1
|
Phoeung CL, Prestedge J, Ninan M, Cunningham P, Bory S, Seang K, Heng K, Williamson D, Markby J, Valley A, Kaldor J, Saphonn V. Piloting an external quality assurance program (QAP) for COVID-19 antigen rapid diagnostic tests (Ag-RDTs): findings and lessons learned from Cambodia. BMJ Open Qual 2025; 14:e002999. [PMID: 39762057 PMCID: PMC12056633 DOI: 10.1136/bmjoq-2024-002999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/03/2024] [Indexed: 05/10/2025] Open
Abstract
Rapid antigen diagnostic tests (Ag-RDTs) that quickly and accurately identify SARS-CoV-2 are an essential part of the COVID-19 response, but multiple factors can affect the validity of Ag-RDTs results. In Cambodia, several commercial Ag-RDTs have become available since the COVID-19 outbreak, but quality control (QC) and external quality assurance (EQA) of these rapid tests have yet to be fully and systematically implemented. We collaborated with laboratory experts in Australia and piloted an EQA programme of the commonly used COVID-19 Ag-RDTs at the University of Health Sciences' MERIEUX Laboratory (Tier 1 site-responsible for the in-country receipt and distribution of QA material) and four other participating laboratories (Tier 2-healthcare facility based) between November 2021 and November 2022. The preimplementation training including the Khmer-translated documentation was conducted virtually for Tier 1 laboratories and in-person for Tier 2 laboratories. All QC (n=290) and EQA (n=60) specimens were distributed to the laboratories and testing was performed according to the frequency of Ag-RDTs use in each laboratory. All National Reference Laboratory-provided EQA and QC specimens were tested and results were submitted via the EDCNet portal using QR code scanning. The Tier 1 laboratory reported 100% concordance with the EQA reference result, while some of Tier 2 laboratories' results were discordant. While continued capacity building and support with troubleshooting have been key to the successful EQA piloting at the UHS laboratory, the programme experienced delays in the shipping/delivery of EQA and QC panels due to customs and border requirements, which could have hindered implementation and potentially impacted the quality of the QA materials. The pilot EQA programme demonstrated potential scalability and provided data on the reliability of test results at the site. However, to ensure sustainability and practicability of this activity, in-country EQA panel preparation may need to be considered.
Collapse
Affiliation(s)
| | - Jacqueline Prestedge
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Marilyn Ninan
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Philip Cunningham
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- St Vincent's Health Network, Sydney, New South Wales, Australia
| | - Sothavireak Bory
- Faculty of Pharmacy, University of Health Sciences, Phnom Penh, Cambodia
| | - Kennarey Seang
- Grant Management Office, University of Health Sciences, Phnom Penh, Cambodia
| | - Kanika Heng
- Faculty of Pharmacy, University of Health Sciences, Phnom Penh, Cambodia
| | - Deborah Williamson
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica Markby
- Foundation for Innovative New Diagnostics, Geneva, Genève, Switzerland
| | - Andrew Valley
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - John Kaldor
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
2
|
Stephenson S, Eid W, Wong CH, Mercier E, D'Aoust PM, Kabir MP, Baral S, Gilbride KA, Oswald C, Straus SE, Mackenzie A, Delatolla R, Graber TE. Urban wastewater contains a functional human antibody repertoire of mucosal origin. WATER RESEARCH 2024; 267:122532. [PMID: 39369505 DOI: 10.1016/j.watres.2024.122532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Wastewater-based surveillance of human disease offers timely insights to public health, helping to mitigate infectious disease outbreaks and decrease downstream morbidity and mortality. These systems rely on nucleic acid amplification tests for monitoring disease trends, while antibody-based seroprevalence surveys gauge community immunity. However, serological surveys are resource-intensive and subject to potentially long lead times and sampling bias. We identified and characterized a human antibody repertoire, predominantly secretory IgA, isolated from a central wastewater treatment plant and building-scale wastewater collection points. These antibodies partition to the solids fraction and retain immunoaffinity for SARS-CoV-2 and Influenza A virus antigens. This stable pool could enable real-time tracking for correlates of vaccination, infection, and immunity, aiding in establishing population-level thresholds for immune protection and assessing the efficacy of future vaccine campaigns.
Collapse
Affiliation(s)
- Sean Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Chandler Hayyin Wong
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Stefan Baral
- Knowledge Translation Program, Unity Health Toronto, Toronto, Ontario, Canada
| | - Kimberly A Gilbride
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Claire Oswald
- Department of Geography and Environmental Studies, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Sharon E Straus
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alex Mackenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada.
| |
Collapse
|
3
|
Jankowski J, Nijakowski K. Salivary Immunoglobulin a Alterations in Health and Disease: A Bibliometric Analysis of Diagnostic Trends from 2009 to 2024. Antibodies (Basel) 2024; 13:98. [PMID: 39727481 DOI: 10.3390/antib13040098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Salivary immunoglobulin A (IgA) is a mediator of local immunity and host defence. Altered IgA levels may predispose to bacterial invasion of the mucosa in the gastrointestinal tract, including the oral cavity. Our study aimed to present the diagnostic trends related to salivary IgA in health and disease based on a bibliometric analysis of published papers between 2009 and 2024. METHODS By 14 September 2024, 1247 English original articles were found in the database Web of Science. We selected 838 records considering the diagnostic usefulness of IgA in human subjects. Based on bibliographic data, we created citation and keyword co-occurrence maps using VOSviewer 1.6.20. RESULTS Most articles belonged to the "Sport Sciences" category (n = 169), followed by the "Immunology" category (n = 93). The Brazilian researcher Alexandre Moreira from the University of Sao Paulo had the most published and most frequently cited papers. Most of the included articles came from the USA (n = 158), England (n = 105), Brazil (n = 95), and Japan (n = 95). The most cited article described research on IgA in response to SARS-CoV-2 infection (n = 690), but the subsequent two papers considered the role of salivary IgA in the dysbiosis of the intestinal microbiota in inflammatory bowel diseases (n = 272) and the formation of systemic immune responses from the gastrointestinal tract (n = 245). CONCLUSIONS Salivary IgA is a widely evaluated diagnostic marker in both patients and healthy individuals. Numerous reports have identified its changes as a result of physical exertion in various groups of athletes, during infections (including SARS-CoV-2) and in the course of local diseases (e.g., periodontal disease) or systemic diseases (e.g., inflammatory bowel disease).
Collapse
Affiliation(s)
- Jakub Jankowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
4
|
Akeel S, Almazrooa S, Jazzar A, Mohammed Sindi A, Farsi NJ, Binmadi N, Badkok R, Aljohani M, AlFarabi S. Detection of Specific Immunoglobulins in the Saliva of Patients With Mild COVID-19. Cureus 2024; 16:e52113. [PMID: 38213933 PMCID: PMC10783611 DOI: 10.7759/cureus.52113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 01/13/2024] Open
Abstract
Saliva has many advantages over blood as a biofluid, so using it for measuring and monitoring antibody responses in COVID-19 would be highly valuable. To assess the value of saliva-based IgG and IgM/IgA antibody testing in COVID-19, this cross-sectional pilot study evaluated the accuracy of salivary and serum IgG and IgM/IgA for detecting mild COVID-19 and their correlation. Fifty-one patients with mild COVID-19 (14-28 days post-symptom onset) were included in the study. Enzyme-linked immunosorbent assays (ELISA) were used to measure IgG and IgM/IgA responses to SARS-CoV-2 spike protein in both serum and saliva samples using a slightly modified protocol for saliva samples. Saliva-based IgG testing had 30% sensitivity and 100% specificity, with a positive predictive value (PPV) of 100% and a negative predictive value (NPV) of 50%. Saliva-based IgM/IgA testing had 13.2% sensitivity and 100% specificity, with a PPV of 100% and an NPV of 28.3%. Blood and saliva IgG values were positively correlated. Saliva currently has limited diagnostic value for COVID-19 testing, at least for mild disease. Nevertheless, the significant positive correlation between blood and saliva IgG titers indicates that saliva might be a complementary biofluid for assessing systemic antibody responses to the virus, especially if the assay is further optimized across the full disease spectrum.
Collapse
Affiliation(s)
- Sara Akeel
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Soulafa Almazrooa
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Ahoud Jazzar
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Amal Mohammed Sindi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Nada J Farsi
- Department of Dental Public Health, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Nada Binmadi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Reem Badkok
- Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Modi Aljohani
- Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Sarah AlFarabi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
5
|
The Development of Immunological Assays to Evaluate the Level and Function of Antibodies Induced by Klebsiella pneumoniae O-Antigen Vaccines. mSphere 2023; 8:e0068022. [PMID: 36877023 PMCID: PMC10117086 DOI: 10.1128/msphere.00680-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Klebsiella pneumoniae, a Gram-negative bacterium, has been listed as a critical pathogen for urgent intervention by the World Health Organization. With no licensed vaccine and increasing resistance to antibiotics, Klebsiella pneumoniae causes a high incidence of hospital- and community-acquired infections. Recently, there has been progress in anti-Klebsiella pneumoniae vaccine development, which has highlighted the lack of standardized assays to measure vaccine immunogenicity. We have developed and optimized methods to measure antibody level and function after vaccination with an in-development Klebsiella pneumoniae O-antigen vaccine. We describe the qualification of a Luminex-based multiplex antibody binding assay and both an opsonophagocytic killing assay and serum bactericidal assay to measure antibody function. Serum from immunized animals were immunogenic and capable of binding to and killing specific Klebsiella serotypes. Cross-reactivity was observed but limited among serotypes sharing antigenic epitopes. In summary, these results demonstrate the standardization of assays that can be used to test new anti-Klebsiella pneumoniae vaccine candidates, which is important for moving them into clinical trials. IMPORTANCE There is no licensed vaccine for the prevention of Klebsiella pneumoniae infections, and increasing levels of antibiotic resistance make this pathogen a high priority for vaccine and therapeutic development. Standardized assays for testing vaccine immunogenicity are paramount for the development of vaccines, and so in this study, we optimized and standardized both antibody-level and function assays for evaluating in-development K. pneumoniae bioconjugate vaccine response in rabbits.
Collapse
|
6
|
Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, Hettiarachchi D, Mathangasinghe Y, Weeratunga P, Wickramasinghe D, Bergman H, Buckley BS, Probyn K, Sguassero Y, Davenport C, Cunningham J, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Struyf T, Van den Bruel A, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Deeks JJ. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst Rev 2022; 11:CD013652. [PMID: 36394900 PMCID: PMC9671206 DOI: 10.1002/14651858.cd013652.pub2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The diagnostic challenges associated with the COVID-19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS-CoV-2 infection. Serology tests to detect the presence of antibodies to SARS-CoV-2 enable detection of past infection and may detect cases of SARS-CoV-2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS-CoV-2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS-CoV-2 epidemiology. OBJECTIVES To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS-CoV-2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS-CoV-2. Sources of heterogeneity investigated included: timing of test, test method, SARS-CoV-2 antigen used, test brand, and reference standard for non-SARS-CoV-2 cases. SEARCH METHODS The COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) 'COVID-19: Living map of the evidence' and the Norwegian Institute of Public Health 'NIPH systematic and living map on COVID-19 evidence'. We did not apply language restrictions. SELECTION CRITERIA We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT-PCR test. Small studies with fewer than 25 SARS-CoV-2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR), clinical diagnostic criteria, and pre-pandemic samples). DATA COLLECTION AND ANALYSIS We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS-2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta-analysis, we fitted univariate random-effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria. MAIN RESULTS We included 178 separate studies (described in 177 study reports, with 45 as pre-prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS-CoV-2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS-CoV-2 infection were most commonly hospital inpatients (78/178, 44%), and pre-pandemic samples were used by 45% (81/178) to estimate specificity. Over two-thirds of studies recruited participants based on known SARS-CoV-2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS-CoV-2 vaccines and present data for naturally acquired antibody responses. Seventy-nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme-linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS-CoV-2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre-pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent-phase infection) and specific (pre-pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike-protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent-phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low-prevalence (2%) setting, where antibody testing is used to diagnose COVID-19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS-CoV-2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post-symptom onset or post-positive PCR) of SARS-CoV-2 infection. AUTHORS' CONCLUSIONS Some antibody tests could be a useful diagnostic tool for those in whom molecular- or antigen-based tests have failed to detect the SARS-CoV-2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post-acute sequelae of COVID-19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero-epidemiological purposes. The applicability of results for detection of vaccination-induced antibodies is uncertain.
Collapse
Affiliation(s)
- Tilly Fox
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Julia Geppert
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Katie Scandrett
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jacob Bigio
- Research Institute of the McGill University Health Centre, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | - Giorgia Sulis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Dineshani Hettiarachchi
- Department of Anatomy Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Yasith Mathangasinghe
- Department of Anatomy Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Praveen Weeratunga
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | | | - Brian S Buckley
- Cochrane Response, Cochrane, London, UK
- Department of Surgery, University of the Philippines, Manila, Philippines
| | | | | | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht , Netherlands
| | - Mariska Mg Leeflang
- Epidemiology and Data Science, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Public Health, Amsterdam, Netherlands
| | | | - René Spijker
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thomas Struyf
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jan Y Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Sundar S, Ramadoss R, Shanmugham R, Anandapadmanabhan LT, Paneerselvam S, Ramani P, Batul R, Karobari MI. Salivary Antibody Response of COVID-19 in Vaccinated and Unvaccinated Young Adult Populations. Vaccines (Basel) 2022; 10:1819. [PMID: 36366328 PMCID: PMC9696743 DOI: 10.3390/vaccines10111819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 01/23/2025] Open
Abstract
COVID-19 is a terrible pandemic sweeping the whole world with more than 600 million confirmed cases and 6 million recorded deaths. Vaccination was identified as the sole option that could help in combatting the disease. In this study, SARS-CoV-2 antibodies were assessed in the saliva of vaccinated participants (Covaxin and Covishield) through enzyme-linked sorbent assay (ELISA). The IgG antibody titres in females were significantly greater than those of males. The total antibody titres of vaccinated individuals were greater than those of unvaccinated participants, although not statistically significant. Individuals who had completed both doses of vaccination had higher antibody levels than those who had received a single dose. People who had experienced COVID-19 after vaccination had better immunity compared to those who were unvaccinated with COVID-19 history. Thus, SARS-CoV-2 spike-specific antibodies were successfully demonstrated in saliva samples, and knowledge about the immunity triggered by the vaccines can assist in making informed choices.
Collapse
Affiliation(s)
- Sandhya Sundar
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, Tamil Nadu, India
| | - Ramya Ramadoss
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, Tamil Nadu, India
| | - Rajeshkumar Shanmugham
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, Tamil Nadu, India
| | - Lakshmi Trivandrum Anandapadmanabhan
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, Tamil Nadu, India
| | - Suganya Paneerselvam
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, Tamil Nadu, India
| | - Pratibha Ramani
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, Tamil Nadu, India
| | - Rumesa Batul
- Conservative Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mohmed Isaqali Karobari
- Conservative Dentistry Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
8
|
Evaluation of the Effectiveness of BNT162b2 Primary Vaccination and Booster Dose to SARS-CoV-2 in Eliciting Stable Mucosal Immunity. Biomedicines 2022; 10:biomedicines10102430. [PMID: 36289692 PMCID: PMC9598907 DOI: 10.3390/biomedicines10102430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The waning effectiveness of the primary vaccination for SARS-CoV-2 led to administration of an additional booster dose (BD). The efficacy of the BD in stimulating humoral systemic immune response is well established, but its effectiveness on inducing mucosal immune reaction has not yet been reported. To address this issue, we evaluated SARS-CoV-2-specific antibody responses in the serum, saliva, and tears after BNT162b2 (Pfizer/BioNTech, New York, NY, USA) vaccination and BD, as well as after SARS-CoV-2 infection. After two doses of BNT162b2 vaccine, we observed specific serum IgG in 100% and IgA in 97.2% of subjects, associated with mucosal response in both salivary samples (sIgA in 97.2% and IgG(S) in 58.8%) and in tears (sIgA in 77.8% and IgG(S) in 67.7%). BD induced a recovery of the systemic humoral response and of tear sIgA when compared to 6 months of follow-up titers (p < 0.001; p = 0.012). However, sIgA levels in both tears and saliva were significantly lower following BD when compared to patients with prior SARS-CoV-2 infection (p = 0.001 and p = 0.005, respectively). Our results demonstrated that administration of BD restored high serum levels of both IgG and IgA but had a poor effect in stimulating mucosal immunity when compared to prior SARS-CoV-2 infection.
Collapse
|
9
|
McPhillips L, MacSharry J. Saliva as an alternative specimen to nasopharyngeal swabs for COVID-19 diagnosis: Review. Access Microbiol 2022; 4:acmi000366. [PMID: 36003360 PMCID: PMC9394527 DOI: 10.1099/acmi.0.000366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Almost 2 years ago, the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered to be the causative agent of the disease COVID-19. Subsequently, SARS-CoV-2 has spread across the world infecting millions of people, resulting in the ongoing COVID-19 pandemic. The current 'gold standard' for COVID-19 diagnosis involves obtaining a nasopharyngeal swab (NPS) from the patient and testing for the presence of SARS-CoV-2 RNA in the specimen using real-time reverse transcription PCR (RT-qPCR). However, obtaining a NPS specimen is an uncomfortable and invasive procedure for the patient and is limited in its applicability to mass testing. Interest in saliva as an alternative diagnostic specimen is of increasing global research interest due to its malleability to mass testing, greater patient acceptability and overall ease of specimen collection. However, the current literature surrounding the sensitivity of saliva compared to NPS is conflicting. The aim of this review was to analyse the recent literature to assess the viability of saliva in COVID-19 diagnosis. We hypothesize that the discrepancies in the current literature are likely due to the variations in the saliva collection and processing protocols used between studies. The universal adaptation of an optimised protocol could alleviate these discrepancies and see saliva specimens be as sensitive, if not more, than NPS for COVID-19 diagnosis. Whilst saliva specimens are more complimentary to mass-testing, with the possibility of samples being collected from home, the RT-qPCR diagnostic process remains to be the rate-limiting step and therefore interest in salivary rapid antigen tests, which negate the wait-times of RT-qPCR with results available within 15-30 min, may be an answer to this.
Collapse
Affiliation(s)
- Leah McPhillips
- School of Microbiology, University College Cork, Cork, Ireland
- Present address: Department of Molecular Microbiology, The John Innes Centre, Norwich, UK
| | - John MacSharry
- School of Microbiology, University College Cork, Cork, Ireland
- School of Medicine, University College Cork, Cork, Ireland
- The APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Sheikh‐Mohamed S, Sanders EC, Gommerman JL, Tal MC. Guardians of the oral and nasopharyngeal galaxy: IgA and protection against SARS-CoV-2 infection. Immunol Rev 2022; 309:75-85. [PMID: 35815463 PMCID: PMC9349649 DOI: 10.1111/imr.13118] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In early 2020, a global emergency was upon us in the form of the coronavirus disease 2019 (COVID-19) pandemic. While horrific in its health, social and economic devastation, one silver lining to this crisis has been a rapid mobilization of cross-institute, and even cross-country teams that shared common goals of learning as much as we could as quickly as possible about the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how the immune system would respond to both the virus and COVID-19 vaccines. Many of these teams were formed by women who quickly realized that the classical model of "publish first at all costs" was maladaptive for the circumstances and needed to be supplanted by a more collaborative solution-focused approach. This review is an example of a collaboration that unfolded in separate countries, first Canada and the United States, and then also Israel. Not only did the collaboration allow us to cross-validate our results using different hands/techniques/samples, but it also took advantage of different vaccine types and schedules that were rolled out in our respective home countries. The result of this collaboration was a new understanding of how mucosal immunity to SARS-CoV-2 infection vs COVID-19 vaccination can be measured using saliva as a biofluid, what types of vaccines are best able to induce (limited) mucosal immunity, and what are potential correlates of protection against breakthrough infection. In this review, we will share what we have learned about the mucosal immune response to SARS-CoV-2 and to COVID-19 vaccines and provide a perspective on what may be required for next-generation pan-sarbecoronavirus vaccine approaches.
Collapse
Affiliation(s)
| | - Erin C. Sanders
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | | | - Michal Caspi Tal
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer CenterStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
11
|
Chellamuthu P, Angel AN, MacMullan MA, Denny N, Mades A, Santacruz M, Lopez R, Bagos C, Casian JG, Trettner K, Lopez L, Nirema N, Brobeck M, Kojima N, Klausner JD, Turner F, Slepnev V, Ibrayeva A. SARS-CoV-2 Specific IgG Antibodies Persist Over a 12-Month Period in Oral Mucosal Fluid Collected From Previously Infected Individuals. Front Immunol 2021; 12:777858. [PMID: 34956206 PMCID: PMC8697108 DOI: 10.3389/fimmu.2021.777858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023] Open
Abstract
Background Developing an understanding of the antibody response, seroprevalence, and seroconversion from natural infection and vaccination against SARS-CoV-2 will give way to a critical epidemiological tool to predict reinfection rates, identify vulnerable communities, and manage future viral outbreaks. To monitor the antibody response on a larger scale, we need an inexpensive, less invasive, and high throughput method. Methods Here we investigate the use of oral mucosal fluids from individuals recovered from SARS-CoV-2 infection to monitor antibody response and persistence over a 12-month period. For this cohort study, enzyme-linked immunosorbent assays (ELISAs) were used to quantify anti-Spike(S) protein IgG antibodies in participants who had prior SARS-CoV-2 infection and regularly (every 2-4 weeks) provided both serum and oral fluid mucosal fluid samples for longitudinal antibody titer analysis. Results In our study cohort (n=42) with 17 males and 25 females with an average age of 45.6 +/- 19.3 years, we observed no significant change in oral mucosal fluid IgG levels across the time course of antibody monitoring. In oral mucosal fluids, all the participants who initially had detectable antibodies continued to have detectable antibodies throughout the study. Conclusions Based on the results presented here, we have shown that oral mucosal fluid-based assays are an effective, less invasive tool for monitoring seroprevalence and seroconversion, which offers an alternative to serum-based assays for understanding the protective ability conferred by the adaptive immune response from viral infection and vaccination against future reinfections.
Collapse
Affiliation(s)
- Prithivi Chellamuthu
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
| | - Aaron N. Angel
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
| | - Melanie A. MacMullan
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Nicholas Denny
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
| | - Aubree Mades
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
| | - Marilisa Santacruz
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
| | - Ronell Lopez
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
| | - Cedie Bagos
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
| | - Joseph G. Casian
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
| | - Kylie Trettner
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Lauren Lopez
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
| | - Nina Nirema
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
| | - Matthew Brobeck
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
| | - Noah Kojima
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey D. Klausner
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Fred Turner
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
| | - Vladimir Slepnev
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
| | - Albina Ibrayeva
- Department of Serology Research and Development, Curative, Monrovia, CA, United States
- Eli and Edythe Broad Center for Regenerative Medicine at the University of Southern California, William Myron Keck School of Medicine, Los Angeles, CA, United States
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Chang SE, Feng A, Meng W, Apostolidis SA, Mack E, Artandi M, Barman L, Bennett K, Chakraborty S, Chang I, Cheung P, Chinthrajah S, Dhingra S, Do E, Finck A, Gaano A, Geßner R, Giannini HM, Gonzalez J, Greib S, Gündisch M, Hsu AR, Kuo A, Manohar M, Mao R, Neeli I, Neubauer A, Oniyide O, Powell AE, Puri R, Renz H, Schapiro J, Weidenbacher PA, Wittman R, Ahuja N, Chung HR, Jagannathan P, James JA, Kim PS, Meyer NJ, Nadeau KC, Radic M, Robinson WH, Singh U, Wang TT, Wherry EJ, Skevaki C, Luning Prak ET, Utz PJ. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat Commun 2021; 12:5417. [PMID: 34521836 PMCID: PMC8440763 DOI: 10.1038/s41467-021-25509-3] [Citation(s) in RCA: 286] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023] Open
Abstract
COVID-19 is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. Here we develop three protein arrays to measure IgG autoantibodies associated with connective tissue diseases, anti-cytokine antibodies, and anti-viral antibody responses in serum from 147 hospitalized COVID-19 patients. Autoantibodies are identified in approximately 50% of patients but in less than 15% of healthy controls. When present, autoantibodies largely target autoantigens associated with rare disorders such as myositis, systemic sclerosis and overlap syndromes. A subset of autoantibodies targeting traditional autoantigens or cytokines develop de novo following SARS-CoV-2 infection. Autoantibodies track with longitudinal development of IgG antibodies recognizing SARS-CoV-2 structural proteins and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Sarah Esther Chang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Allan Feng
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sokratis A Apostolidis
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elisabeth Mack
- Department of Hematology, Oncology, Immunology, Philipps University Marburg, Marburg, Germany
| | - Maja Artandi
- Department of Medicine, Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford CROWN Clinic, Stanford University School of Medicine, Stanford, CA, USA
| | - Linda Barman
- Department of Medicine, Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Kate Bennett
- Molecular Pathology and Imaging Core, Department of Medicine, Gastroenterology Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saborni Chakraborty
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Iris Chang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Peggie Cheung
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Sharon Chinthrajah
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Shaurya Dhingra
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Evan Do
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Amanda Finck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Gaano
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Reinhard Geßner
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Heather M Giannini
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joyce Gonzalez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Greib
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Margrit Gündisch
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Alex Ren Hsu
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex Kuo
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Monali Manohar
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rong Mao
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andreas Neubauer
- Department of Hematology, Oncology, Immunology, Philipps University Marburg, Marburg, Germany
| | - Oluwatosin Oniyide
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abigail E Powell
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, USA
| | - Rajan Puri
- Department of Medicine, Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Harald Renz
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
- Member of the Universities of Giessen and Marburg Lung Center (UGMLC), and the German Center for Lung Research (DZL), Giessen, Germany
| | - Jeffrey Schapiro
- TPMG Regional Reference Laboratory, Kaiser Permanente Northern California, Berkeley, CA, USA
| | - Payton A Weidenbacher
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, USA
| | - Richard Wittman
- Department of Medicine, Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Neera Ahuja
- Department of Medicine, Division of Hospital Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Prasanna Jagannathan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Judith A James
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Peter S Kim
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nuala J Meyer
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kari C Nadeau
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - William H Robinson
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Upinder Singh
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Taia T Wang
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany.
- Member of the Universities of Giessen and Marburg Lung Center (UGMLC), and the German Center for Lung Research (DZL), Giessen, Germany.
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Salvagno GL, Henry BM, di Piazza G, Pighi L, de Nitto S, Bragantini D, Gianfilippi GL, Lippi G. Anti-spike S1 IgA, anti-spike trimeric IgG, and anti-spike RBD IgG response after BNT162b2 COVID-19 mRNA vaccination in healthcare workers. J Med Biochem 2021; 40:327-334. [PMID: 34616222 PMCID: PMC8451231 DOI: 10.5937/jomb0-32373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background Most studies on immune response after coronavirus disease 2019 (COVID-19) vaccination focused on serum IgG antibodies and cell-mediated immunity, discounting the role of anti-SARS-CoV-2 neutralizing IgA antibodies in preventing viral infection. This study was aimed to quantify serum IgG and IgA neutralizing antibodies after mRNA COVID-19 vaccination in baseline SARS-CoV-2 seronegative healthcare workers. Methods The study population consisted of 181 SARSCoV-2 seronegative healthcare workers (median age 42 years, 59.7% women), receiving two doses of Pfizer COVID-19 vaccine BNT162b2 (Comirnaty). Serum samples were collected before receiving the first vaccine dose, 21 days (before the second vaccine dose) and 50 days afterwards. We then measured anti-spike trimeric IgG (Liaison XL, DiaSorin), anti-spike receptor binding domain (RBD) IgG (Access 2, Beckman Coulter) and anti-spike S1 subunit IgA (ELISA, Euroimmun). Results were presented as median and interquartile range (IQR). Results Vaccine administration elicited all anti-SARS-CoV2 antibodies measured. Thirty days after the second vaccine dose, 100% positivization occurred for anti-spike trimeric IgG and anti-spike RBD IgG, whilst 1.7% subjects remained anti-spike S1 IgA negative. The overall increase of antibodies level ratio over baseline after the second vaccine dose was 576.1 (IQR, 360.7-867.8) for anti-spike trimeric IgG, 1426.0 (IQR, 742.0-2698.6) for anti-spike RBD IgG, and 20.2 (IQR, 12.5-32.1) for anti-spike S1 IgA. Significant inverse association was found between age and overall increase of anti-spike trimeric IgG (r=-0.24; p=0.001) and anti-spike S1 IgA (r=-0.16; p=0.028), but not with anti-spike RBD IgG (r=-0.05; p=0.497). Conclusions mRNA COVID-19 vaccination elicits sustained serum levels of anti-spike trimeric IgG and anti-spike RBD IgG, while also modestly but significantly increasing those of anti-spike S1 IgA.
Collapse
Affiliation(s)
- Gian Luca Salvagno
- University of Verona, Section of Clinical Biochemistry, Verona, Italy.,Pederzoli Hospital, Service of Laboratory Medicine, Peschiera del Garda, Italy
| | - Brandon M Henry
- Cincinnati Children's Hospital Medical Center, The Heart Institute, Cincinnati, Ohio, United States of America
| | - Giovanni di Piazza
- Pederzoli Hospital, Medical Direction, Peschiera del Garda, Italy.,Pederzoli Hospital, Service of Laboratory Medicine, Peschiera del Garda, Italy
| | - Laura Pighi
- University of Verona, Section of Clinical Biochemistry, Verona, Italy.,Pederzoli Hospital, Service of Laboratory Medicine, Peschiera del Garda, Italy
| | - Simone de Nitto
- University of Verona, Section of Clinical Biochemistry, Verona, Italy
| | - Damiano Bragantini
- Pederzoli Hospital, Infectious Diseases Unit, Peschiera del Garda, Italy
| | | | - Giuseppe Lippi
- University of Verona, Section of Clinical Biochemistry, Verona, Italy
| |
Collapse
|
14
|
Muthumanickam S, Kamaladevi A, Boomi P, Gowrishankar S, Pandian SK. Indian Ethnomedicinal Phytochemicals as Promising Inhibitors of RNA-Binding Domain of SARS-CoV-2 Nucleocapsid Phosphoprotein: An In Silico Study. Front Mol Biosci 2021; 8:637329. [PMID: 34277698 PMCID: PMC8283196 DOI: 10.3389/fmolb.2021.637329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2, an etiological agent of COVID-19, has been the reason for the unexpected global pandemic, causing severe mortality and imposing devastative effects on public health. Despite extensive research work put forward by scientist around globe, so far, no suitable drug or vaccine (safe, affordable, and efficacious) has been identified to treat SARS-CoV-2. As an alternative way of improvising the COVID-19 treatment strategy, that is, strengthening of host immune system, a great deal of attention has been given to phytocompounds from medicinal herbs worldwide. In a similar fashion, the present study deliberately focuses on the phytochemicals of three Indian herbal medicinal plants viz., Mentha arvensis, Coriandrum sativum, and Ocimum sanctum for their efficacy to target well-recognized viral receptor protein through molecular docking and dynamic analyses. Nucleocapsid phosphoprotein (N) of SARS-CoV-2, being a pivotal player in replication, transcription, and viral genome assembly, has been recognized as one of the most attractive viral receptor protein targets for controlling the viral multiplication in the host. Out of 127 phytochemicals screened, nine (linarin, eudesmol, cadinene, geranyl acetate, alpha-thujene, germacrene A, kaempferol-3-O-glucuronide, kaempferide, and baicalin) were found to be phenomenal in terms of exhibiting high binding affinity toward the catalytic pocket of target N-protein. Further, the ADMET prediction analysis unveiled the non-tumorigenic, noncarcinogenic, nontoxic, non-mutagenic, and nonreproductive nature of the identified bioactive molecules. Furthermore, the data of molecular dynamic simulation validated the conformational and dynamic stability of the docked complexes. Concomitantly, the data of the present study validated the anti-COVID efficacy of the bioactives from selected medicinal plants of Indian origin.
Collapse
Affiliation(s)
| | - Arumugam Kamaladevi
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Pandi Boomi
- Department of Bioinformatics, Alagappa University, Karaikudi, India
| | | | | |
Collapse
|
15
|
Makatsa MS, Tincho MB, Wendoh JM, Ismail SD, Nesamari R, Pera F, de Beer S, David A, Jugwanth S, Gededzha MP, Mampeule N, Sanne I, Stevens W, Scott L, Blackburn J, Mayne ES, Keeton RS, Burgers WA. SARS-CoV-2 Antigens Expressed in Plants Detect Antibody Responses in COVID-19 Patients. FRONTIERS IN PLANT SCIENCE 2021; 12:589940. [PMID: 33868324 PMCID: PMC8044419 DOI: 10.3389/fpls.2021.589940] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/12/2021] [Indexed: 05/10/2023]
Abstract
Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has swept the world and poses a significant global threat to lives and livelihoods, with 115 million confirmed cases and at least 2.5 million deaths from Coronavirus disease 2019 (COVID-19) in the first year of the pandemic. Developing tools to measure seroprevalence and understand protective immunity to SARS-CoV-2 is a priority. We aimed to develop a serological assay using plant-derived recombinant viral proteins, which represent important tools in less-resourced settings. Methods: We established an indirect ELISA using the S1 and receptor-binding domain (RBD) portions of the spike protein from SARS-CoV-2, expressed in Nicotiana benthamiana. We measured antibody responses in sera from South African patients (n = 77) who had tested positive by PCR for SARS-CoV-2. Samples were taken a median of 6 weeks after the diagnosis, and the majority of participants had mild and moderate COVID-19 disease. In addition, we tested the reactivity of pre-pandemic plasma (n = 58) and compared the performance of our in-house ELISA with a commercial assay. We also determined whether our assay could detect SARS-CoV-2-specific IgG and IgA in saliva. Results: We demonstrate that SARS-CoV-2-specific immunoglobulins are readily detectable using recombinant plant-derived viral proteins, in patients who tested positive for SARS-CoV-2 by PCR. Reactivity to S1 and RBD was detected in 51 (66%) and 48 (62%) of participants, respectively. Notably, we detected 100% of samples identified as having S1-specific antibodies by a validated, high sensitivity commercial ELISA, and optical density (OD) values were strongly and significantly correlated between the two assays. For the pre-pandemic plasma, 1/58 (1.7%) of samples were positive, indicating a high specificity for SARS-CoV-2 in our ELISA. SARS-CoV-2-specific IgG correlated significantly with IgA and IgM responses. Endpoint titers of S1- and RBD-specific immunoglobulins ranged from 1:50 to 1:3,200. S1-specific IgG and IgA were found in saliva samples from convalescent volunteers. Conclusion: We demonstrate that recombinant SARS-CoV-2 proteins produced in plants enable robust detection of SARS-CoV-2 humoral responses. This assay can be used for seroepidemiological studies and to measure the strength and durability of antibody responses to SARS-CoV-2 in infected patients in our setting.
Collapse
Affiliation(s)
- Mohau S. Makatsa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Jerome M. Wendoh
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Sherazaan D. Ismail
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Rofhiwa Nesamari
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | | | - Anura David
- Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Sarika Jugwanth
- Department of Immunology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Maemu P. Gededzha
- Department of Immunology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Nakampe Mampeule
- Department of Immunology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Ian Sanne
- Clinical HIV Research Unit, Department of Internal Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - Wendy Stevens
- Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Lesley Scott
- Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Jonathan Blackburn
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Elizabeth S. Mayne
- Department of Immunology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Roanne S. Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Fotis C, Meimetis N, Tsolakos N, Politou M, Akinosoglou K, Pliaka V, Minia A, Terpos E, Trougakos IP, Mentis A, Marangos M, Panayiotakopoulos G, Dimopoulos MA, Gogos C, Spyridonidis A, Alexopoulos LG. Accurate SARS-CoV-2 seroprevalence surveys require robust multi-antigen assays. Sci Rep 2021; 11:6614. [PMID: 33758278 PMCID: PMC7988055 DOI: 10.1038/s41598-021-86035-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/03/2021] [Indexed: 12/18/2022] Open
Abstract
There is a plethora of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) serological tests based either on nucleocapsid phosphoprotein (N), S1-subunit of spike glycoprotein (S1) or receptor binding domain (RBD). Although these single-antigen based tests demonstrate high clinical performance, there is growing evidence regarding their limitations in epidemiological serosurveys. To address this, we developed a Luminex-based multiplex immunoassay that detects total antibodies (IgG/IgM/IgA) against the N, S1 and RBD antigens and used it to compare antibody responses in 1225 blood donors across Greece. Seroprevalence based on single-antigen readouts was strongly influenced by both the antigen type and cut-off value and ranged widely [0.8% (95% CI 0.4-1.5%)-7.5% (95% CI 6.0-8.9%)]. A multi-antigen approach requiring partial agreement between RBD and N or S1 readouts (RBD&N|S1 rule) was less affected by cut-off selection, resulting in robust seroprevalence estimation [0.6% (95% CI 0.3-1.1%)-1.2% (95% CI 0.7-2.0%)] and accurate identification of seroconverted individuals.
Collapse
Affiliation(s)
- Christos Fotis
- Biomedical Systems Laboratory, National Technical University of Athens, Athens, Greece
| | - Nikolaos Meimetis
- Biomedical Systems Laboratory, National Technical University of Athens, Athens, Greece
| | | | - Marianna Politou
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Karolina Akinosoglou
- Division of Infectious Diseases, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Vaia Pliaka
- ProtATonce Ltd, Demokritos Science Park, Athens, Greece
| | | | - Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Mentis
- Medicinal Microbiology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - George Panayiotakopoulos
- Pharmacology Laboratory, University of Patras, Patras, Greece
- National Public Health Organization, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Gogos
- Division of Infectious Diseases, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Alexandros Spyridonidis
- Department of Internal Medicine, BMT Unit and CBMDP Donor Center, University of Patras, Patras, Greece.
| | - Leonidas G Alexopoulos
- Biomedical Systems Laboratory, National Technical University of Athens, Athens, Greece.
- ProtATonce Ltd, Demokritos Science Park, Athens, Greece.
| |
Collapse
|
17
|
Carlomagno C, Bertazioli D, Gualerzi A, Picciolini S, Banfi PI, Lax A, Messina E, Navarro J, Bianchi L, Caronni A, Marenco F, Monteleone S, Arienti C, Bedoni M. COVID-19 salivary Raman fingerprint: innovative approach for the detection of current and past SARS-CoV-2 infections. Sci Rep 2021; 11:4943. [PMID: 33654146 PMCID: PMC7925543 DOI: 10.1038/s41598-021-84565-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022] Open
Abstract
The pandemic of COVID-19 is continuously spreading, becoming a worldwide emergency. Early and fast identification of subjects with a current or past infection must be achieved to slow down the epidemiological widening. Here we report a Raman-based approach for the analysis of saliva, able to significantly discriminate the signal of patients with a current infection by COVID-19 from healthy subjects and/or subjects with a past infection. Our results demonstrated the differences in saliva biochemical composition of the three experimental groups, with modifications grouped in specific attributable spectral regions. The Raman-based classification model was able to discriminate the signal collected from COVID-19 patients with accuracy, precision, sensitivity and specificity of more than 95%. In order to translate this discrimination from the signal-level to the patient-level, we developed a Deep Learning model obtaining accuracy in the range 89-92%. These findings have implications for the creation of a potential Raman-based diagnostic tool, using saliva as minimal invasive and highly informative biofluid, demonstrating the efficacy of the classification model.
Collapse
Affiliation(s)
- C Carlomagno
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148, Milan, Italy.
| | - D Bertazioli
- Università di Milano-Bicocca, Viale Sarca 366, 20126, Milan, Italy
| | - A Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148, Milan, Italy
| | - S Picciolini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148, Milan, Italy
| | - P I Banfi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148, Milan, Italy
| | - A Lax
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148, Milan, Italy
| | - E Messina
- Università di Milano-Bicocca, Viale Sarca 366, 20126, Milan, Italy
| | - J Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148, Milan, Italy
| | - L Bianchi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148, Milan, Italy
| | - A Caronni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148, Milan, Italy
| | - F Marenco
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148, Milan, Italy
| | - S Monteleone
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148, Milan, Italy
| | - C Arienti
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148, Milan, Italy
| | - M Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148, Milan, Italy.
| |
Collapse
|
18
|
Azzi L, Maurino V, Baj A, Dani M, d’Aiuto A, Fasano M, Lualdi M, Sessa F, Alberio T. Diagnostic Salivary Tests for SARS-CoV-2. J Dent Res 2021; 100:115-123. [PMID: 33131360 PMCID: PMC7604673 DOI: 10.1177/0022034520969670] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The diagnosis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection relies on the detection of viral RNA by real-time reverse transcription polymerase chain reaction (rRT-PCR) performed with respiratory specimens, especially nasopharyngeal swabs. However, this procedure requires specialized medical personnel, centralized laboratory facilities, and time to provide results (from several hours up to 1 d). In addition, there is a non-negligible risk of viral transmission for the operator who performs the procedure. For these reasons, several studies have suggested the use of other body fluids, including saliva, for the detection of SARS-CoV-2. The use of saliva as a diagnostic specimen has numerous advantages: it is easily self-collected by the patient with almost no discomfort, it does not require specialized health care personnel for its management, and it reduces the risks for the operator. In the past few months, several scientific papers, media, and companies have announced the development of new salivary tests to detect SARS-CoV-2 infection. Posterior oropharyngeal saliva should be distinguished from oral saliva, since the former is a part of respiratory secretions, while the latter is produced by the salivary glands, which are outside the respiratory tract. Saliva can be analyzed through standard (rRT-PCR) or rapid molecular biology tests (direct rRT-PCR without extraction), although, in a hospital setting, these procedures may be performed only in addition to nasopharyngeal swabs to minimize the incidence of false-negative results. Conversely, the promising role of saliva in the diagnosis of SARS-CoV-2 infection is highlighted by the emergence of point-of-care technologies and, most important, point-of-need devices. Indeed, these devices can be directly used in workplaces, airports, schools, cinemas, and shopping centers. An example is the recently described Rapid Salivary Test, an antigen test based on the lateral flow assay, which detects the presence of the virus by identifying the spike protein in the saliva within a few minutes.
Collapse
Affiliation(s)
- L. Azzi
- Unit of Oral Medicine and
Pathology, ASST dei Sette Laghi–Ospedale di Circolo e Fondazione Macchi,
Department of Medicine and Surgery, University of Insubria, Varese,
Italy
| | - V. Maurino
- Unit of Oral Medicine and
Pathology, ASST dei Sette Laghi–Ospedale di Circolo e Fondazione Macchi,
Department of Medicine and Surgery, University of Insubria, Varese,
Italy
| | - A. Baj
- Laboratory of Clinical
Microbiology, ASST dei Sette Laghi–Ospedale di Circolo e Fondazione Macchi,
Department of Medicine and Surgery, University of Insubria, Varese,
Italy
| | - M. Dani
- Unit of Oral Medicine and
Pathology, ASST dei Sette Laghi–Ospedale di Circolo e Fondazione Macchi,
Department of Medicine and Surgery, University of Insubria, Varese,
Italy
| | - A. d’Aiuto
- Unit of Oral Medicine and
Pathology, ASST dei Sette Laghi–Ospedale di Circolo e Fondazione Macchi,
Department of Medicine and Surgery, University of Insubria, Varese,
Italy
| | - M. Fasano
- Laboratory of Biochemistry and
Functional Proteomics, Department of Science and High Technology, Busto
Arsizio (VA), Italy
| | - M. Lualdi
- Laboratory of Biochemistry and
Functional Proteomics, Department of Science and High Technology, Busto
Arsizio (VA), Italy
| | - F. Sessa
- Unit of Pathology, ASST dei Sette
Laghi–Ospedale di Circolo e Fondazione Macchi, Department of Medicine and
Surgery, University of Insubria, Varese, Italy
| | - T. Alberio
- Laboratory of Biochemistry and
Functional Proteomics, Department of Science and High Technology, Busto
Arsizio (VA), Italy
| |
Collapse
|
19
|
Zinzula L, Basquin J, Bohn S, Beck F, Klumpe S, Pfeifer G, Nagy I, Bracher A, Hartl FU, Baumeister W. High-resolution structure and biophysical characterization of the nucleocapsid phosphoprotein dimerization domain from the Covid-19 severe acute respiratory syndrome coronavirus 2. Biochem Biophys Res Commun 2021; 538:54-62. [PMID: 33039147 PMCID: PMC7532810 DOI: 10.1016/j.bbrc.2020.09.131] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Unprecedented by number of casualties and socio-economic burden occurring worldwide, the coronavirus disease 2019 (Covid-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the worst health crisis of this century. In order to develop adequate countermeasures against Covid-19, identification and structural characterization of suitable antiviral targets within the SARS-CoV-2 protein repertoire is urgently needed. The nucleocapsid phosphoprotein (N) is a multifunctional and highly immunogenic determinant of virulence and pathogenicity, whose main functions consist in oligomerizing and packaging the single-stranded RNA (ssRNA) viral genome. Here we report the structural and biophysical characterization of the SARS-CoV-2 N C-terminal domain (CTD), on which both N homo-oligomerization and ssRNA binding depend. Crystal structures solved at 1.44 Å and 1.36 Å resolution describe a rhombus-shape N CTD dimer, which stably exists in solution as validated by size-exclusion chromatography coupled to multi-angle light scattering and analytical ultracentrifugation. Differential scanning fluorimetry revealed moderate thermal stability and a tendency towards conformational change. Microscale thermophoresis demonstrated binding to a 7-bp SARS-CoV-2 genomic ssRNA fragment at micromolar affinity. Furthermore, a low-resolution preliminary model of the full-length SARS-CoV N in complex with ssRNA, obtained by cryo-electron microscopy, provides an initial understanding of self-associating and RNA binding functions exerted by the SARS-CoV-2 N.
Collapse
Affiliation(s)
- Luca Zinzula
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | - Jerome Basquin
- The Max-Planck Institute of Biochemistry, Department of Structural Cell Biology, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Stefan Bohn
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152, Martinsried, Germany; The Max-Planck Institute of Biochemistry, Department of Cellular Machines and Signaling, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Florian Beck
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Sven Klumpe
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Günter Pfeifer
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - István Nagy
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Andreas Bracher
- The Max-Planck Institute of Biochemistry, Department of Cellular Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - F Ulrich Hartl
- The Max-Planck Institute of Biochemistry, Department of Cellular Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Wolfgang Baumeister
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
20
|
Chang SE, Feng A, Meng W, Apostolidis SA, Mack E, Artandi M, Barman L, Bennett K, Chakraborty S, Chang I, Cheung P, Chinthrajah S, Dhingra S, Do E, Finck A, Gaano A, Geßner R, Giannini HM, Gonzalez J, Greib S, Gündisch M, Hsu AR, Kuo A, Manohar M, Mao R, Neeli I, Neubauer A, Oniyide O, Powell AE, Puri R, Renz H, Schapiro JM, Weidenbacher PA, Wittman R, Ahuja N, Chung HR, Jagannathan P, James J, Kim PS, Meyer NJ, Nadeau K, Radic M, Robinson WH, Singh U, Wang TT, Wherry EJ, Skevaki C, Prak ETL, Utz PJ. New-Onset IgG Autoantibodies in Hospitalized Patients with COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33532787 DOI: 10.1101/2021.01.27.21250559] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. We developed three different protein arrays to measure hallmark IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers. Autoantibodies were identified in approximately 50% of patients, but in <15% of healthy controls. When present, autoantibodies largely targeted autoantigens associated with rare disorders such as myositis, systemic sclerosis and CTD overlap syndromes. Anti-nuclear antibodies (ANA) were observed in ∼25% of patients. Patients with autoantibodies tended to demonstrate one or a few specificities whereas ACA were even more prevalent, and patients often had antibodies to multiple cytokines. Rare patients were identified with IgG antibodies against angiotensin converting enzyme-2 (ACE-2). A subset of autoantibodies and ACA developed de novo following SARS-CoV-2 infection while others were transient. Autoantibodies tracked with longitudinal development of IgG antibodies that recognized SARS-CoV-2 structural proteins such as S1, S2, M, N and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. COVID-19 patients with one or more autoantibodies tended to have higher levels of antibodies against SARS-CoV-2 Nonstructural Protein 1 (NSP1) and Methyltransferase (ME). We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.
Collapse
|
21
|
Detection of SARS-CoV-2 Antibodies in Oral Fluid Obtained Using a Rapid Collection Device. J Clin Microbiol 2021; 59:JCM.02510-20. [PMID: 33234589 PMCID: PMC8111129 DOI: 10.1128/jcm.02510-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Current commercially available methods for reliably detecting antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain expensive and inaccessible due to the need for whole-blood collection by highly trained phlebotomists using personal protective equipment (PPE). We have evaluated an antibody detection approach using the OraSure Technologies oral antibody collection device (OACD) and their proprietary SARS-CoV-2 total antibody detection enzyme-linked immunosorbent assay (ELISA). Current commercially available methods for reliably detecting antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain expensive and inaccessible due to the need for whole-blood collection by highly trained phlebotomists using personal protective equipment (PPE). We have evaluated an antibody detection approach using the OraSure Technologies oral antibody collection device (OACD) and their proprietary SARS-CoV-2 total antibody detection enzyme-linked immunosorbent assay (ELISA). We found that the OraSure test for total antibody detection in oral fluid had comparable sensitivity and specificity to commercially available serum-based ELISAs for SARS-CoV-2 antibody detection while allowing for a more accessible form of specimen collection with the potential for self-collection.
Collapse
|
22
|
Makatsa MS, Tincho MB, Wendoh JM, Ismail SD, Nesamari R, Pera F, de Beer S, David A, Jugwanth S, Gededzha MP, Mampeule N, Sanne I, Stevens W, Scott L, Blackburn J, Mayne ES, Keeton RS, Burgers WA. SARS-CoV-2 Antigens Expressed in Plants Detect Antibody Responses in COVID-19 Patients. FRONTIERS IN PLANT SCIENCE 2021; 12:589940. [PMID: 33868324 DOI: 10.1101/2020.08.04.20167940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/12/2021] [Indexed: 05/19/2023]
Abstract
Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has swept the world and poses a significant global threat to lives and livelihoods, with 115 million confirmed cases and at least 2.5 million deaths from Coronavirus disease 2019 (COVID-19) in the first year of the pandemic. Developing tools to measure seroprevalence and understand protective immunity to SARS-CoV-2 is a priority. We aimed to develop a serological assay using plant-derived recombinant viral proteins, which represent important tools in less-resourced settings. Methods: We established an indirect ELISA using the S1 and receptor-binding domain (RBD) portions of the spike protein from SARS-CoV-2, expressed in Nicotiana benthamiana. We measured antibody responses in sera from South African patients (n = 77) who had tested positive by PCR for SARS-CoV-2. Samples were taken a median of 6 weeks after the diagnosis, and the majority of participants had mild and moderate COVID-19 disease. In addition, we tested the reactivity of pre-pandemic plasma (n = 58) and compared the performance of our in-house ELISA with a commercial assay. We also determined whether our assay could detect SARS-CoV-2-specific IgG and IgA in saliva. Results: We demonstrate that SARS-CoV-2-specific immunoglobulins are readily detectable using recombinant plant-derived viral proteins, in patients who tested positive for SARS-CoV-2 by PCR. Reactivity to S1 and RBD was detected in 51 (66%) and 48 (62%) of participants, respectively. Notably, we detected 100% of samples identified as having S1-specific antibodies by a validated, high sensitivity commercial ELISA, and optical density (OD) values were strongly and significantly correlated between the two assays. For the pre-pandemic plasma, 1/58 (1.7%) of samples were positive, indicating a high specificity for SARS-CoV-2 in our ELISA. SARS-CoV-2-specific IgG correlated significantly with IgA and IgM responses. Endpoint titers of S1- and RBD-specific immunoglobulins ranged from 1:50 to 1:3,200. S1-specific IgG and IgA were found in saliva samples from convalescent volunteers. Conclusion: We demonstrate that recombinant SARS-CoV-2 proteins produced in plants enable robust detection of SARS-CoV-2 humoral responses. This assay can be used for seroepidemiological studies and to measure the strength and durability of antibody responses to SARS-CoV-2 in infected patients in our setting.
Collapse
Affiliation(s)
- Mohau S Makatsa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Marius B Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Jerome M Wendoh
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Sherazaan D Ismail
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Rofhiwa Nesamari
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | | | - Anura David
- Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Sarika Jugwanth
- Department of Immunology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Maemu P Gededzha
- Department of Immunology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Nakampe Mampeule
- Department of Immunology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Ian Sanne
- Clinical HIV Research Unit, Department of Internal Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - Wendy Stevens
- Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Lesley Scott
- Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Jonathan Blackburn
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Elizabeth S Mayne
- Department of Immunology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Roanne S Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
23
|
MacMullan MA, Ibrayeva A, Trettner K, Deming L, Das S, Tran F, Moreno JR, Casian JG, Chellamuthu P, Kraft J, Kozak K, Turner FE, Slepnev VI, Le Page LM. ELISA detection of SARS-CoV-2 antibodies in saliva. Sci Rep 2020; 10:20818. [PMID: 33257702 PMCID: PMC7705674 DOI: 10.1038/s41598-020-77555-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
To facilitate containment of the COVID-19 pandemic currently active in the United States and across the world, options for easy, non-invasive antibody testing are required. Here we have adapted a commercially available, serum-based enzyme-linked immunosorbent assay (ELISA) for use with saliva samples, achieving 84.2% sensitivity and 100% specificity in a set of 149 clinical samples. This strategy will enable widespread, affordable testing for patients who experienced this disease, whilst minimizing exposure risk for healthcare workers.
Collapse
Affiliation(s)
- Melanie A MacMullan
- Curative Inc, 430 S Cataract Ave, San Dimas, CA, 91773, USA
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, USA
| | - Albina Ibrayeva
- Curative Inc, 430 S Cataract Ave, San Dimas, CA, 91773, USA
- Eli and Edythe Broad Center for Regenerative Medicine & Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, W.M. Keck School of Medicine, Los Angeles, USA
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kylie Trettner
- Curative Inc, 430 S Cataract Ave, San Dimas, CA, 91773, USA
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, USA
- Bridge Institute, Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, USA
| | - Laura Deming
- Curative Inc, 430 S Cataract Ave, San Dimas, CA, 91773, USA
| | - Sudipta Das
- Curative Inc, 430 S Cataract Ave, San Dimas, CA, 91773, USA
| | - Frances Tran
- Curative Inc, 430 S Cataract Ave, San Dimas, CA, 91773, USA
| | - Jose Ricardo Moreno
- Curative Inc, 430 S Cataract Ave, San Dimas, CA, 91773, USA
- Bridge Institute, Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, USA
| | | | | | - Jeffrey Kraft
- Curative Inc, 430 S Cataract Ave, San Dimas, CA, 91773, USA
| | - Kenneth Kozak
- Curative Inc, 430 S Cataract Ave, San Dimas, CA, 91773, USA
| | - Fred E Turner
- Curative Inc, 430 S Cataract Ave, San Dimas, CA, 91773, USA
| | | | - Lydia M Le Page
- Curative Inc, 430 S Cataract Ave, San Dimas, CA, 91773, USA.
| |
Collapse
|
24
|
Isho B, Abe KT, Zuo M, Jamal AJ, Rathod B, Wang JH, Li Z, Chao G, Rojas OL, Bang YM, Pu A, Christie-Holmes N, Gervais C, Ceccarelli D, Samavarchi-Tehrani P, Guvenc F, Budylowski P, Li A, Paterson A, Yue FY, Marin LM, Caldwell L, Wrana JL, Colwill K, Sicheri F, Mubareka S, Gray-Owen SD, Drews SJ, Siqueira WL, Barrios-Rodiles M, Ostrowski M, Rini JM, Durocher Y, McGeer AJ, Gommerman JL, Gingras AC. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci Immunol 2020. [PMID: 33033173 DOI: 10.1101/2020.08.01.20166553] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the antibody response in saliva and its relationship to systemic antibody levels. Here, we profiled by enzyme-linked immunosorbent assays (ELISAs) IgG, IgA and IgM responses to the SARS-CoV-2 spike protein (full length trimer) and its receptor-binding domain (RBD) in serum and saliva of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-SARS-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Longitudinal analysis revealed that anti-SARS-CoV-2 IgA and IgM antibodies rapidly decayed, while IgG antibodies remained relatively stable up to 105 days PSO in both biofluids. Lastly, IgG, IgM and to a lesser extent IgA responses to spike and RBD in the serum positively correlated with matched saliva samples. This study confirms that serum and saliva IgG antibodies to SARS-CoV-2 are maintained in the majority of COVID-19 patients for at least 3 months PSO. IgG responses in saliva may serve as a surrogate measure of systemic immunity to SARS-CoV-2 based on their correlation with serum IgG responses.
Collapse
Affiliation(s)
- Baweleta Isho
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Kento T Abe
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle Zuo
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alainna J Jamal
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.,Department of Microbiology, at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Bhavisha Rathod
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jenny H Wang
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Zhijie Li
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gary Chao
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Yeo Myong Bang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Annie Pu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Christian Gervais
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Derek Ceccarelli
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Payman Samavarchi-Tehrani
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Furkan Guvenc
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Patrick Budylowski
- Combined Containment Level 3 Unit, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Angel Li
- Department of Microbiology, at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Aimee Paterson
- Department of Microbiology, at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Feng Yun Yue
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lina M Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lauren Caldwell
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Samira Mubareka
- Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre; Biological Sciences, Sunnybrook Research Institute; and Division of Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Combined Containment Level 3 Unit, University of Toronto, Toronto, ON, Canada
| | - Steven J Drews
- Canadian Blood Services, Edmonton, AB & Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Miriam Barrios-Rodiles
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Mario Ostrowski
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,St. Michael's Hospital, Toronto, ON, Canada; Li Ka Shing Knowledge Institute.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - James M Rini
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Allison J McGeer
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.,Department of Microbiology, at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | | | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Beretta A, Cranage M, Zipeto D. Is Cross-Reactive Immunity Triggering COVID-19 Immunopathogenesis? Front Immunol 2020; 11:567710. [PMID: 33178193 PMCID: PMC7594548 DOI: 10.3389/fimmu.2020.567710] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/28/2020] [Indexed: 02/01/2023] Open
Abstract
The serological responses to both SARS-CoV-1 and SARS-CoV-2 virus have some unique characteristics that suggest cross-reactive priming by other human coronaviruses (hCoVs). The early kinetics and magnitude of these responses are, in some cases, associated with worse clinical outcomes in SARS and COVID-19. Cross-reactive hCoV antibody responses have been detected in both SARS and COVID-19 patients. There is also evidence that pre-existing T cell immunity to common cold coronaviruses can prime the response to SARS-CoV-2. Studies in non-human primates show that SARS-CoV-1 S-protein vaccine-induced antibodies are associated with acute lung injury in macaques challenged with SARS-CoV-1. Here we discuss the potential of cross-reactive immunity to drive the immunopathogenesis of COVID-19 and its implications for current efforts to develop immune-based therapies and vaccines.
Collapse
Affiliation(s)
| | - Martin Cranage
- Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Donato Zipeto
- Laboratory of Molecular Biology and Virology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
26
|
Isho B, Abe KT, Zuo M, Jamal AJ, Rathod B, Wang JH, Li Z, Chao G, Rojas OL, Bang YM, Pu A, Christie-Holmes N, Gervais C, Ceccarelli D, Samavarchi-Tehrani P, Guvenc F, Budylowski P, Li A, Paterson A, Yue FY, Marin LM, Caldwell L, Wrana JL, Colwill K, Sicheri F, Mubareka S, Gray-Owen SD, Drews SJ, Siqueira WL, Barrios-Rodiles M, Ostrowski M, Rini JM, Durocher Y, McGeer AJ, Gommerman JL, Gingras AC. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci Immunol 2020; 5:5/52/eabe5511. [PMID: 33033173 PMCID: PMC8050884 DOI: 10.1126/sciimmunol.abe5511] [Citation(s) in RCA: 585] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the antibody response in saliva and its relationship to systemic antibody levels. Here, we profiled by enzyme-linked immunosorbent assays (ELISAs) IgG, IgA and IgM responses to the SARS-CoV-2 spike protein (full length trimer) and its receptor-binding domain (RBD) in serum and saliva of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-SARS-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Longitudinal analysis revealed that anti-SARS-CoV-2 IgA and IgM antibodies rapidly decayed, while IgG antibodies remained relatively stable up to 105 days PSO in both biofluids. Lastly, IgG, IgM and to a lesser extent IgA responses to spike and RBD in the serum positively correlated with matched saliva samples. This study confirms that serum and saliva IgG antibodies to SARS-CoV-2 are maintained in the majority of COVID-19 patients for at least 3 months PSO. IgG responses in saliva may serve as a surrogate measure of systemic immunity to SARS-CoV-2 based on their correlation with serum IgG responses.
Collapse
Affiliation(s)
- Baweleta Isho
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Kento T Abe
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle Zuo
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alainna J Jamal
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Department of Microbiology, at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Bhavisha Rathod
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jenny H Wang
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Zhijie Li
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gary Chao
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Yeo Myong Bang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Annie Pu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Christian Gervais
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Derek Ceccarelli
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Payman Samavarchi-Tehrani
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Furkan Guvenc
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Patrick Budylowski
- Combined Containment Level 3 Unit, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Angel Li
- Department of Microbiology, at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Aimee Paterson
- Department of Microbiology, at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Feng Yun Yue
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lina M Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lauren Caldwell
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Samira Mubareka
- Department of Laboratory Medicine and Molecular Diagnostics, Division of Microbiology, Sunnybrook Health Sciences Centre; Biological Sciences, Sunnybrook Research Institute; and Division of Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Combined Containment Level 3 Unit, University of Toronto, Toronto, ON, Canada
| | - Steven J Drews
- Canadian Blood Services, Edmonton, AB & Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Miriam Barrios-Rodiles
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Mario Ostrowski
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- St. Michael's Hospital, Toronto, ON, Canada; Li Ka Shing Knowledge Institute
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - James M Rini
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Allison J McGeer
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Department of Microbiology, at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | | | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Nguyen-Contant P, Embong AK, Kanagaiah P, Chaves FA, Yang H, Branche AR, Topham DJ, Sangster MY. S Protein-Reactive IgG and Memory B Cell Production after Human SARS-CoV-2 Infection Includes Broad Reactivity to the S2 Subunit. mBio 2020; 11:e01991-20. [PMID: 32978311 PMCID: PMC7520599 DOI: 10.1128/mbio.01991-20] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
Abstract
The high susceptibility of humans to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of coronavirus disease 2019 (COVID-19), reflects the novelty of the virus and limited preexisting B cell immunity. IgG against the SARS-CoV-2 spike (S) protein, which carries the novel receptor binding domain (RBD), is absent or at low levels in unexposed individuals. To better understand the B cell response to SARS-CoV-2 infection, we asked whether virus-reactive memory B cells (MBCs) were present in unexposed subjects and whether MBC generation accompanied virus-specific IgG production in infected subjects. We analyzed sera and peripheral blood mononuclear cells (PBMCs) from non-SARS-CoV-2-exposed healthy donors and COVID-19 convalescent subjects. Serum IgG levels specific for SARS-CoV-2 proteins (S, including the RBD and S2 subunit, and nucleocapsid [N]) and non-SARS-CoV-2 proteins were related to measurements of circulating IgG MBC levels. Anti-RBD IgG was absent in unexposed subjects. Most unexposed subjects had anti-S2 IgG, and a minority had anti-N IgG, but IgG MBCs with these specificities were not detected, perhaps reflecting low frequencies. Convalescent subjects had high levels of IgG against the RBD, S2, and N, together with large populations of RBD- and S2-reactive IgG MBCs. Notably, IgG titers against the S protein of the human coronavirus OC43 were higher in convalescent subjects than in unexposed subjects and correlated strongly with anti-S2 titers. Our findings indicate cross-reactive B cell responses against the S2 subunit that might enhance broad coronavirus protection. Importantly, our demonstration of MBC induction by SARS-CoV-2 infection suggests that a durable form of B cell immunity is maintained even if circulating antibody levels wane.IMPORTANCE The recent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key issues are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generates lasting immune protection against reinfection. Our analysis focused on pre- and postinfection IgG and IgG memory B cells (MBCs) reactive to SARS-CoV-2 proteins. Most importantly, we demonstrate that infection generates both IgG and IgG MBCs against the novel receptor binding domain and the conserved S2 subunit of the SARS-CoV-2 spike protein. Thus, even if antibody levels wane, long-lived MBCs remain to mediate rapid antibody production. Our study results also suggest that SARS-CoV-2 infection strengthens preexisting broad coronavirus protection through S2-reactive antibody and MBC formation.
Collapse
Affiliation(s)
- Phuong Nguyen-Contant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - A Karim Embong
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Preshetha Kanagaiah
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Francisco A Chaves
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Angela R Branche
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Mark Y Sangster
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
28
|
Krammer F. SARS-CoV-2 vaccines in development. Nature 2020; 586:516-527. [DOI: 10.1038/s41586-020-2798-3] [Citation(s) in RCA: 1225] [Impact Index Per Article: 245.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
|
29
|
Chen Q, He Z, Mao F, Pei H, Cao H, Liu X. Diagnostic technologies for COVID-19: a review. RSC Adv 2020; 10:35257-35264. [PMID: 35515699 PMCID: PMC9056975 DOI: 10.1039/d0ra06445a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023] Open
Abstract
Since the outbreak of COVID-19 in December 2019, the highly contagious SARS-CoV-2 virus has spread rapidly worldwide. Although the governments across the world have adopted different preventative measures, the spread of the virus still cannot be effectively controlled, and the number of infections and deaths continues to grow. Early diagnosis of COVID-19 is one of the key measures to control the spread of the pandemic and timely treatment of infected people. This review summarizes current COVID-19 diagnostic techniques based on virology, serology, and imaging diagnostics and discusses their advantages and limitations with the aim of providing a reference for rapid and accurate diagnosis of COVID-19.
Collapse
Affiliation(s)
- Qi Chen
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Zhenyun He
- Hainan Institute for Food Control Haikou 570314 China
| | - Fujing Mao
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital of Hainan Medical University Haikou 570311 China
| | - Hongmei Cao
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University Haikou 570228 China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province Haikou 570228 China
| |
Collapse
|
30
|
SARS-CoV-2 identification and IgA antibodies in saliva: One sample two tests approach for diagnosis. Clin Chim Acta 2020; 510:717-722. [PMID: 32946791 PMCID: PMC7492139 DOI: 10.1016/j.cca.2020.09.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/19/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
Saliva is an eligible matrix for SARS-CoV-2 molecular detection and IgA measurement. Saliva collection offers several advantages: safe, non-invasive and self-collection. Positive molecular testing results were associated with disease duration. The presence of salivary IgA was associated with pneumonia and CRP values.
Aim This study aims to verify whether standardized saliva collection is suitable for SARS-CoV-2 molecular detection and IgA measurement. Methods 43 COVID-19 inpatients and 326 screening subjects underwent naso-pharyngeal (NP)-swab and saliva collection (Salivette). Inpatients also underwent repeated blood collections to evaluate inflammation and organs involvement. In all patients and subjects, SARS-CoV-2 (gene E) rRT-PCR was undertaken in saliva and NP-swabs. Salivary IgA and serum IgA, IgG, IgM were measured on inpatients’ samples. Results NP-swabs and saliva were both SARS-CoV-2 positive in 7 (16%) or both negative in 35 (82%) out of 43 patients successfully included in the study. NP-swabs and saliva results did not perfectly match in one patient (saliva positive, NP-swab negative). Positive molecular results were significantly associated with disease duration (p = 0.0049). 326/326 screening subjects were SARS-CoV-2 negative on both NP-swabs and saliva. Among the 27 saliva samples tested for IgA, 18 were IgA positive. Salivary IgA positivity was associated with pneumonia (p = 0.002) and CRP values (p = 0.0183), not with other clinical and molecular data, or with serum immunoglubulins. Conclusions A standardized saliva collection can be adopted to detect SARS-CoV-2 infection in alternative to NP-swabs. Preliminary data on salivary IgA support the use of saliva also for patient monitoring.
Collapse
|
31
|
Elledge SK, Zhou XX, Byrnes JR, Martinko AJ, Lui I, Pance K, Lim SA, Glasgow JE, Glasgow AA, Turcios K, Iyer N, Torres L, Peluso MJ, Henrich TJ, Wang TT, Tato CM, Leung KK, Greenhouse B, Wells JA. Engineering luminescent biosensors for point-of-care SARS-CoV-2 antibody detection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.08.17.20176925. [PMID: 32839788 PMCID: PMC7444307 DOI: 10.1101/2020.08.17.20176925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Current serology tests for SARS-CoV-2 antibodies mainly take the form of enzyme-linked immunosorbent assays or lateral flow assays, with the former being laborious and the latter being expensive and often lacking sufficient sensitivity and scalability. Here we present the development and validation of a rapid, low-cost solution-based assay to detect antibodies in serum, plasma, whole blood, and saliva, using rationally designed split luciferase antibody biosensors (spLUC). This new assay, which generates quantitative results in as short as 5 minutes, substantially reduces the complexity and improves the scalability of COVID-19 antibody tests for point-of-care and broad population testing.
Collapse
Affiliation(s)
- Susanna K. Elledge
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158, USA
| | - Xin X. Zhou
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158, USA
| | - James R. Byrnes
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158, USA
| | | | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158, USA
| | - Katarina Pance
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158, USA
| | - Shion A. Lim
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158, USA
| | - Jeff E. Glasgow
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158, USA
| | - Anum A. Glasgow
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Keirstinne Turcios
- Department of Medicine, University of California San Francisco, San Francisco, California, 94158, USA
| | - Nikita Iyer
- Department of Medicine, University of California San Francisco, San Francisco, California, 94158, USA
| | - Leonel Torres
- Department of Medicine, University of California San Francisco, San Francisco, California, 94158, USA
| | - Michael J. Peluso
- Department of Medicine, University of California San Francisco, San Francisco, California, 94158, USA
| | - Timothy J. Henrich
- Department of Medicine, University of California San Francisco, San Francisco, California, 94158, USA
| | - Taia T. Wang
- Chan Zuckerberg Biohub, San Francisco, California, 94158, USA
- Departments of Medicine and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | | | - Kevin K. Leung
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, 94158, USA
- Chan Zuckerberg Biohub, San Francisco, California, 94158, USA
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, 94158, USA
- Chan Zuckerberg Biohub, San Francisco, California, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, 94158, USA
| |
Collapse
|
32
|
Clinical Utility of a Highly Sensitive Lateral Flow Immunoassay as determined by Titer Analysis for the Detection of anti-SARS-CoV-2 Antibodies at the Point-of-Care. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32766594 DOI: 10.1101/2020.07.30.20163824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), became a pandemic in early 2020. Lateral flow immunoassays for antibody testing have been viewed as a cheap and rapidly deployable method for determining previous infection with SARS-CoV-2; however, these assays have shown unacceptably low sensitivity. We report on nine lateral flow immunoassays currently available and compare their titer sensitivity in serum to a best-practice enzyme-linked immunosorbent assay (ELISA) and viral neutralization assay. For a small group of PCR-positive, we found two lateral flow immunoassay devices with titer sensitivity roughly equal to the ELISA; these devices were positive for all PCR-positive patients harboring SARS-CoV-2 neutralizing antibodies. One of these devices was deployed in Northern Italy to test its sensitivity and specificity in a real-world clinical setting. Using the device with fingerstick blood on a cohort of 27 hospitalized PCR-positive patients and seven hospitalized controls, ROC curve analysis gave AUC values of 0.7646 for IgG. For comparison, this assay was also tested with saliva from the same patient population and showed reduced discrimination between cases and controls with AUC values of 0.6841 for IgG. Furthermore, during viral neutralization testing, one patient was discovered to harbor autoantibodies to ACE2, with implications for how immune responses are profiled. We show here through a proof-of-concept study that these lateral flow devices can be as analytically sensitive as ELISAs and adopted into hospital protocols; however, additional improvements to these devices remain necessary before their clinical deployment.
Collapse
|
33
|
Faustini SE, Jossi SE, Perez-Toledo M, Shields AM, Allen JD, Watanabe Y, Newby ML, Cook A, Willcox CR, Salim M, Goodall M, Heaney JL, Marcial-Juarez E, Morley GL, Torlinska B, Wraith DC, Veenith TV, Harding S, Jolles S, Ponsford MJ, Plant T, Huissoon A, O'Shea MK, Willcox BE, Drayson MT, Crispin M, Cunningham AF, Richter AG. Detection of antibodies to the SARS-CoV-2 spike glycoprotein in both serum and saliva enhances detection of infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.06.16.20133025. [PMID: 32588002 PMCID: PMC7310662 DOI: 10.1101/2020.06.16.20133025] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Detecting antibody responses during and after SARS-CoV-2 infection is essential in determining the seroepidemiology of the virus and the potential role of antibody in disease. Scalable, sensitive and specific serological assays are essential to this process. The detection of antibody in hospitalized patients with severe disease has proven straightforward; detecting responses in subjects with mild disease and asymptomatic infections has proven less reliable. We hypothesized that the suboptimal sensitivity of antibody assays and the compartmentalization of the antibody response may contribute to this effect. METHODS We systemically developed an ELISA assay, optimising different antigens and amplification steps, in serum and saliva from symptomatic and asymptomatic SARS-CoV-2-infected subjects. RESULTS Using trimeric spike glycoprotein, rather than nucleocapsid enabled detection of responses in individuals with low antibody responses. IgG1 and IgG3 predominate to both antigens, but more anti-spike IgG1 than IgG3 was detectable. All antigens were effective for detecting responses in hospitalized patients. Anti-spike, but not nucleocapsid, IgG, IgA and IgM antibody responses were readily detectable in saliva from non-hospitalized symptomatic and asymptomatic individuals. Antibody responses in saliva and serum were largely independent of each other and symptom reporting. CONCLUSIONS Detecting antibody responses in both saliva and serum is optimal for determining virus exposure and understanding immune responses after SARS-CoV-2 infection. FUNDING This work was funded by the University of Birmingham, the National Institute for Health Research (UK), the NIH National Institute for Allergy and Infectious Diseases, the Bill and Melinda Gates Foundation and the University of Southampton.
Collapse
Affiliation(s)
- Sian E Faustini
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Sian E Jossi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Adrian M Shields
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K
| | - Alex Cook
- Binding Site Group Ltd, Birmingham, U.K
| | - Carrie R Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Mahboob Salim
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Margaret Goodall
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Jennifer L Heaney
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Edith Marcial-Juarez
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Gabriella L Morley
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Barbara Torlinska
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - David C Wraith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Tonny V Veenith
- Department of Critical Care Medicine, University Hospitals Birmingham NHS Trust, Birmingham, B15 2TH, U.K
| | | | | | | | - Tim Plant
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Aarnoud Huissoon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
- Department of Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, U.K
| | - Matthew K O'Shea
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Benjamin E Willcox
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Mark T Drayson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, U.K
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Alex G Richter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, U.K
| |
Collapse
|