indicators. We proposed a monitoring method for predicting carbon fixation in afforestation projects, combining a process-based ecosystem model and field data and addressed the uncertainty of predicted carbon fixation and ecophysiological characteristics with plant growth. Carbon pools were simulated using the Biome-BGC model tuned by parameter optimization using measured carbon density of biomass pools on an 11-year-old Eucommia ulmoides plantation on Loess Plateau, China. The allocation parameters fine root carbon to leaf carbon (FRC:LC) and stem carbon to leaf carbon (SC:LC), along with specific leaf area (SLA) and maximum stomatal conductance (g smax) strongly affected aboveground woody (AC) and leaf carbon (LC) density in sensitivity analysis and were selected as adjusting parameters. We assessed the uncertainty of carbon fixation and plant growth predictions by modeling three growth phases with corresponding parameters: (i) before afforestation using default parameters, (ii) early monitoring using parameters optimized with data from years 1 to 5, and (iii) updated monitoring at year 11 using parameters optimized with 11-year data. The predicted carbon fixation and optimized parameters differed in the three phases. Overall, 30-year average carbon fixation rate in plantation (AC, LC, belowground woody parts and soil pools) was ranged 0.14-0.35 kg-C m-2 y-1 in simulations using parameters of phases (i)-(iii). Updating parameters by periodic field surveys reduced the uncertainty and revealed changes in ecophysiological characteristics with plant growth. This monitoring method should support management of afforestation projects by carbon fixation estimation adapting to observation gap, noncommon species and variable growing conditions such as climate change, land use change.
Collapse
Affiliation(s)
- Tatsuya Miyauchi
- Center for Global Environmental ResearchNational Institute for Environmental StudiesTsukubaJapan
- Division of Sustainable Energy and Environmental Engineering, Graduate School of EngineeringOsaka UniversityOsakaJapan
| | - Takashi Machimura
- Division of Sustainable Energy and Environmental Engineering, Graduate School of EngineeringOsaka UniversityOsakaJapan
| | - Makoto Saito
- Center for Global Environmental ResearchNational Institute for Environmental StudiesTsukubaJapan
| |
Collapse
|
19
|
Wang Y, Cao G, Wang Y, Webb AA, Yu P, Wang X. Response of the daily transpiration of a larch plantation to variation in potential evaporation, leaf area index and soil moisture. Sci Rep 2019; 9:4697. [PMID: 30886244 PMCID: PMC6423317 DOI: 10.1038/s41598-019-41186-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 01/11/2019] [Indexed: 11/11/2022] Open
Abstract
Tree transpiration (T) is a major water budget component and varies widely due to the integrated effects of many environmental and vegetation factors. This study aimed to separate, quantify, and then integrate the effects of the main individual factors, to improve water use estimation and manage the hydrological impacts of forests. A field study was conducted at 3 plots of larch (Larix principis-rupprechtii) plantation in the semi-humid area of the Liupan Mountains, northwest China. The main influencing factors were the atmospheric evaporative demand expressed by potential evapotranspiration (PET), the soil water availability expressed by volumetric soil moisture (VSM) within the 0–100 cm layer, and the canopy transpiration capacity expressed by forest canopy leaf area index (LAI). The daily stand T was estimated through the up-scaling of sap-flow data from sampled trees. It displayed a high degree of scattering in response to PET, VSM and LAI, with an average of 0.76 mm·day−1 and range of 0.01–1.71 mm·day−1 in the growing season of 2014. Using upper boundary lines of measured data, the response tendency of T to each factor and corresponding function type were determined. The T increases firstly rapidly with rising PET, VSM and LAI, then gradually and tends to be stable when the threshold of PET (3.80 mm·day−1), VSM (0.28 m3·m−3) and LAI (3.7) is reached. The T response follows a quadratic equation for PET and saturated exponential function for VSM and LAI. These individual factor functions were coupled to form a general daily T model which was then fitted using measured data as: T = (0.793PET − 0.078PET2)·(1 − exp(−0.272LAI))·(1 − exp(−9.965VSM)). It can well explain the daily T variation of all 3 plots (R2 = 0.86–0.91), and thus can be used to predict the response of daily T of larch stands to changes in both environmental and canopy conditions.
Collapse
Affiliation(s)
- Yunni Wang
- Inner Mongolia Academy of Forestry Sciences, Hohhot, 010010, China.,Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China
| | - Gongxiang Cao
- Inner Mongolia Academy of Forestry Sciences, Hohhot, 010010, China.,Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanhui Wang
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Ashley A Webb
- NSW Department of Primary Industries, Tamworth Agricultural Institute, Calala, NSW, 2340, Australia.,WaterNSW, PO Box 1251, Tamworth, NSW, 2340, Australia
| | - Pengtao Yu
- Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaojiang Wang
- Inner Mongolia Academy of Forestry Sciences, Hohhot, 010010, China
| |
Collapse
|
20
|
Abstract
Leaf water potential regulation is a key process in whole plant and ecosystem functioning. While low water potentials induced by open stomata may initially be associated with greater CO2 supply and a higher water flux from the rhizosphere to the canopy, they also inhibit cell growth, photosynthesis and ultimately water supply. Here, we show that plants regulate their leaf water potential in an optimal manner under given constraints using a simple leaf water status regulation model and data from a global dryland leaf water potential database. Model predictions agree strongly with observations across locations and species and are further supported by experimental data. Leaf water potentials non-linearly decline with soil water potential, underlining the shift from maximizing water supply to avoiding stress with declining water availability. Our results suggest that optimal regulation of the leaf water status under varying water supply and stress tolerance is a ubiquitous property of plants in drylands. The proposed model moreover provides a novel quantitative framework describing how plants respond to short- and long-term changes in water availability and may help elaborating models of plant and ecosystem functioning.
Collapse
|
21
|
Information Needs of Next-Generation Forest Carbon Models: Opportunities for Remote Sensing Science. REMOTE SENSING 2019. [DOI: 10.3390/rs11040463] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Forests are integral to the global carbon cycle, and as a result, the accurate estimation of forest structure, biomass, and carbon are key research priorities for remote sensing science. However, estimating and understanding forest carbon and its spatiotemporal variations requires diverse knowledge from multiple research domains, none of which currently offer a complete understanding of forest carbon dynamics. New large-area forest information products derived from remotely sensed data provide unprecedented spatial and temporal information about our forests, which is information that is currently underutilized in forest carbon models. Our goal in this communication is to articulate the information needs of next-generation forest carbon models in order to enable the remote sensing community to realize the best and most useful application of its science, and perhaps also inspire increased collaboration across these research fields. While remote sensing science currently provides important contributions to large-scale forest carbon models, more coordinated efforts to integrate remotely sensed data into carbon models can aid in alleviating some of the main limitations of these models; namely, low sample sizes and poor spatial representation of field data, incomplete population sampling (i.e., managed forests exclusively), and an inadequate understanding of the processes that influence forest carbon accumulation and fluxes across spatiotemporal scales. By articulating the information needs of next-generation forest carbon models, we hope to bridge the knowledge gap between remote sensing experts and forest carbon modelers, and enable advances in large-area forest carbon modeling that will ultimately improve estimates of carbon stocks and fluxes.
Collapse
|
22
|
Abstract
The thermal limits of terrestrial ectotherms vary more locally than globally. Local microclimatic variations can explain this pattern, but the underlying mechanisms remain unclear. We show that cryptic microclimatic variations at the scale of a single leaf determine the thermal limit in a community of arthropod herbivores living on the same host plant. Herbivores triggering an increase in transpiration, thereby cooling the leaf, had a lower thermal limit than those decreasing leaf transpiration and causing the leaf to warm up. These subtle mechanisms have major consequences for the safety margin of these herbivores during thermal extremes. Our findings suggest that temperate species may be more vulnerable to heat waves than previously thought. The thermal limit of ectotherms provides an estimate of vulnerability to climate change. It differs between contrasting microhabitats, consistent with thermal ecology predictions that a species’ temperature sensitivity matches the microclimate it experiences. However, observed thermal limits may differ between ectotherms from the same environment, challenging this theory. We resolved this apparent paradox by showing that ectotherm activity generates microclimatic deviations large enough to account for differences in thermal limits between species from the same microhabitat. We studied upper lethal temperature, effect of feeding mode on plant gas exchange, and temperature of attacked leaves in a community of six arthropod species feeding on apple leaves. Thermal limits differed by up to 8 °C among the species. Species that caused an increase in leaf transpiration (+182%), thus cooling the leaf, had a lower thermal limit than those that decreased leaf transpiration (−75%), causing the leaf to warm up. Therefore, cryptic microclimatic variations at the scale of a single leaf determine the thermal limit in this community of herbivores. We investigated the consequences of these changes in plant transpiration induced by plant–insect feedbacks for species vulnerability to thermal extremes. Warming tolerance was similar between species, at ±2 °C, providing little margin for resisting increasingly frequent and intense heat waves. The thermal safety margin (the difference between thermal limit and temperature) was greatly overestimated when air temperature or intact leaf temperature was erroneously used. We conclude that feedback processes define the vulnerability of species in the phyllosphere, and beyond, to thermal extremes.
Collapse
|
23
|
Miralles DG, Gentine P, Seneviratne SI, Teuling AJ. Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann N Y Acad Sci 2019; 1436:19-35. [PMID: 29943456 PMCID: PMC6378599 DOI: 10.1111/nyas.13912] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 11/30/2022]
Abstract
Droughts and heatwaves cause agricultural loss, forest mortality, and drinking water scarcity, especially when they occur simultaneously as combined events. Their predicted increase in recurrence and intensity poses serious threats to future food security. Still today, the knowledge of how droughts and heatwaves start and evolve remains limited, and so does our understanding of how climate change may affect them. Droughts and heatwaves have been suggested to intensify and propagate via land-atmosphere feedbacks. However, a global capacity to observe these processes is still lacking, and climate and forecast models are immature when it comes to representing the influences of land on temperature and rainfall. Key open questions remain in our goal to uncover the real importance of these feedbacks: What is the impact of the extreme meteorological conditions on ecosystem evaporation? How do these anomalies regulate the atmospheric boundary layer state (event self-intensification) and contribute to the inflow of heat and moisture to other regions (event self-propagation)? Can this knowledge on the role of land feedbacks, when available, be exploited to develop geo-engineering mitigation strategies that prevent these events from aggravating during their early stages? The goal of our perspective is not to present a convincing answer to these questions, but to assess the scientific progress to date, while highlighting new and innovative avenues to keep advancing our understanding in the future.
Collapse
Affiliation(s)
- Diego G. Miralles
- Laboratory of Hydrology and Water ManagementGhent UniversityGhentBelgium
| | - Pierre Gentine
- Earth and Environmental EngineeringColumbia UniversityNew YorkNew York
| | | | - Adriaan J. Teuling
- Hydrology and Quantitative Water Management GroupWageningen University and ResearchWageningenthe Netherlands
| |
Collapse
|
24
|
Schwede DB, Simpson D, Tan J, Fu JS, Dentener F, Du E, deVries W. Spatial variation of modelled total, dry and wet nitrogen deposition to forests at global scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1287-1301. [PMID: 30267923 PMCID: PMC7050289 DOI: 10.1016/j.envpol.2018.09.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 05/18/2023]
Abstract
Forests are an important biome that covers about one third of the global land surface and provides important ecosystem services. Since atmospheric deposition of nitrogen (N) can have both beneficial and deleterious effects, it is important to quantify the amount of N deposition to forest ecosystems. Measurements of N deposition to the numerous forest biomes across the globe are scarce, so chemical transport models are often used to provide estimates of atmospheric N inputs to these ecosystems. We provide an overview of approaches used to calculate N deposition in commonly used chemical transport models. The Task Force on Hemispheric Transport of Air Pollution (HTAP2) study intercompared N deposition values from a number of global chemical transport models. Using a multi-model mean calculated from the HTAP2 deposition values, we map N deposition to global forests to examine spatial variations in total, dry and wet deposition. Highest total N deposition occurs in eastern and southern China, Japan, Eastern U.S. and Europe while the highest dry deposition occurs in tropical forests. The European Monitoring and Evaluation Program (EMEP) model predicts grid-average deposition, but also produces deposition by land use type allowing us to compare deposition specifically to forests with the grid-average value. We found that, for this study, differences between the grid-average and forest specific could be as much as a factor of two and up to more than a factor of five in extreme cases. This suggests that consideration should be given to using forest-specific deposition for input to ecosystem assessments such as critical loads determinations.
Collapse
Affiliation(s)
- Donna B Schwede
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, United States.
| | - David Simpson
- EMEP MSC-W, Norwegian Meteorological Institute, Oslo, Norway; Dept. Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden
| | - Jiani Tan
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Joshua S Fu
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Frank Dentener
- European Commission, Joint Research Centre, Ispra, Italy
| | - Enzai Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Wim deVries
- Wageningen University and Research, Environmental Research, PO Box 47, NL-6700 AA, Wageningen, the Netherlands; Wageningen University and Research, Environmental Systems Analysis Group, PO Box 47, NL-6700 AA, Wageningen, the Netherlands
| |
Collapse
|
25
|
Rifai SW, Girardin CAJ, Berenguer E, Del Aguila-Pasquel J, Dahlsjö CAL, Doughty CE, Jeffery KJ, Moore S, Oliveras I, Riutta T, Rowland LM, Murakami AA, Addo-Danso SD, Brando P, Burton C, Ondo FE, Duah-Gyamfi A, Amézquita FF, Freitag R, Pacha FH, Huasco WH, Ibrahim F, Mbou AT, Mihindou VM, Peixoto KS, Rocha W, Rossi LC, Seixas M, Silva-Espejo JE, Abernethy KA, Adu-Bredu S, Barlow J, da Costa ACL, Marimon BS, Marimon-Junior BH, Meir P, Metcalfe DB, Phillips OL, White LJT, Malhi Y. ENSO Drives interannual variation of forest woody growth across the tropics. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0410. [PMID: 30297475 DOI: 10.1098/rstb.2017.0410] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2018] [Indexed: 01/05/2023] Open
Abstract
Meteorological extreme events such as El Niño events are expected to affect tropical forest net primary production (NPP) and woody growth, but there has been no large-scale empirical validation of this expectation. We collected a large high-temporal resolution dataset (for 1-13 years depending upon location) of more than 172 000 stem growth measurements using dendrometer bands from across 14 regions spanning Amazonia, Africa and Borneo in order to test how much month-to-month variation in stand-level woody growth of adult tree stems (NPPstem) can be explained by seasonal variation and interannual meteorological anomalies. A key finding is that woody growth responds differently to meteorological variation between tropical forests with a dry season (where monthly rainfall is less than 100 mm), and aseasonal wet forests lacking a consistent dry season. In seasonal tropical forests, a high degree of variation in woody growth can be predicted from seasonal variation in temperature, vapour pressure deficit, in addition to anomalies of soil water deficit and shortwave radiation. The variation of aseasonal wet forest woody growth is best predicted by the anomalies of vapour pressure deficit, water deficit and shortwave radiation. In total, we predict the total live woody production of the global tropical forest biome to be 2.16 Pg C yr-1, with an interannual range 1.96-2.26 Pg C yr-1 between 1996-2016, and with the sharpest declines during the strong El Niño events of 1997/8 and 2015/6. There is high geographical variation in hotspots of El Niño-associated impacts, with weak impacts in Africa, and strongly negative impacts in parts of Southeast Asia and extensive regions across central and eastern Amazonia. Overall, there is high correlation (r = -0.75) between the annual anomaly of tropical forest woody growth and the annual mean of the El Niño 3.4 index, driven mainly by strong correlations with anomalies of soil water deficit, vapour pressure deficit and shortwave radiation.This article is part of the discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.
Collapse
Affiliation(s)
- Sami W Rifai
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| | - Cécile A J Girardin
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| | - Erika Berenguer
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK.,Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | - Cecilia A L Dahlsjö
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| | - Christopher E Doughty
- School of Informatics, Computing and Cyber systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Kathryn J Jeffery
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.,Institut de Recherche en Écologie Tropicale, CENAREST, BP 842, Libreville, Gabon.,Agence Nationale des Parcs Nationaux (ANPN), BP 20379, Libreville, Gabon
| | - Sam Moore
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| | - Imma Oliveras
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| | - Terhi Riutta
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| | - Lucy M Rowland
- Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building, Exeter EX4 4RJ, UK
| | - Alejandro Araujo Murakami
- Museo de Historia Natural Noel Kempff Mercado Universidad Autónoma Gabriel Rene Moreno, Avenida Irala 565 Casilla Postal 2489, Santa Cruz, Bolivia
| | | | - Paulo Brando
- Woods Hole Research Center, Falmouth, MA, USA.,Amazon Environmental Research Institute (IPAM), Canarana, Mato Grosso, Brazil
| | - Chad Burton
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| | - Fidèle Evouna Ondo
- Agence Nationale des Parcs Nationaux (ANPN), BP 20379, Libreville, Gabon
| | | | | | - Renata Freitag
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, CEP 78690-000, Nova Xavantina, MT, Brazil
| | | | - Walter Huaraca Huasco
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| | | | - Armel T Mbou
- Centro Euro-Mediterraneo sui Cambiamente Climatici, Leece, Italy
| | - Vianet Mihindou Mihindou
- Agence Nationale des Parcs Nationaux (ANPN), BP 20379, Libreville, Gabon.,Ministère de la Forêt et de l'Environnement, BP199, Libreville, Gabon
| | - Karine S Peixoto
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, CEP 78690-000, Nova Xavantina, MT, Brazil
| | - Wanderley Rocha
- Amazon Environmental Research Institute (IPAM), Canarana, Mato Grosso, Brazil
| | - Liana C Rossi
- Departamento de Ecologia, Universidade Estadual Paulista, 13506-900, Rio Claro, SP, Brazil
| | - Marina Seixas
- Embrapa Amazônia Oriental, Trav. Dr. Enéas Pinheiro, s/n, CP 48, 66095-100, Belém, PA, Brazil
| | | | - Katharine A Abernethy
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.,Institut de Recherche en Écologie Tropicale, CENAREST, BP 842, Libreville, Gabon
| | | | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | - Beatriz S Marimon
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, CEP 78690-000, Nova Xavantina, MT, Brazil
| | - Ben H Marimon-Junior
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, CEP 78690-000, Nova Xavantina, MT, Brazil
| | - Patrick Meir
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,School of Geosciences, University of Edinburgh, Edinburgh EH93FF, UK
| | - Daniel B Metcalfe
- Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | | | - Lee J T White
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.,Institut de Recherche en Écologie Tropicale, CENAREST, BP 842, Libreville, Gabon
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
| |
Collapse
|
26
|
Collalti A, Trotta C, Keenan TF, Ibrom A, Bond‐Lamberty B, Grote R, Vicca S, Reyer CPO, Migliavacca M, Veroustraete F, Anav A, Campioli M, Scoccimarro E, Šigut L, Grieco E, Cescatti A, Matteucci G. Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS 2018; 10:2427-2452. [PMID: 31007835 PMCID: PMC6472666 DOI: 10.1029/2018ms001275] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 09/10/2018] [Accepted: 09/16/2018] [Indexed: 05/10/2023]
Abstract
Forest carbon use efficiency (CUE, the ratio of net to gross primary productivity) represents the fraction of photosynthesis that is not used for plant respiration. Although important, it is often neglected in climate change impact analyses. Here we assess the potential impact of thinning on projected carbon cycle dynamics and implications for forest CUE and its components (i.e., gross and net primary productivity and plant respiration), as well as on forest biomass production. Using a detailed process-based forest ecosystem model forced by climate outputs of five Earth System Models under four representative climate scenarios, we investigate the sensitivity of the projected future changes in the autotrophic carbon budget of three representative European forests. We focus on changes in CUE and carbon stocks as a result of warming, rising atmospheric CO2 concentration, and forest thinning. Results show that autotrophic carbon sequestration decreases with forest development, and the decrease is faster with warming and in unthinned forests. This suggests that the combined impacts of climate change and changing CO2 concentrations lead the forests to grow faster, mature earlier, and also die younger. In addition, we show that under future climate conditions, forest thinning could mitigate the decrease in CUE, increase carbon allocation into more recalcitrant woody pools, and reduce physiological-climate-induced mortality risks. Altogether, our results show that thinning can improve the efficacy of forest-based mitigation strategies and should be carefully considered within a portfolio of mitigation options.
Collapse
Affiliation(s)
- Alessio Collalti
- Impacts on Agriculture, Forests and Ecosystem Services DivisionFoundation Euro‐Mediterranean Center on Climate Change (CMCC)ViterboItaly
- National Research Council of ItalyInstitute for Agriculture and Forestry Systems in the Mediterranean (CNR‐ISAFOM)RendeItaly
| | - Carlo Trotta
- Department for Innovation in Biological, Agro‐food and Forest SystemsUniversity of TusciaViterboItaly
| | - Trevor F. Keenan
- Earth Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
- Department of Environmental Science Policy and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | - Andreas Ibrom
- Department Environmental EngineeringTechnical University of Denmark (DTU)LyngbyDenmark
| | - Ben Bond‐Lamberty
- Pacific Northwest National LaboratoryJoint Global Change Research Institute at the University of Maryland‐College ParkCollege ParkMDUSA
| | - Ruediger Grote
- Institute of Meteorology and Climate Research (IMK‐IFU)Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Sara Vicca
- Centre of Excellence PLECO (Pant and Vegetation Ecology), Department of BiologyUniversity of AntwerpAntwerpBelgium
| | | | | | | | - Alessandro Anav
- College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
| | - Matteo Campioli
- Department Environmental EngineeringTechnical University of Denmark (DTU)LyngbyDenmark
| | - Enrico Scoccimarro
- Climate Simulation and Prediction DivisionFoundation Euro‐Mediterranean Center on Climate Change (CMCC)BolognaItaly
| | - Ladislav Šigut
- Department of Matter and Energy FluxesGlobal Change Research Institute CASBrnoCzech Republic
| | - Elisa Grieco
- Impacts on Agriculture, Forests and Ecosystem Services DivisionFoundation Euro‐Mediterranean Center on Climate Change (CMCC)ViterboItaly
| | - Alessandro Cescatti
- Directorate for Sustainable ResourcesEuropean Commission, Joint Research CentreIspraItaly
| | - Giorgio Matteucci
- National Research Council of ItalyInstitute for Agriculture and Forestry Systems in the Mediterranean (CNR‐ISAFOM)RendeItaly
| |
Collapse
|
27
|
Peters W, van der Velde IR, van Schaik E, Miller JB, Ciais P, Duarte HF, van der Laan-Luijkx IT, van der Molen MK, Scholze M, Schaefer K, Vidale PL, Verhoef A, Wårlind D, Zhu D, Tans PP, Vaughn B, White JW. Increased water-use efficiency and reduced CO 2 uptake by plants during droughts at a continental-scale. NATURE GEOSCIENCE 2018; 11:744-748. [PMID: 30319710 PMCID: PMC6179136 DOI: 10.1038/s41561-018-0212-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/17/2018] [Indexed: 05/06/2023]
Abstract
Severe droughts in the Northern Hemisphere cause widespread decline of agricultural yield, reduction of forest carbon uptake, and increased CO2 growth rates in the atmosphere. Plants respond to droughts by partially closing their stomata to limit their evaporative water loss, at the expense of carbon uptake by photosynthesis. This trade-off maximizes their water-use efficiency, as measured for many individual plants under laboratory conditions and field experiments. Here we analyze the 13C/12C stable isotope ratio in atmospheric CO2 (reported as δ13C) to provide new observational evidence of the impact of droughts on the water-use efficiency across areas of millions of km2 and spanning one decade of recent climate variability. We find strong and spatially coherent increases in water-use efficiency along with widespread reductions of net carbon uptake over the Northern Hemisphere during severe droughts that affected Europe, Russia, and the United States in 2001-2011. The impact of those droughts on water-use efficiency and carbon uptake by vegetation is substantially larger than simulated by the land-surface schemes of six state-of-the-art climate models. This suggests that drought induced carbon-climate feedbacks may be too small in these models and improvements to their vegetation dynamics using stable isotope observations can help to improve their drought response.
Collapse
Affiliation(s)
- Wouter Peters
- Environmental Sciences Group, Wageningen University, Wageningen, The Netherlands
- University of Groningen, Centre for Isotope Research, Groningen, The Netherlands
| | - Ivar R. van der Velde
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, United States
- Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO, United States
| | - Erik van Schaik
- Environmental Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - John B. Miller
- Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO, United States
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Gif sur Yvette, France
| | - Henrique F. Duarte
- Dept. of Atm. Sciences, University of Utah, Salt Lake City, Utah, United States
| | | | | | - Marko Scholze
- Dept. of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Kevin Schaefer
- National Snow and Ice Data Center, University of Colorado, Boulder, CO, United States
| | | | - Anne Verhoef
- Dept. of Geography and Environmental Science, University of Reading, Reading, UK
| | - David Wårlind
- Dept. of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Dan Zhu
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Gif sur Yvette, France
| | - Pieter P. Tans
- Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO, United States
| | - Bruce Vaughn
- Institute for Arctic and Alpine Research, University of Colorado, Boulder, CO, United States
| | - James W.C. White
- Institute for Arctic and Alpine Research, University of Colorado, Boulder, CO, United States
| |
Collapse
|
28
|
Zhao XW, Ouyang L, Zhao P, Zhang CF. Effects of size and microclimate on whole-tree water use and hydraulic regulation in Schima superba trees. PeerJ 2018; 6:e5164. [PMID: 30002983 PMCID: PMC6037140 DOI: 10.7717/peerj.5164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/15/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Plant-water relations have been of significant concern in forestry and ecology studies in recent years, yet studies investigating the annual differences in the characteristics of inter-class water consumption in trees are scarce. METHODS We classified 15 trees from a Schima superba plantation in subtropical South China into four ranks using diameter at breast height (DBH). The inter-class and whole-tree water use were compared based on three parameters: sap flux density, whole-tree transpiration and canopy transpiration over two years. Inter-class hydraulic parameters, such as leaf water potential, stomatal conductance, hydraulic conductance, and canopy conductance were also compared. RESULTS (1) Mean water consumption of the plantation was 287.6 mm over a year, 165.9 mm in the wet season, and 121.7 mm in the dry season. Annual mean daily water use was 0.79 mm d-1, with a maximum of 1.39 mm d-1. (2) Isohydrodynamic behavior were found in S. superba. (3) Transpiration was regulated via both hydraulic conductance and stoma; however, there was an annual difference in which predominantly regulated transpiration. DISCUSSION This study quantified annual and seasonal water use of a S. superba plantation and revealed the coordinated effect of stoma and hydraulic conductance on transpiration. These results provide information for large-scale afforestation and future water management.
Collapse
Affiliation(s)
- Xiao-wei Zhao
- College of Life Sciences, Yulin University, Yulin, Shan Xi, PR China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China
| | - Lei Ouyang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China
| | - Chun-fang Zhang
- Department of Life Sciences, Yuncheng College, Yuncheng, Shan Xi, PR China
| |
Collapse
|
29
|
Woods HA, Saudreau M, Pincebourde S. Structure is more important than physiology for estimating intracanopy distributions of leaf temperatures. Ecol Evol 2018; 8:5206-5218. [PMID: 29876095 PMCID: PMC5980536 DOI: 10.1002/ece3.4046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 12/23/2022] Open
Abstract
Estimating leaf temperature distributions (LTDs) in canopies is crucial in forest ecology. Leaf temperature affects the exchange of heat, water, and gases, and it alters the performance of leaf-dwelling species such as arthropods, including pests and invaders. LTDs provide spatial variation that may allow arthropods to thermoregulate in the face of long-term changes in mean temperature or incidence of extreme temperatures. Yet, recording LTDs for entire canopies remains challenging. Here, we use an energy-exchange model (RATP) to examine the relative roles of climatic, structural, and physiological factors in influencing three-dimensional LTDs in tree canopies. A Morris sensitivity analysis of 13 parameters showed, not surprisingly, that climatic factors had the greatest overall effect on LTDs. In addition, however, structural parameters had greater effects on LTDs than did leaf physiological parameters. Our results suggest that it is possible to infer forest canopy LTDs from the LTDs measured or simulated just at the surface of the canopy cover over a reasonable range of parameter values. This conclusion suggests that remote sensing data can be used to estimate 3D patterns of temperature variation from 2D images of vegetation surface temperatures. Synthesis and applications. Estimating the effects of LTDs on natural plant-insect communities will require extending canopy models beyond their current focus on individual species or crops. These models, however, contain many parameters, and applying the models to new species or to mixed natural canopies depends on identifying the parameters that matter most. Our results suggest that canopy structural parameters are more important determinants of LTDs than are the physiological parameters that tend to receive the most empirical attention.
Collapse
Affiliation(s)
- H. Arthur Woods
- Division of Biological SciencesUniversity of MontanaMissoulaMTUSA
| | | | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l'Insecte (IRBI)CNRS UMR 7261Faculté des Sciences et TechniquesUniversité François RabelaisToursFrance
| |
Collapse
|
30
|
Zhu J, Dai Z, Vivin P, Gambetta GA, Henke M, Peccoux A, Ollat N, Delrot S. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange. ANNALS OF BOTANY 2018; 121:833-848. [PMID: 29293870 PMCID: PMC5906973 DOI: 10.1093/aob/mcx141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/01/2017] [Indexed: 05/03/2023]
Abstract
Background and Aims Predicting both plant water status and leaf gas exchange under various environmental conditions is essential for anticipating the effects of climate change on plant growth and productivity. This study developed a functional-structural grapevine model which combines a mechanistic understanding of stomatal function and photosynthesis at the leaf level (i.e. extended Farqhuhar-von Caemmerer-Berry model) and the dynamics of water transport from soil to individual leaves (i.e. Tardieu-Davies model). Methods The model included novel features that account for the effects of xylem embolism (fPLC) on leaf hydraulic conductance and residual stomatal conductance (g0), variable root and leaf hydraulic conductance, and the microclimate of individual organs. The model was calibrated with detailed datasets of leaf photosynthesis, leaf water potential, xylem sap abscisic acid (ABA) concentration and hourly whole-plant transpiration observed within a soil drying period, and validated with independent datasets of whole-plant transpiration under both well-watered and water-stressed conditions. Key Results The model well captured the effects of radiation, temperature, CO2 and vapour pressure deficit on leaf photosynthesis, transpiration, stomatal conductance and leaf water potential, and correctly reproduced the diurnal pattern and decline of water flux within the soil drying period. In silico analyses revealed that decreases in g0 with increasing fPLC were essential to avoid unrealistic drops in leaf water potential under severe water stress. Additionally, by varying the hydraulic conductance along the pathway (e.g. root and leaves) and changing the sensitivity of stomatal conductance to ABA and leaf water potential, the model can produce different water use behaviours (i.e. iso- and anisohydric). Conclusions The robust performance of this model allows for modelling climate effects from individual plants to fields, and for modelling plants with complex, non-homogenous canopies. In addition, the model provides a basis for future modelling efforts aimed at describing the physiology and growth of individual organs in relation to water status.
Collapse
Affiliation(s)
- Junqi Zhu
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, Villenave d’Ornon, France
| | - Zhanwu Dai
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, Villenave d’Ornon, France
| | - Philippe Vivin
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, Villenave d’Ornon, France
| | - Gregory A Gambetta
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, Villenave d’Ornon, France
| | - Michael Henke
- Department of Ecoinformatics, Biometrics and Forest Growth, University of Göttingen, Göttingen, Germany
| | - Anthony Peccoux
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, Villenave d’Ornon, France
| | - Nathalie Ollat
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, Villenave d’Ornon, France
| | - Serge Delrot
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
31
|
Greer BT, Still C, Cullinan GL, Brooks JR, Meinzer FC. Polyploidy influences plant-environment interactions in quaking aspen (Populus tremuloides Michx.). TREE PHYSIOLOGY 2018; 38:630-640. [PMID: 29036397 PMCID: PMC6527095 DOI: 10.1093/treephys/tpx120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 05/20/2023]
Abstract
Quaking aspen (Populus tremuloides Michx.), a widespread and keystone tree species in North America, experienced heat and drought stress in the years 2002 and 2003 in the southwestern United States. This led to widespread aspen mortality that has altered the composition of forests, and is expected to occur again if climate change continues. Understanding interactions between aspen and its environments is essential to understanding future mortality risk in forests. Polyploidy, which is common in aspen, can modify plant structure and function and therefore plant-environment interactions, but the influence of polyploidy on aspen physiology is still not well understood. Furthermore, the ploidy types of aspen have different biogeographies, with triploids being most frequent at lower latitudes in generally warmer and drier climates, while the northerly populations are virtually 100% diploid. This suggests that ploidy-environment interactions differ, and could mean that the ploidy types have different vulnerabilities to environmental stress. In this study, to understand aspen ploidy-environment interactions, we measured 38 different traits important to carbon uptake, water loss and water-use efficiency in diploid and triploid aspen in Colorado. We found that triploid aspen had lower stand density, and greater leaf area, leaf mass, leaf mass per area, percent nitrogen content, chlorophyll content and stomatal size. These differences corresponded to greater potential net carbon assimilation (A, measured using A/Ci curves, and chlorophyll fluorescence) and stomatal conductance (gs) in triploids than diploids. While triploid aspen had higher intrinsic water-use efficiency (iWUE, calculated from measurements of δ13C in leaf tissue), they also had greater potential water loss from higher measured gs and lower stomatal sensitivity to increasing vapor pressure deficit. Therefore, despite greater iWUE, triploids may have lower resilience to climate-induced stress. We conclude that ploidy type strongly influences physiological traits and function, and mediates drought stress responses in quaking aspen.
Collapse
Affiliation(s)
- Burke T Greer
- Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA
- Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA
| | - Christopher Still
- Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA
- Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA
| | - Grace L Cullinan
- Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA
- Rice University, Biosciences at Rice, Ecology and Evolutionary Biology Department, 6100 Main St. Houston, TX 77005, USA
| | - J Renée Brooks
- US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA
| | - Frederick C Meinzer
- USDA Forest Service Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| |
Collapse
|
32
|
Paoletti E, De Marco A, Anav A, Gasparini P, Pompei E. Five-year volume growth of European beech does not respond to ozone pollution in Italy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8233-8239. [PMID: 28540544 DOI: 10.1007/s11356-017-9264-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
A unique database of stand volume growth, estimated as periodic annual volume increment (in m3 ha-1 per year over the period 2001-2005) from 728 European beech (Fagus sylvatica L.) sites distributed across Italy, was used to assess the effects of ambient ozone (O3), expressed as annual average (M24), accumulated exposure above a 40 ppb hourly threshold (AOT40), and total stomatal ozone flux (POD0). Growth data were from the National forest inventory of Italy, while climate data and ozone concentrations were computed by the WRF and CHIMERE models, respectively. Results show that the growth increased with increasing solar radiation and air temperature and decreased with increasing number of cold days, while effects of soil water content and O3 were not significant. In contrast, the literature results suggest that European beech is sensitive to both drought and O3. Ozone levels resulted to be very high (48 ppb M24, 51,200 ppb h AOT40, 21.08 mmol m-2 POD0, on average) and thus able to potentially affect European beech growth. We hypothesize that the high-frequency signals of soil water and O3 got lost when averaged over 5 years and recommended finer time-resolution investigations and inclusion of other factors of variability, e.g., thinning, tree age, and size.
Collapse
Affiliation(s)
| | | | | | | | - Enrico Pompei
- Ministry of Agriculture, Food and Forest Policies, Via XX Settembre 20, Rome, Italy
| |
Collapse
|
33
|
Hoshika Y, Moura B, Paoletti E. Ozone risk assessment in three oak species as affected by soil water availability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8125-8136. [PMID: 28748441 DOI: 10.1007/s11356-017-9786-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
To derive ozone (O3) dose-response relationships for three European oak species (Quercus ilex, Quercus pubescens, and Quercus robur) under a range of soil water availability, an experiment was carried out with 2-year-old potted seedlings exposed to three levels of water availability in the soil and three levels of O3 pollution for one growing season in an ozone free-air controlled exposure (FACE) facility. Total biomass losses were estimated relative to a hypothetical clean air at the pre-industrial age, i.e., at 10 ppb as daily average (M24). A stomatal conductance model was parameterized with inputs from the three species for calculating the stomatal O3 flux. Exposure-based (M24, W126, and AOT40) and flux-based (phytotoxic O3 dose (POD)0-3) dose-response relationships were estimated and critical levels (CL) were calculated for a 5% decline of total biomass. Results show that water availability can significantly affect O3 risk assessment. In fact, dose-response relationships calculated per individual species at each water availability level resulted in very different CLs and best metrics. In a simplified approach where species were aggregated on the basis of their O3 sensitivity, the best metric was POD0.5, with a CL of 6.8 mmol m-2 for the less O3-sensitive species Q. ilex and Q. pubescens and of 3.5 mmol m-2 for the more O3-sensitive species Q. robur. The performance of POD0, however, was very similar to that of POD0.5, and thus a CL of 6.9 mmol m-2 POD0 and 3.6 mmol m-2 POD0 for the less and more O3-sensitive oak species may be also recommended. These CLs can be applied to oak ecosystems at variable water availability in the soil. We conclude that PODy is able to reconcile the effects of O3 and soil water availability on species-specific oak productivity.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Barbara Moura
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Elena Paoletti
- Institute of Sustainable Plant Protection, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
34
|
Tobin RL, Kulmatiski A. Plant identity and shallow soil moisture are primary drivers of stomatal conductance in the savannas of Kruger National Park. PLoS One 2018; 13:e0191396. [PMID: 29373605 PMCID: PMC5786297 DOI: 10.1371/journal.pone.0191396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 12/18/2017] [Indexed: 12/02/2022] Open
Abstract
Our goal was to describe stomatal conductance (gs) and the site-scale environmental parameters that best predict gs in Kruger National Park (KNP), South Africa. Dominant grass and woody species were measured over two growing seasons in each of four study sites that represented the natural factorial combination of mean annual precipitation [wet (750 mm) or dry (450 mm)] and soil type (clay or sand) found in KNP. A machine-learning (random forest) model was used to describe gs as a function of plant type (species or functional group) and site-level environmental parameters (CO2, season, shortwave radiation, soil type, soil moisture, time of day, vapor pressure deficit and wind speed). The model explained 58% of the variance among 6,850 gs measurements. Species, or plant functional group, and shallow (0–20 cm) soil moisture had the greatest effect on gs. Atmospheric drivers and soil type were less important. When parameterized with three years of observed environmental data, the model estimated mean daytime growing season gs as 68 and 157 mmol m-2 sec-1 for grasses and woody plants, respectively. The model produced here could, for example, be used to estimate gs and evapotranspiration in KNP under varying climate conditions. Results from this field-based study highlight the role of species identity and shallow soil moisture as primary drivers of gs in savanna ecosystems of KNP.
Collapse
Affiliation(s)
- Rebecca L. Tobin
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, Utah, United States of America
| | - Andrew Kulmatiski
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, Utah, United States of America
- * E-mail:
| |
Collapse
|
35
|
Tan ZH, Wu ZX, Hughes AC, Schaefer D, Zeng J, Lan GY, Yang C, Tao ZL, Chen BQ, Tian YH, Song L, Jatoi MT, Zhao JF, Yang LY. On the ratio of intercellular to ambient CO 2 (c i/c a) derived from ecosystem flux. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2017; 61:2059-2071. [PMID: 28707041 DOI: 10.1007/s00484-017-1403-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/13/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
The ratio of intercellular to ambient CO2 concentrations (c i/c a) plays a key role in ecophysiology, micrometeorology, and global climatic change. However, systematic investigation on c i/c a variation and its determinants are rare. Here, the c i/c a was derived from measuring ecosystem fluxes in an even-aged monoculture of rubber trees (Hevea brasiliensis). We tested whether c i/c a is constant across environmental gradients and if not, which dominant factors control c i/c a variations. Evidence indicates that c i/c a is not a constant. The c i/c a exhibits a clear "V"-shaped diurnal pattern and varies across the environmental gradient. Water vapor pressure deficit (D) is the dominant factor controls over the c i/c a variations. c i/c a consistently decreases with increasing D. c i/c a decreases with square root of D as predicted by the optimal stomatal model. The D-driving single-variable model could simulate c i/c a as well as that of sophisticated model. Many variables function on longer timescales than a daily cycle, such as soil water content, could improve c i/c a model prediction ability. Ecosystem flux can be effectively used to calculate c i/c a and use it to better understand various natural cycles.
Collapse
Affiliation(s)
- Zheng-Hong Tan
- Ecology Program, Institute for Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhi-Xiang Wu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China.
| | - Alice C Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, China
| | - Douglas Schaefer
- Key Lab of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 666303, China
| | - Jiye Zeng
- National Institute for Environmental Studies, Tsukuba, 305-0053, Japan
| | - Guo-Yu Lan
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Chuang Yang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Zhong-Liang Tao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Bang-Qian Chen
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Yao-Hua Tian
- Yunnan Institute of Tropical Crops, Jinghong, 666100, China
| | - Liang Song
- Key Lab of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 666303, China
| | - Muhammad Tahir Jatoi
- Ecology Program, Institute for Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
| | - Jun-Fu Zhao
- Ecology Program, Institute for Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Lian-Yan Yang
- Ecology Program, Institute for Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| |
Collapse
|
36
|
Marzuoli R, Finco A, Chiesa M, Gerosa G. A dose-response relationship for marketable yield reduction of two lettuce (Lactuca sativa L.) cultivars exposed to tropospheric ozone in Southern Europe. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26249-26258. [PMID: 28028698 DOI: 10.1007/s11356-016-8224-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
The present study investigated the response to ozone (O3) of two cultivars (cv.'Romana' and cv. 'Canasta') of irrigated lettuce grown in an open-top chamber (OTC) experiment in Mediterranean conditions. Two different levels of O3 were applied, ambient O3 in non-filtered OTCs (NF-OTCs) and -40% of ambient O3 in charcoal-filtered OTCs (CF-OTCs), during four consecutive growing cycles. At the end of each growing cycle, the marketable yield (fresh biomass) was assessed while during the growing periods, measurements of the stomatal conductance at leaf level were performed and used to define a stomatal conductance model for calculation of the phytotoxic ozone dose (POD) absorbed by the plants.Results showed that O3 caused statistically significant yield reductions in the first and in the last growing cycle. In general, the marketable yield of the NF-OTC plants was always lower than the CF-OTC plants for both cultivars, with mean reductions of -18.5 and -14.5% for 'Romana' and 'Canasta', respectively. On the contrary, there was no statistically significant difference in marketable yield due to the cultivar factor or to the interaction between O3 and cultivar in any of the growing cycle performed.Dose-response relationships for the marketable relative yield based on the POD values were calculated according to different flux threshold values (Y). The best regression fit was obtained using an instantaneous flux threshold of 6 nmol O3 m-2 s-1 (POD6); the same value was obtained also for other crops. According to the generic lettuce dose-response relationship, an O3 critical level of 1 mmol O3 m-2 of POD6 for a 15% of marketable yield loss was found.
Collapse
Affiliation(s)
- Riccardo Marzuoli
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore di Brescia, via Musei 41, Brescia, Italy
| | - Angelo Finco
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore di Brescia, via Musei 41, Brescia, Italy
| | - Maria Chiesa
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore di Brescia, via Musei 41, Brescia, Italy
| | - Giacomo Gerosa
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore di Brescia, via Musei 41, Brescia, Italy.
| |
Collapse
|
37
|
González-Fernández I, Sanz J, Calvete-Sogo H, Elvira S, Alonso R, Bermejo-Bermejo V. Validation of ozone response functions for annual Mediterranean pasture species using close-to-field-conditions experiments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26259-26268. [PMID: 28455565 DOI: 10.1007/s11356-017-9099-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Ozone (O3) critical levels have been established under the Long-Range Transboundary Air Pollution Convention to assess the risk of O3 effects in European vegetation. A recent review study has led to the development of O3 critical levels for annual Mediterranean pasture species using plants growing in well-watered pots at a coastal site and under low levels of competition. However, uncertainties remain in the extrapolation of the O3 sensitivity of these species under natural conditions. The response of two O3-sensitive annual Mediterranean pasture Trifolium species at the coastal site was compared with the response of the same species growing at a continental site, in natural soil and subject to water-stress and inter-specific competition, representing more closely their natural habitat. The slopes of exposure- and dose-response relationships derived for the two sites showed differences in the response to O3 between sites attributed to differences in environmental growing conditions, growing medium and the level of inter-specific competition, but the effect of the individual factors could not be assessed separately. Dose-based O3 indices partially explained differences due to environmental growing conditions between sites. The slopes showed that plants were more sensitive to O3 at the continental site, but homogeneity of slopes tests revealed that results from both experimental sites may be combined. Although more experimental data considering complex inter-specific competition situations and the effect of important interactive factors such as nitrogen would be needed, these results confirm the validity of applying the current flux-based O3 critical level under close to natural growing conditions. The AOT40-based O3 critical level derived at the coastal site was also considered a suitable risk indicator in close to natural growing conditions in the absence of soil moisture limitations on plant growth.
Collapse
Affiliation(s)
| | - Javier Sanz
- Ecotoxicology of Air Pollution, CIEMAT. Avda Complutense 40.28040, Madrid, Spain
| | - Héctor Calvete-Sogo
- Ecotoxicology of Air Pollution, CIEMAT. Avda Complutense 40.28040, Madrid, Spain
| | - Susana Elvira
- Ecotoxicology of Air Pollution, CIEMAT. Avda Complutense 40.28040, Madrid, Spain
| | - Rocío Alonso
- Ecotoxicology of Air Pollution, CIEMAT. Avda Complutense 40.28040, Madrid, Spain
| | | |
Collapse
|
38
|
Finco A, Marzuoli R, Chiesa M, Gerosa G. Ozone risk assessment for an Alpine larch forest in two vegetative seasons with different approaches: comparison of POD 1 and AOT40. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26238-26248. [PMID: 28608159 DOI: 10.1007/s11356-017-9301-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
The upper vegetation belts like larch forests are supposed to be under great pressure because of climate change in the next decades. For this reason, the evaluation of the risks due to abiotic stressors like ozone is a key step. Two different approaches were used here: mapping AOT40 index by means of passive samplers and direct measurements of ozone deposition.Measurements of ozone fluxes using the eddy-correlation technique were carried out for the first time over a larch forest in Paspardo (I) at 1750 m a.s.l. Two field campaigns were run: the first one in 2010 from July to October and the second one in the following year from June to September. Vertical exchange of ozone, energy, and momentum were measured on a tower platform at 26 m above ground level to study fluxes dynamics over this ecosystem. Since the tower was located on a gentle slope, an "ad hoc" methodology was developed to minimize the effects of the terrain inclination. The larch forest uptake was estimated by means of a two-layer model to separate the understorey uptake from the larch one. Even if the total ozone fluxes were generally high, up to 30-40 nmol O3 m-2 s-1 in both years, the stomatal uptake by the larch forest was relatively low (around 15% of the total deposition).Ozone risk was assessed considering the POD1 received by the larch forest and the exposure index AOT40 estimated with both local data and data from the map obtained by the passive samplers monitoring.
Collapse
Affiliation(s)
- Angelo Finco
- Mathematics and Physics Department, Catholic University of the Sacred Heart, Brescia, Italy
| | - Riccardo Marzuoli
- Mathematics and Physics Department, Catholic University of the Sacred Heart, Brescia, Italy
| | - Maria Chiesa
- Mathematics and Physics Department, Catholic University of the Sacred Heart, Brescia, Italy
| | - Giacomo Gerosa
- Mathematics and Physics Department, Catholic University of the Sacred Heart, Brescia, Italy.
| |
Collapse
|
39
|
Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations. SENSORS 2017; 17:s17112664. [PMID: 29156568 PMCID: PMC5713072 DOI: 10.3390/s17112664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 11/22/2022]
Abstract
The Food and Agricultural Organization (FAO) method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.
Collapse
|
40
|
Cavusoglu AH, Chen X, Gentine P, Sahin O. Potential for natural evaporation as a reliable renewable energy resource. Nat Commun 2017; 8:617. [PMID: 28951541 PMCID: PMC5615039 DOI: 10.1038/s41467-017-00581-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 07/10/2017] [Indexed: 11/25/2022] Open
Abstract
About 50% of the solar energy absorbed at the Earth’s surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water’s large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation. The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.
Collapse
Affiliation(s)
- Ahmet-Hamdi Cavusoglu
- Department of Chemical Engineering, Columbia University, New York, New York, 10027, USA
| | - Xi Chen
- Department of Biological Sciences, Columbia University, New York, New York, 10027, USA.,Advanced Science Research Center (ASRC) at the Graduate Center of The City University of New York, New York, New York, 10031, USA.,Department of Chemical Engineering, The City College of New York, New York, New York, 10031, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, 10027, USA
| | - Ozgur Sahin
- Department of Biological Sciences, Columbia University, New York, New York, 10027, USA. .,Department of Physics, Columbia University, New York, New York, 10027, USA.
| |
Collapse
|
41
|
Bellasio C, Quirk J, Buckley TN, Beerling DJ. A Dynamic Hydro-Mechanical and Biochemical Model of Stomatal Conductance for C 4 Photosynthesis. PLANT PHYSIOLOGY 2017; 175:104-119. [PMID: 28751312 PMCID: PMC5580762 DOI: 10.1104/pp.17.00666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/24/2017] [Indexed: 05/10/2023]
Abstract
C4 plants are major grain (maize [Zea mays] and sorghum [Sorghum bicolor]), sugar (sugarcane [Saccharum officinarum]), and biofuel (Miscanthus spp.) producers and contribute ∼20% to global productivity. Plants lose water through stomatal pores in order to acquire CO2 (assimilation [A]) and control their carbon-for-water balance by regulating stomatal conductance (gS). The ability to mechanistically predict gS and A in response to atmospheric CO2, water availability, and time is critical for simulating stomatal control of plant-atmospheric carbon and water exchange under current, past, or future environmental conditions. Yet, dynamic mechanistic models for gS are lacking, especially for C4 photosynthesis. We developed and coupled a hydromechanical model of stomatal behavior with a biochemical model of C4 photosynthesis, calibrated using gas-exchange measurements in maize, and extended the coupled model with time-explicit functions to predict dynamic responses. We demonstrated the wider applicability of the model with three additional C4 grass species in which interspecific differences in stomatal behavior could be accounted for by fitting a single parameter. The model accurately predicted steady-state responses of gS to light, atmospheric CO2 and oxygen, soil drying, and evaporative demand as well as dynamic responses to light intensity. Further analyses suggest that the effect of variable leaf hydraulic conductance is negligible. Based on the model, we derived a set of equations suitable for incorporation in land surface models. Our model illuminates the processes underpinning stomatal control in C4 plants and suggests that the hydraulic benefits associated with fast stomatal responses of C4 grasses may have supported the evolution of C4 photosynthesis.
Collapse
Affiliation(s)
- Chandra Bellasio
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Trees and Timber Institute, National Research Council of Italy, 50019 Florence, Italy
| | - Joe Quirk
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Thomas N Buckley
- Sydney Institute of Agriculture, University of Sydney, Narrabri, New South Wales 2390, Australia
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
42
|
Buckley TN. Modeling Stomatal Conductance. PLANT PHYSIOLOGY 2017; 174:572-582. [PMID: 28062836 PMCID: PMC5462010 DOI: 10.1104/pp.16.01772] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/03/2017] [Indexed: 05/12/2023]
Abstract
Recent advances have improved our ability to model stomatal conductance using process- or optimality-based models, and continuing research should focus on how stomata sense leaf turgor and on how to quantify the direct carbon costs of low leaf water potential.
Collapse
Affiliation(s)
- Thomas N Buckley
- Plant Breeding Institute, Sydney Institute of Agriculture, The University of Sydney, Narrabri NSW 2390, Australia
| |
Collapse
|
43
|
Franks PJ, Berry JA, Lombardozzi DL, Bonan GB. Stomatal Function across Temporal and Spatial Scales: Deep-Time Trends, Land-Atmosphere Coupling and Global Models. PLANT PHYSIOLOGY 2017; 174:583-602. [PMID: 28446638 PMCID: PMC5462067 DOI: 10.1104/pp.17.00287] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/25/2017] [Indexed: 05/18/2023]
Abstract
Simulating global fluxes of water, carbon, and energy at the land surface requires accurate and versatile models of stomatal conductance, currently represented by structurally similar and interchangeable forms that share weaknesses at environmental extremes.
Collapse
Affiliation(s)
- Peter J Franks
- Faculty of Agriculture and Environment, University of Sydney, Sydney, New South Wales 2006, Australia (P.J.F.);
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California 94305 (J.A.B.); and
- National Center for Atmospheric Research, Boulder, Colorado 80307 (D.L.L., G.B.B.)
| | - Joseph A Berry
- Faculty of Agriculture and Environment, University of Sydney, Sydney, New South Wales 2006, Australia (P.J.F.)
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California 94305 (J.A.B.); and
- National Center for Atmospheric Research, Boulder, Colorado 80307 (D.L.L., G.B.B.)
| | - Danica L Lombardozzi
- Faculty of Agriculture and Environment, University of Sydney, Sydney, New South Wales 2006, Australia (P.J.F.)
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California 94305 (J.A.B.); and
- National Center for Atmospheric Research, Boulder, Colorado 80307 (D.L.L., G.B.B.)
| | - Gordon B Bonan
- Faculty of Agriculture and Environment, University of Sydney, Sydney, New South Wales 2006, Australia (P.J.F.)
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California 94305 (J.A.B.); and
- National Center for Atmospheric Research, Boulder, Colorado 80307 (D.L.L., G.B.B.)
| |
Collapse
|
44
|
Ran L, Pleim J, Song C, Band L, Walker JT, Binkowski FS. A Photosynthesis-based Two-leaf Canopy Stomatal Conductance Model for Meteorology and Air Quality Modeling with WRF/CMAQ PX LSM. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2017; 122:1930-1952. [PMID: 30505641 PMCID: PMC6260954 DOI: 10.1002/2016jd025583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A coupled photosynthesis-stomatal conductance model with single layer sunlit and shaded leaf canopy scaling is developed for the Pleim-Xiu land surface model (LSM) option in the meteorology and air quality modeling system - WRF/CMAQ (Weather Research and Forecast model and Community Multiscale Air Quality model). The photosynthesis-based model for the PX LSM (PX PSN) is implemented and evaluated in a diagnostic box model that has evapotranspiration and ozone deposition components taken directly from WRF/CMAQ. We evaluate PX PSN for latent heat (LH) estimation at four FLUXNET sites with different vegetation types and landscape characteristics and at one FLUXNET site with ozone flux measurements against the simple Jarvis approach used in the current PX LSM. Overall, the PX PSN simulates LH as well as the PX Jarvis approach. The PX PSN, however, shows distinct advantages over the PX Jarvis approach on grassland that likely results from its treatment of C3 and C4 plants for CO2 assimilation estimation. Simulations using Moderate Resolution Imaging Spectroradiometer (MODIS) LAI rather than LAI observations assess how the model would perform with the grid averaged data available in the Eulerian grid model (WRF/CMAQ). While MODIS LAI generally follows the seasonality of the observed LAI, it cannot capture the extreme highs and lows of the site measurements. MODIS LAI estimates degrade model performance at all sites but one site having old and tall trees. Ozone deposition velocity and ozone flux along with LH are simulated especially well by PX PSN as compared to significant PX Jarvis overestimation.
Collapse
Affiliation(s)
- Limei Ran
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Jonathan Pleim
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Conghe Song
- Institute for the Environment, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Larry Band
- Institute for the Environment, University of North Carolina at Chapel Hill, North Carolina, USA
| | - John T. Walker
- United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Francis S. Binkowski
- Institute for the Environment, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
45
|
Bart RR, Tague CL, Moritz MA. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow. PLoS One 2016; 11:e0161805. [PMID: 27575592 PMCID: PMC5004902 DOI: 10.1371/journal.pone.0161805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 08/14/2016] [Indexed: 12/02/2022] Open
Abstract
Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation < 800 mm), with most streamflow change observed during wetter years. These modeling results underscore the importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.
Collapse
Affiliation(s)
- Ryan R. Bart
- Earth Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| | - Christina L. Tague
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Max A. Moritz
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, United States of America
| |
Collapse
|
46
|
Rezende LFC, Arenque BC, Aidar ST, Moura MSB, Von Randow C, Tourigny E, Menezes RSC, Ometto JPHB. Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:945-955. [PMID: 26498437 DOI: 10.1007/s00484-015-1087-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Dynamic global vegetation models (DGVMs) simulate surface processes such as the transfer of energy, water, CO2, and momentum between the terrestrial surface and the atmosphere, biogeochemical cycles, carbon assimilation by vegetation, phenology, and land use change in scenarios of varying atmospheric CO2 concentrations. DGVMs increase the complexity and the Earth system representation when they are coupled with atmospheric global circulation models (AGCMs) or climate models. However, plant physiological processes are still a major source of uncertainty in DGVMs. The maximum velocity of carboxylation (Vcmax), for example, has a direct impact over productivity in the models. This parameter is often underestimated or imprecisely defined for the various plant functional types (PFTs) and ecosystems. Vcmax is directly related to photosynthesis acclimation (loss of response to elevated CO2), a widely known phenomenon that usually occurs when plants are subjected to elevated atmospheric CO2 and might affect productivity estimation in DGVMs. Despite this, current models have improved substantially, compared to earlier models which had a rudimentary and very simple representation of vegetation-atmosphere interactions. In this paper, we describe this evolution through generations of models and the main events that contributed to their improvements until the current state-of-the-art class of models. Also, we describe some main challenges for further improvements to DGVMs.
Collapse
Affiliation(s)
- L F C Rezende
- Earth System Science Center, National Institute for Space Research (INPE), Av. dos Astronautas, 1758 - Jd. da Granja, CEP: 12227-010, São José dos Campos, SP, Brazil.
| | - B C Arenque
- Botany Department, University of São Paulo (USP), R. do Matão, 277, CEP: 05508-090, Butantã, SP, Brazil
| | - S T Aidar
- Embrapa Tropical Semiarid Brazilian Agricultural Research Corporation (EMBRAPA), Rodovia BR-428, Km 152, Zona Rural, CEP: 56302-970, Petrolina, PE, Brazil
| | - M S B Moura
- Embrapa Tropical Semiarid Brazilian Agricultural Research Corporation (EMBRAPA), Rodovia BR-428, Km 152, Zona Rural, CEP: 56302-970, Petrolina, PE, Brazil
| | - C Von Randow
- Earth System Science Center, National Institute for Space Research (INPE), Av. dos Astronautas, 1758 - Jd. da Granja, CEP: 12227-010, São José dos Campos, SP, Brazil
| | - E Tourigny
- Earth System Science Center, National Institute for Space Research (INPE), Av. dos Astronautas, 1758 - Jd. da Granja, CEP: 12227-010, São José dos Campos, SP, Brazil
| | - R S C Menezes
- Federal University of Pernambuco (UFPE), Av. Prof. Luis Freire, 1000, CEP: 50740-540, Cidade Universitária, Recife, PE, Brazil
| | - J P H B Ometto
- Earth System Science Center, National Institute for Space Research (INPE), Av. dos Astronautas, 1758 - Jd. da Granja, CEP: 12227-010, São José dos Campos, SP, Brazil
| |
Collapse
|
47
|
Impact of the representation of stomatal conductance on model projections of heatwave intensity. Sci Rep 2016; 6:23418. [PMID: 26996244 PMCID: PMC4800495 DOI: 10.1038/srep23418] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/04/2016] [Indexed: 11/09/2022] Open
Abstract
Stomatal conductance links plant water use and carbon uptake, and is a critical process for the land surface component of climate models. However, stomatal conductance schemes commonly assume that all vegetation with the same photosynthetic pathway use identical plant water use strategies whereas observations indicate otherwise. Here, we implement a new stomatal scheme derived from optimal stomatal theory and constrained by a recent global synthesis of stomatal conductance measurements from 314 species, across 56 field sites. Using this new stomatal scheme, within a global climate model, subtantially increases the intensity of future heatwaves across Northern Eurasia. This indicates that our climate model has previously been under-predicting heatwave intensity. Our results have widespread implications for other climate models, many of which do not account for differences in stomatal water-use across different plant functional types, and hence, are also likely under projecting heatwave intensity in the future.
Collapse
|
48
|
Hu J, Riveros-Iregui DA. Life in the clouds: are tropical montane cloud forests responding to changes in climate? Oecologia 2016; 180:1061-73. [PMID: 26739003 DOI: 10.1007/s00442-015-3533-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 12/15/2015] [Indexed: 11/28/2022]
Abstract
The humid tropics represent only one example of the many places worldwide where anthropogenic disturbance and climate change are quickly affecting the feedbacks between water and trees. In this article, we address the need for a more long-term perspective on the effects of climate change on tropical montane cloud forests (TMCF) in order to fully assess the combined vulnerability and long-term response of tropical trees to changes in precipitation regimes, including cloud immersion. We first review the ecophysiological benefits that cloud water interception offers to trees in TMCF and then examine current climatological evidence that suggests changes in cloud base height and impending changes in cloud immersion for TMCF. Finally, we propose an experimental approach to examine the long-term dynamics of tropical trees in TMCF in response to environmental conditions on decade-to-century time scales. This information is important to assess the vulnerability and long-term response of TMCF to changes in cloud cover and fog frequency and duration.
Collapse
Affiliation(s)
- Jia Hu
- Department of Ecology, Montana State University, Bozeman, MT, 59715, USA.
| | | |
Collapse
|
49
|
Beerling DJ. Gas valves, forests and global change: a commentary on Jarvis (1976) 'The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field'. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2014.0311. [PMID: 25750234 PMCID: PMC4360119 DOI: 10.1098/rstb.2014.0311] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microscopic turgor-operated gas valves on leaf surfaces-stomata-facilitate gas exchange between the plant and the atmosphere, and respond to multiple environmental and endogenous cues. Collectively, stomatal activities affect everything from the productivity of forests, grasslands and crops to biophysical feedbacks between land surface vegetation and climate. In 1976, plant physiologist Paul Jarvis reported an empirical model describing stomatal responses to key environmental and plant conditions that predicted the flux of water vapour from leaves into the surrounding atmosphere. Subsequent theoretical advances, building on this earlier approach, established the current paradigm for capturing the physiological behaviour of stomata that became incorporated into sophisticated models of land carbon cycling. However, these models struggle to accurately predict observed trends in the physiological responses of Northern Hemisphere forests to recent atmospheric CO2 increases, highlighting the need for improved representation of the role of stomata in regulating forest-climate interactions. Bridging this gap between observations and theory as atmospheric CO2 rises and climate change accelerates creates challenging opportunities for the next generation of physiologists to advance planetary ecology and climate science. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Collapse
Affiliation(s)
- David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
50
|
Yu MH, Ding GD, Gao GL, Sun BP, Zhao YY, Wan L, Wang DY, Gui ZY. How the Plant Temperature Links to the Air Temperature in the Desert Plant Artemisia ordosica. PLoS One 2015; 10:e0135452. [PMID: 26280557 PMCID: PMC4539227 DOI: 10.1371/journal.pone.0135452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022] Open
Abstract
Plant temperature (Tp) is an important indicator of plant health. To determine the dynamics of plant temperature and self-cooling ability of the plant, we measured Tp in Artemisia ordosica in July, in the Mu Us Desert of Northwest China. Related factors were also monitored to investigate their effects on Tp, including environmental factors, such as air temperature (Ta), relative humidity, wind speed; and physiological factors, such as leaf water potential, sap flow, and water content. The results indicate that: 1) Tp generally changes in conjunction with Ta mainly, and varies with height and among the plant organs. Tp in the young branches is most constant, while it is the most sensitive in the leaves. 2) Correlations between Tp and environmental factors show that Tp is affected mainly by Ta. 3) The self-cooling ability of the plant was effective by midday, with Tp being lower than Ta. 4) Increasing sap flow and leaf water potential showed that transpiration formed part of the mechanism that supported self-cooling. Increased in water conductance and specific heat at midday may be additional factors that contribute to plant cooling ability. Therefore, our results confirmed plant self-cooling ability. The response to high temperatures is regulated by both transpiration speed and an increase in stem water conductance. This study provides quantitative data for plant management in terms of temperature control. Moreover, our findings will assist species selection with taking plant temperature as an index.
Collapse
Affiliation(s)
- Ming-Han Yu
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Guo-Dong Ding
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- * E-mail: (GD); (GG)
| | - Guang-Lei Gao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- * E-mail: (GD); (GG)
| | - Bao-Ping Sun
- Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Yuan-Yuan Zhao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Li Wan
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
| | - De-Ying Wang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Zi-Yang Gui
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|