1
|
Tian Q, Xie X, Lai R, Cheng C, Zhang Z, Chen Y, XuHan X, Lin Y, Lai Z. Functional and Transcriptome Analysis Reveal Specific Roles of Dimocarpus longan DlRan3A and DlRan3B in Root Hair Development, Reproductive Growth, and Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:480. [PMID: 38498444 PMCID: PMC10891736 DOI: 10.3390/plants13040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
Ran GTPases play essential roles in plant growth and development. Our previous studies revealed the nuclear localization of DlRan3A and DlRan3B proteins and proposed their functional redundancy and distinction in Dimocarpus longan somatic embryogenesis, hormone, and abiotic stress responses. To further explore the possible roles of DlRan3A and DlRan3B, gene expression analysis by qPCR showed that their transcripts were both more abundant in the early embryo and pulp in longan. Heterologous expression of DlRan3A driven by its own previously cloned promoter led to stunted growth, increased root hair density, abnormal fruits, bigger seeds, and enhanced abiotic stress tolerance. Conversely, constitutive promoter CaMV 35S (35S)-driven expression of DlRan3A, 35S, or DlRan3B promoter-controlled expression of DlRan3B did not induce the alterations in growth phenotype, while they rendered different hypersensitivities to abiotic stresses. Based on the transcriptome profiling of longan Ran overexpression in tobacco plants, we propose new mechanisms of the Ran-mediated regulation of genes associated with cell wall biosynthesis and expansion. Also, the transgenic plants expressing DlRan3A or DlRan3B genes controlled by 35S or by their own promoter all exhibited altered mRNA levels of stress-related and transcription factor genes. Moreover, DlRan3A overexpressors were more tolerant to salinity, osmotic, and heat stresses, accompanied by upregulation of oxidation-related genes, possibly involving the Ran-RBOH-CIPK network. Analysis of a subset of selected genes from the Ran transcriptome identified possible cold stress-related roles of brassinosteroid (BR)-responsive genes. The marked presence of genes related to cell wall biosynthesis and expansion, hormone, and defense responses highlighted their close regulatory association with Ran.
Collapse
Affiliation(s)
- Qilin Tian
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
| | - Xiying Xie
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
- School of Media and Design, Nantong Institute of Technology, Nantong 226019, China
| | - Ruilian Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
| | - Chunzhen Cheng
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
| | - Xu XuHan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.T.); (X.X.); (R.L.); (C.C.); (Z.Z.); (Y.C.); (X.X.); (Y.L.)
| |
Collapse
|
2
|
Ganotra J, Sharma B, Biswal B, Bhardwaj D, Tuteja N. Emerging role of small GTPases and their interactome in plants to combat abiotic and biotic stress. PROTOPLASMA 2023; 260:1007-1029. [PMID: 36525153 DOI: 10.1007/s00709-022-01830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/05/2022] [Indexed: 06/07/2023]
Abstract
Plants are frequently subjected to abiotic and biotic stress which causes major impediments in their growth and development. It is emerging that small guanosine triphosphatases (small GTPases), also known as monomeric GTP-binding proteins, assist plants in managing environmental stress. Small GTPases function as tightly regulated molecular switches that get activated with the aid of guanosine triphosphate (GTP) and deactivated by the subsequent hydrolysis of GTP to guanosine diphosphate (GDP). All small GTPases except Rat sarcoma (Ras) are found in plants, including Ras-like in brain (Rab), Rho of plant (Rop), ADP-ribosylation factor (Arf) and Ras-like nuclear (Ran). The members of small GTPases in plants interact with several downstream effectors to counteract the negative effects of environmental stress and disease-causing pathogens. In this review, we describe processes of stress alleviation by developing pathways involving several small GTPases and their associated proteins which are important for neutralizing fungal infections, stomatal regulation, and activation of abiotic stress-tolerant genes in plants. Previous reviews on small GTPases in plants were primarily focused on Rab GTPases, abiotic stress, and membrane trafficking, whereas this review seeks to improve our understanding of the role of all small GTPases in plants as well as their interactome in regulating mechanisms to combat abiotic and biotic stress. This review brings to the attention of scientists recent research on small GTPases so that they can employ genome editing tools to precisely engineer economically important plants through the overexpression/knock-out/knock-in of stress-related small GTPase genes.
Collapse
Affiliation(s)
- Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Bhawana Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Brijesh Biswal
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu and Kashmir, Jammu, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
3
|
Shi Y, Huang C, Wang X, Jin W, Wang M, Yu H. Physiological and iTRAQ-based quantitative proteomics analyses reveal the similarities and differences in stress responses between short-term boron deficiency and toxicity in wheat roots. Mol Biol Rep 2023; 50:3617-3632. [PMID: 36795283 DOI: 10.1007/s11033-022-08123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/15/2022] [Indexed: 02/17/2023]
Abstract
BACKGROUND Boron (B) is a trace element that is essential for normal wheat development, such as root growth. In wheat, roots are important organs that absorb nutrients and water. However, at present, there is insufficient research on the molecular mechanism underlying how short-term B stress affects wheat root growth. METHODS AND RESULTS Here, the optimal concentration of B for wheat root growth was determined, and the proteomic profiles of roots under short-term B deficiency and toxicity were analyzed and compared by the isobaric tag for relative and absolute quantitation (iTRAQ) technique. A total of 270 differentially abundant proteins (DAPs) that accumulated in response to B deficiency and 263 DAPs that accumulated in response to B toxicity were identified. Global expression analysis revealed that ethylene, auxin, abscisic acid (ABA), and Ca2+ signals were involved in the responses to these two stresses. Under B deficiency, DAPs related to auxin synthesis or signaling and DAPs involved in calcium signaling increased in abundance. In striking contrast, auxin and calcium signals were repressed under B toxicity. Twenty-one DAPs were detected under both conditions, including RAN1 that played a core role in the auxin and calcium signals. Overexpression of RAN1 was shown to confer plant resistance to B toxicity by activating auxin response genes, including TIR and those identified by iTRAQ in this research. Moreover, growth of the primary roots of tir mutant was significantly inhibited under B toxicity. CONCLUSION Taken together, these results indicate that some connections were present between RAN1 and the auxin signaling pathway under B toxicity. Therefore, this research provides data for improving the understanding of the molecular mechanism underlying the response to B stress.
Collapse
Affiliation(s)
- Yongchun Shi
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Chenhan Huang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiaoran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Mengqing Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Haidong Yu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
4
|
Malambane G, Madumane K, Sewelo LT, Batlang U. Drought stress tolerance mechanisms and their potential common indicators to salinity, insights from the wild watermelon (Citrullus lanatus): A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1074395. [PMID: 36815012 PMCID: PMC9939662 DOI: 10.3389/fpls.2022.1074395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Climate change has escalated the effect of drought on crop production as it has negatively altered the environmental condition. Wild watermelon grows abundantly in the Kgalagadi desert even though the environment is characterized by minimal rainfall, high temperatures and intense sunshine during growing season. This area is also characterized by sandy soils with low water holding capacity, thus bringing about drought stress. Drought stress affects crop productivity through its effects on development and physiological functions as dictated by molecular responses. Not only one or two physiological process or genes are responsible for drought tolerance, but a combination of various factors do work together to aid crop tolerance mechanism. Various studies have shown that wild watermelon possess superior qualities that aid its survival in unfavorable conditions. These mechanisms include resilient root growth, timely stomatal closure, chlorophyll fluorescence quenching under water deficit as key physiological responses. At biochemical and molecular level, the crop responds through citrulline accumulation and expression of genes associated with drought tolerance in this species and other plants. Previous salinity stress studies involving other plants have identified citrulline accumulation and expression of some of these genes (chloroplast APX, Type-2 metallothionein), to be associated with tolerance. Emerging evidence indicates that the upstream of functional genes are the transcription factor that regulates drought and salinity stress responses as well as adaptation. In this review we discuss the drought tolerance mechanisms in watermelons and some of its common indicators to salinity at physiological, biochemical and molecular level.
Collapse
|
5
|
Yuan J, Cheng L, Li H, An C, Wang Y, Zhang F. Physiological and protein profiling analysis provides insight into the underlying molecular mechanism of potato tuber development regulated by jasmonic acid in vitro. BMC PLANT BIOLOGY 2022; 22:481. [PMID: 36210448 PMCID: PMC9549635 DOI: 10.1186/s12870-022-03852-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/19/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Jasmonates (JAs) are one of important phytohormones regulating potato tuber development. It is a complex process and the underlying molecular mechanism regulating tuber development by JAs is still limited. This study attempted to illuminate it through the potential proteomic dynamics information about tuber development in vitro regulated by exogenous JA. RESULTS A combined analysis of physiological and iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic approach was performed in tuber development in vitro under exogenous JA treatments (0, 0.5, 5 and 50 μΜ). Physiological results indicated that low JA concentration (especially 5 μM) promoted tuber development, whereas higher JA concentration (50 μM) showed inhibition effect. A total of 257 differentially expressed proteins (DEPs) were identified by iTRAQ, which provided a comprehensive overview on the functional protein profile changes of tuber development regulated by JA. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that low JA concentration (especially 5 μM) exhibited the promotion effects on tuber development in various cellular processes. Some cell wall polysaccharide synthesis and cytoskeleton formation-related proteins were up-regulated by JA to promote tuber cell expansion. Some primary carbon metabolism-related enzymes were up-regulated by JA to provide sufficient metabolism intermediates and energy for tuber development. And, a large number of protein biosynthesis, degradation and assembly-related were up-regulated by JA to promote tuber protein biosynthesis and maintain strict protein quality control during tuber development. CONCLUSIONS This study is the first to integrate physiological and proteomic data to provide useful information about the JA-signaling response mechanism of potato tuber development in vitro. The results revealed that the levels of a number of proteins involved in various cellular processes were regulated by JA during tuber development. The proposed hypothetical model would explain the interaction of these DEPs that associated with tuber development in vitro regulated by JA.
Collapse
Affiliation(s)
- Jianlong Yuan
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lixiang Cheng
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huijun Li
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Congcong An
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Feng Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
6
|
Affortit P, Effa-Effa B, Ndoye MS, Moukouanga D, Luchaire N, Cabrera-Bosquet L, Perálvarez M, Pilloni R, Welcker C, Champion A, Gantet P, Diedhiou AG, Manneh B, Aroca R, Vadez V, Laplaze L, Cubry P, Grondin A. Physiological and genetic control of transpiration efficiency in African rice, Oryza glaberrima Steud. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5279-5293. [PMID: 35429274 DOI: 10.1093/jxb/erac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Improving crop water use efficiency, the amount of carbon assimilated as biomass per unit of water used by a plant, is of major importance as water for agriculture becomes scarcer. In rice, the genetic bases of transpiration efficiency, the derivation of water use efficiency at the whole-plant scale, and its putative component trait transpiration restriction under high evaporative demand remain unknown. These traits were measured in 2019 in a panel of 147 African rice (Oryza glaberrima) genotypes known to be potential sources of tolerance genes to biotic and abiotic stresses. Our results reveal that higher transpiration efficiency is associated with transpiration restriction in African rice. Detailed measurements in a subset of highly contrasted genotypes in terms of biomass accumulation and transpiration confirmed these associations and suggested that root to shoot ratio played an important role in transpiration restriction. Genome wide association studies identified marker-trait associations for transpiration response to evaporative demand, transpiration efficiency, and its residuals, with links to genes involved in water transport and cell wall patterning. Our data suggest that root-shoot partitioning is an important component of transpiration restriction that has a positive effect on transpiration efficiency in African rice. Both traits are heritable and define targets for breeding rice with improved water use strategies.
Collapse
Affiliation(s)
- Pablo Affortit
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Branly Effa-Effa
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- CENAREST, Libreville, Gabon
| | - Mame Sokhatil Ndoye
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- CERAAS, Thiès, Senegal
| | | | - Nathalie Luchaire
- LEPSE, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
| | | | | | - Raphaël Pilloni
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Claude Welcker
- LEPSE, Université de Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Antony Champion
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Pascal Gantet
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | | | | | | | - Vincent Vadez
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- CERAAS, Thiès, Senegal
- LMI LAPSE, Dakar, Senegal
- ICRISAT, Patancheru, India
| | - Laurent Laplaze
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- LMI LAPSE, Dakar, Senegal
| | - Philippe Cubry
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Alexandre Grondin
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
- CERAAS, Thiès, Senegal
- LMI LAPSE, Dakar, Senegal
| |
Collapse
|
7
|
Pham G, Shin DM, Kim Y, Kim SH. Ran-GTP/-GDP-dependent nuclear accumulation of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and TGACG-BINDING FACTOR2 controls salicylic acid-induced leaf senescence. PLANT PHYSIOLOGY 2022; 189:1774-1793. [PMID: 35417014 PMCID: PMC9237681 DOI: 10.1093/plphys/kiac164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/08/2022] [Indexed: 05/11/2023]
Abstract
Leaf senescence is the final stage of leaf development and can be triggered by various external factors, such as hormones and light deprivation. In this study, we demonstrate that the overexpression of the GTP-bound form of Arabidopsis (Arabidopsis thaliana) Ran1 (a Ras-related nuclear small G-protein, AtRan1) efficiently promotes age-dependent and dark-triggered leaf senescence, while Ran-GDP has the opposite effect. Transcriptome analysis comparing AtRan1-GDP- and AtRan1-GTP-overexpressing transgenic plants (Ran1T27Nox and Ran1G22Vox, respectively) revealed that differentially expressed genes (DEGs) related to the senescence-promoting hormones salicylic acid (SA), jasmonic acid, abscisic acid, and ethylene (ET) were significantly upregulated in dark-triggered senescing leaves of Ran1G22Vox, indicating that these hormones are actively involved in Ran-GTP/-GDP-dependent, dark-triggered leaf senescence. Bioinformatic analysis of the promoter regions of DEGs identified diverse consensus motifs, including the bZIP motif, a common binding site for TGACG-BINDING FACTOR (TGA) transcription factors. Interestingly, TGA2 and its interactor, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1), which are two positive transcriptional regulators of SA signaling, differed in their extent of accumulation in the nucleus versus cytoplasm of Ran1T27Nox and Ran1G22Vox plants. Moreover, SA-induced, Ran-GTP-/-GDP-dependent functions of NPR1 included genome-wide global transcriptional reprogramming of genes involved in cell death, aging, and chloroplast organization. Furthermore, the expression of AtRan1-GTP in SA signaling-defective npr1 and SA biosynthesis-deficient SA-induction deficient2 genetic backgrounds abolished the effects of AtRan1-GTP, thus retarding age-promoted leaf senescence. However, ET-induced leaf senescence was not mediated by Ran machinery-dependent nuclear shuttling of ETHYLENE-INSENSITIVE3 and ETHYLENE-INSENSITIVE3-LIKE1 proteins. We conclude that Ran-GTP/-GDP-dependent nuclear accumulation of NPR1 and TGA2 represents another regulatory node for SA-induced leaf senescence.
Collapse
Affiliation(s)
| | | | - Yoon Kim
- Division of Biological Science and Technology, Yonsei University, Yonseidae 1 Gil, Wonju-Si 220-710, South Korea
| | | |
Collapse
|
8
|
Qin Z, Wu YN, Sun TT, Ma T, Xu M, Pang C, Li SW, Li S. Arabidopsis RAN GTPases are critical for mitosis during male and female gametogenesis. FEBS Lett 2022; 596:1892-1903. [PMID: 35680649 DOI: 10.1002/1873-3468.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
The development of male and female gametophytes is a prerequisite for successful propagation of angiosperms. The small GTPases RAN play fundamental roles in numerous cellular processes. Although RAN GTPases have been characterized in plants, their roles in cellular processes are far from understood. We report here that RAN GTPases in Arabidopsis are critical for gametophytic development. RAN1 loss-of-function showed no defects in gametophytic development likely due to redundancy. However, the expression of a dominant negative or constitutively active RAN1 resulted in gametophytic lethality. Genetic interference of RAN GTPases caused the arrest of pollen mitosis I and of mitosis of functional megaspores, implying a key role of properly regulated RAN activity in mitosis during gametophytic development.
Collapse
Affiliation(s)
- Zheng Qin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin, China
| | - Ya-Nan Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Tian-Tian Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Ting Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Meng Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Chen Pang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shan-Wei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Sha Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin, China.,State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
9
|
Liu X, Zhang Z, Zhang M, Zhao X, Zhang T, Liu W, Zhang J. A ras-related nuclear protein Ran participates in the 20E signaling pathway and is essential for the growth and development of Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104945. [PMID: 34446211 DOI: 10.1016/j.pestbp.2021.104945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The small GTPase Ran is a member of the Ras superfamily of small GTP-binding proteins, which plays a key role in the translocation of RNA and proteins through the nuclear pore complex. In this study, the full-length cDNA sequence of LmRan gene was obtained, which consists of 648-nucleotides open reading frame (ORF) and encodes 215 amino acids. RT-qPCR results revealed that LmRan was expressed in all developmental days and tissues investigated. Injection of dsLmRan into 4th and 5th instar nymphs, resulted in a significant down-regulation of LmRan transcripts, respectively. All dsLmRan-injected nymphs died before molting. Further hematoxylin and eosin staining of the integument showed that there was no apolysis occurred after silencing LmRan. In addition, the weight of dsLmRan-injected nymphs was significantly lower than that of the control group, and the gastric caecum and midgut was severely smaller. Especiallly, the mRNA level of LmCYP302a1, LmCYP315a1 and LmCYP314a1 responsible for 20E synthesis, LmE75 and LmE74 genes involved in the 20E signaling pathway, LmGfat, LmUAP1 and LmCHT10 genes involved in chitin metabolism pathway were dramatically decreased in the dsLmRan-injected nymphs. Together, the results indicated that LmRan participate in the 20E signaling pathway, which is essential for the growth and development of locusts.
Collapse
Affiliation(s)
- Xiaojian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zheng Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaoming Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Tingting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Weimin Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
10
|
Chen K, Su C, Tang W, Zhou Y, Xu Z, Chen J, Li H, Chen M, Ma Y. Nuclear transport factor GmNTF2B-1 enhances soybean drought tolerance by interacting with oxidoreductase GmOXR17 to reduce reactive oxygen species content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:740-759. [PMID: 33978999 DOI: 10.1111/tpj.15319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 05/27/2023]
Abstract
Drought is a critical abiotic stressor that modulates soybean yield. Drought stress drastically enhances reactive oxygen species (ROS) formation, and maintaining ROS content above a cytostatic level but below a cytotoxic level is essential for normal biology processes in plants. At present, most of the known ROS-scavenging systems are in the cytoplasm, and the mechanism of ROS regulation in the nucleus remains unclear. GmNTF2B-1 is a member of the IV subgroup in the nucleus transporter family. Its expression is localized to the roots and is stimulated by drought stress. In this study, the overexpression of GmNTF2B-1 was found to improve the drought tolerance of transgenic soybean by influencing the ROS content in plants. An oxidoreductase, GmOXR17, was identified to interact with GmNTF2B-1 in the nucleus through the yeast two-hybrid, coimmunoprecipitation and bimolecular fluorescence complementation assays. The drought tolerance of GmOXR17 transgenic soybean was similar to that of GmNTF2B-1. GmNTF2B-1 was expressed in both cytoplasm and nucleus, and GmOXR17 transferred from the cytoplasm to the nucleus under drought stress. The overexpression of GmNTF2B-1 enhanced the nuclear entry of GmOXR17, and the overexpression of GmNTF2B-1 or GmOXR17 could decrease the H2 O2 content and oxidation level in the nucleus. In conclusion, the interaction between GmNTF2B-1 and GmOXR17 may enhance the nuclear entry of GmOXR17, thereby enhancing nuclear ROS scavenging to improve the drought resistance of soybean.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Chen Su
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
- Agricultural Technology Extension Center of Xi'an, Xi'an 710000, China
| | - Wensi Tang
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Yongbin Zhou
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Zhaoshi Xu
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Jun Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Haiyan Li
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Ming Chen
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| | - Youzhi Ma
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Ministry of Agriculture, Beijing, 100081, China
| |
Collapse
|
11
|
Li C, Li L, Reynolds MP, Wang J, Chang X, Mao X, Jing R. Recognizing the hidden half in wheat: root system attributes associated with drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5117-5133. [PMID: 33783492 DOI: 10.1093/jxb/erab124] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 05/09/2023]
Abstract
Improving drought tolerance in wheat is crucial for maintaining productivity and food security. Roots are responsible for the uptake of water from soil, and a number of root traits are associated with drought tolerance. Studies have revealed many quantitative trait loci and genes controlling root development in plants. However, the genetic dissection of root traits in response to drought in wheat is still unclear. Here, we review crop root traits associated with drought, key genes governing root development in plants, and quantitative trait loci and genes regulating root system architecture under water-limited conditions in wheat. Deep roots, optimal root length density and xylem diameter, and increased root surface area are traits contributing to drought tolerance. In view of the diverse environments in which wheat is grown, the balance among root and shoot traits, as well as individual and population performance, are discussed. The known functions of key genes provide information for the genetic dissection of root development of wheat in a wide range of conditions, and will be beneficial for molecular marker development, marker-assisted selection, and genetic improvement in breeding for drought tolerance.
Collapse
Affiliation(s)
- Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Lee CH, Hawker NP, Peters JR, Lonhienne TGA, Gursanscky NR, Matthew L, Brosnan CA, Mann CWG, Cromer L, Taochy C, Ngo QA, Sundaresan V, Schenk PM, Kobe B, Borges F, Mercier R, Bowman JL, Carroll BJ. DEFECTIVE EMBRYO AND MERISTEMS genes are required for cell division and gamete viability in Arabidopsis. PLoS Genet 2021; 17:e1009561. [PMID: 33999950 PMCID: PMC8158957 DOI: 10.1371/journal.pgen.1009561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/27/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
The DEFECTIVE EMBRYO AND MERISTEMS 1 (DEM1) gene encodes a protein of unknown biochemical function required for meristem formation and seedling development in tomato, but it was unclear whether DEM1’s primary role was in cell division or alternatively, in defining the identity of meristematic cells. Genome sequence analysis indicates that flowering plants possess at least two DEM genes. Arabidopsis has two DEM genes, DEM1 and DEM2, which we show are expressed in developing embryos and meristems in a punctate pattern that is typical of genes involved in cell division. Homozygous dem1 dem2 double mutants were not recovered, and plants carrying a single functional DEM1 allele and no functional copies of DEM2, i.e. DEM1/dem1 dem2/dem2 plants, exhibit normal development through to the time of flowering but during male reproductive development, chromosomes fail to align on the metaphase plate at meiosis II and result in abnormal numbers of daughter cells following meiosis. Additionally, these plants show defects in both pollen and embryo sac development, and produce defective male and female gametes. In contrast, dem1/dem1 DEM2/dem2 plants showed normal levels of fertility, indicating that DEM2 plays a more important role than DEM1 in gamete viability. The increased importance of DEM2 in gamete viability correlated with higher mRNA levels of DEM2 compared to DEM1 in most tissues examined and particularly in the vegetative shoot apex, developing siliques, pollen and sperm. We also demonstrate that gamete viability depends not only on the number of functional DEM alleles inherited following meiosis, but also on the number of functional DEM alleles in the parent plant that undergoes meiosis. Furthermore, DEM1 interacts with RAS-RELATED NUCLEAR PROTEIN 1 (RAN1) in yeast two-hybrid and pull-down binding assays, and we show that fluorescent proteins fused to DEM1 and RAN1 co-localize transiently during male meiosis and pollen development. In eukaryotes, RAN is a highly conserved GTPase that plays key roles in cell cycle progression, spindle assembly during cell division, reformation of the nuclear envelope following cell division, and nucleocytoplasmic transport. Our results demonstrate that DEM proteins play an essential role in cell division in plants, most likely through an interaction with RAN1. Up to half of the genes predicted from genome projects lack a known biological and biochemical function. Many of these genes are likely to play essential roles but it is difficult to reveal their function because minor changes in the genetic sequence can result in lethality and genetic redundancy can obscure analysis. Genome projects predict that flowering plants have at least two DEM genes that encode a protein of unknown cellular and biochemical function. In this paper, we use multiple combinations of dem mutants in Arabidopsis to show that DEM genes are essential for cell division and gamete viability. Interestingly, gamete viability depends not only on the number of functional copies of DEM genes in the gametes, but also on the number of functional copies of DEM genes in the parent plant that produces the gametes. We also show that DEM proteins interact with RAN, a highly conserved protein that controls cell division in all eukaryotic organisms.
Collapse
Affiliation(s)
- Chin Hong Lee
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Nathaniel P. Hawker
- Section of Plant Biology, One Shields Avenue, University of California at Davis, Davis, California, United States of America
| | - Jonathan R. Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Thierry G. A. Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Nial R. Gursanscky
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Louisa Matthew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Christopher A. Brosnan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Laurence Cromer
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Christelle Taochy
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Quy A. Ngo
- Section of Plant Biology, One Shields Avenue, University of California at Davis, Davis, California, United States of America
| | - Venkatesan Sundaresan
- Section of Plant Biology, One Shields Avenue, University of California at Davis, Davis, California, United States of America
| | - Peer M. Schenk
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
- Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Filipe Borges
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Raphael Mercier
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - John L. Bowman
- Section of Plant Biology, One Shields Avenue, University of California at Davis, Davis, California, United States of America
- School of Biological Sciences, Monash University, Clayton Campus, Clayton, Victoria, Australia
- * E-mail: (JLB); (BJC)
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
- * E-mail: (JLB); (BJC)
| |
Collapse
|
13
|
Genome-wide identification of Ran GTPase family genes from wheat (T. aestivum) and their expression profile during developmental stages and abiotic stress conditions. Funct Integr Genomics 2021; 21:239-250. [PMID: 33609188 DOI: 10.1007/s10142-021-00773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Maintenance of growth is important for sustaining yield under stress conditions. Hence, identification of genes involved in cell division and growth under abiotic stress is utmost important. Ras-related nuclear protein (Ran) is a small GTPase required for nucleocytoplasmic transport, mitotic progression, and nuclear envelope assembly in plants. In the present study, two Ran GTPase genes TaRAN1 and TaRAN2 were identified though genome-wide analysis in wheat (T. aestivum). Comparative analysis of Ran GTPases from wheat, barley, rice, maize, sorghum, and Arabidopsis revealed similar gene structure within phylogenetic clades and highly conserved protein structure. Expression analysis from expVIP platform showed ubiquitous expression of TaRAN genes across tissues and developmental stages. Under biotic and abiotic stresses, TaRAN1 expression was largely unaltered, while TaRAN2 showed stress specific response. In qRT-PCR analysis, TaRAN1 showed significantly higher expression as compared to TaRAN2 in shoot and root at seedling, vegetative, and reproductive stages. During progressive drought stress, TaRAN1 and TaRAN2 expression increase during early stress and restored to control level expression at higher stress levels in shoot. The steady-state level of transcripts was maintained to that of control in roots under drought stress. Under cold stress, expression of both the TaRAN genes decreased significantly at 3 h and became similar to control at 6 h in shoots, while salt stress significantly reduced the expression of TaRAN genes in shoots. The analysis suggests differential regulation of TaRAN genes under developmental stages and abiotic stresses. Delineating the molecular functions of Ran GTPases will help unravel the mechanism of stress induced growth inhibition in wheat.
Collapse
|
14
|
Song Z, Zhang C, Chen L, Jin P, Tetteh C, Zhou X, Gao Z, Zhang H. The Arabidopsis small G-protein AtRAN1 is a positive regulator in chitin-induced stomatal closure and disease resistance. MOLECULAR PLANT PATHOLOGY 2021; 22:92-107. [PMID: 33191557 PMCID: PMC7749754 DOI: 10.1111/mpp.13010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 05/05/2023]
Abstract
Chitin, a fungal microbial-associated molecular pattern, triggers various defence responses in several plant systems. Although it induces stomatal closure, the molecular mechanisms of its interactions with guard cell signalling pathways are unclear. Based on screening of public microarray data obtained from the ATH1 Affymetrix and Arabidopsis eFP browser, we isolated a cDNA encoding a Ras-related nuclear protein 1 AtRAN1. AtRAN1 expression was enriched in guard cells in a manner consistent with involvement in the control of the stomatal movement. AtRAN1 mutation impaired chitin-induced stomatal closure and accumulation of reactive oxygen species and nitric oxide in guard cells. In addition, Atran1 mutant plants exhibited compromised chitin-enhanced plant resistance to both bacterial and fungal pathogens due to changes in defence-related genes. Furthermore, Atran1 mutant plants were hypersensitive to drought stress compared to Col-0 plants, and had lower levels of stress-responsive genes. These data demonstrate a previously uncharacterized signalling role for AtRAN1, mediating chitin-induced signalling.
Collapse
Affiliation(s)
- Zhiqiang Song
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Cheng Zhang
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Ling Chen
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Pinyuan Jin
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Charles Tetteh
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Xiuhong Zhou
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Zhimou Gao
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Huajian Zhang
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| |
Collapse
|
15
|
Zhang B, Li C, Li Y, Yu H. Mobile TERMINAL FLOWER1 determines seed size in Arabidopsis. NATURE PLANTS 2020; 6:1146-1157. [PMID: 32839516 DOI: 10.1038/s41477-020-0749-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/21/2020] [Indexed: 05/06/2023]
Abstract
Seed size is a pivotal agronomic trait that links plant sexual reproduction and subsequent seedling establishment, and is affected by the timing of endosperm cellularization following endosperm proliferation after double fertilization. The molecular switch that controls the timing of endosperm cellularization has so far been largely unclear. Here, we report that the Arabidopsis TERMINAL FLOWER1 (TFL1) is a mobile regulator generated in the chalazal endosperm, and moves to the syncytial peripheral endosperm to mediate timely endosperm cellularization and seed size through stabilizing ABSCISIC ACID INSENSITIVE 5. We further show that Ras-related nuclear GTPases interact with TFL1 and regulate its trafficking to the syncytial peripheral endosperm. Our findings reveal TFL1 as an essential molecular switch for regulating endosperm cellularization and seed size. Generation of mobile TFL1 in the chalazal endosperm, which is close to maternal vascular tissues, could provide a hitherto-unknown means to control seed development by mother plants.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Chengxiang Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yan Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Nielsen E. The Small GTPase Superfamily in Plants: A Conserved Regulatory Module with Novel Functions. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:247-272. [PMID: 32442390 DOI: 10.1146/annurev-arplant-112619-025827] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Small GTP-binding proteins represent a highly conserved signaling module in eukaryotes that regulates diverse cellular processes such as signal transduction, cytoskeletal organization and cell polarity, cell proliferation and differentiation, intracellular membrane trafficking and transport vesicle formation, and nucleocytoplasmic transport. These proteins function as molecular switches that cycle between active and inactive states, and this cycle is linked to GTP binding and hydrolysis. In this review, the roles of the plant complement of small GTP-binding proteins in these cellular processes are described, as well as accessory proteins that control their activity, and current understanding of the functions of individual members of these families in plants-with a focus on the model organism Arabidopsis-is presented. Some potential novel roles of these GTPases in plants, relative to their established roles in yeast and/or animal systems, are also discussed.
Collapse
Affiliation(s)
- Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
17
|
Molero G, Joynson R, Pinera‐Chavez FJ, Gardiner L, Rivera‐Amado C, Hall A, Reynolds MP. Elucidating the genetic basis of biomass accumulation and radiation use efficiency in spring wheat and its role in yield potential. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1276-1288. [PMID: 30549213 PMCID: PMC6576103 DOI: 10.1111/pbi.13052] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 05/22/2023]
Abstract
One of the major challenges for plant scientists is increasing wheat (Triticum aestivum) yield potential (YP). A significant bottleneck for increasing YP is achieving increased biomass through optimization of radiation use efficiency (RUE) along the crop cycle. Exotic material such as landraces and synthetic wheat has been incorporated into breeding programmes in an attempt to alleviate this; however, their contribution to YP is still unclear. To understand the genetic basis of biomass accumulation and RUE, we applied genome-wide association study (GWAS) to a panel of 150 elite spring wheat genotypes including many landrace and synthetically derived lines. The panel was evaluated for 31 traits over 2 years under optimal growing conditions and genotyped using the 35K wheat breeders array. Marker-trait association identified 94 SNPs significantly associated with yield, agronomic and phenology-related traits along with RUE and final biomass (BM_PM) at various growth stages that explained 7%-17% of phenotypic variation. Common SNP markers were identified for grain yield, BM_PM and RUE on chromosomes 5A and 7A. Additionally, landrace and synthetic derivative lines showed higher thousand grain weight (TGW), BM_PM and RUE but lower grain number (GM2) and harvest index (HI). Our work demonstrates the use of exotic material as a valuable resource to increase YP. It also provides markers for use in marker-assisted breeding to systematically increase BM_PM, RUE and TGW and avoid the TGW/GM2 and BM_PM/HI trade-off. Thus, achieving greater genetic gains in elite germplasm while also highlighting genomic regions and candidate genes for further study.
Collapse
Affiliation(s)
- Gemma Molero
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT)TexcocoMexico
| | | | | | | | - Carolina Rivera‐Amado
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT)TexcocoMexico
| | | | - Matthew P. Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT)TexcocoMexico
| |
Collapse
|
18
|
Mizuno Y, Ohtsu M, Shibata Y, Tanaka A, Camagna M, Ojika M, Mori H, Sato I, Chiba S, Kawakita K, Takemoto D. Nicotiana benthamiana RanBP1-1 Is Involved in the Induction of Disease Resistance via Regulation of Nuclear-Cytoplasmic Transport of Small GTPase Ran. FRONTIERS IN PLANT SCIENCE 2019; 10:222. [PMID: 30906303 PMCID: PMC6418045 DOI: 10.3389/fpls.2019.00222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/08/2019] [Indexed: 06/07/2023]
Abstract
Plant cells enhance the tolerances to abiotic and biotic stresses via recognition of the stress, activation and nuclear import of signaling factors, up-regulation of defense genes, nuclear export of mRNA and translation of defense proteins. Nuclear pore-mediated transports should play critical roles in these processes, however, the regulatory mechanisms of nuclear-cytoplasmic transport during stress responses are largely unknown. In this study, a regulator of nuclear export of RNA and proteins, NbRanBP1-1 (Ran-binding protein1-1), was identified as an essential gene for the resistance of Nicotiana benthamiana to potato blight pathogen Phytophthora infestans. NbRanBP1-1-silenced plants showed delayed accumulation of capsidiol, a sesquiterpenoid phytoalexin, in response to elicitor treatment, and reduced resistance to P. infestans. Abnormal accumulation of mRNA was observed in NbRanBP1-1-silenced plants, indicating that NbRanBP1-1 is involved in the nuclear export of mRNA. In NbRanBP1-1-silenced plants, elicitor-induced expression of defense genes, NbEAS and NbWIPK, was not affected in the early stage of defense induction, but the accumulation of NbWIPK protein was reduced. Nuclear export of the small G-protein NbRan1a was activated during the induction of plant defense, whereas this process was compromised in NbRanBP1-1-silenced plants. Silencing of genes encoding the nuclear pore proteins, Nup75 and Nup160, also caused abnormal nuclear accumulation of mRNA, defects in the nuclear export of NbRan1a, and reduced production of capsidiol, resulting in decreased resistance to P. infestans. These results suggest that nuclear export of NbRan is a key event for defense induction in N. benthamiana, and both RanBP1-1 and nucleoporins play important roles in the process.
Collapse
|
19
|
Gu Y. The nuclear pore complex: a strategic platform for regulating cell signaling. THE NEW PHYTOLOGIST 2018; 219:25-30. [PMID: 28858378 DOI: 10.1111/nph.14756] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/13/2017] [Indexed: 05/22/2023]
Abstract
Contents Summary 25 I Introduction 25 II. Structural organization of the NPC 26 III. The role of NPCs in immune signaling 26 IV. The role of NPCs in hormone signaling 28 V. Conclusions 29 Acknowledgements 29 References 29 SUMMARY: Nuclear pore complexes (NPCs) are fundamental components of the eukaryotic cell. They perforate the nuclear envelope and serve as highly selective transport gates that enable bi-directional macromolecule exchange between the nucleus and cytoplasm. Recent studies illustrate that the NPC is not a static structural channel but a flexible environment and strategic player during nuclear signaling. The constitutional and conformational dynamics of the NPC allow it to tailor nucleocytoplasmic transport activities and define specific signaling output in response to various cellular and environmental cues. In this Insight, we review the roles of NPC constituents in immune activation and hormone signaling in plants, and discuss the possible role of the NPC as a legitimate platform for regulating cell signaling.
Collapse
Affiliation(s)
- Yangnan Gu
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, 100084, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Zhang Q, Wang B, Wei J, Wang X, Han Q, Kang Z. TaNTF2, a contributor for wheat resistance to the stripe rust pathogen. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:260-267. [PMID: 29274571 DOI: 10.1016/j.plaphy.2017.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Nuclear Transport Factor 2 (NTF2) functions as a critical regulator in balancing the GTP-and GDP-bound forms of Ran, a class of evolutionarily conserved small GTP-binding protein. During the incompatible interaction between wheat-Puccinia striiformis f. sp. tritici (Pst), a cDNA fragment encoding a putative wheat NTF2 gene was found to be significantly induced, suggesting a potential role in wheat resistance to Pst. In this work, the full length of TaNTF2 was obtained, with three copies located on 7A, 7B and 7D chromosomes, respectively. QRT-PCR further verified the up-regulated expression of TaNTF2 in response to avirulent Pst. In addition, TaNTF2 was also induced by exogenous hormone applications, especially JA treatment. Transient expression of TaNTF2 in tobacco cells confirmed its subcellular localization in the cytoplasm, perinuclear area and nucleus. And virus induced gene silencing (VIGS) was used to identify the function of TaNTF2 during an incompatible wheat-Pst interaction. When TaNTF2 was knocked down, resistance of wheat to avirulentPst was decreased, with a bigger necrotic spots, and higher numbers of hyphal branches and haustorial mother cells. Our results demonstrated that TaNTF2 was a contributor for wheat resistance to the stripe rust pathogen, which will help to comprehensively understand the NTF2/Ran modulating mechanism in wheat-Pst interaction.
Collapse
Affiliation(s)
- Qiong Zhang
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bing Wang
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinping Wei
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojie Wang
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Han
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhensheng Kang
- College of Plant Protection and State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
21
|
Akashi K, Yoshimura K, Kajikawa M, Hanada K, Kosaka R, Kato A, Katoh A, Nanasato Y, Tsujimoto H, Yokota A. Potential involvement of drought-induced Ran GTPase CLRan1 in root growth enhancement in a xerophyte wild watermelon. Biosci Biotechnol Biochem 2016; 80:1907-16. [DOI: 10.1080/09168451.2016.1191328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Enhanced root growth is known as the survival strategy of plants under drought. Previous proteome analysis in drought-resistant wild watermelon has shown that Ran GTPase, an essential regulator of cell division and proliferation, was induced in the roots under drought. In this study, two cDNAs were isolated from wild watermelon, CLRan1 and CLRan2, which showed a high degree of structural similarity with those of other plant Ran GTPases. Quantitative RT-PCR and promoter-GUS assays suggested that CLRan1 was expressed mainly in the root apex and lateral root primordia, whereas CLRan2 was more broadly expressed in other part of the roots. Immunoblotting analysis confirmed that the abundance of CLRan proteins was elevated in the root apex region under drought stress. Transgenic Arabidopsis overexpressing CLRan1 showed enhanced primary root growth, and the growth was maintained under osmotic stress, indicating that CLRan1 functions as a positive factor for maintaining root growth under stress conditions.
Collapse
Affiliation(s)
- Kinya Akashi
- Faculty of Agriculture, School of Agricultural, Biological and Environmental Sciences, Tottori University, Tottori, Japan
| | - Kazuya Yoshimura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Masataka Kajikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Kouhei Hanada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Rina Kosaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Atsushi Kato
- Faculty of Agriculture, School of Agricultural, Biological and Environmental Sciences, Tottori University, Tottori, Japan
| | - Akira Katoh
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Yoshihiko Nanasato
- Faculty of Agriculture, School of Agricultural, Biological and Environmental Sciences, Tottori University, Tottori, Japan
| | | | - Akiho Yokota
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
22
|
Chen Z, Yan W, Sun L, Tian J, Liao H. Proteomic analysis reveals growth inhibition of soybean roots by manganese toxicity is associated with alteration of cell wall structure and lignification. J Proteomics 2016; 143:151-160. [PMID: 27045940 DOI: 10.1016/j.jprot.2016.03.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 01/24/2023]
Abstract
UNLABELLED Plant roots, the hidden half of plants, play a vital role in manganese (Mn) toxicity tolerance. However, molecular mechanisms underlying root adaptation to Mn toxicity remain largely unknown. In this study, soybean (Glycine max) was used to investigate alterations of root morphology and protein profiles in response to Mn toxicity. Results showed that soybean root growth was significantly inhibited by Mn toxicity. Subsequent proteomic analysis revealed that 31 proteins were successfully identified via MALDI TOF/TOF MS analysis including 21 unique up-regulated and 6 unique down-regulated proteins, which are mainly related to cell wall metabolism, protein metabolism and signal transduction. qRT-PCR analysis revealed that corresponding gene transcription patterns were correlated with accumulation of 14 of 21 up-regulated proteins, but only 1 of 6 down-regulated proteins, suggesting that most excess Mn up-regulated proteins are controlled at the transcriptional levels, while down-regulated proteins are controlled at the post-transcriptional levels. Furthermore, changes in abundances of GTP-binding nuclear protein Ran-3, expansin-like B1-like protein, dirigent protein and peroxidase 5-like protein strongly suggested that alteration of root cell wall structure and lignification might be associated with inhibited root growth. Taken together, this study was helpful to further understandings of adaptive strategies of legume roots to Mn toxicity. SIGNIFICANCE This study highlighted the effects of Mn toxicity on soybean root growth and its proteome profiles. Excess Mn treatments inhibited root growth. Comparative proteomic analysis was performed to analyze the changes in protein profiles of soybean roots in response to Mn toxicity. A total of 31 root proteins with differential abundances were identified and predominantly associated with signal transduction and cell wall metabolism. Among them, the abundances of the GTP-binding nuclear protein Ran-3 and Ran-binding protein 1 were significantly increased, suggesting that the proteins could be involved in the signaling network in soybean roots responsive to Mn toxicity. Interestingly, three 14-3-3 proteins were decreased by excess Mn at protein but not mRNA levels, suggesting that these proteins could be regulated at post-transcriptional modification under Mn excess conditions. Furthermore, changes in abundances of expansin-like B1-like protein, peroxidase 5-like protein, dirigent protein 2-like protein and dirigent protein strongly suggested that Mn toxicity could influence root cell wall modification, and thus inhibit root growth. This study provided significant insights into the potential molecular mechanisms underlying soybean root adaptation to Mn toxicity, which was mainly through alteration of root cell wall structure and lignification.
Collapse
Affiliation(s)
- Zhijian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China
| | - Wei Yan
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China
| | - Lili Sun
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Liao
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350000, China.
| |
Collapse
|
23
|
Li S, Huang Q, Zhang B, Zhang J, Liu X, Lu M, Hu Z, Ding C, Su X. Small GTP-binding protein PdRanBP regulates vascular tissue development in poplar. BMC Genet 2016; 17:96. [PMID: 27357205 PMCID: PMC4928302 DOI: 10.1186/s12863-016-0403-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/17/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Previous research has demonstrated that ectopic expression of Ran-binding protein (RanBP) in Arabidopsis results in more axillary buds and reduced apical dominance compared to WT plants. However, the function of RanBP in poplar, which has very typical secondary growth, remains unclear. Here, the Populus deltoides (Marsh.) RanBP gene (PdRanBP) was isolated and functionally characterized by ectopic expression in a hybrid poplar (P. davidiana Dode × P. bolleana Lauche). RESULTS PdRanBP was predominantly expressed in leaf buds and tissues undergoing secondary wall expansion, including immature xylem and immature phloem in the stem. Overexpression of PdRanBP in poplar increased the number of sylleptic branches and the proportion of cells in the G2 phase of the cell cycle, retarded plant growth, consistently decreased the size of the secondary xylem and secondary phloem zones, and reduced the expression levels of cell wall biosynthesis genes. The downregulation of PdRanBP facilitated secondary wall expansion and increased stem height, the sizes of the xylem and phloem zones, and the expression levels of cell wall biosynthesis genes. CONCLUSIONS These results suggest that PdRanBP influences the apical and radial growth of poplar trees and that PdRanBP may regulate cell division during cell cycle progression. Taken together, our results demonstrated that PdRanBP is a nuclear, vascular tissue development-associated protein in P. deltoides.
Collapse
Affiliation(s)
- Shaofeng Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 100023, People's Republic of China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, 100091, People's Republic of China
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, 100091, People's Republic of China
| | - Jianhui Zhang
- Plants for Human Health Institute, Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, North Carolina, 28081, USA.,Biomarker Technologies Corporation, Beijing, 101300, People's Republic of China
| | - Xue Liu
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 100023, People's Republic of China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, 100091, People's Republic of China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, 100091, People's Republic of China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, 100091, People's Republic of China.
| |
Collapse
|
24
|
Ras-Related Nuclear Protein Ran3B Gene Is Involved in Hormone Responses in the Embryogenic Callus of Dimocarpus longan Lour. Int J Mol Sci 2016; 17:ijms17060873. [PMID: 27271605 PMCID: PMC4926407 DOI: 10.3390/ijms17060873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/15/2016] [Accepted: 05/23/2016] [Indexed: 11/17/2022] Open
Abstract
Ras-related guanosine triphosphate (GTP)-binding nuclear protein (Ran) GTPases function as molecular switches and regulate diverse cellular events in eukaryotes. Our previous work suggested that DlRan3B is active during longan (Dimocarpus longan Lour.) somatic embryogenesis (SE) processes. Herein, subcellular localization of DlRan3B was found to be localized in the nucleus and expression profiling of DlRan3B was performed during longan SE and after exposure to plant hormones (indoleacetic acid (IAA), gibberellin A3 (GA3), salicylic acid (SA), methyl jasmonte (MeJA), and abscisic acid (ABA)). We cloned and sequenced 1569 bp of 5′-flanking sequence of DlRan3B (GenBank: JQ279697). Bioinformatic analysis indicated that the promoter contained plant hormone-related regulatory elements. Deletion analysis and responses to hormones identified stimulative and repressive regulatory elements in the DlRan3B promoter. The key elements included those responding to auxin, gibberellin, SA, MeJA, and ABA. DlRan3B was located in the nucleus and accumulated in the late stage of longan SE. The expression of DlRan3B was significantly induced by IAA, GA3, and ABA, but suppressed by SA and MeJA. Promoter transcription was induced by IAA and GA3, but suppressed by SA. Thus, DlRan3B might participate in auxin, gibberellin, and ABA responses during longan late SE, and DlRan3B is involved in phytohormone responsiveness.
Collapse
|
25
|
The Small G Protein AtRAN1 Regulates Vegetative Growth and Stress Tolerance in Arabidopsis thaliana. PLoS One 2016; 11:e0154787. [PMID: 27258048 PMCID: PMC4892486 DOI: 10.1371/journal.pone.0154787] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/19/2016] [Indexed: 12/02/2022] Open
Abstract
The evolutionarily conserved small G-protein Ran plays important role in nuclear translocation of proteins, cell cycle regulation, and nuclear envelope maintenance in mammalian cells and yeast. Arabidopsis Ran proteins are encoded by a family of four genes and are highly conserved at the protein level. However, their biological functions are poorly understood. We report here that AtRAN1 plays an important role in vegetative growth and the molecular improvement of stress tolerance in Arabidopsis. AtRAN1 overexpression promoted vegetative growth and enhanced abiotic tolerance, while the atran1 atran3 double mutant showed higher freezing sensitivity than WT. The AtRAN1 gene is ubiquitously expressed in plants, and the expression levels are higher in the buds, flowers and siliques. Subcellular localization results showed that AtRAN1 is mainly localized in the nucleus, with some present in the cytoplasm. AtRAN1 could maintain cell division and cell cycle progression and promote the formation of an intact nuclear envelope, especially under freezing conditions.
Collapse
|
26
|
Fang Z, Lai C, Zhang Y, Lai Z. Molecular cloning, structural and expression profiling of DlRan genes during somatic embryogenesis in Dimocarpus longan Lour. SPRINGERPLUS 2016; 5:181. [PMID: 27026877 PMCID: PMC4766155 DOI: 10.1186/s40064-016-1887-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/16/2016] [Indexed: 11/18/2022]
Abstract
To clone and examine expression profiles of DlRan genes during somatic embryogenesis in Dimocarpus longan Lour. Thirty cDNA sequences and two genomic sequences encoding DlRan proteins were isolated from longan embryogenic cultures. Structural analysis of DlRan genes revealed that the longan Ran gene family is more expanded than that of Arabidopsis. Expression analysis of DlRan genes during somatic embryogenesis uncovered a high abundance of DlRan genes in early embryogenic cultures and heart- and torpedo-shaped embryos. The expression of DlRan genes in embryogenic calli was affected by exogenous 2,4-dichlorophenoxyacetic acid treatment. DlRan is involved in 2,4-D induced somatic embryogenesis and development of somatic embryos in longan.
Collapse
Affiliation(s)
- Zhizhen Fang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 Fujian China
| | - Chengchun Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 Fujian China
| | - Yaling Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 Fujian China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Cangshan District, Fuzhou, 350002 Fujian China
| |
Collapse
|
27
|
Kalidhasan N, Joshi D, Bhatt TK, Gupta AK. Identification of key genes involved in root development of tomato using expressed sequence tag analysis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:491-503. [PMID: 26600676 PMCID: PMC4646861 DOI: 10.1007/s12298-015-0304-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/19/2015] [Accepted: 06/09/2015] [Indexed: 05/11/2023]
Abstract
Root system of plants are actually fascinating structures, not only critical for plant development, but also important for storage and conduction. Due to its agronomic importance, identification of genes involved in root development has been a subject of intense study. Tomato is the one of the most consumed vegetables in the world. Tomato has been used as model system for dicot plants because of its small genome, well-established transformation techniques and well-constructed physical map. The present study is targeted to identify of root specific genes expressed temporally and also gene(s) involved in lateral root and profuse root development. A total of 890 ESTs were identified from five EST libraries constructed using SSH approach which included temporal gene regulation (early and late) and genes involved in morphogenetic traits (lateral and profuse rooting). One hundred sixty-one unique ESTs identified from various libraries were categorized based on their putative functions and deposited in NCBI-dbEST database. In addition, 36 ESTs were selected for validation of their expression by RT-PCR. The present findings will help in shedding light to the unexplored developmental process of root growth in tomato and plant in general.
Collapse
Affiliation(s)
- N. Kalidhasan
- />Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021 India
| | - Deepti Joshi
- />Department of Biotechnology, School of LifeSciences, Central University of Rajasthan, Bandarsindri, 305801 India
| | - Tarun Kumar Bhatt
- />Department of Biotechnology, School of LifeSciences, Central University of Rajasthan, Bandarsindri, 305801 India
| | - Aditya Kumar Gupta
- />Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021 India
- />Department of Biotechnology, School of LifeSciences, Central University of Rajasthan, Bandarsindri, 305801 India
| |
Collapse
|
28
|
DlRan3A is involved in hormone, light, and abiotic stress responses in embryogenic callus of Dimocarpus longan Lour. Gene 2015; 569:267-75. [DOI: 10.1016/j.gene.2015.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 05/11/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022]
|
29
|
Boruc J, Griffis AHN, Rodrigo-Peiris T, Zhou X, Tilford B, Van Damme D, Meier I. GAP Activity, but Not Subcellular Targeting, Is Required for Arabidopsis RanGAP Cellular and Developmental Functions. THE PLANT CELL 2015; 27:1985-98. [PMID: 26091693 PMCID: PMC4531347 DOI: 10.1105/tpc.114.135780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/14/2015] [Accepted: 03/29/2015] [Indexed: 05/19/2023]
Abstract
The Ran GTPase activating protein (RanGAP) is important to Ran signaling involved in nucleocytoplasmic transport, spindle organization, and postmitotic nuclear assembly. Unlike vertebrate and yeast RanGAP, plant RanGAP has an N-terminal WPP domain, required for nuclear envelope association and several mitotic locations of Arabidopsis thaliana RanGAP1. A double null mutant of the two Arabidopsis RanGAP homologs is gametophyte lethal. Here, we created a series of mutants with various reductions in RanGAP levels by combining a RanGAP1 null allele with different RanGAP2 alleles. As RanGAP level decreases, the severity of developmental phenotypes increases, but nuclear import is unaffected. To dissect whether the GAP activity and/or the subcellular localization of RanGAP are responsible for the observed phenotypes, this series of rangap mutants were transformed with RanGAP1 variants carrying point mutations abolishing the GAP activity and/or the WPP-dependent subcellular localization. The data show that plant development is differentially affected by RanGAP mutant allele combinations of increasing severity and requires the GAP activity of RanGAP, while the subcellular positioning of RanGAP is dispensable. In addition, our results indicate that nucleocytoplasmic trafficking can tolerate both partial depletion of RanGAP and delocalization of RanGAP from the nuclear envelope.
Collapse
Affiliation(s)
- Joanna Boruc
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Anna H N Griffis
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210 Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| | | | - Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Bailey Tilford
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Daniël Van Damme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210 Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
30
|
Zhao Q, Gao J, Suo J, Chen S, Wang T, Dai S. Cytological and proteomic analyses of horsetail (Equisetum arvense L.) spore germination. FRONTIERS IN PLANT SCIENCE 2015; 6:441. [PMID: 26136760 PMCID: PMC4469821 DOI: 10.3389/fpls.2015.00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/29/2015] [Indexed: 05/25/2023]
Abstract
Spermatophyte pollen tubes and root hairs have been used as single-cell-type model systems to understand the molecular processes underlying polar growth of plant cells. Horsetail (Equisetum arvense L.) is a perennial herb species in Equisetopsida, which creates separately growing spring and summer stems in its life cycle. The mature chlorophyllous spores produced from spring stems can germinate without dormancy. Here we report the cellular features and protein expression patterns in five stages of horsetail spore germination (mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Using 2-DE combined with mass spectrometry, 80 proteins were found to be abundance changed upon spore germination. Among them, proteins involved in photosynthesis, protein turnover, and energy supply were over-represented. Thirteen proteins appeared as proteoforms on the gels, indicating the potential importance of post-translational modification. In addition, the dynamic changes of ascorbate peroxidase, peroxiredoxin, and dehydroascorbate reductase implied that reactive oxygen species homeostasis is critical in regulating cell division and tip-growth. The time course of germination and diverse expression patterns of proteins in photosynthesis, energy supply, lipid and amino acid metabolism indicated that heterotrophic and autotrophic metabolism were necessary in light-dependent germination of the spores. Twenty-six proteins were involved in protein synthesis, folding, and degradation, indicating that protein turnover is vital to spore germination and rhizoid tip-growth. Furthermore, the altered abundance of 14-3-3 protein, small G protein Ran, actin, and caffeoyl-CoA O-methyltransferase revealed that signaling transduction, vesicle trafficking, cytoskeleton dynamics, and cell wall modulation were critical to cell division and polar growth. These findings lay a foundation toward understanding the molecular mechanisms underlying fern spore asymmetric division and rhizoid polar growth.
Collapse
Affiliation(s)
- Qi Zhao
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| | - Jing Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry UniversityHarbin, China
| | - Jinwei Suo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry UniversityHarbin, China
| | - Sixue Chen
- Department of Biology, Interdisciplinary Center for Biotechnology Research, Genetics Institute, Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Tai Wang
- Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
| |
Collapse
|
31
|
Azizi P, Rafii M, Maziah M, Abdullah S, Hanafi M, Latif M, Rashid A, Sahebi M. Understanding the shoot apical meristem regulation: A study of the phytohormones, auxin and cytokinin, in rice. Mech Dev 2015; 135:1-15. [DOI: 10.1016/j.mod.2014.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 11/05/2014] [Accepted: 11/14/2014] [Indexed: 11/30/2022]
|
32
|
Kemp C, Coleman A, Wells G, Parry G. Overexpressing components of the nuclear transport apparatus causes severe growth symptoms in tobacco leaves. PLANT SIGNALING & BEHAVIOR 2015; 10:e1000103. [PMID: 26039465 PMCID: PMC4623252 DOI: 10.1080/15592324.2014.1000103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 11/21/2014] [Accepted: 11/21/2014] [Indexed: 05/08/2023]
Abstract
Regulating nucleo-cytoplasmic transport of RNA and protein is a key cellular control point. Perturbing the function of plant nuclear transport components can cause significant developmental defects and in this report we add an important line to this evidence. Overexpression of AtRAN1 or AtNUP62 in Nicotiana benthamiana causes significant damage to leaf tissue. This demonstrates that the precise control of nuclear transport is an important aspect of maintaining tissue integrity.
Collapse
Affiliation(s)
- Clare Kemp
- Institute of Integrative Biology; University of Liverpool; Liverpool, United Kingdom
| | - Alex Coleman
- Institute of Integrative Biology; University of Liverpool; Liverpool, United Kingdom
| | - Graeme Wells
- Institute of Integrative Biology; University of Liverpool; Liverpool, United Kingdom
| | - Geraint Parry
- Institute of Integrative Biology; University of Liverpool; Liverpool, United Kingdom
| |
Collapse
|
33
|
Singh R, Lee JE, Dangol S, Choi J, Yoo RH, Moon JS, Shim JK, Rakwal R, Agrawal GK, Jwa NS. Protein interactome analysis of 12 mitogen-activated protein kinase kinase kinase in rice using a yeast two-hybrid system. Proteomics 2014; 14:105-15. [PMID: 24243689 DOI: 10.1002/pmic.201300125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 10/27/2013] [Accepted: 11/06/2013] [Indexed: 11/07/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascade is composed at least of MAP3K (for MAPK kinase kinase), MAP2K, and MAPK family modules. These components together play a central role in mediating extracellular signals to the cell and vice versa by interacting with their partner proteins. However, the MAP3K-interacting proteins remain poorly investigated in plants. Here, we utilized a yeast two-hybrid system and bimolecular fluorescence complementation in the model crop rice (Oryza sativa) to map MAP3K-interacting proteins. We identified 12 novel nonredundant interacting protein pairs (IPPs) representing 11 nonredundant interactors using 12 rice MAP3Ks (available as full-length cDNA in the rice KOME (http://cdna01.dna.affrc.go.jp/cDNA/) at the time of experimental design and execution) as bait and a rice seedling cDNA library as prey. Of the 12 MAP3Ks, only six had interacting protein partners. The established MAP3K interactome consisted of two kinases, three proteases, two forkhead-associated domain-containing proteins, two expressed proteins, one E3 ligase, one regulatory protein, and one retrotransposon protein. Notably, no MAP3K showed physical interaction with either MAP2K or MAPK. Seven IPPs (58.3%) were confirmed in vivo by bimolecular fluorescence complementation. Subcellular localization of 14 interactors, together involved in nine IPPs (75%) further provide prerequisite for biological significance of the IPPs. Furthermore, GO of identified interactors predicted their involvement in diverse physiological responses, which were supported by a literature survey. These findings increase our knowledge of the MAP3K-interacting proteins, help in proposing a model of MAPK modules, provide a valuable resource for developing a complete map of the rice MAPK interactome, and allow discussion for translating the interactome knowledge to rice crop improvement against environmental factors.
Collapse
Affiliation(s)
- Raksha Singh
- Department of Molecular Biology, College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sinha VB, Grover A, Singh S, Pande V, Ahmed Z. Overexpression of Ran gene from Lepidium latifolium L. (LlaRan) renders transgenic tobacco plants hypersensitive to cold stress. Mol Biol Rep 2014; 41:5989-96. [PMID: 24973880 DOI: 10.1007/s11033-014-3476-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/14/2014] [Indexed: 11/25/2022]
Abstract
Ran is a multifunctional small GTPase involved in important cellular activities like nucleocytoplasmic transport, mitotic spindle assembly, nuclear envelope formation, etc., but is also known to be differentially expressed in response to abiotic stress, particularly low temperature. We have over-expressed Lepidium latifolium (Fam. Brassicaceae) Ran gene in tobacco to study the response of the plants to cold stress (24 h; 4 °C). Transformation of the tobacco plants was verified using PCR targeting Ran gene and co-transformed selectable marker gene nptII. Segregation in Mendelian ratios was validated in five transgenic lines by germination of T1 and T2 seeds on moist filter papers containing 150 mg/l kanamycin. Higher levels of electrolyte leakage and lipid peroxidation pointed towards hypersensitivity of plants. Similarly, lesser proline accumulation compared to wild types also indicated susceptibility of plants to death under chilling conditions. Specific activity of antioxidant enzymes superoxide dismutase and glutathione reductase was also measured under stressed and control conditions. A variation was observed across the different lines, and four out of five lines showed lesser specific activity compared to wild type plants, thus indicating reduced capability of scavenging free radicals. In totality, a strong evidence on induced hypersensitivity to cold stress has been collected which may further be helpful in designing appropriate strategies for engineering crop plants for survival under cold stress conditions.
Collapse
Affiliation(s)
- Vimlendu Bhushan Sinha
- Defence Institute of Bio-Energy Research, Goraparao, P.O. Arjunpur, Haldwani, 263139, India,
| | | | | | | | | |
Collapse
|
35
|
Liu P, Qi M, Wang Y, Chang M, Liu C, Sun M, Yang W, Ren H. Arabidopsis RAN1 mediates seed development through its parental ratio by affecting the onset of endosperm cellularization. MOLECULAR PLANT 2014; 7:1316-1328. [PMID: 24719465 DOI: 10.1093/mp/ssu041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although previous studies have demonstrated that endosperm development is influenced by its parental genome constitution, the genetic basis and molecular mechanisms that control parent-of-origin effects require further elucidation. Here we show that the Ras-related nuclear protein 1 (RAN1) regulates endosperm development in Arabidopsis thaliana. Reciprocal crosses between wild-type (WT) and transgenic lines misexpressing RAN1 (msRAN1) gave rise to small F1 seeds when RAN1 down-regulated/up-regulated individuals were used as a male/female parent; in contrast, F1 seeds were aborted when RAN1 down-regulated/up-regulated plants were used as a female/male parent, suggesting that seed development is affected by the parental genome ratio of RAN1. Whereas RAN1 expression in wild-type plants is reduced before the onset of endosperm cellularization, F1 seeds from reciprocal crosses between WT and msRAN1 showed abnormal endosperm cellularization and ectopic expression of RAN1. The expression of MINISEED3 (MINI3)-a gene that also controls endosperm cellularization-was also affected in these reciprocal crosses, and the misregulation of MINI3 activity rescued F1 seeds when msRAN1 plants were used in reciprocal crosses. Taken together, our results suggest that the parental ratio of RAN1 regulates the onset of endosperm cellularization through its genetic interaction with MINI3.
Collapse
Affiliation(s)
- Peiwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ming Qi
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuqian Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Mingqin Chang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Chang Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Mengxiang Sun
- Department of Cell and Development Biology, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, China
| | - Weicai Yang
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
36
|
Xu P, Cai W. RAN1 is involved in plant cold resistance and development in rice (Oryza sativa). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3277-87. [PMID: 24790113 PMCID: PMC4071843 DOI: 10.1093/jxb/eru178] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Of the diverse abiotic stresses, low temperature is one of the major limiting factors that lead to a series of morphological, physiological, biochemical, and molecular changes in plants. Ran, an evolutionarily conserved small G-protein family, has been shown to be essential for the nuclear translocation of proteins. It also mediates the regulation of cell cycle progression in mammalian cells. However, little is known about Ran function in rice (Oryza sativa). We report here that Ran gene OsRAN1 is essential for the molecular improvement of rice for cold tolerance. Ran also affects plant morphogenesis in transgenic Arabidopsis thaliana. OsRAN1 is ubiquitously expressed in rice tissues with the highest expression in the spike. The levels of mRNA encoding OsRAN1 were greatly increased by cold and indoleacetic acid treatment rather than by addition of salt and polyethylene glycol. Further, OsRAN1 overexpression in Arabidopsis increased tiller number, and altered root development. OsRAN1 overexpression in rice improves cold tolerance. The levels of cellular free Pro and sugar levels were highly increased in transgenic plants under cold stress. Under cold stress, OsRAN1 maintained cell division and cell cycle progression, and also promoted the formation of an intact nuclear envelope. The results suggest that OsRAN1 protein plays an important role in the regulation of cellular mitosis and the auxin signalling pathway.
Collapse
Affiliation(s)
- Peipei Xu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Weiming Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
37
|
de Freitas Lima M, Eloy NB, Bottino MC, Hemerly AS, Ferreira PCG. Overexpression of the anaphase-promoting complex (APC) genes in Nicotiana tabacum promotes increasing biomass accumulation. Mol Biol Rep 2013; 40:7093-102. [PMID: 24178345 DOI: 10.1007/s11033-013-2832-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/26/2013] [Indexed: 10/26/2022]
Abstract
The anaphase-promoting complex (APC) plays pivotal roles in cell cycle pathways related to plant development. In this study, we present evidence that overproduction of APC10 from Arabidopsis thaliana in tobacco (Nicotiana tabacum) plants promotes significant increases in biomass. Analyzes of plant's fresh and dried weight, root length, number of days to flower and number of seeds of plants overexpressing AtAPC10 verified an improved agronomic performance of the transgenic plants. Detailed analyzes of the leaf growth at the cellular level, and measurements of leaf cell number, showed that AtAPC10 also produce more cells, showing an enhancement of proliferation in these plants. In addition, crossing of plants overexpressing AtAPC10 and AtCDC27a resulted in a synergistic accumulation of biomass and these transgenic plants exhibited superior characteristics compared to the parental lines. The results of the present study suggest that transgenic plants expressing AtAPC10 and AtAPC10/AtCDC27a concomitantly are promising leads to develop plants with higher biomass.
Collapse
Affiliation(s)
- Marcelo de Freitas Lima
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, CCS, Cidade Universitária - Ilha do Fundão, CEP 21941-902, Rio de Janeiro, RJ, Brazil,
| | | | | | | | | |
Collapse
|
38
|
Identification of a PTC-containing DlRan transcript and its differential expression during somatic embryogenesis in Dimocarpus longan. Gene 2013; 529:37-44. [DOI: 10.1016/j.gene.2013.07.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/19/2013] [Accepted: 07/25/2013] [Indexed: 11/17/2022]
|
39
|
Sagor GHM, Liu T, Takahashi H, Niitsu M, Berberich T, Kusano T. Longer uncommon polyamines have a stronger defense gene-induction activity and a higher suppressing activity of Cucumber mosaic virus multiplication compared to that of spermine in Arabidopsis thaliana. PLANT CELL REPORTS 2013; 32:1477-88. [PMID: 23700086 DOI: 10.1007/s00299-013-1459-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/10/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
KEY MESSAGE Our work suggests that long chain polyamines and their derivatives are potential chemicals to control viral pathogens for crop production. Previously we showed that two tetraamines, spermine (Spm) and thermospermine (T-Spm), induce the expression of a subset of defense-related genes and repress proliferation of Cucumber mosaic virus (CMV) in Arabidopsis. Here we tested whether the longer uncommon polyamines (LUPAs) such as caldopentamine, caldohexamine, homocaldopentamine and homocaldohexamine have such the activity. LUPAs had higher gene induction activity than Spm and T-Spm. Interestingly the genes induced by LUPAs could be classified into two groups: the one group was most responsive to caldohexamine while the other one was most responsive to homocaldopentamine. In both the cases, the inducing activity was dose-dependent. LUPAs caused local cell death and repressed CMV multiplication more efficiently as compared to Spm. LUPAs inhibited the viral multiplication of not only avirulent CMV but also of virulent CMV in a dose-dependent manner. Furthermore, LUPAs can activate the systemic acquired resistance against CMV more efficiently as compared to Spm. When Arabidopsis leaves were incubated with LUPAs, the putative polyamine oxidase (PAO)-mediated catabolites were detected even though the conversion rate was very low. In addition, we found that LUPAs induced the expression of three NADPH oxidase genes (rbohC, rbohE and rbohH) among ten isoforms. Taken together, we propose that LUPAs activate two alternative reactive oxygen species evoked pathways, a PAO-mediated one and an NADPH-oxidase-mediated one, which lead to induce defense-related genes and restrict CMV multiplication.
Collapse
Affiliation(s)
- G H M Sagor
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Masoud K, Herzog E, Chabouté ME, Schmit AC. Microtubule nucleation and establishment of the mitotic spindle in vascular plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:245-257. [PMID: 23521421 DOI: 10.1111/tpj.12179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/25/2013] [Accepted: 03/12/2013] [Indexed: 06/01/2023]
Abstract
The microtubular cytoskeleton plays a major role in cellular organization and proliferation. The first step in construction of a microtubule is microtubule nucleation. Individual microtubules then participate in organization of more complex microtubule arrays. A strong body of evidence suggests that the underlying molecular mechanisms involve protein complexes that are conserved among eukaryotes. However, plant cell specificities, mainly characterized by the presence of a cell wall and the absence of centrosomes, must be taken into account to understand their mitotic processes. The goal of this review is to summarize and discuss current knowledge regarding the mechanisms involved in plant spindle assembly during early mitotic events. The functions of the proteins currently characterized at microtubule nucleation sites and involved in spindle assembly are considered during cell-cycle progression from G2 phase to metaphase.
Collapse
Affiliation(s)
- Kinda Masoud
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du Centre National de la Recherche Scientifique (UPR 2357) Conventionné avec l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
41
|
Kundu N, Dozier U, Deslandes L, Somssich IE, Ullah H. Arabidopsis scaffold protein RACK1A interacts with diverse environmental stress and photosynthesis related proteins. PLANT SIGNALING & BEHAVIOR 2013; 8:e24012. [PMID: 23435172 PMCID: PMC3906143 DOI: 10.4161/psb.24012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 05/20/2023]
Abstract
Scaffold proteins are known to regulate important cellular processes by interacting with multiple proteins to modulate molecular responses. RACK1 (Receptor for Activated C Kinase 1) is a WD-40 type scaffold protein, conserved in eukaryotes, from Chlamydymonas to plants and humans, expresses ubiquitously and plays regulatory roles in diverse signal transduction and stress response pathways. Here we present the use of Arabidopsis RACK1A, the predominant isoform of a 3-member family, as a bait to screen a split-ubiquitin based cDNA library. In total 97 proteins from dehydration, salt stress, ribosomal and photosynthesis pathways are found to potentially interact with RACK1A. False positive interactions were eliminated following extensive selection based growth potentials. Confirmation of a sub-set of selected interactions is demonstrated through the co-transformation with individual plasmid containing cDNA and the respective bait. Interaction of diverse proteins points to a regulatory role of RACK1A in the cross-talk between signaling pathways. Promoter analysis of the stress and photosynthetic pathway genes revealed conserved transcription factor binding sites. RACK1A is known to be a multifunctional protein and the current identification of potential interacting proteins and future in vivo elucidations of the physiological basis of such interactions will shed light on the possible molecular mechanisms that RACK1A uses to regulate diverse signaling pathways.
Collapse
Affiliation(s)
- Nabanita Kundu
- Department of Biology; Howard University; Washington, DC USA
| | - Uvetta Dozier
- Department of Biology; Howard University; Washington, DC USA
| | - Laurent Deslandes
- Department of Plant Developmental Biology; Max Planck Institute for Plant Breeding Research; Köln, Germany
| | - Imre E. Somssich
- Department of Plant Developmental Biology; Max Planck Institute for Plant Breeding Research; Köln, Germany
| | - Hemayet Ullah
- Department of Biology; Howard University; Washington, DC USA
- Correspondence to: Hemayet Ullah,
| |
Collapse
|
42
|
Corbacho J, Romojaro F, Pech JC, Latché A, Gomez-Jimenez MC. Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis. PLoS One 2013; 8:e58363. [PMID: 23484021 PMCID: PMC3590154 DOI: 10.1371/journal.pone.0058363] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 02/03/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mature-fruit abscission (MFA) in fleshy-fruit is a genetically controlled process with mechanisms that, contrary to immature-fruit abscission, has not been fully characterized. Here, we use pyrosequencing to characterize the transcriptomes of melon abscission zone (AZ) at three stages during AZ-cell separation in order to understand MFA control at an early stage of AZ-activation. PRINCIPAL FINDINGS The results show that by early induction of MFA, the melon AZ exhibits major gene induction, while by late induction of MFA, melon AZ shows major gene repression. Although some genes displayed similar regulation in both early and late induction of abscission, such as EXT1-EXT4, EGase1, IAA2, ERF1, AP2D15, FLC, MADS2, ERAF17, SAP5 and SCL13 genes, the majority had different expression patterns. This implies that time-specific events occur during MFA, and emphasizes the value of characterizing multiple time-specific abscission transcriptomes. Analysis of gene-expression from these AZs reveal that a sequential induction of cell-wall-degrading genes is associated with the upregulation of genes involved in endo and exocytosis, and a shift in plant-hormone metabolism and signaling genes during MFA. This is accompanied by transcriptional activity of small-GTPases and synthaxins together with tubulins, dynamins, V-type ATPases and kinesin-like proteins potentially involved in MFA signaling. Early events are potentially controlled by down-regulation of MADS-box, AP2/ERF and Aux/IAA transcription-factors, and up-regulation of homeobox, zinc finger, bZIP, and WRKY transcription-factors, while late events may be controlled by up-regulation of MYB transcription-factors. SIGNIFICANCE Overall, the data provide a comprehensive view on MFA in fleshy-fruit, identifying candidate genes and pathways associated with early induction of MFA. Our comprehensive gene-expression profile will be very useful for elucidating gene regulatory networks of the MFA in fleshy-fruit.
Collapse
Affiliation(s)
- Jorge Corbacho
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, Badajoz, Spain
| | | | - Jean-Claude Pech
- UMR990 INRA/INP-ENSA Toulouse, Avenue de l'Agrobiopole, Castanet-Tolosan, France
| | - Alain Latché
- UMR990 INRA/INP-ENSA Toulouse, Avenue de l'Agrobiopole, Castanet-Tolosan, France
| | - Maria C. Gomez-Jimenez
- Department of Plant Physiology, University of Extremadura, Avda de Elvas s/n, Badajoz, Spain
- * E-mail:
| |
Collapse
|
43
|
Gil-Amado JA, Gomez-Jimenez MC. Transcriptome Analysis of Mature Fruit Abscission Control in Olive. ACTA ACUST UNITED AC 2013; 54:244-69. [DOI: 10.1093/pcp/pcs179] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Zhang X, Li J, Liu A, Zou J, Zhou X, Xiang J, Rerksiri W, Peng Y, Xiong X, Chen X. Expression profile in rice panicle: insights into heat response mechanism at reproductive stage. PLoS One 2012; 7:e49652. [PMID: 23155476 PMCID: PMC3498232 DOI: 10.1371/journal.pone.0049652] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/11/2012] [Indexed: 12/20/2022] Open
Abstract
Rice at reproductive stage is more sensitive to environmental changes, and little is known about the mechanism of heat response in rice panicle. Here, using rice microarray, we provided a time course gene expression profile of rice panicle at anther developmental stage 8 after 40°C treatment for 0 min, 20 min, 60 min, 2 h, 4 h, and 8 h. The identified differentially expressed genes were mainly involved in transcriptional regulation, transport, cellular homeostasis, and stress response. The predominant transcription factor gene families responsive to heat stress were Hsf, NAC, AP2/ERF, WRKY, MYB, and C2H2. KMC analysis discovered the time-dependent gene expression pattern under heat stress. The motif co-occurrence analysis on the promoters of genes from an early up-regulated cluster showed the important roles of GCC box, HSE, ABRE, and CE3 in response to heat stress. The regulation model central to ROS combined with transcriptome and ROS quantification data in rice panicle indicated the great importance to maintain ROS balance and the existence of wide cross-talk in heat response. The present study increased our understanding of the heat response in rice panicle and provided good candidate genes for crop improvement.
Collapse
Affiliation(s)
- Xianwen Zhang
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jiaping Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ailing Liu
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jie Zou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiaoyun Zhou
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jianhua Xiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Wirat Rerksiri
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yan Peng
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
| | - Xingyao Xiong
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
- * E-mail: (XX); (XC)
| | - Xinbo Chen
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- * E-mail: (XX); (XC)
| |
Collapse
|
45
|
Sagor GHM, Takahashi H, Niitsu M, Takahashi Y, Berberich T, Kusano T. Exogenous thermospermine has an activity to induce a subset of the defense genes and restrict cucumber mosaic virus multiplication in Arabidopsis thaliana. PLANT CELL REPORTS 2012; 31:1227-32. [PMID: 22371256 DOI: 10.1007/s00299-012-1243-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/09/2012] [Accepted: 02/17/2012] [Indexed: 05/08/2023]
Abstract
UNLABELLED We previously proposed the defensive role of a signal pathway triggered by the polyamine spermine (Spm) in the reaction against avirulent viral pathogens in Nicotiana tabacum and Arabidopsis thaliana. In this study, we showed that thermospermine (T-Spm), an isomer of Spm, is also active in inducing the expression of the genes involved in the Spm-signal pathway at a similar dose as Spm. Furthermore, we found that T-Spm enhances the expression of a subset of pathogenesis-related genes whose expression is induced during cucumber mosaic virus (CMV)-triggered hypersensitive response. In consistent with the above observation, we further showed that exogenous T-Spm can repress CMV multiplication with same efficiency as Spm. KEY MESSAGE Polyamine thermospermine, an isomer of spermine, is able to induce a subset of hypersensitive response-related defense genes and can suppress cucumber mosaic virus multiplication in Arabidopsis thaliana.
Collapse
Affiliation(s)
- G H M Sagor
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Zhang X, Li J, Liu A, Zou J, Zhou X, Xiang J, Rerksiri W, Peng Y, Xiong X, Chen X. Expression profile in rice panicle: insights into heat response mechanism at reproductive stage. PLoS One 2012. [PMID: 23155476 DOI: 10.1371/journal.pone.0049652.g001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Rice at reproductive stage is more sensitive to environmental changes, and little is known about the mechanism of heat response in rice panicle. Here, using rice microarray, we provided a time course gene expression profile of rice panicle at anther developmental stage 8 after 40°C treatment for 0 min, 20 min, 60 min, 2 h, 4 h, and 8 h. The identified differentially expressed genes were mainly involved in transcriptional regulation, transport, cellular homeostasis, and stress response. The predominant transcription factor gene families responsive to heat stress were Hsf, NAC, AP2/ERF, WRKY, MYB, and C(2)H(2). KMC analysis discovered the time-dependent gene expression pattern under heat stress. The motif co-occurrence analysis on the promoters of genes from an early up-regulated cluster showed the important roles of GCC box, HSE, ABRE, and CE3 in response to heat stress. The regulation model central to ROS combined with transcriptome and ROS quantification data in rice panicle indicated the great importance to maintain ROS balance and the existence of wide cross-talk in heat response. The present study increased our understanding of the heat response in rice panicle and provided good candidate genes for crop improvement.
Collapse
Affiliation(s)
- Xianwen Zhang
- Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University, Changsha, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Merkle T. Nucleo-cytoplasmic transport of proteins and RNA in plants. PLANT CELL REPORTS 2011; 30:153-76. [PMID: 20960203 PMCID: PMC3020307 DOI: 10.1007/s00299-010-0928-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 09/30/2010] [Indexed: 05/19/2023]
Abstract
Transport of macromolecules between the nucleus and the cytoplasm is an essential necessity in eukaryotic cells, since the nuclear envelope separates transcription from translation. In the past few years, an increasing number of components of the plant nuclear transport machinery have been characterised. This progress, although far from being completed, confirmed that the general characteristics of nuclear transport are conserved between plants and other organisms. However, plant-specific components were also identified. Interestingly, several mutants in genes encoding components of the plant nuclear transport machinery were investigated, revealing differential sensitivity of plant-specific pathways to impaired nuclear transport. These findings attracted attention towards plant-specific cargoes that are transported over the nuclear envelope, unravelling connections between nuclear transport and components of signalling and developmental pathways. The current state of research in plants is summarised in comparison to yeast and vertebrate systems, and special emphasis is given to plant nuclear transport mutants.
Collapse
Affiliation(s)
- Thomas Merkle
- Faculty of Biology, Institute for Genome Research and Systems Biology, University of Bielefeld, 33594 Bielefeld, Germany.
| |
Collapse
|
49
|
Gong C, Li T, Li Q, Yan L, Wang T. Rice OsRAD21-2 is expressed in actively dividing tissues and its ectopic expression in yeast results in aberrant cell division and growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:14-24. [PMID: 21205177 DOI: 10.1111/j.1744-7909.2010.01009.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Rad21 and its meiotic counterpart Rec8, the key components of the cohesin complex, are essential for sister chromatid cohesion and chromosome segregation in mitosis and meiosis, respectively. In contrast to yeast and vertebrates, which have only two RAD21/REC8 genes, the rice genome encodes four Rad21/Rec8 proteins. Here, we report on the cloning and characterization of OsRAD21-2 from rice (Oryza sativa L.). Phylogenetic analysis of the full-length amino acids showed that OsRad21-2 was grouped into the plant-specific Rad21 subfamily. Semi-quantitative reverse transcription-polymerase chain reaction revealed OsRAD21-2 preferentially expressed in premeiotic flowers. Further RNA in situ hybridization analysis and promoter::β-glucuronidase staining indicated that OsRAD21-2 was mainly expressed in actively dividing tissues including premeiotic stamen, stem intercalary meristem, leaf meristem, and root pericycle. Ectopic expression of OsRAD21-2 in fission yeast resulted in cell growth delay and morphological abnormality. Flow cytometric analysis revealed that the OsRAD21-2-expressed cells were arrested in G2 phase. Our results suggest that OsRad21-2 functions in regulation of cell division and growth.
Collapse
Affiliation(s)
- Chunyan Gong
- Research Center for Molecular & Development Biology, Key Laborartory of Photosynthesis & Environmental Molecular Physiology, Insitute of Botany, Chinese Academy of Sciences, National Center for Plant Gene Research, Beijing , China
| | | | | | | | | |
Collapse
|
50
|
Chen THH, Murata N. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. PLANT, CELL & ENVIRONMENT 2011; 34:52-64. [PMID: 20825577 DOI: 10.1111/j.1365-3040.2010.02225.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Various compatible solutes enable plants to tolerate abiotic stress, and glycinebetaine (GB) is one of the most-studied among such solutes. Early research on GB focused on the maintenance of cellular osmotic potential in plant cells. Subsequent genetically engineered synthesis of GB-biosynthetic enzymes and studies of transgenic plants demonstrated that accumulation of GB increases tolerance of plants to various abiotic stresses at all stages of their life cycle. Such GB-accumulating plants exhibit various advantageous traits, such as enlarged fruits and flowers and/or increased seed number under non-stress conditions. However, levels of GB in transgenic GB-accumulating plants are relatively low being, generally, in the millimolar range. Nonetheless, these low levels of GB confer considerable tolerance to various stresses, without necessarily contributing significantly to cellular osmotic potential. Moreover, low levels of GB, applied exogenously or generated by transgenes for GB biosynthesis, can induce the expression of certain stress-responsive genes, including those for enzymes that scavenge reactive oxygen species. Thus, transgenic approaches that increase tolerance to abiotic stress have enhanced our understanding of mechanisms that protect plants against such stress.
Collapse
Affiliation(s)
- Tony H H Chen
- Department of Horticulture, ALS 4017, Oregon State University, Corvallis, OR 97331, USA National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | |
Collapse
|