1
|
Nippert KE, Rowland CP, Vazey EM, Moorman DE. Alcohol, flexible behavior, and the prefrontal cortex: Functional changes underlying impaired cognitive flexibility. Neuropharmacology 2024; 260:110114. [PMID: 39134298 DOI: 10.1016/j.neuropharm.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Cognitive flexibility enables individuals to alter their behavior in response to changing environmental demands, facilitating optimal behavior in a dynamic world. The inability to do this, called behavioral inflexibility, is a pervasive behavioral phenotype in alcohol use disorder (AUD), driven by disruptions in cognitive flexibility. Research has repeatedly shown that behavioral inflexibility not only results from alcohol exposure across species but can itself be predictive of future drinking. Like many high-level executive functions, flexible behavior requires healthy functioning of the prefrontal cortex (PFC). The scope of this review addresses two primary themes: first, we outline tasks that have been used to investigate flexibility in the context of AUD or AUD models. We characterize these based on the task features and underlying cognitive processes that differentiate them from one another. We highlight the neural basis of flexibility measures, focusing on the PFC, and how acute or chronic alcohol in humans and non-human animal models impacts flexibility. Second, we consolidate findings on the molecular, physiological and functional changes in the PFC elicited by alcohol, that may contribute to cognitive flexibility deficits seen in AUD. Collectively, this approach identifies several key avenues for future research that will facilitate effective treatments to promote flexible behavior in the context of AUD, to reduce the risk of alcohol related harm, and to improve outcomes following AUD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Kathryn E Nippert
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Courtney P Rowland
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Elena M Vazey
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - David E Moorman
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
2
|
Ahmadi S, Quirion I, Faivre P, Registe PPW, O'Brien MW, Bray NW, Dupuy O, Sénéchal M, Bélanger M, Mekari S. Association between physical fitness and executive functions in cognitively healthy female older adults: a cross-sectional study. GeroScience 2024; 46:5701-5710. [PMID: 38722469 PMCID: PMC11494617 DOI: 10.1007/s11357-024-01188-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/30/2024] [Indexed: 10/23/2024] Open
Abstract
Cardiovascular endurance and muscular fitness seem to impact specific cognitive components in older females. However, it remains uncertain whether these relate to executive functions or if these correlations are limited to specific physical fitness indicators. This study aimed to determine the association between specific physical fitness components and executive functions in community-dwelling older females. Thirty-five cognitively healthy community-dwelling older females (71.5 ± 5.7 years) underwent a series of physical fitness tests. These included the handgrip strength test (HGT), the 6-min walk test (6MWT), the 8-foot up-and-go test (8FUGT), and the chair stand test (CST). Participants also completed trail A and trail B of the cognitive trail making test. Results showed that trail B reaction time had a negative association with both HGT (r = - 0.502; p = 0.002) and 6MWT (r = - 0.543; p < 0.001). Together, the HGT and 6MWT results explained 39% of the variation in trail B reaction times: HGT accounted for 18% and 6MWT for 21%. Better scores on the 6MWT and HGT-but not on the 8FUGT and CST-correlated with enhanced executive function in cognitively healthy community-dwelling older females. The results of this study underscore the importance of specific physical assessments, like the 6MWT and HGT, as potential indicators of executive function, offering targeted strategies for maintaining cognitive health in aging females.
Collapse
Affiliation(s)
- Shirko Ahmadi
- Department of Family Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada.
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, Canada.
| | - Isadora Quirion
- Department of Family Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, Canada
| | - Pierre Faivre
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, Canada
- Laboratory MOVE (EA 6314), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - Pierre Philippe Wilson Registe
- Department of Family Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, Canada
| | - Myles W O'Brien
- School of Physiotherapy (Faculty of Health) and Department of Medicine (Faculty of Medicine), Dalhousie University, Halifax, NS, Canada
- Geriatric Medicine Research, Dalhousie University & Nova Scotia Health, Halifax, NS, Canada
| | - Nick W Bray
- Faculty of Medicine, Memorial University of Newfoundland, St. John's City, Newfoundland and Labrador, Canada
| | - Olivier Dupuy
- Laboratory MOVE (EA 6314), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - Martin Sénéchal
- Faculty of Kinesiology, University of New Brunswick, Fredericton, New Brunswick, Canada
- Cardiometabolic Exercise & Lifestyle Laboratory, Faculty of Kinesiology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Mathieu Bélanger
- Department of Family Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, Canada
| | - Said Mekari
- Department of Family Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, Canada
| |
Collapse
|
3
|
Adekunbi DA, Huber HF, Benavides GA, Tian R, Li C, Nathanielsz PW, Zhang J, Darley-Usmar V, Cox LA, Salmon AB. Sex-specific decline in prefrontal cortex mitochondrial bioenergetics in aging baboons correlates with walking speed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613684. [PMID: 39386547 PMCID: PMC11463596 DOI: 10.1101/2024.09.19.613684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mitochondria play a crucial role in brain aging due to their involvement in bioenergetics, neuroinflammation and brain steroid synthesis. Mitochondrial dysfunction is linked to age-related neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. We investigated changes in the activities of the electron transport chain (ETC) complexes in normally aging baboon brains and determined how these changes relate to donor sex, morning cortisol levels, and walking speed. Using a novel approach, we assessed mitochondrial bioenergetics from frozen prefrontal cortex (PFC) tissues from a large cohort (60 individuals) of well-characterized aging baboons (6.6-22.8 years, approximately equivalent to 26.4-91.2 human years). Aging was associated with a decline in mitochondrial ETC complexes in the PFC, which was more pronounced when activities were normalized for citrate synthase activity, suggesting that the decline in respiration is predominantly driven by changes in the specific activity of individual complexes rather than changes in mitochondrial number. Moreover, when donor sex was used as a covariate, we found that mitochondrial respiration was preserved with age in females, whereas males showed significant loss of ETC activity with age. Males had higher activities of each individual ETC complex and greater lactate dehydrogenase activity relative to females. Circulating cortisol levels correlated only with complex II-linked respiration in males. We also observed a robust positive predictive relationship between walking speed and respiration linked to complexes I, III, and IV in males but not in females. This data reveals a previously unknown link between aging and bioenergetics across multiple tissues linking frailty and bioenergetic function. This study highlights a potential molecular mechanism for sexual dimorphism in brain resilience and suggests that in males changes in PFC bioenergetics contribute to reduced motor function with age.
Collapse
Affiliation(s)
- Daniel A Adekunbi
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham (UAB), and UAB Nathan Shock Center, Birmingham, AL, USA
| | - Ran Tian
- Department of Pathology, University of Alabama at Birmingham (UAB), and UAB Nathan Shock Center, Birmingham, AL, USA
| | - Cun Li
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Peter W Nathanielsz
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham (UAB), and UAB Nathan Shock Center, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham (UAB), and UAB Nathan Shock Center, Birmingham, AL, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Adam B Salmon
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, Texas, USA
- San Antonio Nathan Shock Center, University of Texas Health Science Center at San Antonio, Texas, USA
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, Southwest Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
4
|
Sogabe K, Hata J, Yoshimaru D, Hagiya K, Okano HJ, Okano H. Structural MRI analysis of age-related changes and sex differences in marmoset brain volume. Neurosci Res 2024; 206:20-29. [PMID: 38636670 DOI: 10.1016/j.neures.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
The field of aging biology, which aims to extend healthy lifespans and prevent age-related diseases, has turned its focus to the Callithrix jacchus (common marmoset) to understand the aging process better. This study utilized magnetic resonance imaging (MRI) to non-invasively analyze the brains of 216 marmosets, investigating age-related changes in brain structure; the relationship between body weight and brain volume; and potential differences between males and females. The key findings revealed that, similar to humans, Callithrix jacchus experiences a reduction in total intracranial volume, cortex, subcortex, thalamus, and cingulate volumes as they age, highlighting site-dependent changes in brain tissue. Notably, the study also uncovered sex differences in cerebellar volume. These insights into the structural connectivity and volumetric changes in the marmoset brain throughout aging contribute to accumulating valuable knowledge in the field, promising to inform future aging research and interventions for enhancing healthspan.
Collapse
Affiliation(s)
- Kazumi Sogabe
- The Jikei University School of Medicine, Japan; Teikyo University Faculty of Medical Technology, Japan
| | - Junichi Hata
- The Jikei University School of Medicine, Japan; Tokyo Metropolitan University, Japan
| | - Daisuke Yoshimaru
- The Jikei University School of Medicine, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Kei Hagiya
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Hirotaka James Okano
- The Jikei University School of Medicine, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Keio University Regenerative Medicine Research Center 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.
| |
Collapse
|
5
|
Camp N, Vagnetti R, Penner S, Ramos C, Hunter K, Hough J, Magistro D. It Is Not Just a Matter of Motivation: The Role of Self-Control in Promoting Physical Activity in Older Adults-A Bayesian Mediation Model. Healthcare (Basel) 2024; 12:1663. [PMID: 39201220 PMCID: PMC11353447 DOI: 10.3390/healthcare12161663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/02/2024] Open
Abstract
This study aimed to understand how psychological factors affect regular exercise in older adults, hypothesising that trait self-control mediates the relationship between motivation types (intrinsic, extrinsic, and amotivation) and exercise time. In this cross-sectional study, 430 older adults (mean age = 68.8 ± 6.72) completed questionnaires regarding their perceived trait self-control, motivation towards leisure activities, and level of physical activity. A Bayesian mediation analysis was performed, controlling for demographics. We documented positive direct (c' = 0.021, 95%CI [0.001, 0.043]) and indirect (ab = 0.028, 95%CI [0.014, 0.043]) effects of intrinsic motivation on exercise, a fully mediated indirect effect of extrinsic motivation on exercise (ab = 0.027, 95%CI [0.011, 0.046]), and negative direct (c' = -0.281, 95%CI [-0.368, -0.194]) and indirect (ab = -0.161, 95%CI [-0.221, -0.105]) effects of amotivation on exercise. There was no direct association between extrinsic motivation and exercise (c' = 0.013, 95% CI [-0.013, 0.037]). In conclusion, trait self-control mediates motivation to influence exercise behaviour in older adults. Intrinsically motivated individuals resist sedentary living and show higher self-control, while extrinsically motivated ones rely on self-control and are more susceptible to non-adherence during mental fatigue. High amotivation is linked to less exercise and reduced self-control, suggesting potential non-compliance with structured exercise interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniele Magistro
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (N.C.); (R.V.); (S.P.); (C.R.); (K.H.); (J.H.)
| |
Collapse
|
6
|
Goodhew SC, Edwards M. Reduced low-prevalence visual search detriment with increasing age: Implications for cognitive theories of aging and real-world search tasks. Psychon Bull Rev 2024; 31:1789-1797. [PMID: 38289580 PMCID: PMC11358340 DOI: 10.3758/s13423-024-02457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 08/29/2024]
Abstract
When performing multiple successive visual searches, low-prevalence targets are at elevated risk of being missed. This has important implications for real-world visual search tasks, such as diagnostic medical imaging (e.g., searching for a cancer) and airport baggage security screening (e.g., searching for a weapon), which are characterized by low-prevalence targets and potentially dire consequences of target misses. Previous work on low-prevalence visual search indicates that individuals who spontaneously respond more slowly miss fewer targets, which has been attributed to higher quitting thresholds predicting better performance. Previous aging research indicates that older adults typically respond more slowly across multiple task contexts. This has been attributed to both intrinsic limitations in processing speed and a strategic trade-off to prioritize accuracy with increasing age. Synthesizing these two separate lines of research, here we tested whether older adults had a higher quitting threshold and/or slower processing speed in low-prevalence visual search, and the consequences of these for the magnitude of the low-prevalence visual search detriment. We recruited a large sample (N = 380) across a range of ages (20-80 years) and had them search for targets under low- and high-prevalence conditions. Older adults had both slower processing speed and higher quitting thresholds. Older adults were moderately less susceptible to the low-prevalence detriment, and this relationship was mediated by countervailing effects: slower processing speed exacerbated older adults' low-prevalence detriment, whereas elevated quitting threshold mitigated it. Theoretical implications for cognitive aging and practical implications for professional visual search tasks are discussed.
Collapse
Affiliation(s)
- Stephanie C Goodhew
- School of Medicine and Psychology, Psychology Building (building 39), The Australian National University, Canberra, ACT 2601, Australia.
| | - Mark Edwards
- School of Medicine and Psychology, Psychology Building (building 39), The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
7
|
Martinec Nováková L, Georgi H, Vlčková K, Kopeček M, Babuská A, Havlíček J. Small effects of olfactory identification and discrimination on global cognitive and executive performance over 1 year in aging people without a history of age-related cognitive impairment. Physiol Behav 2024; 282:114579. [PMID: 38710351 DOI: 10.1016/j.physbeh.2024.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Olfactory and cognitive performance share neural correlates profoundly affected by physiological aging. However, whether odor identification and discrimination scores predict global cognitive status and executive function in healthy older people with intact cognition is unclear. Therefore, in the present study, we set out to elucidate these links in a convenience sample of 204 independently living, cognitively intact healthy Czech adults aged 77.4 ± 8.7 (61-97 years) over two waves of data collection (one-year interval). We used the Czech versions of the Montreal Cognitive Assessment (MoCA) to evaluate global cognition, and the Prague Stroop Test (PST), Trail Making Test (TMT), and several verbal fluency (VF) tests to assess executive function. As a subsidiary aim, we aimed to examine the contribution of olfactory performance towards achieving a MoCA score above vs. below the published cut-off value. We found that the MoCA scores exhibited moderate associations with both odor identification and discrimination. Furthermore, odor identification significantly predicted PST C and C/D scores. Odor discrimination significantly predicted PST C/D, TMT B/A, and standardized composite VF scores. Our findings demonstrate that olfaction, on the one hand, and global cognition and executive function, on the other, are related even in healthy older people.
Collapse
Affiliation(s)
- Lenka Martinec Nováková
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Pátkova 2137/5, 182 00 Prague 8 - Libeň, Czech Republic; Department of Chemical Education and Humanities, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6 - Dejvice, Czech Republic.
| | - Hana Georgi
- Prague College of Psychosocial Studies, Hekrova 805, 149 00 Prague 4, Czech Republic
| | - Karolína Vlčková
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10 - Vršovice, Czech Republic; Thomayer Teaching Hospital, Vídeňská 800, 140 59 Prague 4 - Krč, Czech Republic
| | - Miloslav Kopeček
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10 - Vršovice, Czech Republic; National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Anna Babuská
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| | - Jan Havlíček
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czech Republic
| |
Collapse
|
8
|
Yang S, Datta D, Krienen FM, Ling E, Woo E, May A, Anderson GM, Galvin VC, Gonzalez-Burgos G, Lewis DA, McCarroll SA, Arnsten AF, Wang M. Kynurenic acid inflammatory signaling expands in primates and impairs prefrontal cortical cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598842. [PMID: 38915595 PMCID: PMC11195225 DOI: 10.1101/2024.06.13.598842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cognitive deficits from dorsolateral prefrontal cortex (dlPFC) dysfunction are common in neuroinflammatory disorders, including long-COVID, schizophrenia and Alzheimer's disease, and have been correlated with kynurenine inflammatory signaling. Kynurenine is further metabolized to kynurenic acid (KYNA) in brain, where it blocks NMDA and α7-nicotinic receptors (nic-α7Rs). These receptors are essential for neurotransmission in dlPFC, suggesting that KYNA may cause higher cognitive deficits in these disorders. The current study found that KYNA and its synthetic enzyme, KAT II, have greatly expanded expression in primate dlPFC in both glia and neurons. Local application of KYNA onto dlPFC neurons markedly reduced the delay-related firing needed for working memory via actions at NMDA and nic-α7Rs, while inhibition of KAT II enhanced neuronal firing in aged macaques. Systemic administration of agents that reduce KYNA production similarly improved cognitive performance in aged monkeys, suggesting a therapeutic avenue for the treatment of cognitive deficits in neuroinflammatory disorders.
Collapse
|
9
|
Barrett E, Ivey G, Cunningham A, Coffman G, Pemberton T, Lee C, Patra P, Day JB, Lee PHU, Shim JW. Reduced GLP-1R availability in the caudate nucleus with Alzheimer's disease. Front Aging Neurosci 2024; 16:1350239. [PMID: 38915346 PMCID: PMC11194438 DOI: 10.3389/fnagi.2024.1350239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) agonists reduce glycated hemoglobin in patients with type 2 diabetes. Mounting evidence indicates that the potential of GLP-1R agonists, mimicking a 30 amino acid ligand, GLP-1, extends to the treatment of neurodegenerative conditions, with a particular focus on Alzheimer's disease (AD). However, the mechanism that underlies regulation of GLP-1R availability in the brain with AD remains poorly understood. Here, using whole transcriptome RNA-Seq of the human postmortem caudate nucleus with AD and chronic hydrocephalus (CH) in the elderly, we found that GLP-1R and select mRNAs expressed in glucose dysmetabolism and dyslipidemia were significantly altered. Furthermore, we detected human RNA indicating a deficiency in doublecortin (DCX) levels and the presence of ferroptosis in the caudate nucleus impacted by AD. Using the genome data viewer, we assessed mutability of GLP-1R and 39 other genes by two factors associated with high mutation rates in chromosomes of four species. Surprisingly, we identified that nucleotide sizes of GLP-1R transcript exceptionally differed in all four species of humans, chimpanzees, rats, and mice by up to 6-fold. Taken together, the protein network database analysis suggests that reduced GLP-1R in the aged human brain is associated with glucose dysmetabolism, ferroptosis, and reduced DCX+ neurons, that may contribute to AD.
Collapse
Affiliation(s)
- Emma Barrett
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Gabrielle Ivey
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Adam Cunningham
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Gary Coffman
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Tyera Pemberton
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Chan Lee
- Department of Anesthesia, Indiana University Health Arnett Hospital, Lafayette, IN, United States
| | - Prabir Patra
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - James B. Day
- Department of Orthopedic Surgery, Cabell Huntington Hospital and Marshall University School of Medicine, Huntington, WV, United States
| | - Peter H. U. Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Joon W. Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| |
Collapse
|
10
|
Che J, Cheng N, Jiang B, Liu Y, Liu H, Li Y, Liu H. Executive function measures of participants with mild cognitive impairment: Systematic review and meta-analysis of event-related potential studies. Int J Psychophysiol 2024; 197:112295. [PMID: 38266685 DOI: 10.1016/j.ijpsycho.2023.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVE Objective measurements of executive functions using event-related potential (ERP) may be used as markers for differentiating healthy controls (HC) from patients with mild cognitive impairment (MCI). ERP is non-invasive, cost-effective, and affordable. Older adults with MCI demonstrate deteriorated executive function, serving as a potentially valid neurophysiological marker for identifying MCI. We aimed to review published ERP studies on executive function in older adults with MCI and summarize the performance differences by component between healthy older adults and older adults with MCI. METHODS Eight electronic databases (Web of Science, PubMed, ScienceDirect, American Psychological Association PsycNet, Cochrane Library, Scopus, Embase, and Ovid) were searched for the study. Articles published from January 1 to December 31, 2022, were considered for this review. A random-effects meta-analysis and between-study heterogeneity analysis were conducted using Comprehensive Meta-Analysis V3.0 software. RESULTS We identified 7829 articles of which 28 met the full inclusion criteria and were included in the systematic review and analyses. Our pooled analysis suggested that participants with MCI can be differentiated from HC by significant P200, P300, and N200 latencies. The P100 and P300 amplitudes were significantly smaller in participants with MCI when compared with those in the HCs, and the patients with MCI showed increased N200 amplitudes. Our findings provide new insights into potential electrophysiological biomarkers for diagnosing MCI.
Collapse
Affiliation(s)
- Jiajun Che
- Department of Psychology, Chengde Medical University, Chengde 067000, China
| | - Nan Cheng
- Department of Psychology, Chengde Medical University, Chengde 067000, China
| | - Bicong Jiang
- Department of Psychology, Chengde Medical University, Chengde 067000, China
| | - Yanli Liu
- Department of Biomedical Engineering, Chengde Medical University, Chengde 067000, China
| | - Haihong Liu
- Department of Psychology, Chengde Medical University, Chengde 067000, China; Natural University of Malaysia, Faculty of Social Sciences and Humanities, Centre for Psychology and Human Welfare, Bangui, Malaysia
| | - Yutong Li
- Department of Psychology, Chengde Medical University, Chengde 067000, China
| | - Haining Liu
- Department of Psychology, Chengde Medical University, Chengde 067000, China; Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde 067000, China.
| |
Collapse
|
11
|
Chen J, Li H, Zhou B, Li X, Zhu Y, Yao Y. Interaction between visual impairment and subjective cognitive complaints on physical activity impairment in U.S. older adults: NHANES 2005-2008. BMC Geriatr 2024; 24:167. [PMID: 38368377 PMCID: PMC10874547 DOI: 10.1186/s12877-024-04739-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND/AIM To investigate the independent relationships of visual impairment (VI) and Subjective cognitive complaints (SCC) with physical function impairment (PFI) and the interaction effect between VI and SCC on PFI in American older adults. METHODS The data of this cross-sectional study was obtained from the 2005-2008 National Health and Examination Survey (NHANES) conducted in the United States. The VI criterion included both subjective self-reported eyesight conditions and objective visual acuity test results. The self-reported questionnaires were utilized to determine PFI and SCC. According to the survey design of NHANS, original data were weighted to produce nationally representative estimates. Both the unweighted original data and weighted estimates underwent analysis. Crude and adjusted logistic models were employed to assess the pairwise associations among VI, SCC, and PFI. To assess the interactive effect, measures such as the relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP), and synergy index (S) were calculated. RESULTS A total of 2,710 subjects (weighted n = 38,966,687) aged 60 years or older were included. Compared with subjects without subjective visual impairment (SVI), those with SVI had a significant positive association with PFI [weighted OR (95%CI): 3.11 (2.25, 4.31)]. After multi-variable adjusting, the relationship remained significant [weighted OR (95%CI): 1.90 (1.32, 2.72)]. Similarly, those with objective visual impairment (OVI) were positively associated with the risk of PFI in the crude model [weighted OR (95%CI): 2.35 (1.53, 3.61)] and adjusted model [weighted OR (95%CI): 1.84 (1.07, 3.17)]. Moreover, we found the association of SCC with an increased risk of FPI [crude weighted OR (95%CI): 5.02 (3.40, 7.40); adjusted weighted OR (95%CI): 3.29 (2.01, 5.38)]. Ultimately, the additive interaction showed there was a significant positive interaction term between SVI and SCC on PFI, while OVI and SCC did not. CONCLUSION Both VI and SCC were significantly associated with PFI in elder adults. Besides, there was a significant synergistic interaction between SVI and SCC on PFI, which indicated the improvement of SVI and SCC may be beneficial for the prevention of PFI. For the elderly, especially those with multiple disabilities, comprehensive and targeted approaches are imperative to foster their overall well-being and health.
Collapse
Affiliation(s)
- Jinyuan Chen
- Department of Ophthalmology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Eye Diseases and Optometry of Fujian Medical University, Fuzhou, China
| | - Haoyu Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, P. R. China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, P. R. China
| | - Biting Zhou
- Department of Ophthalmology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Clinical Research Center for Eye Diseases and Optometry of Fujian Medical University, Fuzhou, China
| | - Xian Li
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Yihua Zhu
- Department of Ophthalmology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Clinical Research Center for Eye Diseases and Optometry of Fujian Medical University, Fuzhou, China.
| | - Yihua Yao
- Department of Ophthalmology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Clinical Research Center for Eye Diseases and Optometry of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
12
|
Wang H, Pei Z, Liu Y. Effects of square dance exercise on cognitive function in elderly individuals with mild cognitive impairment: the mediating role of balance ability and executive function. BMC Geriatr 2024; 24:156. [PMID: 38360628 PMCID: PMC10870555 DOI: 10.1186/s12877-024-04714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Square dancing is a kind of aerobic fitness exercise without environmental restrictions that yields many benefits for physical and mental health; this exercise is popular among middle-aged and elderly people in China and in these populations in other countries. This study aimed to evaluate the effects of square dance exercise on the overall cognitive function of elderly individuals with mild cognitive impairment (MCI) and to research its mechanisms. METHODS A total of 60 elderly people with MCI (60-69 years old) without square dance experience were selected and randomly divided into an experimental group (n = 30) and a control group (n = 30). The experimental group participated in square dance exercise for 12 weeks, while the control group maintained their original lifestyle habits. One week before and after the intervention period, the overall cognitive function, physical fitness, and executive function of both groups were measured. RESULTS According to the results, square dance exercise directly improved the overall cognitive function of elderly individuals with MCI and indirectly affected overall cognitive function through the mediating effects of balance ability and executive function. CONCLUSIONS Square dance exercise represents a nonpharmacological intervention for the prevention and treatment of MCI. Importantly, it is best to combine this exercise with other forms of physical exercise and comprehensive treatment programs such as cognitive training, social interaction, and psychological intervention to realize its maximum effect.
Collapse
Affiliation(s)
- Heng Wang
- College of Physical Education, Henan Normal University, 453007, Xinxiang, China.
| | - Zhengguo Pei
- College of Physical Education, Henan Normal University, 453007, Xinxiang, China
| | - Yangyang Liu
- College of Physical Education, Henan Normal University, 453007, Xinxiang, China
| |
Collapse
|
13
|
Zhang Z, Yang LZ, Vékony T, Wang C, Li H. Split-half reliability estimates of an online card sorting task in a community sample of young and elderly adults. Behav Res Methods 2024; 56:1039-1051. [PMID: 36944861 PMCID: PMC10030079 DOI: 10.3758/s13428-023-02104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/23/2023]
Abstract
Executive function is vital for normal social, cognitive, and motor functions. Executive function decline due to aging increases the risk of disability and falls in older adults, which has become an urgent public health issue. Fast and convenient neuropsychological tools are thus needed to identify high-risk groups as early as possible to conduct a timely intervention. Card sorting tasks, such as Wisconsin Card Sorting Task (WCST) and its variants, are popular tools for measuring executive function. This study investigated the reliability of an open-source, self-administered, online, short-version card sorting task with a sample of young (n = 107, 65 females, age: M = 30.1 years, SD = 5.5 years) and elderly Chinese (n = 113, 53 females, age: M = 64.0 years, SD = 6.7 years). We developed an automated scoring and visualization procedure following the recent recommendations on scoring perseverative responses to make the results comparable to the standardized WCST. Reliability estimates of commonly used measures were calculated using the split-half method. All task indices' reliabilities were reasonably good in both old and young groups except for "failure-to-maintain-set." Elderly Chinese adults showed compromised task performance on all measures compared with the young Chinese adults at the group level. The R script of automated scoring and estimation of reliability is publicly available.
Collapse
Affiliation(s)
- Zhengkang Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Li-Zhuang Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.
| | - Teodóra Vékony
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, 95 Boulevard Pinel, 69500, Bron, France
| | - Changqing Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Hai Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.
| |
Collapse
|
14
|
Perosa V, Zanon Zotin MC, Schoemaker D, Sveikata L, Etherton MR, Charidimou A, Greenberg SM, Viswanathan A. Association Between Hippocampal Volumes and Cognition in Cerebral Amyloid Angiopathy. Neurology 2024; 102:e207854. [PMID: 38165326 PMCID: PMC10870737 DOI: 10.1212/wnl.0000000000207854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Accumulating evidence suggests that gray matter atrophy, often considered a marker of Alzheimer disease (AD), can also result from cerebral small vessel disease (CSVD). Cerebral amyloid angiopathy (CAA) is a form of sporadic CSVD, diagnosed through neuroimaging criteria, that often co-occurs with AD pathology and leads to cognitive impairment. We sought to identify the role of hippocampal integrity in the development of cognitive impairment in a cohort of patients with possible and probable CAA. METHODS Patients were recruited from an ongoing CAA study at Massachusetts General Hospital. Composite scores defined performance in the cognitive domains of memory, language, executive function, and processing speed. Hippocampal subfields' volumes were measured from 3T MRI, using an automated method, and multivariate linear regression models were used to estimate their association with each cognitive domain and relationship to CAA-related neuroimaging markers. RESULTS One hundred twenty patients, 36 with possible (age mean [range]: 75.6 [65.6-88.9]), 67 with probable CAA (75.9 [59.0-94.0]), and 17 controls without cognitive impairment and CSVD (72.4 [62.5-82.7]; 76.4% female patients), were included in this study. We found a positive association between all investigated hippocampal subfields and memory and language, whereas specific subfields accounted for executive function (CA4 [Estimate = 5.43; 95% CI 1.26-9.61; p = 0.020], subiculum [Estimate = 2.85; 95% CI 0.67-5.02; p = 0.022]), and processing speed (subiculum [Estimate = 1.99; 95% CI 0.13-3.85; p = 0.036]). These findings were independent of other CAA-related markers, which did not have an influence on cognition in this cohort. Peak width of skeletonized mean diffusivity (PSMD), a measure of white matter integrity, was negatively associated with hippocampal subfields' volumes (CA3 [Estimate = -0.012; 95% CI -0.020 to -0.004; p = 0.034], CA4 [Estimate = -0.010; 95% CI -0.020 to -0.0007; p = 0.037], subiculum [Estimate = -0.019; 95% CI -0.042 to -0.0001; p = 0.003]). DISCUSSION These results suggest that hippocampal integrity is an independent contributor to cognitive impairment in patients with CAA and that it might be related to loss of integrity in the white matter. Further studies exploring potential causes and directionality of the relationship between white matter and hippocampal integrity may be warranted.
Collapse
Affiliation(s)
- Valentina Perosa
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maria Clara Zanon Zotin
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Dorothee Schoemaker
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lukas Sveikata
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Mark R Etherton
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Andreas Charidimou
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Steven M Greenberg
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Anand Viswanathan
- From the J Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
15
|
Cox LA, Puppala S, Chan J, Zimmerman KD, Hamid Z, Ampong I, Huber HF, Li G, Jadhav AYL, Wang B, Li C, Baxter MG, Shively C, Clarke GD, Register TC, Nathanielsz PW, Olivier M. Integrated multi-omics analysis of brain aging in female nonhuman primates reveals altered signaling pathways relevant to age-related disorders. Neurobiol Aging 2023; 132:109-119. [PMID: 37797463 PMCID: PMC10841409 DOI: 10.1016/j.neurobiolaging.2023.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 10/07/2023]
Abstract
The prefrontal cortex (PFC) has been implicated as a key brain region responsible for age-related cognitive decline. Little is known about aging-related molecular changes in PFC that may mediate these effects. To date, no studies have used untargeted discovery methods with integrated analyses to determine PFC molecular changes in healthy female primates. We quantified PFC changes associated with healthy aging in female baboons by integrating multiple omics data types (transcriptomics, proteomics, metabolomics) from samples across the adult age span. Our integrated omics approach using unbiased weighted gene co-expression network analysis to integrate data and treat age as a continuous variable, revealed highly interconnected known and novel pathways associated with PFC aging. We found Gamma-aminobutyric acid (GABA) tissue content associated with these signaling pathways, providing 1 potential biomarker to assess PFC changes with age. These highly coordinated pathway changes during aging may represent early steps for aging-related decline in PFC functions, such as learning and memory, and provide potential biomarkers to assess cognitive status in humans.
Collapse
Affiliation(s)
- Laura A Cox
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA; Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Sobha Puppala
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA; Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeannie Chan
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA; Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kip D Zimmerman
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA; Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Zeeshan Hamid
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Isaac Ampong
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ge Li
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Avinash Y L Jadhav
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Benlian Wang
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Cun Li
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Mark G Baxter
- Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Carol Shively
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA; Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Geoffrey D Clarke
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Thomas C Register
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA; Section on Comparative Medicine, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Peter W Nathanielsz
- Texas Pregnancy & Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA; Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
16
|
Rothwell ES, Carp SB, Bliss-Moreau E. The importance of social behavior in nonhuman primate studies of aging: A mini-review. Neurosci Biobehav Rev 2023; 154:105422. [PMID: 37806369 PMCID: PMC10716830 DOI: 10.1016/j.neubiorev.2023.105422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Social behavior plays an important role in supporting both psychological and physical health across the lifespan. People's social lives change as they age, and the nature of these changes differ based on whether people are on healthy aging trajectories or are experiencing neurodegenerative diseases that cause dementia, such as Alzheimer's disease and Parkinson's disease. Nonhuman primate models of aging have provided a base of knowledge comparing aging trajectories in health and disease, but these studies rarely emphasize social behavior changes as a consequence of the aging process. What data exist hold particular value, as negative effects of disease and aging on social behavior are likely to have disproportionate impacts on quality of life. In this mini review, we examine the literature on nonhuman primate models of aging with a focus on social behavior, in the context of both health and disease. We propose that adopting a greater focus on social behavior outcomes in nonhuman primates will improve our understanding of the intersection of health, aging and sociality in humans.
Collapse
Affiliation(s)
- Emily S Rothwell
- Department of Neurobiology, School of Medicine University of Pittsburgh, 3501 Fifth Avenue, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA.
| | - Sarah B Carp
- Neuroscience & Behavior Unit, California National Primate Research Center, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA
| | - Eliza Bliss-Moreau
- Neuroscience & Behavior Unit, California National Primate Research Center, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA; Department of Psychology, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA
| |
Collapse
|
17
|
Thompson González N, Machanda Z, Emery Thompson M. Age-related social selectivity: An adaptive lens on a later life social phenotype. Neurosci Biobehav Rev 2023; 152:105294. [PMID: 37380041 PMCID: PMC10529433 DOI: 10.1016/j.neubiorev.2023.105294] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Age-related social selectivity is a process in which older humans reduce their number of social partners to a subset of positive and emotionally fulfilling relationships. Although selectivity has been attributed to humans' unique perceptions of time horizons, recent evidence demonstrates that these social patterns and processes occur in other non-human primates, suggesting an evolutionarily wider phenomenon. Here, we develop the hypothesis that selective social behavior is an adaptive strategy that allows social animals to balance the costs and benefits of navigating social environments in the face of age-related functional declines. We first aim to distinguish social selectivity from the non-adaptive social consequences of aging. We then outline multiple mechanisms by which social selectivity in old age may enhance fitness and healthspan. Our goal is to lay out a research agenda to identify selective strategies and their potential benefits. Given the importance of social support for health across primates, understanding why aging individuals lose social connections and how they can remain resilient has vital applications to public health research.
Collapse
Affiliation(s)
- Nicole Thompson González
- Integrative Anthropological Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Zarin Machanda
- Department of Anthropology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
18
|
Ziegler T, Tsiountsioura M, Meixner-Goetz L, Cvirn G, Lamprecht M. Polyphenols' Impact on Selected Biomarkers of Brain Aging in Healthy Middle-Aged and Elderly Subjects: A Review of Clinical Trials. Nutrients 2023; 15:3770. [PMID: 37686802 PMCID: PMC10490411 DOI: 10.3390/nu15173770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
With a constantly growing elderly population, incidences of neurodegenerative diseases are also rising and are expected to further increase over the next years, while costing health systems across the world trillions of dollars. Therefore, biomarkers to detect manifestations of brain aging early and interventions to slow down its pace are of great interest. In the last years, the importance of the neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the context of cognitive function and the aging brain has increased, besides the already well-established amyloid-beta (Aβ) and tau plaques. Due to their wide range of beneficial health effects as well as their antioxidant and anti-inflammatory properties, a class of secondary plant-metabolites, the so-called polyphenols, gained increasing attention. In this review, we discuss the roles of BDNF, Aβ, NGF, and tau proteins as biomarkers of brain aging and the effect of dietary polyphenol interventions on these biomarkers, assessed via blood analysis, magnetic resonance imaging (MRI), and positron emission tomography (PET).
Collapse
Affiliation(s)
- Tobias Ziegler
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (T.Z.); (M.T.); (G.C.)
- Juice Plus+ Science Institute, Memphis, TN 38017, USA;
| | - Melina Tsiountsioura
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (T.Z.); (M.T.); (G.C.)
- Juice Plus+ Science Institute, Memphis, TN 38017, USA;
| | | | - Gerhard Cvirn
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (T.Z.); (M.T.); (G.C.)
| | - Manfred Lamprecht
- Juice Plus+ Science Institute, Memphis, TN 38017, USA;
- Green Beat Institute of Nutrient Research, 8010 Graz, Austria
| |
Collapse
|
19
|
Calapai A, Pfefferle D, Cassidy LC, Nazari A, Yurt P, Brockhausen RR, Treue S. A Touchscreen-Based, Multiple-Choice Approach to Cognitive Enrichment of Captive Rhesus Macaques ( Macaca mulatta). Animals (Basel) 2023; 13:2702. [PMID: 37684966 PMCID: PMC10486349 DOI: 10.3390/ani13172702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Research on the psychological and physiological well-being of captive animals has focused on investigating different types of social and structural enrichment. Consequently, cognitive enrichment has been understudied, despite the promising external validity, comparability, and applicability. As we aim to fill this gap, we developed an interactive, multiple-choice interface for cage-mounted touchscreen devices that rhesus monkeys (Macaca mulatta) can freely interact with, from within their home enclosure at the Cognitive Neuroscience Laboratory of the German Primate Center. The multiple-choice interface offers interchangeable activities that animals can choose and switch between. We found that all 16 captive rhesus macaques tested consistently engaged with the multiple-choice interface across 6 weekly sessions, with 11 of them exhibiting clear task preferences, and displaying proficiency in performing the selected tasks. Our approach does not require social separation or dietary restriction and is intended to increase animals' sense of competence and agency by providing them with more control over their environment. Thanks to the high level of automation, our multiple-choice interface can be easily incorporated as a standard cognitive enrichment practice across different facilities and institutes working with captive animals, particularly non-human primates. We believe that the multiple-choice interface is a sustainable, scalable, and pragmatic protocol for enhancing cognitive well-being and animal welfare in captivity.
Collapse
Affiliation(s)
- Antonino Calapai
- Cognitive Neuroscience Laboratory, German Primate Center, 37077 Goettingen, Germany
- Leibniz-Science Campus Primate Cognition, 37077 Goettingen, Germany
| | - Dana Pfefferle
- Cognitive Neuroscience Laboratory, German Primate Center, 37077 Goettingen, Germany
- Leibniz-Science Campus Primate Cognition, 37077 Goettingen, Germany
| | - Lauren C Cassidy
- Cognitive Neuroscience Laboratory, German Primate Center, 37077 Goettingen, Germany
- Leibniz-Science Campus Primate Cognition, 37077 Goettingen, Germany
- Population and Behavioral Health Services, California National Primate Research Center, University of California, Davis, CA 95817, USA
| | - Anahita Nazari
- Cognitive Neuroscience Laboratory, German Primate Center, 37077 Goettingen, Germany
| | - Pinar Yurt
- Cognitive Neuroscience Laboratory, German Primate Center, 37077 Goettingen, Germany
- Leibniz-Science Campus Primate Cognition, 37077 Goettingen, Germany
| | - Ralf R Brockhausen
- Cognitive Neuroscience Laboratory, German Primate Center, 37077 Goettingen, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center, 37077 Goettingen, Germany
- Leibniz-Science Campus Primate Cognition, 37077 Goettingen, Germany
- Faculty for Biology and Psychology, Goettingen University, 37073 Goettingen, Germany
| |
Collapse
|
20
|
Hopkins WD, Li X, Roberts N, Mulholland MM, Sherwood CC, Edler MK, Raghanti MA, Schapiro SJ. Age differences in cortical thickness and their association with cognition in chimpanzee (Pan troglodytes). Neurobiol Aging 2023; 126:91-102. [PMID: 36958104 PMCID: PMC10106435 DOI: 10.1016/j.neurobiolaging.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Humans and chimpanzees are genetically similar and share a number of life history, behavioral, cognitive and neuroanatomical similarities. Notwithstanding, our understanding of age-related changes in cognitive and motor functions in chimpanzees remains largely unstudied despite recent evident demonstrating that chimpanzees exhibit many of the same neuropathological features of Alzheimer's disease observed in human postmortem brains. Here, we examined age-related differences in cognition and cortical thickness measured from magnetic resonance images in a sample of 215 chimpanzees ranging in age between 9 and 54 years. We found that chimpanzees showed global and region-specific thinning of cortex with increasing age. Further, within the elderly cohort, chimpanzees that performed better than average had thicker cortex in frontal, temporal and parietal regions compared to chimpanzees that performed worse than average. Independent of age, we also found sex differences in cortical thickness in 4 brain regions. Males had higher adjusted cortical thickness scores for the caudal anterior cingulate, rostral anterior cingulate, and medial orbital frontal while females had higher values for the inferior parietal cortex. We found no evidence that increasing age nor sex was associated with asymmetries in cortical thickness. Moreover, age-related differences in cognitive function were only weakly associated with asymmetries in cortical thickness. In summary, as has been reported in humans and other primates, elderly chimpanzees show thinner cortex and variation in cortical thickness is associated with general cognitive functions.
Collapse
Affiliation(s)
- William D Hopkins
- National Center for Chimpanzee Care, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX.
| | - Xiang Li
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Neil Roberts
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Michele M Mulholland
- National Center for Chimpanzee Care, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC
| | - Melissa K Edler
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, OH
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, OH
| | - Steven J Schapiro
- National Center for Chimpanzee Care, Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX; Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Coundouris SP, Hohn S, Basu A, Dulleck U, Henry JD, Cherbuin N. Cognition and Financial Decision-Making in Older Adult Spouses. Gerontology 2023; 69:1128-1136. [PMID: 37231845 PMCID: PMC10614223 DOI: 10.1159/000531193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Age-related decline in executive functioning has been found to negatively impact one's capacity to make prudent financial decisions. The broader literature also speaks to the importance of considering interrelatedness in older spouses' functioning, as these individuals typically represent one's longest and closest relationship that involves an extended history of shared experiences. Accordingly, the aim of the present study was to provide the first examination of whether older adults' financial decision-making capacity is impacted not only by their own but also by their partner's, level of cognitive functioning. METHOD Sixty-three heterosexual spousal dyads comprising older adults aged 60-88 participated. The contribution of executive functioning and perceptions of partner's cognitive decline on financial decision-making behavior and financial competency was assessed through two actor-partner interdependence models. RESULTS As predicted, for both genders, one's own executive functioning was predictive of one's own financial decision-making capacity. However, of particular interest was the finding that for females (but not males) perceiving greater cognitive decline in their spouse predicted their own (greater) financial competency. CONCLUSION Examining whether partner interdependence extends to the realm of financial decision-making is not only a theoretically but also practically important question. These data provide initial insights that such a relationship does exist and highlight further important avenues for future research.
Collapse
Affiliation(s)
- Sarah P. Coundouris
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - Sylvain Hohn
- School of Economics and Finance, Queensland University of Technology, Brisbane, QLD, Australia
| | - Anup Basu
- School of Economics and Finance, Queensland University of Technology, Brisbane, QLD, Australia
| | - Uwe Dulleck
- School of Economics and Finance, Queensland University of Technology, Brisbane, QLD, Australia
| | - Julie D. Henry
- School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
22
|
Khalid S, Innes K, Umer A, Lilly C, Gross D, Sambamoorthi U. Assessment of Joint and Interactive Effects of Multimorbidity and Chronic Pain on ADRD Risk in the Elder Population. RESEARCH SQUARE 2023:rs.3.rs-2743755. [PMID: 37090532 PMCID: PMC10120756 DOI: 10.21203/rs.3.rs-2743755/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Objective Multimorbidity and non-cancer chronic pain conditions (NCPC) are independently linked to elevated risk for cognitive impairment and incident Alzheimer's Disease and Related Dementias (ADRD)-both - We present the study of potential joint and interactive effects of these conditions on the risk of incident ADRD in older population. Methods This retrospective-cohort study drew baseline and 2-year follow-up data from linked Medicare claims and Medicare Current Beneficiary Survey (MCBS). Baseline multimorbidity and NCPC were ascertained using claims data. ADRD was ascertained at baseline and follow-up. Results NCPC accompanied by multimorbidity (vs. absence of NCPC or multimorbidity) had a significant and upward association with incident ADRD (adjusted odds ratio (AOR): 1.72, 95% CI 1.38, 2.13, p < 0.0001). Secondary analysis by number of comorbid conditions suggested that the joint effects of NCPC and multimorbidity on ADRD risk may increase with rising number contributing chronic conditions. Interaction analyses indicated significantly elevated excess risk for incident ADRD.
Collapse
|
23
|
Freire-Cobo C, Rothwell ES, Varghese M, Edwards M, Janssen WGM, Lacreuse A, Hof PR. Neuronal vulnerability to brain aging and neurodegeneration in cognitively impaired marmoset monkeys (Callithrix jacchus). Neurobiol Aging 2023; 123:49-62. [PMID: 36638681 PMCID: PMC9892246 DOI: 10.1016/j.neurobiolaging.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
The investigation of neurobiological and neuropathological changes that affect synaptic integrity and function with aging is key to understanding why the aging brain is vulnerable to Alzheimer's disease. We investigated the cellular characteristics in the cerebral cortex of behaviorally characterized marmosets, based on their trajectories of cognitive learning as they transitioned to old age. We found increased astrogliosis, increased phagocytic activity of microglial cells and differences in resting and reactive microglial cell phenotypes in cognitively impaired compared to nonimpaired marmosets. Differences in amyloid beta deposition were not related to cognitive trajectory. However, we found age-related changes in density and morphology of dendritic spines in pyramidal neurons of layer 3 in the dorsolateral prefrontal cortex and the CA1 field of the hippocampus between cohorts. Overall, our data suggest that an accelerated aging process, accompanied by neurodegeneration, that takes place in cognitively impaired aged marmosets and affects the plasticity of dendritic spines in cortical areas involved in cognition and points to mechanisms of neuronal vulnerability to aging.
Collapse
Affiliation(s)
- Carmen Freire-Cobo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Emily S Rothwell
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mélise Edwards
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - William G M Janssen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
24
|
Watts A, Haneline S, Welsh-Bohmer KA, Wu J, Alexander R, Swerdlow RH, Burns DK, Saunders AM. TOMM40 '523 Genotype Distinguishes Patterns of Cognitive Improvement for Executive Function in APOEɛ3 Homozygotes. J Alzheimers Dis 2023; 95:1697-1707. [PMID: 37718796 PMCID: PMC10578241 DOI: 10.3233/jad-230066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND TOMM40 '523 has been associated with cognitive performance and risk for developing Alzheimer's disease independent of the effect of APOE genotype. Few studies have considered the longitudinal effect of this genotype on change in cognition over time. OBJECTIVE Our objective was to evaluate the relationship between TOMM40 genotype status and change in cognitive performance in the TOMMORROW study, which was designed to prospectively evaluate an algorithm that includes TOMM40 '523 for genetic risk for conversion to mild cognitive impairment. METHODS We used latent growth curve models to estimate the effect of TOMM40 allele carrier (short, very long) status on the intercept and slope of change in cognitive performance in four broad cognitive domains (attention, memory, executive function, and language) and a combined overall cognitive score over 30 months. RESULTS TOMM40 very long allele carriers had significantly lower baseline performance for the combined overall cognitive function score (B = -0.088, p = 0.034) and for the executive function domain score (B = -0.143, p = 0.013). Slopes for TOMM40 very long carriers had significantly greater increases over time for the executive function domain score only. In sensitivity analyses, the results for executive function were observed in participants who remained clinically stable, but not in those who progressed clinically over the study duration. CONCLUSIONS Our results add to the growing body of evidence that TOMM40, in the absence of APOEɛ4, may contribute to cognitive changes with aging and dementia and support the view that mitochondrial function is an important contributor to Alzheimer's disease risk.
Collapse
Affiliation(s)
- Amber Watts
- University of Kansas, Alzheimer’s Disease Research Center, Fairway, KS, USA
| | - Stephen Haneline
- Zinfandel Pharmaceuticals, Research Triangle Park, Chapel Hill, NC, USA
| | | | - Jingtao Wu
- Takeda Development Center Americas, Cambridge, MA, USA
| | | | | | - Daniel K. Burns
- Zinfandel Pharmaceuticals, Research Triangle Park, Chapel Hill, NC, USA
| | - Ann M. Saunders
- Zinfandel Pharmaceuticals, Research Triangle Park, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Li W, Zeng L, Yuan S, Shang Y, Zhuang W, Chen Z, Lyu J. Machine learning for the prediction of cognitive impairment in older adults. Front Neurosci 2023; 17:1158141. [PMID: 37179565 PMCID: PMC10172509 DOI: 10.3389/fnins.2023.1158141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Objective The purpose of this study was to develop and validate a predictive model of cognitive impairment in older adults based on a novel machine learning (ML) algorithm. Methods The complete data of 2,226 participants aged 60-80 years were extracted from the 2011-2014 National Health and Nutrition Examination Survey database. Cognitive abilities were assessed using a composite cognitive functioning score (Z-score) calculated using a correlation test among the Consortium to Establish a Registry for Alzheimer's Disease Word Learning and Delayed Recall tests, Animal Fluency Test, and the Digit Symbol Substitution Test. Thirteen demographic characteristics and risk factors associated with cognitive impairment were considered: age, sex, race, body mass index (BMI), drink, smoke, direct HDL-cholesterol level, stroke history, dietary inflammatory index (DII), glycated hemoglobin (HbA1c), Patient Health Questionnaire-9 (PHQ-9) score, sleep duration, and albumin level. Feature selection is performed using the Boruta algorithm. Model building is performed using ten-fold cross-validation, machine learning (ML) algorithms such as generalized linear model (GLM), random forest (RF), support vector machine (SVM), artificial neural network (ANN), and stochastic gradient boosting (SGB). The performance of these models was evaluated in terms of discriminatory power and clinical application. Results The study ultimately included 2,226 older adults for analysis, of whom 384 (17.25%) had cognitive impairment. After random assignment, 1,559 and 667 older adults were included in the training and test sets, respectively. A total of 10 variables such as age, race, BMI, direct HDL-cholesterol level, stroke history, DII, HbA1c, PHQ-9 score, sleep duration, and albumin level were selected to construct the model. GLM, RF, SVM, ANN, and SGB were established to obtain the area under the working characteristic curve of the test set subjects 0.779, 0.754, 0.726, 0.776, and 0.754. Among all models, the GLM model had the best predictive performance in terms of discriminatory power and clinical application. Conclusions ML models can be a reliable tool to predict the occurrence of cognitive impairment in older adults. This study used machine learning methods to develop and validate a well performing risk prediction model for the development of cognitive impairment in the elderly.
Collapse
Affiliation(s)
- Wanyue Li
- Department of Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Li Zeng
- The Second Clinical Medical College of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Shiqi Yuan
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yaru Shang
- Department of Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Weisheng Zhuang
- Department of Rehabilitation, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhuoming Chen
- Department of Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Zhuoming Chen
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- *Correspondence: Jun Lyu
| |
Collapse
|
26
|
Trichotillomania in Dementia: A Case Report and Literature Review. ARCHIVES OF NEUROSCIENCE 2022. [DOI: 10.5812/ans-129428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Dementia presents with a variety of behavioral and psychiatric disorders, including a range of psychosis, anxiety, depression, behavioral aggression, and delirium. Case Presentation: This study aimed to report a 74-year-old man showing gradually progressive deterioration in his memory for five years. The patient developed trichotillomania (TTM) subsequent to his dementia. Neuropsychological examination indicated the deficits to be more predominantly in the frontal lobe. Conclusions: This study reviewed the literature on TTM in dementia case reports that had mostly investigated the cases of right-handed men aged > 65 years. TTM Patients with underlying disease had not any improvement. Although there was some heterogeneous evidence for the presence of brain abnormalities in individuals with hair-pulling behavior, no definitive conclusion was drawn. Mild to severe generalized atrophy in the cerebral cortex was observed in the frontal, parietal, temporal, occipital, and cingulate lobes.
Collapse
|
27
|
Cabrera-Moreno J, Jeanson L, Jeschke M, Calapai A. Group-based, autonomous, individualized training and testing of long-tailed macaques ( Macaca fascicularis) in their home enclosure to a visuo-acoustic discrimination task. Front Psychol 2022; 13:1047242. [PMID: 36524199 PMCID: PMC9745322 DOI: 10.3389/fpsyg.2022.1047242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2023] Open
Abstract
In recent years, the utility and efficiency of automated procedures for cognitive assessment in psychology and neuroscience have been demonstrated in non-human primates (NHP). This approach mimics conventional shaping principles of breaking down a final desired behavior into smaller components that can be trained in a staircase manner. When combined with home-cage-based approaches, this could lead to a reduction in human workload, enhancement in data quality, and improvement in animal welfare. However, to our knowledge, there are no reported attempts to develop automated training and testing protocols for long-tailed macaques (Macaca fascicularis), a ubiquitous NHP model in neuroscience and pharmaceutical research. In the current work, we present the results from 6 long-tailed macaques that were trained using an automated unsupervised training (AUT) protocol for introducing the animals to the basics of a two-alternative choice (2 AC) task where they had to discriminate a conspecific vocalization from a pure tone relying on images presented on a touchscreen to report their response. We found that animals (1) consistently engaged with the device across several months; (2) interacted in bouts of high engagement; (3) alternated peacefully to interact with the device; and (4) smoothly ascended from step to step in the visually guided section of the procedure, in line with previous results from other NHPs. However, we also found (5) that animals' performance remained at chance level as soon as the acoustically guided steps were reached; and (6) that the engagement level decreased significantly with decreasing performance during the transition from visual to acoustic-guided sections. We conclude that with an autonomous approach, it is possible to train long-tailed macaques in their social group using computer vision techniques and without dietary restriction to solve a visually guided discrimination task but not an acoustically guided task. We provide suggestions on what future attempts could take into consideration to instruct acoustically guided discrimination tasks successfully.
Collapse
Affiliation(s)
- Jorge Cabrera-Moreno
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate CenterLeibniz-Institute for Primate Research, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Lena Jeanson
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Marcus Jeschke
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate CenterLeibniz-Institute for Primate Research, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen, Germany
| | - Antonino Calapai
- Cognitive Hearing in Primates (CHiP) Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate CenterLeibniz-Institute for Primate Research, Göttingen, Germany
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen, Germany
| |
Collapse
|
28
|
Wang R, Ekblom MM, Arvidsson D, Fridolfsson J, Börjesson M, Ekblom Ö. The interrelationship between physical activity intensity, cardiorespiratory fitness, and executive function in middle-aged adults: An observational study of office workers. Front Public Health 2022; 10:1035521. [PMID: 36438224 PMCID: PMC9682261 DOI: 10.3389/fpubh.2022.1035521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Previous evidence supports a beneficial effect of physical activity on executive function across the whole lifespan. Yet, the interrelationships of the intensities of physical activity, cardiorespiratory fitness, and executive function require further investigation in adults. Aim Using unfiltered accelerometry data and high-resolution intensity classification, we sought to estimate the associations of physical activity with cardiorespiratory fitness and executive function in adult office workers. Methods We included 343 full-time office workers (mean age: 42.41 years, range of age: 36-49 years). Executive function was assessed using Stroop, Trail making tests (part-B), and 2-back tests, and a composite score was produced to reflect the general executive function performance. Physical activity was assessed using the Actigraph GT3X+-monitor, worn by each participant for seven days at the hip. Raw accelerometry data were processed by the 10 Hz frequency extended method and divided into 22 intensity bins and sleep time. Cardiorespiratory fitness was estimated using the submaximal Ekblom-Bak cycle ergometer test. Data were analyzed using partial least squares regressions. Results In adults, cardiorespiratory fitness was closely correlated with a wide range of absolute physical activity intensity patterns. A higher level of executive function in adults was associated with both higher absolute physical activity intensities and cardiorespiratory fitness, which was independent of age, sex, and education levels. A very weak association between intensities, fitness, and executive function was observed in high-fit adults. Among low-fit adults, although a positive association started already toward the upper end of moderate intensity, there still appeared to be an association between intensities, cardiorespiratory fitness, and executive function. That is, cardiorespiratory fitness may mediate the association between absolute physical activity intensities and executive function up to a certain level. Conclusion The maintenance of executive function in adulthood was related to both physical activity intensities and cardiorespiratory fitness, while their interrelationship was not equal across fitness levels. It is highly recommended to consider the cardiorespiratory fitness level in future studies that focus on executive functions in aging as well when designing individualized physical activity training programs.
Collapse
Affiliation(s)
- Rui Wang
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, Stockholm, Sweden,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Solna, Sweden,Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States,*Correspondence: Rui Wang
| | - Maria M. Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, Stockholm, Sweden,The Department of Neuroscience, Karolinska Institute, Solna, Sweden
| | - Daniel Arvidsson
- Center for Health and Performance, Department of Food and Nutrition, and Sport Science, Faculty of Education, University of Gothenburg, Gothenburg, Sweden
| | - Jonatan Fridolfsson
- Center for Health and Performance, Department of Food and Nutrition, and Sport Science, Faculty of Education, University of Gothenburg, Gothenburg, Sweden
| | - Mats Börjesson
- Center for Health and Performance, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Sahlgrenska University Hospital/Östra, Gothenburg, Sweden
| | - Örjan Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
29
|
Abstract
While evolutionary explanations for aging have been widely acknowledged, the application of evolutionary principles to the practice of aging research has, until recently, been limited. Aging research has been dominated by studies of populations in evolutionarily novel industrialized environments and by use of short-lived animal models that are distantly related to humans. In this review, I address several emerging areas of "evolutionarily relevant" aging research, which provide a valuable complement to conventional biomedical research on aging. Nonhuman primates offer particular value as both translational and comparative models due to their long life spans, shared evolutionary history with humans, and social complexity. Additionally, because the human organism evolved in a radically different environment than that in which most humans live today, studying populations living in diverse ecologies has redefined our understanding of healthy aging by revealing the contribution of industrialized human environments to age-related pathologies.
Collapse
Affiliation(s)
- Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
30
|
Klever L, Mamassian P, Billino J. Age-related differences in visual confidence are driven by individual differences in cognitive control capacities. Sci Rep 2022; 12:6016. [PMID: 35399123 PMCID: PMC8995367 DOI: 10.1038/s41598-022-09939-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/30/2022] [Indexed: 01/10/2023] Open
Abstract
Visual perception is not only shaped by sensitivity but also by confidence, i.e., the ability to estimate the accuracy of a visual decision. Younger observers have been reported to have access to a reliable measure of their own uncertainty when making visual decisions. This metacognitive ability might be challenged during ageing due to increasing sensory noise and decreasing cognitive control resources. We investigated age effects on visual confidence using a visual contrast discrimination task and a confidence forced-choice paradigm. Younger adults (19-38 years) showed significantly lower discrimination thresholds than older adults (60-78 years). To focus on confidence sensitivity above and beyond differences in discrimination performance, we estimated confidence efficiency that reflects the ability to distinguish good from bad perceptual decisions. Confidence efficiency was estimated by comparing thresholds obtained from all trials and trials that were judged with relatively higher confidence, respectively. In both age groups, high confidence judgments were associated with better visual performance, but confidence efficiency was reduced in older adults. However, we observed substantial variability across all participants. Controlling for age group, confidence effciency was closely linked to individual differences in cognitive control capacities. Our findings provide evidence for age-related differences in confidence efficiency that present a specific challenge to perceptual performance in old age. We propose that these differences are driven by cognitive control capacities, supporting their crucial role for metacognitive efficiency.
Collapse
Affiliation(s)
- Lena Klever
- Experimental Psychology, Justus Liebig University Giessen, Giessen, Germany.
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany.
| | - Pascal Mamassian
- Laboratoire des Systèmes Perceptifs (CNRS UMR 8248), Département d'Études Cognitives, École Normale Supérieure, PSL University, 75005, Paris, France
| | - Jutta Billino
- Experimental Psychology, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
31
|
Frye BM, Craft S, Register TC, Kim J, Whitlow CT, Barcus RA, Lockhart SN, Sai KKS, Shively CA. Early Alzheimer's disease-like reductions in gray matter and cognitive function with aging in nonhuman primates. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12284. [PMID: 35310523 PMCID: PMC8918111 DOI: 10.1002/trc2.12284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 01/13/2023]
Abstract
Introduction Age-related neuropathology associated with sporadic Alzheimer's disease (AD) often develops well before the onset of symptoms. Given AD's long preclinical period, translational models are needed to identify early signatures of pathological decline. Methods Using structural magnetic resonance imaging and cognitive assessments, we examined the relationships among age, cognitive performance, and neuroanatomy in 48 vervet monkeys (Chlorocebus aethiops sabaeus) ranging from young adults to very old. Results We found negative associations of age with cortical gray matter volume (P = .003) and the temporal-parietal cortical thickness meta-region of interest (P = .001). Additionally, cortical gray matter volumes predicted working memory at approximately 1-year follow-up (correct trials at the 20s delay [P = .008]; correct responses after longer delays [P = .004]). Discussion Cortical gray matter diminishes with age in vervets in regions relevant to AD, which may increase risk of cognitive impairment. This study lays the groundwork for future investigations to test therapeutics to delay or slow pathological decline.
Collapse
Affiliation(s)
- Brett M. Frye
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal Medicine/GerontologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Thomas C. Register
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Jeongchul Kim
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Christopher T. Whitlow
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Richard A. Barcus
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Samuel N. Lockhart
- Department of Internal Medicine/GerontologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Kiran Kumar Solingapuram Sai
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Carol A. Shively
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
32
|
da Silva ABJ, Barros WMA, da Silva ML, Silva JML, Souza APDS, da Silva KG, de Sousa Fernandes MS, Carneiro ACBDF, Souza VDON, Lagranha CJ. Impact of vitamin D on cognitive functions in healthy individuals: A systematic review in randomized controlled clinical trials. Front Psychol 2022; 13:987203. [PMID: 36524160 PMCID: PMC9745323 DOI: 10.3389/fpsyg.2022.987203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
Various functions in the central nervous system, such as growth, development, and cognition can be influenced by vitamins and minerals, which are capable of helping to maintain brain health and function throughout life. Cognition is understood as the aspects related to knowledge, learning, and understanding, as well as the ability to develop these functions. A possible association between low levels of vit D and deficit in the performance of cognitive functions in healthy humans or with some pathological condition is discussed. Because of this, the present systematic review analyzed only randomized clinical trials carried out in healthy non-athlete adults about intellectual and/or mental processes involving cognitive functions to identify whether these individuals with different levels of vit D are capable of interfering with the performance of the cognitive function. To do so, we adopted the PRISMA method criteria and registered it in the PROSPERO database. The search was performed in PubMed (MEDLINE), PsycINFO, Science Direct, Scopus, and Web of Science databases, 2,167 records were identified. The 5 most frequent cognitive domains in the selected studies were: processing speed, attention, verbal learning/memory, executive function, and general cognitive functions. We found that there are positive changes in the following domains: verbal memory and verbal working memory, learning memory, attention, executive function, and also cognitive function in general. We highlight the following suggestions for improvements that vitamin D supplementation may promote in the cognitive domains of healthy adults: a) low doses between 400 and 600 IU/d seem to be more effective when compared to doses between 2,400 and 5,000 IU/d and b) food fortification and enrichment with vit D, need further studies, as they seem to be more or as effective as synthetic supplementation. We evident that there is a need for trials that evaluate the control of vit D levels for healthy adult individuals is important, as they have the potential to minimize health problems, especially those involved in the reduction of cognitive abilities. Thus, the development of more clinical trials to obtain satisfactory answers on this topic needs to be encouraged. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42021262413.
Collapse
Affiliation(s)
- Ana Beatriz Januário da Silva
- Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, PE, Brazil.,Centro Integrado de Tecnologias em Neurociência (CITENC), Centro Universitário Osman Lins (UNIFACOL), Vitória de Santo Antão, PE, Brazil
| | - Waleska Maria Almeida Barros
- Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, PE, Brazil.,Centro Integrado de Tecnologias em Neurociência (CITENC), Centro Universitário Osman Lins (UNIFACOL), Vitória de Santo Antão, PE, Brazil
| | - Mayara Luclécia da Silva
- Centro Integrado de Tecnologias em Neurociência (CITENC), Centro Universitário Osman Lins (UNIFACOL), Vitória de Santo Antão, PE, Brazil.,Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | - José Maurício Lucas Silva
- Centro Integrado de Tecnologias em Neurociência (CITENC), Centro Universitário Osman Lins (UNIFACOL), Vitória de Santo Antão, PE, Brazil.,Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | - Ana Patrícia da Silva Souza
- Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, PE, Brazil.,Centro Integrado de Tecnologias em Neurociência (CITENC), Centro Universitário Osman Lins (UNIFACOL), Vitória de Santo Antão, PE, Brazil
| | - Karollainy Gomes da Silva
- Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, PE, Brazil.,Centro Integrado de Tecnologias em Neurociência (CITENC), Centro Universitário Osman Lins (UNIFACOL), Vitória de Santo Antão, PE, Brazil
| | - Matheus Santos de Sousa Fernandes
- Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Cláudia Jacques Lagranha
- Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, PE, Brazil.,Laboratorio de Bioquimica Geral, Molecular e do Exercicio-Universidade Federal de Pernambuco, Centro Acadêmico de Vitória (CAV)-UFPE, Vitória de Santo Antão, PE, Brazil
| |
Collapse
|
33
|
Regularity and randomness in ageing: Differences in resting-state EEG complexity measured by largest Lyapunov exponent. NEUROIMAGE: REPORTS 2021. [DOI: 10.1016/j.ynirp.2021.100054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Upright NA, Baxter MG. Prefrontal cortex and cognitive aging in macaque monkeys. Am J Primatol 2021; 83:e23250. [PMID: 33687098 DOI: 10.1002/ajp.23250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 11/11/2022]
Abstract
Cognitive impairments that accompany aging, even in the absence of neurodegenerative diseases, include deficits in executive function and memory mediated by the prefrontal cortex. Because of the unique differentiation and expansion of the prefrontal cortex in primates, investigations of the neurobiological basis of cognitive aging in nonhuman primates have been particularly informative about the potential basis for age-related cognitive decline in humans. We review the cognitive functions mediated by specific subregions of prefrontal cortex, and their corresponding connections, as well as the evidence for age-related alterations in specific regions of prefrontal cortex. We also discuss evidence for similarities and differences in the effects of aging on prefrontal cortex across species.
Collapse
Affiliation(s)
- Nicholas A Upright
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mark G Baxter
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
35
|
Frye BM, Craft S, Latimer CS, Keene CD, Montine TJ, Register TC, Orr ME, Kavanagh K, Macauley SL, Shively CA. Aging-related Alzheimer's disease-like neuropathology and functional decline in captive vervet monkeys (Chlorocebus aethiops sabaeus). Am J Primatol 2021; 83:e23260. [PMID: 33818801 PMCID: PMC8626867 DOI: 10.1002/ajp.23260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/05/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
Age-related neurodegeneration characteristic of late-onset Alzheimer's disease (LOAD) begins in middle age, well before symptoms. Translational models to identify modifiable risk factors are needed to understand etiology and identify therapeutic targets. Here, we outline the evidence supporting the vervet monkey (Chlorocebus aethiops sabaeus) as a model of aging-related AD-like neuropathology and associated phenotypes including cognitive function, physical function, glucose handling, intestinal physiology, and CSF, blood, and neuroimaging biomarkers. This review provides the most comprehensive multisystem description of aging in vervets to date. This review synthesizes a large body of evidence that suggests that aging vervets exhibit a coordinated suite of traits consistent with early AD and provide a powerful, naturally occurring model for LOAD. Notably, relationships are identified between AD-like neuropathology and modifiable risk factors. Gaps in knowledge and key limitations are provided to shape future studies to illuminate mechanisms underlying divergent neurocognitive aging trajectories and to develop interventions that increase resilience to aging-associated chronic disease, particularly, LOAD.
Collapse
Affiliation(s)
- Brett M. Frye
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
- J. Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine
| | - Caitlin S. Latimer
- Department of Laboratory Medicine and Pathology, University of Washington-Seattle
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington-Seattle
| | | | - Thomas C. Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
- J. Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine
| | - Miranda E. Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
| | - Kylie Kavanagh
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
| | - Shannon L. Macauley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
| | - Carol A. Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
| |
Collapse
|
36
|
Chaudron Y, Pifferi F, Aujard F. Overview of age-related changes in psychomotor and cognitive functions in a prosimian primate, the gray mouse lemur (Microcebus murinus): Recent advances in risk factors and antiaging interventions. Am J Primatol 2021; 83:e23337. [PMID: 34706117 DOI: 10.1002/ajp.23337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/13/2023]
Abstract
Aging is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. Impaired glucose homeostasis is a major risk factor for cognitive decline in middle-aged humans, pointing at the existence of early markers of unhealthy aging. The gray mouse lemur (Microcebus murinus), a small lemuriform Malagasy primate, shows relatively slow aging with decreased psychomotor capacities at middle-age (around 5-year old). In some cases (∼10%), it spontaneously leads to pathological aging. In this case, some age-related deficits, such as severe cognitive decline, brain atrophy, amyloidosis, and glucoregulatory imbalance are congruent with what is observed in humans. In the present review, we inventory the changes occurring in psychomotor and cognitive functions during healthy and pathological aging in mouse lemur. It includes a summary of the cerebral, metabolic, and cellular alterations that occur during aging and their relation to cognitive decline. As nutrition is one of the major nonpharmacological antiaging strategies with major potential effects on cognitive performances, we also discuss its role in brain functions and cognitive decline in this species. We show that the overall approach of aging studies in the gray mouse lemur offers promising ways of investigation for understanding, prevention, and treatments of pathological aging in humans.
Collapse
Affiliation(s)
- Yohann Chaudron
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Fabienne Aujard
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| |
Collapse
|
37
|
Mulholland MM, Sherwood CC, Schapiro SJ, Raghanti MA, Hopkins WD. Age- and cognition-related differences in the gray matter volume of the chimpanzee brain (Pan troglodytes): A voxel-based morphometry and conjunction analysis. Am J Primatol 2021; 83:e23264. [PMID: 33899958 DOI: 10.1002/ajp.23264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 01/01/2023]
Abstract
Several primate species have been shown to exhibit age-related changes in cognition, brain, and behavior. However, severe neurodegenerative illnesses, such as Alzheimer's disease (AD), were once thought to be uniquely human. Recently, some chimpanzees naturally were documented to develop both neurofibrillary tangles and amyloid plaques, the main characteristics of AD pathology. In addition, like humans and other primates, chimpanzees show similar declines in cognition and motor function with age. Here, we used voxel-based morphometry to examine the relationships among gray matter volume, age, and cognition using magnetic resonance imaging scans previously acquired from chimpanzees (N = 216). We first determined the relationship between age and gray matter volume, identifying the regions that declined with age. With a subset of our sample (N = 103), we also determined differences in gray matter volume between older chimpanzees with higher cognition scores than expected for their age, and older chimpanzees with lower than expected scores. Finally, we ran a conjunction analysis to determine any overlap in brain regions between these two analyses. We found that as chimpanzees age, they lose gray matter in regions associated with cognition. In addition, cognitively healthy older chimpanzees (those performing better for their age) have greater gray matter volume in many brain regions compared with chimpanzees who underperform for their age. Finally, the conjunction analysis revealed that regions of age-related decline overlap with the regions that differ between cognitively healthy chimpanzees and those who underperform. This study provides further evidence that chimpanzees are an important model for research on the neurobiology of aging. Future studies should investigate the effects of cognitive stimulation on both cognitive performance and brain structure in aging nonhuman primates.
Collapse
Affiliation(s)
- Michele M Mulholland
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, USA
| | - Steven J Schapiro
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA.,Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - William D Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| |
Collapse
|
38
|
Preclinical Marmoset Model for Targeting Chronic Inflammation as a Strategy to Prevent Alzheimer's Disease. Vaccines (Basel) 2021; 9:vaccines9040388. [PMID: 33920929 PMCID: PMC8071309 DOI: 10.3390/vaccines9040388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the aging population, modern society is facing an increasing prevalence of neurological diseases such as Alzheimer’s disease (AD). AD is an age-related chronic neurodegenerative disorder for which no satisfying therapy exists. Understanding the mechanisms underlying the onset of AD is necessary to find targets for protective treatment. There is growing awareness of the essential role of the immune system in the early AD pathology. Amyloidopathy, the main feature of early-stage AD, has a deregulating effect on the immune function. This is reciprocal as the immune system also affects amyloidopathy. It seems that the inflammatory reaction shows a heterogeneous pattern depending on the stage of the disease and the variation between individuals, making not only the target but also the timing of treatment important. The lack of relevant translational animal models that faithfully reproduce clinical and pathogenic features of AD is a major cause of the delay in developing new disease-modifying therapies and their optimal timing of administration. This review describes the communication between amyloidopathy and inflammation and the possibility of using nonhuman primates as a relevant animal model for preclinical AD research.
Collapse
|
39
|
Hopkins WD, Mareno MC, Webb SJN, Schapiro SJ, Raghanti MA, Sherwood CC. Age-related changes in chimpanzee (Pan troglodytes) cognition: Cross-sectional and longitudinal analyses. Am J Primatol 2021; 83:e23214. [PMID: 33169860 PMCID: PMC7904603 DOI: 10.1002/ajp.23214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 10/25/2020] [Indexed: 01/06/2023]
Abstract
Chimpanzees are the species most closely related to humans, yet age-related changes in brain and cognition remain poorly understood. The lack of studies on age-related changes in cognition in chimpanzees is particularly unfortunate in light of the recent evidence demonstrating that this species naturally develops Alzheimer's disease (AD) neuropathology. Here, we tested 213 young, middle-aged, and elderly captive chimpanzees on the primate cognitive test battery (PCTB), a set of 13 tasks that assess physical and social cognition in nonhuman primates. A subset of these chimpanzees (n = 146) was tested a second time on a portion of the PCTB tasks as a means of evaluating longitudinal changes in cognition. Cross-sectional analyses revealed a significant quadratic association between age and cognition with younger and older chimpanzees performing more poorly than middle-aged individuals. Longitudinal analyses showed that the oldest chimpanzees at the time of the first test showed the greatest decline in cognition, although the effect was mild. The collective data show that chimpanzees, like other nonhuman primates, show age-related decline in cognition. Further investigations into whether the observed cognitive decline is associated with AD pathologies in chimpanzees would be invaluable in understanding the comparative biology of aging and neuropathology in primates.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Mary Catherine Mareno
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Sarah J Neal Webb
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Steven J Schapiro
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute Kent State University, Kent, Ohio 44242, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| |
Collapse
|
40
|
Wittkowski J, Fritz RG, Meier M, Schmidtke D. Conditioning learning in an attentional task relates to age and ventricular expansion in a nonhuman primate (Microcebus murinus). Behav Brain Res 2020; 399:113053. [PMID: 33279643 DOI: 10.1016/j.bbr.2020.113053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 01/25/2023]
Abstract
The grey mouse lemur (Microcebus murinus) is a promising nonhuman primate model for brain ageing and neurodegenerative diseases. Age-related cognitive decline in this model is well described, however, data on possible relations between attention and age, as they are known from humans, are missing. We tested 10 mouse lemurs in a touchscreen-based version of the 5-choice-serial-reaction-time-task (5CSRTT) on visuo-spatial attention: subjects had to interact with a briefly presented stimulus occurring unpredictably in one out of five locations on the touchscreen. Animals were trained to an 80 % performance at a four seconds stimulus presentation duration (SPD) and subsequently challenged by a SPD of two seconds. Additionally, ventricular expansion was assessed using structural magnetic resonance imaging. Trials to the 80 % criterion at four seconds SPD correlated significantly with age and with ventricular expansion, especially around the occipital lobe. Once criterion performance was reached, two seconds challenge performance was independent of age. In four subjects that were additionally challenged with 1.5, 1.0, 0.8, or 0.6 s SPDs or variable delays preceding stimulus presentation, performance linearly declined with decreasing SPD, i.e. increasing attentional demand. In conclusion, this is the first report of 5CSRTT data in mouse lemurs and demonstrates the general applicability of this task of visuo-spatial attention to this nonhuman primate model. Results further demonstrate age-related deficits in learning during acquisition of the 5CSRTT and suggest that both may be linked through age-related atrophy of occipital structures and a resulting deficit in central visual processes.
Collapse
Affiliation(s)
- Jennifer Wittkowski
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Rebecca G Fritz
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Meier
- ZTL-Imaging, Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Daniel Schmidtke
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
41
|
Emery Thompson M, Rosati AG, Snyder-Mackler N. Insights from evolutionarily relevant models for human ageing. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190605. [PMID: 32951550 PMCID: PMC7540954 DOI: 10.1098/rstb.2019.0605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
As the world confronts the health challenges of an ageing population, there has been dramatically increased interest in the science of ageing. This research has overwhelmingly focused on age-related disease, particularly in industrialized human populations and short-lived laboratory animal models. However, it has become clear that humans and long-lived primates age differently than many typical model organisms, and that many of the diseases causing death and disability in the developed world are greatly exacerbated by modern lifestyles. As such, research on how the human ageing process evolved is vital to understanding the origins of prolonged human lifespan and factors increasing vulnerability to degenerative disease. In this issue, we highlight emerging comparative research on primates, highlighting the physical, physiological, behavioural and cognitive processes of ageing. This work comprises data and theory on non-human primates, as well as under-represented data on humans living in small-scale societies, which help elucidate how environment shapes senescence. Component papers address (i) the critical processes that comprise senescence in long-lived primates; (ii) the social, ecological or individual characteristics that predict variation in the pace of ageing; and (iii) the complicated relationship between ageing trajectories and disease outcomes. Collectively, this work provides essential comparative, evolutionary data on ageing and demonstrates its unique potential to inform our understanding of the human ageing process. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
- Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, 500 University Boulevard NE, Albuquerque, NM 87131, USA
| | - Alexandra G. Rosati
- Department of Psychology and Anthropology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85281, USA
| |
Collapse
|