1
|
Soliman HK, Coughlan JM. United by conflict: Convergent signatures of parental conflict in angiosperms and placental mammals. J Hered 2024; 115:625-642. [PMID: 38366852 PMCID: PMC11498613 DOI: 10.1093/jhered/esae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Endosperm in angiosperms and placenta in eutherians are convergent innovations for efficient embryonic nutrient transfer. Despite advantages, this reproductive strategy incurs metabolic costs that maternal parents disproportionately shoulder, leading to potential inter-parental conflict over optimal offspring investment. Genomic imprinting-parent-of-origin-biased gene expression-is fundamental for endosperm and placenta development and has convergently evolved in angiosperms and mammals, in part, to resolve parental conflict. Here, we review the mechanisms of genomic imprinting in these taxa. Despite differences in the timing and spatial extent of imprinting, these taxa exhibit remarkable convergence in the molecular machinery and genes governing imprinting. We then assess the role of parental conflict in shaping evolution within angiosperms and eutherians using four criteria: 1) Do differences in the extent of sibling relatedness cause differences in the inferred strength of parental conflict? 2) Do reciprocal crosses between taxa with different inferred histories of parental conflict exhibit parent-of-origin growth effects? 3) Are these parent-of-origin growth effects caused by dosage-sensitive mechanisms and do these loci exhibit signals of positive selection? 4) Can normal development be restored by genomic perturbations that restore stoichiometric balance in the endosperm/placenta? Although we find evidence for all criteria in angiosperms and eutherians, suggesting that parental conflict may help shape their evolution, many questions remain. Additionally, myriad differences between the two taxa suggest that their respective biologies may shape how/when/where/to what extent parental conflict manifests. Lastly, we discuss outstanding questions, highlighting the power of comparative work in quantifying the role of parental conflict in evolution.
Collapse
Affiliation(s)
- Hagar K Soliman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
- Department of Biotechnology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
2
|
Chen JK, Ramesh S, Islam MN, Shibu MA, Kuo CH, Hsieh DJY, Lin SZ, Kuo WW, Huang CY, Ho TJ. Artemisia argyi mitigates doxorubicin-induced cardiotoxicity by inhibiting mitochondrial dysfunction through the IGF-IIR/Drp1/GATA4 signaling pathway. Biotechnol Appl Biochem 2024. [PMID: 39375847 DOI: 10.1002/bab.2671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Doxorubicin (DOX) is mostly utilized as a wide range of antitumor anthracycline to treat different cancers. The severe antagonistic impacts of DOX on cardiotoxicity constrain its clinical application. Many mechanisms are involved in cardiac toxicity induced by DOX in the human body. Mitochondria is a central part of fatty acid and glucose metabolism. Thus, impaired mitochondrial metabolism can increase heart failure risk, which can play a vital role in cardiomyocyte mitochondrial dysfunction. This study aimed to assess the possible cardioprotective effect of water-extracted Artemisia argyi (AA) against the side effect of DOX in H9c2 cells and whether these protective effects are mediated through IGF-IIR/Drp1/GATA4 signaling pathways. Although several studies proved that AA extract has benefits for various diseases, its cardiac effects have not yet been identified. The H9c2 cells were exposed to 1 μM to establish a model of cardiac toxicity. The results revealed that water-extracted AA could block the expression of IGF-IIR/calcineurin signaling pathways induced by DOX. Notably, our results also showed that AA treatment markedly attenuated Akt phosphorylation and cleaved caspase 3, and the nuclear translocation markers NFATC3 and p-GATA4. Using actin staining for hypertrophy, we determined that AA can reduce the effect of mitochondrial reactive oxygen species and cell size. These findings suggest that water-extracted AA could be a suitable candidate for preventing DOX-induced cardiac damage.
Collapse
Affiliation(s)
- Jhong-Kuei Chen
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Md Nazmul Islam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
3
|
Adasheva DA, Serebryanaya DV. IGF Signaling in the Heart in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1402-1428. [PMID: 39245453 DOI: 10.1134/s0006297924080042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 09/10/2024]
Abstract
One of the most vital processes of the body is the cardiovascular system's proper operation. Physiological processes in the heart are regulated by the balance of cardioprotective and pathological mechanisms. The insulin-like growth factor system (IGF system, IGF signaling pathway) plays a pivotal role in regulating growth and development of various cells and tissues. In myocardium, the IGF system provides cardioprotective effects as well as participates in pathological processes. This review summarizes recent data on the role of IGF signaling in cardioprotection and pathogenesis of various cardiovascular diseases, as well as analyzes severity of these effects in various scenarios.
Collapse
Affiliation(s)
- Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
4
|
Wu J, Yu F, Di Z, Bian L, Yang J, Wang L, Jiang Q, Yin Y, Zhang L. Transcriptome analysis of adipose tissue and muscle of Laiwu and Duroc pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:134-143. [PMID: 38766520 PMCID: PMC11101945 DOI: 10.1016/j.aninu.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 05/22/2024]
Abstract
Fat content is an important trait in pig production. Adipose tissue and muscle are important sites for fat deposition and affect production efficiency and quality. To regulate the fat content in these tissues, we need to understand the mechanisms behind fat deposition. Laiwu pigs, a Chinese indigenous breed, have significantly higher fat content in both adipose tissue and muscle than commercial breeds such as Duroc. In this study, we analyzed the transcriptomes in adipose tissue and muscle of 21-d-old Laiwu and Duroc piglets. Results showed that there were 828 and 671 differentially expressed genes (DEG) in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT), respectively. Functional enrichment analysis showed that these DEG were enriched in metabolic pathways, especially carbohydrate and lipid metabolism. Additionally, in the longissimus muscle (LM) and psoas muscle (PM), 312 and 335 DEG were identified, demonstrating enrichment in the cell cycle and metabolic pathways. The protein-protein interaction (PPI) networks of these DEG were analyzed and potential hub genes were identified, such as FBP1 and SCD in adipose tissues and RRM2 and GADL1 in muscles. Meanwhile, results showed that there were common DEG between adipose tissue and muscle, such as LDHB, THRSP, and DGAT2. These findings showed that there are significant differences in the transcriptomes of the adipose tissue and muscle between Laiwu and Duroc piglets (P < 0.05), especially in metabolic patterns. This insight serves to advance our comprehensive understanding of metabolic regulation in these tissues and provide targets for fat content regulation.
Collapse
Affiliation(s)
- Jie Wu
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fangyuan Yu
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhaoyang Di
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liwen Bian
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lina Wang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Lin Zhang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
5
|
Nordlinger A, Del Rio J, Parikh S, Thomas L, Parikh R, Vaknine H, Brenner R, Baschieri F, Robert A, Khaled M. Impairing hydrolase transport machinery prevents human melanoma metastasis. Commun Biol 2024; 7:574. [PMID: 38750105 PMCID: PMC11096325 DOI: 10.1038/s42003-024-06261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Metastases are the major cause of cancer-related death, yet, molecular weaknesses that could be exploited to prevent tumor cells spreading are poorly known. Here, we found that perturbing hydrolase transport to lysosomes by blocking either the expression of IGF2R, the main receptor responsible for their trafficking, or GNPT, a transferase involved in the addition of the specific tag recognized by IGF2R, reduces melanoma invasiveness potential. Mechanistically, we demonstrate that the perturbation of this traffic, leads to a compensatory lysosome neo-biogenesis devoided of degradative enzymes. This regulatory loop relies on the stimulation of TFEB transcription factor expression. Interestingly, the inhibition of this transcription factor playing a key role of lysosome production, restores melanomas' invasive potential in the absence of hydrolase transport. These data implicate that targeting hydrolase transport in melanoma could serve to develop new therapies aiming to prevent metastasis by triggering a physiological response stimulating TFEB expression in melanoma.
Collapse
Affiliation(s)
- Alice Nordlinger
- INSERM 1279, Tumor Cell Dynamics, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Justine Del Rio
- INSERM 1279, Tumor Cell Dynamics, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Shivang Parikh
- The Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Laetitia Thomas
- INSERM 1279, Tumor Cell Dynamics, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Roma Parikh
- Institute of Pathology, E. Wolfson Medical Center, Holon, Israel
| | - Hananya Vaknine
- Institute of Pathology, E. Wolfson Medical Center, Holon, Israel
| | - Ronen Brenner
- Institute of Pathology, E. Wolfson Medical Center, Holon, Israel
| | - Francesco Baschieri
- INSERM 1279, Tumor Cell Dynamics, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Institute of Pathophysiology, Innsbruck, Austria
| | - Aude Robert
- INSERM 1279, Tumor Cell Dynamics, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Mehdi Khaled
- INSERM 1279, Tumor Cell Dynamics, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
6
|
Jang J, Accornero F, Li D. Epigenetic determinants and non-myocardial signaling pathways contributing to heart growth and regeneration. Pharmacol Ther 2024; 257:108638. [PMID: 38548089 DOI: 10.1016/j.pharmthera.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Congenital heart disease is the most common birth defect worldwide. Defective cardiac myogenesis is either a major presentation or associated with many types of congenital heart disease. Non-myocardial tissues, including endocardium and epicardium, function as a supporting hub for myocardial growth and maturation during heart development. Recent research findings suggest an emerging role of epigenetics in nonmyocytes supporting myocardial development. Understanding how growth signaling pathways in non-myocardial tissues are regulated by epigenetic factors will likely identify new disease mechanisms for congenital heart diseases and shed lights for novel therapeutic strategies for heart regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| | - Federica Accornero
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| |
Collapse
|
7
|
Guo Y, Huang C, Qiu L, Fu J, Xu C, Yang F. CircTHBS1 promotes trophoblast cell migration and invasion and inhibits trophoblast apoptosis by regulating miR-136-3p/IGF2R axis. FASEB J 2024; 38:e23598. [PMID: 38581244 DOI: 10.1096/fj.202302113rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
The precise molecular mechanism behind fetal growth restriction (FGR) is still unclear, although there is a strong connection between placental dysfunction, inadequate trophoblast invasion, and its etiology and pathogenesis. As a new type of non-coding RNA, circRNA has been shown to play a crucial role in the development of FGR. This investigation identified the downregulation of hsa_circ_0034533 (circTHBS1) in FGR placentas through high-sequencing analysis and confirmed this finding in 25 clinical placenta samples using qRT-PCR. Subsequent in vitro functional assays demonstrated that silencing circTHBS1 inhibited trophoblast proliferation, migration, invasion, and epithelial mesenchymal transition (EMT) progression and promoted apoptosis. Furthermore, when circTHBS1 was overexpressed, cell function experiments showed the opposite result. Analysis using fluorescence in situ hybridization revealed that circTHBS1 was primarily found in the cytoplasmic region. Through bioinformatics analysis, we anticipated the involvement of miR-136-3p and IGF2R in downstream processes, which was subsequently validated through qRT-PCR and dual-luciferase assays. Moreover, the inhibition of miR-136-3p or the overexpression of IGF2R partially reinstated proliferation, migration, and invasion abilities following the silencing of circTHBS1. In summary, the circTHBS1/miR-136-3p/IGF2R axis plays a crucial role in the progression and development of FGR, offering potential avenues for the exploration of biological indicators and treatment targets.
Collapse
Affiliation(s)
- Yanyan Guo
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chuyi Huang
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liyan Qiu
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahui Fu
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cailing Xu
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Yang
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Cheng Y, Feng J, Wang J, Zhou Y, Bai S, Tang Q, Li J, Pan F, Xu Q, Lu C, Wu W, Xia Y. Alterations in sperm DNA methylation may as a mediator of paternal air pollution exposure and offspring birth outcomes: Insight from a birth cohort study. ENVIRONMENTAL RESEARCH 2024; 244:117941. [PMID: 38103775 DOI: 10.1016/j.envres.2023.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Paternal exposure to environmental risk factors influences the offspring health. This study aimed to evaluate the association between paternal air pollution exposure mediated by sperm DNA methylation and adverse birth outcomes in offspring. We recruited 1607 fertile men and their partners from 2014 to 2016 and collected semen samples to detect sperm DNA methylation. Multivariate linear regression and weighted quantile sum regression models were used to assess the associations between paternal air pollution exposure and offspring birth outcomes. A critical exposure window was identified. Reduced representation bisulfite sequencing was used to detect sperm DNA methylation. The results demonstrated that high paternal exposure to PM2.5 (β = -211.31, 95% CI: (-386.37, -36.24)), PM10 (β = -178.20, 95% CI: (-277.13, -79.27)), and NO2 (β = -84.22, 95% CI: (-165.86, -2.57)) was negatively associated with offspring's birthweight, especially in boys. Additionally, an early exposure window of 15-69 days before fertilization was recognized to be the key exposure window, which increased the risk of low birth weight and small for gestational age. Furthermore, paternal co-exposure to six air pollutants contributed to lower birthweight (β = -51.91, 95% CI: (-92.72, -11.10)) and shorter gestational age (β = -1.72, 95% CI: (-3.26, -0.17)) and PM2.5 was the most weighted pollutant. Paternal air pollution exposure resulted in 10,328 differentially methylated regions and the IGF2R gene was the key gene involved in the epigenetic process. These differentially methylated genes were predominantly associated with protein binding, transcriptional regulation, and DNA templating. These findings indicate that spermatogenesis is a susceptible window during which paternal exposure to air pollution affects sperm DNA methylation and the birth outcomes of offspring.
Collapse
Affiliation(s)
- Yuting Cheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jialin Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yijie Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shengjun Bai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jinhui Li
- Department of Urology, Stanford Medical Center, Stanford, CA, USA
| | - Feng Pan
- Department of Urology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Wuxi Medical Center, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Scalia P, Marino IR, Asero S, Pandini G, Grimberg A, El-Deiry WS, Williams SJ. Autocrine IGF-II-Associated Cancers: From a Rare Paraneoplastic Event to a Hallmark in Malignancy. Biomedicines 2023; 12:40. [PMID: 38255147 PMCID: PMC10813354 DOI: 10.3390/biomedicines12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The paraneoplastic syndrome referred in the literature as non-islet-cell tumor hypoglycemia (NICTH) and extra-pancreatic tumor hypoglycemia (EPTH) was first reported almost a century ago, and the role of cancer-secreted IGF-II in causing this blood glucose-lowering condition has been widely established. The landscape emerging in the last few decades, based on molecular and cellular findings, supports a broader role for IGF-II in cancer biology beyond its involvement in the paraneoplastic syndrome. In particular, a few key findings are constantly observed during tumorigenesis, (a) a relative and absolute increase in fetal insulin receptor isoform (IRA) content, with (b) an increase in IGF-II high-molecular weight cancer-variants (big-IGF-II), and (c) a stage-progressive increase in the IGF-II autocrine signal in the cancer cell, mostly during the transition from benign to malignant growth. An increasing and still under-exploited combinatorial pattern of the IGF-II signal in cancer is shaping up in the literature with respect to its transducing receptorial system and effector intracellular network. Interestingly, while surgical and clinical reports have traditionally restricted IGF-II secretion to a small number of solid malignancies displaying paraneoplastic hypoglycemia, a retrospective literature analysis, along with publicly available expression data from patient-derived cancer cell lines conveyed in the present perspective, clearly suggests that IGF-II expression in cancer is a much more common event, especially in overt malignancy. These findings strengthen the view that (1) IGF-II expression/secretion in solid tumor-derived cancer cell lines and tissues is a broader and more common event compared to the reported IGF-II association to paraneoplastic hypoglycemia, and (2) IGF-II associates to the commonly observed autocrine loops in cancer cells while IGF-I cancer-promoting effects may be linked to its paracrine effects in the tumor microenvironment. Based on these evidence-centered considerations, making the autocrine IGF-II loop a hallmark for malignant cancer growth, we here propose the functional name of IGF-II secreting tumors (IGF-IIsT) to overcome the view that IGF-II secretion and pro-tumorigenic actions affect only a clinical sub-group of rare tumors with associated hypoglycemic symptoms. The proposed scenario provides an updated logical frame towards biologically sound therapeutic strategies and personalized therapeutic interventions for currently unaccounted IGF-II-producing cancers.
Collapse
Affiliation(s)
- Pierluigi Scalia
- The ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
| | - Ignazio R. Marino
- Department of Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Salvatore Asero
- The ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
- ARNAS Garibaldi, UOC Chirurgia Oncologica, Nesima, 95122 Catania, Italy
| | - Giuseppe Pandini
- The ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
| | - Adda Grimberg
- Perelman School of Medicine, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Wafik S. El-Deiry
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
| | - Stephen J. Williams
- The ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
10
|
Li Y, Xiao P, Boadu F, Goldkamp AK, Nirgude S, Cheng J, Hagen DE, Kalish JM, Rivera RM. The counterpart congenital overgrowth syndromes Beckwith-Wiedemann Syndrome in human and large offspring syndrome in bovine involve alterations in DNA methylation, transcription, and chromatin configuration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.14.23299981. [PMID: 38168424 PMCID: PMC10760283 DOI: 10.1101/2023.12.14.23299981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Beckwith-Wiedemann Syndrome (BWS, OMIM #130650) is a congenital epigenetic disorder in humans which affects approximately 1 in 10,340 children. The incidence is likely an underestimation as the condition is usually recognized based on observable phenotypes at birth. BWS children have up to a 28% risk of developing tumors and currently, only 80% of patients can be corroborated molecularly (epimutations/variants). It is unknown how the subtypes of this condition are molecularly similar/dissimilar globally, therefore there is a need to deeply characterize the syndrome at the molecular level. Here we characterize the methylome, transcriptome and chromatin configuration of 18 BWS individuals together with the animal model of the condition, the bovine large offspring syndrome (LOS). Sex specific comparisons are performed for a subset of the BWS patients and LOS. Given that this epigenetic overgrowth syndrome has been characterized as a loss-of-imprinting condition, parental allele-specific comparisons were performed using the bovine animal model. In general, the differentially methylated regions (DMRs) detected in BWS and LOS showed significant enrichment for CTCF binding sites. Altered chromosome compartments in BWS and LOS were positively correlated with gene expression changes, and the promoters of differentially expressed genes showed significant enrichment for DMRs, differential topologically associating domains, and differential A/B compartments in some comparisons of BWS subtypes and LOS. We show shared regions of dysregulation between BWS and LOS, including several HOX gene clusters, and also demonstrate that altered DNA methylation differs between the clinically epigenetically identified BWS patients and those identified as having DNA variants (i.e. CDKN1C microdeletion). Lastly, we highlight additional genes and genomic regions that have the potential to serve as targets for biomarker development to improve current molecular methodologies. In summary, our results suggest that genome-wide alternation of chromosome architecture, which is partially caused by DNA methylation changes, also contribute to the development of BWS and LOS.
Collapse
|
11
|
John RM, Higgs MJ, Isles AR. Imprinted genes and the manipulation of parenting in mammals. Nat Rev Genet 2023; 24:783-796. [PMID: 37714957 DOI: 10.1038/s41576-023-00644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/17/2023]
Abstract
Genomic imprinting refers to the parent-of-origin expression of genes, which originates from epigenetic events in the mammalian germ line. The evolution of imprinting may reflect a conflict over resource allocation early in life, with silencing of paternal genes in offspring soliciting increased maternal provision and silencing of maternal genes limiting demands on the mother. Parental caregiving has been identified as an area of potential conflict, with several imprinted genes serendipitously found to directly influence the quality of maternal care. Recent systems biology approaches, based on single-cell RNA sequencing data, support a more deliberate relationship, which is reinforced by the finding that imprinted genes expressed in the offspring influence the quality of maternal caregiving. These bidirectional, reiterative relationships between parents and their offspring are critical both for short-term survival and for lifelong wellbeing, with clear implications for human health.
Collapse
|
12
|
Abstract
Nutrient intake is obligatory for animal growth and development, but nutrients alone are not sufficient. Indeed, insulin and homologous hormones are required for normal growth even in the presence of nutrients. These hormones communicate nutrient status between organs, allowing animals to coordinate growth and metabolism with nutrient supply. Insulin and related hormones, such as insulin-like growth factors and insulin-like peptides, play important roles in development and metabolism, with defects in insulin production and signaling leading to hyperglycemia and diabetes. Here, we describe the insulin hormone family and the signal transduction pathways activated by these hormones. We highlight the roles of insulin signaling in coordinating maternal and fetal metabolism and growth during pregnancy, and we describe how secretion of insulin is regulated at different life stages. Additionally, we discuss the roles of insulin signaling in cell growth, stem cell proliferation and cell differentiation. We provide examples of the role of insulin in development across multiple model organisms: Caenorhabditis elegans, Drosophila, zebrafish, mouse and human.
Collapse
Affiliation(s)
- Miyuki Suzawa
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Michelle L. Bland
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
13
|
Alberini CM. IGF2 in memory, neurodevelopmental disorders, and neurodegenerative diseases. Trends Neurosci 2023; 46:488-502. [PMID: 37031050 PMCID: PMC10192130 DOI: 10.1016/j.tins.2023.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/27/2023] [Accepted: 03/12/2023] [Indexed: 04/08/2023]
Abstract
Insulin-like growth factor 2 (IGF2) emerged as a critical mechanism of synaptic plasticity and learning and memory. Deficits in IGF2 in the brain, serum, or cerebrospinal fluid (CSF) are associated with brain diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Increasing IGF2 levels enhances memory in healthy animals and reverses numerous symptoms in laboratory models of aging, neurodevelopmental disorders, and neurodegenerative diseases. These effects occur via the IGF2 receptor (IGF2R) - a receptor that is highly expressed in neurons and regulates protein trafficking, synthesis, and degradation. Here, I summarize the current knowledge regarding IGF2 expression and functions in the brain, particularly in memory, and propose a novel conceptual model for IGF2/IGF2R mechanisms of action in brain health and diseases.
Collapse
|
14
|
Hord TK, Tanner AR, Kennedy VC, Lynch CS, Winger QA, Rozance PJ, Anthony RV. Impact of Chorionic Somatomammotropin In Vivo RNA Interference Phenotype on Uteroplacental Expression of the IGF Axis. Life (Basel) 2023; 13:1261. [PMID: 37374044 PMCID: PMC10302269 DOI: 10.3390/life13061261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
While fetal growth is dependent on many factors, optimal placental function is a prerequisite for a normal pregnancy outcome. The majority of fetal growth-restricted (FGR) pregnancies result from placental insufficiency (PI). The insulin-like growth factors (IGF1 and IGF2) stimulate fetal growth and placental development and function. Previously, we demonstrated that in vivo RNA interference (RNAi) of the placental hormone, chorionic somatomammotropin (CSH), resulted in two phenotypes. One phenotype exhibits significant placental and fetal growth restriction (PI-FGR), impaired placental nutrient transport, and significant reductions in umbilical insulin and IGF1. The other phenotype does not exhibit statistically significant changes in placental or fetal growth (non-FGR). It was our objective to further characterize these two phenotypes by determining the impact of CSH RNAi on the placental (maternal caruncle and fetal cotyledon) expression of the IGF axis. The trophectoderm of hatched blastocysts (9 days of gestation, dGA) were infected with a lentivirus expressing either a non-targeting sequence (NTS RNAi) control or CSH-specific shRNA (CSH RNAi) prior to embryo transfer into synchronized recipient ewes. At ≈125 dGA, pregnancies were fitted with vascular catheters to undergo steady-state metabolic studies. Nutrient uptakes were determined, and tissues were harvested at necropsy. In both CSH RNAi non-FGR and PI-FGR pregnancies, uterine blood flow was significantly reduced (p ≤ 0.05), while umbilical blood flow (p ≤ 0.01), both uterine and umbilical glucose and oxygen uptakes (p ≤ 0.05), and umbilical concentrations of insulin and IGF1 (p ≤ 0.05) were reduced in CSH RNAi PI-FGR pregnancies. Fetal cotyledon IGF1 mRNA concentration was reduced (p ≤ 0.05) in CSH RNAi PI-FGR pregnancies, whereas neither IGF1 nor IGF2 mRNA concentrations were impacted in the maternal caruncles, and either placental tissue in the non-FGR pregnancies. Fetal cotyledon IGF1R and IGF2R mRNA concentrations were not impacted for either phenotype, yet IGF2R was increased (p ≤ 0.01) in the maternal caruncles of CSH RNAi PI-FGR pregnancies. For the IGF binding proteins (IGFBP1, IGFBP2, IGFBP3), only IGFBP2 mRNA concentrations were impacted, with elevated IGFBP2 mRNA in both the fetal cotyledon (p ≤ 0.01) and maternal caruncle (p = 0.08) of CSH RNAi non-FGR pregnancies. These data support the importance of IGF1 in placental growth and function but may also implicate IGFBP2 in salvaging placental growth in non-FGR pregnancies.
Collapse
Affiliation(s)
- Taylor K. Hord
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Amelia R. Tanner
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Victoria C. Kennedy
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Cameron S. Lynch
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Quinton A. Winger
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Paul J. Rozance
- Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Russell V. Anthony
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
15
|
Hu Y, Yuan S, Du X, Liu J, Zhou W, Wei F. Comparative analysis reveals epigenomic evolution related to species traits and genomic imprinting in mammals. Innovation (N Y) 2023; 4:100434. [PMID: 37215528 PMCID: PMC10196708 DOI: 10.1016/j.xinn.2023.100434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
DNA methylation is an epigenetic modification that plays a crucial role in various regulatory processes, including gene expression regulation, transposable element repression, and genomic imprinting. However, most studies on DNA methylation have been conducted in humans and other model species, whereas the dynamics of DNA methylation across mammals remain poorly explored, limiting our understanding of epigenomic evolution in mammals and the evolutionary impacts of conserved and lineage-specific DNA methylation. Here, we generated and gathered comparative epigenomic data from 13 mammalian species, including two marsupial species, to demonstrate that DNA methylation plays critical roles in several aspects of gene evolution and species trait evolution. We found that the species-specific DNA methylation of promoters and noncoding elements correlates with species-specific traits such as body patterning, indicating that DNA methylation might help establish or maintain interspecies differences in gene regulation that shape phenotypes. For a broader view, we investigated the evolutionary histories of 88 known imprinting control regions across mammals to identify their evolutionary origins. By analyzing the features of known and newly identified potential imprints in all studied mammals, we found that genomic imprinting may function in embryonic development through the binding of specific transcription factors. Our findings show that DNA methylation and the complex interaction between the genome and epigenome have a significant impact on mammalian evolution, suggesting that evolutionary epigenomics should be incorporated to develop a unified evolutionary theory.
Collapse
Affiliation(s)
- Yisi Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shenli Yuan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Du
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
16
|
Nava-Trujillo H, Rivera RM. Review: Large offspring syndrome in ruminants: current status and prediction during pregnancy. Animal 2023; 17 Suppl 1:100740. [PMID: 37567678 DOI: 10.1016/j.animal.2023.100740] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 08/13/2023] Open
Abstract
Large/abnormal Offspring Syndrome (LOS/AOS) is a congenital overgrowth condition of cattle and sheep, characterized by macrosomia, abdominal wall defects, organomegaly, difficulty to stand and suckle at parturition. The condition was first described as an exclusive consequence of assisted reproductive technologies, such as in vitro production and somatic cell nuclear transfer (cloning). However, we recently reported the spontaneous occurrence of this syndrome in cattle. The etiology of LOS is unclear, although the syndrome is an epigenetic condition characterized by multi-locus loss-of-imprinting, global dysregulation of small and long RNAs, changes in DNA methylation, and altered chromosomal architecture. These molecular and epigenetic changes affect biological pathways implicated in organ size, cell proliferation, cell survival, resulting in the phenotypes which characterize LOS. The lack of accurate tools for the prediction and diagnosis of LOS and the prevention of dystocia resulting from fetal overgrowth is a major concern for the dairy and beef industries. Furthermore, death of the calf and/or dam during calving adds animal welfare issues and affects the net income of the industry. An early diagnosis of LOS/AOS during gestation is critical to facilitate the decision-making process on whether to allow the pregnancy to continue or not in order to prevent harm to the dam as well as to provide producers with the timely necessary information to prepare for a difficult birth. The present review summarizes the definition, traits, incidence, and molecular characteristics of LOS to provide information and serve as a guide for future investigations regarding the early identification of LOS during pregnancy in cattle.
Collapse
|
17
|
Ando A, Kirkbride RC, Qiao H, Chen ZJ. Endosperm and Maternal-specific expression of EIN2 in the endosperm affects endosperm cellularization and seed size in Arabidopsis. Genetics 2023; 223:iyac161. [PMID: 36282525 PMCID: PMC9910398 DOI: 10.1093/genetics/iyac161] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Seed size is related to plant evolution and crop yield and is affected by genetic mutations, imprinting, and genome dosage. Imprinting is a widespread epigenetic phenomenon in mammals and flowering plants. ETHYLENE INSENSITIVE2 (EIN2) encodes a membrane protein that links the ethylene perception to transcriptional regulation. Interestingly, during seed development EIN2 is maternally expressed in Arabidopsis and maize, but the role of EIN2 in seed development is unknown. Here, we show that EIN2 is expressed specifically in the endosperm, and the maternal-specific EIN2 expression affects temporal regulation of endosperm cellularization. As a result, seed size increases in the genetic cross using the ein2 mutant as the maternal parent or in the ein2 mutant. The maternal-specific expression of EIN2 in the endosperm is controlled by DNA methylation but not by H3K27me3 or by ethylene and several ethylene pathway genes tested. RNA-seq analysis in the endosperm isolated by laser-capture microdissection show upregulation of many endosperm-expressed genes such as AGAMOUS-LIKEs (AGLs) in the ein2 mutant or when the maternal EIN2 allele is not expressed. EIN2 does not interact with DNA and may act through ETHYLENE INSENSITIVE3 (EIN3), a DNA-binding protein present in sporophytic tissues, to activate target genes like AGLs, which in turn mediate temporal regulation of endosperm cellularization and seed size. These results provide mechanistic insights into endosperm and maternal-specific expression of EIN2 on endosperm cellularization and seed development, which could help improve seed production in plants and crops.
Collapse
Affiliation(s)
- Atsumi Ando
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ryan C Kirkbride
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hong Qiao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
18
|
Ahn J, Hwang IS, Park MR, Hwang S, Cho IC, Lee K. The AIRN lncRNA is imprinted and paternally expressed in pigs. J Anim Sci 2023; 101:skad367. [PMID: 37925372 PMCID: PMC10638104 DOI: 10.1093/jas/skad367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023] Open
Abstract
Genomic imprinting plays critical roles during the development of mammalian species and underlying epigenetic mechanisms frequently involve long non-coding RNAs (lncRNAs). The paternal transcription of the antisense Igf2r RNA noncoding (Airn) is responsible for paternal silencing of the mouse insulin-like growth factor 2 receptor (Igf2r) gene and maternal Igf2r expression. Although the corresponding maternal DNA methylation imprint is conserved in humans and pigs, the orthologous AIRN lncRNA has been identified in humans but not in pigs. Here, we aimed to examine imprinted allelic expression of the porcine AIRN lncRNA along with a corresponding differentially methylated region (DMR) and to analyze allelic expression of AIRN and IGF2R in pigs. By comparing parthenogenetic and control porcine embryos, we identified a maternally methylated DMR and a significantly higher expression of AIRN lncRNA in control embryos (P < 0.05) indicating its paternal expression. Further analyses revealed that the expression of AIRN lncRNA was enriched in the pig brain and its subregions, and it was monoallelically expressed; whereas, IGF2R was expressed biallelically suggesting an absence of allele-specific transcriptional regulation. Our findings will lead to further investigations into the role of the imprinted porcine AIRN lncRNA during pig development.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - In-Sul Hwang
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeonbuk 55365, Republic of Korea
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032
| | - Mi-Ryung Park
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Jeonbuk 55365, Republic of Korea
| | - Seongsoo Hwang
- Animal Welfare Research Team, National Institute of Animal Science, RDA, Jeonbuk 55365, Republic of Korea
| | - In-Cheol Cho
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju 63242, Republic of Korea
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
19
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y, Giordano A. Cell cycle control by the insulin-like growth factor signal: at the crossroad between cell growth and mitotic regulation. Cell Cycle 2023; 22:1-37. [PMID: 36005738 PMCID: PMC9769454 DOI: 10.1080/15384101.2022.2108117] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In proliferating cells and tissues a number of checkpoints (G1/S and G2/M) preceding cell division (M-phase) require the signal provided by growth factors present in serum. IGFs (I and II) have been demonstrated to constitute key intrinsic components of the peptidic active fraction of mammalian serum. In vivo genetic ablation studies have shown that the cellular signal triggered by the IGFs through their cellular receptors represents a non-replaceable requirement for cell growth and cell cycle progression. Retroactive and current evaluation of published literature sheds light on the intracellular circuitry activated by these factors providing us with a better picture of the pleiotropic mechanistic actions by which IGFs regulate both cell size and mitogenesis under developmental growth as well as in malignant proliferation. The present work aims to summarize the cumulative knowledge learned from the IGF ligands/receptors and their intracellular signaling transducers towards control of cell size and cell-cycle with particular focus to their actionable circuits in human cancer. Furthermore, we bring novel perspectives on key functional discriminants of the IGF growth-mitogenic pathway allowing re-evaluation on some of its signal components based upon established evidences.
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states,CONTACT Pierluigi Scalia ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA9102, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,CST, Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United states
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Antonio Giordano
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA, USA, Caltanissetta, Italy,School of Medical Biotechnology, University of Siena, Italy
| |
Collapse
|
20
|
Wan HT, Ng AH, Lee WK, Shi F, Wong CKC. Identification and characterization of a membrane receptor that binds to human STC1. Life Sci Alliance 2022; 5:5/11/e202201497. [PMID: 35798563 PMCID: PMC9263378 DOI: 10.26508/lsa.202201497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
A study using TriCEPS-based ligand–receptor methodology and surface plasmon resonance assays identified that human stanniocalcin-1 binds to insulin-like growth factor-2 receptors in human leukemia monocytic cells with high affinity. Stanniocalcin-1 (STC1) is a hypocalcemic hormone originally identified in bony fishes. The mammalian homolog is found to be involved in inflammation and carcinogenesis, among other physiological functions. In this study, we used the TriCEPS-based ligand–receptor methodology to identify the putative binding proteins of human STC1 (hSTC1) in the human leukemia monocytic cell line, ThP-1. LC–MS/MS analysis of peptides from shortlisted hSTC1-binding proteins detected 32 peptides that belong to IGF2/MPRI. Surface plasmon resonance assay demonstrated that hSTC1 binds to immobilized IGF2R/MPRI with high affinity (10–20 nM) and capacity (Rmax 70–100%). The receptor binding data are comparable with those of (CREG) cellular repressor of E1A-stimulated gene a known ligand of IGF2R/MPRI, with Rmax of 75–80% and affinity values of 1–2 nM. The surface plasmon resonance competitive assays showed CREG competed with hSTC1 in binding to IGF2R/MPRI. The biological effects of hSTC1 on ThP-1 cells were demonstrated via IGF2R/MPRI to significantly reduce secreted levels of IL-1β. This is the first study to reveal the high-affinity binding of hSTC1 to the membrane receptor IGF2R/MPRI.
Collapse
Affiliation(s)
- Hin Ting Wan
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Alice Hm Ng
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wang Ka Lee
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Feng Shi
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chris Kong-Chu Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
21
|
Zhu Y, Chen L, Song B, Cui Z, Chen G, Yu Z, Song B. Insulin-like Growth Factor-2 (IGF-2) in Fibrosis. Biomolecules 2022; 12:1557. [PMID: 36358907 PMCID: PMC9687531 DOI: 10.3390/biom12111557] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/27/2023] Open
Abstract
The insulin family consists of insulin, insulin-like growth factor 1 (IGF-1), insulin-like growth factor 2 (IGF-2), their receptors (IR, IGF-1R and IGF-2R), and their binding proteins. All three ligands are involved in cell proliferation, apoptosis, protein synthesis and metabolism due to their homologous sequences and structural similarities. Insulin-like growth factor 2, a member of the insulin family, plays an important role in embryonic development, metabolic disorders, and tumorigenesis by combining with three receptors with different degrees of affinity. The main pathological feature of various fibrotic diseases is the excessive deposition of extracellular matrix (ECM) after tissue and organ damage, which eventually results in organic dysfunction because scar formation replaces tissue parenchyma. As a mitogenic factor, IGF-2 is overexpressed in many fibrotic diseases. It can promote the proliferation of fibroblasts significantly, as well as the production of ECM in a time- and dose-dependent manner. This review aims to describe the expression changes and fibrosis-promoting effects of IGF-2 in the skin, oral cavity, heart, lung, liver, and kidney fibrotic tissues.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
22
|
Lynch CS, Kennedy VC, Tanner AR, Ali A, Winger QA, Rozance PJ, Anthony RV. Impact of Placental SLC2A3 Deficiency during the First-Half of Gestation. Int J Mol Sci 2022; 23:12530. [PMID: 36293384 PMCID: PMC9603975 DOI: 10.3390/ijms232012530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
In the ruminant placenta, glucose uptake and transfer are mediated by facilitative glucose transporters SLC2A1 (GLUT1) and SLC2A3 (GLUT3). SLC2A1 is located on the basolateral trophoblast membrane, whereas SLC2A3 is located solely on the maternal-facing, apical trophoblast membrane. While SLC2A3 is less abundant than SLC2A1, SLC2A3 has a five-fold greater affinity and transport capacity. Based on its location, SLC2A3 likely plays a significant role in the uptake of glucose into the trophoblast. Fetal hypoglycemia is a hallmark of fetal growth restriction (FGR), and as such, any deficiency in SLC2A3 could impact trophoblast glucose uptake and transfer to the fetus, thus potentially setting the stage for FGR. By utilizing in vivo placenta-specific lentiviral-mediated RNA interference (RNAi) in sheep, we were able to significantly diminish (p ≤ 0.05) placental SLC2A3 concentration, and determine the impact at mid-gestation (75 dGA). In response to SLC2A3 RNAi (n = 6), the fetuses were hypoglycemic (p ≤ 0.05), exhibited reduced fetal growth, including reduced fetal pancreas weight (p ≤ 0.05), which was associated with reduced umbilical artery insulin and glucagon concentrations, when compared to the non-targeting sequence (NTS) RNAi controls (n = 6). By contrast, fetal liver weights were not impacted, nor were umbilical artery concentrations of IGF1, possibly resulting from a 70% increase (p ≤ 0.05) in umbilical vein chorionic somatomammotropin (CSH) concentrations. Thus, during the first half of gestation, a deficiency in SLC2A3 results in fetal hypoglycemia, reduced fetal development, and altered metabolic hormone concentrations. These results suggest that SLC2A3 may be the rate-limiting placental glucose transporter during the first-half of gestation in sheep.
Collapse
Affiliation(s)
- Cameron S. Lynch
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Victoria C. Kennedy
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Amelia R. Tanner
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Asghar Ali
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Quinton A. Winger
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| | - Paul J. Rozance
- Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Russell V. Anthony
- College of Veterinary Medicine, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
23
|
Javaheri A, Diab A, Zhao L, Qian C, Cohen JB, Zamani P, Kumar A, Wang Z, Ebert C, Maranville J, Kvikstad E, Basso M, van Empel V, Richards AM, Doughty R, Rietzschell E, Kammerhoff K, Gogain J, Schafer P, Seiffert DA, Gordon DA, Ramirez-Valle F, Mann DL, Cappola TP, Chirinos JA. Proteomic Analysis of Effects of Spironolactone in Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 2022; 15:e009693. [PMID: 36126144 PMCID: PMC9504263 DOI: 10.1161/circheartfailure.121.009693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The TOPCAT trial (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial) suggested clinical benefits of spironolactone treatment among patients with heart failure with preserved ejection fraction enrolled in the Americas. However, a comprehensive assessment of biologic pathways impacted by spironolactone therapy in heart failure with preserved ejection fraction has not been performed. METHODS We conducted aptamer-based proteomic analysis utilizing 5284 modified aptamers to 4928 unique proteins on plasma samples from TOPCAT participants from the Americas (n=164 subjects with paired samples at baseline and 1 year) to identify proteins and pathways impacted by spironolactone therapy in heart failure with preserved ejection fraction. Mean percentage change from baseline was calculated for each protein. Additionally, we conducted pathway analysis of proteins altered by spironolactone. RESULTS Spironolactone therapy was associated with proteome-wide significant changes in 7 proteins. Among these, CARD18 (caspase recruitment domain-containing protein 18), PKD2 (polycystin 2), and PSG2 (pregnancy-specific glycoprotein 2) were upregulated, whereas HGF (hepatic growth factor), PLTP (phospholipid transfer protein), IGF2R (insulin growth factor 2 receptor), and SWP70 (switch-associated protein 70) were downregulated. CARD18, a caspase-1 inhibitor, was the most upregulated protein by spironolactone (-0.5% with placebo versus +66.5% with spironolactone, P<0.0001). The top canonical pathways that were significantly associated with spironolactone were apelin signaling, stellate cell activation, glycoprotein 6 signaling, atherosclerosis signaling, liver X receptor activation, and farnesoid X receptor activation. Among the top pathways, collagens were a consistent theme that increased in patients receiving placebo but decreased in patients randomized to spironolactone. CONCLUSIONS Proteomic analysis in the TOPCAT trial revealed proteins and pathways altered by spironolactone, including the caspase inhibitor CARD18 and multiple pathways that involved collagens. In addition to effects on fibrosis, our studies suggest potential antiapoptotic effects of spironolactone in heart failure with preserved ejection fraction, a hypothesis that merits further exploration.
Collapse
Affiliation(s)
- Ali Javaheri
- Washington University School of Medicine, St. Louis, MO
| | - Ahmed Diab
- Washington University School of Medicine, St. Louis, MO
| | - Lei Zhao
- Bristol Myers Squibb Company, Lawrenceville, NJ
| | - Chenao Qian
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Jordana B. Cohen
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Payman Zamani
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Anupam Kumar
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | | | | | | | | | | | - Vanessa van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Rob Doughty
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Ernst Rietzschell
- Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | - Thomas P. Cappola
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Julio A. Chirinos
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| |
Collapse
|
24
|
Liu J, Wu MW, Liu CM. Cereal Endosperms: Development and Storage Product Accumulation. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:255-291. [PMID: 35226815 DOI: 10.1146/annurev-arplant-070221-024405] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The persistent triploid endosperms of cereal crops are the most important source of human food and animal feed. The development of cereal endosperms progresses through coenocytic nuclear division, cellularization, aleurone and starchy endosperm differentiation, and storage product accumulation. In the past few decades, the cell biological processes involved in endosperm formation in most cereals have been described. Molecular genetic studies performed in recent years led to the identification of the genes underlying endosperm differentiation, regulatory network governing storage product accumulation, and epigenetic mechanism underlying imprinted gene expression. In this article, we outline recent progress in this area and propose hypothetical models to illustrate machineries that control aleurone and starchy endosperm differentiation, sugar loading, and storage product accumulations. A future challenge in this area is to decipher the molecular mechanisms underlying coenocytic nuclear division, endosperm cellularization, and programmed cell death.
Collapse
Affiliation(s)
- Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| |
Collapse
|
25
|
Genetic regulation and variation of expression of miRNA and mRNA transcripts in fetal muscle tissue in the context of sex, dam and variable fetal weight. Biol Sex Differ 2022; 13:24. [PMID: 35550009 PMCID: PMC9103043 DOI: 10.1186/s13293-022-00433-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Impaired skeletal muscle growth in utero can result in reduced birth weight and pathogenesis of intrauterine growth restriction. Fetal and placental growth is influenced by many factors including genetic, epigenetic and environmental factors. In fact, the sex and genotype of the fetus itself, as well as the mother providing it with a suitable environment, influence the growth of the fetus. Hence, our goal was to decipher and elucidate the molecular pathways of developmental processes mediated by miRNAs and mRNAs in fetal muscle tissue in the context of sex, dam, and fetal weight. Therefore, we analyse the variation of miRNA and mRNA expression in relation to these factors. In addition, the coincidence of genetic regulation of these mRNAs and miRNAs, as revealed by expression quantitative trait loci (eQTL) analyses, with sex-, mother- and weight-associated expression was investigated. METHODS A three-generation pig F2 population (n = 118) based on reciprocal crossing of German Landrace (DL) and Pietrain (Pi) was used. Genotype information and transcriptomic data (mRNA and miRNA) from longissimus dorsi muscle (LDM) of pig fetuses sampled at 63 days post-conception (dpc) were used for eQTL analyses. RESULTS The transcript abundances of 13, 853, and 275 probe-sets were influenced by sex, dam and fetal weight at 63 dpc, respectively (FDR < 5%). Most of significant transcripts affected by sex were located on the sex chromosomes including KDM6A and ANOS1 or autosomes including ANKS1B, LOC100155138 and miR-153. The fetal muscle transcripts associated with fetal weight indicated clearer metabolic directions than maternally influenced fetal muscle transcripts. Moreover, coincidence of genetic regulation (eQTL) and variation in transcript abundance due to sex, dam and fetal weight were identified. CONCLUSIONS Integrating information on eQTL, sex-, dam- and weight-associated differential expression and QTL for fetal weight allowed us to identify molecular pathways and shed light on the basic biological processes associated with differential muscle development in males and females, with implications for adaptive fetal programming.
Collapse
|
26
|
Conflict and the evolution of viviparity in vertebrates. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
27
|
The X-linked splicing regulator MBNL3 has been co-opted to restrict placental growth in eutherians. PLoS Biol 2022; 20:e3001615. [PMID: 35476669 PMCID: PMC9084524 DOI: 10.1371/journal.pbio.3001615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/09/2022] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the regulatory interactions that control gene expression during the development of novel tissues is a key goal of evolutionary developmental biology. Here, we show that Mbnl3 has undergone a striking process of evolutionary specialization in eutherian mammals resulting in the emergence of a novel placental function for the gene. Mbnl3 belongs to a family of RNA-binding proteins whose members regulate multiple aspects of RNA metabolism. We find that, in eutherians, while both Mbnl3 and its paralog Mbnl2 are strongly expressed in placenta, Mbnl3 expression has been lost from nonplacental tissues in association with the evolution of a novel promoter. Moreover, Mbnl3 has undergone accelerated protein sequence evolution leading to changes in its RNA-binding specificities and cellular localization. While Mbnl2 and Mbnl3 share partially redundant roles in regulating alternative splicing, polyadenylation site usage and, in turn, placenta maturation, Mbnl3 has also acquired novel biological functions. Specifically, Mbnl3 knockout (M3KO) alone results in increased placental growth associated with higher Myc expression. Furthermore, Mbnl3 loss increases fetal resource allocation during limiting conditions, suggesting that location of Mbnl3 on the X chromosome has led to its role in limiting placental growth, favoring the maternal side of the parental genetic conflict.
Collapse
|
28
|
Sandovici I, Georgopoulou A, Pérez-García V, Hufnagel A, López-Tello J, Lam BYH, Schiefer SN, Gaudreau C, Santos F, Hoelle K, Yeo GSH, Burling K, Reiterer M, Fowden AL, Burton GJ, Branco CM, Sferruzzi-Perri AN, Constância M. The imprinted Igf2-Igf2r axis is critical for matching placental microvasculature expansion to fetal growth. Dev Cell 2022; 57:63-79.e8. [PMID: 34963058 PMCID: PMC8751640 DOI: 10.1016/j.devcel.2021.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022]
Abstract
In all eutherian mammals, growth of the fetus is dependent upon a functional placenta, but whether and how the latter adapts to putative fetal signals is currently unknown. Here, we demonstrate, through fetal, endothelial, hematopoietic, and trophoblast-specific genetic manipulations in the mouse, that endothelial and fetus-derived IGF2 is required for the continuous expansion of the feto-placental microvasculature in late pregnancy. The angiocrine effects of IGF2 on placental microvasculature expansion are mediated, in part, through IGF2R and angiopoietin-Tie2/TEK signaling. Additionally, IGF2 exerts IGF2R-ERK1/2-dependent pro-proliferative and angiogenic effects on primary feto-placental endothelial cells ex vivo. Endothelial and fetus-derived IGF2 also plays an important role in trophoblast morphogenesis, acting through Gcm1 and Synb. Thus, our study reveals a direct role for the imprinted Igf2-Igf2r axis on matching placental development to fetal growth and establishes the principle that hormone-like signals from the fetus play important roles in controlling placental microvasculature and trophoblast morphogenesis.
Collapse
Affiliation(s)
- Ionel Sandovici
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Aikaterini Georgopoulou
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Vicente Pérez-García
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 46012 Valencia, Spain
| | - Antonia Hufnagel
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Jorge López-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Brian Y H Lam
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Samira N Schiefer
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Chelsea Gaudreau
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Fátima Santos
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Katharina Hoelle
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Giles S H Yeo
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Keith Burling
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Moritz Reiterer
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Abigail L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Cristina M Branco
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Miguel Constância
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
29
|
Aykroyd BRL, Tunster SJ, Sferruzzi-Perri AN. Loss of imprinting of the Igf2-H19 ICR1 enhances placental endocrine capacity via sex-specific alterations in signalling pathways in the mouse. Development 2022; 149:dev199811. [PMID: 34982814 PMCID: PMC8783045 DOI: 10.1242/dev.199811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Imprinting control region (ICR1) controls the expression of the Igf2 and H19 genes in a parent-of-origin specific manner. Appropriate expression of the Igf2-H19 locus is fundamental for normal fetal development, yet the importance of ICR1 in the placental production of hormones that promote maternal nutrient allocation to the fetus is unknown. To address this, we used a novel mouse model to selectively delete ICR1 in the endocrine junctional zone (Jz) of the mouse placenta (Jz-ΔICR1). The Jz-ΔICR1 mice exhibit increased Igf2 and decreased H19 expression specifically in the Jz. This was accompanied by an expansion of Jz endocrine cell types due to enhanced rates of proliferation and increased expression of pregnancy-specific glycoprotein 23 in the placenta of both fetal sexes. However, changes in the endocrine phenotype of the placenta were related to sexually-dimorphic alterations to the abundance of Igf2 receptors and downstream signalling pathways (Pi3k-Akt and Mapk). There was no effect of Jz-ΔICR1 on the expression of targets of the H19-embedded miR-675 or on fetal weight. Our results demonstrate that ICR1 controls placental endocrine capacity via sex-dependent changes in signalling.
Collapse
Affiliation(s)
| | | | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
30
|
Karp X. Hormonal Regulation of Diapause and Development in Nematodes, Insects, and Fishes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diapause is a state of developmental arrest adopted in response to or in anticipation of environmental conditions that are unfavorable for growth. In many cases, diapause is facultative, such that animals may undergo either a diapause or a non-diapause developmental trajectory, depending on environmental cues. Diapause is characterized by enhanced stress resistance, reduced metabolism, and increased longevity. The ability to postpone reproduction until suitable conditions are found is important to the survival of many animals, and both vertebrate and invertebrate species can undergo diapause. The decision to enter diapause occurs at the level of the whole animal, and thus hormonal signaling pathways are common regulators of the diapause decision. Unlike other types of developmental arrest, diapause is programmed, such that the diapause developmental trajectory includes a pre-diapause preparatory phase, diapause itself, recovery from diapause, and post-diapause development. Therefore, developmental pathways are profoundly affected by diapause. Here, I review two conserved hormonal pathways, insulin/IGF signaling (IIS) and nuclear hormone receptor signaling (NHR), and their role in regulating diapause across three animal phyla. Specifically, the species reviewed are Austrofundulus limnaeus and Nothobranchius furzeri annual killifishes, Caenorhabditis elegans nematodes, and insect species including Drosophila melanogaster, Culex pipiens, and Bombyx mori. In addition, the developmental changes that occur as a result of diapause are discussed, with a focus on how IIS and NHR pathways interact with core developmental pathways in C. elegans larvae that undergo diapause.
Collapse
|
31
|
D’ Fonseca NMM, Gibson CME, van Doorn DA, Roelfsema E, de Ruijter-Villani M, Stout TAE. Effect of Overfeeding Shetland Pony Mares on Embryonic Glucose and Lipid Accumulation, and Expression of Imprinted Genes. Animals (Basel) 2021; 11:ani11092504. [PMID: 34573470 PMCID: PMC8470267 DOI: 10.3390/ani11092504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/01/2022] Open
Abstract
Simple Summary In pregnant individuals, maternal overnutrition is associated with disturbances in the expression of specific genes and nutrient transporters in the early embryo, which can affect both fetal and placental development and have lasting effects on the health of resulting offspring. To examine how maternal overfeeding affects the equine embryo, Shetland pony mares were fed either a high-energy (HE: 200% of net energy requirements) or maintenance (control) diet. Mares from both groups were inseminated, and day-seven embryos were recovered and transferred to recipients from the same or the alternate group. The expression of several genes, nutrient transporters and DNA methyltransferases (DNMTs; play an important role in regulating gene expression) were determined in extra-embryonic membranes after recovery on day 28 of gestation. The expression of nutrient transporters was also assessed in endometrium recovered from recipient mares immediately after embryo removal. In addition, glucose uptake by day-28 extra-embryonic membranes, and lipid droplet accumulation in day-seven embryos were assessed. Maternal overfeeding resulted in elevated expression of several genes, DNMTs and nutrient transporters following embryo transfer from an HE to a control mare. The expression of two amino acid transporters was also elevated in the endometrium after embryo transfer from HE to control. Maternal overfeeding did not affect lipid droplet accumulation in day-seven embryos, or glucose uptake by membranes of day-28 embryos. It remains to be seen whether the alterations in gene expression are maintained throughout gestation and into postnatal life. Abstract Maternal overfeeding is associated with disturbances in early embryonic epigenetic reprogramming, leading to altered expression of imprinted genes and nutrient transporters, which can affect both fetal and placental development and have lasting effects on the health of resulting offspring. To examine how maternal overfeeding affects the equine embryo, Shetland pony mares were fed either a high-energy (HE: 200% of net energy requirements) or maintenance (control) diet. Mares from both groups were inseminated, and day-seven embryos were recovered and transferred to recipients from the same or the alternate group. The expression of a panel of imprinted genes, glucose and amino acid transporters, and DNA methyltransferases (DNMTs) were determined in conceptus membranes after recovery on day 28 of gestation (late pre-implantation phase). The expression of nutrient transporters was also assessed in endometrium recovered from recipient mares immediately after conceptus removal. In addition, glucose uptake by day-28 extra-embryonic membranes, and lipid droplet accumulation in day-seven blastocysts were assessed. Maternal overfeeding resulted in elevated expression of imprinted genes (IGF2, IGF2R, H19, GRB10, PEG10 and SNRPN), DNMTs (DNMT1 and DNMT3B), glucose (SLC2A1), fructose (SLC2A5) and amino acid (SLC7A2) transporters following ET from an HE to a control mare. Expression of amino acid transporters (SLC1A5 and SLC7A1) was also elevated in the endometrium after ET from HE to control. Maternal overfeeding did not affect lipid droplet accumulation in blastocysts, or glucose uptake by day-28 membranes. It remains to be seen whether the alterations in gene expression are maintained throughout gestation and into postnatal life.
Collapse
Affiliation(s)
- Nicky M. M. D’ Fonseca
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
- Correspondence:
| | - Charlotte M. E. Gibson
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
| | - David A. van Doorn
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Ellen Roelfsema
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
| | - Marta de Ruijter-Villani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
| | - Tom A. E. Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (C.M.E.G.); (D.A.v.D.); (E.R.); (M.d.R.-V.); (T.A.E.S.)
| |
Collapse
|
32
|
Martens L, Rühle F, Witten A, Meder B, Katus HA, Arbustini E, Hasenfuß G, Sinner MF, Kääb S, Pankuweit S, Angermann C, Bornberg-Bauer E, Stoll M. A genetic variant alters the secondary structure of the lncRNA H19 and is associated with dilated cardiomyopathy. RNA Biol 2021; 18:409-415. [PMID: 34313541 DOI: 10.1080/15476286.2021.1952756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
lncRNAs are at the core of many regulatory processes and have also been recognized to be involved in various complex diseases. They affect gene regulation through direct interactions with RNA, DNA or proteins. Accordingly, lncRNA structure is likely to be essential for their regulatory function. Point mutations, which manifest as SNPs (single nucleotide polymorphisms) in genome screens, can substantially alter their function and, subsequently, the expression of their downstream regulated genes. To test the effect of SNPs on structure, we investigated lncRNAs associated with dilated cardiomyopathy. Among 322 human candidate lncRNAs, we demonstrate first the significant association of an SNP located in lncRNA H19 using data from 1084 diseased and 751 control patients. H19 is generally highly expressed in the heart, with a complex expression pattern during heart development. Next, we used MFE (minimum free energy) folding to demonstrate a significant refolding in the secondary structure of this 861 nt long lncRNA. Since MFE folding may overlook the importance of sub-optimal structures, we showed that this refolding also manifests in the overall Boltzmann structure ensemble. There, the composition of structures is tremendously affected in their thermodynamic probabilities through the genetic variant. Finally, we confirmed these results experimentally, using SHAPE-Seq, corroborating that SNPs affecting such structures may explain hidden genetic variance not accounted for through genome wide association studies. Our results suggest that structural changes in lncRNAs, and lncRNA H19 in particular, affect regulatory processes and represent optimal targets for further in-depth studies probing their molecular interactions.
Collapse
Affiliation(s)
- Leonie Martens
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Frank Rühle
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Anika Witten
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Benjamin Meder
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Department of Cardiology, Heidelberg University, Heidelberg, Germany.,Genome Technology Center Stanford, Department of Genetics, Stanford University, Stanford, United States
| | - Hugo A Katus
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Department of Cardiology, Heidelberg University, Heidelberg, Germany
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen, Germany
| | - Moritz F Sinner
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
| | - Stefan Kääb
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site: Munich Heart Alliance, Munich, Germany
| | - Sabine Pankuweit
- Department of Cardiology, University Hospital Giessen and Marburg, Marburg, Germany
| | - Christiane Angermann
- Comprehensive Heart Failure Center, University Hospital and University of Würzburg, Würzburg, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany.,Department of Biochemistry, Genetic Epidemiology and Statistical Genetics, CARIM School for Cardiovascular Diseases, Maastricht Center for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
33
|
Simonini S, Bemer M, Bencivenga S, Gagliardini V, Pires ND, Desvoyes B, van der Graaff E, Gutierrez C, Grossniklaus U. The Polycomb group protein MEDEA controls cell proliferation and embryonic patterning in Arabidopsis. Dev Cell 2021; 56:1945-1960.e7. [PMID: 34192526 PMCID: PMC8279741 DOI: 10.1016/j.devcel.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Establishing the embryonic body plan of multicellular organisms relies on precisely orchestrated cell divisions coupled with pattern formation, which, in animals, are regulated by Polycomb group (PcG) proteins. The conserved Polycomb Repressive Complex 2 (PRC2) mediates H3K27 trimethylation and comes in different flavors in Arabidopsis. The PRC2 catalytic subunit MEDEA is required for seed development; however, a role for PRC2 in embryonic patterning has been dismissed. Here, we demonstrate that embryos derived from medea eggs abort because MEDEA is required for patterning and cell lineage determination in the early embryo. Similar to PcG proteins in mammals, MEDEA regulates embryonic patterning and growth by controlling cell-cycle progression through repression of CYCD1;1, which encodes a core cell-cycle component. Thus, Arabidopsis embryogenesis is epigenetically regulated by PcG proteins, revealing that the PRC2-dependent modulation of cell-cycle progression was independently recruited to control embryonic cell proliferation and patterning in animals and plants.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Marian Bemer
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Stefano Bencivenga
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Nuno D Pires
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Eric van der Graaff
- BIOSS Centre for Biological Signaling Studies, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Crisanto Gutierrez
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
34
|
Lu J, Ma X, Gao WC, Zhang X, Fu Y, Liu Q, Tian L, Qin XD, Yang W, Zheng HY, Zheng CB. Gastrodin Exerts Cardioprotective Action via Inhibition of Insulin-Like Growth Factor Type 2/Insulin-Like Growth Factor Type 2 Receptor Expression in Cardiac Hypertrophy. ACS OMEGA 2021; 6:16763-16774. [PMID: 34250336 PMCID: PMC8264851 DOI: 10.1021/acsomega.1c00797] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/10/2021] [Indexed: 05/05/2023]
Abstract
Pathological cardiac hypertrophy is commonly associated with an upregulation of fetal genes, fibrosis, cardiac dysfunction, and heart failure. Previous studies have demonstrated that gastrodin (GAS) exerts cardioprotective action in the treatment of cardiac hypertrophy. However, the mechanism by which GAS protects against cardiac hypertrophy is yet to be elucidated. A mouse model of myocardial hypertrophy was established using an angiotensin II (Ang II) induction. GAS (5 or 50 mg/kg/d) was orally administered every day starting 7 days prior to the Ang II infusion combined with sham-operated controls. Heart samples from each group were collected for RNA sequencing. Using bioinformatics analysis, the key differentially expressed genes (DEGs) that are involved in reversing cardiac function were identified. Through bioinformatics analysis, the key DEGs that are involved in GAS's inhibition of Ang II-induced abnormal gene expression within the heart were identified. This was further validated using quantitative real-time PCR and Western blotting in neonatal rat cardiomyocytes (NRCMs). Oral administration of GAS significantly suppressed the Ang II-induced increase in heart size and heart weight to body weight. Furthermore, pretreatment of the NRCMs with GAS led to a dose-dependent inhibition of Ang II-induced increases in Nppb mRNA expression. We identified 620 upregulated and 87 downregulated Ang II-induced DEGs II, among which the expression patterns of 58 and 146 genes were inverted by low-dose and high-dose GAS, respectively. These inverted DEGs were found to be mainly enriched in the biological processes of regulation of Ras protein signal transduction, heart contraction, covalent chromatin modification, glucose metabolism, and positive regulation of cell cycle. Among them, the insulin-like growth factor type 2 (Igf2) gene, which was found to be highly reversed and downregulated by GAS, served as a core gene linking energy metabolism, immune regulation, and systemic development. Subsequent functional verification demonstrated that IGF2, and its receptor IGF2R, is one of the targets of GAS that helps protect against cardiac hypertrophy. Taken together, we have identified, for the first time, IGF2/IGF2R as a potential target influenced by GAS in the prevention of cardiac hypertrophy.
Collapse
Affiliation(s)
- Jun Lu
- Department
of Pharmacology, Guilin Medical University, Guilin 541199, China
| | - Xin Ma
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
- Key
Laboratory of Animal Models and Human Diseases Mechanisms of Chinese
Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Wen-Cong Gao
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
- Key
Laboratory of Animal Models and Human Diseases Mechanisms of Chinese
Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xin Zhang
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Yuanling Fu
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Qian Liu
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
- Key
Laboratory of Animal Models and Human Diseases Mechanisms of Chinese
Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Lixiang Tian
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Xiao-Dan Qin
- Department
of Pharmacology, Guilin Medical University, Guilin 541199, China
| | - Weimin Yang
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Hong-Yi Zheng
- Key
Laboratory of Animal Models and Human Diseases Mechanisms of Chinese
Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Chang-Bo Zheng
- School
of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology
for Natural Products, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
35
|
Mahajan A, Sapehia D, Bagga R, Kaur J. Different dietary combinations of folic acid and vitamin B12 in parental diet results in epigenetic reprogramming of IGF2R and KCNQ1OT1 in placenta and fetal tissues in mice. Mol Reprod Dev 2021; 88:437-458. [PMID: 34008284 DOI: 10.1002/mrd.23477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022]
Abstract
Genomic imprinting is important for mammalian development and its dysregulation can cause various developmental defects and diseases. The study evaluated the effects of different dietary combinations of folic acid and B12 on epigenetic regulation of IGF2R and KCNQ1OT1 ncRNA in C57BL/6 mice model. Female mice were fed diets with nine combinations of folic acid and B12 for 4 weeks. They were mated and off-springs born (F1) were continued on the same diet for 6 weeks postweaning and were allowed to mate. The placenta and fetal (F2) tissues were collected at day 20 of gestation. Dietary deficiency of folate (BNFD and BOFD) and B12 (BDFN) with either state of other vitamin or combined deficiency of both vitamins (BDFD) in comparison to BNFN, were overall responsible for reduced expression of IGF2R in the placenta (F1) and the fetal liver (F2) whereas a combination of folate deficiency with different levels of B12 revealed sex-specific differences in kidney and brain. The alterations in the expression of IGF2R caused by folate-deficient conditions (BNFD and BOFD) and both deficient condition (BDFD) was found to be associated with an increase in suppressive histone modifications. Over-supplementation of either folate or B12 or both vitamins in comparison to BNFN, led to increase in expression of IGF2R and KCNQ1OT1 in the placenta and fetal tissues. The increase in the expression of IGF2R caused by folate over-supplementation (BNFO) was associated with decreased DNA methylation in fetal tissues. KCNQ1OT1 noncoding RNA (ncRNA), however, showed upregulation under deficient conditions of folate and B12 only in female fetal tissues which correlated well with hypomethylation observed under these conditions. An epigenetic reprograming of IGF2R and KCNQ1OT1 ncRNA in the offspring was evident upon different dietary combinations of folic acid and B12 in the mice.
Collapse
Affiliation(s)
- Aatish Mahajan
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divika Sapehia
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rashmi Bagga
- Department of Obstetrics and Gynecology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
36
|
Dini P, Kalbfleisch T, Uribe-Salazar JM, Carossino M, Ali HES, Loux SC, Esteller-Vico A, Norris JK, Anand L, Scoggin KE, Rodriguez Lopez CM, Breen J, Bailey E, Daels P, Ball BA. Parental bias in expression and interaction of genes in the equine placenta. Proc Natl Acad Sci U S A 2021; 118:e2006474118. [PMID: 33853939 PMCID: PMC8072238 DOI: 10.1073/pnas.2006474118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most autosomal genes in the placenta show a biallelic expression pattern. However, some genes exhibit allele-specific transcription depending on the parental origin of the chromosomes on which the copy of the gene resides. Parentally expressed genes are involved in the reciprocal interaction between maternal and paternal genes, coordinating the allocation of resources between fetus and mother. One of the main challenges of studying parental-specific allelic expression (allele-specific expression [ASE]) in the placenta is the maternal cellular remnant at the fetomaternal interface. Horses (Equus caballus) have an epitheliochorial placenta in which both the endometrial epithelium and the epithelium of the chorionic villi are juxtaposed with minimal extension into the uterine mucosa, yet there is no information available on the allelic gene expression of equine chorioallantois (CA). In the current study, we present a dataset of 1,336 genes showing ASE in the equine CA (https://pouya-dini.github.io/equine-gene-db/) along with a workflow for analyzing ASE genes. We further identified 254 potentially imprinted genes among the parentally expressed genes in the equine CA and evaluated the expression pattern of these genes throughout gestation. Our gene ontology analysis implies that maternally expressed genes tend to decrease the length of gestation, while paternally expressed genes extend the length of gestation. This study provides fundamental information regarding parental gene expression during equine pregnancy, a species with a negligible amount of maternal cellular remnant in its placenta. This information will provide the basis for a better understanding of the role of parental gene expression in the placenta during gestation.
Collapse
Affiliation(s)
- Pouya Dini
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Theodore Kalbfleisch
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202
| | - José M Uribe-Salazar
- Department of Biochemistry and Molecular Medicine, Genome Center, Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, CA 95616
| | - Mariano Carossino
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
- Theriogenology Department, Faculty of Veterinary Medicine, University of Mansoura, 35516, Egypt
| | - Shavahn C Loux
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Alejandro Esteller-Vico
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Jamie K Norris
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Lakshay Anand
- Environmental Epigenetics and Genetics Group, Department of Horticulture, University of Kentucky, Lexington, KY 40546
| | - Kirsten E Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Carlos M Rodriguez Lopez
- Environmental Epigenetics and Genetics Group, Department of Horticulture, University of Kentucky, Lexington, KY 40546
| | - James Breen
- South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Ernest Bailey
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Peter Daels
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Barry A Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503;
| |
Collapse
|
37
|
Pauler FM, Hudson QJ, Laukoter S, Hippenmeyer S. Inducible uniparental chromosome disomy to probe genomic imprinting at single-cell level in brain and beyond. Neurochem Int 2021; 145:104986. [PMID: 33600873 DOI: 10.1016/j.neuint.2021.104986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 12/27/2022]
Abstract
Genomic imprinting is an epigenetic mechanism that results in parental allele-specific expression of ~1% of all genes in mouse and human. Imprinted genes are key developmental regulators and play pivotal roles in many biological processes such as nutrient transfer from the mother to offspring and neuronal development. Imprinted genes are also involved in human disease, including neurodevelopmental disorders, and often occur in clusters that are regulated by a common imprint control region (ICR). In extra-embryonic tissues ICRs can act over large distances, with the largest surrounding Igf2r spanning over 10 million base-pairs. Besides classical imprinted expression that shows near exclusive maternal or paternal expression, widespread biased imprinted expression has been identified mainly in brain. In this review we discuss recent developments mapping cell type specific imprinted expression in extra-embryonic tissues and neocortex in the mouse. We highlight the advantages of using an inducible uniparental chromosome disomy (UPD) system to generate cells carrying either two maternal or two paternal copies of a specific chromosome to analyze the functional consequences of genomic imprinting. Mosaic Analysis with Double Markers (MADM) allows fluorescent labeling and concomitant induction of UPD sparsely in specific cell types, and thus to over-express or suppress all imprinted genes on that chromosome. To illustrate the utility of this technique, we explain how MADM-induced UPD revealed new insights about the function of the well-studied Cdkn1c imprinted gene, and how MADM-induced UPDs led to identification of highly cell type specific phenotypes related to perturbed imprinted expression in the mouse neocortex. Finally, we give an outlook on how MADM could be used to probe cell type specific imprinted expression in other tissues in mouse, particularly in extra-embryonic tissues.
Collapse
Affiliation(s)
- Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Quanah J Hudson
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
38
|
Wang C, Plusquin M, Ghantous A, Herceg Z, Alfano R, Cox B, Nawrot TS. DNA methylation of insulin-like growth factor 2 and H19 cluster in cord blood and prenatal air pollution exposure to fine particulate matter. Environ Health 2020; 19:129. [PMID: 33287817 PMCID: PMC7720562 DOI: 10.1186/s12940-020-00677-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/13/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The IGF2 (insulin-like growth factor 2) and H19 gene cluster plays an important role during pregnancy as it promotes both foetal and placental growth. We investigated the association between cord blood DNA methylation status of the IGF2/H19 gene cluster and maternal fine particulate matter exposure during fetal life. To the best of our knowledge, this is the first study investigating the association between prenatal PM2.5 exposure and newborn DNA methylation of the IGF2/H19. METHODS Cord blood DNA methylation status of IGF2/H19 cluster was measured in 189 mother-newborn pairs from the ENVIRONAGE birth cohort (Flanders, Belgium). We assessed the sex-specific association between residential PM2.5 exposure during pregnancy and the methylation level of CpG loci mapping to the IGF2/H19 cluster, and identified prenatal vulnerability by investigating susceptible time windows of exposure. We also addressed the biological functionality of DNA methylation level in the gene cluster. RESULTS Prenatal PM2.5 exposure was found to have genetic region-specific significant association with IGF2 and H19 during specific gestational weeks. The association was found to be sex-specific in both gene regions. Functionality of the DNA methylation was annotated by the association to fetal growth and cellular pathways. CONCLUSIONS The results of our study provided evidence that prenatal PM2.5 exposure is associated with DNA methylation in newborns' IGF2/H19. The consequences within the context of fetal development of future phenotyping should be addressed.
Collapse
Affiliation(s)
- Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, 3590 Diepenbeek, Hasselt, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, 3590 Diepenbeek, Hasselt, Belgium
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, 3590 Diepenbeek, Hasselt, Belgium
| | - Bianca Cox
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, 3590 Diepenbeek, Hasselt, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, 3590 Diepenbeek, Hasselt, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
39
|
Wu YQ, Zhao H, Li YJ, Khederzadeh S, Wei HJ, Zhou ZY, Zhang YP. Genome-wide identification of imprinted genes in pigs and their different imprinting status compared with other mammals. Zool Res 2020; 41:721-725. [PMID: 32808516 PMCID: PMC7671905 DOI: 10.24272/j.issn.2095-8137.2020.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Genomic imprinting often results in parent-of-origin specific differential expression of maternally and paternally inherited alleles and plays an essential role in mammalian development and growth. Mammalian genomic imprinting has primarily been studied in mice and humans, with only limited information available for pigs. To systematically characterize this phenomenon and evaluate imprinting status between different species, we investigated imprinted genes on a genome-wide scale in pig brain tissues. Specifically, we performed bioinformatics analysis of high-throughput sequencing results from parental genomes and offspring transcriptomes of hybrid crosses between Duroc and Diannan small-ear pigs. We identified 11 paternally and five maternally expressed imprinted genes in pigs with highly stringent selection criteria. Additionally, we found that the KCNQ1 and IGF2R genes, which are related to development, displayed a different imprinting status in pigs compared with that in mice and humans. This comprehensive research should help improve our knowledge on genomic imprinting in pigs and highlight the potential use of imprinted genes in the pig breeding field.
Collapse
Affiliation(s)
- Yin-Qiao Wu
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Heng Zhao
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ying-Ju Li
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Hong-Jiang Wei
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Zhong-Yin Zhou
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
40
|
Gurner KH, Truong TT, Harvey AJ, Gardner DK. A combination of growth factors and cytokines alter preimplantation mouse embryo development, foetal development and gene expression profiles. Mol Hum Reprod 2020; 26:953-970. [DOI: 10.1093/molehr/gaaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract
Within the maternal tract, the preimplantation embryo is exposed to an array of growth factors (GFs) and cytokines, most of which are absent from culture media used in clinical IVF. Whilst the addition of individual GFs and cytokines to embryo culture media can improve preimplantation mouse embryo development, there is a lack of evidence on the combined synergistic effects of GFs and cytokines on embryo development and further foetal growth. Therefore, in this study, the effect of a combined group of GFs and cytokines on mouse preimplantation embryo development and subsequent foetal development and gene expression profiles was investigated. Supplementation of embryo culture media with an optimised combination of GFs and cytokines (0.05 ng/ml vascular endothelial GF, 1 ng/ml platelet-derived GF, 0.13 ng/ml insulin-like GF 1, 0.026 ng/ml insulin-like GF 2 and 1 ng/ml granulocyte colony-stimulating factor) had no effect on embryo morphokinetics but significantly increased trophectoderm cell number (P = 0.0002) and total cell number (P = 0.024). Treatment with this combination of GFs and cytokines also significantly increased blastocyst outgrowth area (P < 0.05) and, following embryo transfer, increased foetal weight (P = 0.027), crown-rump length (P = 0.017) and overall morphological development (P = 0.027). RNA-seq analysis of in vitro derived foetuses identified concurrent alterations to the transcriptional profiles of liver and placental tissues compared with those developed in vivo, with greater changes observed in the GF and cytokine treated group. Together these data highlight the importance of balancing the actions of such factors for the regulation of normal development and emphasise the need for further studies investigating this prior to clinical implementation.
Collapse
Affiliation(s)
- Kathryn H Gurner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thi T Truong
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Melbourne IVF, East Melbourne, VIC 3002, Australia
| |
Collapse
|
41
|
Edwards CA, Takahashi N, Corish JA, Ferguson-Smith AC. The origins of genomic imprinting in mammals. Reprod Fertil Dev 2020; 31:1203-1218. [PMID: 30615843 DOI: 10.1071/rd18176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Genomic imprinting is a process that causes genes to be expressed according to their parental origin. Imprinting appears to have evolved gradually in two of the three mammalian subclasses, with no imprinted genes yet identified in prototheria and only six found to be imprinted in marsupials to date. By interrogating the genomes of eutherian suborders, we determine that imprinting evolved at the majority of eutherian specific genes before the eutherian radiation. Theories considering the evolution of imprinting often relate to resource allocation and recently consider maternal-offspring interactions more generally, which, in marsupials, places a greater emphasis on lactation. In eutherians, the imprint memory is retained at least in part by zinc finger protein 57 (ZFP57), a Kruppel associated box (KRAB) zinc finger protein that binds specifically to methylated imprinting control regions. Some imprints are less dependent on ZFP57invivo and it may be no coincidence that these are the imprints that are found in marsupials. Because marsupials lack ZFP57, this suggests another more ancestral protein evolved to regulate imprints in non-eutherian subclasses, and contributes to imprinting control in eutherians. Hence, understanding the mechanisms acting at imprinting control regions across mammals has the potential to provide valuable insights into our understanding of the origins and evolution of genomic imprinting.
Collapse
Affiliation(s)
- Carol A Edwards
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Nozomi Takahashi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Jennifer A Corish
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
42
|
Marañón-Vásquez GA, Vieira AR, de Carvalho Ramos AG, Dantas B, Romano FL, Palma-Dibb RG, Arid J, Carpio K, Nelson-Filho P, de Rossi A, Scariot R, Levy SC, Antunes LAA, Antunes LS, Küchler EC. GHR and IGF2R genes may contribute to normal variations in craniofacial dimensions: Insights from an admixed population. Am J Orthod Dentofacial Orthop 2020; 158:722-730.e16. [PMID: 33008707 DOI: 10.1016/j.ajodo.2019.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/24/2023]
Abstract
INTRODUCTION This study aimed to determine whether single nucleotide polymorphisms in the growth hormone receptor (GHR) and insulin-like growth factor 2 receptor (IGF2R) genes are associated with different craniofacial phenotypes. METHODS A total of 596 orthodontic and 98 orthognathic patients from 4 cities in Brazil were included for analyses. Angular and linear cephalometric measurements were obtained, and phenotype characterizations were performed. Genomic DNA was collected from buccal cells and single nucleotide polymorphisms in GHR (rs2910875, rs2973015, rs1509460) and IGF2R (rs2277071, rs6909681, rs6920141) were genotyped by polymerase chain reactions using TaqMan assay. Genotype-phenotype associations were assessed in the total sample (statistical significance was set at P <8.333 × 10-3) and by a meta-analytic approach implemented to calculate the single effect size measurement for the different cohorts. RESULTS Rare homozygotes for the GHR rs2973015 showed increased measurements for the lower anterior facial height (ANS-Me) and mandibular sagittal lengths (Co-Gn and Go-Pg). In contrast, common homozygotes for the IGF2R rs6920141 presented reduced measurements for these dimensions (ANS-Me and Go-Pg). Furthermore, the less common homozygotes for IGF2R rs2277071 had reduced maxillary sagittal length (Ptm'-A'). The meta-analytical approach replicated the associations of rs2973015 with ANS-Me, rs2277071 with Ptm'-A', and rs6920141 with Go-Pg. CONCLUSIONS Our results provide further evidence that GHR contributes to the determination of mandibular morphology. In addition, we report that IGF2R is a possible gene associated with variations in craniofacial dimensions. Applying meta-analytical approaches to genetic variation data originating from likely underpowered samples may provide additional insight regarding genotype and/or phenotype associations.
Collapse
Affiliation(s)
- Guido Artemio Marañón-Vásquez
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre R Vieira
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pa.
| | | | - Beatriz Dantas
- Amazonian Education Institute, Adrianópolis, Manaus, Amazonas, Brazil
| | - Fábio Lourenço Romano
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Regina Guenka Palma-Dibb
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Arid
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karla Carpio
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andiara de Rossi
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafaela Scariot
- Department of Oral and Maxillofacial Surgery, Federal University of Paraná, and Department of Oral and Maxillofacial Surgery, Positivo University, Curitiba, Paraná, Brazil
| | - Simone Carvalho Levy
- Graduate program, School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lívia Azeredo A Antunes
- Graduate program, School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil, and Department of Specific Formation, School of Dentistry, Fluminense Federal University, Nova Friburgo, Rio de Janeiro, Brazil
| | - Leonardo Santos Antunes
- Department of Specific Formation, School of Denistry, Fluminense Federal University, Nova Friburgo, Rio de Janeiro, Brazil, and Clinical Research Unit, School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Erika C Küchler
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil, and Department of Dentistry, Positivo University, Curitiba, Paraná, Brazil.
| |
Collapse
|
43
|
Lafontaine S, Labrecque R, Palomino JM, Blondin P, Sirard MA. Specific imprinted genes demethylation in association with oocyte donor's age and culture conditions in bovine embryos assessed at day 7 and 12 post insemination. Theriogenology 2020; 158:321-330. [PMID: 33010654 DOI: 10.1016/j.theriogenology.2020.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/24/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022]
Abstract
The production of bovine embryos through in vitro maturation and fertilization is an important tool of the genomic revolution in dairy cattle. Gene expression analysis of these embryos revealed differences according to the culture conditions or oocyte donor's pubertal status compared to in vivo derived embryos. We hypothesized that some of the methylation patterns in oocytes are acquired in the last step of folliculogenesis and could be influenced by the environment created in the follicles containing these oocytes. These altered patterns may not be erased during the first week of embryonic development in culture or may be sensitive to the conditions during that time. To quantify the changes related to culture conditions, an in vivo control group consisting of embryos (Day 12 post fertilization for all groups) obtained from superovulated and artificially inseminated cows was compared to in vitro produced (IVP) embryos cultured with or without Fetal Bovine Serum (FBS). To measure the effect of the oocytes donor's age, we also compared a fourth group consisting of IVP embryos produced with oocytes collected following ovarian stimulation of pre-pubertal animals. Embryonic disk and trophoblast cells were processed separately and the methylation status of ten imprinted genes (H19, MEST, KCNQ1, SNRPN, PEG3, NNAT, GNASXL, IGF2R, PEG10, and PLAGL1) was assessed by pyrosequencing. Next, ten Day 7 blastocysts were produced following the same methodology as for the D12 embryos (four groups) to observe the most interesting genes (KCNQ1, SNRPN, IGF2R and PLAGL1) at an earlier developmental stage. For all samples, we observed overall lower methylation levels and greater variability in the three in vitro groups compared to the in vivo group. The individual embryo analysis indicated that some embryos were deviant from the others and some were not affected. We concluded that IGF2R, SNRPN, and PEG10 were particularly sensitive to culture conditions and the presence of FBS, while KCNQ1 and PLAGL1 were more affected in embryos derived from pre-pubertal donors. This work provides markers at the single imprinted control region (ICR) resolution to assess the culture environment required to minimize epigenetic perturbations in bovine embryos generated by assisted reproduction techniques, thus laying the groundwork for a better comprehension of the complex interplay between in vitro conditions and imprinted genes.
Collapse
Affiliation(s)
- Simon Lafontaine
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animals, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - Rémi Labrecque
- SEMEX Boviteq, 3450 Rue Sicotte, Saint-Hyacinthe, QC J2S, Canada
| | | | - Patrick Blondin
- SEMEX Boviteq, 3450 Rue Sicotte, Saint-Hyacinthe, QC J2S, Canada
| | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animals, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada.
| |
Collapse
|
44
|
Olson LJ, Misra SK, Ishihara M, Battaile KP, Grant OC, Sood A, Woods RJ, Kim JJP, Tiemeyer M, Ren G, Sharp JS, Dahms NM. Allosteric regulation of lysosomal enzyme recognition by the cation-independent mannose 6-phosphate receptor. Commun Biol 2020; 3:498. [PMID: 32908216 PMCID: PMC7481795 DOI: 10.1038/s42003-020-01211-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/11/2020] [Indexed: 01/09/2023] Open
Abstract
The cation-independent mannose 6-phosphate receptor (CI-MPR, IGF2 receptor or CD222), is a multifunctional glycoprotein required for normal development. Through the receptor's ability to bind unrelated extracellular and intracellular ligands, it participates in numerous functions including protein trafficking, lysosomal biogenesis, and regulation of cell growth. Clinically, endogenous CI-MPR delivers infused recombinant enzymes to lysosomes in the treatment of lysosomal storage diseases. Although four of the 15 domains comprising CI-MPR's extracellular region bind phosphorylated glycans on lysosomal enzymes, knowledge of how CI-MPR interacts with ~60 different lysosomal enzymes is limited. Here, we show by electron microscopy and hydroxyl radical protein footprinting that the N-terminal region of CI-MPR undergoes dynamic conformational changes as a consequence of ligand binding and different pH conditions. These data, coupled with X-ray crystallography, surface plasmon resonance and molecular modeling, allow us to propose a model explaining how high-affinity carbohydrate binding is achieved through allosteric domain cooperativity.
Collapse
Affiliation(s)
- Linda J Olson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Sandeep K Misra
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, 38677, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, Argonne, IL, USA
- New York Structural Biology Center, New York City, NY, 10027, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Amika Sood
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jung-Ja P Kim
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joshua S Sharp
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS, 38677, USA
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
45
|
Yu XW, Pandey K, Katzman AC, Alberini CM. A role for CIM6P/IGF2 receptor in memory consolidation and enhancement. eLife 2020; 9:54781. [PMID: 32369018 PMCID: PMC7200152 DOI: 10.7554/elife.54781] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
Cation-independent mannose-6-phosphate receptor, also called insulin-like growth factor two receptor (CIM6P/IGF2R), plays important roles in growth and development, but is also extensively expressed in the mature nervous system, particularly in the hippocampus, where its functions are largely unknown. One of its major ligands, IGF2, is critical for long-term memory formation and strengthening. Using CIM6P/IGF2R inhibition in rats and neuron-specific knockdown in mice, here we show that hippocampal CIM6P/IGF2R is necessary for hippocampus-dependent memory consolidation, but dispensable for learning, memory retrieval, and reconsolidation. CIM6P/IGF2R controls the training-induced upregulation of de novo protein synthesis, including increase of Arc, Egr1, and c-Fos proteins, without affecting their mRNA induction. Hippocampal or systemic administration of mannose-6-phosphate, like IGF2, significantly enhances memory retention and persistence in a CIM6P/IGF2R-dependent manner. Thus, hippocampal CIM6P/IGF2R plays a critical role in memory consolidation by controlling the rate of training-regulated protein metabolism and is also a target mechanism for memory enhancement.
Collapse
Affiliation(s)
- Xiao-Wen Yu
- Center for Neural Science, New York University, New York, United States
| | - Kiran Pandey
- Center for Neural Science, New York University, New York, United States
| | - Aaron C Katzman
- Center for Neural Science, New York University, New York, United States
| | | |
Collapse
|
46
|
Muhammad T, Li M, Wang J, Huang T, Zhao S, Zhao H, Liu H, Chen ZJ. Roles of insulin-like growth factor II in regulating female reproductive physiology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:849-865. [PMID: 32291558 DOI: 10.1007/s11427-019-1646-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
The number of growth factors involved in female fertility has been extensively studied, but reluctance to add essential growth factors in culture media has limited progress in optimizing embryonic growth and implantation outcomes, a situation that has ultimately led to reduced pregnancy outcomes. Insulin-like growth factor II (IGF-II) is the most intricately regulated of all known reproduction-related growth factors characterized to date, and is perhaps the predominant growth factor in human ovarian follicles. This review aims to concisely summarize what is known about the role of IGF-II in follicular development, oocyte maturation, embryonic development, implantation success, placentation, fetal growth, and in reducing placental cell apoptosis, as well as present strategies that use growth factors in culture systems to improve the developmental potential of oocytes and embryos in different species. Synthesizing the present knowledge about the physiological roles of IGF-II in follicular development, oocyte maturation, and early embryonic development should, on the one hand, deepen our overall understanding of the potential beneficial effects of growth factors in female reproduction and on the other hand support development (optimization) of improved outcomes for assisted reproductive technologies.
Collapse
Affiliation(s)
- Tahir Muhammad
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Jianfeng Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China. .,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China. .,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China. .,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200000, China. .,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, China.
| |
Collapse
|
47
|
Campagnolo K, Ledur Ongaratto F, Rodrigues de Freitas C, Peña Bello CA, Rodrigues Willhelm B, de Mattos K, Rigo Rodrigues JL, Bertolini M. In vitro development of IVF-derived bovine embryos following cytoplasmic microinjection for the episomal expression of the IGF2 gene. Reprod Domest Anim 2020; 55:574-583. [PMID: 32056325 DOI: 10.1111/rda.13654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/05/2020] [Indexed: 01/20/2023]
Abstract
Important genomic imprinting changes usually occur following the in vitro production (IVP) of bovine embryos, especially in the imprinting pattern of components of the IGF system. This study aimed to evaluate the effects of a transient episomal overexpression of the IGF2 gene in bovine IVP embryos following embryo cytoplasmic microinjection (CMI) at the 1-cell stage on embryo survival, early and late developmental kinetics and morphological quality up to Day 7 of development. Selected cumulus-oocyte complexes (COCs) were matured and fertilized in vitro and subsequently segregated into six experimental groups: non-CMI control group and five CMI groups at increasing doses (0, 10, 20, 40 and 80 ng/μl) of a GFP vector built for the episomal expression of bovine IGF2. Zygote CMI was effective in delivering the expression vector into the ooplasm, irrespective of the groups, with 58% of positive GFP fluorescence in Day 7 blastocysts. Considering developmental rates and late embryo kinetics, the 10-ng/μl CMI vector dose promoted a lower blastocyst rate (10.4%), but for blastocysts at more advanced stages of development (93.0% blastocysts and expanded blastocysts), and higher number of cells (116.0 ± 3.0) than non-CMI controls (23.3%, 75.0% and 75.0 ± 6.8 were obtained, respectively). In conclusion, CMI at the 1-cell stage did not compromise subsequent in vitro development of surviving embryos, with the 10-ng/μl group demonstrating a possible growth-promoting effect of the IGF2 gene on embryo development, from the 1-cell to the blastocyst stage.
Collapse
Affiliation(s)
- Karine Campagnolo
- School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Ledur Ongaratto
- School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Camilo Andrés Peña Bello
- School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Bruna Rodrigues Willhelm
- School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Karine de Mattos
- School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - José Luiz Rigo Rodrigues
- School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcelo Bertolini
- School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
48
|
Llobat L. Embryo gene expression in pig pregnancy. Reprod Domest Anim 2020; 55:523-529. [PMID: 31986225 DOI: 10.1111/rda.13647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Pregnancy is a complex process in which significant changes occur continually in both the corpora lutea and in the endometrium of the females and varies depending on the embryonic, pre-implantation or foetal stages. In the embryonic stages, the majority of genes expressed in the pig embryo correspond to the loss of cellular pluripotency. In contrast, the implantation consists of three phases: elongation of the conceptus, adhesion and union of the embryo to the endometrial epithelium. During these phases, many factors are expressed, including growth factors, molecules that facilitate adhesion and cytokines. All these changes are ultimately regulated by different lipid and hormonal substances, specifically by progesterone, oestradiol and prostaglandins, which regulate the expression of many proteins necessary for the development of the embryo, endometrial remodelling and embryo-maternal communication. This paper is a review of primary gene regulatory mechanisms in pigs during different stages of implantation.
Collapse
Affiliation(s)
- Lola Llobat
- Grupo Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
49
|
Garrett SM, Hsu E, Thomas JM, Pilewski JM, Feghali-Bostwick C. Insulin-like growth factor (IGF)-II- mediated fibrosis in pathogenic lung conditions. PLoS One 2019; 14:e0225422. [PMID: 31765403 PMCID: PMC6876936 DOI: 10.1371/journal.pone.0225422] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022] Open
Abstract
Type 2 insulin-like growth factor (IGF-II) levels are increased in fibrosing lung diseases such as idiopathic pulmonary fibrosis (IPF) and scleroderma/systemic sclerosis-associated pulmonary fibrosis (SSc). Our goal was to investigate the contribution of IGF receptors to IGF-II-mediated fibrosis in these diseases and identify other potential mechanisms key to the fibrotic process. Cognate receptor gene and protein expression were analyzed with qRT-PCR and immunoblot in primary fibroblasts derived from lung tissues of normal donors (NL) and patients with IPF or SSc. Compared to NL, steady-state receptor gene expression was decreased in SSc but not in IPF. IGF-II stimulation differentially decreased receptor mRNA and protein levels in NL, IPF, and SSc fibroblasts. Neutralizing antibody, siRNA, and receptor inhibition targeting endogenous IGF-II and its primary receptors, type 1 IGF receptor (IGF1R), IGF2R, and insulin receptor (IR) resulted in loss of the IGF-II response. IGF-II tipped the TIMP:MMP balance, promoting a fibrotic environment both intracellularly and extracellularly. Differentiation of fibroblasts into myofibroblasts by IGF-II was blocked with a TGFβ1 receptor inhibitor. IGF-II also increased TGFβ2 and TGFβ3 expression, with subsequent activation of canonical SMAD2/3 signaling. Therefore, IGF-II promoted fibrosis through IGF1R, IR, and IGF1R/IR, differentiated fibroblasts into myofibroblasts, decreased protease production and extracellular matrix degradation, and stimulated expression of two TGFβ isoforms, suggesting that IGF-II exerts pro-fibrotic effects via multiple mechanisms.
Collapse
Affiliation(s)
- Sara M. Garrett
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina, United States of America
| | - Eileen Hsu
- Mid Atlantic Permanente Medical Group, Mclean, Virginia, United States of America
| | - Justin M. Thomas
- Eisenhower Medical Center, Rancho Mirage, California, United States of America
| | - Joseph M. Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carol Feghali-Bostwick
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina (MUSC), Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
50
|
Zhong H, Zhang X, Xu Q, Yan J, Han Z, Zheng H, Xiao J, Tang Z, Wang F, Luo Y, Zhou Y. Nonadditive and Asymmetric Allelic Expression of Growth Hormone in Hybrid Tilapia. Front Genet 2019; 10:961. [PMID: 31681414 PMCID: PMC6803431 DOI: 10.3389/fgene.2019.00961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/09/2019] [Indexed: 12/04/2022] Open
Abstract
Hybridization is a common breeding technique that can improve germplasm through heterosis in aquaculture. However, the regulation of key gene expression, including the details of transcriptional level changes at the beginning of hybridization events, remains largely undefined, especially in teleosts. In this study, by interspecies crossing between two pure lines of Nile tilapia and blue tilapia, we obtained a hybrid tilapia population as a model to elucidate heterosis, and we traced the molecular outcomes of growth hormone (GH) expression and allele-specific expression (ASE) in hybrids. The hybrids display growth vigor compared to their parents in the 120-day growth trial. GH mRNA expression was uniquely expressed in the pituitary. Higher GH expression was found in the hybrid than the midparent value, in both males and females, showing a nonadditive pattern. We identified four single-nucleotide polymorphism sites between Nile tilapia and blue tilapia. Subsequently, by pyrosequencing, we found asymmetric allelic expression in hybrids with higher maternal allelic transcript ratios in both males and females. Fasting significantly increased GH expression in hybrids, but asymmetric allelic expression was not affected by feeding or fasting conditions. Finally, we identified cis and trans effects via overall expression and ASE values in the hybrid, which showed that the cis and trans effects promoted the expression of maternal subgenome in the hybrid, contributing to the expression superiority of GH in hybrid tilapia. Taken together, the results of our study first illustrated the concept of GH expression superiority and its formation mechanism in hybrid fish with growth vigor.
Collapse
Affiliation(s)
- Huan Zhong
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiaojin Zhang
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qian Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Zhuojun Han
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China.,College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huifang Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jun Xiao
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Zhanyang Tang
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Fenghua Wang
- Sports Biochemistry Laboratory, Institute of Physical Education, Xinjiang Normal University, Urumqi, China
| | - Yongju Luo
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yi Zhou
- Tilapia Genetics and Breeding Center, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|