1
|
Cavalcanti-Dantas VDM, da Silva AF, Mendes AF, de Araújo Júnior WO, Bernardo-Menezes LC, Bresani-Salvi CC, Castellano LRC, Fernandes AIV, Lemos SG, de Magalhães JJF, Oliveira RADS, de Assis PAC, de Souza JR, de Morais CNL. Performance assessment of a new serological diagnostic test for COVID-19 with candidate peptides from spike and nucleocapsid viral proteins. Braz J Microbiol 2024; 55:2797-2803. [PMID: 39042245 PMCID: PMC11405565 DOI: 10.1007/s42770-024-01446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
Numerous commercial tests for the serological diagnosis of COVID-19 have been produced in recent years. However, it is important to note that these tests exhibit significant variability in their sensitivity, specificity, and accuracy of results. Therefore, the objective of this study was to utilize bioinformatics tools to map SARS-CoV-2 peptides, with the goal of developing a new serological diagnostic test for COVID-19. Two peptides from the S protein and one from the N protein were selected and characterized in silico, chemically synthesized, and used as a serological diagnostic tool to detect IgM, IgG, and IgA anti-SARS-CoV-2 antibodies through the ELISA technique, confirmed as positive and negative samples by RT-qPCR or serology by ELISA. The results showed a sensitivity, specificity, Positive Predictive Value and Negative Predictive Value of 100% (p < 00001, 95% CI) for the proposed test. Although preliminary, this study brings proof-of-concept results that are consistent with the high-performance rates of the ELISA test when compared to other well-established methods for diagnosing COVID-19.
Collapse
Affiliation(s)
- Vanessa de Melo Cavalcanti-Dantas
- Laboratory of Virology and Experimental Therapy, Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Alan Frazão da Silva
- Laboratory of Experimental Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrei Félix Mendes
- Laboratory of Microbiology, Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Waldecir Oliveira de Araújo Júnior
- Laboratory of Immunology and Hematology, Department of Physiology and Pathology, Multidisciplinary Research Group in Biotechnology and Health (GePeMBiS), Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Lucas Coêlho Bernardo-Menezes
- Laboratory of Virology and Experimental Therapy, Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Cristiane Campello Bresani-Salvi
- Laboratory of Virology and Experimental Therapy, Department of Virology, Group of Integrated Studies in Nutrition and Health, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Instituto de Medicina Integral Prof Fernando Figueira, Recife, Pernambuco, Brazil
| | - Lúcio Roberto Cançado Castellano
- Professional and Technological Center of the Technical School of Health, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Ana Isabel Vieira Fernandes
- Health Promotion Department of the Medical Sciences Center and Division for Infectious and Parasitic Diseases, Lauro Wanderley University Hospital, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Sherlan Guimarães Lemos
- Advanced Study Group in Analytical Chemistry, Department of Chemistry, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy, Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Renato Antônio Dos Santos Oliveira
- Laboratory of Immunology and Hematology, Department of Physiology and Pathology, Multidisciplinary Research Group in Biotechnology and Health (GePeMBiS), Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Priscilla Anne Castro de Assis
- Laboratory of Immunology and Hematology, Department of Physiology and Pathology, Multidisciplinary Research Group in Biotechnology and Health (GePeMBiS), Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Joelma Rodrigues de Souza
- Laboratory of Immunology and Hematology, Department of Physiology and Pathology, Multidisciplinary Research Group in Biotechnology and Health (GePeMBiS), Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Clarice Neuenschwander Lins de Morais
- Laboratory of Virology and Experimental Therapy, Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil.
| |
Collapse
|
2
|
El-Saed A, Othman F, Baffoe-Bonnie H, Almulhem R, Matalqah M, Alshammari L, Alshamrani MM. Symptomatic MERS-CoV infection reduces the risk of future COVID-19 disease; a retrospective cohort study. BMC Infect Dis 2023; 23:757. [PMID: 37924004 PMCID: PMC10623690 DOI: 10.1186/s12879-023-08763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The general human immune responses similarity against different coronaviruses may reflect some degree of cross-immunity, whereby exposure to one coronavirus may confer partial immunity to another. The aim was to determine whether previous MERS-CoV infection was associated with a lower risk of subsequent COVID-19 disease and its related outcomes. METHODS We conducted a retrospective cohort study among all patients screened for MERS-CoV at a tertiary care hospital in Saudi Arabia between 2012 and early 2020. Both MERS-CoV positive and negative patients were followed up from early 2020 to September 2021 for developing COVID-19 infection confirmed by RT-PCR testing. RESULTS A total of 397 participants followed for an average 15 months during COVID-19 pandemic (4.9 years from MERS-CoV infection). Of the 397 participants, 93 (23.4%) were positive for MERS-CoV at baseline; 61 (65.6%) of the positive cases were symptomatic. Out of 397, 48 (12.1%) participants developed COVID-19 by the end of the follow-up period. Cox regression analysis adjusted for age, gender, and major comorbidity showed a marginally significant lower risk of COVID-19 disease (hazard ratio = 0.533, p = 0.085) and hospital admission (hazard ratio = 0.411, p = 0.061) in patients with positive MERS-CoV. Additionally, the risk of COVID-19 disease was further reduced and became significant in patients with symptomatic MERS-CoV infection (hazard ratio = 0.324, p = 0.034) and hospital admission (hazard ratio = 0.317, p = 0.042). CONCLUSIONS The current findings may indicate a partial cross-immunity, where patients with symptomatic MERS-CoV have a lower risk of future COVID-19 infection and related hospitalization. The present results may need further examination nationally using immunity markers.
Collapse
Affiliation(s)
- Aiman El-Saed
- Infection Prevention and Control Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Fatmah Othman
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Epidemiology and Biostatistics Department, College of Public Health and Health Informatics, King Saud bin Abdul Aziz University for Health Science, Riyadh, Saudi Arabia
| | - Henry Baffoe-Bonnie
- Infection Prevention and Control Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Rawabi Almulhem
- Infection Prevention and Control Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Muayed Matalqah
- Infection Prevention and Control Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Latifah Alshammari
- Infection Prevention and Control Department, King Abdullah Specialist Children Hospital, Riyadh, Saudi Arabia
| | - Majid M Alshamrani
- Infection Prevention and Control Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Mohebbi A, Eterafi M, Fouladi N, Golizadeh M, Panahizadeh R, Habibzadeh S, Karimi K, Safarzadeh E. Adverse Effects Reported and Insights Following Sinopharm COVID-19 Vaccination. Curr Microbiol 2023; 80:377. [PMID: 37861721 DOI: 10.1007/s00284-023-03432-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/28/2023] [Indexed: 10/21/2023]
Abstract
Vaccines are promising strategies for controlling COVID-19; however, COVID-19 vaccine side effects play a central role in public confidence in the vaccine and its uptake process. This study aimed to provide evidence on the post-vaccination early side effects of the BBIBP-CorV (Sinopharm) vaccine. This cross-sectional survey-based study was conducted between November 2021 and January 2022 among recipients of the BBIBP-CorV vaccine, using a questionnaire-based survey. Our final sample consisted of 657 participants, including 392 women. Among the study cases, only 103 (15.7%) participants received one dose of vaccine, and the rest received both doses (N = 554, 84.3%). Systemic symptoms (first dose: N = 187, both doses: N = 128) were the most commonly reported events after vaccination, and among them, injection site pain (first dose: 19.3%, both doses: 12.9%) was the most prevalent adverse effect. All reporting events were mild and resolved in less than 3 days without hospitalization. Among the participants, females and young people aged 35-65 were more prone to manifest side effects (N = 169, 53.3%) after the vaccine injection. Furthermore, our results revealed that the recipients who were suffering from underlying diseases, including diabetes, renal disorder, and respiratory illness, reported fewer adverse responses after vaccination in comparison with healthy individuals. Vaccination against SARS-CoV-2 may lead to some adverse reactions in recipients. However, the frequency of post-vaccination early side effects differed in people, but all responses were slight and temporary.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Eterafi
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nasrin Fouladi
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Golizadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Panahizadeh
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shahram Habibzadeh
- Department of Internal Medicine, Emam Khomeini Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kimia Karimi
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology, and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
4
|
Bang MS, Kim CM, Cho NH, Seo JW, Kim DY, Yun NR, Kim DM. Evaluation of humoral immune response in relation to COVID-19 severity over 1 year post-infection: critical cases higher humoral immune response than mild cases. Front Immunol 2023; 14:1203803. [PMID: 37545518 PMCID: PMC10401267 DOI: 10.3389/fimmu.2023.1203803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2. We investigated the antibody response against SARS-CoV-2 until 1 year after symptom onset. Methods We collected 314 serum samples from 97 patients with COVID-19. Antibody responses were tested using an indirect immunofluorescence assay (IFA), enzyme-linked immunosorbent assay (ELISA), and plaque reduction neutralization test (PRNT) to detect specific neutralizing antibodies. Results The positivity rates for neutralizing antibodies at a 1:10 titer cutoff were 58.1% at 1 week, 97.8% at 4 weeks, and 78% at 1 year after symptom onset (53.8% in asymptomatic patients and 89.3% in symptomatic patients). The IFA and anti-S1 ELISA IgG results significantly correlated with neutralizing antibody titers. Critical/fatal cases showed significantly higher antibody titers than the asymptomatic or mild-to-moderate illness groups. Nonetheless, the median number of days to the seroconversion of neutralizing antibodies was 10 and 15 in asymptomatic and symptomatic patients, respectively. The asymptomatic group had a significantly higher neutralizing potency index than the mild-to-severe illness groups. Conclusions Neutralizing antibodies corresponded to earlier seroconversion but had a shorter presence in the asymptomatic group than in the symptomatic group and were still present 1 year after symptom onset in critical/fatal cases.
Collapse
Affiliation(s)
- Mi-Seon Bang
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Choon-Mee Kim
- Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun-Won Seo
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Da Young Kim
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Na Ra Yun
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Dong-Min Kim
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Akter R, Rahman MR, Ahmed ZS, Afrose A. Plausibility of natural immunomodulators in the treatment of COVID-19-A comprehensive analysis and future recommendations. Heliyon 2023; 9:e17478. [PMID: 37366526 PMCID: PMC10284624 DOI: 10.1016/j.heliyon.2023.e17478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
The COVID-19 pandemic has inflicted millions of deaths worldwide. Despite the availability of several vaccines and some special drugs approved for emergency use to prevent or treat this disease still, there is a huge concern regarding their effectiveness, adverse effects, and most importantly, their efficacy against the new variants. A cascade of immune-inflammatory responses is involved with the pathogenesis and severe complications with COVID-19. People with dysfunctional and compromised immune systems display severe complications, including acute respiratory distress syndrome, sepsis, multiple organ failure etc., when they get infected with the SARS-CoV-2 virus. Plant-derived natural immune-suppressant compounds, such as resveratrol, quercetin, curcumin, berberine, luteolin, etc., have been reported to inhibit pro-inflammatory cytokines and chemokines. Therefore, natural products with immunomodulatory and anti-inflammatory potential could be plausible targets to treat this contagious disease. This review aims to delineate the clinical trials status and outcomes of natural compounds with immunomodulatory potential in COVID-19 patients along with the outcomes of their in-vivo studies. In clinical trials several natural immunomodulators resulted in significant improvement of COVID-19 patients by diminishing COVID-19 symptoms such as fever, cough, sore throat, and breathlessness. Most importantly, they reduced the duration of hospitalization and the need for supplemental oxygen therapy, improved clinical outcomes in patients with COVID-19, especially weakness, and eliminated acute lung injury and acute respiratory distress syndrome. This paper also discusses many potent natural immunomodulators yet to undergo clinical trials. In-vivo studies with natural immunomodulators demonstrated reduction of a wide range of proinflammatory cytokines. Natural immunomodulators that were found effective, safe, and well tolerated in small-scale clinical trials are warranted to undergo large-scale trials to be used as drugs to treat COVID-19 infections. Alongside, compounds yet to test clinically must undergo clinical trials to find their effectiveness and safety in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md. Rashidur Rahman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zainab Syed Ahmed
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
6
|
Moon Y. Gut distress and intervention via communications of SARS-CoV-2 with mucosal exposome. Front Public Health 2023; 11:1098774. [PMID: 37139365 PMCID: PMC10150023 DOI: 10.3389/fpubh.2023.1098774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Acute coronavirus disease 2019 (COVID-19) has been associated with prevalent gastrointestinal distress, characterized by fecal shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA or persistent antigen presence in the gut. Using a meta-analysis, the present review addressed gastrointestinal symptoms, such as nausea, vomiting, abdominal pain, and diarrhea. Despite limited data on the gut-lung axis, viral transmission to the gut and its influence on gut mucosa and microbial community were found to be associated by means of various biochemical mechanisms. Notably, the prolonged presence of viral antigens and disrupted mucosal immunity may increase gut microbial and inflammatory risks, leading to acute pathological outcomes or post-acute COVID-19 symptoms. Patients with COVID-19 exhibit lower bacterial diversity and a higher relative abundance of opportunistic pathogens in their gut microbiota than healthy controls. Considering the dysbiotic changes during infection, remodeling or supplementation with beneficial microbial communities may counteract adverse outcomes in the gut and other organs in patients with COVID-19. Moreover, nutritional status, such as vitamin D deficiency, has been associated with disease severity in patients with COVID-19 via the regulation of the gut microbial community and host immunity. The nutritional and microbiological interventions improve the gut exposome including the host immunity, gut microbiota, and nutritional status, contributing to defense against acute or post-acute COVID-19 in the gut-lung axis.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan-si, Republic of Korea
- Biomedical Research Institute, Pusan National University, Busan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan-si, Republic of Korea
| |
Collapse
|
7
|
Lauretani F, Salvi M, Zucchini I, Testa C, Cattabiani C, Arisi A, Maggio M. Relationship between Vitamin D and Immunity in Older People with COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085432. [PMID: 37107714 PMCID: PMC10138672 DOI: 10.3390/ijerph20085432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 05/11/2023]
Abstract
Vitamin D is a group of lipophilic hormones with pleiotropic actions. It has been traditionally related to bone metabolism, although several studies in the last decade have suggested its role in sarcopenia, cardiovascular and neurological diseases, insulin-resistance and diabetes, malignancies, and autoimmune diseases and infections. In the pandemic era, by considering the response of the different branches of the immune system to SARS-CoV-2 infection, our aims are both to analyse, among the pleiotropic effects of vitamin D, how its strong multimodal modulatory effect on the immune system is able to affect the pathophysiology of COVID-19 disease and to emphasise a possible relationship between the well-known circannual fluctuations in blood levels of this hormone and the epidemiological trend of this infection, particularly in the elderly population. The biologically active form of vitamin D, or calcitriol, can influence both the innate and the adaptive arm of the immune response. Calcifediol levels have been found to be inversely correlated with upper respiratory tract infections in several studies, and this activity seems to be related to its role in the innate immunity. Cathelicidin is one of the main underlying mechanisms since this peptide increases the phagocytic and germicidal activity acting as chemoattractant for neutrophils and monocytes, and representing the first barrier in the respiratory epithelium to pathogenic invasion. Furthermore, vitamin D exerts a predominantly inhibitory action on the adaptive immune response, and it influences either cell-mediated or humoral immunity through suppression of B cells proliferation, immunoglobulins production or plasma cells differentiation. This role is played by promoting the shift from a type 1 to a type 2 immune response. In particular, the suppression of Th1 response is due to the inhibition of T cells proliferation, pro-inflammatory cytokines production (e.g., INF-γ, TNF-α, IL-2, IL-17) and macrophage activation. Finally, T cells also play a fundamental role in viral infectious diseases. CD4 T cells provide support to B cells antibodies production and coordinate the activity of the other immunological cells; moreover, CD8 T lymphocytes remove infected cells and reduce viral load. For all these reasons, calcifediol could have a protective role in the lung damage produced by COVID-19 by both modulating the sensitivity of tissue to angiotensin II and promoting overexpression of ACE-2. Promising results for the potential effectiveness of vitamin D supplementation in reducing the severity of COVID-19 disease was demonstrated in a pilot clinical trial of 76 hospitalised patients with SARS-CoV-2 infection where oral calcifediol administration reduced the need for ICU treatment. These interesting results need to be confirmed in larger studies with available information on vitamin D serum levels.
Collapse
Affiliation(s)
- Fulvio Lauretani
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-703325
| | - Marco Salvi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Irene Zucchini
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Crescenzo Testa
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Chiara Cattabiani
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| | - Arianna Arisi
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Marcello Maggio
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University-Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
8
|
Dunowska M. Cross-species transmission of coronaviruses with a focus on severe acute respiratory syndrome coronavirus 2 infection in animals: a review for the veterinary practitioner. N Z Vet J 2023:1-13. [PMID: 36927253 DOI: 10.1080/00480169.2023.2191349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractIn 2019 a novel coronavirus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from an unidentified source and spread rapidly among humans worldwide. While many human infections are mild, some result in severe clinical disease that in a small proportion of infected people is fatal. The pandemic spread of SARS-CoV-2 has been facilitated by efficient human-to-human transmission of the virus, with no data to indicate that animals contributed to this global health crisis. However, a range of domesticated and wild animals are also susceptible to SARS-CoV-2 infection under both experimental and natural conditions. Humans are presumed to be the source of most animal infections thus far, although natural transmission between mink and between free-ranging deer has occurred, and occasional natural transmission between cats cannot be fully excluded. Considering the ongoing circulation of the virus among people, together with its capacity to evolve through mutation and recombination, the risk of the emergence of animal-adapted variants is not negligible. If such variants remain infectious to humans, this could lead to the establishment of an animal reservoir for the virus, which would complicate control efforts. As such, minimising human-to-animal transmission of SARS-CoV-2 should be considered as part of infection control efforts. The aim of this review is to summarise what is currently known about the species specificity of animal coronaviruses, with an emphasis on SARS-CoV-2, in the broader context of factors that facilitate cross-species transmission of viruses.
Collapse
Affiliation(s)
- M Dunowska
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
9
|
Rosengarten M. Perplexity as a provocation: revisiting the role of metaphor as a 'place holder' for the potential of COVID-19 antibodies. MEDICAL HUMANITIES 2023; 49:64-69. [PMID: 35636932 PMCID: PMC9195153 DOI: 10.1136/medhum-2021-012343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
This article revisits long-standing critiques of the role of metaphor in immunological discourse. Drawing on Alfred North Whitehead's speculative philosophy of organism, I focus on the use of metaphor to explain the process by which COVID-19 vaccine research is able to generate protective antibodies, the challenge of autoimmune disease and dengue fever antibodies. I suggest that metaphors are provoked by the perplexity that arises from presupposing that distinct morphological substances are the first order of reality. I conclude that rather than seeing metaphors as typically skewing conceptions of the body, as has been previously argued, those of memory, recognition and misrecognition may be instructive of a body in transition. Indeed, a process of transition that shows degrees of creativity. When gesturing towards the processual nature of infection and immunity, metaphors invite new modes of shared thinking across the disciplinary divide.
Collapse
|
10
|
Boley PA, Lee CM, Schrock J, Yadav KK, Patil V, Suresh R, Lu S, Feng MM, Hanson J, Channappanavar R, Kenney SP, Renukaradhya GJ. Enhanced mucosal immune responses and reduced viral load in the respiratory tract of ferrets to intranasal lipid nanoparticle-based SARS-CoV-2 proteins and mRNA vaccines. J Nanobiotechnology 2023; 21:60. [PMID: 36814238 PMCID: PMC9944789 DOI: 10.1186/s12951-023-01816-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Unlike the injectable vaccines, intranasal lipid nanoparticle (NP)-based adjuvanted vaccine is promising to protect against local infection and viral transmission. Infection of ferrets with SARS-CoV-2 results in typical respiratory disease and pathology akin to in humans, suggesting that the ferret model may be ideal for intranasal vaccine studies. RESULTS We developed SARS-CoV-2 subunit vaccine containing both Spike receptor binding domain (S-RBD) and Nucleocapsid (N) proteins (NP-COVID-Proteins) or their mRNA (NP-COVID-mRNA) and NP-monosodium urate adjuvant. Both the candidate vaccines in intranasal vaccinated aged ferrets substantially reduced the replicating virus in the entire respiratory tract. Specifically, the NP-COVID-Proteins vaccine did relatively better in clearing the virus from the nasal passage early post challenge infection. The immune gene expression in NP-COVID-Proteins vaccinates indicated increased levels of mRNA of IFNα, MCP1 and IL-4 in lungs and nasal turbinates, and IFNγ and IL-2 in lungs; while proinflammatory mediators IL-1β and IL-8 mRNA levels in lungs were downregulated. In NP-COVID-Proteins vaccinated ferrets S-RBD and N protein specific IgG antibodies in the serum were substantially increased at both day post challenge (DPC) 7 and DPC 14, while the virus neutralizing antibody titers were relatively better induced by mRNA versus the proteins-based vaccine. In conclusion, intranasal NP-COVID-Proteins vaccine induced balanced Th1 and Th2 immune responses in the respiratory tract, while NP-COVID-mRNA vaccine primarily elicited antibody responses. CONCLUSIONS Intranasal NP-COVID-Proteins vaccine may be an ideal candidate to elicit increased breadth of immunity against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Patricia A Boley
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Carolyn M Lee
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Kush Kumar Yadav
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Raksha Suresh
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Songqing Lu
- Dynamic Entropy Technology LLC, Building B, 1028 W. Nixon St., Pasco, WA, 99301-5216, USA
| | - Maoqi Mark Feng
- Dynamic Entropy Technology LLC, Building B, 1028 W. Nixon St., Pasco, WA, 99301-5216, USA
| | - Juliette Hanson
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Rudra Channappanavar
- Department of Veterinary Pathobiology, Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Scott P Kenney
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| | - Gourapura J Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| |
Collapse
|
11
|
Refocus on Immunogenic Characteristics of Convalescent COVID-19 Challenged by Prototype SARS-CoV-2. Vaccines (Basel) 2023; 11:vaccines11010123. [PMID: 36679968 PMCID: PMC9866260 DOI: 10.3390/vaccines11010123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Background: Mass basic and booster immunization programs effectively contained the spread of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus, also known as COVID-19. However, the emerging Variants of Concern (VOCs) of COVID-19 evade the immune protection of the vaccine and increase the risk of reinfection. Methods: Serum antibodies of 384 COVID-19 cases recovered from SARS-CoV-2 infection were examined. Correlations between clinical symptoms and antibodies against VOCs were analyzed. Result: All 384 cases (aged 43, range 1−90) were from 15 cities of Guangdong, China. The specific IgA, IgG, and IgM antibodies could be detected within 4−6 weeks after infection. A broad cross-reaction between SARS-CoV-2 and Severe Acute Respiratory Syndrome Coronavirus, but not with Middle East Respiratory Syndrome Coronavirus was found. The titers of neutralization antibodies (NAbs) were significantly correlated with IgG (r = 0.667, p < 0.001), but showed poor neutralizing effects against VOCs. Age, fever, and hormone therapy were independent risk factors for NAbs titers reduction against VOCs. Conclusion: Humoral immunity antibodies from the original strain of COVID-19 showed weak neutralization effects against VOCs, and decreased neutralizing ability was associated with initial age, fever, and hormone therapy, which hindered the effects of the COVID-19 vaccine developed from the SARS-CoV-2 prototype virus.
Collapse
|
12
|
Velázquez-Vázquez MG, Alberti-Minutti P, Campos-Aguirre E, Benítez-Arvizu G. [Seroprevalence of anti-SARS-CoV-2 IgG antibodies in resident physicians]. REVISTA MEDICA DEL INSTITUTO MEXICANO DEL SEGURO SOCIAL 2023; 61:S28-S32. [PMID: 36378067 PMCID: PMC10395998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
Background COVID-19 pandemic spread around the world swiftly; there are several diagnostic strategies available. Health workers, especially medical residents (MR), are a high-risk population for acquiring this infection. Objective To estimate the seroprevalence of antibodies against SARS-CoV-2 and the associated factors in MR of a third level hospital. Material and methods 330 MR from different specialties were evaluated with a questionnaire and collection of blood samples for analysis by microparticle chemiluminescent immunoassay. The prevalence of previous infection was defined by seropositivity of these antibodies. Descriptive statistics and concordance between the RT-PCR tests and the presence of anti-SARS-CoV-2 IgG were used. Results Of 330 MR, 84.5% actively participated in COVID patient care. One out of 3 reported symptoms of COVID-19; in 67.6% the possible site of infection was a hospital setting not associated with the COVID area. Out of 71 symptomatic subjects, 61.9% underwent RT-PCR against SARS-CoV-2; 20 were positive. In 15.8% of the total, the presence of anti-SARS-CoV-2 IgG antibodies was determined. Only 1 out of 3 subjects with a positive PCR had antibodies, and 11.3% of the cases, even with a positive RT-PCR test, did not develop humoral immunity. Conclusions The seroprevalence was lower than that reported at the national level, potentially due to protection measures. The main risk factor was contact with the virus in areas of the hospital not related to COVID, making it imperative to reinforce security protocols in those spaces.
Collapse
Affiliation(s)
- María Guadalupe Velázquez-Vázquez
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Servicio de Medicina Interna. Ciudad de México, México Instituto Mexicano del Seguro SocialMéxico
| | - Paolo Alberti-Minutti
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Servicio de Medicina Interna. Ciudad de México, México Instituto Mexicano del Seguro SocialMéxico
| | - Esmeralda Campos-Aguirre
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Unidad Complementaria Banco de Sangre. Ciudad de México, México Instituto Mexicano del Seguro SocialMéxico
| | - Gamaliel Benítez-Arvizu
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Unidad Complementaria Banco de Sangre. Ciudad de México, México Instituto Mexicano del Seguro SocialMéxico
| |
Collapse
|
13
|
Efficacy of olocizumab in treatment of COVID-19 patients. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background. Production of pro-inflammatory cytokines including interleukin 6 (IL-6) is activated in COVID-19. Using olokizumab which inhibits IL-6 production in treatment of COVID-19 is pathogenetically justified.The aim. To study in real clinical practice the efficacy and safety of using the IL-6inhibitor (olokizumab) in treatment of patients with confirmed COVID-19 pneumonia.Materials and methods. The first group included 41 hospitalized patients with confirmed COVID-19 pneumonia having complex therapy including olokizumab. The control group consisted of 66 patients with confirmed COVID-19 pneumonia who did not have therapy with IL-6 inhibitor. We analyzed clinical (volume of lung involvement, respiratory failure degree, body mass index) and laboratory data (levels of T-troponin, lactate, procalcitonin, natriuretic peptide, C-reactive protein, fibrinogen, D-dimer, ferritin, erythrocyte sedimentation rate, glomerular filtration rate).Results. The groups did not differ in gender, age, body mass index of patients, volume of lung tissue injury, and duration of hospitalization (p > 0.05). Respiratory failure of 2–3rd degree was more common in patients of the first group (χ2 = 6.3; p = 0.010). The initial levels of C-reactive protein (50.9 [34.2; 76.2] and 32.2 [9.9; 69.1] mg/L respectively; p = 0.009) and fibrinogen (6.0 [5.3; 6.7] and 5.2 [4.3; 6.2] g/l respectively; p = 0.005) in patients having therapy including olokizumab were significantly higher than in the control group. The levels of erythrocyte sedimentation rate, fibrinogen and ferritin, D-dimer, detected upon admission of patients to the hospital, didn’t have statistically significant differences. At discharge, the erythrocyte sedimentation rate in patients receiving olokizumab was statistically significantly lower (9.0 [5.5; 14.5] and 13.0 [7.0; 27.0] mm/h; p = 0.018).Conclusions. Using olokizumab in the treatment patient with COVID-19 pneumonia has demonstrated a positive effect on clinical and laboratory parameters (erythrocyte sedimentation rate, fibrinogen level) in patients with pronounced inflammatory changes and respiratory impairment.
Collapse
|
14
|
Zare H, Rezapour H, Fereidouni A, Nikpour S, Mahmoudzadeh S, Royce SG, Fereidouni M. Analysis and comparison of anti-RBD neutralizing antibodies from AZD-1222, Sputnik V, Sinopharm and Covaxin vaccines and its relationship with gender among health care workers. Immun Ageing 2022; 19:47. [PMID: 36273175 PMCID: PMC9587595 DOI: 10.1186/s12979-022-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Background Vaccine efficiency has a significant role in the public perception of vaccination. The current study was designed to evaluate the efficacy of COVID-19 vaccines (AZD-1222, Sputnik-V, Sinopharm, and Covaxin) and the effect of gender on vaccine efficacy. We evaluated the efficacy of these vaccines among 214 health care employees in Iran. Blood samples were taken from all participants on day 0 and 14 days after the second dose. Humoral responses were evaluated by the PT-SARS-CoV-2-Neutralizing-Ab-96. Results The frequency of immunized individuals in the Sputnik V and AZD-1222 groups was 91% and 86%, respectively. This rate was 61% and 67% for Sinopharm and Covaxin vaccines. A comparison of the results obtained from the effectiveness of the vaccines between female and male groups did not demonstrate a significant difference. Conclusion According to the results, Sputnik V and AZD-1222 vaccines were more effective than Sinopharm and Covaxin vaccines. Moreover, the effectiveness of these vaccines is not related to gender. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-022-00303-x.
Collapse
Affiliation(s)
- Hamed Zare
- grid.412105.30000 0001 2092 9755Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadis Rezapour
- grid.411701.20000 0004 0417 4622Student Research Committee , Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Fereidouni
- grid.411701.20000 0004 0417 4622Student Research Committee , Birjand University of Medical Sciences, Birjand, Iran
| | - Saboura Nikpour
- grid.411701.20000 0004 0417 4622Student Research Committee , Birjand University of Medical Sciences, Birjand, Iran
| | - Sara Mahmoudzadeh
- grid.411701.20000 0004 0417 4622Student Research Committee , Birjand University of Medical Sciences, Birjand, Iran
| | - Simon G Royce
- grid.1002.30000 0004 1936 7857Department of Pharmacology, Monash University, Clayton, Australia
| | - Mohammad Fereidouni
- grid.411701.20000 0004 0417 4622Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
15
|
Yee JL, Grant R, Haertel AJ, Allers C, Carpenter AB, Van Rompay KKA, Roberts JA. Multi-site proficiency testing for validation and standardization of assays to detect specific pathogen-free viruses, coronaviruses, and other agents in nonhuman primates. J Med Primatol 2022; 51:234-245. [PMID: 35426147 PMCID: PMC9851150 DOI: 10.1111/jmp.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 01/21/2023]
Abstract
In efforts to increase rigor and reproducibility, the USA National Primate Research Centers (NPRCs) have focused on qualification of reagents, cross-laboratory validations, and proficiency testing for methods to detect infectious agents and accompanying immune responses in nonhuman primates. The pathogen detection working group, comprised of laboratory scientists, colony managers, and leaders from the NPRCs, has championed the effort to produce testing that is reliable and consistent across laboratories. Through multi-year efforts with shared proficiency samples, testing percent agreement has increased from as low as 67.1% for SRV testing in 2010 to 92.1% in 2019. The 2019 average agreement for the four basic SPF agents improved to >96% (86.5% BV, 98.9 SIV, 92.1 SRV, and 97.0 STLV). As new pathogens such as SARS coronavirus type 2 emerge, these steps can now be quickly replicated to develop and implement new assays that ensure rigor, reproducibly, and quality for NHP pathogen detection.
Collapse
Affiliation(s)
- JoAnn L Yee
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, California, USA
| | - Richard Grant
- Primate Pathogen Detection Services Laboratory, Washington National Primate Research Center, University of Washington, Seattle, Washington, USA
| | - Andrew J Haertel
- Oregon National Primate Research Center, Oregon Health Science University, Beaverton, Oregon, USA
| | - Carolina Allers
- Pathogen Detection and Quantification Core, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Amanda B Carpenter
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, California, USA
| | - Koen K A Van Rompay
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, California, USA
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Jeffrey A Roberts
- Primate Assay Laboratory, California National Primate Research Center, University of California, Davis, California, USA
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
16
|
Jutel M, Torres MJ, Palomares O, Akdis CA, Eiwegger T, Untersmayr E, Barber D, Zemelka-Wiacek M, Kosowska A, Palmer E, Vieths S, Mahler V, Canonica WG, Nadeau K, Shamji MH, Agache I. COVID-19 vaccination in patients receiving allergen immunotherapy (AIT) or biologicals-EAACI recommendations. Allergy 2022; 77:2313-2336. [PMID: 35147230 PMCID: PMC9111382 DOI: 10.1111/all.15252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Immune modulation is a key therapeutic approach for allergic diseases, asthma and autoimmunity. It can be achieved in an antigen-specific manner via allergen immunotherapy (AIT) or in an endotype-driven approach using biologicals that target the major pathways of the type 2 (T2) immune response: immunoglobulin (Ig)E, interleukin (IL)-5 and IL-4/IL-13 or non-type 2 response: anti-cytokine antibodies and B-cell depletion via anti-CD20. Coronavirus disease 2019 (COVID-19) vaccination provides an excellent opportunity to tackle the global pandemics and is currently being applied in an accelerated rhythm worldwide. The vaccine exerts its effects through immune modulation, induces and amplifies the response against the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Thus, as there may be a discernible interference between these treatment modalities, recommendations on how they should be applied in sequence are expected. The European Academy of Allergy and Clinical Immunology (EAACI) assembled an expert panel under its Research and Outreach Committee (ROC). This expert panel evaluated the evidence and have formulated recommendations on the administration of COVID-19 vaccine in patients with allergic diseases and asthma receiving AIT or biologicals. The panel also formulated recommendations for COVID-19 vaccine in association with biologicals targeting the type 1 or type 3 immune response. In formulating recommendations, the panel evaluated the mechanisms of COVID-19 infection, of COVID-19 vaccine, of AIT and of biologicals and considered the data published for other anti-infectious vaccines administered concurrently with AIT or biologicals.
Collapse
Affiliation(s)
- Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Maria J Torres
- Allergy Unit, Regional University Hospital of Malaga, IBIMA-UMA-ARADyAL-BIONAND, Malaga, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Zurich, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Thomas Eiwegger
- Division of Immunology and Allergy, The Department of 13 Pediatrics, Food Allergy and Anaphylaxis Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Domingo Barber
- Facultad de Medicina, Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | | | - Anna Kosowska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Elizabeth Palmer
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London. MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Stefan Vieths
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | | | - Walter G Canonica
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Personalized Medicine Asthma, & Allergy Center-IRCCS Humanitas Research Hospital, Milan, Italy
| | - Kari Nadeau
- Division of Pulmonary, Allergy and Critical Care Medicine, Dept of Medicine, Stanford, California, USA
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London. MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | |
Collapse
|
17
|
Risk factors and outcomes associated with diabetes mellitus in COVID-19 patients: a meta-analytic synthesis of observational studies. J Diabetes Metab Disord 2022; 21:1395-1405. [PMID: 35874425 PMCID: PMC9289354 DOI: 10.1007/s40200-022-01072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 01/08/2023]
|
18
|
Auerswald H, Eng C, Lay S, In S, Eng S, Vo HTM, Sith C, Cheng S, Delvallez G, Mich V, Meng N, Sovann L, Sidonn K, Vanhomwegen J, Cantaert T, Dussart P, Duong V, Karlsson EA. Rapid Generation of In-House Serological Assays Is Comparable to Commercial Kits Critical for Early Response to Pandemics: A Case With SARS-CoV-2. Front Med (Lausanne) 2022; 9:864972. [PMID: 35602487 PMCID: PMC9121123 DOI: 10.3389/fmed.2022.864972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Accurate and sensitive measurement of antibodies is critical to assess the prevalence of infection, especially asymptomatic infection, and to analyze the immune response to vaccination during outbreaks and pandemics. A broad variety of commercial and in-house serological assays are available to cater to different laboratory requirements; however direct comparison is necessary to understand utility. Materials and Methods We investigate the performance of six serological methods against SARS-CoV-2 to determine the antibody profile of 250 serum samples, including 234 RT-PCR-confirmed SARS-CoV-2 cases, the majority with asymptomatic presentation (87.2%) at 1-51 days post laboratory diagnosis. First, we compare to the performance of two in-house antibody assays: (i) an in-house IgG ELISA, utilizing UV-inactivated virus, and (ii) a live-virus neutralization assay (PRNT) using the same Cambodian isolate as the ELISA. In-house assays are then compared to standardized commercial anti-SARS-CoV-2 electrochemiluminescence immunoassays (Elecsys ECLIAs, Roche Diagnostics; targeting anti-N and anti-S antibodies) along with a flow cytometry based assay (FACS) that measures IgM and IgG against spike (S) protein and a multiplex microsphere-based immunoassay (MIA) determining the antibodies against various spike and nucleoprotein (N) antigens of SARS-CoV-2 and other coronaviruses (SARS-CoV-1, MERS-CoV, hCoVs 229E, NL63, HKU1). Results Overall, specificity of assays was 100%, except for the anti-S IgM flow cytometry based assay (96.2%), and the in-house IgG ELISA (94.2%). Sensitivity ranged from 97.3% for the anti-S ECLIA down to 76.3% for the anti-S IgG flow cytometry based assay. PRNT and in-house IgG ELISA performed similarly well when compared to the commercial ECLIA: sensitivity of ELISA and PRNT was 94.7 and 91.1%, respectively, compared to S- and N-targeting ECLIA with 97.3 and 96.8%, respectively. The MIA revealed cross-reactivity of antibodies from SARS-CoV-2-infected patients to the nucleocapsid of SARS-CoV-1, and the spike S1 domain of HKU1. Conclusion In-house serological assays, especially ELISA and PRNT, perform similarly to commercial assays, a critical factor in pandemic response. Selection of suitable immunoassays should be made based on available resources and diagnostic needs.
Collapse
Affiliation(s)
- Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Chanreaksmey Eng
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sokchea Lay
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Saraden In
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sokchea Eng
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Charya Sith
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Sokleaph Cheng
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Gauthier Delvallez
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Vann Mich
- Khmer–Soviet Friendship Hospital, Ministry of Health, Phnom Penh, Cambodia
| | - Ngy Meng
- Khmer–Soviet Friendship Hospital, Ministry of Health, Phnom Penh, Cambodia
| | - Ly Sovann
- Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia
| | - Kraing Sidonn
- Communicable Disease Control Department, Ministry of Health, Phnom Penh, Cambodia
| | | | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Institut Pasteur de Madagascar, Pasteur Network, Antananarivo, Madagascar
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Erik A. Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| |
Collapse
|
19
|
Datta S, Roy A. Herd Immunity against Coronavirus: A Review. Recent Pat Biotechnol 2022; 16:256-265. [PMID: 35400332 DOI: 10.2174/1872208316666220408113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
The severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has spread exponentially, leading to an alarming number of deaths worldwide. A devastating effect has been observed in susceptible populations. Our body's immune system plays a very important role in fighting against the diseases. The principle of herd immunity (also known as population immunity), which has found its way into science and has been in the limelight, is the most widely recognised among all. It is an indirect defence against infectious diseases when a community has gained immunity, either through vaccines or through prior infection. Herd immunity against COVID-19 must be achieved to reduce the transmission of disease and save lives. Therefore, this review provides a comprehension of the role of immunity, with a special emphasis on herd immunity against COVID-19, and the ways to attain herd immunity in India have also been discussed.
Collapse
Affiliation(s)
- Shreeja Datta
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| |
Collapse
|
20
|
Chen L, Pang P, Qi H, Yan K, Ren Y, Ma M, Cao R, Li H, Hu C, Li Y, Xia J, Lai D, Dong Y, Jiang H, Zhang H, Shan H, Tao S, Liu S. Evaluation of Spike Protein Epitopes by Assessing the Dynamics of Humoral Immune Responses in Moderate COVID-19. Front Immunol 2022; 13:770982. [PMID: 35371042 PMCID: PMC8971992 DOI: 10.3389/fimmu.2022.770982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spike protein (S) of SARS-CoV-2 is a major target for diagnosis and vaccine development because of its essential role in viral infection and host immunity. Currently, time-dependent responses of humoral immune system against various S protein epitopes are poorly understood. In this study, enzyme-linked immunosorbent assay (ELISA), peptide microarray, and antibody binding epitope mapping (AbMap) techniques were used to systematically analyze the dynamic changes of humoral immune responses against the S protein in a small cohort of moderate COVID-19 patients who were hospitalized for approximately two months after symptom onset. Recombinant truncated S proteins, target S peptides, and random peptides were used as antigens in the analyses. The assays demonstrated the dynamic IgM- and IgG recognition and reactivity against various S protein epitopes with patient-dependent patterns. Comprehensive analysis of epitope distribution along the spike gene sequence and spatial structure of the homotrimer S protein demonstrated that most IgM- and IgG-reactive peptides were clustered into similar genomic regions and were located at accessible domains. Seven S peptides were generally recognized by IgG antibodies derived from serum samples of all COVID-19 patients. The dynamic immune recognition signals from these seven S peptides were comparable to those of the entire S protein or truncated S1 protein. This suggested that the humoral immune system recognized few conserved S protein epitopes in most COVID-19 patients during the entire duration of humoral immune response after symptom onset. Furthermore, in this cohort, individual patients demonstrated stable immune recognition to certain S protein epitopes throughout their hospitalization period. Therefore, the dynamic characteristics of humoral immune responses to S protein have provided valuable information for accurate diagnosis and immunotherapy of COVID-19 patients.
Collapse
Affiliation(s)
- Lingyun Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Pengfei Pang
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huan Qi
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Keqiang Yan
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Yan Ren
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Mingliang Ma
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Ruyin Cao
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Hua Li
- State Key laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuansheng Hu
- State Key laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Li
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Xia
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Danyun Lai
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuliang Dong
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Hewei Jiang
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Hainan Zhang
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Hong Shan
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- *Correspondence: Siqi Liu, ; Shengce Tao, ; Hong Shan,
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Siqi Liu, ; Shengce Tao, ; Hong Shan,
| | - Siqi Liu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
- *Correspondence: Siqi Liu, ; Shengce Tao, ; Hong Shan,
| |
Collapse
|
21
|
Slabakova Y, Gerenska D, Ivanov N, Velikova T. Immune titers of protection against severe acute respiratory syndrome coronavirus 2: are we there yet? EXPLORATION OF IMMUNOLOGY 2022:9-24. [DOI: 10.37349/ei.2022.00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2024]
Abstract
A few pieces of research exist about the protective titer against severe acute respiratory syndrome (SARS) coronavirus 2 (CoV-2; SARS-CoV-2) in monkeys and humans in which the protection could be shown as dose-dependent. Early studies supposed that higher levels of pre-existing neutralizing antibodies (Nabs) against SARS-CoV-2 can potentially correlate with the protection to consequent infection. The data so far showed that cellular immunity is as essential as the humoral one. If needed, its presence can be beneficial if the titer of immunoglobulins is not optimal. It is also known that the immune response to the vaccine is similar to the one after natural infection with a production of very high naturalization titers antibodies. However, medical community is still unaware of the immunoglobulin titer needed for protection against the virus. The answers to the questions regarding correlates of protection are yet to be discovered. Still, no studies indicate a specific virus-Nab titer, so one can assume a patient is protected from being infected in the future. The evoked immunological response is indeed encouraging, but a future investigation is needed. Nonetheless, it remains a mystery how long the immunity lasts and whether it will be enough to shield the patients in the long run. Therefore, identifying immune protection correlations, including neutralization titer of antibodies and T cell immune response against SARS-CoV-2, could give a clue. Unfortunately, recent studies in the field have been more controversial than concise, and the data available is far from consensus.
Collapse
Affiliation(s)
- Yoanna Slabakova
- Medical University-Sofia; Blvd. “Akademik Ivan Evstratiev Geshov” 15, 1431 Sofia, Bulgaria
| | - Dilyana Gerenska
- Department of Pharmacovigilance, Blvd. “Tsarigradsko shoes” 115G, 1784 Sofia, Bulgaria
| | - Nedelcho Ivanov
- Department of Clinical Immunology, University Hospital Alexandrovska, Sveti Georgi Sofiyski 1, 1431 Sofia, Bulgaria; Medical University-Sofia, Sofia, Bulgaria
| | - Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Kozyak 1 str, 1407 Sofia, Bulgaria; Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| |
Collapse
|
22
|
Alefishat E, Jelinek HF, Mousa M, Tay GK, Alsafar HS. Immune response to SARS-CoV-2 Variants: A focus on severity, susceptibility, and preexisting immunity. J Infect Public Health 2022; 15:277-288. [PMID: 35074728 PMCID: PMC8757655 DOI: 10.1016/j.jiph.2022.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/16/2021] [Accepted: 01/09/2022] [Indexed: 01/08/2023] Open
Abstract
The heterogeneous phenotypes among patients with coronavirus disease 2019 (COVID-19) has drawn worldwide attention, especially those with severe symptoms without comorbid conditions. Immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative virus of COVID-19, occur mainly by the innate immune response via the interferon (IFN)-mediated pathways, and the adaptive immunity via the T lymphocyte and the antibody mediated pathways. The ability of the original Wuhan SARS-CoV-2 strain, and possibly more so with new emerging variants, to antagonize IFN-mediated antiviral responses can be behind the higher early viral load, higher transmissibility, and milder symptoms compared to SARS-CoV and are part of the continued clinical evolution of COVID-19. Since it first emerged, several variants of SARS-CoV-2 have been circulating worldwide. Variants that have the potential to elude natural or vaccine-mediated immunity are variants of concern. This review focuses on the main host factors that may explain the immune responses to SARS-CoV-2 and its variants in the context of susceptibility, severity, and preexisting immunity.
Collapse
Affiliation(s)
- Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Herbert F Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Guan K Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Discipline of Psychiatry, Medical School, the University of Western Australia, Perth WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Emirates Bio-Research Center, Ministry of Interior, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
23
|
Negi N, Maurya SP, Singh R, Das BK. An update on host immunity correlates and prospects of re-infection in COVID-19. Int Rev Immunol 2021; 41:367-392. [PMID: 34961403 PMCID: PMC8787841 DOI: 10.1080/08830185.2021.2019727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023]
Abstract
Reinfection with SARS-CoV-2 is not frequent yet the incidence rate of it is increasing globally owing to the slow emergence of drift variants that pose a perpetual threat to vaccination strategies and have a greater propensity for disease reoccurrence. Long-term protection against SARS-CoV-2 reinfection relies on the induction of the innate as well as the adaptive immune response endowed with immune memory. However, a multitude of factors including the selection pressure, the waning immunity against SARS-CoV-2 over the first year after infection possibly favors evolution of more infectious immune escape variants, amplifying the risk of reinfection. Additionally, the correlates of immune protection, the novel SARS-CoV-2 variants of concern (VOC), the durability of the adaptive and mucosal immunity remain major challenges for the development of therapeutic and prophylactic interventions. Interestingly, a recent body of evidence indicated that the gastrointestinal (GI) tract is another important target organ for SARS-CoV-2 besides the respiratory system, potentially increasing the likelihood of reinfection by impacting the microbiome and the immune response via the gut-lung axis. In this review, we summarized the latest development in SARS-CoV-2 reinfection, and explored the untapped potential of trained immunity. We also highlighted the immune memory kinetics of the humoral and cell-mediated immune response, genetic drift of the emerging viral variants, and discussed the current challenges in vaccine development. Understanding the dynamics and the quality of immune response by unlocking the power of the innate, humoral and cell-mediated immunity during SARS-CoV-2 reinfection would open newer avenues for drug discovery and vaccine designs.
Collapse
Affiliation(s)
- Neema Negi
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick,Limerick, Ireland
| | - Shesh Prakash Maurya
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravinder Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
24
|
Sanaie S, Golipour E, Shamekh A, Sadaie MR, Mahmoodpoor A, Yousefi M. Immune response variables and viral mutations impact on COVID-19 reinfection and relapse. Int Immunopharmacol 2021; 100:108108. [PMID: 34521025 PMCID: PMC8423905 DOI: 10.1016/j.intimp.2021.108108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023]
Abstract
The possibility of human reinfection with SARS-CoV-2, the coronavirus responsible for COVID-19, has not previously been thoroughly investigated. Although it is generally believed that virus-specific antibodies protect against COVID-19 pathogenesis, their duration of function and temporal activity remain unknown. Contrary to media reports that people retain protective antibody responses for a few months, science does not exclude reinfection and disease relapse shortly after initiating all immune responses during the primary onset of COVID-19. Despite production of antiviral antibodies, activated CD4+/CD8+ lymphocytes, and long-lived memory B cells, susceptibility to reinfection in humans for extended periods cannot be precluded due to repeated exposures to coronavirus or potential reactivation of the virus due to incomplete virus clearance. However, the mechanism of reinfection remains unknown. The biological characteristics of SARS-CoV-2, such as emergence of multiple mutations in the virus RNA molecules, transmissibility, rates of infection, reactivation and reinfection, can all affect the trajectory of the virus spread. Innate and adaptive immune response variables, differences in underlying diseases, and comorbidities, particularly in high risk individuals, can influence the dynamics of the virus infection. In this article, immune parameters and viral mutations pertaining to reinfection and disease relapse are reviewed and scientific gaps are discussed.
Collapse
Affiliation(s)
- Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Golipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ata Mahmoodpoor
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Serological anti-SARS-CoV-2 neutralizing antibodies association to live virus neutralizing test titers in COVID-19 paucisymptomatic/symptomatic patients and vaccinated subjects. Int Immunopharmacol 2021; 101:108215. [PMID: 34649115 PMCID: PMC8487771 DOI: 10.1016/j.intimp.2021.108215] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022]
Abstract
A large number of immunoassays have been developed to detect specific anti-SARS-CoV-2 antibodies; however, not always they are functional to neutralize the virus. The reference test for the anti-spike neutralizing antibodies (nAbs) ability to counteract the viral infection is the virus neutralization test (VNT). Great interest is developing on reliable serological assays allowing antibodies concentration and antibody protective titer correlation. The aim of our study was to detect nAbs serum levels in paucisymptomatic, symptomatic and vaccinated subjects, to find a cut-off value able to protect from virus infection. nAbs serum levels were detected by a competitive automated immunoassay, in association to VNT with the SARS-CoV-2 original and British variant strains. The median nAbs concentrations were: 281.3 BAU/ml for paucisymptomatics; 769.4 BAU/ml for symptomatics; 351.65 BAU/ml for the vaccinated cohort; 983 BAU/ml considering only the second dose vaccinated individuals. The original strain VNT analysis showed 1:80 median neutralization titers in paucisymptomatic and vaccinated subjects; 1:160 in symptomatic patients; 1:160 in the second dose groups. The British variant VNT analysis showed lower neutralization titers in paucisymptomatic and vaccinated groups (1:40); the same titer in symptomatic patients (1:160); the second dose group confirmed the original strain titer (1:160). In conclusion, our data showed optimal correlations with a proportional increase between neutralizing activity and antibody concentration, making nAbs detection a good alternative to virus neutralization assays, difficult to carry out in routine laboratories. Finally, ROC curve analysis established a cut-off of 408.6 BAU/ml to identify subjects with a low risk of infection.
Collapse
|
26
|
Serological assay for anti-SARS-CoV-2 antibodies improves sensitivity of diagnosis of COVID-19 patients. Med Microbiol Immunol 2021; 210:283-289. [PMID: 34564742 PMCID: PMC8475848 DOI: 10.1007/s00430-021-00721-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/11/2021] [Indexed: 01/08/2023]
Abstract
The emergence of SARS-CoV-2, responsible for coronavirus disease-2019 (COVID-19), has become a major global health problem. The molecular testing is the accepted assay in SARS-CoV-2 detection. However, there are several reasons for low sensitivity by RNA detection, causing challenges in SARS-CoV-2 diagnosis. In this study, we aimed to investigate serological patterns of SARS-CoV-2 specific IgM, and IgG in 111 hospitalized, and 34 recovered COVID-19 patients and 311 prepandemic normal serum specimens by ELISA. The validity of the ELISA kits was evaluated using samples from normal and recovered cases. This showed that 98.1%, and 98.4% of prepandemic normal samples were negative for anti-SARS-CoV-2 IgM, and IgG, respectively. Assessment of 34 COVID-19 confirmed recovered patients showed a test sensitivity of 76.5%, and 94.1% for IgM, and IgG, respectively. In COVID-19 hospitalized patients, 42.3%, and 51.4% were positive for IgM and IgG, respectively. Viral RNA was not detectable in 43.3% of the hospitalized patients. Interestingly, combined molecular and serological testing improved the sensitivity of COVID-19 diagnosis to 79.6%. Using PCR with combined IgM/IgG results augmented the patient diagnosis sensitivity to 65.3% and 87.2% in ≤ 7 days, and > 7 days intervals, respectively. Overall, serological tests in combination with PCR can improve the sensitivity of COVID-19 diagnosis.
Collapse
|
27
|
Manning JE, Duffy PE, Esposito D, Sadtler K. Material strategies and considerations for serologic testing of global infectious diseases. MRS BULLETIN 2021; 46:854-858. [PMID: 34539056 PMCID: PMC8437333 DOI: 10.1557/s43577-021-00167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/31/2021] [Indexed: 05/08/2023]
Abstract
The SARS-CoV-2 pandemic has brought to light multiple considerations when approaching infectious diseases on the global level. These range from diagnostic platforms, to therapeutics, and prevention agents. In this article, we focus on the engineering platforms and considerations when applying serologic assays to multiple geographic locations, climates with varying endemic virus repertoires, and different laboratory and clinical resource settings. Serologic assays detect antibodies that react against viral proteins, suggesting prior infection and correlative of an increased likelihood of immunity to future infection. As these assays are focused on the human immune response to a pathogen, and humans are variable, there are a number of important engineering steps to optimize assay performance, from sample collection, to assay execution and data analysis. Moving forward, a global approach to infectious disease detection and prevention is necessary to prevent the spread of future viruses with pandemic potential. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Jessica E. Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Kaitlyn Sadtler
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
28
|
Lupariello F, Godio L, Di Vella G. Immunohistochemistry patterns of SARS-CoV-2 deaths in forensic autopsies. Leg Med (Tokyo) 2021; 51:101894. [PMID: 33894671 PMCID: PMC8050402 DOI: 10.1016/j.legalmed.2021.101894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 04/11/2021] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2 infection was a leading cause of death in 2020 worldwide. It can evolve determining sudden dyspnea and death without hospitalization and/or a nasopharyngeal swab. These cases can need the intervention of forensic pathologists in order to identify causes of death and to clarify malpractice claims. For these reasons, it would be useful to identify immunohistochemistry patterns of SARS-CoV-2 deaths. Thus, the authors described immunohistochemistry findings of two Patients: perivascular recruitment of T-cells in lung parenchyma, massive activation of cytotoxic cells (especially in spleen's parenchyma), and diffuse platelet aggregation in medium/small vessels. In addition, they analyzed these data in the light of the scientific literature, pointing out meaningful immunohistochemistry patterns in order to better understand SARS-CoV-2 pathophysiology process and to clearly identify causes/contributing factors of death in forensic routine.
Collapse
Affiliation(s)
- Francesco Lupariello
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Sezione di Medicina Legale, "Università degli Studi di Torino", corso Galileo Galilei 22, 10126 Torino, Italy.
| | - Laura Godio
- A.O.U. Città della Salute e della Scienza, Anatomia Patologica U, corso Bramante 88, 10126 Torino, Italy
| | - Giancarlo Di Vella
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Sezione di Medicina Legale, "Università degli Studi di Torino", corso Galileo Galilei 22, 10126 Torino, Italy
| |
Collapse
|
29
|
Hicks J, Klumpp-Thomas C, Kalish H, Shunmugavel A, Mehalko J, Denson JP, Snead KR, Drew M, Corbett KS, Graham BS, Hall MD, Memoli MJ, Esposito D, Sadtler K. Serologic Cross-Reactivity of SARS-CoV-2 with Endemic and Seasonal Betacoronaviruses. J Clin Immunol 2021; 41:906-913. [PMID: 33725211 PMCID: PMC7962425 DOI: 10.1007/s10875-021-00997-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/15/2021] [Indexed: 12/31/2022]
Abstract
In order to properly understand the spread of SARS-CoV-2 infection and development of humoral immunity, researchers have evaluated the presence of serum antibodies of people worldwide experiencing the pandemic. These studies rely on the use of recombinant proteins from the viral genome in order to identify serum antibodies that recognize SARS-CoV-2 epitopes. Here, we discuss the cross-reactivity potential of SARS-CoV-2 antibodies with the full spike proteins of four other betacoronaviruses that cause disease in humans, MERS-CoV, SARS-CoV, HCoV-OC43, and HCoV-HKU1. Using enzyme-linked immunosorbent assays (ELISAs), we detected the potential cross-reactivity of antibodies against SARS-CoV-2 towards the four other coronaviruses, with the strongest cross-recognition between SARS-CoV-2 and SARS /MERS-CoV antibodies, as expected based on sequence homology of their respective spike proteins. Further analysis of cross-reactivity could provide informative data that could lead to intelligently designed pan-coronavirus therapeutics or vaccines.
Collapse
Affiliation(s)
- Jennifer Hicks
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20894, USA
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20894, USA
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anandakumar Shunmugavel
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jennifer Mehalko
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - John-Paul Denson
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kelly R Snead
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matthew Drew
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Matthew J Memoli
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kaitlyn Sadtler
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Nandakumar V, Profaizer T, Lozier BK, Elgort MG, Larragoite ET, Williams ESCP, Solis-Leal A, Lopez JB, Berges BK, Planelles V, Rychert J, Slev PR, Delgado JC. Evaluation of a Surrogate ELISA- Based Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) cPass Neutralization Antibody Detection Assay and Correlation with IgG Commercial Serology Assays. Arch Pathol Lab Med 2021; 145:1212-1220. [PMID: 34181714 DOI: 10.5858/arpa.2021-0213-sa] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT Emerging evidence shows correlation between the presence of neutralization antibodies (nAbs) and protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently available commercial serology assays lack the ability to specifically identify nAbs. An ELISAbased nAb assay (GenScript cPass neutralization antibody assay) has recently received emergency use authorization from the Food and Drug Administration (FDA). OBJECTIVE To evaluate the performance characteristics of this assay and compare and correlate it with the commercial assays that detect SARS-CoV-2 specific IgG. DESIGN Specimens from SARS-COV-2 infected patients (n=124), healthy donors obtained pre-pandemic (n=100), and from patients with non-COVID (coronavirus disease 2019) respiratory infections (n=92) were analyzed using this assay. Samples with residual volume were also tested on three commercial serology platforms (Abbott, EUROIMMUN, Siemens). Twenty-eight randomly selected specimens from patients with COVID-19 and 10 healthy controls were subjected to a Plaque Reduction Neutralization Test (PRNT). RESULTS The cPass assay exhibited 96.1% (95% CI, 94.9%-97.3%) sensitivity (at >14 days post- positive PCR), 100% (95% CI, 98.0%-100.0%) specificity and zero cross-reactivity for the presence of non- COVID respiratory infections. When compared to the plaque reduction assay, 97.4% (95% CI, 96.2%-98.5%) qualitative agreement and a positive correlation (R2 =0.76) was observed. Comparison of IgG signals from each of the commercial assays with the nAb results from PRNT/cPass assays displayed >94.7% qualitative agreement and correlations with R2=0.43/0.68 (Abbott), R2=0.57/0.85 (EUROIMMUN) and R2=0.39/0.63 (Siemens), respectively. CONCLUSIONS The combined data support the use of cPass assay for accurate detection of the nAb response. Positive IgG results from commercial assays associated reasonably with nAbs presence and can serve as a substitute.
Collapse
Affiliation(s)
- Vijayalakshmi Nandakumar
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA (Nandakumar, Profaizer, Lozier, Elgort, Rychert, Slev, Delgado).,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA (Nandakumar, Larragoite, Williams, Planelles, Rychert, Slev, Delgado)
| | - Tracie Profaizer
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA (Nandakumar, Profaizer, Lozier, Elgort, Rychert, Slev, Delgado)
| | - Bucky K Lozier
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA (Nandakumar, Profaizer, Lozier, Elgort, Rychert, Slev, Delgado)
| | - Marc G Elgort
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA (Nandakumar, Profaizer, Lozier, Elgort, Rychert, Slev, Delgado)
| | - Erin T Larragoite
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA (Nandakumar, Larragoite, Williams, Planelles, Rychert, Slev, Delgado)
| | - Elizabeth S C P Williams
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA (Nandakumar, Larragoite, Williams, Planelles, Rychert, Slev, Delgado)
| | - Antonio Solis-Leal
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UTAH, USA (Solis-Leal, Lopez, Berges)
| | - J Brandon Lopez
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UTAH, USA (Solis-Leal, Lopez, Berges)
| | - Bradford K Berges
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UTAH, USA (Solis-Leal, Lopez, Berges)
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA (Nandakumar, Larragoite, Williams, Planelles, Rychert, Slev, Delgado)
| | - Jenna Rychert
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA (Nandakumar, Profaizer, Lozier, Elgort, Rychert, Slev, Delgado).,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA (Nandakumar, Larragoite, Williams, Planelles, Rychert, Slev, Delgado)
| | - Patricia R Slev
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA (Nandakumar, Profaizer, Lozier, Elgort, Rychert, Slev, Delgado).,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA (Nandakumar, Larragoite, Williams, Planelles, Rychert, Slev, Delgado)
| | - Julio C Delgado
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, USA (Nandakumar, Profaizer, Lozier, Elgort, Rychert, Slev, Delgado).,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA (Nandakumar, Larragoite, Williams, Planelles, Rychert, Slev, Delgado)
| |
Collapse
|
31
|
Dailey J, Kozhaya L, Dogan M, Hopkins D, Lapin B, Herbst K, Brimacombe M, Grandonico K, Karabacak F, Schreiber J, Liang BTL, Salazar JC, Unutmaz D, Hyams JS. Antibody Responses to SARS-CoV-2 after Infection or Vaccination in Children and Young Adults with Inflammatory Bowel Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34159338 DOI: 10.1101/2021.06.12.21258810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Characterization of neutralization antibodies to SARS-CoV-2 infection or vaccination in children and young adults with inflammatory bowel disease (IBD) receiving biologic therapies is crucial. Methods W e performed a prospective longitudinal cohort study evaluating SARS-CoV-2 Spike protein receptor binding domain (S-RBD) IgG positivity along with consistent clinical symptoms in patients with IBD receiving infliximab or vedolizumab. Serum was also obtained following immunization with approved vaccines. IgG antibody to the spike protein binding domain of SARS-CoV-2 was assayed with a fluorescent bead-based immunoassay that takes advantage of the high dynamic range of fluorescent molecules using flow cytometry. A sensitive and high-throughput neutralization assay that incorporates SARS-CoV-2 Spike protein onto a lentivirus and measures pseudoviral entry into ACE2 expressing HEK-293 cells was used. Results 436 patients were enrolled (mean age 17 years, range 2-26 years, 58% male, 71% Crohn’s disease, 29% ulcerative colitis, IBD-unspecified). 44 (10%) of enrolled subjects had SARS-CoV-2 S-RBD IgG antibodies. Compared to non-IBD adults (ambulatory) and hospitalized pediatric patients with PCR documented SARS-CoV-2 infection, S-RBD IgG antibody levels were significantly lower in the IBD cohort and by 6 months post infection most patients lacked neutralizing antibody. Following vaccination (n=33) patients had a 15-fold higher S-RBD antibody response in comparison to natural infection, and all developed neutralizing antibodies to both wild type and variant SARS-CoV-2. Conclusions and Relevance The lower and less durable SARS-CoV-2 S-RBD IgG response to natural infection in IBD patients receiving biologics puts them at risk of reinfection. The robust response to immunization is likely protective. Summary Our study showed a low and poorly durable SARS-CoV-2 S-RBD neutralizing IgG response to natural infection in IBD patients receiving biologics potentially putting them at risk of reinfection. However, they also had a robust response to immunization that is likely protective.
Collapse
|
32
|
Vashishtha VM, Kumar P. Development of SARS-CoV-2 vaccines: challenges, risks, and the way forward. Hum Vaccin Immunother 2021; 17:1635-1649. [PMID: 33270478 PMCID: PMC7754925 DOI: 10.1080/21645515.2020.1845524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 01/13/2023] Open
Abstract
The COVID-19 pandemic mandates the development of a safe and effective Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) vaccine. This review analyzes the complexities, challenges, and other vital issues associated with the development of the SARS-CoV-2 vaccine. A brief review of the immune responses (innate, antibody, and T-cell) to SARS-CoV-2, including immune targets, correlates of protection, and duration of immunity is presented. Approaches to vaccine development including different vaccine platforms, critical attributes of novel vaccine candidates, the status of the ongoing clinical trials, and the ways to speed up vaccine development are also reviewed. Despite a historical average success rate of only 6%, and a usual gestation period of 10-12 years for the development of a new vaccine, the world is on the verge of developing COVID-19 vaccines in an extraordinary short time span.
Collapse
Affiliation(s)
- Vipin M. Vashishtha
- Department of Pediatrics, Mangla Hospital & Research Center, Shakti Chowk, Bijnor, India
| | | |
Collapse
|
33
|
Kohmer N, Rühl C, Ciesek S, Rabenau HF. Utility of Different Surrogate Enzyme-Linked Immunosorbent Assays (sELISAs) for Detection of SARS-CoV-2 Neutralizing Antibodies. J Clin Med 2021; 10:2128. [PMID: 34069088 PMCID: PMC8157164 DOI: 10.3390/jcm10102128] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
The plaque reduction neutralization test (PRNT) is a preferred method for the detection of functional, SARS-CoV-2 specific neutralizing antibodies from serum samples. Alternatively, surrogate enzyme-linked immunosorbent assays (ELISAs) using ACE2 as the target structure for the detection of neutralization-competent antibodies have been developed. They are capable of high throughput, have a short turnaround time, and can be performed under standard laboratory safety conditions. However, there are very limited data on their clinical performance and how they compare to the PRNT. We evaluated three surrogate immunoassays (GenScript SARS-CoV-2 Surrogate Virus Neutralization Test Kit (GenScript Biotech, Piscataway Township, NJ, USA), the TECO® SARS-CoV-2 Neutralization Antibody Assay (TECOmedical AG, Sissach, Switzerland), and the Leinco COVID-19 ImmunoRank™ Neutralization MICRO-ELISA (Leinco Technologies, Fenton, MO, USA)) and one automated quantitative SARS-CoV-2 Spike protein-based IgG antibody assay (Abbott GmbH, Wiesbaden, Germany) by testing 78 clinical samples, including several follow-up samples of six BNT162b2 (BioNTech/Pfizer, Mainz, Germany/New York, NY, USA) vaccinated individuals. Using the PRNT as a reference method, the overall sensitivity of the examined assays ranged from 93.8 to 100% and specificity ranged from 73.9 to 91.3%. Weighted kappa demonstrated a substantial to almost perfect agreement. The findings of our study allow these assays to be considered when a PRNT is not available. However, the latter still should be the preferred choice. For optimal clinical performance, the cut-off value of the TECO assay should be individually adapted.
Collapse
Affiliation(s)
- Niko Kohmer
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60596 Frankfurt, Germany; (N.K.); (C.R.); (S.C.)
| | - Cornelia Rühl
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60596 Frankfurt, Germany; (N.K.); (C.R.); (S.C.)
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60596 Frankfurt, Germany; (N.K.); (C.R.); (S.C.)
- German Centre for Infection Research, External Partner Site, 60323 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| | - Holger F. Rabenau
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60596 Frankfurt, Germany; (N.K.); (C.R.); (S.C.)
| |
Collapse
|
34
|
Hall VJ, Foulkes S, Charlett A, Atti A, Monk EJM, Simmons R, Wellington E, Cole MJ, Saei A, Oguti B, Munro K, Wallace S, Kirwan PD, Shrotri M, Vusirikala A, Rokadiya S, Kall M, Zambon M, Ramsay M, Brooks T, Brown CS, Chand MA, Hopkins S. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet 2021; 397:1459-1469. [PMID: 33844963 DOI: 10.1101/2021.01.13.21249642] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Increased understanding of whether individuals who have recovered from COVID-19 are protected from future SARS-CoV-2 infection is an urgent requirement. We aimed to investigate whether antibodies against SARS-CoV-2 were associated with a decreased risk of symptomatic and asymptomatic reinfection. METHODS A large, multicentre, prospective cohort study was done, with participants recruited from publicly funded hospitals in all regions of England. All health-care workers, support staff, and administrative staff working at hospitals who could remain engaged in follow-up for 12 months were eligible to join The SARS-CoV-2 Immunity and Reinfection Evaluation study. Participants were excluded if they had no PCR tests after enrolment, enrolled after Dec 31, 2020, or had insufficient PCR and antibody data for cohort assignment. Participants attended regular SARS-CoV-2 PCR and antibody testing (every 2-4 weeks) and completed questionnaires every 2 weeks on symptoms and exposures. At enrolment, participants were assigned to either the positive cohort (antibody positive, or previous positive PCR or antibody test) or negative cohort (antibody negative, no previous positive PCR or antibody test). The primary outcome was a reinfection in the positive cohort or a primary infection in the negative cohort, determined by PCR tests. Potential reinfections were clinically reviewed and classified according to case definitions (confirmed, probable, or possible) and symptom-status, depending on the hierarchy of evidence. Primary infections in the negative cohort were defined as a first positive PCR test and seroconversions were excluded when not associated with a positive PCR test. A proportional hazards frailty model using a Poisson distribution was used to estimate incidence rate ratios (IRR) to compare infection rates in the two cohorts. FINDINGS From June 18, 2020, to Dec 31, 2020, 30 625 participants were enrolled into the study. 51 participants withdrew from the study, 4913 were excluded, and 25 661 participants (with linked data on antibody and PCR testing) were included in the analysis. Data were extracted from all sources on Feb 5, 2021, and include data up to and including Jan 11, 2021. 155 infections were detected in the baseline positive cohort of 8278 participants, collectively contributing 2 047 113 person-days of follow-up. This compares with 1704 new PCR positive infections in the negative cohort of 17 383 participants, contributing 2 971 436 person-days of follow-up. The incidence density was 7·6 reinfections per 100 000 person-days in the positive cohort, compared with 57·3 primary infections per 100 000 person-days in the negative cohort, between June, 2020, and January, 2021. The adjusted IRR was 0·159 for all reinfections (95% CI 0·13-0·19) compared with PCR-confirmed primary infections. The median interval between primary infection and reinfection was more than 200 days. INTERPRETATION A previous history of SARS-CoV-2 infection was associated with an 84% lower risk of infection, with median protective effect observed 7 months following primary infection. This time period is the minimum probable effect because seroconversions were not included. This study shows that previous infection with SARS-CoV-2 induces effective immunity to future infections in most individuals. FUNDING Department of Health and Social Care of the UK Government, Public Health England, The National Institute for Health Research, with contributions from the Scottish, Welsh and Northern Irish governments.
Collapse
Affiliation(s)
- Victoria Jane Hall
- Public Health England Colindale, Colindale, London, UK; The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, University of Oxford, Oxford, UK
| | - Sarah Foulkes
- Public Health England Colindale, Colindale, London, UK
| | - Andre Charlett
- Public Health England Colindale, Colindale, London, UK; The National Institute for Health Research Health Protection Research Unit in Behavioural Science and Evaluation at University of Bristol in partnership with Public Health England, Bristol, UK
| | - Ana Atti
- Public Health England Colindale, Colindale, London, UK
| | | | - Ruth Simmons
- Public Health England Colindale, Colindale, London, UK
| | | | | | - Ayoub Saei
- Public Health England Colindale, Colindale, London, UK
| | - Blanche Oguti
- Public Health England Colindale, Colindale, London, UK; Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - Katie Munro
- Public Health England Colindale, Colindale, London, UK
| | - Sarah Wallace
- Public Health England Colindale, Colindale, London, UK
| | - Peter D Kirwan
- Public Health England Colindale, Colindale, London, UK; Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | | | | | | | - Meaghan Kall
- Public Health England Colindale, Colindale, London, UK
| | - Maria Zambon
- Public Health England Colindale, Colindale, London, UK
| | - Mary Ramsay
- Public Health England Colindale, Colindale, London, UK; Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - Tim Brooks
- Public Health England Colindale, Colindale, London, UK
| | - Colin S Brown
- Public Health England Colindale, Colindale, London, UK
| | - Meera A Chand
- Public Health England Colindale, Colindale, London, UK; Guys and St Thomas's Hospital NHS Trust, London, UK
| | - Susan Hopkins
- Public Health England Colindale, Colindale, London, UK; The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Brown L, Byrne RL, Fraser A, Owen SI, Cubas-Atienzar AI, Williams CT, Kay GA, Cuevas LE, Fitchett JRA, Fletcher T, Garrod G, Kontogianni K, Krishna S, Menzies S, Planche T, Sainter C, Staines HM, Turtle L, Adams ER. Self-sampling of capillary blood for SARS-CoV-2 serology. Sci Rep 2021; 11:7754. [PMID: 33833246 PMCID: PMC8032656 DOI: 10.1038/s41598-021-86008-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/18/2021] [Indexed: 01/06/2023] Open
Abstract
Serological testing is emerging as a powerful tool to progress our understanding of COVID-19 exposure, transmission and immune response. Large-scale testing is limited by the need for in-person blood collection by staff trained in venepuncture, and the limited sensitivity of lateral flow tests. Capillary blood self-sampling and postage to laboratories for analysis could provide a reliable alternative. Two-hundred and nine matched venous and capillary blood samples were obtained from thirty nine participants and analysed using a COVID-19 IgG ELISA to detect antibodies against SARS-CoV-2. Thirty eight out of thirty nine participants were able to self-collect an adequate sample of capillary blood (≥ 50 µl). Using plasma from venous blood collected in lithium heparin as the reference standard, matched capillary blood samples, collected in lithium heparin-treated tubes and on filter paper as dried blood spots, achieved a Cohen’s kappa coefficient of > 0.88 (near-perfect agreement, 95% CI 0.738–1.000). Storage of capillary blood at room temperature for up to 7 days post sampling did not affect concordance. Our results indicate that capillary blood self-sampling is a reliable and feasible alternative to venepuncture for serological assessment in COVID-19.
Collapse
Affiliation(s)
- Lottie Brown
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Rachel L Byrne
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Alice Fraser
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Sophie I Owen
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ana I Cubas-Atienzar
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Christopher T Williams
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Grant A Kay
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Luis E Cuevas
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | | | - Tom Fletcher
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.,Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Foundation Trust (Member of Liverpool Health Partners), Liverpool, UK
| | - Gala Garrod
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Konstantina Kontogianni
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Sanjeev Krishna
- Centre for Diagnostics and Antimicrobial Resistance, Institute for Infection and Immunity, St George's University of London, London, UK
| | - Stefanie Menzies
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Tim Planche
- Centre for Diagnostics and Antimicrobial Resistance, Institute for Infection and Immunity, St George's University of London, London, UK
| | - Chris Sainter
- Mologic COVID-19 Diagnostics Development Team, Thurleigh, Bedfordshire, UK
| | - Henry M Staines
- Centre for Diagnostics and Antimicrobial Resistance, Institute for Infection and Immunity, St George's University of London, London, UK
| | - Lance Turtle
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Foundation Trust (Member of Liverpool Health Partners), Liverpool, UK.,Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Emily R Adams
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
36
|
Vauloup-Fellous C, Maylin S, Périllaud-Dubois C, Brichler S, Alloui C, Gordien E, Rameix-Welti MA, Gault E, Moreau F, Fourati S, Challine D, Pawlotsky JM, Houhou-Fidouh N, Damond F, Mackiewicz V, Charpentier C, Méritet JF, Rozenberg F, Podglajen I, Marot S, Petit H, Burrel S, Akhavan S, Leruez-Ville M, Avettand-Fenoel V, Fourgeaud J, Guilleminot T, Gardiennet E, Bonacorsi S, Carol A, Carcelain G, Villemonteix J, Boukli N, Gozlan J, Morand-Joubert L, Legoff J, Delaugerre C, Chaix ML, Roque-Afonso AM, Dortet L, Naas T, Ronat JB, Lepape S, Marcelin AG, Descamps D. Performance of 30 commercial SARS-CoV-2 serology assays in testing symptomatic COVID-19 patients. Eur J Clin Microbiol Infect Dis 2021; 40:2235-2241. [PMID: 33782783 PMCID: PMC8007057 DOI: 10.1007/s10096-021-04232-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023]
Abstract
We report evaluation of 30 assays' (17 rapid tests (RDTs) and 13 automated/manual ELISA/CLIA assay (IAs)) clinical performances with 2594 sera collected from symptomatic patients with positive SARS-CoV-2 rRT-PCR on a respiratory sample, and 1996 pre-epidemic serum samples expected to be negative. Only 4 RDT and 3 IAs fitted both specificity (> 98%) and sensitivity (> 90%) criteria according to French recommendations. Serology may offer valuable information during COVID-19 pandemic, but inconsistent performances observed among the 30 commercial assays evaluated, which underlines the importance of independent evaluation before clinical implementation.
Collapse
Affiliation(s)
- Christelle Vauloup-Fellous
- AP-HP, Hôpital Paul-Brousse, Virologie, Department of Virology, University Paris Saclay, INSERM U1193, 94804, Villejuif, France.
| | - Sarah Maylin
- Département des Agents Infectieux, Service de Virologie, Hôpital Saint-Louis, Université de Paris, INSERM UMR 944, Paris, France
| | - Claire Périllaud-Dubois
- AP-HP, Hôpital Paul-Brousse, Virologie, Department of Virology, University Paris Saclay, INSERM U1193, 94804, Villejuif, France
| | - Ségolène Brichler
- Laboratoire de Microbiologie Clinique, Centre national de référence des hépatites B, C et Delta, Hôpital Avicenne, Université Paris Nord, 93009, Bobigny, France.,Unité INSERM U955, Créteil, France
| | - Chakib Alloui
- Laboratoire de Microbiologie Clinique, Centre national de référence des hépatites B, C et Delta, Hôpital Avicenne, Université Paris Nord, 93009, Bobigny, France.,Unité INSERM U955, Créteil, France
| | - Emmanuel Gordien
- Laboratoire de Microbiologie Clinique, Centre national de référence des hépatites B, C et Delta, Hôpital Avicenne, Université Paris Nord, 93009, Bobigny, France.,Unité INSERM U955, Créteil, France
| | - Marie-Anne Rameix-Welti
- Laboratoire de Microbiologie, AP-HP. Université Paris Saclay, Hôpital Ambroise Paré, Boulogne-Billancourt, France.,INSERM, Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), Versailles, France
| | - Elyanne Gault
- Laboratoire de Microbiologie, AP-HP. Université Paris Saclay, Hôpital Ambroise Paré, Boulogne-Billancourt, France.,INSERM, Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), Versailles, France
| | - Frédérique Moreau
- Laboratoire de Microbiologie, AP-HP. Université Paris Saclay, Hôpital Ambroise Paré, Boulogne-Billancourt, France.,INSERM, Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), Versailles, France
| | - Slim Fourati
- Department of Virology, Hôpital Henri Mondor, "Viruses, Hepatology, Cancer" Research Unit, Université Paris-Est, INSERM U955, Créteil, France
| | - Dominique Challine
- Department of Virology, Hôpital Henri Mondor, "Viruses, Hepatology, Cancer" Research Unit, Université Paris-Est, INSERM U955, Créteil, France
| | - Jean-Michel Pawlotsky
- Department of Virology, Hôpital Henri Mondor, "Viruses, Hepatology, Cancer" Research Unit, Université Paris-Est, INSERM U955, Créteil, France
| | - Nadhira Houhou-Fidouh
- Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France
| | - Florence Damond
- Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France
| | - Vincent Mackiewicz
- Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France
| | - Charlotte Charpentier
- Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France
| | - Jean-François Méritet
- Service de Virologie, Hôpital Cochin - APHP Centre - Université de Paris, Paris, France
| | - Flore Rozenberg
- Service de Virologie, Hôpital Cochin - APHP Centre - Université de Paris, Paris, France
| | - Isabelle Podglajen
- Service de Virologie, Hôpital Européen Georges Pompidou-APHP Centre - Université de Paris, Paris, France
| | - Stéphane Marot
- Institut Pierre Louis d'Epidémiologie et de Santé Publique, IPLESP, AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Sorbonne Université, INSERM, Paris, France
| | - Heloïse Petit
- Institut Pierre Louis d'Epidémiologie et de Santé Publique, IPLESP, AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Sorbonne Université, INSERM, Paris, France
| | - Sonia Burrel
- Institut Pierre Louis d'Epidémiologie et de Santé Publique, IPLESP, AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Sorbonne Université, INSERM, Paris, France
| | - Sepideh Akhavan
- Institut Pierre Louis d'Epidémiologie et de Santé Publique, IPLESP, AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Sorbonne Université, INSERM, Paris, France
| | - Marianne Leruez-Ville
- APHP Laboratoire de Microbiologie clinique, Hôpital Necker, Université de Paris, Faculté de Médecine, INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Véronique Avettand-Fenoel
- APHP Laboratoire de Microbiologie clinique, Hôpital Necker, Université de Paris, Faculté de Médecine, INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Jacques Fourgeaud
- APHP Laboratoire de Microbiologie clinique, Hôpital Necker, Université de Paris, Faculté de Médecine, INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Tiffany Guilleminot
- APHP Laboratoire de Microbiologie clinique, Hôpital Necker, Université de Paris, Faculté de Médecine, INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Elise Gardiennet
- APHP Laboratoire de Microbiologie clinique, Hôpital Necker, Université de Paris, Faculté de Médecine, INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Stéphane Bonacorsi
- Service de Microbiologie, Hôpital Robert-Debré, Université de Paris, Paris, France
| | - Agnès Carol
- Service de Microbiologie, Hôpital Robert-Debré, Université de Paris, Paris, France
| | - Guislaine Carcelain
- Laboratoire d'immunologie, Hôpital Robert-Debré, Université de Paris, Paris, France
| | | | - Narjis Boukli
- Département de Virologie (Hôpital Saint-Antoine, Tenon, Trousseau), AP-HP Sorbonne Université, INSERM-Sorbonne Universités UPMC, Université Paris 06, UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Paris, France
| | - Joël Gozlan
- Département de Virologie (Hôpital Saint-Antoine, Tenon, Trousseau), AP-HP Sorbonne Université, INSERM-Sorbonne Universités UPMC, Université Paris 06, UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Paris, France
| | - Laurence Morand-Joubert
- Département de Virologie (Hôpital Saint-Antoine, Tenon, Trousseau), AP-HP Sorbonne Université, INSERM-Sorbonne Universités UPMC, Université Paris 06, UMR-S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Paris, France
| | - Jérome Legoff
- Département des Agents Infectieux, Service de Virologie, Hôpital Saint-Louis, Université de Paris, INSERM UMR 944, Paris, France
| | - Constance Delaugerre
- Département des Agents Infectieux, Service de Virologie, Hôpital Saint-Louis, Université de Paris, INSERM UMR 944, Paris, France
| | - Marie-Laure Chaix
- Département des Agents Infectieux, Service de Virologie, Hôpital Saint-Louis, Université de Paris, INSERM UMR 944, Paris, France
| | - Ana-Maria Roque-Afonso
- AP-HP, Hôpital Paul-Brousse, Virologie, Department of Virology, University Paris Saclay, INSERM U1193, 94804, Villejuif, France
| | - Laurent Dortet
- Service de Bactériologie-Hygiène, Hôpital Bicêtre, Inserm U 1184; LabEx LERMIT, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Service de Bactériologie-Hygiène, Hôpital Bicêtre, Inserm U 1184; LabEx LERMIT, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Baptiste Ronat
- Service de Bactériologie-Hygiène, Hôpital Bicêtre, Inserm U 1184; LabEx LERMIT, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Samuel Lepape
- AP-HP, Hôpital Paul-Brousse, Virologie, Department of Virology, University Paris Saclay, INSERM U1193, 94804, Villejuif, France
| | - Anne-Geneviève Marcelin
- Institut Pierre Louis d'Epidémiologie et de Santé Publique, IPLESP, AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Sorbonne Université, INSERM, Paris, France
| | - Diane Descamps
- Laboratoire de Virologie, AP-HP, Hôpital Bichat-Claude Bernard, Université de Paris, INSERM UMR 1137 IAME, F-75018, Paris, France
| |
Collapse
|
37
|
A Retrospective Analysis of the Impact of the Coronavirus Disease 2019 Pandemic on Health Care Workers in a Tertiary Hospital in Turkey. J Emerg Nurs 2021; 47:948-954. [PMID: 34294455 PMCID: PMC8006193 DOI: 10.1016/j.jen.2021.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Several vaccines have been developed and approved for use against severe acute respiratory syndrome coronavirus-2; however, the use of personal protective equipment remains important owing to the lack of effective specific treatment and whole community immunity. Hydroxychloroquine sulfate was a treatment option in the early days of the pandemic; however, it was subsequently removed owing to a lack of evidence as an effective treatment. We aimed to evaluate the testing and infection characteristics of coronavirus disease 2019 among health care personnel and determine the effectiveness of prophylactic hydroxychloroquine sulfate use to prevent transmission. METHODS This retrospective observational study was conducted between May 1 and September 30, 2020. The health care personnel included in the study were physicians, nurses, and paraprofessional support personnel. The health records of health care personnel who had been tested for severe acute respiratory syndrome coronavirus-2 using polymerase chain reaction were retrospectively analyzed. RESULTS In total, 508 health care personnel were included in the study. A total of 152 (29.9%) health care personnel were diagnosed with coronavirus disease 2019. The positive polymerase chain reaction rate was 80.3% (n = 122). A comparison of infected and uninfected health care personnel showed a difference in age and occupation and no difference in sex, working area, and prophylactic hydroxychloroquine sulfate use. DISCUSSION Protective measures in low-risk areas of our hospital require improvements. All health care personnel should be trained on personal protective equipment use. There was no evidence to support the effectiveness of prophylactic hydroxychloroquine sulfate against severe acute respiratory syndrome coronavirus-2 transmission.
Collapse
|
38
|
Importance of COVID-19 vaccine efficacy in older age groups. Vaccine 2021; 39:2020-2023. [PMID: 33736921 PMCID: PMC7938751 DOI: 10.1016/j.vaccine.2021.03.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023]
Abstract
Importance An effective vaccine against SARS-CoV-2 will reduce morbidity and mortality and allow substantial relaxation of physical distancing policies. However, the ability of a vaccine to prevent infection or disease depends critically on protecting older individuals, who are at highest risk of severe disease. Objective We quantitatively estimated the relative benefits of COVID-19 vaccines, in terms of preventing infection and death, with a particular focus on effectiveness in elderly people. Design We applied compartmental mathematical modelling to determine the relative effects of vaccines that block infection and onward transmission, and those that prevent severe disease. We assumed that vaccines showing high efficacy in adults would be deployed, and examined the effects of lower vaccine efficacy among the elderly population. Setting and participants Our mathematical model was calibrated to simulate the course of an epidemic among the entire population of British Columbia, Canada. Within our model, the population was structured by age and levels of contact. Main outcome(s) and measure(s) We assessed the effectiveness of possible vaccines in terms of the predicted number of infections within the entire population, and deaths among people aged 65 years and over. Results In order to reduce the overall rate of infections in the population, high rates of deployment to all age groups will be critical. However, to substantially reduce mortality among people aged 65 years and over, a vaccine must directly protect a high proportion of people in that group. Conclusions and relevance Effective vaccines deployed to a large fraction of the population are projected to substantially reduce infection in an otherwise susceptible population. However, even if transmission were blocked highly effectively by vaccination of children and younger adults, overall mortality would not be substantially reduced unless the vaccine is also directly protective in elderly people. We strongly recommend: (i) the inclusion of people aged 65 years and over in future trials of COVID-19 vaccine candidates; (ii) careful monitoring of vaccine efficacy in older age groups following vaccination.
Collapse
|
39
|
Popova AY, Ezhlova EB, Melnikova AA, Trotsenko OE, Zaitseva TA, Lyalina LV, Garbuz YA, Smirnov VS, Lomonosova VI, Balakhontseva LA, Kotova VO, Bazykina EA, Butakova LV, Sapega EY, Aleinikova NV, Bebenina LA, Loseva SM, Karavyanskaya TN, Totolyan AA. The seroprevalence of SARS-CoV-2 among residents of the Khabarovsk Krai during the COVID-19 epidemic. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2021. [DOI: 10.36233/0372-9311-92] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Introduction. The coronavirus disease (COVID-19) pandemic was announced by WHO in February 2020. In the Khabarovsk Krai, the first three cases of the disease were diagnosed on March 19, 2020, these cases were imported from Argentina (transit through Italy). The epidemic process of COVID-19 in the Khabarovsk Krai is characterized by a slow increase in the incidence. During the period of time when the SARS-CoV-2 seroprevalence study was conducted the incidence rates varied from 35.9 to 39.1 per 100 thousand population. Within the next 5 weeks the incidence continued to increase, the maximum level was 67.3 per 100 thousand population. A statistically significant decrease in the incidence is noted in the first decade of August. The study of the SARS-CoV-2 seroprevalence among residents of the region was carried out from June 9 to June 21, 2020 during the period of increasing intensity of the epidemic process of COVID-19 infection.Aim. To determine the level and structure of herd immunity to SARS-CoV-2 virus among the population of the Khabarovsk Krai during the period of intensive spread of COVID-19.Materials and methods. The study was conducted as a part of the first stage of a large-scale Rospotrebnadzor project to assess the herd immunity to SARS-CoV-2 virus among the population of the Russian Federation, taking into consideration the protocol recommended by WHO. The selection of volunteers for the study was carried out by the method of questionnaires and randomization by random sampling. The results of a survey of 2675 individuals were included into analysis. The number of volunteers in all age groups was similar.Results. The results of the study showed that the herd immunity to SARS-CoV-2 in the total population of the Khabarovsk Krai was 19.6%. The maximum level of herd immunity was observed in children 14–17 years old (34.4%), children 7–13 years old (24.8%), and people over 70 years (22.6%). The highest level of seropositivity, except for the children and the elderly, was found among educational workers (26.7%). The lowest level of seropositivity was found in the military (8.7%) and the unemployed (8.3%). There were no statistically significant differences in the level of seroprevalence between men and women.Conclusions. The results of the seroepidemiological study demonstrated that in the Khabarovsk Krai, the presence of the contacts with COVID-19 patients is associated with the 1.4-fold increase in the likelihood of the seroconversion. Antibodies were detected in 58.9% of the past COVID-19 cases. In individuals with the previous positive PCR test result, antibodies were detected in 50% of cases. A high rate of asymptomatic infection, up to 93.7%, was observed among seropositive volunteers.
Collapse
Affiliation(s)
- A. Yu. Popova
- Federal Service for Supervision of Consumer Rights Protection and Human Welfare
| | - E. B. Ezhlova
- Federal Service for Supervision of Consumer Rights Protection and Human Welfare
| | - A. A. Melnikova
- Federal Service for Supervision of Consumer Rights Protection and Human Welfare
| | - O. E. Trotsenko
- Khabarovsk Research Institute of Epidemiology and Microbiology
| | | | | | - Yu. A. Garbuz
- Center for Hygiene and Epidemiology in the Khabarovsk Krai
| | | | | | | | - V. O. Kotova
- Khabarovsk Research Institute of Epidemiology and Microbiology
| | - E. A. Bazykina
- Khabarovsk Research Institute of Epidemiology and Microbiology
| | - L. V. Butakova
- Khabarovsk Research Institute of Epidemiology and Microbiology
| | - E. Yu. Sapega
- Khabarovsk Research Institute of Epidemiology and Microbiology
| | | | - L. A. Bebenina
- Khabarovsk Research Institute of Epidemiology and Microbiology
| | | | | | | |
Collapse
|
40
|
López-Cortés A, Guevara-Ramírez P, Kyriakidis NC, Barba-Ostria C, León Cáceres Á, Guerrero S, Ortiz-Prado E, Munteanu CR, Tejera E, Cevallos-Robalino D, Gómez-Jaramillo AM, Simbaña-Rivera K, Granizo-Martínez A, Pérez-M G, Moreno S, García-Cárdenas JM, Zambrano AK, Pérez-Castillo Y, Cabrera-Andrade A, Puig San Andrés L, Proaño-Castro C, Bautista J, Quevedo A, Varela N, Quiñones LA, Paz-y-Miño C. In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19. Front Pharmacol 2021; 12:598925. [PMID: 33716737 PMCID: PMC7952300 DOI: 10.3389/fphar.2021.598925] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background: There is pressing urgency to identify therapeutic targets and drugs that allow treating COVID-19 patients effectively. Methods: We performed in silico analyses of immune system protein interactome network, single-cell RNA sequencing of human tissues, and artificial neural networks to reveal potential therapeutic targets for drug repurposing against COVID-19. Results: We screened 1,584 high-confidence immune system proteins in ACE2 and TMPRSS2 co-expressing cells, finding 25 potential therapeutic targets significantly overexpressed in nasal goblet secretory cells, lung type II pneumocytes, and ileal absorptive enterocytes of patients with several immunopathologies. Then, we performed fully connected deep neural networks to find the best multitask classification model to predict the activity of 10,672 drugs, obtaining several approved drugs, compounds under investigation, and experimental compounds with the highest area under the receiver operating characteristics. Conclusion: After being effectively analyzed in clinical trials, these drugs can be considered for treatment of severe COVID-19 patients. Scripts can be downloaded at https://github.com/muntisa/immuno-drug-repurposing-COVID-19.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Nikolaos C. Kyriakidis
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Carlos Barba-Ostria
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Ángela León Cáceres
- Heidelberg Institute of Global Health, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Instituto de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Tropical Herping, Quito, Ecuador
| | - Santiago Guerrero
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Esteban Ortiz-Prado
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Cristian R. Munteanu
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
- Biomedical Research Institute of A Coruna (INIBIC), University Hospital Complex of A Coruna (CHUAC), A Coruña, Spain
- Centro de Información en Tecnologías de la Información y las Comunicaciones (CITIC), A Coruña, Spain
| | - Eduardo Tejera
- Grupo de Bio-Quimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
| | | | | | - Katherine Simbaña-Rivera
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Adriana Granizo-Martínez
- Carrera de Medicina, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Gabriela Pérez-M
- Centro Clínico Quirúrgico Ambulatorio Hospital del Día El Batán, Instituto Ecuatoriano de Seguridad Social, Quito, Ecuador
| | - Silvana Moreno
- Department of Plant Biology, Faculty of Natural Resources and Agricultural Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jennyfer M. García-Cárdenas
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- Biomedical Research Institute of A Coruna (INIBIC), University Hospital Complex of A Coruna (CHUAC), A Coruña, Spain
| | | | - Alejandro Cabrera-Andrade
- RNASA-IMEDIR, Computer Science Faculty, University of A Coruna, A Coruña, Spain
- Grupo de Bio-Quimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Lourdes Puig San Andrés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | | | - Jhommara Bautista
- Facultad de Ingeniería y Ciencias Aplicadas-Biotecnología, Universidad de Las Américas, Quito, Ecuador
| | - Andreina Quevedo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Nelson Varela
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis Abel Quiñones
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - César Paz-y-Miño
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
41
|
Ferreras C, Pascual-Miguel B, Mestre-Durán C, Navarro-Zapata A, Clares-Villa L, Martín-Cortázar C, De Paz R, Marcos A, Vicario JL, Balas A, García-Sánchez F, Eguizabal C, Solano C, Mora-Rillo M, Soria B, Pérez-Martínez A. SARS-CoV-2-Specific Memory T Lymphocytes From COVID-19 Convalescent Donors: Identification, Biobanking, and Large-Scale Production for Adoptive Cell Therapy. Front Cell Dev Biol 2021; 9:620730. [PMID: 33718360 PMCID: PMC7947351 DOI: 10.3389/fcell.2021.620730] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Syndrome coronavirus 2 (SARS-CoV-2) pandemic is causing a second outbreak significantly delaying the hope for the virus’ complete eradication. In the absence of effective vaccines, we need effective treatments with low adverse effects that can treat hospitalized patients with COVID-19 disease. In this study, we determined the existence of SARS-CoV-2-specific T cells within CD45RA– memory T cells in the blood of convalescent donors. Memory T cells can respond quickly to infection and provide long-term immune protection to reduce the severity of COVID-19 symptoms. Also, CD45RA– memory T cells confer protection from other pathogens encountered by the donors throughout their life. It is of vital importance to resolve other secondary infections that usually develop in patients hospitalized with COVID-19. We found SARS-CoV-2-specific memory T cells in all of the CD45RA– subsets (CD3+, CD4+, and CD8+) and in the central memory and effector memory subpopulations. The procedure for obtaining these cells is feasible, easy to implement for small-scale manufacture, quick and cost-effective, involves minimal manipulation, and has no GMP requirements. This biobank of specific SARS-CoV-2 memory T cells would be immediately available “off-the-shelf” to treat moderate/severe cases of COVID-19, thereby increasing the therapeutic options available for these patients.
Collapse
Affiliation(s)
- C Ferreras
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - B Pascual-Miguel
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - C Mestre-Durán
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - A Navarro-Zapata
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - L Clares-Villa
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - C Martín-Cortázar
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - R De Paz
- Hematology Department, University Hospital La Paz, Madrid, Spain
| | - A Marcos
- Hematology Department, University Hospital La Paz, Madrid, Spain
| | - J L Vicario
- Histocompatibility, Centro de Transfusión de Madrid, Madrid, Spain
| | - A Balas
- Histocompatibility, Centro de Transfusión de Madrid, Madrid, Spain
| | - F García-Sánchez
- Histocompatibility, Centro de Transfusión de Madrid, Madrid, Spain
| | - C Eguizabal
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza, Galdakao, Spain.,Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - C Solano
- Hospital Clínico Universitario de Valencia/Instituto de Investigación Sanitaria INCLIVA, Universidad de Valencia, Valencia, Spain
| | - M Mora-Rillo
- Infectious Diseases Unit, Internal Medicine Department, Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - B Soria
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain.,Instituto de Investigación Sanitaria Hospital General y Universitario de Alicante (ISABIAL), Alicante, Spain
| | - A Pérez-Martínez
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain.,Pediatric Hemato-Oncology Department, University Hospital La Paz, Madrid, Spain.,Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
42
|
Salguero FJ, White AD, Slack GS, Fotheringham SA, Bewley KR, Gooch KE, Longet S, Humphries HE, Watson RJ, Hunter L, Ryan KA, Hall Y, Sibley L, Sarfas C, Allen L, Aram M, Brunt E, Brown P, Buttigieg KR, Cavell BE, Cobb R, Coombes NS, Darby A, Daykin-Pont O, Elmore MJ, Garcia-Dorival I, Gkolfinos K, Godwin KJ, Gouriet J, Halkerston R, Harris DJ, Hender T, Ho CMK, Kennard CL, Knott D, Leung S, Lucas V, Mabbutt A, Morrison AL, Nelson C, Ngabo D, Paterson J, Penn EJ, Pullan S, Taylor I, Tipton T, Thomas S, Tree JA, Turner C, Vamos E, Wand N, Wiblin NR, Charlton S, Dong X, Hallis B, Pearson G, Rayner EL, Nicholson AG, Funnell SG, Hiscox JA, Dennis MJ, Gleeson FV, Sharpe S, Carroll MW. Comparison of rhesus and cynomolgus macaques as an infection model for COVID-19. Nat Commun 2021; 12:1260. [PMID: 33627662 PMCID: PMC7904795 DOI: 10.1038/s41467-021-21389-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
A novel coronavirus, SARS-CoV-2, has been identified as the causative agent of the current COVID-19 pandemic. Animal models, and in particular non-human primates, are essential to understand the pathogenesis of emerging diseases and to assess the safety and efficacy of novel vaccines and therapeutics. Here, we show that SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques. Immune responses against SARS-CoV-2 are also similar in both species and equivalent to those reported in milder infections and convalescent human patients. This finding is reiterated by our transcriptional analysis of respiratory samples revealing the global response to infection. We describe a new method for lung histopathology scoring that will provide a metric to enable clearer decision making for this key endpoint. In contrast to prior publications, in which rhesus are accepted to be the preferred study species, we provide convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human population and both species should be used to evaluate the safety and efficacy of interventions against SARS-CoV-2. Importantly, accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.
Collapse
Affiliation(s)
- Francisco J Salguero
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Andrew D White
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Gillian S Slack
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Susan A Fotheringham
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Kevin R Bewley
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Karen E Gooch
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Stephanie Longet
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Holly E Humphries
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Robert J Watson
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Laura Hunter
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Kathryn A Ryan
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Yper Hall
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Laura Sibley
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Charlotte Sarfas
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Lauren Allen
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Marilyn Aram
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Emily Brunt
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Phillip Brown
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Karen R Buttigieg
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Breeze E Cavell
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Rebecca Cobb
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Naomi S Coombes
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Alistair Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Owen Daykin-Pont
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Michael J Elmore
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Isabel Garcia-Dorival
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Konstantinos Gkolfinos
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Kerry J Godwin
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Jade Gouriet
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Rachel Halkerston
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Debbie J Harris
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Thomas Hender
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Catherine M K Ho
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Chelsea L Kennard
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Daniel Knott
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Stephanie Leung
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Vanessa Lucas
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Adam Mabbutt
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Alexandra L Morrison
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Charlotte Nelson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Didier Ngabo
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Jemma Paterson
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Elizabeth J Penn
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Steve Pullan
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Irene Taylor
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Tom Tipton
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Stephen Thomas
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Julia A Tree
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Carrie Turner
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Edith Vamos
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nadina Wand
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Nathan R Wiblin
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Sue Charlton
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Xiaofeng Dong
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Bassam Hallis
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Geoffrey Pearson
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Emma L Rayner
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Andrew G Nicholson
- Royal Brompton and Harefield NHS Foundation Trust, and National Heart and Lung Institute, Imperial College, London, UK
| | - Simon G Funnell
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Infectious Diseases Horizontal Technology Centre (ID HTC), A*STAR, Singapore, Singapore
| | - Mike J Dennis
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | | | - Sally Sharpe
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK
| | - Miles W Carroll
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, Wiltshire, UK.
- Nuffield Department of Medicine, Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, OX3 7BN, UK.
| |
Collapse
|
43
|
Mahallawi W, Alzahrani M, Alahmadey Z. Durability of the humoral immune response in recovered COVID-19 patients. Saudi J Biol Sci 2021; 28:2802-2806. [PMID: 33613046 PMCID: PMC7884256 DOI: 10.1016/j.sjbs.2021.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 01/28/2023] Open
Abstract
Background The immunological factors involved in protection against the disease caused by SARS-CoV-2 are insufficiently defined and understood. However, previous knowledge pertaining to the related SARS virus and other human coronaviruses may prove useful. Population-based serosurveys measuring anti-SARS-CoV-2 antibodies may provide a pattern for estimating infection degrees and observing the development of the epidemic. In this study, we aimed to investigate the persistence of antibody against the SARS-CoV-2 in recovered patients in Al Madinah region of Saudi Arabia. Materials and methods A total of 150 recovered COVID-19 patients participated in this study. All the patients tested positive for the presence of SARS-CoV-2 RNA, using qualitative RT-PCR. An ELISA was used to measure anti-Spike (S) IgG antibodies in serum samples and screen for their persistence at various time points post-infection. Results The patients were categorized as asymptomatic (27.3%), mild (28%) and moderate (44.7%) according to the disease severity. Amongst them, 35.3% were females (n = 53) and 64.7% were males (n = 97). Significant anti-S IgG antibody levels were observed among the different groups, with the patients in moderate group exhibiting the highest levels followed by the mild group; while the lowest levels were detected among the asymptomatic. There was a significant positive correlation between the patients’ age and anti-S IgG antibody concentrations (Pearson r = 0.45; p < 0.001). Conclusion Our findings provide a solid evidence to support the use of an anti-S IgG ELISA as a diagnostic tool to indicate SARS-CoV-2 infection. IgG seropositivity was sustained in recovered patients up to a hundred days' post-infection, the latest time point for antibody measurement in our study. Ours is the first report in Saudi Arabia to investigate the durability of humoral immune response in recovered COVID-19 patients.
Collapse
Affiliation(s)
- Waleed Mahallawi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Mohammad Alzahrani
- Mohammad Alzahrani, Islamic University in Madinah, Medical Centre, Madinah, Saudi Arabia
| | - Ziab Alahmadey
- Ziab Alahmadey, Ministry of Health, Ohud Hospital, Madinah, Saudi Arabia
| |
Collapse
|
44
|
Assessment of Population Immunity to SARS-CoV-2 Virus in the Rostov Region. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2021. [DOI: 10.21055/0370-1069-2020-4-117-124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By August 2020, more than 850000 cases of new coronavirus infection (COVID-19) caused by SARSCoV-2 were confirmed in the Russian Federation, with the Rostov Region as one of the ten most affected regions in Russia. The spread of the disease is largely determined by the state of population immunity in a certain area. Our research focuses on specific humoral immune response and estimates the level of herd immunity to SARS-CoV-2 virus among the population of the Rostov Region.Materials and methods. The study involved 3,048 people; the volunteers participating in the study were divided into seven age groups. The content of antibodies to SARS-CoV-2 was determined applying ELISA using a kit for the analysis of human serum or blood plasma for the presence of specific IgG to the nucleocapsid of the SARS-CoV-2 virus, manufactured by the State Scientific Center of Applied Microbiology and Biotechnology (Obolensk) in accordance with the instructions for use.Results and discussion. The assessment of seroprevalence to SARS-CoV-2 in the Rostov Region showed that the proportion of people positive for IgG to the new coronavirus was 16.5 %, the range of seropositive individuals in the general population was between 13.9 % and 19.1 % (p<0.05). There were no significant gender differences in the degree of seroprevalence with a positive result registered in 16.6 % of women and 16.5 % of men. A high level of humoral immunity to SARS-CoV-2 was established in individuals aged 1–17 against the background of low incidence rates, which may indicate the dominance of asymptomatic forms of the disease in this age group. The highest level of seropositivity was found in preschool children (33.6 %), students (29.3 %), employees (17.3 %), and education professionals (15.3 %).
Collapse
|
45
|
IgM and IgG Profiles Reveal Peculiar Features of Humoral Immunity Response to SARS-CoV-2 Infection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031318. [PMID: 33535692 PMCID: PMC7908175 DOI: 10.3390/ijerph18031318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) is globally a major healthcare threat. There is little information regarding the mechanisms and roles of the humoral response in SARS-CoV-2 infection. The aim of this study was to analyze the antibody levels (IgM and IgG) by chemiluminescence immunoassay in 54 subjects positive to SARS-CoV-2 swab test in relation to their clinical status (whether asymptomatic, pauci-symptomatic or with mild, sever or critical symptoms), the time from the symptom onset, sex, age, and comorbidities. Overall, the presence of comorbidities and the age of subjects were associated with their clinical status. The IgG concentrations were significantly higher in patients who developed critical and severe symptoms and seemed to be independent from age, sex and comorbidities. IgG titers peaked around day 60, and then began gradually to drop, decreasing by approximately 50% on the 180th day, while the IgM titers progressively decreased as early as the tenth day, but they could be detected even at later time points. Despite the small number of individuals, some peculiar characteristics of the humoral response in COVID-19 emerged. We observed a high inter-individual variability, an ephemeral IgG half-life in several patients, and a persistence of IgM in others.
Collapse
|
46
|
Kalish H, Klumpp-Thomas C, Hunsberger S, Baus HA, Fay MP, Siripong N, Wang J, Hicks J, Mehalko J, Travers J, Drew M, Pauly K, Spathies J, Ngo T, Adusei KM, Karkanitsa M, Croker JA, Li Y, Graubard BI, Czajkowski L, Belliveau O, Chairez C, Snead K, Frank P, Shunmugavel A, Han A, Giurgea LT, Rosas LA, Bean R, Athota R, Cervantes-Medina A, Gouzoulis M, Heffelfinger B, Valenti S, Caldararo R, Kolberg MM, Kelly A, Simon R, Shafiq S, Wall V, Reed S, Ford EW, Lokwani R, Denson JP, Messing S, Michael SG, Gillette W, Kimberly RP, Reis SE, Hall MD, Esposito D, Memoli MJ, Sadtler K. Mapping a Pandemic: SARS-CoV-2 Seropositivity in the United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.01.27.21250570. [PMID: 33532807 PMCID: PMC7852277 DOI: 10.1101/2021.01.27.21250570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Asymptomatic SARS-CoV-2 infection and delayed implementation of diagnostics have led to poorly defined viral prevalence rates. To address this, we analyzed seropositivity in US adults who have not previously been diagnosed with COVID-19. Individuals with characteristics that reflect the US population (n = 11,382) and who had not previously been diagnosed with COVID-19 were selected by quota sampling from 241,424 volunteers (ClinicalTrials.gov NCT04334954). Enrolled participants provided medical, geographic, demographic, and socioeconomic information and 9,028 blood samples. The majority (88.7%) of samples were collected between May 10th and July 31st, 2020. Samples were analyzed via ELISA for anti-Spike and anti-RBD antibodies. Estimation of seroprevalence was performed by using a weighted analysis to reflect the US population. We detected an undiagnosed seropositivity rate of 4.6% (95% CI: 2.6 - 6.5%). There was distinct regional variability, with heightened seropositivity in locations of early outbreaks. Subgroup analysis demonstrated that the highest estimated undiagnosed seropositivity within groups was detected in younger participants (ages 18-45, 5.9%), females (5.5%), Black/African American (14.2%), Hispanic (6.1%), and Urban residents (5.3%), and lower undiagnosed seropositivity in those with chronic diseases. During the first wave of infection over the spring/summer of 2020 an estimate of 4.6% of adults had a prior undiagnosed SARS-CoV-2 infection. These data indicate that there were 4.8 (95% CI: 2.8-6.8) undiagnosed cases for every diagnosed case of COVID-19 during this same time period in the United States, and an estimated 16.8 million undiagnosed cases by mid-July 2020.
Collapse
Affiliation(s)
- Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Sally Hunsberger
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Holly Ann Baus
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Michael P Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Nalyn Siripong
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jing Wang
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Jennifer Hicks
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Jennifer Mehalko
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Jameson Travers
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Matthew Drew
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Kyle Pauly
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Jacquelyn Spathies
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Tran Ngo
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Kenneth M. Adusei
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Maria Karkanitsa
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Jennifer A Croker
- Center for Clinical and Translational Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yan Li
- Joint Program in Survey Methodology, Department of Epidemiology and Biostatistics, University of Maryland College Park, College Park, MD 20742
| | - Barry I. Graubard
- Division of Cancer Epidemiology & Genetics, Biostatistics Branch, National Cancer Institute, National Institutes of Health, Bethesda MD 20894
| | - Lindsay Czajkowski
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Olivia Belliveau
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Cheryl Chairez
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Kelly Snead
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Peter Frank
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Anandakumar Shunmugavel
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - Alison Han
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Luca T. Giurgea
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Luz Angela Rosas
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Rachel Bean
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Rani Athota
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Adriana Cervantes-Medina
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Monica Gouzoulis
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Brittany Heffelfinger
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Shannon Valenti
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rocco Caldararo
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick MD 21702
| | - Michelle M. Kolberg
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Andrew Kelly
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Reid Simon
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Saifullah Shafiq
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Vanessa Wall
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Susan Reed
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Eric W Ford
- Center for Clinical and Translational Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ravi Lokwani
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| | - John-Paul Denson
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Simon Messing
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Sam G. Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - William Gillette
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Robert P. Kimberly
- Center for Clinical and Translational Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Steven E. Reis
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick MD 21702
| | - Matthew J. Memoli
- Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894
| | - Kaitlyn Sadtler
- Section on Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20894
| |
Collapse
|
47
|
Dogan M, Kozhaya L, Placek L, Gunter C, Yigit M, Hardy R, Plassmeyer M, Coatney P, Lillard K, Bukhari Z, Kleinberg M, Hayes C, Arditi M, Klapper E, Merin N, Liang BTT, Gupta R, Alpan O, Unutmaz D. SARS-CoV-2 specific antibody and neutralization assays reveal the wide range of the humoral immune response to virus. Commun Biol 2021; 4:129. [PMID: 33514825 PMCID: PMC7846565 DOI: 10.1038/s42003-021-01649-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Development of antibody protection during SARS-CoV-2 infection is a pressing question for public health and for vaccine development. We developed highly sensitive SARS-CoV-2-specific antibody and neutralization assays. SARS-CoV-2 Spike protein or Nucleocapsid protein specific IgG antibodies at titers more than 1:100,000 were detectable in all PCR+ subjects (n = 115) and were absent in the negative controls. Other isotype antibodies (IgA, IgG1-4) were also detected. SARS-CoV-2 neutralization was determined in COVID-19 and convalescent plasma at up to 10,000-fold dilution, using Spike protein pseudotyped lentiviruses, which were also blocked by neutralizing antibodies (NAbs). Hospitalized patients had up to 3000-fold higher antibody and neutralization titers compared to outpatients or convalescent plasma donors. Interestingly, some COVID-19 patients also possessed NAbs against SARS-CoV Spike protein pseudovirus. Together these results demonstrate the high specificity and sensitivity of our assays, which may impact understanding the quality or duration of the antibody response during COVID-19 and in determining the effectiveness of potential vaccines.
Collapse
MESH Headings
- Adult
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/chemistry
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/chemistry
- COVID-19/diagnosis
- COVID-19/immunology
- COVID-19/virology
- Convalescence
- Coronavirus Nucleocapsid Proteins/chemistry
- Coronavirus Nucleocapsid Proteins/immunology
- Coronavirus Nucleocapsid Proteins/metabolism
- Enzyme-Linked Immunosorbent Assay/methods
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Female
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Immune Sera/chemistry
- Immunity, Humoral
- Lentivirus/genetics
- Lentivirus/immunology
- Male
- Middle Aged
- Neutralization Tests
- Phosphoproteins/chemistry
- Phosphoproteins/immunology
- Phosphoproteins/metabolism
- Protein Binding
- Receptors, Virus/chemistry
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- SARS-CoV-2/drug effects
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Severity of Illness Index
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Mikail Dogan
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Lina Kozhaya
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Lindsey Placek
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Courtney Gunter
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mesut Yigit
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Rachel Hardy
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | | | | | - Zaheer Bukhari
- SUNY Downstate Medical Center, Department of Pathology, Brooklyn, NY, USA
| | - Michael Kleinberg
- Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Chelsea Hayes
- Department of Pathology & Laboratory Medicine and Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Moshe Arditi
- Department of Pediatric, Division of Pediatric Infectious Diseases and Immunology, Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen Klapper
- Department of Pathology & Laboratory Medicine and Transfusion Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Noah Merin
- Department of Internal Medicine, Division of Hematology Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bruce Tsan-Tang Liang
- Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Raavi Gupta
- SUNY Downstate Medical Center, Department of Pathology, Brooklyn, NY, USA
| | | | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
48
|
Butler SE, Crowley AR, Natarajan H, Xu S, Weiner JA, Bobak CA, Mattox DE, Lee J, Wieland-Alter W, Connor RI, Wright PF, Ackerman ME. Distinct Features and Functions of Systemic and Mucosal Humoral Immunity Among SARS-CoV-2 Convalescent Individuals. Front Immunol 2021; 11:618685. [PMID: 33584712 PMCID: PMC7876222 DOI: 10.3389/fimmu.2020.618685] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding humoral immune responses to SARS-CoV-2 infection will play a critical role in the development of vaccines and antibody-based interventions. We report systemic and mucosal antibody responses in convalescent individuals who experienced varying severity of disease. Whereas assessment of neutralization and antibody-mediated effector functions revealed polyfunctional antibody responses in serum, only robust neutralization and phagocytosis were apparent in nasal wash samples. Serum neutralization and effector functions correlated with systemic SARS-CoV-2-specific IgG response magnitude, while mucosal neutralization was associated with nasal SARS-CoV-2-specific IgA. Antibody depletion experiments support the mechanistic relevance of these correlations. Associations between nasal IgA responses, virus neutralization at the mucosa, and less severe disease suggest the importance of assessing mucosal immunity in larger natural infection cohorts. Further characterization of antibody responses at the portal of entry may define their ability to contribute to protection from infection or reduced risk of hospitalization, informing public health assessment strategies and vaccine development efforts.
Collapse
Affiliation(s)
- Savannah E. Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Andrew R. Crowley
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
| | - Shiwei Xu
- Program in Quantitative and Biology Sciences, Dartmouth College, Hanover, NH, United States
| | - Joshua A. Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Carly A. Bobak
- Program in Quantitative and Biology Sciences, Dartmouth College, Hanover, NH, United States
| | - Daniel E. Mattox
- Department of Computer Science, Dartmouth College, Hanover, NH, United States
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Wendy Wieland-Alter
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Ruth I. Connor
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Peter F. Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, United States
- Program in Quantitative and Biology Sciences, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
49
|
Andryukov BG, Besednova NN, Kuznetsova TA, Fedyanina LN. Laboratory-Based Resources for COVID-19 Diagnostics: Traditional Tools and Novel Technologies. A Perspective of Personalized Medicine. J Pers Med 2021; 11:jpm11010042. [PMID: 33451039 PMCID: PMC7828525 DOI: 10.3390/jpm11010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus infection 2019 (COVID-19) pandemic, caused by the highly contagious SARS-CoV-2 virus, has provoked a global healthcare and economic crisis. The control over the spread of the disease requires an efficient and scalable laboratory-based strategy for testing the population based on multiple platforms to provide rapid and accurate diagnosis. With the onset of the pandemic, the reverse transcription polymerase chain reaction (RT-PCR) method has become a standard diagnostic tool, which has received wide clinical use. In large-scale and repeated examinations, these tests can identify infected patients with COVID-19, with their accuracy, however, dependent on many factors, while the entire process takes up to 6–8 h. Here we also describe a number of serological systems for detecting antibodies against SARS-CoV-2. These are used to assess the level of population immunity in various categories of people, as well as for retrospective diagnosis of asymptomatic and mild COVID-19 in patients. However, the widespread use of traditional diagnostic tools in the context of the rapid spread of COVID-19 is hampered by a number of limitations. Therefore, the sharp increase in the number of patients with COVID-19 necessitates creation of new rapid, inexpensive, sensitive, and specific tests. In this regard, we focus on new laboratory technologies such as loop mediated isothermal amplification (LAMP) and lateral flow immunoassay (LFIA), which have proven to work well in the COVID-19 diagnostics and can become a worthy alternative to traditional laboratory-based diagnostics resources. To cope with the COVID-19 pandemic, the healthcare system requires a combination of various types of laboratory diagnostic testing techniques, whodse sensitivity and specificity increases with the progress in the SARS-CoV-2 research. The testing strategy should be designed in such a way to provide, depending on the timing of examination and the severity of the infection in patients, large-scale and repeated examinations based on the principle: screening–monitoring–control. The search and development of new methods for rapid diagnostics of COVID-19 in laboratory, based on new analytical platforms, is still a highly important and urgent healthcare issue. In the final part of the review, special emphasis is made on the relevance of the concept of personalized medicine to combat the COVID-19 pandemic in the light of the recent studies carried out to identify the causes of variation in individual susceptibility to SARS-CoV-2 and increase the efficiency and cost-effectiveness of treatment.
Collapse
Affiliation(s)
- Boris G. Andryukov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (N.N.B.); (T.A.K.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
- Correspondence: ; Tel.: +7-4232-304-647
| | - Natalya N. Besednova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (N.N.B.); (T.A.K.)
| | - Tatyana A. Kuznetsova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (N.N.B.); (T.A.K.)
| | - Ludmila N. Fedyanina
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| |
Collapse
|
50
|
Lau EHY, Tsang OTY, Hui DSC, Kwan MYW, Chan WH, Chiu SS, Ko RLW, Chan KH, Cheng SMS, Perera RAPM, Cowling BJ, Poon LLM, Peiris M. Neutralizing antibody titres in SARS-CoV-2 infections. Nat Commun 2021; 12:63. [PMID: 33397909 PMCID: PMC7782739 DOI: 10.1038/s41467-020-20247-4] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
The SARS-CoV-2 pandemic poses the greatest global public health challenge in a century. Neutralizing antibody is a correlate of protection and data on kinetics of virus neutralizing antibody responses are needed. We tested 293 sera from an observational cohort of 195 reverse transcription polymerase chain reaction (RT-PCR) confirmed SARS-CoV-2 infections collected from 0 to 209 days after onset of symptoms. Of 115 sera collected ≥61 days after onset of illness tested using plaque reduction neutralization (PRNT) assays, 99.1% remained seropositive for both 90% (PRNT90) and 50% (PRNT50) neutralization endpoints. We estimate that it takes at least 372, 416 and 133 days for PRNT50 titres to drop to the detection limit of a titre of 1:10 for severe, mild and asymptomatic patients, respectively. At day 90 after onset of symptoms (or initial RT-PCR detection in asymptomatic infections), it took 69, 87 and 31 days for PRNT50 antibody titres to decrease by half (T1/2) in severe, mild and asymptomatic infections, respectively. Patients with severe disease had higher peak PRNT90 and PRNT50 antibody titres than patients with mild or asymptomatic infections. Age did not appear to compromise antibody responses, even after accounting for severity. We conclude that SARS-CoV-2 infection elicits robust neutralizing antibody titres in most individuals.
Collapse
Affiliation(s)
- Eric H Y Lau
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Owen T Y Tsang
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - David S C Hui
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Mike Y W Kwan
- Department of Paediatric and Adolescent Medicine, Princess of Margaret Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Wai-Hung Chan
- Department of Paediatrics, Queen Elizabeth Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Susan S Chiu
- Department of Paediatric and Adolescent Medicine, The University of Hong Kong and Queen Mary Hospital, Hospital Authority of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Ronald L W Ko
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Kin H Chan
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Samuel M S Cheng
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Ranawaka A P M Perera
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Benjamin J Cowling
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China.
- HKU-Pasteur Research Pole, The University of Hong Kong, Special Administrative Region of Hong Kong, Hong Kong, China.
| |
Collapse
|