1
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
2
|
Liu Y, Yu R, Shen L, Sun M, Peng Y, Zeng Q, Shen K, Yu X, Wu H, Ye B, Wang Z, Sun Z, Liu D, Sun X, Zhang Z, Dong J, Dong J, Han D, He Z, Hao Y, Wu J, Guo Z. Genomic insights into the modifications of spike morphology traits during wheat breeding. PLANT, CELL & ENVIRONMENT 2024; 47:5470-5482. [PMID: 39205629 DOI: 10.1111/pce.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Over the past century, environmental changes have significantly impacted wheat spike morphology, crucial for adaptation and grain yield. However, the changes in wheat spike modifications during this period remain largely unknown. This study examines 16 spike morphology traits in 830 accessions released from 1900 to 2020. It finds that spike weight, grain number per spike (GN), and thousand kernel weight have significantly increased, while spike length has no significant change. The increase in fertile spikelets is due to fewer degenerated spikelets, resulting in a higher GN. Genome-wide association studies identified 49,994 significant SNPs, grouped into 293 genomic regions. The accumulation of favorable alleles in these genomic regions indicates the genetic basis for modification in spike morphology traits. Genetic network analysis of these genomic regions reveals the genetic basis for phenotypic correlations among spike morphology traits. The haplotypes of the identified genomic regions display obvious geographical differentiation in global accessions and environmental adaptation over the past 120 years. In summary, we reveal the genetic basis of adaptive evolution and the interactions of spike morphology, offering valuable resources for the genetic improvement of spike morphology to enhance environmental adaptation.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rui Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Mengjing Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanchun Peng
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuchang Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - He Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Botao Ye
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiweng Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Danning Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Sun
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Zhiliang Zhang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jiayu Dong
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jing Dong
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, Beijing, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, China
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Tiwari M, Gujar G, Shashank CG, Ponsuksili S. Selection signatures for high altitude adaptation in livestock: A review. Gene 2024; 927:148757. [PMID: 38986751 DOI: 10.1016/j.gene.2024.148757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
High altitude adapted livestock species (cattle, yak, goat, sheep, and horse) has critical role in the human socioeconomic sphere and acts as good source of animal source products including milk, meat, and leather, among other things. These species sustain production and reproduction even in harsh environments on account of adaptation resulting from continued evolution of beneficial traits. Selection pressure leads to various adaptive strategies in livestock whose footprints are evident at the different genomic sites as the "Selection Signature". Scrutiny of these signatures provides us crucial insight into the evolutionary process and domestication of livestock adapted to diverse climatic conditions. These signatures have the potential to change the sphere of animal breeding and further usher the selection programmes in right direction. Technological revolution and recent strides made in genomic studies has opened the routes for the identification of selection signatures. Numerous statistical approaches and bioinformatics tools have been developed to detect the selection signature. Consequently, studies across years have identified candidate genes under selection region found associated with numerous traits which have a say in adaptation to high-altitude environment. This makes it pertinent to have a better understanding about the selection signature, the ways to identify and how to utilize them for betterment of livestock populations as well as farmers. This review takes a closer look into the general concept, various methodologies, and bioinformatics tools commonly employed in selection signature studies and summarize the results of recent selection signature studies related to high-altitude adaptation in various livestock species. This review will serve as an informative and useful insight for researchers and students in the field of animal breeding and evolutionary biology.
Collapse
Affiliation(s)
- Manish Tiwari
- ICAR-National Dairy Research Institute, Karnal, India; U.P. Pt. Deen Dayal Upadhyaya Veterinary Science University and Cattle Research Institute, Mathura, India.
| | | | - C G Shashank
- ICAR-National Dairy Research Institute, Karnal, India
| | | |
Collapse
|
4
|
Huang Y, Makkumrai W, Fu J, Deng C, Wu Q, Wang S, Wang L, Wu X, Gao J, Chen C, Guo L, Chen P, Wu F, Deng X, Wang X, Xu Q. Genomic analysis provides insights into the origin and divergence of fruit flavor and flesh color of pummelo. THE NEW PHYTOLOGIST 2024. [PMID: 39526460 DOI: 10.1111/nph.20223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Pummelo (Citrus maxima) is one of the most important citrus crops and have genetically contributed sweet orange, lemon and most citrus cultivars. It has been cultivated for c. 4000 years in China and is also distributed in many Southeast Asian countries. Nevertheless, the origin and dispersal of pummelo remain elusive. We conducted whole-genome sequencing for 290 pummelo accessions from China and Southeast Asia (SEA). Our findings indicated that pummelo was originated in Yunnan province. The divergence of the China-SEA accessions occurred c. 2000 years ago and the divergence was likely facilitated through the Maritime Silk Road. We detected the divergence of genomic regions associated with fruit flavor and color, indicating different selection by human activities in different regions. A gene encoding lycopene cyclase 2 (LCYB2) exhibited a high degree of divergence in expression and sequence between red-flesh and white-flesh pummelos. A SNP in the coding region of LCYB2 resulted in a reduction in lycopene β-cyclizing enzyme activity, leading to the accumulation of lycopene and the development of the red-flesh trait. This study reveals the origin and evolutionary history of pummelo and provides insights into the genomic basis for the divergence of fruit flavor and color.
Collapse
Affiliation(s)
- Yue Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Warangkana Makkumrai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Agriculture, Horticultural Research Institute, Ladyao, Chatuchak, Bangkok, 10900, Thailand
| | - Jialing Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chongling Deng
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Qingjiang Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaohua Wang
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Lun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoxiao Wu
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Junyan Gao
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Chuanwu Chen
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Lina Guo
- Tropical and Subtropical Cash Crops Research Institute, Yunnan Academy of Agricultural Sciences, Baoshan, 678000, China
| | - Peng Chen
- Institute of Horticultural Research, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Fangfang Wu
- Science and Technology Innovation Research Center of Majia Pummelo, Guangfeng, Shangrao, 334000, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
5
|
Greenway R, De-Kayne R, Brown AP, Camarillo H, Delich C, McGowan KL, Nelson J, Arias-Rodriguez L, Kelley JL, Tobler M. Integrative analyses of convergent adaptation in sympatric extremophile fishes. Curr Biol 2024; 34:4968-4982.e7. [PMID: 39395416 DOI: 10.1016/j.cub.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
The evolution of independent lineages along replicated environmental transitions frequently results in convergent adaptation, yet the degree to which convergence is present across multiple levels of biological organization is often unclear. Additionally, inherent biases associated with shared ancestry and variation in selective regimes across geographic replicates often pose challenges for confidently identifying patterns of convergence. We investigated a system in which three species of poeciliid fishes sympatrically occur in a toxic spring rich in hydrogen sulfide (H2S) and an adjacent nonsulfidic stream to examine patterns of adaptive evolution across levels of biological organization. We found convergence in morphological and physiological traits and genome-wide patterns of gene expression among all three species. In addition, there were shared signatures of selection on genes encoding H2S toxicity targets in the mitochondrial genomes of each species. However, analyses of nuclear genomes revealed neither evidence for substantial genomic islands of divergence around genes involved in H2S toxicity and detoxification nor substantial congruence of strongly differentiated regions across population pairs. These non-convergent, heterogeneous patterns of genomic divergence may indicate that sulfide tolerance is highly polygenic, with shared allele frequency shifts present at many loci with small effects along the genome. Alternatively, H2S tolerance may involve substantial genetic redundancy, with non-convergent, lineage-specific variation at multiple loci along the genome underpinning similar changes in phenotypes and gene expression. Overall, we demonstrate variability in the extent of convergence across organizational levels and highlight the challenges of linking patterns of convergence across scales.
Collapse
Affiliation(s)
- Ryan Greenway
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Rishi De-Kayne
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anthony P Brown
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Henry Camarillo
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Cassandra Delich
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Kerry L McGowan
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Joel Nelson
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Lenin Arias-Rodriguez
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carretera Villahermosa-Cárdenas Km. 0.5 S/N, Entronque a Bosques de Saloya, 86150 Villahermosa, Tabasco, Mexico
| | - Joanna L Kelley
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Michael Tobler
- University of Missouri, St. Louis, Department of Biology, 1 University Boulevard, St. Louis, MO 63121, USA; University of Missouri, St. Louis, Whitney R. Harris World Ecology Center, 1 University Boulevard, St. Louis, MO 63121, USA; Saint Louis Zoo, WildCare Institute, 1 Government Drive, St. Louis, MO 63110, USA.
| |
Collapse
|
6
|
Uttam V, Vohra V, Chhotaray S, Santhosh A, Diwakar V, Patel V, Gahlyan RK. Exome-wide comparative analyses revealed differentiating genomic regions for performance traits in Indian native buffaloes. Anim Biotechnol 2024; 35:2277376. [PMID: 37934017 DOI: 10.1080/10495398.2023.2277376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In India, 20 breeds of buffalo have been identified and registered, yet limited studies have been conducted to explore the performance potential of these breeds, especially in the Indian native breeds. This study is a maiden attempt to delineate the important variants and unique genes through exome sequencing for milk yield, milk composition, fertility, and adaptation traits in Indian local breeds of buffalo. In the present study, whole exome sequencing was performed on Chhattisgarhi (n = 3), Chilika (n = 4), Gojri (n = 3), and Murrah (n = 4) buffalo breeds and after stringent quality control, 4333, 6829, 4130, and 4854 InDels were revealed, respectively. Exome-wide FST along 100-kb sliding windows detected 27, 98, 38, and 35 outlier windows in Chhattisgarhi, Chilika, Gojri, and Murrah, respectively. The comparative exome analysis of InDels and subsequent gene ontology revealed unique breed specific genes for milk yield (CAMSAP3), milk composition (CLCN1, NUDT3), fertility (PTGER3) and adaptation (KCNA3, TH) traits. Study provides insight into mechanism of how these breeds have evolved under natural selection, the impact of these events on their respective genomes, and their importance in maintaining purity of these breeds for the traits under study. Additionally, this result will underwrite to the genetic acquaintance of these breeds for breeding application, and in understanding of evolution of these Indian local breeds.
Collapse
Affiliation(s)
- Vishakha Uttam
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Vohra
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Supriya Chhotaray
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Ameya Santhosh
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Diwakar
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vaibhav Patel
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rajesh Kumar Gahlyan
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
7
|
Wang T, Ma X, Ma C, Wu X, ZhaXi T, Yin L, Li W, Li Y, Liang C, Yan P. Whole genome resequencing-based analysis of plateau adaptation in Meiren yak ( Bos grunniens). Anim Biotechnol 2024; 35:2298406. [PMID: 38193808 DOI: 10.1080/10495398.2023.2298406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The Meiren yak is an important genetic resource in Gansu Province, China. In this study, we aimed to explore the evolutionary history and population structure of the genetic resource of Meiren yak and to mine the characteristic genes of Meiren yak. We analysed a total of 93 yaks of eight yak breeds based on whole genome resequencing combined with population genomics and used θπ ratio and Fst method to screen the selected sites in the genome region. The results proved that Meiren yak can be used as a potential genetic resource in Gansu Province. The genes in Meiren yak with positive selection in selection signal analysis were subjected to the Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses, which indicated that the genes were related to the adaptability to high altitude and hypoxic environment. By analysing the genetic variation of Meiren yak at the genome-wide level, this study provided a theoretical basis for genetic improvement of Meiren yak and for the development of high-quality yak resources.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Life science and Engineering College, Northwest Minzu University, Lanzhou, China
| | - XiaoMing Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - ChaoFan Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Life science and Engineering College, Northwest Minzu University, Lanzhou, China
| | - XiaoYun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ta ZhaXi
- Qilian County Veterinary Animal Husbandry Station, Qinghai, China
| | - LiXin Yin
- Huazhi Biotech Co. Ltd, Changsha, China
| | - WeiGuo Li
- Huazhi Biotech Co. Ltd, Changsha, China
| | - YuFei Li
- Huazhi Biotech Co. Ltd, Changsha, China
| | - ChunNian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| |
Collapse
|
8
|
Li Q, Qiao X, Li L, Gu C, Yin H, Qi K, Xie Z, Yang S, Zhao Q, Wang Z, Yang Y, Pan J, Li H, Wang J, Wang C, Rieseberg LH, Zhang S, Tao S. Haplotype-resolved T2T genome assemblies and pangenome graph of pear reveal diverse patterns of allele-specific expression and the genomic basis of fruit quality traits. PLANT COMMUNICATIONS 2024; 5:101000. [PMID: 38859586 DOI: 10.1016/j.xplc.2024.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Hybrid crops often exhibit increased yield and greater resilience, yet the genomic mechanism(s) underlying hybrid vigor or heterosis remain unclear, hindering our ability to predict the expression of phenotypic traits in hybrid breeding. Here, we generated haplotype-resolved T2T genome assemblies of two pear hybrid varieties, 'Yuluxiang' (YLX) and 'Hongxiangsu' (HXS), which share the same maternal parent but differ in their paternal parents. We then used these assemblies to explore the genome-scale landscape of allele-specific expression (ASE) and create a pangenome graph for pear. ASE was observed for close to 6000 genes in both hybrid cultivars. A subset of ASE genes related to aspects of fruit quality such as sugars, organic acids, and cuticular wax were identified, suggesting their important contributions to heterosis. Specifically, Ma1, a gene regulating fruit acidity, is absent in the paternal haplotypes of HXS and YLX. A pangenome graph was built based on our assemblies and seven published pear genomes. Resequencing data for 139 cultivated pear genotypes (including 97 genotypes sequenced here) were subsequently aligned to the pangenome graph, revealing numerous structural variant hotspots and selective sweeps during pear diversification. As predicted, the Ma1 allele was found to be absent in varieties with low organic acid content, and this association was functionally validated by Ma1 overexpression in pear fruit and calli. Overall, these results reveal the contributions of ASE to fruit-quality heterosis and provide a robust pangenome reference for high-resolution allele discovery and association mapping.
Collapse
Affiliation(s)
- Qionghou Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xin Qiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lanqing Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chao Gu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hao Yin
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaijie Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhihua Xie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sheng Yang
- Pomology Institute, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qifeng Zhao
- Pomology Institute, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zewen Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuhang Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiahui Pan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hongxiang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chao Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Shaoling Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shutian Tao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
9
|
Zou Y, Yang W, Zhang R, Xu X. Signatures of local adaptation and maladaptation to future climate in wild Zizania latifolia. Commun Biol 2024; 7:1313. [PMID: 39396070 PMCID: PMC11470956 DOI: 10.1038/s42003-024-07036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024] Open
Abstract
Global climate change poses challenges to agricultural production and food security. Assessing the adaptive capacity of crop wild relatives to future climate is important for protecting key germplasm resources and breeding new crops. We performed population genomics, genotype-environment association analyses, and genomic offset assessment of Chinese wild rice, Zizania latifolia, a crop wild relative and potential new grain crop, based on 168 individuals from 42 populations. We found two genetic lineages in Z. latifolia, corresponding to the south and north of its range, that diverged during the Late Pleistocene. We also identified lineage-specific positively selected genes associated with flower development and flowering, seed shattering, pathogen defense response and cold tolerance. We further found that populations from southeastern China are the most maladapted to future climate and should be prioritized for conservation. Our findings provide important clues for leveraging existing genetic diversity to identify important germplasm resources and create climate-resilient crops.
Collapse
Affiliation(s)
- Yang Zou
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weidong Yang
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruxue Zhang
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinwei Xu
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Yang Y, Gan M, Liu C, Xie Z, Wang M, Zhou C, Cheng W, Chen L, Zhang S, Zhao Y, Niu L, Wang Y, Wang J, Shen L, Zhu L. Analysis of genetic evolutionary differences among four Tibetan pig populations in China. Genomics 2024; 116:110950. [PMID: 39393592 DOI: 10.1016/j.ygeno.2024.110950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Tibetan pigs are a locally bred domestic pig breed originating from the Tibetan Plateau in China. They can be categorized into four distinct groups based on their geographical locations: Sichuan Tibetan pigs, Tibetan pigs from Tibet, Yunnan Tibetan pigs, and Gansu Tibetan pigs. This study aimed to explore population diversity, genetic structure and selection signals among Tibetan pigs in four Chinese national nature reserves. The results show that there is different observed heterozygosity among Tibetan pig populations (0.1957-0.1978). Ratio of runs of homozygosity (Froh) calculation of four Tibetan pig populations by runs of homozygosity (ROH) revealed the presence of inbreeding within the population (0.0336-0.0378). Analysis of the genetic structure demonstrated distinct population stratification among the four Tibetan pig populations, with each showing relatively independent evolutionary directions. Furthermore, Five methods (FST, Piratio, ROD, Tajima's D, XP-CLR) were used to artificially select evolutionary trajectories. The results mainly involved processes such as DNA repair, immune regulation, muscle fat deposition and adaptation to hypoxia. In conclusion, this study enhances our understanding of the genetic characteristics of Tibetan pig populations and provides a theoretical reference for the conservation of resources across different populations of Tibetan pigs.
Collapse
Affiliation(s)
- Yiting Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengming Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongwei Xie
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengpeng Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenqiang Cheng
- National Animal Husbandry Service, Beijing 100125, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
11
|
Zhao S, Chi L, Fu M, Chen H. HaploSweep: Detecting and Distinguishing Recent Soft and Hard Selective Sweeps through Haplotype Structure. Mol Biol Evol 2024; 41:msae192. [PMID: 39288167 PMCID: PMC11452351 DOI: 10.1093/molbev/msae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/29/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Identifying soft selective sweeps using genomic data is a challenging yet crucial task in population genetics. In this study, we present HaploSweep, a novel method for detecting and categorizing soft and hard selective sweeps based on haplotype structure. Through simulations spanning a broad range of selection intensities, softness levels, and demographic histories, we demonstrate that HaploSweep outperforms iHS, nSL, and H12 in detecting soft sweeps. HaploSweep achieves high classification accuracy-0.9247 for CHB, 0.9484 for CEU, and 0.9829 YRI-when applied to simulations in line with the human Out-of-Africa demographic model. We also observe that the classification accuracy remains consistently robust across different demographic models. Additionally, we introduce a refined method to accurately distinguish soft shoulders adjacent to hard sweeps from soft sweeps. Application of HaploSweep to genomic data of CHB, CEU, and YRI populations from the 1000 genomes project has led to the discovery of several new genes that bear strong evidence of population-specific soft sweeps (HRNR, AMBRA1, CBFA2T2, DYNC2H1, and RANBP2 etc.), with prevalent associations to immune functions and metabolic processes. The validated performance of HaploSweep, demonstrated through both simulated and real data, underscores its potential as a valuable tool for detecting and comprehending the role of soft sweeps in adaptive evolution.
Collapse
Affiliation(s)
- Shilei Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianjiang Chi
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mincong Fu
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
12
|
Benjelloun B, Leempoel K, Boyer F, Stucki S, Streeter I, Orozco-terWengel P, Alberto FJ, Servin B, Biscarini F, Alberti A, Engelen S, Stella A, Colli L, Coissac E, Bruford MW, Ajmone-Marsan P, Negrini R, Clarke L, Flicek P, Chikhi A, Joost S, Taberlet P, Pompanon F. Multiple genomic solutions for local adaptation in two closely related species (sheep and goats) facing the same climatic constraints. Mol Ecol 2024; 33:e17257. [PMID: 38149334 DOI: 10.1111/mec.17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/18/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
The question of how local adaptation takes place remains a fundamental question in evolutionary biology. The variation of allele frequencies in genes under selection over environmental gradients remains mainly theoretical and its empirical assessment would help understanding how adaptation happens over environmental clines. To bring new insights to this issue we set up a broad framework which aimed to compare the adaptive trajectories over environmental clines in two domesticated mammal species co-distributed in diversified landscapes. We sequenced the genomes of 160 sheep and 161 goats extensively managed along environmental gradients, including temperature, rainfall, seasonality and altitude, to identify genes and biological processes shaping local adaptation. Allele frequencies at putatively adaptive loci were rarely found to vary gradually along environmental gradients, but rather displayed a discontinuous shift at the extremities of environmental clines. Of the 430 candidate adaptive genes identified, only 6 were orthologous between sheep and goats and those responded differently to environmental pressures, suggesting different putative mechanisms involved in local adaptation in these two closely related species. Interestingly, the genomes of the 2 species were impacted differently by the environment, genes related to signatures of selection were most related to altitude, slope and rainfall seasonality for sheep, and summer temperature and spring rainfall for goats. The diversity of candidate adaptive pathways may result from a high number of biological functions involved in the adaptations to multiple eco-climatic gradients, and a differential role of climatic drivers on the two species, despite their co-distribution along the same environmental gradients. This study describes empirical examples of clinal variation in putatively adaptive alleles with different patterns in allele frequency distributions over continuous environmental gradients, thus showing the diversity of genetic responses in adaptive landscapes and opening new horizons for understanding genomics of adaptation in mammalian species and beyond.
Collapse
Affiliation(s)
- Badr Benjelloun
- Livestock Genomics Laboratory, Regional Center of Agricultural Research Tadla, National Institute of Agricultural Research INRA, Rabat, Morocco
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Kevin Leempoel
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Frédéric Boyer
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Sylvie Stucki
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Wales, UK
- Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Florian J Alberto
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, Castanet-Tolosan, France
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stefan Engelen
- Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- BioDNA - Centro di Ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Eric Coissac
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Wales, UK
- Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Paolo Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- BioDNA - Centro di Ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Riccardo Negrini
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- AIA Associazione Italiana Allevatori, Roma, Italy
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Abdelkader Chikhi
- Livestock Genomics Laboratory, Regional Center of Agricultural Research Tadla, National Institute of Agricultural Research INRA, Rabat, Morocco
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Taberlet
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - François Pompanon
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
13
|
Akbari A, Barton AR, Gazal S, Li Z, Kariminejad M, Perry A, Zeng Y, Mittnik A, Patterson N, Mah M, Zhou X, Price AL, Lander ES, Pinhasi R, Rohland N, Mallick S, Reich D. Pervasive findings of directional selection realize the promise of ancient DNA to elucidate human adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613021. [PMID: 39314480 PMCID: PMC11419161 DOI: 10.1101/2024.09.14.613021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
We present a method for detecting evidence of natural selection in ancient DNA time-series data that leverages an opportunity not utilized in previous scans: testing for a consistent trend in allele frequency change over time. By applying this to 8433 West Eurasians who lived over the past 14000 years and 6510 contemporary people, we find an order of magnitude more genome-wide significant signals than previous studies: 347 independent loci with >99% probability of selection. Previous work showed that classic hard sweeps driving advantageous mutations to fixation have been rare over the broad span of human evolution, but in the last ten millennia, many hundreds of alleles have been affected by strong directional selection. Discoveries include an increase from ~0% to ~20% in 4000 years for the major risk factor for celiac disease at HLA-DQB1; a rise from ~0% to ~8% in 6000 years of blood type B; and fluctuating selection at the TYK2 tuberculosis risk allele rising from ~2% to ~9% from ~5500 to ~3000 years ago before dropping to ~3%. We identify instances of coordinated selection on alleles affecting the same trait, with the polygenic score today predictive of body fat percentage decreasing by around a standard deviation over ten millennia, consistent with the "Thrifty Gene" hypothesis that a genetic predisposition to store energy during food scarcity became disadvantageous after farming. We also identify selection for combinations of alleles that are today associated with lighter skin color, lower risk for schizophrenia and bipolar disease, slower health decline, and increased measures related to cognitive performance (scores on intelligence tests, household income, and years of schooling). These traits are measured in modern industrialized societies, so what phenotypes were adaptive in the past is unclear. We estimate selection coefficients at 9.9 million variants, enabling study of how Darwinian forces couple to allelic effects and shape the genetic architecture of complex traits.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alison R Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Zheng Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Annabel Perry
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yating Zeng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alissa Mittnik
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ron Pinhasi
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Li X, Chen X, Fang J, Feng X, Zhang X, Lin H, Chen W, Zhang N, He H, Huang Z, Xue X, Li Y, Fan L, Lai R, Huo Z, Cui M, Deng G, Zaid C, Su Y, Zhang J, Cai W, Qi Y. Whole-genome sequencing of a worldwide collection of sugarcane cultivars (Saccharum spp.) reveals the genetic basis of cultivar improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2151-2167. [PMID: 38852163 DOI: 10.1111/tpj.16861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
Sugarcane is the main source of sugar worldwide, and 80% of the sucrose production comes from sugarcane. However, the genetic differentiation and basis of agronomic traits remain obscure. Here, we sequenced the whole-genome of 219 elite worldwide sugarcane cultivar accessions. A total of approximately 6 million high-quality genome-wide single nucleotide polymorphisms (SNPs) were detected. A genome-wide association study identified a total of 2198 SNPs that were significantly associated with sucrose content, stalk number, plant height, stalk diameter, cane yield, and sugar yield. We observed homozygous tendency of favor alleles of these loci, and over 80% of cultivar accessions carried the favor alleles of the SNPs or haplotypes associated with sucrose content. Gene introgression analysis showed that the number of chromosome segments from Saccharum spontaneum decreased with the breeding time of cultivars, while those from S. officinarum increased in recent cultivars. A series of selection signatures were identified in sugarcane improvement procession, of which 104 were simultaneously associated with agronomic traits and 45 of them were mainly associated with sucrose content. We further proposed that as per sugarcane transgenic experiments, ShN/AINV3.1 plays a positive role in increasing stalk number, plant height, and stalk diameter. These findings provide comprehensive resources for understanding the genetic basis of agronomic traits and will be beneficial to germplasm innovation, screening molecular markers, and future sugarcane cultivar improvement.
Collapse
Affiliation(s)
- Xuhui Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Xinglong Chen
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Junteng Fang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Xiaomin Feng
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Xiangbo Zhang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Huanzhang Lin
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Weiwei Chen
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Nannan Zhang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Huiyi He
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Zhenghui Huang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Xiaoming Xue
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Yucong Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Lina Fan
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Ruiqiang Lai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Zhenye Huo
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Mingyang Cui
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Guangyan Deng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Chachar Zaid
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Yueping Su
- Zhanjiang Academy of Agricultural Sciences, Zhanjiang, Guangdong, 524094, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, China
| | - Weijun Cai
- Zhanjiang Academy of Agricultural Sciences, Zhanjiang, Guangdong, 524094, China
| | - Yongwen Qi
- Institute of Nanfan and Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
15
|
Cho Y, Kim JY, Kim SK, Kim SY, Kim N, Lee J, Park JL. Whole-genome sequencing analysis of soybean diversity across different countries and selection signature of Korean soybean accession. G3 (BETHESDA, MD.) 2024; 14:jkae118. [PMID: 38833595 PMCID: PMC11304964 DOI: 10.1093/g3journal/jkae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Soybean is an important agricultural crop known for its high protein and oil content, contributing to essential nutritional and health benefits for humans. Domesticated in China over 5,000 years ago, soybean has since adapted to diverse environments and spread worldwide. This study aimed to investigate the genomic characteristics and population structures of 2,317 publicly available soybean whole-genome sequences from diverse geographical regions, including China, Korea, Japan, Europe, North America, and South America. We used large-scale whole-genome sequencing data to perform high-resolution analyses to reveal the genetic characteristics of soybean accessions. Soybean accessions from China and Korea exhibited landrace characteristics, indicating higher genetic diversity and adaptation to local environments. On the other hand, soybean accessions from Japan, the European Union, and South America were found to have low genetic diversity due to artificial selection and breeding for agronomic traits. We also identified key variants and genes associated with the ability to adapt to different environments. In Korean soybean accessions, we observed strong selection signals for isoflavone synthesis, an adaptive trait critical for improving soybean adaptability, survival, and reproductive success by mitigating environmental stress. Identifying specific genomic regions showing unique patterns of selective sweeps for genes such as HIDH, CYP73A11, IFS1, and CYP81E11 associated with isoflavone synthesis provided valuable insights into potential adaptation mechanisms. Our research has significantly improved our understanding of soybean diversity at the genetic level. We have identified key genetic variants and genes influencing adaptability, laying the foundation for future advances in genomics-based breeding programs and crop improvement efforts.
Collapse
Affiliation(s)
- Youngbeom Cho
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jae-Yoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seon-Kyu Kim
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seon-Young Kim
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jinhyuk Lee
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jong-Lyul Park
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Zhao L, Yuan L, Li F, Zhang X, Tian H, Ma Z, Zhang D, Zhang Y, Zhao Y, Huang K, Li X, Cheng J, Xu D, Yang X, Han K, Weng X, Wang W. Whole-genome resequencing of Hu sheep identifies candidate genes associated with agronomic traits. J Genet Genomics 2024; 51:866-876. [PMID: 38582298 DOI: 10.1016/j.jgg.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
The phenotypic diversity resulting from artificial or natural selection of sheep has made a significant contribution to human civilization. Hu sheep are a local sheep breed unique to China with high reproductive rates and rapid growth. Genomic selection signatures have been widely used to investigate the genetic mechanisms underlying phenotypic variation in livestock. Here, we conduct whole-genome sequencing of 207 Hu sheep and compare them with the wild ancestors of domestic sheep (Asiatic mouflon) to investigate the genetic characteristics and selection signatures of Hu sheep. Based on six signatures of selection approaches, we detect genomic regions containing genes related to reproduction (BMPR1B, BMP2, PGFS, CYP19, CAMK4, GGT5, and GNAQ), vision (ALDH1A2, SAG, and PDE6B), nervous system (NAV1), and immune response (GPR35, SH2B2, PIK3R3, and HRAS). Association analysis with a population of 1299 Hu sheep reveals that those missense mutations in the GPR35 (GPR35 g.952651 A>G; GPR35 g.952496 C>T) and NAV1 (NAV1 g.84216190 C>T; NAV1 g.84227412 G>A) genes are significantly associated (P < 0.05) with immune and growth traits in Hu sheep, respectively. This research offers unique insights into the selection characteristics of Hu sheep and facilitates further genetic improvement and molecular investigations.
Collapse
Affiliation(s)
- Liming Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Huibin Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Deyin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Yukun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Yuan Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Kai Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaolong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Jiangbo Cheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Dan Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaobin Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Kunchao Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiuxiu Weng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Weimin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China.
| |
Collapse
|
17
|
Zhao J, Mu Y, Gong P, Liu B, Zhang F, Zhu L, Shi C, Lv X, Luo J. Whole-genome resequencing of native and imported dairy goat identifies genes associated with productivity and immunity. Front Vet Sci 2024; 11:1409282. [PMID: 39040818 PMCID: PMC11260678 DOI: 10.3389/fvets.2024.1409282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 07/24/2024] Open
Abstract
Understanding the differences in genetic variation between local Chinese dairy goat breeds and imported breeds can help germplasm innovation and molecular breeding. However, the research is limited in this area. In this study, whole-genome resequencing data from 134 individuals of both local and imported dairy goat breeds were analyzed, and their differences in genomic genetic variation, genetic diversity, and population structure were subsequently identified. We also screened candidate genes associated with important traits of dairy goats such as milk production (STK3, GHR, PRELID3B), reproduction (ATP5E), growth and development (CTSZ, GHR), and immune function (CTSZ, NELFCD). Furthermore, we examined allele frequency distributions for the genes of interest and found significant differences between the two populations. This study provides valuable resources for the study of genetic diversity in dairy goats and lays the foundation for the selective breeding of dairy goats in the future.
Collapse
Affiliation(s)
- Jianqing Zhao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yuanpan Mu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Baolong Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Fuhong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lu Zhu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chenbo Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xuefeng Lv
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
18
|
Li T, Wang Y, Zhang Z, Ji C, Zheng N, Huang Y. A comparative analysis reveals the genomic diversity among 8 Muscovy duck populations. G3 (BETHESDA, MD.) 2024; 14:jkae112. [PMID: 38789099 PMCID: PMC11228869 DOI: 10.1093/g3journal/jkae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/05/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The Muscovy duck (Cairina moschata) is a waterfowl indigenous to the neotropical regions of Central and South America. It has low demand for concentrated feed and strong adaptability to different rearing conditions. After introduced to China through Eurasian commercial trade, Muscovy ducks have a domestication history of around 300 years in the Fujian Province of China. In the 1990s, the commodity Muscovy duck breed "Crimo," cultivated in Europe, entered the Chinese market for consumption and breeding purposes. Due to the different selective breeding processes, Muscovy ducks have various populational traits and lack transparency of their genetic background. To remove this burden in the Muscovy duck breeding process, we analyzed genomic data from 8 populations totaling 83 individuals. We identify 11.24 million single nucleotide polymorphisms (SNPs) and categorized these individuals into the Fujian-bred and the Crimo populations according to phylogenetic analyses. We then delved deeper into their evolutionary relationships through assessing population structure, calculating fixation index (FST) values, and measuring genetic distances. Our exploration of runs of homozygosity (ROHs) and homozygous-by-descent (HBD) uncovered genomic regions enriched for genes implicated in fatty acid metabolism, development, and immunity pathways. Selective sweep analyses further indicated strong selective pressures exerted on genes including TECR, STAT2, and TRAF5. These findings provide insights into genetic variations of Muscovy ducks, thus offering valuable information regarding genetic diversity, population conservation, and genome associated with the breeding of Muscovy ducks.
Collapse
Affiliation(s)
- Te Li
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Yiming Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Zhou Zhang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Congliang Ji
- Technology Department (Research Institute) Livestock and Poultry Breeding Research Office, Wens Foodstuff Group Co. Ltd, Huineng North Road, Xincheng Town, Xinxing County, Yunfu City, Guangdong Province 527400, China
| | - Nengzhu Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yinhua Huang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| |
Collapse
|
19
|
Li C, Chen B, Langda S, Pu P, Zhu X, Zhou S, Kalds P, Zhang K, Bhati M, Leonard A, Huang S, Li R, Cuoji A, Wang X, Zhu H, Wu Y, Cuomu R, Gui B, Li M, Wang Y, Li Y, Fang W, Jia T, Pu T, Pan X, Cai Y, He C, Wang L, Jiang Y, Han JL, Chen Y, Zhou P, Pausch H, Wang X. Multi-omic Analyses Shed Light on The Genetic Control of High-altitude Adaptation in Sheep. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae030. [PMID: 39142817 DOI: 10.1093/gpbjnl/qzae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/09/2024] [Accepted: 02/29/2024] [Indexed: 08/16/2024]
Abstract
Sheep were domesticated in the Fertile Crescent and then spread globally, where they have been encountering various environmental conditions. The Tibetan sheep has adapted to high altitudes on the Qinghai-Tibet Plateau over the past 3000 years. To explore genomic variants associated with high-altitude adaptation in Tibetan sheep, we analyzed Illumina short-reads of 994 whole genomes representing ∼ 60 sheep breeds/populations at varied altitudes, PacBio High fidelity (HiFi) reads of 13 breeds, and 96 transcriptomes from 12 sheep organs. Association testing between the inhabited altitudes and 34,298,967 variants was conducted to investigate the genetic architecture of altitude adaptation. Highly accurate HiFi reads were used to complement the current ovine reference assembly at the most significantly associated β-globin locus and to validate the presence of two haplotypes A and B among 13 sheep breeds. The haplotype A carried two homologous gene clusters: (1) HBE1, HBE2, HBB-like, and HBBC, and (2) HBE1-like, HBE2-like, HBB-like, and HBB; while the haplotype B lacked the first cluster. The high-altitude sheep showed highly frequent or nearly fixed haplotype A, while the low-altitude sheep dominated by haplotype B. We further demonstrated that sheep with haplotype A had an increased hemoglobin-O2 affinity compared with those carrying haplotype B. Another highly associated genomic region contained the EGLN1 gene which showed varied expression between high-altitude and low-altitude sheep. Our results provide evidence that the rapid adaptive evolution of advantageous alleles play an important role in facilitating the environmental adaptation of Tibetan sheep.
Collapse
Affiliation(s)
- Chao Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Animal Genomics, ETH Zürich, Zürich 8092, Switzerland
| | - Bingchun Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Suo Langda
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Peng Pu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaojia Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Shiwei Zhou
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Peter Kalds
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ke Zhang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Meenu Bhati
- Animal Genomics, ETH Zürich, Zürich 8092, Switzerland
| | | | - Shuhong Huang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ran Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Awang Cuoji
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Xiran Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Haolin Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yujiang Wu
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Renqin Cuomu
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Ba Gui
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Ming Li
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Yutao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
| | - Yan Li
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wenwen Fang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100044, China
| | - Tianchun Pu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100044, China
| | - Xiangyu Pan
- Department of Medical Research, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yudong Cai
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chong He
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs/Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, College of Information Engineering, Northwest A&F University, Yangling 712100, China
| | - Liming Wang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Yu Jiang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Livestock Genetics Program, International Livestock Research Institute, Nairobi 00100, Kenya
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ping Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Hubert Pausch
- Animal Genomics, ETH Zürich, Zürich 8092, Switzerland
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
20
|
Tian R, Zhang Y, Kang H, Zhang F, Jin Z, Wang J, Zhang P, Zhou X, Lanyon JM, Sneath HL, Woolford L, Fan G, Li S, Seim I. Sirenian genomes illuminate the evolution of fully aquatic species within the mammalian superorder afrotheria. Nat Commun 2024; 15:5568. [PMID: 38956050 PMCID: PMC11219930 DOI: 10.1038/s41467-024-49769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Sirenians of the superorder Afrotheria were the first mammals to transition from land to water and are the only herbivorous marine mammals. Here, we generated a chromosome-level dugong (Dugong dugon) genome. A comparison of our assembly with other afrotherian genomes reveals possible molecular adaptations to aquatic life by sirenians, including a shift in daily activity patterns (circadian clock) and tolerance to a high-iodine plant diet mediated through changes in the iodide transporter NIS (SLC5A5) and its co-transporters. Functional in vitro assays confirm that sirenian amino acid substitutions alter the properties of the circadian clock protein PER2 and NIS. Sirenians show evidence of convergent regression of integumentary system (skin and its appendages) genes with cetaceans. Our analysis also uncovers gene losses that may be maladaptive in a modern environment, including a candidate gene (KCNK18) for sirenian cold stress syndrome likely lost during their evolutionary shift in daily activity patterns. Genomes from nine Australian locations and the functionally extinct Okinawan population confirm and date a genetic break ~10.7 thousand years ago on the Australian east coast and provide evidence of an associated ecotype, and highlight the need for whole-genome resequencing data from dugong populations worldwide for conservation and genetic management.
Collapse
Affiliation(s)
- Ran Tian
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Yaolei Zhang
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
- Qingdao Key Laboratory of Marine Genomics BGI Research, Qingdao, 266555, China
| | - Hui Kang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
- The Innovation Research Center for Aquatic Mammals, and Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fan Zhang
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Zhihong Jin
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Jiahao Wang
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Janet M Lanyon
- School of the Environment, The University of Queensland, Lucia, 4072, Australia
| | - Helen L Sneath
- School of the Environment, The University of Queensland, Lucia, 4072, Australia
| | - Lucy Woolford
- School of Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Qingdao Key Laboratory of Marine Genomics BGI Research, Qingdao, 266555, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China.
| | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
- The Innovation Research Center for Aquatic Mammals, and Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Inge Seim
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China.
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
21
|
Qi L, Xiao L, Fu R, Nie Q, Zhang X, Luo W. Genetic characteristics and selection signatures between Southern Chinese local and commercial chickens. Poult Sci 2024; 103:103863. [PMID: 38810566 PMCID: PMC11166977 DOI: 10.1016/j.psj.2024.103863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
The introduction of exotic breeds and the cultivation of new lines by breeding companies have posed challenges to native chickens in South China, including loss of breed characteristics, decreased genetic diversity, and declining purity. Understanding the population genetic structure and genetic diversity of native chickens in South China is crucial for further advancements in breeding efforts. In this study, we analyzed the population genetic structure and genetic diversity of 321 individuals from 10 different breeds in South China. By comparing commercial chickens with native ones, we identified selection signatures occurring between local chickens and commercial breeds. The analysis of population genetic structure revealed that the native chicken populations in South China exhibited a considerable level of genetic diversity. Moreover, the commercial lines of Xiaobai chicken and Huangma chicken displayed even higher levels of genetic diversity, which distinguished them from other native varieties at the clustering level. However, certain individuals within these commercial varieties showed a discernible genetic relationship with the native populations. Notably, both commercial varieties also retained a significant degree of genetic similarity to their respective native counterparts. In order to investigate the genomic changes occurring during the commercialization of native chickens, we employed 4 methods (Fst, ROD, XPCLR, and XPEHH) to identify potential candidate regions displaying selective signatures in Southern Chinese native chicken population. A total of 168 (identified by Fst and ROD) and 86 (identified by XPCLR and XPEHH) overlapping genes were discovered. Functional annotation analysis revealed that these genes may be associated with reproduction and growth (SAMSN1, HYLS1, ROBO3, FGF14, PRSS23), musculoskeletal development (DNER, MYBPC1, DGKB, ORC1, KLF10), disease resistance and environmental adaptability (PUS3, CRB2, CALD1, USP15, SGCD, LTBP1), as well as egg production (ADGRB3, ACSF3). Overall, native chickens in South China harbor numerous selective sweep regions compared to commercial chickens, enriching valuable genomic resources for future genetic research and breeding conservation.
Collapse
Affiliation(s)
- Lin Qi
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou Guangzhou 510642, China
| | - Liangchao Xiao
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou Guangzhou 510642, China
| | - Rong Fu
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou Guangzhou 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou Guangzhou 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, 510642, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou Guangzhou 510642, China.
| |
Collapse
|
22
|
Pu Y, Pu S, Chen Y, Kong Q, Liu X, Zhao Q, Xu K, Liu J, Li M, Xu X, Qiao X, Su B, Chen J, Yang Z. Weakened tanning ability is an important mechanism for evolutionary skin lightening in East Asians. J Genet Genomics 2024; 51:703-713. [PMID: 38461943 DOI: 10.1016/j.jgg.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
The evolution of light-skin pigmentation among Eurasians is considered as an adaptation to the high-latitude environments. East Asians are ideal populations for studying skin color evolution because of the complex environment of East Asia. Here, we report a strong selection signal for the pigmentation gene phenylalanine hydroxylase (PAH) in light-skinned Han Chinese individuals. The intron mutation rs10778203 in PAH is enriched in East Asians and is significantly associated with skin color of the back of the hand in Han Chinese males (P < 0.05). In vitro luciferase and transcription factor binding assays show that the ancestral allele of rs10778203 could bind to SMAD2 and has a significant enhancer activity for PAH. However, the derived T allele (the major allele in East Asians) of rs10778203 decreases the binding activity of transcription factors and enhancer activity. Meanwhile, the derived T allele of rs10778203 shows a weaker ultraviolet radiation response in A375 cells and zebrafish embryos. Furthermore, rs10778203 decreases melanin production in transgenic zebrafish embryos after ultraviolet B (UVB) treatment. Collectively, PAH is a potential pigmentation gene that regulates skin tanning ability. Natural selection has enriched the adaptive allele, resulting in weakened tanning ability in East Asians, suggesting a unique genetic mechanism for evolutionary skin lightening in East Asians.
Collapse
Affiliation(s)
- Youwei Pu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyu Pu
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanyan Chen
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qinghong Kong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xuyang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qi Zhao
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ke Xu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jiuming Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengyuan Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoyu Xu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoyang Qiao
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jing Chen
- Department of Pediatric Surgery and Laboratory of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhaohui Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
23
|
Xin X, Li P, Zhao X, Yu Y, Wang W, Jin G, Wang J, Sun L, Zhang D, Zhang F, Yu S, Su T. Temperature-dependent jumonji demethylase modulates flowering time by targeting H3K36me2/3 in Brassica rapa. Nat Commun 2024; 15:5470. [PMID: 38937441 PMCID: PMC11211497 DOI: 10.1038/s41467-024-49721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Global warming has a severe impact on the flowering time and yield of crops. Histone modifications have been well-documented for their roles in enabling plant plasticity in ambient temperature. However, the factor modulating histone modifications and their involvement in habitat adaptation have remained elusive. In this study, through genome-wide pattern analysis and quantitative-trait-locus (QTL) mapping, we reveal that BrJMJ18 is a candidate gene for a QTL regulating thermotolerance in thermotolerant B. rapa subsp. chinensis var. parachinensis (or Caixin, abbreviated to Par). BrJMJ18 encodes an H3K36me2/3 Jumonji demethylase that remodels H3K36 methylation across the genome. We demonstrate that the BrJMJ18 allele from Par (BrJMJ18Par) influences flowering time and plant growth in a temperature-dependent manner via characterizing overexpression and CRISPR/Cas9 mutant plants. We further show that overexpression of BrJMJ18Par can modulate the expression of BrFLC3, one of the five BrFLC orthologs. Furthermore, ChIP-seq and transcriptome data reveal that BrJMJ18Par can regulate chlorophyll biosynthesis under high temperatures. We also demonstrate that three amino acid mutations may account for function differences in BrJMJ18 between subspecies. Based on these findings, we propose a working model in which an H3K36me2/3 demethylase, while not affecting agronomic traits under normal conditions, can enhance resilience under heat stress in Brassica rapa.
Collapse
Affiliation(s)
- Xiaoyun Xin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Peirong Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Xiuyun Zhao
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Yangjun Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Weihong Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Guihua Jin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Jiao Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Liling Sun
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Deshuang Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China
| | - Fenglan Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| | - Shuancang Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| | - Tongbing Su
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China.
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China.
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing, China.
| |
Collapse
|
24
|
Geng FD, Liu MQ, Zhang XD, Wang LZ, Lei MF. Genomics of hybrid parallel origin in Aquilegia ecalcarata. BMC Ecol Evol 2024; 24:75. [PMID: 38844857 PMCID: PMC11155106 DOI: 10.1186/s12862-024-02266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The parallel evolution of similar traits or species provides strong evidence for the role of natural selection in evolution. Traits or species that evolved repeatedly can be driven by separate de novo mutations or interspecific gene flow. Although parallel evolution has been reported in many studies, documented cases of parallel evolution caused by gene flow are scarce by comparison. Aquilegia ecalcarata and A. kansuensis belong to the genus of Aquilegia, and are the closest related sister species. Mutiple origins of A. ecalcarata have been reported in previous studies, but whether they have been driven by separate de novo mutations or gene flow remains unclear. RESULTS In this study, We conducted genomic analysis from 158 individuals of two repeatedly evolving pairs of A. ecalcarata and A. kansuensis. All samples were divided into two distinct clades with obvious geographical distribution based on phylogeny and population structure. Demographic modeling revealed that the origin of the A. ecalcarata in the Eastern of China was caused by gene flow, and the Eastern A. ecalcarata occurred following introgression from Western A. ecalcarata population. Analysis of Treemix and D-statistic also revealed that a strong signal of gene flow was detected from Western A. ecalcarata to Eastern A. ecalcarata. Genetic divergence and selective sweep analyses inferred parallel regions of genomic divergence and identified many candidate genes associated with ecologically adaptive divergence between species pair. Comparative analysis of parallel diverged regions and gene introgression confirms that gene flow contributed to the parallel evolution of A. ecalcarata. CONCLUSIONS Our results further confirmed the multiple origins of A. ecalcarata and highlighted the roles of gene flow. These findings provide new evidence for parallel origin after hybridization as well as insights into the ecological adaptation mechanisms underlying the parallel origins of species.
Collapse
Affiliation(s)
- Fang-Dong Geng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China.
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Miao-Qing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xue-Dong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Lu-Zhen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Meng-Fan Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
25
|
Lyu Y, Yao T, Chen Z, Huangfu R, Cheng H, Ma W, Qi X, Li F, Chen N, Lei C. Genomic characterization of dryland adaptation in endangered Anxi cattle in China. Anim Genet 2024; 55:352-361. [PMID: 38436096 DOI: 10.1111/age.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Local species exhibit distinctive indigenous characteristics while showing unique productive and phenotypic traits. However, the advent of commercialization has posed a substantial threat to the survival of indigenous species. Anxi cattle, an endangered native breed in China, have evolved unique growth and reproductive characteristics in extreme desert and semidesert ecosystems. In this study, we conducted a genomic comparison of 10 Anxi cattle genomes with those of five other global populations/breeds to assess genetic diversity and identify candidate genomic regions in Anxi cattle. Population structure and genetic diversity analyses revealed that Anxi cattle are part of the East Asian cattle clade, exhibiting higher genetic diversity than commercial breeds. Through selective sweep analysis, we identified specific genetic variations linked to the environmental adaptability of Anxi cattle. Notably, we identified several candidate genes, including CERS3 involved in regulating skin permeability and antimicrobial functions, RBFOX2 associated with cardiac development, SLC16A7 participated in the regulation of pancreatic endocrine function, and SPATA3 related to reproduction. Our findings revealed the distinctive genomic features of Anxi cattle in dryland environments, provided invaluable insights for further research and breed preservation, and had important significance for enriching the domestic cattle breeding gene bank.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tingting Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhefu Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ruiyao Huangfu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijian Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Weidong Ma
- Shaanxi Province Agriculture & Husbandry Breeding Farm, Fufeng, China
| | - Xingshan Qi
- Animal Huabandry Bureau in Biyang County, Biyang, Henan, China
| | - Fuqiang Li
- Hunan Tianhua Industrial Corporation Ltd., Lianyuan, Hunan, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
26
|
Wang Y, Gou Y, Yuan R, Zou Q, Zhang X, Zheng T, Fei K, Shi R, Zhang M, Li Y, Gong Z, Luo C, Xiong Y, Shan D, Wei C, Shen L, Tang G, Li M, Zhu L, Li X, Jiang Y. A chromosome-level genome of Chenghua pig provides new insights into the domestication and local adaptation of pigs. Int J Biol Macromol 2024; 270:131796. [PMID: 38677688 DOI: 10.1016/j.ijbiomac.2024.131796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
As a country with abundant genetic resources of pigs, the domestication history of pigs in China and the adaptive evolution of Chinese pig breeds at different latitudes have rarely been elucidated at the genome-wide level. To fill this gap, we first assembled a high-quality chromosome-level genome of the Chenghua pig and used it as a benchmark to analyse the genomes of 272 samples from three genera of three continents. The divergence of the three species belonging to three genera, Phacochoerus africanus, Potamochoerus porcus, and Sus scrofa, was assessed. The introgression of pig breeds redefined that the migration routes were basically from southern China to central and southwestern China, then spread to eastern China, arrived in northern China, and finally reached Europe. The domestication of pigs in China occurred ∼12,000 years ago, earlier than the available Chinese archaeological domestication evidence. In addition, FBN1 and NR6A1 were identified in our study as candidate genes related to extreme skin thickness differences in Eurasian pig breeds and adaptive evolution at different latitudes in Chinese pig breeds, respectively. Our study provides a new resource for the pig genomic pool and refines our understanding of pig genetic diversity, domestication, migration, and adaptive evolution at different latitudes.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yuwei Gou
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Rong Yuan
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, Sichuan 610081, China
| | - Qin Zou
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Xukun Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Ting Zheng
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Kaixin Fei
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Rui Shi
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Mei Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Yujing Li
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Zhengyin Gong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Chenggang Luo
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu, Sichuan 610081, China
| | - Ying Xiong
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Dai Shan
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Chenyang Wei
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China.
| |
Collapse
|
27
|
Zhao J, Xu Y, Li H, An W, Yin Y, Wang B, Wang L, Wang B, Duan L, Ren X, Liang X, Wang Y, Wan R, Huang T, Zhang B, Li Y, Luo J, Cao Y. Metabolite-based genome-wide association studies enable the dissection of the genetic bases of flavonoids, betaine and spermidine in wolfberry (Lycium). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1435-1452. [PMID: 38194521 PMCID: PMC11123438 DOI: 10.1111/pbi.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Wolfberry is a plant with medicinal and food values. However, its bioactive ingredients and the corresponding genetic bases have not been determined. Here, we de novo generated a chromosome-level genome assembly for wolfberry, yielding a genome sequence of ~1.77 Gb with contig N50 of 50.55 Mb and 39 224 predicted gene models. A variation map, using 307 re-sequenced accessions, was called based on this genome assembly. Furthermore, the fruit metabolome of these accessions was profiled using 563 annotated metabolites, which separated Lycium barbarum L. and non-L. barbarum L. The flavonoids, coumarins, alkaloids and nicotinic acid contents were higher in the former than in the latter. A metabolite-based genome-wide association study mapped 156 164 significant single nucleotide polymorphisms corresponding to 340 metabolites. This included 19 219 unique lead single nucleotide polymorphisms in 1517 significant association loci, of which three metabolites, flavonoids, betaine and spermidine, were highlighted. Two candidate genes, LbUGT (evm.TU.chr07.2692) and LbCHS (evm.TU.chr07.2738), with non-synonymous mutations, were associated with the flavonoids content. LbCHS is a structural gene that interacts with a nearby MYB transcription factor (evm.TU.chr07.2726) both in L. barbarum and L. ruthenicum. Thus, these three genes might be involved in the biosynthesis/metabolism of flavonoids. LbSSADH (evm.TU.chr09.627) was identified as possibly participating in betaine biosynthesis/metabolism. Four lycibarbarspermidines (E-G and O) were identified, and only the lycibarbarspermidines O content was higher in L. barbarum varieties than in non-L. barbarum varieties. The evm.TU.chr07.2680 gene associated with lycibarbarspermidines O was annotated as an acetyl-CoA-benzylalcohol acetyltransferase, suggesting that it is a candidate gene for spermidine biosynthesis. These results provide novel insights into the specific metabolite profile of non-L. barbarum L. and the genetic bases of flavonoids, betaine and spermidine biosynthesis/metabolism.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd.UrumchiChina
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Wei An
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yue Yin
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bin Wang
- Wuhan Matware Biotechnology Co., Ltd.WuhanChina
| | - Liping Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Bi Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Linyuan Duan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaoyue Ren
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yajun Wang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ru Wan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ting Huang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bo Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yanlong Li
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Jie Luo
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Youlong Cao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| |
Collapse
|
28
|
Zhang MY, Cao RD, Chen Y, Ma JC, Shi CM, Zhang YF, Zhang JX, Zhang YH. Genomic and Phenotypic Adaptations of Rattus tanezumi to Cold Limit Its Further Northward Expansion and Range Overlap with R. norvegicus. Mol Biol Evol 2024; 41:msae106. [PMID: 38829799 PMCID: PMC11184353 DOI: 10.1093/molbev/msae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
Global climate change has led to shifts in the distribution ranges of many terrestrial species, promoting their migration from lower altitudes or latitudes to higher ones. Meanwhile, successful invaders have developed genetic adaptations enabling the colonization of new environments. Over the past 40 years, Rattus tanezumi (RT) has expanded into northern China (Northwest and North China) from its southern origins. We studied the cold adaptation of RT and its potential for northward expansion by comparing it with sympatric Rattus norvegicus (RN), which is well adapted to cold regions. Through population genomic analysis, we revealed that the invading RT rats have split into three distinct populations: the North, Northwest, and Tibetan populations. The first two populations exhibited high genetic diversity, while the latter population showed remarkably low genetic diversity. These rats have developed various genetic adaptations to cold, arid, hypoxic, and high-UV conditions. Cold acclimation tests revealed divergent thermoregulation between RT and RN. Specifically, RT exhibited higher brown adipose tissue activity and metabolic rates than did RN. Transcriptome analysis highlighted changes in genes regulating triglyceride catabolic processes in RT, including Apoa1 and Apoa4, which were upregulated, under selection and associated with local adaptation. In contrast, RN showed changes in carbohydrate metabolism genes. Despite the cold adaptation of RT, we observed genotypic and phenotypic constraints that may limit its ability to cope with severe low temperatures farther north. Consequently, it is less likely that RT rats will invade and overlap with RN rats in farther northern regions.
Collapse
Affiliation(s)
- Ming-Yu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Dong Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Cang Ma
- Zhangye Maize Stock Production Base, Zhangye 734024, Gansu, China
| | - Cheng-Min Shi
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yun-Feng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao-Hua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| |
Collapse
|
29
|
Xu WQ, Ren CQ, Zhang XY, Comes HP, Liu XH, Li YG, Kettle CJ, Jalonen R, Gaisberger H, Ma YZ, Qiu YX. Genome sequences and population genomics reveal climatic adaptation and genomic divergence between two closely related sweetgum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1372-1387. [PMID: 38343032 DOI: 10.1111/tpj.16675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 05/31/2024]
Abstract
Understanding the genetic basis of population divergence and adaptation is an important goal in population genetics and evolutionary biology. However, the relative roles of demographic history, gene flow, and/or selective regime in driving genomic divergence, climatic adaptation, and speciation in non-model tree species are not yet fully understood. To address this issue, we generated whole-genome resequencing data of Liquidambar formosana and L. acalycina, which are broadly sympatric but altitudinally segregated in the Tertiary relict forests of subtropical China. We integrated genomic and environmental data to investigate the demographic history, genomic divergence, and climatic adaptation of these two sister species. We inferred a scenario of allopatric species divergence during the late Miocene, followed by secondary contact during the Holocene. We identified multiple genomic islands of elevated divergence that mainly evolved through divergence hitchhiking and recombination rate variation, likely fostered by long-term refugial isolation and recent differential introgression in low-recombination genomic regions. We also found some candidate genes with divergent selection signatures potentially involved in climatic adaptation and reproductive isolation. Our results contribute to a better understanding of how late Tertiary/Quaternary climatic change influenced speciation, genomic divergence, climatic adaptation, and introgressive hybridization in East Asia's Tertiary relict flora. In addition, they should facilitate future evolutionary, conservation genomics, and molecular breeding studies in Liquidambar, a genus of important medicinal and ornamental values.
Collapse
Affiliation(s)
- Wu-Qin Xu
- Systematic & Evolutionary Botany and Biodiversity Group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Chao-Qian Ren
- Systematic & Evolutionary Botany and Biodiversity Group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Xin-Yi Zhang
- Systematic & Evolutionary Botany and Biodiversity Group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hans-Peter Comes
- Department of Environment & Biodiversity, Salzburg University, Salzburg, Austria
| | - Xin-Hong Liu
- Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | - Yin-Gang Li
- Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | | | - Riina Jalonen
- Bioversity International, Regional Office for Asia, Penang, Malaysia
| | | | - Ya-Zhen Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Ying-Xiong Qiu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
30
|
Lin R, Li H, Lin W, Yang F, Bao X, Pan C, Lai L, Lin W. Whole-genome selection signature differences between Chaohu and Ji'an red ducks. BMC Genomics 2024; 25:522. [PMID: 38802792 PMCID: PMC11131323 DOI: 10.1186/s12864-024-10339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Assessing the genetic structure of local varieties and understanding their genetic data are crucial for effective management and preservation. However, the genetic differences among local breeds require further explanation. To enhance our understanding of their population structure and genetic diversity, we conducted a genome-wide comparative study of Chaohu and Ji'an Red ducks using genome sequence and restriction site-associated DNA sequencing technology. Our analysis revealed a distinct genetic distinction between the two breeds, leading to divided groups. The phylogenetic tree for Chaohu duck displayed two branches, potentially indicating minimal impact from artificial selection. Additionally, our ROH (runs of homozygosity) analysis revealed that Chaohu ducks had a lower average inbreeding coefficient than Ji'an Red ducks. We identified several genomic regions with high genetic similarity in these indigenous duck breeds. By conducting a selective sweep analysis, we identified 574 candidate genes associated with muscle growth (BMP2, ITGA8, MYLK, and PTCH1), fat deposits (ELOVL1 and HACD2), and pigmentation (ASIP and LOC101797494). These results offer valuable insights for the further enhancement and conservation of Chinese indigenous duck breeds.
Collapse
Affiliation(s)
- Ruiyi Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Huihuang Li
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Weilong Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Fan Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Xinguo Bao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Chengfu Pan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Lianjie Lai
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Weimin Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
31
|
Ji G, Long Y, Cai G, Wang A, Yan G, Li H, Gao G, Xu K, Huang Q, Chen B, Li L, Li F, Nishio T, Shen J, Wu X. A new chromosome-scale genome of wild Brassica oleracea provides insights into the domestication of Brassica crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2882-2899. [PMID: 38421062 DOI: 10.1093/jxb/erae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
The cultivated diploid Brassica oleracea is an important vegetable crop, but the genetic basis of its domestication remains largely unclear in the absence of high-quality reference genomes of wild B. oleracea. Here, we report the first chromosome-level assembly of the wild Brassica oleracea L. W03 genome (total genome size, 630.7 Mb; scaffold N50, 64.6 Mb). Using the newly assembled W03 genome, we constructed a gene-based B. oleracea pangenome and identified 29 744 core genes, 23 306 dispensable genes, and 1896 private genes. We re-sequenced 53 accessions, representing six potential wild B. oleracea progenitor species. The results of the population genomic analysis showed that the wild B. oleracea populations had the highest level of diversity and represents the most closely related population to modern-day horticultural B. oleracea. In addition, the WUSCHEL gene was found to play a decisive role in domestication and to be involved in cauliflower and broccoli curd formation. We also illustrate the loss of disease-resistance genes during selection for domestication. Our results provide new insights into the domestication of B. oleracea and will facilitate the future genetic improvement of Brassica crops.
Collapse
Affiliation(s)
- Gaoxiang Ji
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ying Long
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Guangqin Cai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Aihua Wang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan,China
| | - Guixin Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hao Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Guizhen Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Kun Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qian Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Biyun Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lixia Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Feng Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Takeshi Nishio
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-0845, Japan
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
32
|
Xu S, Chen S, Cai J, Yan T, Tu M, Wang R, Hua S, Jiang L. Genomic and transcriptome analyses reveal potential contributors to erucic acid biosynthesis in seeds of rapeseed (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:129. [PMID: 38740615 DOI: 10.1007/s00122-024-04642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
KEY MESSAGE Through comprehensive genomic and transcriptomic analyses, we identified a set of 23 genes that act up- or downstream of erucic acid content (EAC) production in rapeseed seeds. We selected example genes to showcase the distribution of single nucleotide polymorphisms, haplotypes associated with EAC phenotypes, and the creation of molecular markers differentiating low EAC and high EAC genotypes. Erucic acid content (EAC) is a crucial trait in rapeseed, with low LEAC oil recognized for its health benefits and high EA oil holding industrial value. Despite its significance, the genomic consequences of intensive LEAC-cultivar selection and the genetic basis underlying EA regulation remain largely unexplored. To address this knowledge gap, we conducted selective signal analyses, genome-wide association studies (GWAS), and transcriptome analyses. Our investigation unveiled the genetic footprints resulting from LEAC selection in germplasm populations, drawing attention to specific loci that contribute to enriching diversity. By integrating GWAS and transcriptome analyses, we identified a set of 23 genes that play a significant role in determining EAC in seeds or are downstream consequences of EA-level alterations. These genes have emerged as promising candidates for elucidating the potential mechanisms governing EAC in rapeseed. To exemplify the findings, we selected specific genes to demonstrate the distribution of single nucleotide polymorphisms and haplotypes associated with different EAC phenotypes. Additionally, we showcased to develop molecular markers distinguishing between LEAC and high EAC genotypes.
Collapse
Affiliation(s)
- Shiqi Xu
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Shan Chen
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Jialing Cai
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Tao Yan
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Mengxin Tu
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Ruisen Wang
- Jaixing Academy of Agricultural Sciences, Jiaxing, 314000, China
| | - Shuijin Hua
- Zhejiang Academy of Agricultural Sciences, Desheng Zhong Road 298, Hangzhou, 310022, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
33
|
Chen S, Gao S, Wang D, Liu J, Ren Y, Wang Z, Wei X, Wang Q, Huang X. FKF1b controls reproductive transition associated with adaptation to geographical distribution in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:943-955. [PMID: 38501459 DOI: 10.1111/jipb.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Maize (Zea mays subspecies mays) is an important commercial crop across the world, and its flowering time is closely related to grain yield, plant cycle and latitude adaptation. FKF1 is an essential clock-regulated blue-light receptor with distinct functions on flowering time in plants, and its function in maize remains unclear. In this study, we identified two FKF1 homologs in the maize genome, named ZmFKF1a and ZmFKF1b, and indicated that ZmFKF1a and ZmFKF1b independently regulate reproductive transition through interacting with ZmCONZ1 and ZmGI1 to increase the transcription levels of ZmCONZ1 and ZCN8. We demonstrated that ZmFKF1b underwent artificial selection during modern breeding in China probably due to its role in geographical adaptation. Furthermore, our data suggested that ZmFKF1bHap_C7 may be an elite allele, which increases the abundance of ZmCONZ1 mRNA more efficiently and adapt to a wider range of temperature zone than that of ZmFKF1bHap_Z58 to promote maize floral transition. It extends our understanding of the genetic diversity of maize flowering. This allele is expected to be introduced into tropical maize germplasm to enrich breeding resources and may improve the adaptability of maize at different climate zones, especially at temperate region.
Collapse
Affiliation(s)
- Suhui Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shan Gao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Dongyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jie Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yingying Ren
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhihan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qin Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
34
|
Asadollahpour Nanaei H, Amiri Ghanatsaman Z, Farahvashi MA, Mousavi SF, Banabazi MH, Asadi Fozi M. High-throughput DNA sequence analysis elucidates novel insight into the genetic basis of adaptation in local sheep. Trop Anim Health Prod 2024; 56:150. [PMID: 38691202 DOI: 10.1007/s11250-024-04002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Understanding how evolutionary factors related to climate adaptation and human selection have influenced the genetic architecture of domesticated animals is of great interest in biology. In the current study, by using 304 whole genomes from different geographical regions (including Europe, north Africa, Southwest Asia, east Asia, west Africa, south Asia, east Africa, Australia and Turkey), We evaluate global sheep population dynamics in terms of genetic variation and population structure. We further conducted comparative population analysis to study the genetic underpinnings of climate adaption to local environments and also morphological traits. In order to identify genomic signals under selection, we applied fixation index (FST) and also nucleotide diversity (θπ) statistical measurements. Our results revealed several candidate genes on different chromosomes under selection for local climate adaptation (e.g. HOXC12, HOXC13, IRF1, FGD2 and GNAQ), body size (PDGFA, HMGA2, PDE3A) and also morphological related traits (RXFP2). The discovered candidate genes may offer newel insights into genetic underpinning of regional adaptation and commercially significant features in local sheep.
Collapse
Affiliation(s)
- Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran.
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
| | - Zeinab Amiri Ghanatsaman
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Mohammad Ali Farahvashi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran
| | - Seyedeh Fatemeh Mousavi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Mohammad Hossein Banabazi
- Department of Biotechnology, Animal Science Research Institute of IRAN (ASRI) Agricultural Research, Education & Extension Organization (AREEO), 3146618361, Karaj, Iran
- Department of Animal Biosciences (HBIO), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden
| | - Masood Asadi Fozi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran.
| |
Collapse
|
35
|
Wu X, Hu Z, Zhang Y, Li M, Liao N, Dong J, Wang B, Wu J, Wu X, Wang Y, Wang J, Lu Z, Yang Y, Sun Y, Dong W, Zhang M, Li G. Differential selection of yield and quality traits has shaped genomic signatures of cowpea domestication and improvement. Nat Genet 2024; 56:992-1005. [PMID: 38649710 DOI: 10.1038/s41588-024-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Cowpeas (tropical legumes) are important in ensuring food and nutritional security in developing countries, especially in sub-Saharan Africa. Herein, we report two high-quality genome assemblies of grain and vegetable cowpeas and we re-sequenced 344 accessions to characterize the genomic variations landscape. We identified 39 loci for ten important agronomic traits and more than 541 potential loci that underwent selection during cowpea domestication and improvement. In particular, the synchronous selections of the pod-shattering loci and their neighboring stress-relevant loci probably led to the enhancement of pod-shattering resistance and the compromise of stress resistance during the domestication from grain to vegetable cowpeas. Moreover, differential selections on multiple loci associated with pod length, grain number per pod, seed weight, pod and seed soluble sugars, and seed crude proteins shaped the yield and quality diversity in cowpeas. Our findings provide genomic insights into cowpea domestication and improvement footprints, enabling further genome-informed cultivar improvement of cowpeas.
Collapse
Affiliation(s)
- Xinyi Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Zhongyuan Hu
- Laboratory of Vegetable Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Yan Zhang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| | - Mao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Nanqiao Liao
- Laboratory of Vegetable Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Junyang Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Baogen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Xiaohua Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Ying Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Jian Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Zhongfu Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Yi Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China
| | - Yuyan Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Wenqi Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China
| | - Mingfang Zhang
- Laboratory of Vegetable Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China.
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, P. R. China.
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou, P. R. China.
| | - Guojing Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.
| |
Collapse
|
36
|
Fan Z, Whitaker VM. Genomic signatures of strawberry domestication and diversification. THE PLANT CELL 2024; 36:1622-1636. [PMID: 38113879 PMCID: PMC11062436 DOI: 10.1093/plcell/koad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Cultivated strawberry (Fragaria × ananassa) has a brief history of less than 300 yr, beginning with the hybridization of octoploids Fragaria chiloensis and Fragaria virginiana. Here we explored the genomic signatures of early domestication and subsequent diversification for different climates using whole-genome sequences of 289 wild, heirloom, and modern varieties from two major breeding programs in the United States. Four nonadmixed wild octoploid populations were identified, with recurrent introgression among the sympatric populations. The proportion of F. virginiana ancestry increased by 20% in modern varieties over initial hybrids, and the proportion of F. chiloensis subsp. pacifica rose from 0% to 3.4%. Effective population size rapidly declined during early breeding. Meanwhile, divergent selection for distinct environments reshaped wild allelic origins in 21 out of 28 chromosomes. Overlapping divergent selective sweeps in natural and domesticated populations revealed 16 convergent genomic signatures that may be important for climatic adaptation. Despite 20 breeding cycles since initial hybridization, more than half of loci underlying yield and fruit size are still not under artificial selection. These insights add clarity to the domestication and breeding history of what is now the most widely cultivated fruit in the world.
Collapse
Affiliation(s)
- Zhen Fan
- Horticultural Sciences Department, University of Florida, IFAS Gulf Coast Research and Education Center, Wimauma, FL 33597, USA
| | - Vance M Whitaker
- Horticultural Sciences Department, University of Florida, IFAS Gulf Coast Research and Education Center, Wimauma, FL 33597, USA
| |
Collapse
|
37
|
Tengstedt ANB, Liu S, Jacobsen MW, Gundlund C, Møller PR, Berg S, Bekkevold D, Hansen MM. Genomic insights on conservation priorities for North Sea houting and European lake whitefish (Coregonus spp.). Mol Ecol 2024:e17367. [PMID: 38686435 DOI: 10.1111/mec.17367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Population genomics analysis holds great potential for informing conservation of endangered populations. We focused on a controversial case of European whitefish (Coregonus spp.) populations. The endangered North Sea houting is the only coregonid fish that tolerates oceanic salinities and was previously considered a species (C. oxyrhinchus) distinct from European lake whitefish (C. lavaretus). However, no firm evidence for genetic-based salinity adaptation has been available. Also, studies based on microsatellite and mitogenome data suggested surprisingly recent divergence (c. 2500 years bp) between houting and lake whitefish. These data types furthermore have provided no evidence for possible inbreeding. Finally, a controversial taxonomic revision recently classified all whitefish in the region as C. maraena, calling conservation priorities of houting into question. We used whole-genome and ddRAD sequencing to analyse six lake whitefish populations and the only extant indigenous houting population. Demographic inference indicated post-glacial expansion and divergence between lake whitefish and houting occurring not long after the Last Glaciation, implying deeper population histories than previous analyses. Runs of homozygosity analysis suggested not only high inbreeding (FROH up to 30.6%) in some freshwater populations but also FROH up to 10.6% in the houting prompting conservation concerns. Finally, outlier scans provided evidence for adaptation to high salinities in the houting. Applying a framework for defining conservation units based on current and historical reproductive isolation and adaptive divergence led us to recommend that the houting be treated as a separate conservation unit regardless of species status. In total, the results underscore the potential of genomics to inform conservation practices, in this case clarifying conservation units and highlighting populations of concern.
Collapse
Affiliation(s)
| | - Shenglin Liu
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Magnus W Jacobsen
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Peter Rask Møller
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Søren Berg
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | |
Collapse
|
38
|
Hu QL, Zhuo JC, Fang GQ, Lu JB, Ye YX, Li DT, Lou YH, Zhang XY, Chen X, Wang SL, Wang ZC, Zhang YX, Mazlan N, OO SS, Thet T, Sharma PN, Jauharlina J, Sukorini IH, Ibisate MT, Rahman SM, Ansari NA, Chen AD, Zhu ZR, Heong KL, Lu G, Huang HJ, Li JM, Chen JP, Zhan S, Zhang CX. The genomic history and global migration of a windborne pest. SCIENCE ADVANCES 2024; 10:eadk3852. [PMID: 38657063 PMCID: PMC11042747 DOI: 10.1126/sciadv.adk3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.
Collapse
Affiliation(s)
- Qing-Ling Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gang-Qi Fang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yu-Xuan Ye
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Dan-Ting Li
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yi-Han Lou
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xuan Chen
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Si-Liang Wang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Zhe-Chao Wang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yi-Xiang Zhang
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Norida Mazlan
- Institute of Tropical Agriculture and Food Security, and Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Malaysia
| | - San San OO
- Taungoo University, Taungoo 05063, Myanmar
| | - Thet Thet
- Taungoo University, Taungoo 05063, Myanmar
| | - Prem Nidhi Sharma
- Entomology Division, Nepal Agricultural Research Council, Khumaltar, Lalitpur, Kathmandu 44600, Nepal
| | - Jauharlina Jauharlina
- Department of Plant Protection, Faculty of Agriculture, Syiah Kuala University, Banda Aceh 23111, Indonesia
| | - Ir Henik Sukorini
- Agrotechnology Study Program, Muhammadiyah University of Malang, Malang 65145, Indonesia
| | - Michael T. Ibisate
- College of Agriculture, Forestry and Environmental Sciences, Aklan State University, Banga, Aklan 5601, Philippines
| | - S.M. Mizanur Rahman
- Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Naved Ahmad Ansari
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
- Department of Zoology, Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Ai-Dong Chen
- Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Zeng-Rong Zhu
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Kong Luen Heong
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shuai Zhan
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
39
|
Zhou X, Xiang X, Cao D, Zhang L, Hu J. Selective sweep and GWAS provide insights into adaptive variation of Populus cathayana leaves. FORESTRY RESEARCH 2024; 4:e012. [PMID: 39524419 PMCID: PMC11524237 DOI: 10.48130/forres-0024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 11/16/2024]
Abstract
Leaf morphology plays a crucial role in predicting the productivity and environmental adaptability of forest trees, making it essential to understand the genetic mechanisms behind leaf variation. In natural populations of Populus cathayana, leaf morphology exhibits rich intraspecific variation due to long-term selection. However, there have been no studies that systematically reveal the genetic mechanisms of leaf variation in P. cathayana. To fill this gap and enhance our understanding of leaf variation in P. cathayana, we collected nine leaf traits from the P. cathayana natural population, consisting of 416 accessions, and conducted the preliminary classification of leaf types with four categories. Subsequently, we conducted an analysis of selective sweep and genome-wide association studies (GWAS) to uncover the genetic basis of leaf traits variation. Most of the leaf traits displayed significant correlations, with broad-sense trait heritability ranging from 0.38 to 0.74. In total, three selective sweep methods ultimately identified 278 positively selected candidate regions and 493 genes associated with leaf size. Single-trait and multi-trait GWAS methods detected 13 and 59 genes, respectively. By integrating the results of selective sweep and GWAS, we further identified a total of nine overlapping genes. These genes may play a role in the leaf development process and are closely associated with leaf size. In particular, the gene CBSCBSPB3 (Pca07G009100) located on chromosome 7, was associated with the response to light stimulation. This study will deepen our understanding of the genetic mechanism of leaf adaptive variation in P. cathayana and provide valuable gene resources.
Collapse
Affiliation(s)
- Xinglu Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaodong Xiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Demei Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
40
|
Zhang S, Xu N, Fu L, Yang X, Li Y, Yang Z, Feng Y, Ma K, Jiang X, Han J, Hu R, Zhang L, de Gennaro L, Ryabov F, Meng D, He Y, Wu D, Yang C, Paparella A, Mao Y, Bian X, Lu Y, Antonacci F, Ventura M, Shepelev VA, Miga KH, Alexandrov IA, Logsdon GA, Phillippy AM, Su B, Zhang G, Eichler EE, Lu Q, Shi Y, Sun Q, Mao Y. Comparative genomics of macaques and integrated insights into genetic variation and population history. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588379. [PMID: 38645259 PMCID: PMC11030432 DOI: 10.1101/2024.04.07.588379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The crab-eating macaques ( Macaca fascicularis ) and rhesus macaques ( M. mulatta ) are widely studied nonhuman primates in biomedical and evolutionary research. Despite their significance, the current understanding of the complex genomic structure in macaques and the differences between species requires substantial improvement. Here, we present a complete genome assembly of a crab-eating macaque and 20 haplotype-resolved macaque assemblies to investigate the complex regions and major genomic differences between species. Segmental duplication in macaques is ∼42% lower, while centromeres are ∼3.7 times longer than those in humans. The characterization of ∼2 Mbp fixed genetic variants and ∼240 Mbp complex loci highlights potential associations with metabolic differences between the two macaque species (e.g., CYP2C76 and EHBP1L1 ). Additionally, hundreds of alternative splicing differences show post-transcriptional regulation divergence between these two species (e.g., PNPO ). We also characterize 91 large-scale genomic differences between macaques and humans at a single-base-pair resolution and highlight their impact on gene regulation in primate evolution (e.g., FOLH1 and PIEZO2 ). Finally, population genetics recapitulates macaque speciation and selective sweeps, highlighting potential genetic basis of reproduction and tail phenotype differences (e.g., STAB1 , SEMA3F , and HOXD13 ). In summary, the integrated analysis of genetic variation and population genetics in macaques greatly enhances our comprehension of lineage-specific phenotypes, adaptation, and primate evolution, thereby improving their biomedical applications in human diseases.
Collapse
|
41
|
Zhang Y, Zhang W, Liu Y, Zheng Y, Nie X, Wu Q, Yu W, Wang Y, Wang X, Fang K, Qin L, Xing Y. GWAS identifies two important genes involved in Chinese chestnut weight and leaf length regulation. PLANT PHYSIOLOGY 2024; 194:2387-2399. [PMID: 38114094 DOI: 10.1093/plphys/kiad674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023]
Abstract
There are many factors that affect the yield of Chinese chestnut (Castanea mollissima), with single nut weight (SNW) being one of the most important. Leaf length is also related to Chinese chestnut yield. However, the genetic architecture and gene function associated with Chinese chestnut nut yield have not been fully explored. In this study, we performed genotyping by sequencing 151 Chinese chestnut cultivars, followed by a genome-wide association study (GWAS) on six horticultural traits. First, we analyzed the phylogeny of the Chinese chestnut and found that the Chinese chestnut cultivars divided into two ecotypes, a northern and southern cultivar group. Differences between the cultivated populations were found in the pathways of plant growth and adaptation to the environment. In the selected regions, we also found interesting tandemly arrayed genes that may influence Chinese chestnut traits and environmental adaptability. To further investigate which horticultural traits were selected, we performed a GWAS using six horticultural traits from 151 cultivars. Forty-five loci that strongly associated with horticultural traits were identified, and six genes highly associated with these traits were screened. In addition, a candidate gene associated with SNW, APETALA2 (CmAP2), and another candidate gene associated with leaf length (LL), CRYPTOCHROME INTERACTING BASIC HELIX-LOOP-HELIX 1 (CmCIB1), were verified in Chinese chestnut and Arabidopsis (Arabidopsis thaliana). Our results showed that CmAP2 affected SNW by negatively regulating cell size. CmCIB1 regulated the elongation of new shoots and leaves by inducing cell elongation, potentially affecting photosynthesis. This study provided valuable information and insights for Chinese chestnut breeding research.
Collapse
Affiliation(s)
- Yu Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Weiwei Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yang Liu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yi Zheng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Xinghua Nie
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qinyi Wu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Wenjie Yu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yafeng Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xuefeng Wang
- Longtan Forestry Station, Liyang Bureau of Natural Resources and Planning, Liyang, Jiangsu 213300, China
| | - Kefeng Fang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Ling Qin
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Xing
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
42
|
Liu Y, Cai L, Sun W. Transcriptome data analysis provides insights into the conservation of Michelia lacei, a plant species with extremely small populations distributed in Yunnan province, China. BMC PLANT BIOLOGY 2024; 24:200. [PMID: 38500068 PMCID: PMC10949798 DOI: 10.1186/s12870-024-04892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Michelia lacei W.W.Smith (Magnoliaceae), was classified as a Plant Species with Extremely Small Populations (PSESP) by the Yunnan Provincial Government in both action plans of 2012 and 2021. This evergreen tree is known for its high ornamental and scientific value, but it faces significant threats due to its extremely small population size and narrow geographical distribution. The study aims to understand the genetic structure, diversity, and demographic history of this species to inform its conservation strategies. RESULTS The analysis of transcriptome data from 64 individuals across seven populations of M. lacei identified three distinct genetic clusters and generated 104,616 single-nucleotide polymorphisms (SNPs). The KM ex-situ population, originating from Longling County, exhibited unique genetic features, suggesting limited gene flow. The genetic diversity was substantial, with significant differences between populations, particularly between the KM lineage and the OTHER lineage. Demographic history inferred from the data indicated population experienced three significant population declines during glaciations, followed by periods of recovery. We estimated the effective population size (Ne) of the KM and OTHER lineages 1,000 years ago were 85,851 and 416,622, respectively. Gene flow analysis suggested past gene flow between populations, but the KM ex-situ population showed no recent gene flow. A total of 805 outlier SNPs, associated with four environmental factors, suggest potential local adaptation and showcase the species' adaptive potential. Particularly, the BZ displayed 515 adaptive loci, highlighting its strong potential for adaptation within this group. CONCLUSIONS The comprehensive genomic analysis of M. lacei provides valuable insights into its genetic background and highlights the urgent need for conservation efforts. The study underscores the importance of ex-situ conservation methods, such as seed collection and vegetative propagation, to safeguard genetic diversity and promote population restoration. The preservation of populations like MC and BZ is crucial for maintaining the species' genetic diversity. In-situ conservation measures, including the establishment of in-situ conservation sites and community engagement, are essential to enhance protection awareness and ensure the long-term survival of this threatened plant species.
Collapse
Affiliation(s)
- Yang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations/ Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
43
|
Ren Y, Zhang L, Yang X, Lin H, Sang Y, Feng L, Liu J, Kang M. Cryptic divergences and repeated hybridizations within the endangered "living fossil" dove tree ( Davidia involucrata) revealed by whole genome resequencing. PLANT DIVERSITY 2024; 46:169-180. [PMID: 38807904 PMCID: PMC11128880 DOI: 10.1016/j.pld.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 05/30/2024]
Abstract
The identification and understanding of cryptic intraspecific evolutionary units (lineages) are crucial for planning effective conservation strategies aimed at preserving genetic diversity in endangered species. However, the factors driving the evolution and maintenance of these intraspecific lineages in most endangered species remain poorly understood. In this study, we conducted resequencing of 77 individuals from 22 natural populations of Davidia involucrata, a "living fossil" dove tree endemic to central and southwest China. Our analysis revealed the presence of three distinct local lineages within this endangered species, which emerged approximately 3.09 and 0.32 million years ago. These divergence events align well with the geographic and climatic oscillations that occurred across the distributional range. Additionally, we observed frequent hybridization events between the three lineages, resulting in the formation of hybrid populations in their adjacent as well as disjunct regions. These hybridizations likely arose from climate-driven population expansion and/or long-distance gene flow. Furthermore, we identified numerous environment-correlated gene variants across the total and many other genes that exhibited signals of positive evolution during the maintenance of two major local lineages. Our findings shed light on the highly dynamic evolution underlying the remarkably similar phenotype of this endangered species. Importantly, these results not only provide guidance for the development of conservation plans but also enhance our understanding of evolutionary past for this and other endangered species with similar histories.
Collapse
Affiliation(s)
- Yumeng Ren
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lushui Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuchen Yang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hao Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yupeng Sang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Landi Feng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jianquan Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Minghui Kang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
44
|
Gu LH, Wu RR, Zheng XL, Fu A, Xing ZY, Chen YY, He ZC, Lu LZ, Qi YT, Chen AH, Zhang YP, Xu TS, Peng MS, Ma C. Genomic insights into local adaptation and phenotypic diversity of Wenchang chickens. Poult Sci 2024; 103:103376. [PMID: 38228059 PMCID: PMC10823079 DOI: 10.1016/j.psj.2023.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
Wenchang chicken, a prized local breed in Hainan Province of China renowned for its exceptional adaptability to tropical environments and good meat quality, is deeply favored by the public. However, an insufficient understanding of its population architecture and the unclear genetic basis that governs its typical attributes have posed challenges in the protection and breeding of this precious breed. To address these gaps, we conducted whole-genome resequencing on 200 Wenchang chicken samples derived from 10 distinct strains, and we gathered data on an array of 21 phenotype traits. Population genomics analysis unveiled distinctive population structures in Wenchang chickens, primarily attributed to strong artificial selection for different feather colors. Selection sweep analysis identified a group of candidate genes, including PCDH9, DPF3, CDIN1, and SUGCT, closely linked to adaptations that enhance resilience in tropical island habitats. Genome-wide association studies (GWAS) highlighted potential candidate genes associated with diverse feather color traits, encompassing TYR, RAB38, TRPM1, GABARAPL2, CDH1, ZMIZ1, LYST, MC1R, and SASH1. Through the comprehensive analysis of high-quality genomic and phenotypic data across diverse Wenchang chicken resource groups, this study unveils the intricate genetic backgrounds and population structures of Wenchang chickens. Additionally, it identifies multiple candidate genes linked to environmental adaptation, feather color variations, and production traits. These insights not only provide genetic reference for the purification and breeding of Wenchang chickens but also broaden our understanding of the genetic basis of phenotypic diversity in chickens.
Collapse
Affiliation(s)
- Li-Hong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - Ran-Ran Wu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Li Zheng
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - An Fu
- Wenchang City Wenchang Chicken Research Institute, Wenchang 571300, China
| | - Zeng-Yang Xing
- Wenchang Long-quan Wenchang Chicken Industrial Co., Ltd., Wenchang 571346, China
| | - Yi-Yong Chen
- Hainan Chuang Wen Wenchang Chicken Industry Co., Ltd., Wenchang 571321, China
| | - Zhong-Chun He
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - Li-Zhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yan-Tao Qi
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - An-Hong Chen
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tie-Shan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Min-Sheng Peng
- Wenchang City Wenchang Chicken Research Institute, Wenchang 571300, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Ma
- Wenchang City Wenchang Chicken Research Institute, Wenchang 571300, China.
| |
Collapse
|
45
|
Liu S, Luo H, Zhang P, Li Y, Hao D, Zhang S, Song T, Xu T, He S. Adaptive Selection of Cis-regulatory Elements in the Han Chinese. Mol Biol Evol 2024; 41:msae034. [PMID: 38377343 PMCID: PMC10917166 DOI: 10.1093/molbev/msae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Cis-regulatory elements have an important role in human adaptation to the living environment. However, the lag in population genomic cohort studies and epigenomic studies, hinders the research in the adaptive analysis of cis-regulatory elements in human populations. In this study, we collected 4,013 unrelated individuals and performed a comprehensive analysis of adaptive selection of genome-wide cis-regulatory elements in the Han Chinese. In total, 12.34% of genomic regions are under the influence of adaptive selection, where 1.00% of enhancers and 2.06% of promoters are under positive selection, and 0.06% of enhancers and 0.02% of promoters are under balancing selection. Gene ontology enrichment analysis of these cis-regulatory elements under adaptive selection reveals that many positive selections in the Han Chinese occur in pathways involved in cell-cell adhesion processes, and many balancing selections are related to immune processes. Two classes of adaptive cis-regulatory elements related to cell adhesion were in-depth analyzed, one is the adaptive enhancers derived from neanderthal introgression, leads to lower hyaluronidase level in skin, and brings better performance on UV-radiation resistance to the Han Chinese. Another one is the cis-regulatory elements regulating wound healing, and the results suggest the positive selection inhibits coagulation and promotes angiogenesis and wound healing in the Han Chinese. Finally, we found that many pathogenic alleles, such as risky alleles of type 2 diabetes or schizophrenia, remain in the population due to the hitchhiking effect of positive selections. Our findings will help deepen our understanding of the adaptive evolution of genome regulation in the Han Chinese.
Collapse
Affiliation(s)
- Shuai Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaxia Luo
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanyan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Hao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sijia Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingrui Song
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Shunmin He
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Lu B, Qiu X, Yang W, Yao Z, Ma X, Deng S, Zhang Q, Fu J, Qi Y. Genetic Basis and Evolutionary Forces of Sexually Dimorphic Color Variation in a Toad-Headed Agamid Lizard. Mol Biol Evol 2024; 41:msae054. [PMID: 38466135 PMCID: PMC10963123 DOI: 10.1093/molbev/msae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
In the animal kingdom, sexually dimorphic color variation is a widespread phenomenon that significantly influences survival and reproductive success. However, the genetic underpinnings of this variation remain inadequately understood. Our investigation into sexually dimorphic color variation in the desert-dwelling Guinan population of the toad-headed agamid lizard (Phrynocephalus putjatai) utilized a multidisciplinary approach, encompassing phenotypic, ultrastructural, biochemical, genomic analyses, and behavioral experiments. Our findings unveil the association between distinct skin colorations and varying levels of carotenoid and pteridine pigments. The red coloration in males is determined by a genomic region on chromosome 14, housing four pigmentation genes: BCO2 and three 6-pyruvoyltetrahydropterin synthases. A Guinan population-specific nonsynonymous single nucleotide polymorphism in BCO2 is predicted to alter the electrostatic potential within the binding domain of the BCO2-β-carotene complex, influencing their interaction. Additionally, the gene MAP7 on chromosome 2 emerges as a potential contributor to the blue coloration in subadults and adult females. Sex-specific expression patterns point to steroid hormone-associated genes (SULT2B1 and SRD5A2) as potential upstream regulators influencing sexually dimorphic coloration. Visual modeling and field experiments support the potential selective advantages of vibrant coloration in desert environments. This implies that natural selection, potentially coupled with assortative mating, might have played a role in fixing color alleles, contributing to prevalence in the local desert habitat. This study provides novel insights into the genetic basis of carotenoid and pteridine-based color variation, shedding light on the evolution of sexually dimorphic coloration in animals. Moreover, it advances our understanding of the driving forces behind such intricate coloration patterns.
Collapse
Affiliation(s)
- Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Xia Qiu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Weizhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Zhongyi Yao
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Shunyan Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Qi Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Jinzhong Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| |
Collapse
|
47
|
Lu Q, Huang L, Liu H, Garg V, Gangurde SS, Li H, Chitikineni A, Guo D, Pandey MK, Li S, Liu H, Wang R, Deng Q, Du P, Varshney RK, Liang X, Hong Y, Chen X. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat Genet 2024; 56:530-540. [PMID: 38378864 DOI: 10.1038/s41588-024-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Peanut (Arachis hypogaea L.) is an important allotetraploid oil and food legume crop. China is one of the world's largest peanut producers and consumers. However, genomic variations underlying the migration and divergence of peanuts in China remain unclear. Here we reported a genome-wide variation map based on the resequencing of 390 peanut accessions, suggesting that peanuts might have been introduced into southern and northern China separately, forming two cultivation centers. Selective sweep analysis highlights asymmetric selection between the two subgenomes during peanut improvement. A classical pedigree from South China offers a context for the examination of the impact of artificial selection on peanut genome. Genome-wide association studies identified 22,309 significant associations with 28 agronomic traits, including candidate genes for plant architecture and oil biosynthesis. Our findings shed light on peanut migration and diversity in China and provide valuable genomic resources for peanut improvement.
Collapse
Affiliation(s)
- Qing Lu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Lu Huang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Sunil S Gangurde
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Haifen Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Annapurna Chitikineni
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Dandan Guo
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Shaoxiong Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Haiyan Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Runfeng Wang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Quanqing Deng
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Puxuan Du
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Yanbin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Centre of National Centre of Oilseed Crops Improvement, Guangzhou, China.
| |
Collapse
|
48
|
He Y, Zhang K, Shi Y, Lin H, Huang X, Lu X, Wang Z, Li W, Feng X, Shi T, Chen Q, Wang J, Tang Y, Chapman MA, Germ M, Luthar Z, Kreft I, Janovská D, Meglič V, Woo SH, Quinet M, Fernie AR, Liu X, Zhou M. Genomic insight into the origin, domestication, dispersal, diversification and human selection of Tartary buckwheat. Genome Biol 2024; 25:61. [PMID: 38414075 PMCID: PMC10898187 DOI: 10.1186/s13059-024-03203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Tartary buckwheat, Fagopyrum tataricum, is a pseudocereal crop with worldwide distribution and high nutritional value. However, the origin and domestication history of this crop remain to be elucidated. RESULTS Here, by analyzing the population genomics of 567 accessions collected worldwide and reviewing historical documents, we find that Tartary buckwheat originated in the Himalayan region and then spread southwest possibly along with the migration of the Yi people, a minority in Southwestern China that has a long history of planting Tartary buckwheat. Along with the expansion of the Mongol Empire, Tartary buckwheat dispersed to Europe and ultimately to the rest of the world. The different natural growth environments resulted in adaptation, especially significant differences in salt tolerance between northern and southern Chinese Tartary buckwheat populations. By scanning for selective sweeps and using a genome-wide association study, we identify genes responsible for Tartary buckwheat domestication and differentiation, which we then experimentally validate. Comparative genomics and QTL analysis further shed light on the genetic foundation of the easily dehulled trait in a particular variety that was artificially selected by the Wa people, a minority group in Southwestern China known for cultivating Tartary buckwheat specifically for steaming as a staple food to prevent lysine deficiency. CONCLUSIONS This study provides both comprehensive insights into the origin and domestication of, and a foundation for molecular breeding for, Tartary buckwheat.
Collapse
Affiliation(s)
- Yuqi He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaliang Shi
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhirong Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xibo Feng
- Tibet Key Experiments of Crop Cultivation and Farming/College of Plant Science, Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China
| | - Junzhen Wang
- Xichang Institute of Agricultural Science, Liangshan Yi People Autonomous Prefecture, Liangshan, Sichuan, 615000, China
| | - Yu Tang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Ivan Kreft
- Nutrition Institute, Koprska Ulica 98, SI-1000, Ljubljana, Slovenia
| | - Dagmar Janovská
- Gene Bank, Crop Research Institute, Drnovská 507, Prague 6, Czech Republic
| | - Vladimir Meglič
- Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000, Ljubljana, Slovenia
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju, Republic of Korea
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348, Louvain-la-Neuve, Belgium
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Meiliang Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
49
|
Li B, Duan Y, Du Z, Wang X, Liu S, Feng Z, Tian L, Song F, Yang H, Cai W, Lin Z, Li H. Natural selection and genetic diversity maintenance in a parasitic wasp during continuous biological control application. Nat Commun 2024; 15:1379. [PMID: 38355730 PMCID: PMC10866907 DOI: 10.1038/s41467-024-45631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Aphidius gifuensis is a parasitoid wasp and primary endoparasitoid enemy of the peach potato aphid, Myzus persicae. Artificially reared, captive wasps of this species have been extensively and effectively used to control populations of aphids and limit crop loss. However, the consequences of large-scale releasing of captive A. gifuensis, such as genetic erosion and reduced fitness in wild populations of this species, remains unclear. Here, we sequence the genomes of 542 A. gifuensis individuals collected across China, including 265 wild and 277 human-intervened samples. Population genetic analyses on wild individuals recovered Yunnan populations as the ancestral group with the most complex genetic structure. We also find genetic signature of environmental adaptation during the dispersal of wild populations from Yunnan to other regions. While comparative genomic analyses of captive wasps revealed a decrease in genetic diversity during long-term rearing, population genomic analyses revealed signatures of natural selection by several biotic (host plants) or abiotic (climate) factors, which support maintenance of the gene pool of wild populations in spite of the introduction of captive wasps. Therefore, the impact of large-scale release is reduced. Our study suggests that A. gifuensis is a good system for exploring the genetic and evolutionary effects of mass rearing and release on species commonly used as biocontrol agents.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhenyong Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xuan Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shanlin Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zengbei Feng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | | | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhonglong Lin
- Yunnan Tobacco Company of China National Tobacco Corporation, Kunming, 650011, China.
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
50
|
Guo N, Wang S, Wang T, Duan M, Zong M, Miao L, Han S, Wang G, Liu X, Zhang D, Jiao C, Xu H, Chen L, Fei Z, Li J, Liu F. A graph-based pan-genome of Brassica oleracea provides new insights into its domestication and morphotype diversification. PLANT COMMUNICATIONS 2024; 5:100791. [PMID: 38168637 PMCID: PMC10873912 DOI: 10.1016/j.xplc.2023.100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/08/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
The domestication of Brassica oleracea has resulted in diverse morphological types with distinct patterns of organ development. Here we report a graph-based pan-genome of B. oleracea constructed from high-quality genome assemblies of different morphotypes. The pan-genome harbors over 200 structural variant hotspot regions enriched in auxin- and flowering-related genes. Population genomic analyses revealed that early domestication of B. oleracea focused on leaf or stem development. Gene flows resulting from agricultural practices and variety improvement were detected among different morphotypes. Selective-sweep and pan-genome analyses identified an auxin-responsive small auxin up-regulated RNA gene and a CLAVATA3/ESR-RELATED family gene as crucial players in leaf-stem differentiation during the early stage of B. oleracea domestication and the BoKAN1 gene as instrumental in shaping the leafy heads of cabbage and Brussels sprouts. Our pan-genome and functional analyses further revealed that variations in the BoFLC2 gene play key roles in the divergence of vernalization and flowering characteristics among different morphotypes, and variations in the first intron of BoFLC3 are involved in fine-tuning the flowering process in cauliflower. This study provides a comprehensive understanding of the pan-genome of B. oleracea and sheds light on the domestication and differential organ development of this globally important crop species.
Collapse
Affiliation(s)
- Ning Guo
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Shenyun Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Vegetable Research Institute, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China
| | - Tianyi Wang
- Smartgenomics Technology Institute, Tianjin 301700, China
| | - Mengmeng Duan
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Mei Zong
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Liming Miao
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Shuo Han
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Guixiang Wang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Xin Liu
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Deshuang Zhang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Chengzhi Jiao
- Smartgenomics Technology Institute, Tianjin 301700, China
| | - Hongwei Xu
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Liyang Chen
- Smartgenomics Technology Institute, Tianjin 301700, China.
| | | | - Jianbin Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Vegetable Research Institute, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu, China.
| | - Fan Liu
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| |
Collapse
|