1
|
Sukhova E, Yudina L, Kozlova E, Sukhov V. Preliminary Treatment by Exogenous 24-Epibrassinolide Influences Burning-Induced Electrical Signals and Following Photosynthetic Responses in Pea ( Pisum sativum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:3292. [PMID: 39683085 DOI: 10.3390/plants13233292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Long-distance electrical signals (ESs) are an important mechanism of induction of systemic adaptive changes in plants under local action of stressors. ES-induced changes in photosynthesis and transpiration play a key role in these responses increasing plant tolerance to action of adverse factors. As a result, investigating ways of regulating electrical signaling and ES-induced physiological responses is a perspective problem of plant electrophysiology. The current work was devoted to the analysis of the influence of preliminary treatment (spraying) by exogenous 24-epibrassinolide (EBL) on burning-induced ESs and following photosynthetic and transpiratory responses in pea (Pisum sativum L.). It was shown that preliminary treatment by 1 µM EBL (1 day before the experiment) increased the amplitude of burning-induced ESs (variation potentials) in leaves and decreased the time of propagation of these signals from the stem to the leaf. The EBL treatment weakly influenced the magnitudes of burning-induced decreasing the photosynthetic linear electron flow and CO2 assimilation, but these changes were accelerated. Burning-induced changes in the cyclic electron flow around photosystem I were also affected by the EBL treatment. The influence of the EBL treatment on burning-induced changes in the stomatal water conductance was not observed. Our results show that preliminary treatment by EBL can be used for the modification of electrical signals and following photosynthetic responses in plants.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Lyubov Yudina
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Elizaveta Kozlova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Bharath P, Gahir S, Raghavendra AS. Cytosolic alkalinization in guard cells: an intriguing but interesting event during stomatal closure that merits further validation of its importance. FRONTIERS IN PLANT SCIENCE 2024; 15:1491428. [PMID: 39559765 PMCID: PMC11570284 DOI: 10.3389/fpls.2024.1491428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
Stomatal closure is essential to conserve water and prevent microbial entry into leaves. Alkalinization of guard cells is common during closure by factors such as abscisic acid, methyl jasmonate, and even darkness. Despite reports pointing at the role of cytosolic pH, there have been doubts about whether the guard cell pH change is a cause for stomatal closure or an associated event, as changes in membrane potential or ion flux can modulate the pH. However, the importance of cytosolic alkalinization is strongly supported by the ability of externally added weak acids to restrict stomatal closure. Using genetically encoded pH sensors has confirmed the rise in pH to precede the elevation of Ca2+ levels. Yet some reports claim that the rise in pH follows the increase in ROS or Ca2+. We propose a feedback interaction among the rise in pH or ROS or Ca2+ to explain the contrasting opinions on the positioning of pH rise. Stomatal closure and guard cell pH changes are compromised in mutants deficient in vacuolar H+-ATPase (V-ATPase), indicating the importance of V-ATPase in promoting stomatal closure. Thus, cytosolic pH change in guard cells can be related to the rise in ROS and Ca2+, leading to stomatal closure. We emphasize that cytosolic pH in stomatal guard cells deserves further attention and evaluation.
Collapse
Affiliation(s)
| | | | - Agepati S. Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Zakharova E, Khanina T, Knyazev A, Milyukova N, Kovaleva LV. Hormonal Signaling during dPCD: Cytokinin as the Determinant of RNase-Based Self-Incompatibility in Solanaceae. Biomolecules 2023; 13:1033. [PMID: 37509069 PMCID: PMC10377171 DOI: 10.3390/biom13071033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Research into molecular mechanisms of self-incompatibility (SI) in plants can be observed in representatives of various families, including Solanaceae. Earlier studies of the mechanisms of S-RNase-based SI in petunia (Petunia hybrida E. Vilm.) demonstrate that programmed cell death (PCD) is an SI factor. These studies suggest that the phytohormon cytokinin (CK) is putative activator of caspase-like proteases (CLPs). In this work, data confirming this hypothesis were obtained in two model objects-petunia and tomato (six Solanaceae representatives). The exogenous zeatin treatment of tomato and petunia stigmas before a compatible pollination activates CLPs in the pollen tubes in vivo, as shown via the intravital imaging of CLP activities. CK at any concentration slows down the germination and growth of petunia and tomato male gametophytes both in vitro and in vivo; shifts the pH of the cytoplasm (PHc) to the acid region, thereby creating the optimal conditions for CLP to function and inhibiting the F-actin formation and/or destructing the cytoskeleton in pollen tubes to point foci during SI-induced PCD; and accumulates in style tissues during SI response. The activity of the ISOPENTENYLTRANSFERASE 5 (IPT5) gene at this moment exceeds its activity in a cross-compatible pollination, and the levels of expression of the CKX1 and CKX2 genes (CK OXIDASE/DEHYDROGENASE) are significantly lower in self-incompatible pollination. All this suggests that CK plays a decisive role in the mechanism underlying SI-induced PCD.
Collapse
Affiliation(s)
- Ekaterina Zakharova
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Tatiana Khanina
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Andrey Knyazev
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Natalia Milyukova
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Lidia V Kovaleva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 191186 Moscow, Russia
| |
Collapse
|
4
|
Gao YQ, Farmer EE. Osmoelectric siphon models for signal and water dispersal in wounded plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1207-1220. [PMID: 36377754 PMCID: PMC9923213 DOI: 10.1093/jxb/erac449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
When attacked by herbivores, plants produce electrical signals which can activate the synthesis of the defense mediator jasmonate. These wound-induced membrane potential changes can occur in response to elicitors that are released from damaged plant cells. We list plant-derived elicitors of membrane depolarization. These compounds include the amino acid l-glutamate (Glu), a potential ligand for GLUTAMATE RECEPTOR-LIKE (GLR) proteins that play roles in herbivore-activated electrical signaling. How are membrane depolarization elicitors dispersed in wounded plants? In analogy with widespread turgor-driven cell and organ movements, we propose osmoelectric siphon mechanisms for elicitor transport. These mechanisms are based on membrane depolarization leading to cell water shedding into the apoplast followed by membrane repolarization and water uptake. We discuss two related mechanisms likely to occur in response to small wounds and large wounds that trigger leaf-to-leaf electrical signal propagation. To reduce jasmonate pathway activation, a feeding insect must cut through tissues cleanly. If their mandibles become worn, the herbivore is converted into a robust plant defense activator. Our models may therefore help to explain why numerous plants produce abrasives which can blunt herbivore mouthparts. Finally, if verified, the models we propose may be generalizable for cell to cell transport of water and pathogen-derived regulators.
Collapse
Affiliation(s)
- Yong-Qiang Gao
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
5
|
Hormonal Signaling in the Progamic Phase of Fertilization in Plants. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pollen–pistil interaction is a basic process in the reproductive biology of flowering plants and has been the subject of intense fundamental research that has a pronounced practical value. The phytohormones ethylene (ET) and cytokinin (CK) together with other hormones such as auxin, gibberellin (GA), jasmonic acid (JA), abscisic acid (ABA), and brassinosteroids (BRs) influence different stages of plant development and growth. Here, we mainly focus on the information about the ET and CK signaling in the progamic phase of fertilization. This signaling occurs during male gametophyte development, including tapetum (TAP) cell death, and pollen tube growth, including synergid programmed cell death (PCD) and self-incompatibility (SI)-induced PCD. ET joins the coordination of successive events in the developing anther, including the TAP development and cell death, anther dehiscence, microspore development, pollen grain maturation, and dehydration. Both ET and CK take part in the regulation of E. ET signaling accompanies adhesion, hydration, and germination of pollen grains in the stigma and growth of pollen tubes in style tissues. Thus, ET production may be implicated in the pollination signaling between organs accumulated in the stigma and transmitted to the style and ovary to ensure successful pollination. Some data suggest that ET and CK signaling are involved in S-RNase-based SI.
Collapse
|
6
|
The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022; 23:ijms23084272. [PMID: 35457090 PMCID: PMC9032328 DOI: 10.3390/ijms23084272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant–environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants.
Collapse
|
7
|
Zhu X, Wang P, Bai Z, Herde M, Ma Y, Li N, Liu S, Huang CF, Cui R, Ma H, Zhang M, Wang H, Wei T, Quan T, Zhang W, Liu C, Zhang T, Yang ZB. Calmodulin-like protein CML24 interacts with CAMTA2 and WRKY46 to regulate ALMT1-dependent Al resistance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 233:2471-2487. [PMID: 34665465 DOI: 10.1111/nph.17812] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 05/25/2023]
Abstract
ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (ALMT1)-mediated malate exudation from roots is critical for aluminium (Al) resistance in Arabidopsis. Its upstream molecular signalling regulation is not yet well understood. The role of CALMODULIN-LIKE24 (CML24) in Al-inhibited root growth and downstream molecular regulation of ALMT1-meditaed Al resistance was investigated. CML24 confers Al resistance demonstrated by an increased root-growth inhibition of the cml24 loss-of-function mutant under Al stress. This occurs mainly through the regulation of the ALMT1-mediated malate exudation from roots. The mutation and overexpression of CML24 leads to an elevated and reduced Al accumulation in the cell wall of roots, respectively. Al stress induced both transcript and protein abundance of CML24 in root tips, especially in the transition zone. CML24 interacts with CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2 (CAMTA2) and promotes its transcriptional activity in the regulation of ALMT1 expression. This results in an enhanced malate exudation from roots and less root-growth inhibition under Al stress. Both CML24 and CAMTA2 interacted with WRKY46 suppressing the transcriptional repression of ALMT1 by WRKY46. The study provides novel insights into understanding of the upstream molecular signalling of the ALMT1-depdendent Al resistance.
Collapse
Affiliation(s)
- Xue Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, China
| | - Peng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, China
| | - Zhimin Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, China
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Hannover, 30419, Germany
| | - Yanqi Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, China
| | - Na Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, China
| | - Shuo Liu
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chao-Feng Huang
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Rongxiu Cui
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, China
| | - Hongyu Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, China
| | - Meng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, China
| | - Hui Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, China
| | - Tiandi Wei
- School of Life Science, Shandong University (Qingdao), Qingdao, 266237, China
| | - Taiyong Quan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, China
| | - Wei Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, China
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, 266237, China
| | - Tao Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China
| | - Zhong-Bao Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University (Qingdao), Qingdao, 266237, China
| |
Collapse
|
8
|
Kashtoh H, Baek KH. Structural and Functional Insights into the Role of Guard Cell Ion Channels in Abiotic Stress-Induced Stomatal Closure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122774. [PMID: 34961246 PMCID: PMC8707303 DOI: 10.3390/plants10122774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
A stomatal pore is formed by a pair of specialized guard cells and serves as a major gateway for water transpiration and atmospheric CO2 influx for photosynthesis in plants. These pores must be tightly controlled, as inadequate CO2 intake and excessive water loss are devastating for plants. When the plants are exposed to extreme weather conditions such as high CO2 levels, O3, low air humidity, and drought, the turgor pressure of the guard cells exhibits an appropriate response against these stresses, which leads to stomatal closure. This phenomenon involves a complex network of ion channels and their regulation. It is well-established that the turgor pressure of guard cells is regulated by ions transportation across the membrane, such as anions and potassium ions. In this review, the guard cell ion channels are discussed, highlighting the structure and functions of key ion channels; the SLAC1 anion channel and KAT1 potassium channel, and their regulatory components, emphasizing their significance in guard cell response to various stimuli.
Collapse
|
9
|
Lehmann J, Jørgensen ME, Fratz S, Müller HM, Kusch J, Scherzer S, Navarro-Retamal C, Mayer D, Böhm J, Konrad KR, Terpitz U, Dreyer I, Mueller TD, Sauer M, Hedrich R, Geiger D, Maierhofer T. Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis. Curr Biol 2021; 31:3575-3585.e9. [PMID: 34233161 DOI: 10.1016/j.cub.2021.06.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/03/2021] [Accepted: 06/08/2021] [Indexed: 10/20/2022]
Abstract
Plants, as sessile organisms, gained the ability to sense and respond to biotic and abiotic stressors to survive severe changes in their environments. The change in our climate comes with extreme dry periods but also episodes of flooding. The latter stress condition causes anaerobiosis-triggered cytosolic acidosis and impairs plant function. The molecular mechanism that enables plant cells to sense acidity and convey this signal via membrane depolarization was previously unknown. Here, we show that acidosis-induced anion efflux from Arabidopsis (Arabidopsis thaliana) roots is dependent on the S-type anion channel AtSLAH3. Heterologous expression of SLAH3 in Xenopus oocytes revealed that the anion channel is directly activated by a small, physiological drop in cytosolic pH. Acidosis-triggered activation of SLAH3 is mediated by protonation of histidine 330 and 454. Super-resolution microscopy analysis showed that the increase in cellular proton concentration switches SLAH3 from an electrically silent channel dimer into its active monomeric form. Our results show that, upon acidification, protons directly switch SLAH3 to its open configuration, bypassing kinase-dependent activation. Moreover, under flooding conditions, the stress response of Arabidopsis wild-type (WT) plants was significantly higher compared to SLAH3 loss-of-function mutants. Our genetic evidence of SLAH3 pH sensor function may guide the development of crop varieties with improved stress tolerance.
Collapse
Affiliation(s)
- Julian Lehmann
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany; Department of Biotechnology and Biophysics, University of Würzburg, Biocenter -Am Hubland, Würzburg 97074, Germany
| | - Morten E Jørgensen
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Stefanie Fratz
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Heike M Müller
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Jana Kusch
- University Hospital Jena, Institute of Physiologie II, Kollegiengasse 9, Jena 07743, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Carlos Navarro-Retamal
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Dominik Mayer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Jennifer Böhm
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Kai R Konrad
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter -Am Hubland, Würzburg 97074, Germany
| | - Ingo Dreyer
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Thomas D Mueller
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter -Am Hubland, Würzburg 97074, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany.
| | - Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany
| | - Tobias Maierhofer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs Institute, Würzburg 97082, Germany.
| |
Collapse
|
10
|
Zhao T, Arbelet-Bonnin D, Tran D, Monetti E, Lehner A, Meimoun P, Kadono T, Dauphin A, Errakhi R, Reboutier D, Cangémi S, Kawano T, Mancuso S, El-Maarouf-Bouteau H, Laurenti P, Bouteau F. Biphasic activation of survival and death pathways in Arabidopsis thaliana cultured cells by sorbitol-induced hyperosmotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110844. [PMID: 33691971 DOI: 10.1016/j.plantsci.2021.110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Hyperosmotic stresses represent some of the most serious abiotic factors that adversely affect plants growth, development and fitness. Despite their central role, the early cellular events that lead to plant adaptive responses remain largely unknown. In this study, using Arabidopsis thaliana cultured cells we analyzed early cellular responses to sorbitol-induced hyperosmotic stress. We observed biphasic and dual responses of A. thaliana cultured cells to sorbitol-induced hyperosmotic stress. A first set of events, namely singlet oxygen (1O2) production and cell hyperpolarization due to a decrease in anion channel activity could participate to signaling and osmotic adjustment allowing cell adaptation and survival. A second set of events, namely superoxide anion (O2-) production by RBOHD-NADPH-oxidases and SLAC1 anion channel activation could participate in programmed cell death (PCD) of a part of the cell population. This set of events raises the question of how a survival pathway and a death pathway could be induced by the same hyperosmotic condition and what could be the meaning of the induction of two different behaviors in response to hyperosmotic stress.
Collapse
Affiliation(s)
- Tingting Zhao
- Université de Paris, Laboratoire des Energies de Demain, Paris, France
| | | | - Daniel Tran
- former EA3514, Université Paris Diderot, Paris, France
| | - Emanuela Monetti
- former EA3514, Université Paris Diderot, Paris, France; LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino (FI), Italy
| | - Arnaud Lehner
- former EA3514, Université Paris Diderot, Paris, France
| | - Patrice Meimoun
- Université de Paris, Laboratoire des Energies de Demain, Paris, France; former EA3514, Université Paris Diderot, Paris, France; Université de Paris, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | - Takashi Kadono
- former EA3514, Université Paris Diderot, Paris, France; Graduate School of Environmental Engineering, University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan
| | | | - Rafik Errakhi
- former EA3514, Université Paris Diderot, Paris, France
| | | | - Sylvie Cangémi
- Université de Paris, Laboratoire des Energies de Demain, Paris, France
| | - Tomonori Kawano
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino (FI), Italy; Graduate School of Environmental Engineering, University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan; University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan; Université de Paris, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | - Stefano Mancuso
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino (FI), Italy; University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan; Université de Paris, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | | | - Patrick Laurenti
- Université de Paris, Laboratoire des Energies de Demain, Paris, France
| | - François Bouteau
- Université de Paris, Laboratoire des Energies de Demain, Paris, France; former EA3514, Université Paris Diderot, Paris, France; LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino (FI), Italy; University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan.
| |
Collapse
|
11
|
Exogenous Abscisic Acid Can Influence Photosynthetic Processes in Peas through a Decrease in Activity of H +-ATP-ase in the Plasma Membrane. BIOLOGY 2020; 9:biology9100324. [PMID: 33020382 PMCID: PMC7650568 DOI: 10.3390/biology9100324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
Simple Summary Numerous stressors (drought, low and high temperatures, mechanical damages, etc.) act on plants under environmental conditions, suppressing their physiological processes (in particular, photosynthesis). Abscisic acid (ABA) is an important hormone, which participates in increasing plant tolerance to the action of stressors; as a result, treatment by exogenous ABA is a perspective way of regulating the tolerance in agriculture. We investigated the influence of ABA spraying on photosynthetic processes, as well as on their heat tolerance and their regulation by electrical signals propagating after local burning and modifying photosynthesis. It was shown that ABA spraying decreased photosynthetic activity and increased photosynthetic heat tolerance; additionally, the ABA treatment weakened the influence of electrical signals on photosynthesis. We revealed that these responses could be caused by a decrease in activity of H+-ATP-ase, which is an important ion transporter in plant cell plasma membrane that supports efflux of H+ from cytoplasm. As a whole, our results show the potential influence of the ABA treatment on photosynthetic processes, which is related to a decrease in activity of H+-ATP-ase. The result can be potentially useful for development of new methods of management of plant tolerance in agriculture. Abstract Abscisic acid (ABA) is an important hormone in plants that participates in their acclimation to the action of stressors. Treatment by exogenous ABA and its synthetic analogs are a potential way of controlling the tolerance of agricultural plants; however, the mechanisms of influence of the ABA treatment on photosynthetic processes require further investigations. The aim of our work was to investigate the participation of inactivation of the plasma membrane H+-ATP-ase on the influence of ABA treatment on photosynthetic processes and their regulation by electrical signals in peas. The ABA treatment of seedlings was performed by spraying them with aqueous solutions (10−5 M). The combination of a Dual-PAM-100 PAM fluorometer and GFS-3000 infrared gas analyzer was used for photosynthetic measurements; the patch clamp system on the basis of a SliceScope Pro 2000 microscope was used for measurements of electrical activity. It was shown that the ABA treatment stimulated the cyclic electron flow around photosystem I and decreased the photosynthetic CO2 assimilation, the amplitude of burning-induced electrical signals (variation potentials), and the magnitude of photosynthetic responses relating to these signals; in contrast, treatment with exogenous ABA increased the heat tolerance of photosynthesis. An investigation of the influence of ABA treatment on the metabolic component of the resting potential showed that this treatment decreased the activity of the H+-ATP-ase in the plasma membrane. Inhibitor analysis using sodium orthovanadate demonstrated that this decrease may be a mechanism of the ABA treatment-induced changes in photosynthetic processes, their heat tolerance, and regulation by electrical signals.
Collapse
|
12
|
Lee E, Santana BVN, Samuels E, Benitez-Fuente F, Corsi E, Botella MA, Perez-Sancho J, Vanneste S, Friml J, Macho A, Azevedo AA, Rosado A. Rare earth elements induce cytoskeleton-dependent and PI4P-associated rearrangement of SYT1/SYT5 endoplasmic reticulum-plasma membrane contact site complexes in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3986-3998. [PMID: 32179893 PMCID: PMC7337092 DOI: 10.1093/jxb/eraa138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/13/2020] [Indexed: 05/16/2023]
Abstract
In plant cells, environmental stressors promote changes in connectivity between the cortical endoplasmic reticulum (ER) and the plasma membrane (PM). Although this process is tightly regulated in space and time, the molecular signals and structural components mediating these changes in interorganelle communication are only starting to be characterized. In this report, we confirm the presence of a putative tethering complex containing the synaptotagmins 1 and 5 (SYT1 and SYT5) and the Ca2+- and lipid-binding protein 1 (CLB1/SYT7). This complex is enriched at ER-PM contact sites (EPCSs), has slow responses to changes in extracellular Ca2+, and displays severe cytoskeleton-dependent rearrangements in response to the trivalent lanthanum (La3+) and gadolinium (Gd3+) rare earth elements (REEs). Although REEs are generally used as non-selective cation channel blockers at the PM, here we show that the slow internalization of REEs into the cytosol underlies the activation of the Ca2+/calmodulin intracellular signaling, the accumulation of phosphatidylinositol-4-phosphate (PI4P) at the PM, and the cytoskeleton-dependent rearrangement of the SYT1/SYT5 EPCS complexes. We propose that the observed EPCS rearrangements act as a slow adaptive response to sustained stress conditions, and that this process involves the accumulation of stress-specific phosphoinositide species at the PM.
Collapse
Affiliation(s)
- EunKyoung Lee
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Brenda Vila Nova Santana
- Department of Botany, University of British Columbia, Vancouver, Canada
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Elizabeth Samuels
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Erica Corsi
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Miguel A Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga–Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Jessica Perez-Sancho
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga–Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Ghent University Global Campus, Incheon, Korea
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Alberto Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aristea Alves Azevedo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver, Canada
- Correspondence:
| |
Collapse
|
13
|
Tran D, Zhao T, Arbelet-Bonnin D, Kadono T, Meimoun P, Cangémi S, Noûs C, Kawano T, Errakhi R, Bouteau F. Early Cellular Responses Induced by Sedimentary Calcite-Processed Particles in Bright Yellow 2 Tobacco Cultured Cells. Int J Mol Sci 2020; 21:E4279. [PMID: 32560138 PMCID: PMC7349144 DOI: 10.3390/ijms21124279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Calcite processed particles (CaPPs, Megagreen®) elaborated from sedimentary limestone rock, and finned by tribomecanic process were found to increase photosynthetic CO2 fixation grapevines and stimulate growth of various cultured plants. Due to their processing, the CaPPs present a jagged shape with some invaginations below the micrometer size. We hypothesised that CaPPs could have a nanoparticle (NP)-like effects on plants. Our data show that CaPPs spontaneously induced reactive oxygen species (ROS) in liquid medium. These ROS could in turn induce well-known cellular events such as increase in cytosolic Ca2+, biotic ROS generation and activation of anion channels indicating that these CaPPs could activate various signalling pathways in a NP-like manner.
Collapse
Affiliation(s)
- Daniel Tran
- Agroscope, Institute for Plant Production Systems, 1964 Conthey, Switzerland
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, 75013 Paris, France; (T.Z.); (D.A.-B.); (T.K.); (P.M.); (S.C.); (F.B.)
| | - Tingting Zhao
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, 75013 Paris, France; (T.Z.); (D.A.-B.); (T.K.); (P.M.); (S.C.); (F.B.)
| | - Delphine Arbelet-Bonnin
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, 75013 Paris, France; (T.Z.); (D.A.-B.); (T.K.); (P.M.); (S.C.); (F.B.)
| | - Takashi Kadono
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, 75013 Paris, France; (T.Z.); (D.A.-B.); (T.K.); (P.M.); (S.C.); (F.B.)
- Graduate School of Environmental Engineering, University of Kitakyushu 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan;
| | - Patrice Meimoun
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, 75013 Paris, France; (T.Z.); (D.A.-B.); (T.K.); (P.M.); (S.C.); (F.B.)
| | - Sylvie Cangémi
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, 75013 Paris, France; (T.Z.); (D.A.-B.); (T.K.); (P.M.); (S.C.); (F.B.)
| | | | - Tomonori Kawano
- Graduate School of Environmental Engineering, University of Kitakyushu 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan;
- LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu 808-0135, Japan
- International Photosynthesis Industrialization Research Center, The University of Kitakyushu, Kitakyushu 808-0135, Japan
- Paris Interdisciplinary Energy Research Institute (PIERI), Université de Paris, 75013 Paris, France
| | - Rafik Errakhi
- Eurofins Agriscience Service, Casablanca 20000, Morocco;
| | - François Bouteau
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, 75013 Paris, France; (T.Z.); (D.A.-B.); (T.K.); (P.M.); (S.C.); (F.B.)
- LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu 808-0135, Japan
- International Photosynthesis Industrialization Research Center, The University of Kitakyushu, Kitakyushu 808-0135, Japan
| |
Collapse
|
14
|
Winnicki K. The Winner Takes It All: Auxin-The Main Player during Plant Embryogenesis. Cells 2020; 9:E606. [PMID: 32138372 PMCID: PMC7140527 DOI: 10.3390/cells9030606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
In plants, the first asymmetrical division of a zygote leads to the formation of two cells with different developmental fates. The establishment of various patterns relies on spatial and temporal gene expression, however the precise mechanism responsible for embryonic patterning still needs elucidation. Auxin seems to be the main player which regulates embryo development and controls expression of various genes in a dose-dependent manner. Thus, local auxin maxima and minima which are provided by polar auxin transport underlie cell fate specification. Diverse auxin concentrations in various regions of an embryo would easily explain distinct cell identities, however the question about the mechanism of cellular patterning in cells exposed to similar auxin concentrations still remains open. Thus, specification of cell fate might result not only from the cell position within an embryo but also from events occurring before and during mitosis. This review presents the impact of auxin on the orientation of the cell division plane and discusses the mechanism of auxin-dependent cytoskeleton alignment. Furthermore, close attention is paid to auxin-induced calcium fluxes, which regulate the activity of MAPKs during postembryonic development and which possibly might also underlie cellular patterning during embryogenesis.
Collapse
Affiliation(s)
- Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lódź, Poland
| |
Collapse
|
15
|
Rudnicka M, Ludynia M, Karcz W. Effects of Naphthazarin (DHNQ) Combined with Lawsone (NQ-2-OH) or 1,4-Naphthoquinone (NQ) on the Auxin-Induced Growth of Zea mays L. Coleoptile Segments. Int J Mol Sci 2019; 20:E1788. [PMID: 30978914 PMCID: PMC6479706 DOI: 10.3390/ijms20071788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 11/16/2022] Open
Abstract
Naphthoquinones, plants secondary metabolites are known for their antibacterial, antifungal, anti-inflammatory, anti-cancer and anti-parasitic properties. The biological activity of naphthoquinones is connected with their ability to generate reactive oxygen species and to modify biological molecules at their nucleophilic sites. In our research, the effect of naphthazarin (DHNQ) combined with 2-hydroxy-1,4-naphthoquinone (NQ-2-OH) or 1,4-naphthoquinone (1,4-NQ) on the elongation growth, pH changes of the incubation medium, oxidative stress and redox activity of maize coleoptile cells were investigated. This paper describes experiments performed with maize (Zea mays L.) coleoptile segments, which is a classical model system to study plant cell elongation growth. The data presented clearly demonstrate that lawsone and 1,4-naphthoquinone combined with naphthazarin, at low concentrations (1 and 10 nM), reduced the endogenous and IAA-induced (Indole-3-Acetic Acid) elongation growth of maize coleoptile segments. Those changes in growth correlated with the proton concentration in the incubation medium, which suggests that the changes in the growth of maize coleoptile segments observed in the presence of naphthoquinones are mediated through the activity of PM H⁺-ATPase. The presence of naphthoquinones induced oxidative stress in the maize coleoptile tissue by producing hydrogen peroxide and causing changes in the redox activity. Moreover, the incubation of maize segments with both naphthoquinones combined with naphthazarin resulted in lipid peroxidation and membrane damage. The regulation of PM H⁺-ATPase activity, especially its inhibition, may result from two major types of reaction: first, a direct interaction between an enzyme and naphthoquinone, which leads to the covalent modification of the protein thiols and the generation of thioethers, which have been found to alter the activity of the PM H⁺-ATPases; second, naphthoquinones induce reactive oxygen species (ROS) production, which inhibits PM H⁺-ATPases by increasing cytosolic Ca2+. This harmful effect was stronger when naphthazarin and 1,4-naphthoquinone were added together. Taking these results into account, it can be suggested that by combining naphthoquinones in small quantities, an alternative to synthetic pesticides could be developed.
Collapse
Affiliation(s)
- Małgorzata Rudnicka
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40032 Katowice, Poland.
| | - Michał Ludynia
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40032 Katowice, Poland.
| | - Waldemar Karcz
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, PL-40032 Katowice, Poland.
| |
Collapse
|
16
|
De Bont L, Naim E, Arbelet-Bonnin D, Xia Q, Palm E, Meimoun P, Mancuso S, El-Maarouf-Bouteau H, Bouteau F. Activation of plasma membrane H +-ATPases participates in dormancy alleviation in sunflower seeds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:408-415. [PMID: 30824019 DOI: 10.1016/j.plantsci.2018.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/19/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Using various inhibitors and scavengers we took advantage of the size of sunflower (Helianthus annuus) seeds to investigate in vivo the effects of hormones, namely abscisic acid (ABA) and ethylene (ET), and reactive oxygen species (ROS) on the polarization of dormant (D) and non-dormant (ND) embryonic seed cells using microelectrodes. Our data show that D and ND seed cells present different polarization likely due to the regulation of plasma membrane (PM) H+-ATPase activity. The data obtained after addition of hormones or ROS scavengers further suggest that ABA dependent inhibition of PM H+-ATPases could participate in dormancy maintenance and that ET-and ROS-dependent PM H+-ATPase stimulation could participate in dormancy release in sunflower seeds.
Collapse
Affiliation(s)
| | - Elissa Naim
- Sorbonne Université, UMR7622-IBPS, Paris, France
| | - Delphine Arbelet-Bonnin
- Univ Paris Diderot, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Paris, France
| | - Qiong Xia
- Sorbonne Université, UMR7622-IBPS, Paris, France
| | - Emily Palm
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Sesto Fiorentino, FI, Italy
| | - Patrice Meimoun
- Sorbonne Université, UMR7622-IBPS, Paris, France; Univ Paris Diderot, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Paris, France
| | - Stefano Mancuso
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Sesto Fiorentino, FI, Italy; Univ Paris Diderot, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | | | - François Bouteau
- Univ Paris Diderot, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Paris, France; LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
17
|
Zhang X, Cui X, Li X, Yan H, Li H, Guan X, Wang Y, Liu S, Qin X, Cheng M. Inhibition of Kir2.1 channel-induced depolarization promotes cell biological activity and differentiation by modulating autophagy in late endothelial progenitor cells. J Mol Cell Cardiol 2019; 127:57-66. [DOI: 10.1016/j.yjmcc.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 12/27/2022]
|
18
|
Rudnicka M, Ludynia M, Karcz W. The Effect of Naphthazarin on the Growth, Electrogenicity, Oxidative Stress, and Microtubule Array in Z. mays Coleoptile Cells Treated With IAA. FRONTIERS IN PLANT SCIENCE 2019; 9:1940. [PMID: 30671078 PMCID: PMC6331528 DOI: 10.3389/fpls.2018.01940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Naphthazarin (5,8-dihydroxy-1,4-naphthoquinone, DHNQ) is a naturally occurring 1,4-naphthoquinone derivative. In this study, we focused on elucidating the toxic effect of this secondary metabolite on the growth of plant cells. The dose-response curves that were obtained for the effects of DHNQ on endogenous and IAA-induced growth in maize coleoptile segments differ in shape; in the first case, it is linear, while in the presence of auxin it is bell-shaped with the maximum at 1 μM. It was found that DHNQ at almost all concentrations studied, when added to the incubation medium inhibited endogenous growth (excluding naphthazarin at 0.001 μM) as well as growth in the presence of IAA. Simultaneous measurements of the growth and external medium pH of coleoptile segments indicated that DHNQ diminished or eliminated proton extrusion at all of the concentrations that were used. Interestingly, the oxidative stress in maize coleoptile cells, which was measured as hydrogen peroxide (H2O2) production, catalase activity, redox activity and malondialdehyde (MDA) content, increased at the lower concentrations of DHNQ (<1 μM), thus suggesting a specific character of its action. It was also found that naphthazarin at concentration higher than 0.1 μM caused the depolarization of the membrane potential (E m). An analysis of the organization and anisotropy of the cortical microtubules showed that naphthazarin at all of the concentrations that were studied changed the IAA-induced transverse microtubule reorientation to an oblique reorientation. Our results indicate that naphthazarin diminished the growth of maize coleoptile cells by a broad spectrum of its toxic effects, thereby suggesting that naphthazarin might be a hypothetical component of new bioherbicides and biopesticides.
Collapse
Affiliation(s)
| | | | - Waldemar Karcz
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
19
|
Arbelet-Bonnin D, Ben Hamed-Laouti I, Laurenti P, Abdelly C, Ben Hamed K, Bouteau F. Cellular mechanisms to survive salt in the halophyte Cakile maritima. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:173-178. [PMID: 29807589 DOI: 10.1016/j.plantsci.2018.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
We recently identified two behaviours in cultured cells of the salt accumulating halophyte Cakile maritima: one related to a sustained depolarization due to Na+ influx through the non-selective cation channels leading to programmed cell death of these cells, a second one related to a transient depolarization allowing cells to survive (Ben Hamed-Laouti, 2016). In this study, we considered at the cellular level mechanisms that could participate to the exclusion of Na+ out of the cell and thus participate in the regulation of the internal contents of Na+ and cell survival. Upon addition of NaCl in the culture medium of suspension cells of C. maritima, we observed a rapid influx of Na+ followed by an efflux dependent of the activity of plasma membrane H+-ATPases, in accordance with the functioning of a Na+/H+ antiporter and the ability of some cells to repolarize. The Na+ efflux was shown to be dependent on Na+-dependent on Ca2+ influx like the SOS1 Na+/H+ antiporter. We further could observe in response to salt addition, an early production of singlet oxygen (1O2) probably due to peroxidase activities. This early 1O2 production seemed to be a prerequisite to the Na+ efflux. Our findings suggest that in addition to the pathway leading to PCD (Ben Hamed-Laouti, 2016), a second pathway comprising an SOS-like system could participate to the survival of a part of the C. maritima cultured cells challenged by salt stress.
Collapse
Affiliation(s)
- Delphine Arbelet-Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Ibtissem Ben Hamed-Laouti
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France; Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - Patrick Laurenti
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - Karim Ben Hamed
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France.
| |
Collapse
|
20
|
Sukhova EM, Sukhov VS. Dependence of the CO2 Uptake in a Plant Cell on the Plasma Membrane H+-ATPase Activity: Theoretical Analysis. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s1990747818020149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
AUX1-mediated root hair auxin influx governs SCF TIR1/AFB-type Ca 2+ signaling. Nat Commun 2018; 9:1174. [PMID: 29563504 PMCID: PMC5862985 DOI: 10.1038/s41467-018-03582-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/26/2018] [Indexed: 01/01/2023] Open
Abstract
Auxin is a key regulator of plant growth and development, but the causal relationship between hormone transport and root responses remains unresolved. Here we describe auxin uptake, together with early steps in signaling, in Arabidopsis root hairs. Using intracellular microelectrodes we show membrane depolarization, in response to IAA in a concentration- and pH-dependent manner. This depolarization is strongly impaired in aux1 mutants, indicating that AUX1 is the major transporter for auxin uptake in root hairs. Local intracellular auxin application triggers Ca2+ signals that propagate as long-distance waves between root cells and modulate their auxin responses. AUX1-mediated IAA transport, as well as IAA- triggered calcium signals, are blocked by treatment with the SCFTIR1/AFB - inhibitor auxinole. Further, they are strongly reduced in the tir1afb2afb3 and the cngc14 mutant. Our study reveals that the AUX1 transporter, the SCFTIR1/AFB receptor and the CNGC14 Ca2+ channel, mediate fast auxin signaling in roots. Auxin regulates multiple aspects of plant growth and development. Here Dindas et al. show that in root-hair cells, the AUX1 auxin influx carrier mediates proton-driven auxin import that is perceived by auxin receptors and coupled to Ca2+ waves that may modulate adaptive responses in the root.
Collapse
|
22
|
Sukhov VS, Gaspirovich VV, Gromova EN, Ladeynova MM, Sinitsyna YV, Berezina EV, Akinchits EK, Vodeneev VA. Decrease of mesophyll conductance to CO2 is a possible mechanism of abscisic acid influence on photosynthesis in seedlings of pea and wheat. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817030096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Siemieniuk A, Karcz W. Effect of K+ and Ca2+ on the indole-3-acetic acid- and fusicoccin-induced growth and membrane potential in maize coleoptile cells. AOB PLANTS 2015; 7:plv070. [PMID: 26134122 PMCID: PMC4543891 DOI: 10.1093/aobpla/plv070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/18/2015] [Indexed: 05/26/2023]
Abstract
The role of potassium (K(+)) and calcium (Ca(2+)) in the regulation of plant growth and development is complex and needs a diverse range of physiological studies. Both elements are essential for satisfactory crop production. Here, the effects of K(+) and Ca(2+) ions on endogenous growth and growth in the presence of either indole-3-acetic acid (IAA) or fusicoccin (FC) were studied in maize (Zea mays) coleoptiles. Membrane potentials of coleoptile parenchymal cells, incubated in media containing IAA, FC and different concentrations of K(+) and Ca(2+), were also determined. Growth experiments have shown that in the absence of K(+) in the incubation medium, both endogenous and IAA- or FC-induced growth were significantly inhibited by 0.1 and 1 mM Ca(2+), respectively, while in the presence of 1 mM K(+) they were inhibited only by 1 mM Ca(2+). At 10 mM K(+), endogenous growth and growth induced by either IAA or FC did not depend on Ca(2+) concentration. TEA-Cl, a potassium channel blocker, added 1 h before IAA or FC, caused a reduction of growth by 59 or 45 %, respectively. In contrast to TEA-Cl, verapamil, the Ca(2+) channel blocker, did not affect IAA- and FC-induced growth. It was also found that in parenchymal cells of maize coleoptile segments, membrane potential (Em) was strongly affected by the medium K(+), independently of Ca(2+). However, lack of Ca(2+) in the incubation medium significantly reduced the IAA- and FC-induced membrane potential hyperpolarization. TEA-Cl applied to the control medium in the same way as in growth experiments caused Em hyperpolarization synergistic with hyperpolarization produced by IAA or FC. Verapamil did not change either the Em of parenchymal cells incubated in the control medium or the IAA- and FC-induced membrane hyperpolarization. The data presented here have been discussed considering the role of K(+) uptake channels in regulation of plant cell growth.
Collapse
Affiliation(s)
- Agnieszka Siemieniuk
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Silesia, Poland
| | - Waldemar Karcz
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Silesia, Poland
| |
Collapse
|
24
|
Wang H, Yang X, Guo L, Zeng H, Qiu D. PeBL1, a novel protein elicitor from Brevibacillus laterosporus strain A60, activates defense responses and systemic resistance in Nicotiana benthamiana. Appl Environ Microbiol 2015; 81:2706-16. [PMID: 25662975 PMCID: PMC4375336 DOI: 10.1128/aem.03586-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/30/2015] [Indexed: 11/20/2022] Open
Abstract
We report the identification, characterization, and gene cloning of a novel protein elicitor (PeBL1) secreted from Brevibacillus laterosporus strain A60. Through a purification process consisting of ion-exchange chromatography and high-performance liquid chromatography (HPLC), we isolated a protein that was identified by electrospray ionization quadrupole time of flight tandem mass spectrometry (ESI-Q-TOF-MS-MS). The 351-bp PeBL1 gene produces a 12,833-Da protein with 116 amino acids that contains a 30-residue signal peptide. The PeBL1 protein was expressed in Escherichia coli. The recombinant protein can induce a typical hypersensitive response (HR) and systemic resistance in Nicotiana benthamiana, like the endogenous protein. PeBL1-treated N. benthamiana exhibited strong resistance to the infection of tobacco mosaic virus-green fluorescent protein (TMV-GFP) and Pseudomonas syringae pv. tabaci compared to control N. benthamiana. In addition, PeBL1 triggered a cascade of events that resulted in defense responses in plants, including reactive oxygen species (ROS) production, extracellular-medium alkalization, phenolic-compound deposition, and expression of several defense-related genes. Real-time quantitative-PCR analysis indicated that the known defense-related genes PR-1, PR-5, PDF1.2, NPR1, and PAL were upregulated to varying degrees by PeBL1. This research not only provides insights into the mechanism by which beneficial bacteria activate plant systemic resistance, but also sheds new light on a novel strategy for biocontrol using strain A60.
Collapse
Affiliation(s)
- Haoqian Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Xiufen Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
25
|
Matsumoto H, Riechers DE, Lygin AV, Baluška F, Sivaguru M. Aluminum Signaling and Potential Links with Safener-Induced Detoxification in Plants. ALUMINUM STRESS ADAPTATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-19968-9_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Peñarrubia L, Romero P, Carrió-Seguí A, Andrés-Bordería A, Moreno J, Sanz A. Temporal aspects of copper homeostasis and its crosstalk with hormones. FRONTIERS IN PLANT SCIENCE 2015; 6:255. [PMID: 25941529 PMCID: PMC4400860 DOI: 10.3389/fpls.2015.00255] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/31/2015] [Indexed: 05/20/2023]
Abstract
To cope with the dual nature of copper as being essential and toxic for cells, plants temporarily adapt the expression of copper homeostasis components to assure its delivery to cuproproteins while avoiding the interference of potential oxidative damage derived from both copper uptake and photosynthetic reactions during light hours. The circadian clock participates in the temporal organization of coordination of plant nutrition adapting metabolic responses to the daily oscillations. This timely control improves plant fitness and reproduction and holds biotechnological potential to drive increased crop yields. Hormonal pathways, including those of abscisic acid, gibberellins, ethylene, auxins, and jasmonates are also under direct clock and light control, both in mono and dicotyledons. In this review, we focus on copper transport in Arabidopsis thaliana and Oryza sativa and the presumable role of hormones in metal homeostasis matching nutrient availability to growth requirements and preventing metal toxicity. The presence of putative hormone-dependent regulatory elements in the promoters of copper transporters genes suggests hormonal regulation to match special copper requirements during plant development. Spatial and temporal processes that can be affected by hormones include the regulation of copper uptake into roots, intracellular trafficking and compartmentalization, and long-distance transport to developing vegetative and reproductive tissues. In turn, hormone biosynthesis and signaling are also influenced by copper availability, which suggests reciprocal regulation subjected to temporal control by the central oscillator of the circadian clock. This transcriptional regulatory network, coordinates environmental and hormonal signaling with developmental pathways to allow enhanced micronutrient acquisition efficiency.
Collapse
Affiliation(s)
- Lola Peñarrubia
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
- *Correspondence: Lola Peñarrubia, Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, Avenida Doctor Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Paco Romero
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
| | - Angela Carrió-Seguí
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
| | - Amparo Andrés-Bordería
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
| | - Joaquín Moreno
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, University of Valencia, ValenciaSpain
| | - Amparo Sanz
- Department of Plant Biology, University of Valencia, ValenciaSpain
| |
Collapse
|
27
|
Chen M, Zhang C, Zi Q, Qiu D, Liu W, Zeng H. A novel elicitor identified from Magnaporthe oryzae triggers defense responses in tobacco and rice. PLANT CELL REPORTS 2014; 33:1865-79. [PMID: 25056480 DOI: 10.1007/s00299-014-1663-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/25/2014] [Accepted: 07/15/2014] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE Our studies indicate a potential important elicitor candidate which can aid in the fight against a worldwide disease, rice blast. In this study, we report the purification, identification, characterization, and gene cloning of a novel hypersensitive response-inducing protein elicitor (MoHrip2) secreted from an important pathogenic fungus, Magnaporthe oryzae. The protein fraction was isolated from the culture filtrate of M. oryzae and identified by de novo sequencing. The elicitor-encoding gene mohrip2 was cloned following sequence comparison and PCR amplification. This 459-bp gene encodes a 152-residue polypeptide that contains an 18-residue signal peptide and exhibits a pI of 4.72 and an apparent molecular mass of 16 kDa. The hypothetical protein, MoHrip2, was expressed in Escherichia coli, and both the recombinant and the endogenous protein caused necrotic lesions in tobacco leaves. In addition to phenolic compound deposition and alkalization of the extracellular medium, MoHrip2 also induced hydrogen peroxide production and nitric oxide accumulation in tobacco cells. Moreover, rice seedlings treated with MoHrip2 exhibited pronounced resistance to M. oryzae compared with control seedlings.
Collapse
Affiliation(s)
- Mingjia Chen
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany,
| | | | | | | | | | | |
Collapse
|
28
|
Bouteau F, Bassaglia Y, Monetti E, Tran D, Navet S, Mancuso S, El-Maarouf-Bouteau H, Bonnaud-Ponticelli L. Could FaRP-Like Peptides Participate in Regulation of Hyperosmotic Stress Responses in Plants? Front Endocrinol (Lausanne) 2014; 5:132. [PMID: 25177313 PMCID: PMC4132272 DOI: 10.3389/fendo.2014.00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
Abstract
The ability to respond to hyperosmotic stress is one of the numerous conserved cellular processes that most of the organisms have to face during their life. In metazoans, some peptides belonging to the FMRFamide-like peptide (FLP) family were shown to participate in osmoregulation via regulation of ion channels; this is, a well-known response to hyperosmotic stress in plants. Thus, we explored whether FLPs exist and regulate osmotic stress in plants. First, we demonstrated the response of Arabidopsis thaliana cultured cells to a metazoan FLP (FLRF). We found that A. thaliana express genes that display typical FLP repeated sequences, which end in RF and are surrounded by K or R, which is typical of cleavage sites and suggests bioactivity; however, the terminal G, allowing an amidation process in metazoan, seems to be replaced by W. Using synthetic peptides, we showed that amidation appears unnecessary to bioactivity in A. thaliana, and we provide evidence that these putative FLPs could be involved in physiological processes related to hyperosmotic stress responses in plants, urging further studies on this topic.
Collapse
Affiliation(s)
- François Bouteau
- Sorbonne Paris Cité, Institut des Energies de Demain, Université Paris Diderot, Paris, France
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Sesto Fiorentino, Italy
| | - Yann Bassaglia
- Muséum National d’Histoire Naturelle, DMPA, Sorbonne Universités, UMR BOREA MNHN-CNRS 7208-IRD 207-UPMC-UCBN, Paris, France
- Faculté des Sciences and Technologies, Université Paris Est Créteil-Val de Marne (UPEC), Créteil, France
| | - Emanuela Monetti
- Sorbonne Paris Cité, Institut des Energies de Demain, Université Paris Diderot, Paris, France
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Sesto Fiorentino, Italy
| | - Daniel Tran
- Sorbonne Paris Cité, Institut des Energies de Demain, Université Paris Diderot, Paris, France
| | - Sandra Navet
- Sorbonne Paris Cité, Institut des Energies de Demain, Université Paris Diderot, Paris, France
| | - Stefano Mancuso
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Sesto Fiorentino, Italy
- Sorbonne Paris Cité, Paris Interdisciplinary Energy Research Institute (PIERI), Université Paris Diderot, Paris, France
| | | | - Laure Bonnaud-Ponticelli
- Muséum National d’Histoire Naturelle, DMPA, Sorbonne Universités, UMR BOREA MNHN-CNRS 7208-IRD 207-UPMC-UCBN, Paris, France
| |
Collapse
|
29
|
Shabala S, Pottosin I. Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. PHYSIOLOGIA PLANTARUM 2014; 151:257-79. [PMID: 24506225 DOI: 10.1111/ppl.12165] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/15/2013] [Accepted: 01/13/2014] [Indexed: 05/18/2023]
Abstract
Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K(+) uptake, efflux and intracellular and long-distance relocation, mediated by a large number of K(+) -selective and non-selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K(+) content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K(+) homeostasis and provoke a feedback control on K(+) channels and transporters expression and post-translational regulation of their activity, optimizing K(+) absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K(+) channels and transporters by membrane voltage, intracellular Ca(2+) , reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant-adaptive responses to hostile environments.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Tas, 7001, Australia
| | | |
Collapse
|
30
|
Pottosin I, Velarde-Buendía AM, Bose J, Fuglsang AT, Shabala S. Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2463-72. [PMID: 24723394 DOI: 10.1093/jxb/eru133] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Polyamines regulate a variety of cation and K(+) channels, but their potential effects on cation-transporting ATPases are underexplored. In this work, noninvasive microelectrode ion flux estimation and conventional microelectrode techniques were applied to study the effects of polyamines on Ca(2+) and H(+) transport and membrane potential in pea roots. Externally applied spermine or putrescine (1mM) equally activated eosin yellow (EY)-sensitive Ca(2+) pumping across the root epidermis and caused net H(+) influx or efflux. Proton influx induced by spermine was suppressed by EY, supporting the mechanism in which Ca(2+) pump imports 2 H(+) per each exported Ca(2+). Suppression of the Ca(2+) pump by EY diminished putrescine-induced net H(+) efflux instead of increasing it. Thus, activities of Ca(2+) and H(+) pumps were coupled, likely due to the H(+)-pump inhibition by intracellular Ca(2+). Additionally, spermine but not putrescine caused a direct inhibition of H(+) pumping in isolated plasma membrane vesicles. Spermine, spermidine, and putrescine (1mM) induced membrane depolarization by 70, 50, and 35 mV, respectively. Spermine-induced depolarization was abolished by cation transport blocker Gd(3+), was insensitive to anion channels' blocker niflumate, and was dependent on external Ca(2+). Further analysis showed that uptake of polyamines but not polyamine-induced cationic (K(+)+Ca(2+)+H(+)) fluxes were a main cause of membrane depolarization. Polyamine increase is a common component of plant stress responses. Activation of Ca(2+) efflux by polyamines and contrasting effects of polyamines on net H(+) fluxes and membrane potential can contribute to Ca(2+) signalling and modulate a variety of transport processes across the plasma membrane under stress.
Collapse
Affiliation(s)
- Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, University of Colima, Ave 25 de julio 965, Villa de San Sebastian, 28045 Colima, Colima, México School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Ana María Velarde-Buendía
- Centro Universitario de Investigaciones Biomédicas, University of Colima, Ave 25 de julio 965, Villa de San Sebastian, 28045 Colima, Colima, México
| | - Jayakumar Bose
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Anja T Fuglsang
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Sergey Shabala
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
31
|
Pottosin I, Shabala S. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. FRONTIERS IN PLANT SCIENCE 2014; 5:154. [PMID: 24795739 PMCID: PMC4006063 DOI: 10.3389/fpls.2014.00154] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/02/2014] [Indexed: 05/18/2023]
Abstract
Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.
Collapse
Affiliation(s)
- Igor Pottosin
- Biomedical Centre, Centro Universitario de Investigaciones Biomédicas, University of ColimaColima, Mexico
- School of Land and Food, University of TasmaniaHobart, TAS, Australia
| | - Sergey Shabala
- School of Land and Food, University of TasmaniaHobart, TAS, Australia
| |
Collapse
|
32
|
Pottosin I, Velarde-Buendía AM, Bose J, Zepeda-Jazo I, Shabala S, Dobrovinskaya O. Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1271-83. [PMID: 24465010 DOI: 10.1093/jxb/ert423] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many stresses are associated with increased accumulation of reactive oxygen species (ROS) and polyamines (PAs). PAs act as ROS scavengers, but export of putrescine and/or PAs to the apoplast and their catabolization by amine oxidases gives rise to H2O2 and other ROS, including hydroxyl radicals ((•)OH). PA catabolization-based signalling in apoplast is implemented in plant development and programmed cell death and in plant responses to a variety of biotic and abiotic stresses. Central to ROS signalling is the induction of Ca(2+) influx across the plasma membrane. Different ion conductances may be activated, depending on ROS, plant species, and tissue. Both H2O2 and (•)OH can activate hyperpolarization-activated Ca(2+)-permeable channels. (•)OH is also able to activate both outward K(+) current and weakly voltage-dependent conductance (ROSIC), with a variable cation-to-anion selectivity and sensitive to a variety of cation and anion channel blockers. Unexpectedly, PAs potentiated (•)OH-induced K(+) efflux in vivo, as well as ROSIC in isolated protoplasts. This synergistic effect is restricted to the mature root zone and is more pronounced in salt-sensitive cultivars compared with salt-tolerant ones. ROS and PAs suppress the activity of some constitutively expressed K(+) and non-selective cation channels. In addition, both (•)OH and PAs activate plasma membrane Ca(2+)-ATPase and affect H(+) pumping. Overall, (•)OH and PAs may provoke a substantial remodelling of cation and anion conductance at the plasma membrane and affect Ca(2+) signalling.
Collapse
|
33
|
Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proc Natl Acad Sci U S A 2013; 110:8296-301. [PMID: 23630285 DOI: 10.1073/pnas.1211667110] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phytohormone abscisic acid (ABA) plays a key role in the plant response to drought stress. Hence, ABA-dependent gene transcription and ion transport is regulated by a variety of protein kinases and phosphatases. However, the nature of the membrane-delimited ABA signal transduction steps remains largely unknown. To gain insight into plasma membrane-bound ABA signaling, we identified sterol-dependent proteins associated with detergent resistant membranes from Arabidopsis thaliana mesophyll cells. Among those, we detected the central ABA signaling phosphatase ABI1 (abscisic-acid insensitive 1) and the calcium-dependent protein kinase 21 (CPK21). Using fluorescence microscopy, we found these proteins to localize in membrane nanodomains, as observed by colocalization with the nanodomain marker remorin Arabidopsis thaliana remorin 1.3 (AtRem 1.3). After transient coexpression, CPK21 interacted with SLAH3 [slow anion channel 1 (SLAC1) homolog 3] and activated this anion channel. Upon CPK21 stimulation, SLAH3 exhibited the hallmark properties of S-type anion channels. Coexpression of SLAH3/CPK21 with ABI1, however, prevented proper nanodomain localization of the SLAH3/CPK21 protein complex, and as a result anion channel activation failed. FRET studies revealed enhanced interaction of SLAH3 and CPK21 within the plasma membrane in response to ABA and thus confirmed our initial observations. Interestingly, the ABA-induced SLAH3/CPK21 interaction was modulated by ABI1 and the ABA receptor RCAR1/PYL9 [regulatory components of ABA receptor 1/PYR1 (pyrabactin resistance 1)-like protein 9]. We therefore propose that ABA signaling via inhibition of ABI1 modulates the apparent association of a signaling and transport complex within membrane domains that is necessary for phosphorylation and activation of the S-type anion channel SLAH3 by CPK21.
Collapse
|
34
|
Hao LH, Wang WX, Chen C, Wang YF, Liu T, Li X, Shang ZL. Extracellular ATP promotes stomatal opening of Arabidopsis thaliana through heterotrimeric G protein α subunit and reactive oxygen species. MOLECULAR PLANT 2012; 5:852-64. [PMID: 22138967 DOI: 10.1093/mp/ssr095] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In recent years, adenosine tri-phosphate (ATP) has been reported to exist in apoplasts of plant cells as a signal molecule. Extracellular ATP (eATP) plays important roles in plant growth, development, and stress tolerance. Here, extracellular ATP was found to promote stomatal opening of Arabidopsis thaliana in light and darkness. ADP, GTP, and weakly hydrolyzable ATP analogs (ATPγS, Bz-ATP, and 2meATP) showed similar effects, whereas AMP and adenosine did not affect stomatal movement. Apyrase inhibited stomatal opening. ATP-promoted stomatal opening was blocked by an NADPH oxidase inhibitor (diphenylene iodonium) or deoxidizer (dithiothreitol), and was impaired in null mutant of NADPH oxidase (atrbohD/F). Added ATP triggered ROS generation in guard cells via NADPH oxidase. ATP also induced Ca(2+) influx and H(+) efflux in guard cells. In atrbohD/F, ATP-induced ion flux was strongly suppressed. In null mutants of the heterotrimeric G protein α subunit, ATP-promoted stomatal opening, cytoplasmic ROS generation, Ca(2+) influx, and H(+) efflux were all suppressed. These results indicated that eATP-promoted stomatal opening possibly involves the heterotrimeric G protein, ROS, cytosolic Ca(2+), and plasma membrane H(+)-ATPase.
Collapse
Affiliation(s)
- Li-Hua Hao
- Key Laboratory of Molecular and Cell Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
Chen M, Zeng H, Qiu D, Guo L, Yang X, Shi H, Zhou T, Zhao J. Purification and characterization of a novel hypersensitive response-inducing elicitor from Magnaporthe oryzae that triggers defense response in rice. PLoS One 2012; 7:e37654. [PMID: 22624059 PMCID: PMC3356297 DOI: 10.1371/journal.pone.0037654] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/22/2012] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Magnaporthe oryzae, the rice blast fungus, might secrete certain proteins related to plant-fungal pathogen interactions. METHODOLOGY/PRINCIPAL FINDINGS In this study, we report the purification, characterization, and gene cloning of a novel hypersensitive response-inducing protein elicitor (MoHrip1) secreted by M. oryzae. The protein fraction was purified and identified by de novo sequencing, and the sequence matched the genomic sequence of a putative protein from M. oryzae strain 70-15 (GenBank accession No. XP_366602.1). The elicitor-encoding gene mohrip1 was isolated; it consisted of a 429 bp cDNA, which encodes a polypeptide of 142 amino acids with a molecular weight of 14.322 kDa and a pI of 4.53. The deduced protein, MoHrip1, was expressed in E. coli. And the expression protein collected from bacterium also forms necrotic lesions in tobacco. MoHrip1 could induce the early events of the defense response, including hydrogen peroxide production, callose deposition, and alkalization of the extracellular medium, in tobacco. Moreover, MoHrip1-treated rice seedlings possessed significantly enhanced systemic resistance to M. oryzae compared to the control seedlings. The real-time PCR results indicated that the expression of some pathogenesis-related genes and genes involved in signal transduction could also be induced by MoHrip1. CONCLUSION/SIGNIFICANCE The results demonstrate that MoHrip1 triggers defense responses in rice and could be used for controlling rice blast disease.
Collapse
Affiliation(s)
| | - Hongmei Zeng
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinses Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Haapalainen M, Dauphin A, Li CM, Bailly G, Tran D, Briand J, Bouteau F, Taira S. HrpZ harpins from different Pseudomonas syringae pathovars differ in molecular interactions and in induction of anion channel responses in Arabidopsis thaliana suspension cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 51:168-74. [PMID: 22153254 DOI: 10.1016/j.plaphy.2011.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/31/2011] [Indexed: 05/16/2023]
Abstract
HrpZ, a type three secretion system helper protein from the plant-pathogen Pseudomonas syringae, can be recognized by many plants as a defence elicitor. Responses of Arabidopsis thaliana suspension cells to different HrpZ variants were studied by electrophysiological methods and cell death assay. Purified HrpZ originating from a compatible pathogen P. syringae pv. tomato DC3000 (HrpZ(Pto)) and incompatible P. syringae pv. phaseolicola (HrpZ(Pph)) both promoted Arabidopsis cell death. As an early response, both HrpZ variants induced an increase in time dependent K(+) outward rectifying current. In contrast, the effects of HrpZ proteins on anion currents were different: HrpZ(Pph) had no effect, and HrpZ(Pto) induced an anion current increase. This suggests that the observed responses of the K(+) channels and anion channels resulted from different and separable interactions and that the interaction implied in anion current modulation is host-specific. HrpZ(Pto) and HrpZ(Pph) also had a different sequence preference in phage display screen for peptide-binding. These peptides presumably represent a part of a putative target protein in the host, and HrpZ proteins of different P. syringae pathovars might have different binding specificities to match the allelic variation between plant species. Supporting the idea that the peptide-binding region of HrpZ is important for interactions with host cell components, we found that a mutation in that region changed the anion channel response of Arabidopsis cells.
Collapse
Affiliation(s)
- M Haapalainen
- General Microbiology, Department of Biological and Environmental Sciences, 00014 University of Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Identification and characterization of interactions between abscisic acid and mitochondrial adenine nucleotide translocators. Biochem J 2011; 437:117-23. [PMID: 21473740 DOI: 10.1042/bj20101898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ABA (abscisic acid) is a plant hormone involved in important processes including development and stress responses. Recent reports have identified a number of plant ABA receptors and transporters, highlighting novel mechanisms of ABA action. In the present paper we describe application of a chemical proteomics approach leading to the identification of mitochondrial ANTs (adenine nucleotide translocators) as ABA-interacting proteins. Initial in vitro studies confirmed inhibition of ANT-dependent ATP translocation by ABA. Further analysis demonstrated ANT-dependent uptake of ABA into both recombinant Arabidopsis thaliana ANT2-containing proteoliposomes and native isolated spinach mitochondria; the latter with a Km of 3.5 μM and a Vmax of 2.5 nmol/min per g of protein. ATP was found to inhibit ANT-dependent ABA translocation. Specificity profiles highlight the possibility of mechanistic differences in translocation of ABA and ATP. Finally, ABA was shown to stimulate ATPase activity in spinach mitochondrial extracts. ABA concentrations in plant cells are estimated to reach the low micromolar range during stress responses, supporting potential physiological relevance of these in vitro findings. Overall, the present in vitro work suggests the possibility of as yet uncharacterized mechanisms of ABA action in planta related to inhibition of mitochondrial ATP translocation and functional localization of ABA in the mitochondrial matrix.
Collapse
|
38
|
Böhmer M, Schroeder JI. Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:105-18. [PMID: 21426425 PMCID: PMC3125488 DOI: 10.1111/j.1365-313x.2011.04579.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Early rapid changes in response to the phytohormone abscisic acid (ABA) have been observed at the transcript level, but little is known how these transcript changes translate to changes in protein abundance under the same conditions. Here we have performed a global quantitative analysis of transcript and protein changes in Arabidopsis suspension cells in response to ABA using microarrays and quantitative proteomics. In summary, 3494 transcripts and 50 proteins were significantly regulated by ABA over a treatment period of 20-24 h. Abscisic acid also caused a rapid and strong increase in production of extracellular reactive oxygen species (ROS) with an average half-rise time of 33 sec. A subset of ABA-regulated transcripts were differentially regulated in the presence of the ROS scavenger dimethylthiourea (DMTU) as compared with ABA alone, suggesting a role for ROS in the regulation of these ABA-induced genes. Transcript changes showed an overall poor correlation to protein changes (r = 0.66). Only a subset of genes was regulated at the transcript and protein level, including known ABA marker genes. We furthermore identified ABA regulation of proteins that function in a branch of glucosinolate catabolism previously not associated with ABA signaling. The discovery of genes that were differentially regulated at the transcript and at the protein level emphasizes the strength of our combined approach. In summary, our dataset not only expands previous studies on gene and protein regulation in response to ABA, but rather uncovers unique aspects of the ABA regulon and gives rise to additional mechanisms regulated by ABA.
Collapse
Affiliation(s)
- Maik Böhmer
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA.
| | | |
Collapse
|
39
|
Monshausen GB, Miller ND, Murphy AS, Gilroy S. Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:309-18. [PMID: 21223394 DOI: 10.1111/j.1365-313x.2010.04423.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants adapt to a changing environment by entraining their growth and development to prevailing conditions. Such 'plastic' development requires a highly dynamic integration of growth phenomena with signal perception and transduction systems, such as occurs during tropic growth. The plant hormone auxin has been shown to play a key role in regulating these directional growth responses of plant organs to environmental cues. However, we are still lacking a cellular and molecular understanding of how auxin-dependent signaling cascades link stimulus perception to the rapid modulation of growth patterns. Here, we report that in root gravitropism of Arabidopsis thaliana, auxin regulates root curvature and associated apoplastic, growth-related pH changes through a Ca2+-dependent signaling pathway. Using an approach that integrates confocal microscopy and automated computer vision-based image analysis, we demonstrate highly dynamic root surface pH patterns during vertical growth and after gravistimulation. These pH dynamics are shown to be dependent on auxin, and specifically on auxin transport mediated by the auxin influx carrier AUX1 in cells of the lateral root cap and root epidermis. Our results further indicate that these pH responses require auxin-dependent changes in cytosolic Ca2+ levels that operate independently of the TIR1 auxin perception system. These results demonstrate a methodology that can be used to visualize vectorial auxin responses in a manner that can be integrated with the rapid plant growth responses to environmental stimuli.
Collapse
|
40
|
Kadono T, Tran D, Errakhi R, Hiramatsu T, Meimoun P, Briand J, Iwaya-Inoue M, Kawano T, Bouteau F. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death. PLoS One 2010; 5:e13373. [PMID: 20967217 PMCID: PMC2954175 DOI: 10.1371/journal.pone.0013373] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/20/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3) treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3)-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3), Ca(2+) influx and NADPH-oxidase generated reactive oxygen species (ROS) in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3); namely, H(2)O(2) generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3)-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s) for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
- Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka,
Japan
| | - Daniel Tran
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Rafik Errakhi
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Takuya Hiramatsu
- Graduate School of Environmental Engineering, University of Kitakyushu
1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Japan
| | - Patrice Meimoun
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Joël Briand
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Mari Iwaya-Inoue
- Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka,
Japan
| | - Tomonori Kawano
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
- Graduate School of Environmental Engineering, University of Kitakyushu
1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Japan
| | - François Bouteau
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
- Graduate School of Environmental Engineering, University of Kitakyushu
1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Japan
| |
Collapse
|
41
|
Yang Y, Qin Y, Xie C, Zhao F, Zhao J, Liu D, Chen S, Fuglsang AT, Palmgren MG, Schumaker KS, Deng XW, Guo Y. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase. THE PLANT CELL 2010; 22:1313-32. [PMID: 20418496 PMCID: PMC2879748 DOI: 10.1105/tpc.109.069609] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 03/16/2010] [Accepted: 03/30/2010] [Indexed: 05/17/2023]
Abstract
The plasma membrane H(+)-ATPase (PM H(+)-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H(+)-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H(+)-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H(+)-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H(+)-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H(+)-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H(+)-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.
Collapse
Affiliation(s)
- Yongqing Yang
- College of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Yunxia Qin
- Key Lab of Ministry of Agriculture for Biology of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Changgen Xie
- College of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Feiyi Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jinfeng Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dafa Liu
- Key Lab of Ministry of Agriculture for Biology of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Shouyi Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Anja T. Fuglsang
- Department of Plant Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Michael G. Palmgren
- Department of Plant Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Karen S. Schumaker
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Xing Wang Deng
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Guo
- National Institute of Biological Sciences, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| |
Collapse
|
42
|
Oyarce P, Gurovich L. Electrical signals in avocado trees: responses to light and water availability conditions. PLANT SIGNALING & BEHAVIOR 2010; 5:34-41. [PMID: 20592805 PMCID: PMC2835954 DOI: 10.4161/psb.5.1.10157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/23/2009] [Indexed: 05/23/2023]
Abstract
Plant responses to environmental changes are associated with electrical excitability and signaling; automatic and continuous measurements of electrical potential differences (DeltaEP) between plant tissues can be effectively used to study information transport mechanisms and physiological responses that result from external stimuli on plants. The generation and conduction of electrochemical impulses within plant different tissues and organs, resulting from abiotic and biotic changes in environmental conditions is reported. In this work, electrical potential differences are monitored continuously using Ag/AgCl microelectrodes, inserted 5 mm deep into sapwood at two positions in the trunks of several Avocado trees. Electrodes are referenced to a non polarisable Ag/AgCl microelectrode installed 20 cm deep in the soil. Systematic patterns of DeltaEP during absolute darkness, day-night cycles and different conditions of soil water availability are discussed as alternative tools to assess early plant stress conditions.
Collapse
Affiliation(s)
- Patricio Oyarce
- Fruit Science Department, Universidad Catolica de Chile, Santiago, Chile
| | | |
Collapse
|
43
|
Meimoun P, Vidal G, Bohrer AS, Lehner A, Tran D, Briand J, Bouteau F, Rona JP. Intracellular Ca2+ stores could participate to abscisic acid-induced depolarization and stomatal closure in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2009; 4:830-5. [PMID: 19847112 PMCID: PMC2802785 DOI: 10.4161/psb.4.9.9396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/30/2009] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana cell suspension, abscisic acid (ABA) induces changes in cytosolic calcium concentration ([Ca(2+)](cyt)) which are the trigger for ABA-induced plasma membrane anion current activation, H(+)-ATPase inhibition, and subsequent plasma membrane depolarization. In the present study, we took advantage of this model to analyze the implication of intracellular Ca(2+) stores in ABA signal transduction through electrophysiological current measurements, cytosolic Ca(2+) activity measurements with the apoaequorin Ca(2+) reporter protein and external pH measurement. Intracellular Ca(2+) stores involvement was determined by using specific inhibitors of CICR channels: the cADP-ribose/ryanodine receptor (Br-cADPR and dantrolene) and of the inositol trisphosphate receptor (U73122). In addition experiments were performed on epidermal strips of A. thaliana leaves to monitor stomatal closure in response to ABA in presence of the same pharmacology. Our data provide evidence that ryanodine receptor and inositol trisphosphate receptor could be involved in ABA-induced (1) Ca(2+) release in the cytosol, (2) anion channel activation and H(+)-ATPase inhibition leading to plasma membrane depolarization and (3) stomatal closure. Intracellular Ca(2+) release could thus contribute to the control of early events in the ABA signal transduction pathway in A. thaliana.
Collapse
Affiliation(s)
- Patrice Meimoun
- LEM (EA 3514), Université Paris Diderot-Paris7, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol 2009; 7:e1000139. [PMID: 19564897 PMCID: PMC2694982 DOI: 10.1371/journal.pbio.1000139] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 05/18/2009] [Indexed: 02/05/2023] Open
Abstract
Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4-mediated immune signal transduction, we purified components of the RIN4 protein complex. We identified six novel proteins that had not previously been implicated in RIN4 signaling, including the plasma membrane (PM) H(+)-ATPases AHA1 and/or AHA2. RIN4 interacts with AHA1 and AHA2 both in vitro and in vivo. RIN4 overexpression and knockout lines exhibit differential PM H(+)-ATPase activity. PM H(+)-ATPase activation induces stomatal opening, enabling bacteria to gain entry into the plant leaf; inactivation induces stomatal closure thus restricting bacterial invasion. The rin4 knockout line exhibited reduced PM H(+)-ATPase activity and, importantly, its stomata could not be re-opened by virulent Pseudomonas syringae. We also demonstrate that RIN4 is expressed in guard cells, highlighting the importance of this cell type in innate immunity. These results indicate that the Arabidopsis protein RIN4 functions with the PM H(+)-ATPase to regulate stomatal apertures, inhibiting the entry of bacterial pathogens into the plant leaf during infection.
Collapse
Affiliation(s)
- Jun Liu
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - James M. Elmore
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Anja T. Fuglsang
- Centre for Membrane Pumps in Cells and Disease—PUMPKIN, Danish National Research Foundation, Århus and Copenhagen, Denmark
- Plant Physiology and Anatomy Laboratory, Department of Plant Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Michael G. Palmgren
- Centre for Membrane Pumps in Cells and Disease—PUMPKIN, Danish National Research Foundation, Århus and Copenhagen, Denmark
- Plant Physiology and Anatomy Laboratory, Department of Plant Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Gitta Coaker
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
45
|
Park SK, Jung YJ, Lee JR, Lee YM, Jang HH, Lee SS, Park JH, Kim SY, Moon JC, Lee SY, Chae HB, Shin MR, Jung JH, Kim MG, Kim WY, Yun DJ, Lee KO, Lee SY. Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. PLANT PHYSIOLOGY 2009; 150:552-61. [PMID: 19339505 PMCID: PMC2689952 DOI: 10.1104/pp.109.135426] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/26/2009] [Indexed: 05/18/2023]
Abstract
A large number of thioredoxins (Trxs), small redox proteins, have been identified from all living organisms. However, many of the physiological roles played by these proteins remain to be elucidated. We isolated a high M(r) (HMW) form of h-type Trx from the heat-treated cytosolic extracts of Arabidopsis (Arabidopsis thaliana) suspension cells and designated it as AtTrx-h3. Using bacterially expressed recombinant AtTrx-h3, we find that it forms various protein structures ranging from low and oligomeric protein species to HMW complexes. And the AtTrx-h3 performs dual functions, acting as a disulfide reductase and as a molecular chaperone, which are closely associated with its molecular structures. The disulfide reductase function is observed predominantly in the low M(r) forms, whereas the chaperone function predominates in the HMW complexes. The multimeric structures of AtTrx-h3 are regulated not only by heat shock but also by redox status. Two active cysteine residues in AtTrx-h3 are required for disulfide reductase activity, but not for chaperone function. AtTrx-h3 confers enhanced heat-shock tolerance in Arabidopsis, primarily through its chaperone function.
Collapse
Affiliation(s)
- Soo Kwon Park
- Environmental Biotechnology National Core Research Center, Plant Molecular Biology and Biotechnology Research Center , and Division of Applied Life Science (BK21 program), Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J. The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1439-63. [PMID: 19181866 DOI: 10.1093/jxb/ern340] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stomatal guard cells are functionally specialized epidermal cells usually arranged in pairs surrounding a pore. Changes in ion fluxes, and more specifically osmolytes, within the guard cells drive opening/closing of the pore, allowing gas exchange while limiting water loss through evapo-transpiration. Adjustments of the pore aperture to optimize these conflicting needs are thus centrally important for land plants to survive, especially with the rise in CO(2) associated with global warming and increasing water scarcity this century. The basic biophysical events in modulating membrane transport have been gradually delineated over two decades. Genetics and molecular approaches in recent years have complemented and extended these earlier studies to identify major regulatory nodes. In Arabidopsis, the reference for guard cell genetics, stomatal opening driven by K(+) entry is mainly through KAT1 and KAT2, two voltage-gated K(+) inward-rectifying channels that are activated on hyperpolarization of the plasma membrane principally by the OST2 H(+)-ATPase (proton pump coupled to ATP hydrolysis). By contrast, stomatal closing is caused by K(+) efflux mainly through GORK, the outward-rectifying channel activated by membrane depolarization. The depolarization is most likely initiated by SLAC1, an anion channel distantly related to the dicarboxylate/malic acid transport protein found in fungi and bacteria. Beyond this established framework, there is also burgeoning evidence for the involvement of additional transporters, such as homologues to the multi-drug resistance proteins (or ABC transporters) as intimated by several pharmacological and reverse genetics studies. General inhibitors of protein kinases and protein phosphatases have been shown to profoundly affect guard cell membrane transport properties. Indeed, the first regulatory enzymes underpinning these transport processes revealed genetically were several protein phosphatases of the 2C class and the OST1 kinase, a member of the SnRK2 family. Taken together, these results are providing the first glimpses of an emerging signalling complex critical for modulating the stomatal aperture in response to environmental stimuli.
Collapse
Affiliation(s)
- Caroline Sirichandra
- Institut des Sciences du Végetal, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
47
|
Trouverie J, Vidal G, Zhang Z, Sirichandra C, Madiona K, Amiar Z, Prioul JL, Jeannette E, Rona JP, Brault M. Anion channel activation and proton pumping inhibition involved in the plasma membrane depolarization induced by ABA in Arabidopsis thaliana suspension cells are both ROS dependent. PLANT & CELL PHYSIOLOGY 2008; 49:1495-507. [PMID: 18757862 DOI: 10.1093/pcp/pcn126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In Arabidopsis thaliana suspension cells, ABA was previously shown to promote the activation of anion channels and the reduction of proton pumping that both contribute to the plasma membrane depolarization. These two ABA responses were shown to induce two successive [Ca(2+)](cyt) spikes. As reactive oxygen species (ROS) have emerged as components of ABA signaling pathways especially by promoting [Ca(2+)](cyt) variations, we studied whether ROS were involved in the regulation of anion channels and proton pumps activities. Here we demonstrated that ABA induced ROS production which triggered the second of the two [Ca(2+)](cyt) increases observed in response to ABA. Blocking ROS generation using diphenyleneiodonium (DPI) impaired the proton pumping reduction, the anion channel activation and the RD29A gene expression in response to ABA. Furthermore, H(2)O(2) was shown to activate anion channels and to inhibit plasma membrane proton pumping, as did ABA. However, ROS partially mimicked ABA's effects since H(2)O(2) treatment elicited anion channel activation but not the subsequent expression of the RD29A gene as did ABA. This suggests that expression of the RD29A gene in response to ABA results from the activation of multiple concomitant signaling pathways: blocking of one of them would impair gene expression whereas stimulating only one would not. We conclude that ROS are a central messenger of ABA in the signaling pathways leading to the plasma membrane depolarization induced by ABA.
Collapse
Affiliation(s)
- Jacques Trouverie
- Laboratoire d'Electrophysiologie des Membranes, EA 3514, Université Paris-Diderot, 2 place Jussieu, 75251 Paris cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Alvarez S, He Y, Chen S. Comparative Investigations of the Glucosinolate–Myrosinase System in Arabidopsis Suspension Cells and Hypocotyls. ACTA ACUST UNITED AC 2008; 49:324-33. [DOI: 10.1093/pcp/pcn007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Zhao J, Barkla BJ, Marshall J, Pittman JK, Hirschi KD. The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. PLANTA 2008; 227:659-69. [PMID: 17968588 DOI: 10.1007/s00425-007-0648-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 10/08/2007] [Indexed: 05/12/2023]
Abstract
Perturbing CAX1, an Arabidopsis vacuolar H+/Ca2+ antiporter, and the related vacuolar transporter CAX3, has been previously shown to cause severe growth defects; however, the specific function of CAX3 has remained elusive. Here, we describe plant phenotypes that are shared among cax1 and cax3 including an increased sensitivity to both abscisic acid (ABA) and sugar during germination, and an increased tolerance to ethylene during early seedling development. We have also identified phenotypes unique to cax3, namely salt, lithium and low pH sensitivity. We used biochemical measurements to ascribe these cax3 sensitivities to a reduction in vacuolar H+/Ca2+ transport during salt stress and decreased plasma membrane H+-ATPase activity. These findings catalog an array of CAX phenotypes and assign a specific role for CAX3 in response to salt tolerance.
Collapse
Affiliation(s)
- Jian Zhao
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
50
|
Duby G, Boutry M. The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles. Pflugers Arch 2008; 457:645-55. [PMID: 18228034 DOI: 10.1007/s00424-008-0457-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 12/01/2022]
Abstract
Around 40 P-type ATPases have been identified in Arabidopsis and rice, for which the genomes are known. None seems to exchange sodium and potassium, as does the animal Na(+)/K(+)-ATPase. Instead, plants, together with fungi, possess a proton pumping ATPase (H(+)-ATPase), which couples ATP hydrolysis to proton transport out of the cell, and so establishes an electrochemical gradient across the plasma membrane, which is dissipated by secondary transporters using protons in symport or antiport, as sodium is used in animal cells. Additional functions, such as stomata opening, cell growth, and intracellular pH homeostasis, have been proposed. Crystallographic data and homology modeling suggest that the H(+)-ATPase has a broadly similar structure to the other P-type ATPases but has an extended C-terminal region, which is involved in enzyme regulation. Phosphorylation of the penultimate residue, a Thr, and the subsequent binding of regulatory 14-3-3 proteins result in the formation of a dodecamer (six H(+)-ATPase and six 14-3-3 molecules) and enzyme activation. This type of regulation is unique to the P-type ATPase family. However, the recent identification of additional phosphorylated residues suggests further regulatory features.
Collapse
Affiliation(s)
- Geoffrey Duby
- Unité de Biochimie Physiologique, Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | | |
Collapse
|