1
|
Jiang YY, Kumar S, Turkewitz AP. The secretory pathway in Tetrahymena is organized for efficient constitutive secretion at ciliary pockets. iScience 2024; 27:111123. [PMID: 39498308 PMCID: PMC11532953 DOI: 10.1016/j.isci.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024] Open
Abstract
In ciliates, membrane cisternae called alveoli interpose between the plasma membrane and the cytoplasm, posing a barrier to endocytic and exocytic membrane trafficking. One exception to this barrier is plasma membrane invaginations called parasomal sacs, which are adjacent to ciliary basal bodies. By following a fluorescent secretory marker called ESCargo, we imaged secretory compartments and secretion in these cells. A cortical endoplasmic reticulum is organized along cytoskeletal ridges and cradles a cohort of mitochondria. One cohort of Golgi are highly mobile in a subcortical layer, while the remainder appear stably positioned at periodic sites close to basal bodies, except near the cell tip where, interestingly, Golgi are more closely spaced. Strikingly, ESCargo secretion was readily visible at positions aligned with basal bodies and parasomal sacs. Thus peri-ciliary zones in ciliates are organized, like ciliary pockets in the highly unrelated trypanosomids, as unique hubs of exo-endocytic trafficking.
Collapse
Affiliation(s)
- Yu-Yang Jiang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- AbCellera Boston, Inc. 91 Mystic St, Arlington, MA 02474, USA
| | - Santosh Kumar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind Road, Pune, Maharashtra State 411007, India
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Dong H, Han J, Chen X, Sun H, Han M, Wang W. LncRNA ZNF649-AS1 promotes trastuzumab resistance and TAM-dependent PD-L1 expression in breast cancer by regulating EXOC7 alternative splicing. Arch Biochem Biophys 2024; 761:110128. [PMID: 39159899 DOI: 10.1016/j.abb.2024.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Trastuzumab resistance is a serious clinical problem in the treatment of HER2-positive breast cancer (BC). The lncRNA ZNF649-AS1 was previously found to promote HER2-positive BC trastuzumab resistance. The study aims to explore the molecular mechanism of ZNF649-AS1 in HER2-positive BC trastuzumab resistance. METHODS Tumor tissue and peripheral blood samples were collected from 20 HER2-positive BC patients with trastuzumab-resistant and non-resistant, respectively. Trastuzumab-resistant BC cell lines SKBR-3-TR and BT474-TR were established. RIP was employed to confirm the binding of ZNF649-AS1, PRPF8 and exocyst complex component 7 (EXOC7). RNA expression of EXOC7-L (Full length of EXOC7) and EXOC7-S (Spliceosome of EXOC7) were detected using agarose gel electrophoresis. Expressions of macrophage markers CD68+ CD206+ were measured by flow cytometry. RESULTS ZNF649-AS1 expression was upregulated in HER2-positive BC trastuzumab resistance. ZNF649-AS1 downregulation inhibited trastuzumab resistance in HER2-positive BC. ZNF649-AS1 regulated EXOC7 alternative splicing by binding with PRPF8. EXOC7-S knockdown suppressed trastuzumab resistance and TAM-dependent PD-L1 expression in HER2-positive BC. EXOC7-S overexpression abolished the effects of ZNF649-AS1 knockdown on trastuzumab resistance and TAM-dependent PD-L1 expression in HER2-positive BC. CONCLUSION ZNF649-AS1 promoted trastuzumab resistance and TAM-dependent PD-L1 expression in HER2-positive BC via promoting alternative splicing of EXOC7 by PRPF8.
Collapse
Affiliation(s)
- Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Jing Han
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Xiang Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Hening Sun
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, PR China.
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, PR China.
| |
Collapse
|
3
|
Pukhovaya EM, Ramalho JJ, Weijers D. Polar targeting of proteins - a green perspective. J Cell Sci 2024; 137:jcs262068. [PMID: 39330548 DOI: 10.1242/jcs.262068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Cell polarity - the asymmetric distribution of molecules and cell structures within the cell - is a feature that almost all cells possess. Even though the cytoskeleton and other intracellular organelles can have a direction and guide protein distribution, the plasma membrane is, in many cases, essential for the asymmetric localization of proteins because it helps to concentrate proteins and restrict their localization. Indeed, many proteins that exhibit asymmetric or polarized localization are either embedded in the PM or located close to it in the cellular cortex. Such proteins, which we refer to here as 'polar proteins', use various mechanisms of membrane targeting, including vesicle trafficking, direct phospholipid binding, or membrane anchoring mediated by post-translational modifications or binding to other proteins. These mechanisms are often shared with non-polar proteins, yet the unique combinations of several mechanisms or protein-specific factors assure the asymmetric distribution of polar proteins. Although there is a relatively detailed understanding of polar protein membrane targeting mechanisms in animal and yeast models, knowledge in plants is more fragmented and focused on a limited number of known polar proteins in different contexts. In this Review, we combine the current knowledge of membrane targeting mechanisms and factors for known plant transmembrane and cortical proteins and compare these with the mechanisms elucidated in non-plant systems. We classify the known factors as general or polarity specific, and we highlight areas where more knowledge is needed to construct an understanding of general polar targeting mechanisms in plants or to resolve controversies.
Collapse
Affiliation(s)
- Evgeniya M Pukhovaya
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - João Jacob Ramalho
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
4
|
Raab JE, Hamilton DJ, Harju TB, Huynh TN, Russo BC. Pushing boundaries: mechanisms enabling bacterial pathogens to spread between cells. Infect Immun 2024; 92:e0052423. [PMID: 38661369 PMCID: PMC11385730 DOI: 10.1128/iai.00524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
For multiple intracellular bacterial pathogens, the ability to spread directly into adjacent epithelial cells is an essential step for disease in humans. For pathogens such as Shigella, Listeria, Rickettsia, and Burkholderia, this intercellular movement frequently requires the pathogens to manipulate the host actin cytoskeleton and deform the plasma membrane into structures known as protrusions, which extend into neighboring cells. The protrusion is then typically resolved into a double-membrane vacuole (DMV) from which the pathogen quickly escapes into the cytosol, where additional rounds of intercellular spread occur. Significant progress over the last few years has begun to define the mechanisms by which intracellular bacterial pathogens spread. This review highlights the interactions of bacterial and host factors that drive mechanisms required for intercellular spread with a focus on how protrusion structures form and resolve.
Collapse
Affiliation(s)
- Julie E. Raab
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Desmond J. Hamilton
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Tucker B. Harju
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Thao N. Huynh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| | - Brian C. Russo
- Department of Immunology and Microbiology, School of Medicine, University of Colorado—Anschutz Medical Campus, Denver, Colorado, USA
| |
Collapse
|
5
|
Zuriegat Q, Abubakar YS, Wang Z, Chen M, Zhang J. Emerging Roles of Exocyst Complex in Fungi: A Review. J Fungi (Basel) 2024; 10:614. [PMID: 39330374 PMCID: PMC11433146 DOI: 10.3390/jof10090614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
The exocyst complex, an evolutionarily conserved octameric protein assembly, plays a central role in the targeted binding and fusion of vesicles at the plasma membrane. In fungal cells, this transport system is essential for polarized growth, morphogenesis, cell wall maintenance and virulence. Recent advances have greatly improved our understanding of the role and regulation of the exocyst complex in fungi. This review synthesizes these developments and focuses on the intricate interplay between the exocyst complex, specific fungal cargos and regulatory proteins. Insights into thestructure of the exocyst and its functional dynamics have revealed new dimensions of its architecture and its interactions with the cellular environment. Furthermore, the regulation of exocyst activity involves complex signaling pathways and interactions with cytoskeletal elements that are crucial for its role in vesicle trafficking. By exploring these emerging themes, this review provides a comprehensive overview of the multifaceted functions of the exocyst complex in fungal biology. Understanding these mechanisms offers potential avenues for novel therapeutic strategies against fungal pathogens and insights into the general principles of vesicle trafficking in eukaryotic cells. The review therefore highlights the importance of the exocyst complex in maintaining cellular functions and its broader implications in fungal pathogenicity and cell biology.
Collapse
Affiliation(s)
- Qussai Zuriegat
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Meilian Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Jun Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| |
Collapse
|
6
|
Wu H, Nguyen H, Hashim PH, Fogelgren B, Duncan FE, Ward WS. Oocyte-specific EXOC5 expression is required for mouse oogenesis and folliculogenesis. Mol Hum Reprod 2024; 30:gaae026. [PMID: 39037927 PMCID: PMC11299862 DOI: 10.1093/molehr/gaae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
EXOC5 is a crucial component of a large multi-subunit tethering complex, the exocyst complex, that is required for fusion of secretory vesicles with the plasma membrane. Exoc5 deleted mice die as early embryos. Therefore, to determine the role of EXOC5 in follicular and oocyte development, it was necessary to produce a conditional knockout (cKO), Zp3-Exoc5-cKO, in which Exoc5 was deleted only in oocytes. The first wave of folliculogenesis appeared histologically normal and progressed to the antral stage. However, after IVF with normal sperm, oocytes collected from the first wave (superovulated 21-day-old cKO mice) were shown to be developmentally incompetent. Adult follicular waves did not progress beyond the secondary follicle stage where they underwent apoptosis. Female cKO mice were infertile. Overall, these data suggest that the first wave of folliculogenesis is less sensitive to oocyte-specific loss of Exoc5, but the resulting gametes have reduced developmental competence. In contrast, subsequent waves of folliculogenesis require oocyte-specific Exoc5 for development past the preantral follicle stage. The Zp3-Exoc5-cKO mouse provides a model for disrupting folliculogenesis that also enables the separation between the first and subsequent waves of folliculogenesis.
Collapse
Affiliation(s)
- Hongwen Wu
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hieu Nguyen
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Prianka H Hashim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - W Steven Ward
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
7
|
Nielsen ME. Vesicle trafficking pathways in defence-related cell wall modifications: papillae and encasements. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3700-3712. [PMID: 38606692 DOI: 10.1093/jxb/erae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Filamentous pathogens that cause plant diseases such as powdery mildew, rust, anthracnose, and late blight continue to represent an enormous challenge for farmers worldwide. Interestingly, these pathogens, although phylogenetically distant, initiate pathogenesis in a very similar way by penetrating the cell wall and establishing a feeding structure inside the plant host cell. To prevent pathogen ingress, the host cell responds by forming defence structures known as papillae and encasements that are thought to mediate pre- and post-invasive immunity, respectively. This form of defence is evolutionarily conserved in land plants and is highly effective and durable against a broad selection of non-adapted filamentous pathogens. As most pathogens have evolved strategies to overcome the defences of only a limited range of host plants, the papilla/encasement response could hold the potential to become an optimal transfer of resistance from one plant species to another. In this review I lay out current knowledge of the involvement of membrane trafficking that forms these important defence structures and highlight some of the questions that still need to be resolved.
Collapse
Affiliation(s)
- Mads Eggert Nielsen
- University of Copenhagen, Faculty of Science, CPSC, Department of Plant and Environmental Sciences, 1871 Frederiksberg C, Denmark
| |
Collapse
|
8
|
Hertzler JI, Bernard AR, Rolls MM. Dendrite regeneration mediates functional recovery after complete dendrite removal. Dev Biol 2023; 497:18-25. [PMID: 36870669 PMCID: PMC10073339 DOI: 10.1016/j.ydbio.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Unlike many cell types, neurons are not typically replaced if damaged. Therefore, regeneration of damaged cellular domains is critical for maintenance of neuronal function. While axon regeneration has been documented for several hundred years, it has only recently become possible to determine whether neurons respond to dendrite removal with regeneration. Regrowth of dendrite arbors has been documented in invertebrate and vertebrate model systems, but whether it leads to functional restoration of a circuit remains unknown. To test whether dendrite regeneration restores function, we used larval Drosophila nociceptive neurons. Their dendrites detect noxious stimuli to initiate escape behavior. Previous studies of Drosophila sensory neurons have shown that dendrites of single neurons regrow after laser severing. We removed dendrites from 16 neurons per animal to clear most of the dorsal surface of nociceptive innervation. As expected, this reduced aversive responses to noxious touch. Surprisingly, behavior was completely restored 24 h after injury, at the stage when dendrite regeneration has begun, but the new arbor has only covered a small portion of its former territory. This behavioral recovery required regenerative outgrowth as it was eliminated in a genetic background in which new growth is blocked. We conclude that dendrite regeneration can restore behavior.
Collapse
Affiliation(s)
- J Ian Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Annabelle R Bernard
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.
| |
Collapse
|
9
|
Swope RD, Hertzler JI, Stone MC, Kothe GO, Rolls MM. The exocyst complex is required for developmental and regenerative neurite growth in vivo. Dev Biol 2022; 492:1-13. [PMID: 36162553 PMCID: PMC10228574 DOI: 10.1016/j.ydbio.2022.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
The exocyst complex is an important regulator of intracellular trafficking and tethers secretory vesicles to the plasma membrane. Understanding of its role in neuron outgrowth remains incomplete, and previous studies have come to different conclusions about its importance for axon and dendrite growth, particularly in vivo. To investigate exocyst function in vivo we used Drosophila sensory neurons as a model system. To bypass early developmental requirements in other cell types, we used neuron-specific RNAi to target seven exocyst subunits. Initial neuronal development proceeded normally in these backgrounds, however, we considered this could be due to residual exocyst function. To probe neuronal growth capacity at later times after RNAi initiation, we used laser microsurgery to remove axons or dendrites and prompt regrowth. Exocyst subunit RNAi reduced axon regeneration, although new axons could be specified. In control neurons, a vesicle trafficking marker often concentrated in the new axon, but this pattern was disrupted in Sec6 RNAi neurons. Dendrite regeneration was also severely reduced by exocyst RNAi, even though the trafficking marker did not accumulate in a strongly polarized manner during normal dendrite regeneration. The requirement for the exocyst was not limited to injury contexts as exocyst subunit RNAi eliminated dendrite regrowth after developmental pruning. We conclude that the exocyst is required for injury-induced and developmental neurite outgrowth, but that residual protein function can easily mask this requirement.
Collapse
Affiliation(s)
- Rachel D Swope
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - J Ian Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Michelle C Stone
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Gregory O Kothe
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.
| |
Collapse
|
10
|
An SJ, Anneken A, Xi Z, Choi C, Schlessinger J, Toomre D. Regulation of EGF-stimulated activation of the PI-3K/AKT pathway by exocyst-mediated exocytosis. Proc Natl Acad Sci U S A 2022; 119:e2208947119. [PMID: 36417441 PMCID: PMC9860279 DOI: 10.1073/pnas.2208947119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The phosphoinositide-3 kinase (PI-3K)/AKT cell survival pathway is an important pathway activated by EGFR signaling. Here we show, that in addition to previously described critical components of this pathway, i.e., the docking protein Gab1, the PI-3K/AKT pathway in epithelial cells is regulated by the exocyst complex, which is a vesicle tether that is essential for exocytosis. Using live-cell imaging, we demonstrate that PI(3,4,5)P3 levels fluctuate at the membrane on a minutes time scale and that these fluctuations are associated with local PI(3,4,5)P3 increases at sites where recycling vesicles undergo exocytic fusion. Supporting a role for exocytosis in PI(3,4,5)P3 generation, acute promotion of exocytosis by optogenetically driving exocyst-mediated vesicle tethering up-regulates PI(3,4,5)P3 production and AKT activation. Conversely, acute inhibition of exocytosis using Endosidin2, a small-molecule inhibitor of the exocyst subunit Exo70 (also designated EXOC7), or inhibition of exocyst function by siRNA-mediated knockdown of the exocyst subunit Sec15 (EXOC6), impairs PI(3,4,5)P3 production and AKT activation induced by EGF stimulation of epithelial cells. Moreover, prolonged inhibition of EGF signaling by EGFR tyrosine kinase inhibitors results in spontaneous reactivation of AKT without a concomitant relief of EGFR inhibition. However, this reactivation can be negated by acutely inhibiting the exocyst. These experiments demonstrate that exocyst-mediated exocytosis-by regulating PI(3,4,5)P3 levels at the plasma membrane-subserves activation of the PI-3K/AKT pathway by EGFR in epithelial cells.
Collapse
Affiliation(s)
- Seong J. An
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- bDepartment of Pharmacology, Yale University School of Medicine, New Haven, CT06510
- 2To whom correspondence may be addressed. or
| | - Alexander Anneken
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Zhiqun Xi
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Changseon Choi
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Joseph Schlessinger
- bDepartment of Pharmacology, Yale University School of Medicine, New Haven, CT06510
| | - Derek Toomre
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- 2To whom correspondence may be addressed. or
| |
Collapse
|
11
|
Carleton AE, Duncan MC, Taniguchi K. Human epiblast lumenogenesis: From a cell aggregate to a lumenal cyst. Semin Cell Dev Biol 2022; 131:117-123. [PMID: 35637065 PMCID: PMC9529837 DOI: 10.1016/j.semcdb.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The formation of a central lumen in the human epiblast is a critical step for development. However, because the lumen forms in the epiblast coincident with implantation, the molecular and cellular events of this early lumenogenesis process cannot be studied in vivo. Recent developments using new model systems have revealed insight into the underpinnings of epiblast formation. To provide an up-to-date comprehensive review of human epiblast lumenogenesis, we highlight recent findings from human and mouse models with an emphasis on new molecular understanding of a newly described apicosome compartment, a novel 'formative' state of pluripotency that coordinates with epiblast polarization, and new evidence about the physical and polarized trafficking mechanisms contributing to lumenogenesis.
Collapse
Affiliation(s)
- Amber E. Carleton
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin USA
| | - Mara C. Duncan
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan USA,Co-corresponding authors
| | - Kenichiro Taniguchi
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin USA,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin USA,Co-corresponding authors
| |
Collapse
|
12
|
Alfonso-Pérez T, Baonza G, Herranz G, Martín-Belmonte F. Deciphering the interplay between autophagy and polarity in epithelial tubulogenesis. Semin Cell Dev Biol 2022; 131:160-172. [PMID: 35641407 DOI: 10.1016/j.semcdb.2022.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022]
Abstract
The Metazoan complexity arises from a primary building block, the epithelium, which comprises a layer of polarized cells that divide the organism into compartments. Most of these body compartments are organs formed by epithelial tubes that enclose an internal hollow space or lumen. Over the last decades, multiple studies have unmasked the paramount events required to form this lumen de novo. In epithelial cells, these events mainly involve recognizing external clues, establishing and maintaining apicobasal polarity, endo-lysosomal trafficking, and expanding the created lumen. Although canonical autophagy has been classically considered a catabolic process needed for cell survival, multiple studies have also emphasized its crucial role in epithelial polarity, morphogenesis and cellular homeostasis. Furthermore, non-canonical autophagy pathways have been recently discovered as atypical secretory routes. Both canonical and non-canonical pathways play essential roles in epithelial polarity and lumen formation. This review addresses how the molecular machinery for epithelial polarity and autophagy interplay in different processes and how autophagy functions influence lumenogenesis, emphasizing its role in the lumen formation key events.
Collapse
Affiliation(s)
- Tatiana Alfonso-Pérez
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Gabriel Baonza
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain
| | - Gonzalo Herranz
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain.
| |
Collapse
|
13
|
Watanabe C, Shibuya H, Ichiyama Y, Okamura E, Tsukiyama-Fujii S, Tsukiyama T, Matsumoto S, Matsushita J, Azami T, Kubota Y, Ohji M, Sugiyama F, Takahashi S, Mizuno S, Tamura M, Mizutani KI, Ema M. Essential Roles of Exocyst Complex Component 3-like 2 on Cardiovascular Development in Mice. Life (Basel) 2022; 12:life12111730. [PMID: 36362885 PMCID: PMC9694714 DOI: 10.3390/life12111730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2022] Open
Abstract
Angiogenesis is a process to generate new blood vessels from pre-existing vessels and to maintain vessels, and plays critical roles in normal development and disease. However, the molecular mechanisms underlying angiogenesis are not fully understood. This study examined the roles of exocyst complex component (Exoc) 3-like 2 (Exoc3l2) during development in mice. We found that Exoc3l1, Exoc3l2, Exoc3l3 and Exoc3l4 are expressed abundantly in endothelial cells at embryonic day 8.5. The generation of Exoc3l2 knock-out (KO) mice showed that disruption of Exoc3l2 resulted in lethal in utero. Substantial numbers of Exoc3l2 KO embryos exhibited hemorrhaging. Deletion of Exoc3l2 using Tie2-Cre transgenic mice demonstrated that Exoc3l2 in hematopoietic and endothelial lineages was responsible for the phenotype. Taken together, these findings reveal that Exoc3l2 is essential for cardiovascular and brain development in mice.
Collapse
Affiliation(s)
- Chisato Watanabe
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Hirotoshi Shibuya
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
| | - Yusuke Ichiyama
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Eiichi Okamura
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Setsuko Tsukiyama-Fujii
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Tomoyuki Tsukiyama
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Shoma Matsumoto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Jun Matsushita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Takuya Azami
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masahito Ohji
- Department of Ophthalmology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba 305-0074, Japan
- Correspondence: (M.T.); (K.-i.M.); (M.E.); Tel.: +81-29-836-9013 (M.T.); +81-78-974-4632 (ext. 73121) (K.-i.M.); +81-77-548-2334 (M.E.)
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
- Correspondence: (M.T.); (K.-i.M.); (M.E.); Tel.: +81-29-836-9013 (M.T.); +81-78-974-4632 (ext. 73121) (K.-i.M.); +81-77-548-2334 (M.E.)
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
- Correspondence: (M.T.); (K.-i.M.); (M.E.); Tel.: +81-29-836-9013 (M.T.); +81-78-974-4632 (ext. 73121) (K.-i.M.); +81-77-548-2334 (M.E.)
| |
Collapse
|
14
|
GPR125 (ADGRA3) is an autocleavable adhesion GPCR that traffics with Dlg1 to the basolateral membrane and regulates epithelial apico-basal polarity. J Biol Chem 2022; 298:102475. [PMID: 36089063 PMCID: PMC9539791 DOI: 10.1016/j.jbc.2022.102475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 01/12/2023] Open
Abstract
The adhesion family of G protein–coupled receptors (GPCRs) is defined by an N-terminal large extracellular region that contains various adhesion-related domains and a highly-conserved GPCR-autoproteolysis-inducing (GAIN) domain, the latter of which is located immediately before a canonical seven-transmembrane domain. These receptors are expressed widely and involved in various functions including development, angiogenesis, synapse formation, and tumorigenesis. GPR125 (ADGRA3), an orphan adhesion GPCR, has been shown to modulate planar cell polarity in gastrulating zebrafish, but its biochemical properties and role in mammalian cells have remained largely unknown. Here, we show that human GPR125 likely undergoes cis-autoproteolysis when expressed in canine kidney epithelial MDCK cells and human embryonic kidney HEK293 cells. The cleavage appears to occur at an atypical GPCR proteolysis site within the GAIN domain during an early stage of receptor biosynthesis. The products, i.e., the N-terminal and C-terminal fragments, seem to remain associated after self-proteolysis, as observed in other adhesion GPCRs. Furthermore, in polarized MDCK cells, GPR125 is exclusively recruited to the basolateral domain of the plasma membrane. The recruitment likely requires the C-terminal PDZ-domain–binding motif of GPR125 and its interaction with the cell polarity protein Dlg1. Knockdown of GPR125 as well as that of Dlg1 results in formation of aberrant cysts with multiple lumens in Matrigel 3D culture of MDCK cells. Consistent with the multilumen phenotype, mitotic spindles are incorrectly oriented during cystogenesis in GPR125-KO MDCK cells. Thus, the basolateral protein GPR125, an autocleavable adhesion GPCR, appears to play a crucial role in apicobasal polarization in epithelial cells.
Collapse
|
15
|
Chen M, Zhang Y, Jiang K, Wang W, Feng H, Zhen R, Moo C, Zhang Z, Shi J, Chen C. Grab regulates transferrin receptor recycling and iron uptake in developing erythroblasts. Blood 2022; 140:1145-1155. [PMID: 35820059 DOI: 10.1182/blood.2021015189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/25/2022] [Indexed: 11/20/2022] Open
Abstract
Developing erythroblasts acquire massive amounts of iron through the transferrin (Tf) cycle, which involves endocytosis, sorting, and recycling of the Tf-Tf receptor (Tfrc) complex. Previous studies on the hemoglobin-deficit (hbd) mouse have shown that the exocyst complex is indispensable for the Tfrc recycling; however, the precise mechanism underlying the efficient exocytosis and recycling of Tfrc in erythroblasts remains unclear. Here, we identify the guanine nucleotide exchange factor Grab as a critical regulator of the Tf cycle and iron metabolism during erythropoiesis. Grab is highly expressed in differentiating erythroblasts. Loss of Grab diminishes the Tfrc recycling and iron uptake, leading to hemoglobinization defects in mouse primary erythroblasts, mammalian erythroleukemia cells, and zebrafish embryos. These defects can be alleviated by supplementing iron together with hinokitiol, a small-molecule natural compound that can mediate iron transport independent of the Tf cycle. Mechanistically, Grab regulates the exocytosis of Tfrc-associated vesicles by activating the GTPase Rab8, which subsequently promotes the recruitment of the exocyst complex and vesicle exocytosis. Our results reveal a critical role for Grab in regulating the Tf cycle and provide new insights into iron homeostasis and erythropoiesis.
Collapse
Affiliation(s)
- Mengying Chen
- Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection, Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuhan Zhang
- Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection, Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kailun Jiang
- Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection, Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Weixi Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - He Feng
- Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection, Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ru Zhen
- Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection, Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chingyee Moo
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhuonan Zhang
- Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection, Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiahai Shi
- Synthetic Biology Translational Research Programs, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and
| | - Caiyong Chen
- Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection, Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Ebnet K, Gerke V. Rho and Rab Family Small GTPases in the Regulation of Membrane Polarity in Epithelial Cells. Front Cell Dev Biol 2022; 10:948013. [PMID: 35859901 PMCID: PMC9289151 DOI: 10.3389/fcell.2022.948013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Membrane polarity, defined as the asymmetric distribution of lipids and proteins in the plasma membrane, is a critical prerequisite for the development of multicellular tissues, such as epithelia and endothelia. Membrane polarity is regulated by polarized trafficking of membrane components to specific membrane domains and requires the presence of intramembrane diffusion barriers that prevent the intermixing of asymmetrically distributed membrane components. This intramembrane diffusion barrier is localized at the tight junctions (TJs) in these cells. Both the formation of cell-cell junctions and the polarized traffic of membrane proteins and lipids are regulated by Rho and Rab family small GTPases. In this review article, we will summarize the recent developments in the regulation of apico-basal membrane polarity by polarized membrane traffic and the formation of the intramembrane diffusion barrier in epithelial cells with a particular focus on the role of Rho and Rab family small GTPases.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| | - Volker Gerke
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| |
Collapse
|
17
|
Rab33b-exocyst interaction mediates localized secretion for focal adhesion turnover and cell migration. iScience 2022; 25:104250. [PMID: 35521520 PMCID: PMC9061791 DOI: 10.1016/j.isci.2022.104250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/17/2022] [Accepted: 04/08/2022] [Indexed: 12/19/2022] Open
Abstract
Rab proteins are well known regulators of intracellular trafficking; however, more and more studies point to their function also in other cellular processes, including cell migration. In this work, we have performed an siRNA screen to identify Rab proteins that influence cell migration. The screen revealed Rab33b as the strongest candidate that affected cell motility. Rab33b has been previously reported to localize at the Golgi apparatus to regulate Golgi-to-ER retrograde trafficking and Golgi homeostasis. We revealed that Rab33b also mediates post-Golgi transport to the plasma membrane. We further identified Exoc6, a subunit of the exocyst complex, as an interactor of Rab33b. Moreover, our data indicate that Rab33b regulates focal adhesion dynamics by modulating the delivery of cargo such as integrins to focal adhesions. Altogether, our results demonstrate a role for Rab33b in cell migration by regulating the delivery of integrins to focal adhesions through the interaction with Exoc6. RNAi screen reveals a role for Rab33b in cell migration Rab33b influences focal adhesion dynamics Rab33b interacts with the exocyst subunit Exoc6 Rab33b together with Exoc6 mediates the delivery of β1 integrin to adhesion points
Collapse
|
18
|
Nielsen E. Plant exocytosis: Weaving distinct pathways to the plant plasma membrane. MOLECULAR PLANT 2022; 15:382-384. [PMID: 35144026 DOI: 10.1016/j.molp.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
19
|
Bugda Gwilt K, Thiagarajah JR. Membrane Lipids in Epithelial Polarity: Sorting out the PIPs. Front Cell Dev Biol 2022; 10:893960. [PMID: 35712665 PMCID: PMC9197455 DOI: 10.3389/fcell.2022.893960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell polarity in epithelia, is critical for tissue morphogenesis and vectorial transport between the environment and the underlying tissue. Epithelial polarity is defined by the development of distinct plasma membrane domains: the apical membrane interfacing with the exterior lumen compartment, and the basolateral membrane directly contacting the underlying tissue. The de novo generation of polarity is a tightly regulated process, both spatially and temporally, involving changes in the distribution of plasma membrane lipids, localization of apical and basolateral membrane proteins, and vesicular trafficking. Historically, the process of epithelial polarity has been primarily described in relation to the localization and function of protein 'polarity complexes.' However, a critical and foundational role is emerging for plasma membrane lipids, and in particular phosphoinositide species. Here, we broadly review the evidence for a primary role for membrane lipids in the generation of epithelial polarity and highlight key areas requiring further research. We discuss the complex interchange that exists between lipid species and briefly examine how major membrane lipid constituents are generated and intersect with vesicular trafficking to be preferentially localized to different membrane domains with a focus on some of the key protein-enzyme complexes involved in these processes.
Collapse
Affiliation(s)
- Katlynn Bugda Gwilt
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Chan EHY, Zhou Y, Aerne BL, Holder MV, Weston A, Barry DJ, Collinson L, Tapon N. RASSF8-mediated transport of Echinoid via the exocyst promotes Drosophila wing elongation and epithelial ordering. Development 2021; 148:dev199731. [PMID: 34532737 PMCID: PMC8572004 DOI: 10.1242/dev.199731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023]
Abstract
Cell-cell junctions are dynamic structures that maintain cell cohesion and shape in epithelial tissues. During development, junctions undergo extensive rearrangements to drive the epithelial remodelling required for morphogenesis. This is particularly evident during axis elongation, where neighbour exchanges, cell-cell rearrangements and oriented cell divisions lead to large-scale alterations in tissue shape. Polarised vesicle trafficking of junctional components by the exocyst complex has been proposed to promote junctional rearrangements during epithelial remodelling, but the receptors that allow exocyst docking to the target membranes remain poorly understood. Here, we show that the adherens junction component Ras Association domain family 8 (RASSF8) is required for the epithelial re-ordering that occurs during Drosophila pupal wing proximo-distal elongation. We identify the exocyst component Sec15 as a RASSF8 interactor. Loss of RASSF8 elicits cytoplasmic accumulation of Sec15 and Rab11-containing vesicles. These vesicles also contain the nectin-like homophilic adhesion molecule Echinoid, the depletion of which phenocopies the wing elongation and epithelial packing defects observed in RASSF8 mutants. Thus, our results suggest that RASSF8 promotes exocyst-dependent docking of Echinoid-containing vesicles during morphogenesis.
Collapse
Affiliation(s)
- Eunice H. Y. Chan
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Yanxiang Zhou
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Birgit L. Aerne
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maxine V. Holder
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anne Weston
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David J. Barry
- Advanced Light Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
21
|
Miller KE, Magliozzi JO, Picard NA, Moseley JB. Sequestration of the exocytic SNARE Psy1 into multiprotein nodes reinforces polarized morphogenesis in fission yeast. Mol Biol Cell 2021; 32:ar7. [PMID: 34347508 PMCID: PMC8684755 DOI: 10.1091/mbc.e20-05-0277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/06/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022] Open
Abstract
Polarized morphogenesis is achieved by targeting or inhibiting growth in distinct regions. Rod-shaped fission yeast cells grow exclusively at their ends by restricting exocytosis and secretion to these sites. This growth pattern implies the existence of mechanisms that prevent exocytosis and growth along nongrowing cell sides. We previously identified a set of 50-100 megadalton-sized node structures along the sides of fission yeast cells that contained the interacting proteins Skb1 and Slf1. Here, we show that Skb1-Slf1 nodes contain the syntaxin-like soluble N-ethylmaleimide-sensitive factor attachment protein receptor Psy1, which mediates exocytosis in fission yeast. Psy1 localizes in a diffuse pattern at cell tips, where it likely promotes exocytosis and growth, but is sequestered in Skb1-Slf1 nodes at cell sides where growth does not occur. Mutations that prevent node assembly or inhibit Psy1 localization to nodes lead to aberrant exocytosis at cell sides and increased cell width. Genetic results indicate that this Psy1 node mechanism acts in parallel to actin cables and Cdc42 regulation. Our work suggests that sequestration of syntaxin-like Psy1 at nongrowing regions of the cell cortex reinforces cell morphology by restricting exocytosis to proper sites of polarized growth.
Collapse
Affiliation(s)
- Kristi E. Miller
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Joseph O. Magliozzi
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Noelle A. Picard
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
22
|
Lu P, Lu Y. Born to Run? Diverse Modes of Epithelial Migration. Front Cell Dev Biol 2021; 9:704939. [PMID: 34540829 PMCID: PMC8448196 DOI: 10.3389/fcell.2021.704939] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bundled with various kinds of adhesion molecules and anchored to the basement membrane, the epithelium has historically been considered as an immotile tissue and, to migrate, it first needs to undergo epithelial-mesenchymal transition (EMT). Since its initial description more than half a century ago, the EMT process has fascinated generations of developmental biologists and, more recently, cancer biologists as it is believed to be essential for not only embryonic development, organ formation, but cancer metastasis. However, recent progress shows that epithelium is much more motile than previously realized. Here, we examine the emerging themes in epithelial collective migration and how this has impacted our understanding of EMT.
Collapse
Affiliation(s)
- Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
23
|
García P, Coll PM, Del Rey F, Geli MI, Pérez P, Vázquez de Aldana CR, Encinar Del Dedo J. Eng2, a new player involved in feedback loop regulation of Cdc42 activity in fission yeast. Sci Rep 2021; 11:17872. [PMID: 34504165 PMCID: PMC8429772 DOI: 10.1038/s41598-021-97311-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Cell polarity and morphogenesis are regulated by the small GTPase Cdc42. Even though major advances have been done in the field during the last years, the molecular details leading to its activation in particular cellular contexts are not completely understood. In fission yeast, the β(1,3)-glucanase Eng2 is a "moonlighting protein" with a dual function, acting as a hydrolase during spore dehiscence, and as component of the endocytic machinery in vegetative cells. Here, we report that Eng2 plays a role in Cdc42 activation during polarized growth through its interaction with the scaffold protein Scd2, which brings Cdc42 together with its guanine nucleotide exchange factor (GEF) Scd1. eng2Δ mutant cells have defects in activation of the bipolar growth (NETO), remaining monopolar during all the cell cycle. In the absence of Eng2 the accumulation of Scd1 and Scd2 at the poles is reduced, the levels of Cdc42 activation decrease, and the Cdc42 oscillatory behavior, associated with bipolar growth in wild type cells, is altered. Furthermore, overexpression of Eng2 partially rescues the growth and polarity defects of a cdc42-L160S mutant. Altogether, our work unveils a new factor regulating the activity of Cdc42, which could potentially link the polarity and endocytic machineries.
Collapse
Affiliation(s)
- Patricia García
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | - Pedro M Coll
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | - Francisco Del Rey
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | - M Isabel Geli
- Institute for Molecular Biology of Barcelona (CSIC), Baldiri Reixac 15, 08028, Barcelona, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | - Carlos R Vázquez de Aldana
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain.
| | - Javier Encinar Del Dedo
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
24
|
Pushpa K, Dagar S, Kumar H, Pathak D, Mylavarapu SVS. The exocyst complex regulates C. elegans germline stem cell proliferation by controlling membrane Notch levels. Development 2021; 148:271155. [PMID: 34338279 DOI: 10.1242/dev.196345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
The conserved exocyst complex regulates plasma membrane-directed vesicle fusion in eukaryotes. However, its role in stem cell proliferation has not been reported. Germline stem cell (GSC) proliferation in the nematode Caenorhabditis elegans is regulated by conserved Notch signaling. Here, we reveal that the exocyst complex regulates C. elegans GSC proliferation by modulating Notch signaling cell autonomously. Notch membrane density is asymmetrically maintained on GSCs. Knockdown of exocyst complex subunits or of the exocyst-interacting GTPases Rab5 and Rab11 leads to Notch redistribution from the GSC-niche interface to the cytoplasm, suggesting defects in plasma membrane Notch deposition. The anterior polarity (aPar) protein Par6 is required for GSC proliferation, and for maintaining niche-facing membrane levels of Notch and the exocyst complex. The exocyst complex biochemically interacts with the aPar regulator Par5 (14-3-3ζ) and Notch in C. elegans and human cells. Exocyst components are required for Notch plasma membrane localization and signaling in mammalian cells. Our study uncovers a possibly conserved requirement of the exocyst complex in regulating GSC proliferation and in maintaining optimal membrane Notch levels.
Collapse
Affiliation(s)
- Kumari Pushpa
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sunayana Dagar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Harsh Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Diksha Pathak
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
25
|
Erasmus JC, Smolarczyk K, Brezovjakova H, Mohd-Naim NF, Lozano E, Matter K, Braga VMM. Rac1-PAK1 regulation of Rab11 cycling promotes junction destabilization. J Cell Biol 2021; 220:212034. [PMID: 33914026 PMCID: PMC8091128 DOI: 10.1083/jcb.202002114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/21/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Rac1 GTPase is hyperactivated in tumors and contributes to malignancy. Rac1 disruption of junctions requires its effector PAK1, but the precise mechanisms are unknown. Here, we show that E-cadherin is internalized via micropinocytosis in a PAK1–dependent manner without catenin dissociation and degradation. In addition to internalization, PAK1 regulates E-cadherin transport by fine-tuning Rab small GTPase function. PAK1 phosphorylates a core Rab regulator, RabGDIβ, but not RabGDIα. Phosphorylated RabGDIβ preferentially associates with Rab5 and Rab11, which is predicted to promote Rab retrieval from membranes. Consistent with this hypothesis, Rab11 is activated by Rac1, and inhibition of Rab11 function partially rescues E-cadherin destabilization. Thus, Rac1 activation reduces surface cadherin levels as a net result of higher bulk flow of membrane uptake that counteracts Rab11-dependent E-cadherin delivery to junctions (recycling and/or exocytosis). This unique small GTPase crosstalk has an impact on Rac1 and PAK1 regulation of membrane remodeling during epithelial dedifferentiation, adhesion, and motility.
Collapse
Affiliation(s)
- Jennifer C Erasmus
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Kasia Smolarczyk
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Helena Brezovjakova
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Noor F Mohd-Naim
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Encarnación Lozano
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, London, UK
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
26
|
Functional compartmentalization of photoreceptor neurons. Pflugers Arch 2021; 473:1493-1516. [PMID: 33880652 DOI: 10.1007/s00424-021-02558-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Retinal photoreceptors are neurons that convert dynamically changing patterns of light into electrical signals that are processed by retinal interneurons and ultimately transmitted to vision centers in the brain. They represent the essential first step in seeing without which the remainder of the visual system is rendered moot. To support this role, the major functions of photoreceptors are segregated into three main specialized compartments-the outer segment, the inner segment, and the pre-synaptic terminal. This compartmentalization is crucial for photoreceptor function-disruption leads to devastating blinding diseases for which therapies remain elusive. In this review, we examine the current understanding of the molecular and physical mechanisms underlying photoreceptor functional compartmentalization and highlight areas where significant knowledge gaps remain.
Collapse
|
27
|
Ruan H, Li J, Wang T, Ren H. Secretory Vesicles Targeted to Plasma Membrane During Pollen Germination and Tube Growth. Front Cell Dev Biol 2021; 8:615447. [PMID: 33553150 PMCID: PMC7859277 DOI: 10.3389/fcell.2020.615447] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Pollen germination and pollen tube growth are important biological events in the sexual reproduction of higher plants, during which a large number of vesicle trafficking and membrane fusion events occur. When secretory vesicles are transported via the F-actin network in proximity to the apex of the pollen tube, the secretory vesicles are tethered and fused to the plasma membrane by tethering factors and SNARE proteins, respectively. The coupling and uncoupling between the vesicle membrane and plasma membrane are also regulated by dynamic cytoskeleton, proteins, and signaling molecules, including small G proteins, calcium, and PIP2. In this review, we focus on the current knowledge regarding secretory vesicle delivery, tethering, and fusion during pollen germination and tube growth and summarize the progress in research on how regulators and signaling molecules participate in the above processes.
Collapse
Affiliation(s)
- Huaqiang Ruan
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Jiang Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| |
Collapse
|
28
|
Rossi G, Lepore D, Kenner L, Czuchra AB, Plooster M, Frost A, Munson M, Brennwald P. Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases. J Cell Biol 2020; 219:133563. [PMID: 31904797 PMCID: PMC7041683 DOI: 10.1083/jcb.201904161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/26/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
The exocyst complex plays a critical role in determining both temporal and spatial dynamics of exocytic vesicle tethering and fusion with the plasma membrane. However, the mechanism by which the exocyst functions and how it is regulated remain poorly understood. Here we describe a novel biochemical assay for the examination of exocyst function in vesicle tethering. Importantly, the assay is stimulated by gain-of-function mutations in the Exo70 component of the exocyst, selected for their ability to bypass Rho/Cdc42 activation in vivo. Single-particle electron microscopy and 3D reconstructions of negatively stained exocyst complexes reveal a structural change in the mutant exocyst that exposes a binding site for the v-SNARE. We demonstrate a v-SNARE requirement in our tethering assay and increased v-SNARE binding to exocyst gain-of-function complexes. Together, these data suggest an allosteric mechanism for activation involving a conformational change in one subunit of the complex, which is relayed through the complex to regulate its biochemical activity in vitro, as well as overall function in vivo.
Collapse
Affiliation(s)
- Guendalina Rossi
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Dante Lepore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Lillian Kenner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Alexander B Czuchra
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Melissa Plooster
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA.,Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA.,California Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Patrick Brennwald
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
29
|
Boon N, Wijnholds J, Pellissier LP. Research Models and Gene Augmentation Therapy for CRB1 Retinal Dystrophies. Front Neurosci 2020; 14:860. [PMID: 32922261 PMCID: PMC7456964 DOI: 10.3389/fnins.2020.00860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are inherited degenerative retinal dystrophies with vision loss that ultimately lead to blindness. Several genes have been shown to be involved in early onset retinal dystrophies, including CRB1 and RPE65. Gene therapy recently became available for young RP patients with variations in the RPE65 gene. Current research programs test adeno-associated viral gene augmentation or editing therapy vectors on various disease models mimicking the disease in patients. These include several animal and emerging human-derived models, such as human-induced pluripotent stem cell (hiPSC)-derived retinal organoids or hiPSC-derived retinal pigment epithelium (RPE), and human donor retinal explants. Variations in the CRB1 gene are a major cause for early onset autosomal recessive RP with patients suffering from visual impairment before their adolescence and for LCA with newborns experiencing severe visual impairment within the first months of life. These patients cannot benefit yet from an available gene therapy treatment. In this review, we will discuss the recent advances, advantages and disadvantages of different CRB1 human and animal retinal degeneration models. In addition, we will describe novel therapeutic tools that have been developed, which could potentially be used for retinal gene augmentation therapy for RP patients with variations in the CRB1 gene.
Collapse
Affiliation(s)
- Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands.,The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Lucie P Pellissier
- Biology and Bioinformatics of Signalling Systems, Physiologie de la Reproduction et des Comportements INRAE UMR 0085, CNRS UMR 7247, Université de Tours, IFCE, Nouzilly, France
| |
Collapse
|
30
|
Coulter ME, Musaev D, DeGennaro EM, Zhang X, Henke K, James KN, Smith RS, Hill RS, Partlow JN, Muna Al-Saffar, Kamumbu AS, Hatem N, Barkovich AJ, Aziza J, Chassaing N, Zaki MS, Sultan T, Burglen L, Rajab A, Al-Gazali L, Mochida GH, Harris MP, Gleeson JG, Walsh CA. Regulation of human cerebral cortical development by EXOC7 and EXOC8, components of the exocyst complex, and roles in neural progenitor cell proliferation and survival. Genet Med 2020; 22:1040-1050. [PMID: 32103185 PMCID: PMC7272323 DOI: 10.1038/s41436-020-0758-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 01/31/2023] Open
Abstract
PURPOSE The exocyst complex is a conserved protein complex that mediates fusion of intracellular vesicles to the plasma membrane and is implicated in processes including cell polarity, cell migration, ciliogenesis, cytokinesis, autophagy, and fusion of secretory vesicles. The essential role of these genes in human genetic disorders, however, is unknown. METHODS We performed homozygosity mapping and exome sequencing of consanguineous families with recessively inherited brain development disorders. We modeled an EXOC7 splice variant in vitro and examined EXOC7 messenger RNA (mRNA) expression in developing mouse and human cortex. We modeled exoc7 loss-of-function in a zebrafish knockout. RESULTS We report variants in exocyst complex members, EXOC7 and EXOC8, in a novel disorder of cerebral cortex development. In EXOC7, we identified four independent partial loss-of-function (LOF) variants in a recessively inherited disorder characterized by brain atrophy, seizures, and developmental delay, and in severe cases, microcephaly and infantile death. In EXOC8, we found a homozygous truncating variant in a family with a similar clinical disorder. We modeled exoc7 deficiency in zebrafish and found the absence of exoc7 causes microcephaly. CONCLUSION Our results highlight the essential role of the exocyst pathway in normal cortical development and how its perturbation causes complex brain disorders.
Collapse
Affiliation(s)
- Michael E Coulter
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience and Harvard/MIT MD-PHD Program, Harvard Medical School, Boston, MA, USA
| | - Damir Musaev
- Department of Neurosciences and Howard Hughes Medical Institute, University of San Diego, La Jolla, CA, USA
| | - Ellen M DeGennaro
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiaochang Zhang
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Katrin Henke
- Division of Orthopedic Research, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kiely N James
- Department of Neurosciences and Howard Hughes Medical Institute, University of San Diego, La Jolla, CA, USA
| | - Richard S Smith
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - R Sean Hill
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Jennifer N Partlow
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Muna Al-Saffar
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - A Stacy Kamumbu
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Nicole Hatem
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - A James Barkovich
- Benioff Children's Hospital, Departments of Radiology, Pediatrics, Neurology, and Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline Aziza
- Département de Pathologie, Institut Universitaire du Cancer de Toulouse-Oncopole-CHU Toulouse, Toulouse, France
| | - Nicolas Chassaing
- Service de Génétique Médicale, CHU Toulouse, Toulouse, France
- UDEAR; UMR 1056 Inserm-Université de Toulouse, Toulouse, France
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health & The Children's Hospital, Lahore, Pakistan
| | - Lydie Burglen
- Centre de référence des malformations et maladies congénitales du cervelet, Département de génétique, AP-HP.Sorbonne Université, Paris, France
- Hôpital Trousseau and Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Anna Rajab
- National Genetics Center, Directorate General of Health Affairs, Ministry of Health, Muscat, Oman
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ganeshwaran H Mochida
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew P Harris
- Division of Orthopedic Research, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joseph G Gleeson
- Department of Neurosciences and Howard Hughes Medical Institute, University of San Diego, La Jolla, CA, USA.
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Krahn MP. Phospholipids of the Plasma Membrane - Regulators or Consequence of Cell Polarity? Front Cell Dev Biol 2020; 8:277. [PMID: 32411703 PMCID: PMC7198698 DOI: 10.3389/fcell.2020.00277] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cell polarity is a key feature of many eukaryotic cells, including neurons, epithelia, endothelia and asymmetrically dividing stem cells. Apart from the specific localization of proteins to distinct domains of the plasma membrane, most of these cells exhibit an asymmetric distribution of phospholipids within the plasma membrane too. Notably, research over the last years has revealed that many known conserved regulators of apical-basal polarity in epithelial cells are capable of binding to phospholipids, which in turn regulate the localization and to some extent the function of these proteins. Conversely, phospholipid-modifying enzymes are recruited and controlled by polarity regulators, demonstrating an elaborated balance between asymmetrically localized proteins and phospholipids, which are enriched in certain (micro)domains of the plasma membrane. In this review, we will focus on our current understanding of apical-basal polarity and the implication of phospholipids within the plasma membrane during the cell polarization of epithelia and migrating cells.
Collapse
Affiliation(s)
- Michael P. Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| |
Collapse
|
32
|
Yang K, Wang L, Le J, Dong J. Cell polarity: Regulators and mechanisms in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:132-147. [PMID: 31889400 PMCID: PMC7196246 DOI: 10.1111/jipb.12904] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/25/2019] [Indexed: 05/18/2023]
Abstract
Cell polarity plays an important role in a wide range of biological processes in plant growth and development. Cell polarity is manifested as the asymmetric distribution of molecules, for example, proteins and lipids, at the plasma membrane and/or inside of a cell. Here, we summarize a few polarized proteins that have been characterized in plants and we review recent advances towards understanding the molecular mechanism for them to polarize at the plasma membrane. Multiple mechanisms, including membrane trafficking, cytoskeletal activities, and protein phosphorylation, and so forth define the polarized plasma membrane domains. Recent discoveries suggest that the polar positioning of the proteo-lipid membrane domain may instruct the formation of polarity complexes in plants. In this review, we highlight the factors and regulators for their functions in establishing the membrane asymmetries in plant development. Furthermore, we discuss a few outstanding questions to be addressed to better understand the mechanisms by which cell polarity is regulated in plants.
Collapse
Affiliation(s)
- Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Correspondences: Kezhen Yang (); Juan Dong (, Dr. Dong is fully responsible for the distributions of all materials associated with this article)
| | - Lu Wang
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901, USA
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901, USA
- Correspondences: Kezhen Yang (); Juan Dong (, Dr. Dong is fully responsible for the distributions of all materials associated with this article)
| |
Collapse
|
33
|
Wang S, Crisman L, Miller J, Datta I, Gulbranson DR, Tian Y, Yin Q, Yu H, Shen J. Inducible Exoc7/Exo70 knockout reveals a critical role of the exocyst in insulin-regulated GLUT4 exocytosis. J Biol Chem 2019; 294:19988-19996. [PMID: 31740584 PMCID: PMC6937574 DOI: 10.1074/jbc.ra119.010821] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Insulin promotes glucose uptake by triggering the translocation of glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane through exocytosis. GLUT4 exocytosis is a vesicle fusion event involving fusion of GLUT4-containing vesicles with the plasma membrane. For GLUT4 vesicle fusion to occur, GLUT4 vesicles must first be tethered to the plasma membrane. A key tethering factor in exocytosis is a heterooctameric protein complex called the exocyst. The role of the exocyst in GLUT4 exocytosis, however, remains incompletely understood. Here we first systematically analyzed data from a genome-scale CRISPR screen in HeLa cells that targeted virtually all known genes in the human genome, including 12 exocyst genes. The screen recovered only a subset of the exocyst genes, including exocyst complex component 7 (Exoc7/Exo70). Other exocyst genes, however, were not isolated in the screen, likely because of functional redundancy. Our findings suggest that selection of an appropriate exocyst gene is critical for genetic studies of exocyst functions. Next we developed an inducible adipocyte genome editing system that enabled Exoc7 gene deletion in adipocytes without interfering with adipocyte differentiation. We observed that insulin-stimulated GLUT4 exocytosis was markedly inhibited in Exoc7 KO adipocytes. Insulin signaling, however, remained intact in these KO cells. These results indicate that the exocyst plays a critical role in insulin-stimulated GLUT4 exocytosis in adipocytes. We propose that the strategy outlined in this work could be instrumental in genetically dissecting other membrane-trafficking pathways in adipocytes.
Collapse
Affiliation(s)
- Shifeng Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lauren Crisman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Jessica Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Ishara Datta
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Daniel R Gulbranson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Yuan Tian
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Qian Yin
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Haijia Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingshi Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
34
|
Fujimoto BA, Young M, Carter L, Pang APS, Corley MJ, Fogelgren B, Polgar N. The exocyst complex regulates insulin-stimulated glucose uptake of skeletal muscle cells. Am J Physiol Endocrinol Metab 2019; 317:E957-E972. [PMID: 31593505 PMCID: PMC6962504 DOI: 10.1152/ajpendo.00109.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 01/16/2023]
Abstract
Skeletal muscle handles ~80-90% of the insulin-induced glucose uptake. In skeletal muscle, insulin binding to its cell surface receptor triggers redistribution of intracellular glucose transporter GLUT4 protein to the cell surface, enabling facilitated glucose uptake. In adipocytes, the eight-protein exocyst complex is an indispensable constituent in insulin-induced glucose uptake, as it is responsible for the targeted trafficking and plasma membrane-delivery of GLUT4. However, the role of the exocyst in skeletal muscle glucose uptake has never been investigated. Here we demonstrate that the exocyst is a necessary factor in insulin-induced glucose uptake in skeletal muscle cells as well. The exocyst complex colocalizes with GLUT4 storage vesicles in L6-GLUT4myc myoblasts at a basal state and associates with these vesicles during their translocation to the plasma membrane after insulin signaling. Moreover, we show that the exocyst inhibitor endosidin-2 and a heterozygous knockout of Exoc5 in skeletal myoblast cells both lead to impaired GLUT4 trafficking to the plasma membrane and hinder glucose uptake in response to an insulin stimulus. Our research is the first to establish that the exocyst complex regulates insulin-induced GLUT4 exocytosis and glucose metabolism in muscle cells. A deeper knowledge of the role of the exocyst complex in skeletal muscle tissue may help our understanding of insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Brent A Fujimoto
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Madison Young
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Lamar Carter
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Alina P S Pang
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Michael J Corley
- Department of Native Hawaiian Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Noemi Polgar
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| |
Collapse
|
35
|
Sáez JJ, Diaz J, Ibañez J, Bozo JP, Cabrera Reyes F, Alamo M, Gobert FX, Obino D, Bono MR, Lennon-Duménil AM, Yeaman C, Yuseff MI. The exocyst controls lysosome secretion and antigen extraction at the immune synapse of B cells. J Cell Biol 2019; 218:2247-2264. [PMID: 31197029 PMCID: PMC6605794 DOI: 10.1083/jcb.201811131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
BCR engagement enhances microtubule stability, which triggers the mobilization of Exo70 from the centrosome to the immune synapse. BCR engagement activates GEF-H1, which promotes exocyst assembly required for the docking and secretion of lysosomes, facilitating the extraction of surface-tethered antigens. B lymphocytes capture antigens from the surface of presenting cells by forming an immune synapse. Local secretion of lysosomes, which are guided to the synaptic membrane by centrosome repositioning, can facilitate the extraction of immobilized antigens. However, the molecular basis underlying their delivery to precise domains of the plasma membrane remains elusive. Here we show that microtubule stabilization, triggered by engagement of the B cell receptor, acts as a cue to release centrosome-associated Exo70, which is redistributed to the immune synapse. This process is coupled to the recruitment and activation of GEF-H1, which is required for assembly of the exocyst complex, used to promote tethering and fusion of lysosomes at the immune synapse. B cells silenced for GEF-H1 or Exo70 display defective lysosome secretion, which results in impaired antigen extraction and presentation. Thus, centrosome repositioning coupled to changes in microtubule stability orchestrates the spatial-temporal distribution of the exocyst complex to promote polarized lysosome secretion at the immune synapse.
Collapse
Affiliation(s)
- Juan José Sáez
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Jheimmy Diaz
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Ibañez
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Bozo
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Cabrera Reyes
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martina Alamo
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - François-Xavier Gobert
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - Dorian Obino
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - María Rosa Bono
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Ana-María Lennon-Duménil
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - Charles Yeaman
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA
| | - María-Isabel Yuseff
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
36
|
Duan Y, Guo Q, Zhang T, Meng Y, Sun D, Luo G, Liu Y. Cyclin-dependent kinase-mediated phosphorylation of the exocyst subunit Exo84 in late G 1 phase suppresses exocytic secretion and cell growth in yeast. J Biol Chem 2019; 294:11323-11332. [PMID: 31171719 DOI: 10.1074/jbc.ra119.008591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/10/2019] [Indexed: 12/22/2022] Open
Abstract
In eukaryotic cells, the growth rate is strictly regulated for proper progression of the cell cycle. In the budding yeast Saccharomyces cerevisiae, it was previously shown that cell growth dramatically slows down when the cells start budding at the G1/S transition. However, the molecular mechanism for this G1/S-associated growth arrest is unclear. In this study, using exocytic secretion, cyclin-dependent kinase (CDK) assay, immunoprecipitation, and microscopy, we demonstrate that the exocyst subunit Exo84, which is known to be phosphorylated in mitosis, can also be phosphorylated directly by Cdk1 in the late G1 phase. Of note, we found that the Cdk1-mediated Exo84 phosphorylation impairs exocytic secretion in the late G1 phase. Using conditional cdc mutants and phosphodeficient and phosphomimetic exo84 mutants, we further observed that Cdk1-phosphoryated Exo84 inhibits the exocyst complex assembly, exocytic secretion, and cell growth, which may be important for proper execution of the G1/S-phase transition before commitment to a complete cell cycle. Our results suggest that the direct Cdk1-mediated regulation of the exocyst complex critically contributes to the coordination of cell growth and cell cycle progression.
Collapse
Affiliation(s)
- Yuran Duan
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Qingguo Guo
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Tianrui Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Yuan Meng
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Dong Sun
- Institute of Translational Medicine, China Medical University, Shenyang 110122, China
| | - Guangzuo Luo
- Institute of Translational Medicine, China Medical University, Shenyang 110122, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| |
Collapse
|
37
|
Foltman M, Filali-Mouncef Y, Crespo D, Sanchez-Diaz A. Cell polarity protein Spa2 coordinates Chs2 incorporation at the division site in budding yeast. PLoS Genet 2018; 14:e1007299. [PMID: 29601579 PMCID: PMC5895073 DOI: 10.1371/journal.pgen.1007299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/11/2018] [Accepted: 03/07/2018] [Indexed: 01/06/2023] Open
Abstract
Deposition of additional plasma membrane and cargoes during cytokinesis in eukaryotic cells must be coordinated with actomyosin ring contraction, plasma membrane ingression and extracellular matrix remodelling. The process by which the secretory pathway promotes specific incorporation of key factors into the cytokinetic machinery is poorly understood. Here, we show that cell polarity protein Spa2 interacts with actomyosin ring components during cytokinesis. Spa2 directly binds to cytokinetic factors Cyk3 and Hof1. The lethal effects of deleting the SPA2 gene in the absence of either Cyk3 or Hof1 can be suppressed by expression of the hypermorphic allele of the essential chitin synthase II (Chs2), a transmembrane protein transported on secretory vesicles that makes the primary septum during cytokinesis. Spa2 also interacts directly with the chitin synthase Chs2. Interestingly, artificial incorporation of Chs2 into the cytokinetic machinery allows the localisation of Spa2 at the site of division. In addition, increased Spa2 protein levels promote Chs2 incorporation at the site of division and primary septum formation. Our data indicate that Spa2 is recruited to the cleavage site to co-operate with the secretory vesicle system and particular actomyosin ring components to promote the incorporation of Chs2 into the so-called 'ingression progression complexes' during cytokinesis in budding yeast.
Collapse
Affiliation(s)
- Magdalena Foltman
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Yasmina Filali-Mouncef
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Damaso Crespo
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Alberto Sanchez-Diaz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
- * E-mail:
| |
Collapse
|
38
|
CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane. Proc Natl Acad Sci U S A 2018; 115:E3578-E3587. [PMID: 29581258 PMCID: PMC5899483 DOI: 10.1073/pnas.1800182115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cellulose synthesis occurs exclusively at the plasma membrane by cellulose synthase complexes (CSCs). Therefore, delivery of CSCs to discrete sites at the plasma membrane is critical for cellulose synthesis. Despite their significance, the delivery of CSCs is poorly understood. Here we used proteomics approaches, functional genetics, and live cell imaging to show that the de novo secretion of CSCs is mediated by cooperation among cellulose synthase interactive 1 (CSI1), the plant-specific protein PATROL1, and exocyst complex in Arabidopsis thaliana We propose that CSI1 plays a role in marking the docking site, which allows CSCs-containing vesicles access to the plasma membrane through its interaction with microtubules. PATROL1 assists in exocytosis by its interaction with multiple components, including CSI1, CSCs, and exocyst subunits. Both PATROL1 and the exocyst complex determine the rate of delivery of CSCs to the plasma membrane. By monitoring the exocyst complex, PATROL1, CSI1, and CSCs dynamics in real time, we present a timeline of events for exocytosis of CSCs. Our findings provide unique insights into the evolution of exocytosis in eukaryotes.
Collapse
|
39
|
Shin SW, Vogt EJ, Jimenez-Movilla M, Baibakov B, Dean J. Cytoplasmic cleavage of DPPA3 is required for intracellular trafficking and cleavage-stage development in mice. Nat Commun 2017; 8:1643. [PMID: 29158485 PMCID: PMC5696369 DOI: 10.1038/s41467-017-01387-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 09/05/2017] [Indexed: 01/06/2023] Open
Abstract
Degradation of maternal proteins by the ubiquitin-proteasome system (UPS) accompanies the maternal-to-zygotic transition. DPPA3/Stella/PGC7, encoded by a maternal effect gene, is present in the nucleus and cytoplasm of zygotes and has been associated with protecting the female pronucleus from TET3-mediated demethylation. We now report that cytoplasmic DPPA3 is partially cleaved by the ubiquitin-proteasome system and an N-terminus fragment remains in the cytoplasm where it associates with early and re-cycling endosomes. If DPPA3 is absent or if cleavage is prevented, multiple vesicles coalesce/aggregate and markers of lysosomes are decreased. Fertilized eggs develop poorly into blastocysts, which results in significantly decreased fecundity of Dppa3 R60A transgenic mice. This phenocopies aspects of Lamp1/2 knockdowns and Dppa3 KO embryos can be partially rescued in vitro by DPPA31-60 and to a lesser extent by LAMP1/2. Thus, the N-terminus of DPPA3 has a significant role in cytoplasmic vesicular trafficking in addition to its previously reported nuclear function.
Collapse
Affiliation(s)
- Seung-Wook Shin
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Edgar John Vogt
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Jimenez-Movilla
- Department of Cell Biology and Histology, Medical School, University of Murcia, IMIB, 30100, Murcia, Spain
| | - Boris Baibakov
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|