1
|
Coulon D, Nacir H, Bahammou D, Jouhet J, Bessoule JJ, Fouillen L, Bréhélin C. Roles of plastoglobules and lipid droplets in leaf neutral lipid accumulation during senescence and nitrogen deprivation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6542-6562. [PMID: 38995052 DOI: 10.1093/jxb/erae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Upon abiotic stress or senescence, the size and/or abundance of plastid-localized plastoglobules and cytosolic lipid droplets, both compartments devoted to neutral lipid storage, increase in leaves. Meanwhile, plant lipid metabolism is also perturbed, notably with the degradation of thylakoidal monogalactosyldiacylglycerol (MGDG) and the accumulation of neutral lipids. Although these mechanisms are probably linked, they have never been jointly studied, and the respective roles of plastoglobules and lipid droplets in the plant response to stress are totally unknown. To address this question, we determined and compared the glycerolipid composition of both lipid droplets and plastoglobules, followed their formation in response to nitrogen starvation, and studied the kinetics of lipid metabolism in Arabidopsis leaves. Our results demonstrated that plastoglobules preferentially store phytyl-esters, while triacylglycerols (TAGs) and steryl-esters accumulated within lipid droplets. Thanks to a pulse-chase labeling approach and lipid analyses of the fatty acid desaturase 2 (fad2) mutant, we showed that MGDG-derived C18:3 fatty acids were exported to lipid droplets, while MGDG-derived C16:3 fatty acids were stored within plastoglobules. The export of lipids from plastids to lipid droplets was probably facilitated by the physical contact occurring between both organelles, as demonstrated by our electron tomography study. The accumulation of lipid droplets and neutral lipids was transient, suggesting that stress-induced TAGs were remobilized during the plant recovery phase by a mechanism that remains to be explored.
Collapse
Affiliation(s)
- Denis Coulon
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Houda Nacir
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Delphine Bahammou
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Juliette Jouhet
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Laboratoire de Physiologie Cellulaire et Végétale, F-38000 Grenoble, France
| | - Jean-Jacques Bessoule
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Laëtitia Fouillen
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Claire Bréhélin
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| |
Collapse
|
2
|
Li X, Zheng M, Gan Q, Long J, Fan H, Wang X, Guan Z. The formation and evolution of flower coloration in Brassica crops. Front Genet 2024; 15:1396875. [PMID: 38881796 PMCID: PMC11177764 DOI: 10.3389/fgene.2024.1396875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
The flower coloration of Brassica crops possesses significant application and economic value, making it a research hotspot in the field of genetics and breeding. In recent years, great progress has been made in the research on color variation and creation of Brassica crops. However, the underlying molecular mechanisms and evolutional processes of flower colors are poorly understood. In this paper, we present a comprehensive overview of the mechanism of flower color formation in plants, emphasizing the molecular basis and regulation mechanism of flavonoids and carotenoids. By summarizing the recent advances on the genetic mechanism of flower color formation and regulation in Brassica crops, it is clearly found that carotenoids and anthocyanins are major pigments for flower color diversity of Brassica crops. Meantime, we also explore the relationship between the emergence of white flowers and the genetic evolution of Brassica chromosomes, and analyze the innovation and multiple utilization of Brassica crops with colorful flowers. This review aims to provide theoretical support for genetic improvements in flower color, enhancing the economic value and aesthetic appeal of Brassica crops.
Collapse
Affiliation(s)
- Xuewei Li
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Mingmin Zheng
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Qingqin Gan
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Jiang Long
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Haiyan Fan
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xiaoqing Wang
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Zhilin Guan
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
3
|
Ying S, Webster B, Gomez-Cano L, Shivaiah KK, Wang Q, Newton L, Grotewold E, Thompson A, Lundquist PK. Multiscale physiological responses to nitrogen supplementation of maize hybrids. PLANT PHYSIOLOGY 2024; 195:879-899. [PMID: 37925649 PMCID: PMC11060684 DOI: 10.1093/plphys/kiad583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Maize (Zea mays) production systems are heavily reliant on the provision of managed inputs such as fertilizers to maximize growth and yield. Hence, the effective use of nitrogen (N) fertilizer is crucial to minimize the associated financial and environmental costs, as well as maximize yield. However, how to effectively utilize N inputs for increased grain yields remains a substantial challenge for maize growers that requires a deeper understanding of the underlying physiological responses to N fertilizer application. We report a multiscale investigation of five field-grown maize hybrids under low or high N supplementation regimes that includes the quantification of phenolic and prenyl-lipid compounds, cellular ultrastructural features, and gene expression traits at three developmental stages of growth. Our results reveal that maize perceives the lack of supplemented N as a stress and, when provided with additional N, will prolong vegetative growth. However, the manifestation of the stress and responses to N supplementation are highly hybrid-specific. Eight genes were differentially expressed in leaves in response to N supplementation in all tested hybrids and at all developmental stages. These genes represent potential biomarkers of N status and include two isoforms of Thiamine Thiazole Synthase involved in vitamin B1 biosynthesis. Our results uncover a detailed view of the physiological responses of maize hybrids to N supplementation in field conditions that provides insight into the interactions between management practices and the genetic diversity within maize.
Collapse
Affiliation(s)
- Sheng Ying
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Brandon Webster
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Lina Gomez-Cano
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Qianjie Wang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Linsey Newton
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Erich Grotewold
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Addie Thompson
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Handy J, Juchem D, Wang Q, Schimani K, Skibbe O, Zimmermann J, Karsten U, Herburger K. Antarctic benthic diatoms after 10 months of dark exposure: consequences for photosynthesis and cellular integrity. FRONTIERS IN PLANT SCIENCE 2024; 15:1326375. [PMID: 38584953 PMCID: PMC10995292 DOI: 10.3389/fpls.2024.1326375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
Antarctic algae are exposed to prolonged periods of extreme darkness due to polar night, and coverage by ice and snow can extend such dark conditions to up to 10 months. A major group of microalgae in benthic habitats of Antarctica are diatoms, which are key primary producers in these regions. However, the effects of extremely prolonged dark exposure on their photosynthesis, cellular ultrastructure, and cell integrity remain unknown. Here we show that five strains of Antarctic benthic diatoms exhibit an active photosynthetic apparatus despite 10 months of dark-exposure. This was shown by a steady effective quantum yield of photosystem II (Y[II]) upon light exposure for up to 2.5 months, suggesting that Antarctic diatoms do not rely on metabolically inactive resting cells to survive prolonged darkness. While limnic strains performed better than their marine counterparts, Y(II) recovery to values commonly observed in diatoms occurred after 4-5 months of light exposure in all strains, suggesting long recovering times. Dark exposure for 10 months dramatically reduced the chloroplast ultrastructure, thylakoid stacking, and led to a higher proportion of cells with compromised membranes than in light-adapted cells. However, photosynthetic oxygen production was readily measurable after darkness and strong photoinhibition only occurred at high light levels (>800 µmol photons m-2 s-1). Our data suggest that Antarctic benthic diatoms are well adapted to long dark periods. However, prolonged darkness for several months followed by only few months of light and another dark period may prevent them to regain their full photosynthetic potential due to long recovery times, which might compromise long-term population survival.
Collapse
Affiliation(s)
- Jacob Handy
- Cell Biology of Phototrophic Marine Organisms, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Desirée Juchem
- Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Qian Wang
- Cell Biology of Phototrophic Marine Organisms, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Katherina Schimani
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Oliver Skibbe
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Jonas Zimmermann
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Berlin, Germany
| | - Ulf Karsten
- Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Klaus Herburger
- Cell Biology of Phototrophic Marine Organisms, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Muñoz P, Tijero V, Vincent C, Munné-Bosch S. Abscisic acid triggers vitamin E accumulation by transient transcript activation of VTE5 and VTE6 in sweet cherry fruits. Biochem J 2024; 481:279-293. [PMID: 38314636 DOI: 10.1042/bcj20230399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/06/2024]
Abstract
Tocopherols are lipophilic antioxidants known as vitamin E and synthesized from the condensation of two metabolic pathways leading to the formation of homogentisate and phytyl diphosphate. While homogentisate is derived from tyrosine metabolism, phytyl diphosphate may be formed from geranylgeranyl diphosphate or phytol recycling from chlorophyll degradation. Here, we hypothesized that abscisic acid (ABA) could induce tocopherol biosynthesis in sweet cherries by modifying the expression of genes involved in vitamin E biosynthesis, including those from the phytol recycling pathway. Hence, the expression of key tocopherol biosynthesis genes was determined together with vitamin E and chlorophyll contents during the natural development of sweet cherries on the tree. Moreover, the effects of exogenously applied ABA on the expression of key tocopherol biosynthesis genes were also investigated during on-tree fruit development, and tocopherols and chlorophylls contents were analyzed. Results showed that the expression of tocopherol biosynthesis genes, including VTE5, VTE6, HPPD and HPT showed contrasting patterns of variation, but in all cases, increased by 2- and 3-fold over time during fruit de-greening. This was not the case for GGDR and VTE4, the first showing constitutive expression during fruit development and the second with marked down-regulation at ripening onset. Furthermore, exogenous ABA stimulated the production of both α- and γ-tocopherols by 60% and 30%, respectively, promoted chlorophyll degradation and significantly enhanced VTE5 and VTE6 expression, and also that of HPPD and VTE4, altogether increasing total tocopherol accumulation. In conclusion, ABA increases promote the transcription of phytol recycling enzymes, which may contribute to vitamin E biosynthesis during fruit development in stone fruits like sweet cherries.
Collapse
Affiliation(s)
- Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Verónica Tijero
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Celia Vincent
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Liu Y, Ye J, Zhu M, Atkinson RG, Zhang Y, Zheng X, Lu J, Cao Z, Peng J, Shi C, Xie Z, Larkin RM, Nieuwenhuizen NJ, Ampomah-Dwamena C, Chen C, Wang R, Luo X, Cheng Y, Deng X, Zeng Y. Multi-omics analyses reveal the importance of chromoplast plastoglobules in carotenoid accumulation in citrus fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:924-943. [PMID: 37902994 DOI: 10.1111/tpj.16519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Chromoplasts act as a metabolic sink for carotenoids, in which plastoglobules serve as versatile lipoprotein particles. PGs in chloroplasts have been characterized. However, the features of PGs from non-photosynthetic plastids are poorly understood. We found that the development of chromoplast plastoglobules (CPGs) in globular and crystalloid chromoplasts of citrus is associated with alterations in carotenoid storage. Using Nycodenz density gradient ultracentrifugation, an efficient protocol for isolating highly purified CPGs from sweet orange (Citrus sinensis) pulp was established. Forty-four proteins were defined as likely comprise the core proteome of CPGs using comparative proteomics analysis. Lipidome analysis of different chromoplast microcompartments revealed that the nonpolar microenvironment within CPGs was modified by 35 triacylglycerides, two sitosterol esters, and one stigmasterol ester. Manipulation of the CPG-localized gene CsELT1 (esterase/lipase/thioesterase) in citrus calli resulted in increased lipids and carotenoids, which is further evidence that the nonpolar microenvironment of CPGs contributes to carotenoid accumulation and storage in the chromoplasts. This multi-feature analysis of CPGs sheds new light on the role of chromoplasts in carotenoid metabolism, paving the way for manipulating carotenoid content in citrus fruit and other crops.
Collapse
Affiliation(s)
- Yun Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Man Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Yingzi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiongjie Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jiao Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zhen Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jun Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Robert M Larkin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Chuanwu Chen
- Guangxi Academy of Specialty Crops/Guangxi Engineering Research Center of Citrus Breeding and Culture, Guilin, 541004, P.R. China
| | - Rui Wang
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233, P.R. China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
7
|
Aronsson H, Solymosi K. Diversification of Plastid Structure and Function in Land Plants. Methods Mol Biol 2024; 2776:63-88. [PMID: 38502498 DOI: 10.1007/978-1-0716-3726-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids represent a largely diverse group of organelles in plant and algal cells that have several common features but also a broad spectrum of morphological, ultrastructural, biochemical, and physiological differences. Plastids and their structural and metabolic diversity significantly contribute to the functionality and developmental flexibility of the plant body throughout its lifetime. In addition to the multiple roles of given plastid types, this diversity is accomplished in some cases by interconversions between different plastids as a consequence of developmental and environmental signals that regulate plastid differentiation and specialization. In addition to basic plastid structural features, the most important plastid types, the newly characterized peculiar plastids, and future perspectives in plastid biology are also provided in this chapter.
Collapse
Affiliation(s)
- Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
8
|
Fernie AR, Skirycz A. Plant metabolism: A protein map of the photosynthetic organelle. Curr Biol 2023; 33:R1147-R1150. [PMID: 37935127 DOI: 10.1016/j.cub.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
While chloroplasts are commonly recognized as a hub in photosynthetic metabolism, our understanding of the protein functionality and spatial organization remains fragmentary. A recent study provides insights into a number of poorly characterized proteins, including unexpected spatial distributions of enzymes.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | | |
Collapse
|
9
|
Zhang L, Zhang N, Wang S, Tian H, Liu L, Pei D, Yu X, Zhao L, Chen F. A TaSnRK1α Modulates TaPAP6L-Mediated Wheat Cold Tolerance through Regulating Endogenous Jasmonic Acid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303478. [PMID: 37740426 PMCID: PMC10625090 DOI: 10.1002/advs.202303478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Indexed: 09/24/2023]
Abstract
Here, a sucrose non-fermenting-1-related protein kinase alpha subunit (TaSnRK1α-1A) is identified as associated with cold stress through integration of genome-wide association study, bulked segregant RNA sequencing, and virus-induced gene silencing. It is confirmed that TaSnRK1α positively regulates cold tolerance by transgenes and ethyl methanesulfonate (EMS) mutants. A plastid-lipid-associated protein 6, chloroplastic-like (TaPAP6L-2B) strongly interacting with TaSnRK1α-1A is screened. Molecular chaperone DJ-1 family protein (TaDJ-1-7B) possibly bridged the interaction of TaSnRK1α-1A and TaPAP6L-2B. It is further revealed that TaSnRK1α-1A phosphorylated TaPAP6L-2B. Subsequently, a superior haplotype TaPAP6L-2B30S /38S is identified and confirmed that both R30S and G38S are important phosphorylation sites that influence TaPAP6L-2B in cold tolerance. Overexpression (OE) and EMS-mutant lines verified TaPAP6L positively modulating cold tolerance. Furthermore, transcriptome sequencing revealed that TaPAP6L-2B-OE lines significantly increased jasmonic acid (JA) content, possibly by improving precursor α-linolenic acid contributing to JA synthesis and by repressing JAR1 degrading JA. Exogenous JA significantly improved the cold tolerance of wheat plants. In summary, TaSnRK1α profoundly regulated cold stress, possibly through phosphorylating TaPAP6L to increase endogenous JA content of wheat plants.
Collapse
Affiliation(s)
- Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Sisheng Wang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Hongyan Tian
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Lu Liu
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Dan Pei
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Xiaodong Yu
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT‐China Wheat and Maize Joint Research Center /Agronomy CollegeHenan Agricultural UniversityZhengzhou450046China
| |
Collapse
|
10
|
Wang L, Patena W, Van Baalen KA, Xie Y, Singer ER, Gavrilenko S, Warren-Williams M, Han L, Harrigan HR, Hartz LD, Chen V, Ton VTNP, Kyin S, Shwe HH, Cahn MH, Wilson AT, Onishi M, Hu J, Schnell DJ, McWhite CD, Jonikas MC. A chloroplast protein atlas reveals punctate structures and spatial organization of biosynthetic pathways. Cell 2023; 186:3499-3518.e14. [PMID: 37437571 DOI: 10.1016/j.cell.2023.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/14/2023]
Abstract
Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the localizations of 1,034 candidate chloroplast proteins using fluorescent protein tagging in the model alga Chlamydomonas reinhardtii. The localizations provide insights into the functions of poorly characterized proteins; identify novel components of nucleoids, plastoglobules, and the pyrenoid; and reveal widespread protein targeting to multiple compartments. We discovered and further characterized cellular organizational features, including eleven chloroplast punctate structures, cytosolic crescent structures, and unexpected spatial distributions of enzymes within the chloroplast. We also used machine learning to predict the localizations of other nuclear-encoded Chlamydomonas proteins. The strains and localization atlas developed here will serve as a resource to accelerate studies of chloroplast architecture and functions.
Collapse
Affiliation(s)
- Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kelly A Van Baalen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yihua Xie
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Emily R Singer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Linqu Han
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Henry R Harrigan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Linnea D Hartz
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vivian Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Vinh T N P Ton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Saw Kyin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Henry H Shwe
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Matthew H Cahn
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jianping Hu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Claire D McWhite
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
11
|
Li J, Kong D, Song T, Hu Z, Li Q, Xiao B, Kessler F, Zhang Z, Xie G. OsFBN7-OsKAS I module promotes formation of plastoglobules clusters in rice chloroplasts. THE NEW PHYTOLOGIST 2023. [PMID: 37366020 DOI: 10.1111/nph.19081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Plastoglobules (PGs) contiguous with the outer leaflets of thylakoid membranes regulate lipid metabolism, plastid developmental transitions, and responses to environmental stimuli. However, the function of OsFBN7, a PG-core fibrillin gene in rice, has not been elucidated. Using molecular genetics and physiobiochemical approaches, we observed that OsFBN7 overexpression promoted PG clustering in rice chloroplasts. OsFBN7 interacted with two KAS I enzymes, namely OsKAS Ia and OsKAS Ib, in rice chloroplasts. Lipidomic analysis of chloroplast subcompartments, including PGs in the OsFBN7 overexpression lines, confirmed that levels of diacylglycerol (DAG), a chloroplast lipid precursor and monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), the main chloroplast membrane lipids, were increased in PGs and chloroplasts. Furthermore, OsFBN7 enhanced the abundances of OsKAS Ia/Ib in planta and their stability under oxidative and heat stresses. In addition, RNA sequencing and real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analyses showed that the expression of the DAG synthetase gene PAP1 and MGDG synthase gene MDG2 was upregulated by OsFBN7. In conclusion, this study proposes a new model in which OsFBN7 binds to OsKAS Ia/Ib in chloroplast and enhances their abundance and stability, thereby regulating the chloroplast and PG membrane lipids involved in the formation of PG clusters.
Collapse
Affiliation(s)
- Jiajia Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongyan Kong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Song
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenzhu Hu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Benze Xiao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Felix Kessler
- Laboratory of Plant Physiology, University of Neuchatel, Neuchatel, 2000, Switzerland
| | - Zhengfeng Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, China
| | - Guosheng Xie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
12
|
Yu JS, You MK, Lee YJ, Ha SH. Stepwise protein targeting into plastoglobules are facilitated by three hydrophobic regions of rice phytoene synthase 2. FRONTIERS IN PLANT SCIENCE 2023; 14:1181311. [PMID: 37324722 PMCID: PMC10264786 DOI: 10.3389/fpls.2023.1181311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Plastoglobules (PGs) are plastidial lipid droplets enclosed by a polar monolayer born from the thylakoid membrane when plants require active lipid metabolism, including carotenogenesis, under the environmental stress and during plastid transition. Despite the fact that many proteins are reported to target PGs, their translocation mechanism has remained largely unexplored. To elucidate this process, we studied the influence of three hydrophobic regions (HR)-HR1 (1-45th aa), HR2 (46-80th aa), and HR3 (229-247th aa)-of rice phytoene synthase 2 (OsPSY2, 398 aa), which has previously shown to target PGs. As results, HR1 includes the crucial sequence (31-45th aa) for chloroplast import and the stromal cleavage occurs at a specific alanine site (64th aa) within HR2, verifying that a N-terminal 64-aa-region works as the transit peptide (Tp). HR2 has a weak PG-targeting signal by showing synchronous and asynchronous localization patterns in both PGs and stroma of chloroplasts. HR3 exhibited a strong PG-targeting role with the required positional specificity to prevent potential issues such as non-accumulation, aggregation, and folding errors in proteins. Herein, we characterized a Tp and two transmembrane domains in three HRs of OsPSY2 and propose a spontaneous pathway for its PG-translocation with a shape embedded in the PG-monolayer. Given this subplastidial localization, we suggest six sophisticated tactics for plant biotechnology applications, including metabolic engineering and molecular farming.
Collapse
|
13
|
Yoo HJ, Chung MY, Lee HA, Lee SB, Grandillo S, Giovannoni JJ, Lee JM. Natural overexpression of CAROTENOID CLEAVAGE DIOXYGENASE 4 in tomato alters carotenoid flux. PLANT PHYSIOLOGY 2023; 192:1289-1306. [PMID: 36715630 PMCID: PMC10231392 DOI: 10.1093/plphys/kiad049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 06/01/2023]
Abstract
Carotenoids and apocarotenoids function as pigments and flavor volatiles in plants that enhance consumer appeal and offer health benefits. Tomato (Solanum lycopersicum.) fruit, especially those of wild species, exhibit a high degree of natural variation in carotenoid and apocarotenoid contents. Using positional cloning and an introgression line (IL) of Solanum habrochaites "LA1777', IL8A, we identified carotenoid cleavage dioxygenase 4 (CCD4) as the factor responsible for controlling the dark orange fruit color. CCD4b expression in ripe fruit of IL8A plants was ∼8,000 times greater than that in the wild type, presumably due to 5' cis-regulatory changes. The ShCCD4b-GFP fusion protein localized in the plastid. Phytoene, ζ-carotene, and neurosporene levels increased in ShCCD4b-overexpressing ripe fruit, whereas trans-lycopene, β-carotene, and lutein levels were reduced, suggestive of feedback regulation in the carotenoid pathway by an unknown apocarotenoid. Solid-phase microextraction-gas chromatography-mass spectrometry analysis showed increased levels of geranylacetone and β-ionone in ShCCD4b-overexpressing ripe fruit coupled with a β-cyclocitral deficiency. In carotenoid-accumulating Escherichia coli strains, ShCCD4b cleaved both ζ-carotene and β-carotene at the C9-C10 (C9'-C10') positions to produce geranylacetone and β-ionone, respectively. Exogenous β-cyclocitral decreased carotenoid synthesis in the ripening fruit of tomato and pepper (Capsicum annuum), suggesting feedback inhibition in the pathway. Our findings will be helpful for enhancing the aesthetic and nutritional value of tomato and for understanding the complex regulatory mechanisms of carotenoid and apocarotenoid biogenesis.
Collapse
Affiliation(s)
- Hee Ju Yoo
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, Suncheon 57922, Korea
| | - Hyun-Ah Lee
- Division of Eco-Friendly Horticulture, Yonam College, Cheonan 31005, Korea
| | - Soo-Bin Lee
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea
| | - Silvana Grandillo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy
| | - James J Giovannoni
- Boyce Thompson Institute and USDA-ARS Robert W. Holley Center, Tower Rd., Cornell University Campus, Ithaca, NY 14853, USA
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
14
|
Sidorczuk K, Gagat P, Kała J, Nielsen H, Pietluch F, Mackiewicz P, Burdukiewicz M. Prediction of protein subplastid localization and origin with PlastoGram. Sci Rep 2023; 13:8365. [PMID: 37225726 DOI: 10.1038/s41598-023-35296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Due to their complex history, plastids possess proteins encoded in the nuclear and plastid genome. Moreover, these proteins localize to various subplastid compartments. Since protein localization is associated with its function, prediction of subplastid localization is one of the most important steps in plastid protein annotation, providing insight into their potential function. Therefore, we create a novel manually curated data set of plastid proteins and build an ensemble model for prediction of protein subplastid localization. Moreover, we discuss problems associated with the task, e.g. data set sizes and homology reduction. PlastoGram classifies proteins as nuclear- or plastid-encoded and predicts their localization considering: envelope, stroma, thylakoid membrane or thylakoid lumen; for the latter, the import pathway is also predicted. We also provide an additional function to differentiate nuclear-encoded inner and outer membrane proteins. PlastoGram is available as a web server at https://biogenies.info/PlastoGram and as an R package at https://github.com/BioGenies/PlastoGram . The code used for described analyses is available at https://github.com/BioGenies/PlastoGram-analysis .
Collapse
Affiliation(s)
| | - Przemysław Gagat
- Faculty of Biotechnology, University of Wrocław, 50-383, Wrocław, Poland
| | - Jakub Kała
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662, Warsaw, Poland
| | - Henrik Nielsen
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Filip Pietluch
- Faculty of Biotechnology, University of Wrocław, 50-383, Wrocław, Poland
| | - Paweł Mackiewicz
- Faculty of Biotechnology, University of Wrocław, 50-383, Wrocław, Poland
| | - Michał Burdukiewicz
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193, Cerdanyola del Vallés, Spain.
- Clinical Research Centre, Medical University of Białystok, 15-089, Białystok, Poland.
| |
Collapse
|
15
|
Guan Z, Li X, Yang J, Zhao J, Wang K, Hu J, Zhang B, Liu K. The mechanism of white flower formation in Brassica rapa is distinct from that in other Brassica species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:133. [PMID: 37204504 DOI: 10.1007/s00122-023-04344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE A single nucleotide (G) deletion in the third exon of BraA02.PES2-2 (Bra032957) leads to the conversion of flower color from yellow to white in B. rapa, and knockout mutants of its orthologous genes in B. napus showed white or pale yellow flowers. Brassica rapa (2n = 20, AA) is grown worldwide as an important crop for edible oil and vegetables. The bright yellow flower color and long-lasting flowering period give it aesthetic qualities appealing to countryside tourists. However, the mechanism controlling the accumulation of yellow pigments in B. rapa has not yet been completely revealed. In this study, we characterized the mechanism of white flower formation using a white-flowered natural B. rapa mutant W01. Compared to the petals of yellow-flowered P3246, the petals of W01 have significantly reduced content of yellowish carotenoids. Furthermore, the chromoplasts in white petals of W01 are abnormal with irregularly structured plastoglobules. Genetic analysis indicated that the white flower was controlled by a single recessive gene. By combining BSA-seq with fine mapping, we identified the target gene BraA02.PES2-2 (Bra032957) homologous to AtPES2, which has a single nucleotide (G) deletion in the third exon. Seven homologous PES2 genes including BnaA02.PES2-2 (BnaA02g28340D) and BnaC02.PES2-2 (BnaC02g36410D) were identified in B. napus (2n = 38, AACC), an allotetraploid derived from B. rapa and B. oleracea (2n = 18, CC). Knockout mutants of either one or two of BnaA02.PES2-2 and BnaC02.PES2-2 in the yellow-flowered B. napus cv. Westar by the CRISPR/Cas9 system showed pale-yellow or white flowers. The knock-out mutants of BnaA02.PES2-2 and BnaC02.PES2-2 had fewer esterified carotenoids. These results demonstrated that BraA02.PES2-2 in B. rapa, and BnaA02.PES2-2 and BnaC02.PES2-2 in B. napus play important roles in carotenoids esterification in chromoplasts that contributes to the accumulation of carotenoids in flower petals.
Collapse
Affiliation(s)
- Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuewei Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Nanchang, 330046, China
| | - Jianshun Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junwei Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiyue Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianlin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Niaz M, Zhang L, Lv G, Hu H, Yang X, Cheng Y, Zheng Y, Zhang B, Yan X, Htun A, Zhao L, Sun C, Zhang N, Ren Y, Chen F. Identification of TaGL1-B1 gene controlling grain length through regulation of jasmonic acid in common wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:979-989. [PMID: 36650924 PMCID: PMC10106860 DOI: 10.1111/pbi.14009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 05/04/2023]
Abstract
Grain length is one of the most important factors in determining wheat yield. Here, a stable QTL for grain length was mapped on chromosome 1B in a F10 recombinant inbred lines (RIL) population, and the gene TaGL1-B1 encoding carotenoid isomerase was identified in a secondary large population through multiple strategies. The genome-wide association study (GWAS) in 243 wheat accessions revealed that the marker for TaGL1-B1 was the most significant among all chromosomes. EMS mutants of TaGL1 possessed significantly reduced grain length, whereas TaGL1-B1-overexpressed lines possessed significantly increased grain length. Moreover, TaGL1-B1 strongly interacted with TaPAP6. TaPAP6-overexpressed lines had significantly increased grain length. Transcriptome analysis suggested that TaPAP6 was possibly involved in the accumulation of JA (jasmonic acid). Consistently, JA content was significantly increased in the TaGL1-B1 and TaPAP6 overexpression lines. Additionally, the role of TaGL1-B1 in regulating carotenoids was verified through QTL mapping, GWAS, EMS mutants and overexpression lines. Notably, overexpression of TaGL1-B1 significantly increased wheat yield in multiple locations. Taken together, overexpression of TaGL1-B1 enhanced grain length, probably through interaction with TaPAP6 to cause the accumulation of JA that improved carotenoid content and photosynthesis, thereby resulted in increased wheat yield. This study provided valuable genes controlling grain length to improve yield and a potential insight into the molecular mechanism of modulating JA-mediated grain size in wheat.
Collapse
Affiliation(s)
- Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Huiting Hu
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Xi Yang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yongzhen Cheng
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yueting Zheng
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Bingyang Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Aye Htun
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science, CIMMYT‐China Wheat and Maize Joint Research Center, Agronomy CollegeHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
17
|
Pandey A, Sharma P, Mishra D, Dey S, Malviya R, Gayen D. Genome-wide identification of the fibrillin gene family in chickpea (Cicer arietinum L.) and its response to drought stress. Int J Biol Macromol 2023; 234:123757. [PMID: 36805507 DOI: 10.1016/j.ijbiomac.2023.123757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
Fibrillin family members play multiple roles in growth, development, and protection against abiotic stress. In this study, we identified 12 potential CaFBNs that are ranging from 25 kDa-42.92 kDa and are mostly basic. These proteins were hydrophilic in nature and generally resided in the chloroplast. The CaFBN genes were located on different chromosomes like 1, 4, 5, and 7. All FBNs shared conserved motifs and possessed a higher number of stress-responsive elements. For evolutionary analysis, a phylogenetic tree of CaFBNs with other plants' FBNs was constructed and clustered into 11 FBN subgroups. For expression analysis, 21 day old chickpea seedling was exposed to dehydration stress by withholding water. We also performed various physiological and biochemical analyses to check that plant changes at the physiological and cellular levels while undergoing stress conditions. The transcript expression of CaFBNs was higher in aerial parts, especially in stems and leaves. Dehydration-specific transcriptome and qPCR analysis showed that FBN-1, FBN-2, and FBN-6 were highly expressed. In addition, our study provides a comprehensive overview of the FBN protein family and their importance during the dehydration stress condition in Cicer arietinum.
Collapse
Affiliation(s)
- Anuradha Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India
| | - Punam Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India
| | - Divya Mishra
- Department of Plant Pathology, Kansas State University, USA
| | - Sharmistha Dey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India
| | - Rinku Malviya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India
| | - Dipak Gayen
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Tehsil- Kishangarh, Dist- Ajmer, 305 817, India.
| |
Collapse
|
18
|
Morelli L, Torres-Montilla S, Glauser G, Shanmugabalaji V, Kessler F, Rodriguez-Concepcion M. Novel insights into the contribution of plastoglobules and reactive oxygen species to chromoplast differentiation. THE NEW PHYTOLOGIST 2023; 237:1696-1710. [PMID: 36307969 DOI: 10.1111/nph.18585] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Plant tissues can be enriched in phytonutrients not only by stimulating their biosynthesis but also by providing appropriate sink structures for their sequestering and storage. In the case of carotenoids, they accumulate at high levels in chromoplasts naturally found in flowers and fruit. Chromoplasts can also be artificially differentiated from leaf chloroplasts by boosting carotenoid production with the bacterial protein crtB. Here we used electron and confocal microscopy together with subplastidial fractionation and transcript, protein and metabolite analyses to analyze the structural and biochemical changes occurring in crtB-induced artificial chromoplasts and their impact on the accumulation of health-related isoprenoids. We show that leaf chromoplasts develop plastoglobules (PG) harboring high levels of carotenoids (mainly phytoene and pro-vitamin A β-carotene) but also other nutritionally relevant isoprenoids, such as tocopherols (vitamin E) and phylloquinone (vitamin K1). Further promoting PG proliferation by exposure to intense (high) light resulted in a higher accumulation of these health-related metabolites but also an acceleration of the chloroplast-to-chromoplast conversion. We further show that the production of reactive oxygen species (ROS) stimulates chromoplastogenesis. Our data suggest that carotenoid accumulation and ROS production are not just consequences but promoters of the chromoplast differentiation process.
Collapse
Affiliation(s)
- Luca Morelli
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Barcelona, Spain
| | - Salvador Torres-Montilla
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | | | - Felix Kessler
- Laboratory of Plant Physiology, Faculty of Sciences, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
| |
Collapse
|
19
|
Morelli L, Torres-Montilla S, Glauser G, Shanmugabalaji V, Kessler F, Rodriguez-Concepcion M. Novel insights into the contribution of plastoglobules and reactive oxygen species to chromoplast differentiation. THE NEW PHYTOLOGIST 2023. [PMID: 36307969 DOI: 10.1101/2022.06.20.496796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant tissues can be enriched in phytonutrients not only by stimulating their biosynthesis but also by providing appropriate sink structures for their sequestering and storage. In the case of carotenoids, they accumulate at high levels in chromoplasts naturally found in flowers and fruit. Chromoplasts can also be artificially differentiated from leaf chloroplasts by boosting carotenoid production with the bacterial protein crtB. Here we used electron and confocal microscopy together with subplastidial fractionation and transcript, protein and metabolite analyses to analyze the structural and biochemical changes occurring in crtB-induced artificial chromoplasts and their impact on the accumulation of health-related isoprenoids. We show that leaf chromoplasts develop plastoglobules (PG) harboring high levels of carotenoids (mainly phytoene and pro-vitamin A β-carotene) but also other nutritionally relevant isoprenoids, such as tocopherols (vitamin E) and phylloquinone (vitamin K1). Further promoting PG proliferation by exposure to intense (high) light resulted in a higher accumulation of these health-related metabolites but also an acceleration of the chloroplast-to-chromoplast conversion. We further show that the production of reactive oxygen species (ROS) stimulates chromoplastogenesis. Our data suggest that carotenoid accumulation and ROS production are not just consequences but promoters of the chromoplast differentiation process.
Collapse
Affiliation(s)
- Luca Morelli
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193, Barcelona, Spain
| | - Salvador Torres-Montilla
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | | | - Felix Kessler
- Laboratory of Plant Physiology, Faculty of Sciences, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
| |
Collapse
|
20
|
Jiang EY, Fan Y, Phung NV, Xia WY, Hu GR, Li FL. Overexpression of plastid lipid-associated protein in marine diatom enhances the xanthophyll synthesis and storage. Front Microbiol 2023; 14:1143017. [PMID: 37152729 PMCID: PMC10160619 DOI: 10.3389/fmicb.2023.1143017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Plastoglobules, which are lipoprotein structures surrounded by a single hydrophobic phospholipid membrane, are subcellular organelles in plant chromoplasts and chloroplasts. They contain neutral lipids, tocopherols, quinones, chlorophyll metabolites, carotenoids and their derivatives. Proteomic studies indicated that plastoglobules are involved in carotenoid metabolism and storage. In this study, one of the plastid lipid-associated proteins (PAP), the major protein in plastoglobules, was selected and overexpressed in Phaeodactylum tricornutum. The diameter of the plastoglobules in mutants was decreased by a mean of 19.2% versus the wild-type, while the fucoxanthin level was increased by a mean of 51.2%. All mutants exhibited morphological differences from the wild-type, including a prominent increase in the transverse diameter. Moreover, the unsaturated fatty acid levels were increased in different mutants, including an 18.9-59.3% increase in eicosapentaenoic acid content. Transcriptomic analysis revealed that PAP expression and the morphological changes altered xanthophyll synthesis and storage, which affected the assembly of the fucoxanthin chlorophyll a/c-binding protein and expression of antenna proteins as well as reduced the non-photochemical quenching activity of diatom cells. Therefore, metabolic regulation at the suborganelle level can be achieved by modulating PAP expression. These findings provide a subcellular structural site and target for synthetic biology to modify pigment and lipid metabolism in microalgae chassis cells.
Collapse
Affiliation(s)
- Er-Ying Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Yong Fan,
| | - Nghi-Van Phung
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wan-Yue Xia
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Guang-Rong Hu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fu-Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Fu-Li Li,
| |
Collapse
|
21
|
Zita W, Bressoud S, Glauser G, Kessler F, Shanmugabalaji V. Chromoplast plastoglobules recruit the carotenoid biosynthetic pathway and contribute to carotenoid accumulation during tomato fruit maturation. PLoS One 2022; 17:e0277774. [PMID: 36472971 PMCID: PMC9725166 DOI: 10.1371/journal.pone.0277774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
Tomato (Solanum lycopersicum) fruit maturation is associated with a developmental transition from chloroplasts (in mature green fruit) to chromoplasts (in red fruit). The hallmark red color of ripe tomatoes is due to carotenogenesis and accumulation of the red carotenoid lycopene inside chromoplasts. Plastoglobules (PG) are lipid droplets in plastids that are involved in diverse lipid metabolic pathways. In tomato, information on the possible role of PG in carotogenesis and the PG proteome is largely lacking. Here, we outline the role of PG in carotenogenesis giving particular attention to tomato fruit PG proteomes and metabolomes. The proteome analysis revealed the presence of PG-typical FBNs, ABC1K-like kinases, and metabolic enzymes, and those were decreased in the PG of tomato chromoplasts compared to chloroplasts. Notably, the complete β-carotene biosynthesis pathway was recruited to chromoplast PG, and the enzymes PHYTOENE SYNTHASE 1 (PSY-1), PHYTOENE DESATURASE (PDS), ZETA-CAROTENE DESATURASE (ZDS), and CAROTENOID ISOMERASE (CRTISO) were enriched up to twelvefold compared to chloroplast PG. We profiled the carotenoid and prenyl lipid changes in PG during the chloroplast to chromoplast transition and demonstrated large increases of lycopene and β-carotene in chromoplast PG. The PG proteome and metabolome are subject to extensive remodeling resulting in high accumulation of lycopene during the chloroplast-to-chromoplast transition. Overall, the results indicate that PGs contribute to carotenoid accumulation during tomato fruit maturation and suggest that they do so by functioning as a biosynthetic platform for carotenogenesis.
Collapse
Affiliation(s)
- Wayne Zita
- Plant Physiology Laboratory, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ségolène Bressoud
- Plant Physiology Laboratory, University of Neuchâtel, Neuchâtel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Felix Kessler
- Plant Physiology Laboratory, University of Neuchâtel, Neuchâtel, Switzerland
| | | |
Collapse
|
22
|
Chaplygin V, Dudnikova T, Chernikova N, Fedorenko A, Mandzhieva S, Fedorenko G, Sushkova S, Nevidomskaya D, Minkina T, Sathishkumar P, Rajput VD. Phragmites australis cav. As a bioindicator of hydromorphic soils pollution with heavy metals and polyaromatic hydrocarbons. CHEMOSPHERE 2022; 308:136409. [PMID: 36108759 DOI: 10.1016/j.chemosphere.2022.136409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The work is devoted to evaluation of the ability of Phragmites australis Сav. to indicate the soil pollution with heavy metals (HMs) and priority polycyclic aromatic hydrocarbons (PAHs) by studying changes in the plant's ultrastructure. The concentration of Mn, Cu, Cr, Cd, Pb, Zn, Ni as well as 16 priority PAHs in hydromorphic soils and macrophyte plants (Phragmites australis Cav.) were increasing with distance decreasing to the power station and approaching to the direction of prevailing wind (northwest). The analyze of distribution of the studied pollutants in plants showed that the highest concentration have prevailed in the roots. A decrease in the diameter of the roots, and an increase in the thickness of the leaf blade was established. The transmission electron microscopy analysis showed that the ultrastructure of P. australis chloroplasts changed affected by accumulation of HMs and PAHs: a rise in the number of plastoglobules; a drop in the number of lamellae in granules, as well as changes in the shape, size, and electron density of mitochondria and peroxisomes. The most serious destructive violations of the main cellular organelles were noted for plants from the site within a 2.5 km from the emissions source and located on the predominant wind rose (north-west) direction. These macrophytes reflect spatial variations of pollutants metals in hydromorphic soils, therefore they are of potential use as bioindicators of environmental pollution.
Collapse
Affiliation(s)
| | | | | | | | | | - Grigorii Fedorenko
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation
| | | | | | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, Russian Federation
| | - Palanivel Sathishkumar
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, India
| | - Vishnu D Rajput
- Southern Federal University, Rostov-on-Don, Russian Federation.
| |
Collapse
|
23
|
Ye S, Hua S, Ma T, Ma X, Chen Y, Wu L, Zhao L, Yi B, Ma C, Tu J, Shen J, Fu T, Wen J. Genetic and multi-omics analyses reveal BnaA07.PAP2In-184-317 as the key gene conferring anthocyanin-based color in Brassica napus flowers. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6630-6645. [PMID: 35857343 DOI: 10.1093/jxb/erac312] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The molecular mechanisms underlying anthocyanin-based flower coloration remain unknown in Brassica napus. To identify the key genes and metabolites associated with apricot and pink flower colors, metabolome, BSA-seq, and RNA-seq analyses were conducted on apricot-, pink-, yellow-, and white-flowered F2B. napus. Yellow carotenoids and red anthocyanins were abundant in apricot petals, while colorless carotenoids and red anthocyanins accumulated in pink petals. Most carotenoid genes were not differentially regulated between apricot and yellow or between pink and white petals. Three regulator genes, BnaMYBL2, BnaA07.PAP2, and BnaTT8, and structural genes in anthocyanin biosynthesis were dramatically enhanced in apricot and pink petals in comparison with yellow and white petals. Map-based cloning revealed that BnaA07.PAP2 is responsible for anthocyanin-based flower color and encodes a nucleus-localized protein predominantly expressed in apricot and pink flowers. Two insertions in the promoter region are responsible for the transcriptional activation of BnaA07.PAP2 in flowers. Introducing the BnaA07.PAP2In-184-317 allele broadly activated the expression of anthocyanin-related genes and promoted anthocyanin accumulation in flowers, yielding color change from yellow to apricot. These findings illustrate the genetic basis of anthocyanin-based flower coloration and provide a valuable genetic resource for breeding varieties with novel flower colors in B. napus.
Collapse
Affiliation(s)
- Shenhua Ye
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Shuijin Hua
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tiantian Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Xiaowei Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Yanping Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Lumei Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Drapal M, Gerrish C, Fraser PD. Changes in carbon allocation and subplastidal amyloplast structures of specialised Ipomoea batatas (sweet potato) storage root phenotypes. PHYTOCHEMISTRY 2022; 203:113409. [PMID: 36049525 DOI: 10.1016/j.phytochem.2022.113409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Vitamin A deficiency (VAD) in Low and Medium Income countries remains a major health concern. Ipomoea batatas, orange sweet potato (OSP), is one of the biofortification solutions being implemented by the World Health Organisation (WHO) to combat VAD. However, high provitamin A (β-carotene) content has been associated with a reduction in dry matter, reducing calorific value and having adverse effects on consumer traits. Both starch and carotenoid formation are located in amyloplasts and could potentially compete for the same precursors. Hence, five different sweet potato storage root phenotypes were characterized through spatial metabolomics and proteomics at the sub-plastidal level. The metabolite data suggested an indirect correlation of starch and carotenoids through the TCA cycle and pentose phosphate pathway. Furthermore, a change in lipid composition was observed to accommodate the storage of carotenoids in the hydrophilic environment of the amyloplast. The data suggests an alteration of cellular ultra-structures and perturbation of metabolism in high β-carotene producing sweet potato roots. This corroborates with previous gene expression analysis through biochemical analysis of sweet potato root tissue.
Collapse
Affiliation(s)
- Margit Drapal
- School of Biological Sciences, Royal Holloway University of London, Egham, TW200EX, United Kingdom
| | - Christopher Gerrish
- School of Biological Sciences, Royal Holloway University of London, Egham, TW200EX, United Kingdom
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway University of London, Egham, TW200EX, United Kingdom.
| |
Collapse
|
25
|
Li Y, Jian Y, Mao Y, Meng F, Shao Z, Wang T, Zheng J, Wang Q, Liu L. "Omics" insights into plastid behavior toward improved carotenoid accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:1001756. [PMID: 36275568 PMCID: PMC9583013 DOI: 10.3389/fpls.2022.1001756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Plastids are a group of diverse organelles with conserved carotenoids synthesizing and sequestering functions in plants. They optimize the carotenoid composition and content in response to developmental transitions and environmental stimuli. In this review, we describe the turbulence and reforming of transcripts, proteins, and metabolic pathways for carotenoid metabolism and storage in various plastid types upon organogenesis and external influences, which have been studied using approaches including genomics, transcriptomics, proteomics, and metabonomics. Meanwhile, the coordination of plastid signaling and carotenoid metabolism including the effects of disturbed carotenoid biosynthesis on plastid morphology and function are also discussed. The "omics" insight extends our understanding of the interaction between plastids and carotenoids and provides significant implications for designing strategies for carotenoid-biofortified crops.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yue Jian
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yuanyu Mao
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Fanliang Meng
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Zhiyong Shao
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Tonglin Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jirong Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Kim I, Kim EH, Choi YR, Kim HU. Fibrillin2 in chloroplast plastoglobules participates in photoprotection and jasmonate-induced senescence. PLANT PHYSIOLOGY 2022; 189:1363-1379. [PMID: 35404409 PMCID: PMC9237730 DOI: 10.1093/plphys/kiac166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Fibrillins (FBNs) are the major structural proteins of plastoglobules (PGs) in chloroplasts. PGs are associated with defense against abiotic and biotic stresses, as well as lipid storage. Although FBN2 is abundant in PGs, its independent function under abiotic stress has not yet been identified. In this study, the targeting of FBN2 to PGs was clearly demonstrated using an FBN2-YFP fusion protein. FBN2 showed higher expression in green photosynthetic tissues and was upregulated at the transcriptional level under high-light stress. The photosynthetic capacity of fbn2 knockout mutants generated using CRISPR/Cas9 technology decreased rapidly compared with that of wild-type (WT) plants under high-light stress. In addition to the photoprotective function of FBN2, fbn2 mutants had lower levels of plastoquinone-9 and plastochromanol-8. The fbn2 mutants were highly sensitive to methyl jasmonate (MeJA) and exhibited root growth inhibition and a pale-green phenotype due to reduced chlorophyll content. Consistently, upon MeJA treatment, the fbn2 mutants showed faster leaf senescence and more rapid chlorophyll degradation with decreased photosynthetic ability compared with the WT plants. The results of this study suggest that FBN2 is involved in protection against high-light stress and acts as an inhibitor of jasmonate-induced senescence in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Inyoung Kim
- Department of Molecular Biology, Sejong University, Seoul 05006, South Korea
| | - Eun-Ha Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, South Korea
| | - Yu-ri Choi
- Department of Molecular Biology, Sejong University, Seoul 05006, South Korea
| | | |
Collapse
|
27
|
Kim I, Kim HU. The mysterious role of fibrillin in plastid metabolism: current advances in understanding. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2751-2764. [PMID: 35560204 DOI: 10.1093/jxb/erac087] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fibrillins (FBNs) are a family of genes in cyanobacteria, algae, and plants. The proteins they encode possess a lipid-binding motif, exist in various types of plastids, and are associated with lipid bodies called plastoglobules, implicating them in lipid metabolism. FBNs present in the thylakoid and stroma are involved in the storage, transport, and synthesis of lipid molecules for photoprotective functions against high-light stress. In this review, the diversity of subplastid locations in the evolution of FBNs, regulation of FBNs expression by various stresses, and the role of FBNs in plastid lipid metabolism are comprehensively summarized and directions for future research are discussed.
Collapse
Affiliation(s)
- Inyoung Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Molecular Biology, Sejong University, Seoul, South Korea
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| |
Collapse
|
28
|
Sun H, Ren M, Zhang J. Genome-wide identification and expression analysis of fibrillin ( FBN) gene family in tomato ( Solanum lycopersicum L.). PeerJ 2022; 10:e13414. [PMID: 35573169 PMCID: PMC9097668 DOI: 10.7717/peerj.13414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
Background Fibrillin (FBN) proteins are widely distributed in the photosynthetic organs. The members of FBN gene family play important roles in plant growth and development, and response to hormone and stresses. Tomato is a vegetable crop with significantly economic value and model plant commonly used in research. However, the FBN family has not been systematical studied in tomato. Methods In this study, 14 FBN genes were identified in tomato genome by Pfam and Hmmer 3.0 software. ExPASy, MEGA 6.0, MEME, GSDS, TBtools, PlantCARE and so on were used for physical and chemical properties analysis, phylogenetic analysis, gene structure and conserved motifs analysis, collinearity analysis and cis-acting element analysis of FBN family genes in tomato. Expression characteristics of SlFBNs in different tissues, fruit shape near isogenic lines (NILs), Pst DC3000 and ABA treatments were analyzed based on transcriptome data and quantitative Real-time qPCR (qRT-PCR) analysis. Results The SlFBN family was divided into 11 subgroups. There were 8 FBN homologous gene pairs between tomato and Arabidopsis. All the members of SlFBN family contained PAP conserved domain, but their gene structure and conserved motifs showed apparent differences. The cis-acting elements of light and hormone (especially ethylene, methyl jasmonate (MeJA) and abscisic acid (ABA)) were widely distributed in the SlFBN promoter regions. The expression analysis found that most of SlFBNs were predominantly expressed in leaves of Heinz and S. pimpinellifolium LA1589, and showed higher expressions in mature or senescent leaves than in young leaves. Expression analysis of different tissues and fruit shape NILs indicated SlFBN1, SlFBN2b and SlFBN7a might play important roles during tomato fruit differentiation. All of the SlFBNs responded to Pst DC3000 and ABA treatments. The results of this study contribute to exploring the functions and molecular mechanisms of SlFBNs in leaf development, fruit differentiation, stress and hormone responses.
Collapse
Affiliation(s)
- Huiru Sun
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, Shaanxi Province, China
| | - Min Ren
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi Province, China
| | - Jianing Zhang
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi Province, China
| |
Collapse
|
29
|
Espinoza-Corral R, Lundquist PK. The plastoglobule-localized protein AtABC1K6 is a Mn 2+-dependent kinase necessary for timely transition to reproductive growth. J Biol Chem 2022; 298:101762. [PMID: 35202657 PMCID: PMC8956952 DOI: 10.1016/j.jbc.2022.101762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
The Absence of bc1 Complex (ABC1) is an ancient, atypical protein kinase family that emerged prior to the archaeal-eubacterial divergence. Loss-of-function mutants in ABC1 genes are linked to respiratory defects in microbes and humans and to compromised photosynthetic performance and stress tolerance in plants. However, demonstration of protein kinase activity remains elusive, hampering their study. Here, we investigate a homolog from Arabidopsis thaliana, AtABC1K6, and demonstrate in vitro autophosphorylation activity, which we replicate with a human ABC1 ortholog. We also show that AtABC1K6 protein kinase activity requires an atypical buffer composition, including Mn2+ as a divalent cation cofactor and a low salt concentration. AtABC1K6 associates with plastoglobule lipid droplets of A. thaliana chloroplasts, along with five paralogs. We show that the protein kinase activity associated with isolated A. thaliana plastoglobules was inhibited at higher salt concentrations, but could accommodate Mg2+ as well as Mn2+, indicating salt sensitivity, but not the requirement for Mn2+, may be a general characteristic of ABC1 proteins. Finally, loss of functional AtABC1K6 impairs the developmental transition from vegetative to reproductive growth. This phenotype was complemented by the wild-type sequence of AtABC1K6, but not by a kinase-dead point mutant in the unique Ala-triad of the ATP-binding pocket, demonstrating the physiological relevance of the protein's kinase activity. We suggest that ABC1s are bona fide protein kinases with a unique regulatory mechanism. Our results open the door to detailed functional and mechanistic studies of ABC1 proteins and plastoglobules.
Collapse
Affiliation(s)
- Roberto Espinoza-Corral
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA.
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
30
|
Fisher KE, Krishnamoorthy P, Joens MS, Chory J, Fitzpatrick JAJ, Woodson JD. Singlet Oxygen Leads to Structural Changes to Chloroplasts during their Degradation in the Arabidopsis thaliana plastid ferrochelatase two Mutant. PLANT & CELL PHYSIOLOGY 2022; 63:248-264. [PMID: 34850209 DOI: 10.1093/pcp/pcab167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
During stress, chloroplasts produce large amounts of reactive oxygen species (ROS). Chloroplasts also contain many nutrients, including 80% of a leaf's nitrogen supply. Therefore, to protect cells from photo-oxidative damage and to redistribute nutrients to sink tissues, chloroplasts are prime targets for degradation. Multiple chloroplast degradation pathways are induced by photo-oxidative stress or nutrient starvation, but the mechanisms by which damaged or senescing chloroplasts are identified, transported to the central vacuole and degraded are poorly defined. Here, we investigated the structures involved with degrading chloroplasts induced by the ROS singlet oxygen (1O2) in the Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant. Under mild 1O2 stress, most fc2 chloroplasts appeared normal, but had reduced starch content. A subset of chloroplasts was degrading, and some protruded into the central vacuole via 'blebbing' structures. A 3D electron microscopy analysis demonstrated that up to 35% of degrading chloroplasts contained such structures. While the location of a chloroplast within a cell did not affect the likelihood of its degradation, chloroplasts in spongy mesophyll cells were degraded at a higher rate than those in palisade mesophyll cells. To determine if degrading chloroplasts have unique structural characteristics, allowing them to be distinguished from healthy chloroplasts, we analyzed fc2 seedlings grown under different levels of photo-oxidative stress. A correlation was observed among chloroplast swelling, 1O2 signaling and the state of degradation. Finally, plastoglobule (PG) enzymes involved in chloroplast disassembly were upregulated while PGs increased their association with the thylakoid grana, implicating an interaction between 1O2-induced chloroplast degradation and senescence pathways.
Collapse
Affiliation(s)
- Karen E Fisher
- The School of Plant Sciences, University of Arizona, 1140 E South Campus Dr., Tucson, AZ 85721, USA
| | - Praveen Krishnamoorthy
- Washington University Center for Cellular Imaging, Washington University School of Medicine, 660 W. Euclid Avenue, St. Louis, MO 63110, USA
| | | | - Joanne Chory
- Plant Biology Laboratory and the Howard Hughes Medical Institute, The Salk Institute, 10010 N Torrey Pines Rd., La Jolla, CA 92037, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, 660 W. Euclid Avenue, St. Louis, MO 63110, USA
- Departments of Cell Biology & Physiology and Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, 1140 E South Campus Dr., Tucson, AZ 85721, USA
- Washington University Center for Cellular Imaging, Washington University School of Medicine, 660 W. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
31
|
Us-Camas R, Aguilar-Espinosa M, Rodríguez-Campos J, Vallejo-Cardona AA, Carballo-Uicab VM, Serrano-Posada H, Rivera-Madrid R. Identifying Bixa orellana L. New Carotenoid Cleavage Dioxygenases 1 and 4 Potentially Involved in Bixin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:829089. [PMID: 35222486 PMCID: PMC8874276 DOI: 10.3389/fpls.2022.829089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/19/2022] [Indexed: 06/07/2023]
Abstract
Carotene cleavage dioxygenases (CCDs) are a large family of Fe2+ dependent enzymes responsible for the production of a wide variety of apocarotenoids, such as bixin. Among the natural apocarotenoids, bixin is second in economic importance. It has a red-orange color and is produced mainly in the seeds of B. orellana. The biosynthesis of bixin aldehyde from the oxidative cleavage of lycopene at 5,6/5',6' bonds by a CCD is considered the first step of bixin biosynthesis. Eight BoCCD (BoCCD1-1, BoCCD1-3, BoCCD1-4, CCD4-1, BoCCD4-2, BoCCD4-3 and BoCCD4-4) genes potentially involved in the first step of B. orellana bixin biosynthesis have been identified. However, the cleavage activity upon lycopene to produce bixin aldehyde has only been demonstrated for BoCCD1-1 and BoCCD4-3. Using in vivo (Escherichia coli) and in vitro approaches, we determined that the other identified BoCCDs enzymes (BoCCD1-3, BoCCD1-4, BoCCD4-1, BoCCD4-2, and BoCCD4-4) also participate in the biosynthesis of bixin aldehyde from lycopene. The LC-ESI-QTOF-MS/MS analysis showed a peak corresponding to bixin aldehyde (m/z 349.1) in pACCRT-EIB E. coli cells that express the BoCCD1 and BoCCD4 proteins, which was confirmed by in vitro enzymatic assay. Interestingly, in the in vivo assay of BoCCD1-4, BoCCD4-1, BoCCD4-2, and BoCCD4-4, bixin aldehyde was oxidized to norbixin (m/z 380.2), the second product of the bixin biosynthesis pathway. In silico analysis also showed that BoCCD1 and BoCCD4 proteins encode functional dioxygenases that can use lycopene as substrate. The production of bixin aldehyde and norbixin was corroborated based on their ion fragmentation pattern, as well as by Fourier transform infrared (FTIR) spectroscopy. This work made it possible to clarify at the same time the first and second steps of the bixin biosynthesis pathway that had not been evaluated for a long time.
Collapse
Affiliation(s)
- Rosa Us-Camas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida, Mexico
| | - Margarita Aguilar-Espinosa
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida, Mexico
| | - Jacobo Rodríguez-Campos
- Unidad de Servicios Analíticos y Metrológicos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Alba Adriana Vallejo-Cardona
- Unidad de Biotecnología Médica y Farmacéutica, CONACYT, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Víctor Manuel Carballo-Uicab
- CONACYT, Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Colima, Mexico
| | - Hugo Serrano-Posada
- CONACYT, Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Colima, Mexico
| | - Renata Rivera-Madrid
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán A.C., Mérida, Mexico
| |
Collapse
|
32
|
Arzac MI, Fernández-Marín B, García-Plazaola JI. More than just lipid balls: quantitative analysis of plastoglobule attributes and their stress-related responses. PLANTA 2022; 255:62. [PMID: 35141783 PMCID: PMC8828631 DOI: 10.1007/s00425-022-03848-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/28/2022] [Indexed: 05/15/2023]
Abstract
Plastoglobules are ubiquitous under non-stress conditions and their morphology, closely related to their composition, changes differently depending on the specific stress that the plant undergoes. Plastoglobules are lipoprotein structures attached to thylakoid membranes, which participate in chloroplast metabolism and stress responses. Their structure contains a coating lipid monolayer and a hydrophobic core that differ in composition. Their function in chloroplasts has been studied focussing on their composition. However, we currently lack a comprehensive study that quantitatively evaluates the occurrence and morphology of plastoglobules. Following a literature search strategy, we quantified the main morphological attributes of plastoglobules from photosynthetic chloroplasts of more than 1000 TEM images published over the last 53 years, covering more than 100 taxa and 15 stress types. The analysis shows that plastoglobules under non-stress conditions are spherical, with an average diameter of 100-200 nm and cover less than 3% of the chloroplast cross-section area. This percentage rises under almost every type of stress, particularly in senescence. Interestingly, an apparent trade-off between increasing either the number or the diameter of plastoglobules governs this response. Our results show that plastoglobules are ubiquitous in chloroplasts of higher plants under non-stress conditions. Besides, provided the specific molecular composition of the core and coat of plastoglobules, we conclude that specific stress-related variation in plastoglobules attributes may allow inferring precise responses of the chloroplast metabolism.
Collapse
Affiliation(s)
- Miren I. Arzac
- Department Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Beatriz Fernández-Marín
- Department Botany, Ecology and Plant Physiology, University of La Laguna (ULL), 38200 Tenerife, Spain
| | - José I. García-Plazaola
- Department Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
33
|
Torres-Romero D, Gómez-Zambrano Á, Serrato AJ, Sahrawy M, Mérida Á. Arabidopsis fibrillin 1-2 subfamily members exert their functions via specific protein-protein interactions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:903-914. [PMID: 34651644 PMCID: PMC8793873 DOI: 10.1093/jxb/erab452] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/13/2021] [Indexed: 05/20/2023]
Abstract
Fibrillins (FBNs) are plastidial proteins found in photosynthetic organisms from cyanobacteria to higher plants. The function of most FBNs remains unknown. Here, we focused on members of the FBN subgroup comprising FBN1a, FBN1b, and FBN2. We show that these three polypeptides interact between each other, potentially forming a network around the plastoglobule surface. Both FBN2 and FBN1s interact with allene oxide synthase, and the elimination of any of these FBNs results in a delay in jasmonate-mediated anthocyanin accumulation in response to a combination of moderate high light and low temperature. Mutations in the genes encoding FBN1s or FBN2 also affect the protection of PSII under the combination of these stresses. Fully developed leaves of these mutants have lower maximum quantum efficiency of PSII (Fv/Fm) and higher oxidative stress than wild-type plants. These effects are additive, and the fbn1a-1b-2 triple mutant shows a stronger decrease in Fv/Fm and a greater increase in oxidative stress than fbn1a-1b or fbn2 mutants. Co-immunoprecipitation analysis indicated that FBN2 also interacts with other proteins involved in different metabolic processes. We propose that these fibrillins facilitate accurate positioning of different proteins involved in distinct metabolic processes, and that their elimination leads to dysfunction of those proteins.
Collapse
Affiliation(s)
- Diego Torres-Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Ángeles Gómez-Zambrano
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Antonio Jesús Serrato
- Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Mariam Sahrawy
- Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Ángel Mérida
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC) – Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
- Correspondence:
| |
Collapse
|
34
|
Labeeb M, Badr A, Haroun SA, Mattar MZ, El-Kholy AS. Ultrastructural and molecular implications of ecofriendly made silver nanoparticles treatments in pea (Pisum sativum L.). JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2022; 20:5. [PMID: 34985579 PMCID: PMC8733074 DOI: 10.1186/s43141-021-00285-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
Background Silver nanoparticles (AgNPs) are the most widely used nanomaterial in agricultural and environmental applications. In this study, the impact of AgNPs solutions at 20 mg/L, 40 mg/L, 80 mg/L, and 160 mg/L on cell ultrastructure have been examined in pea (Pisum sativum L) using a transmission electron microscope (TEM). The effect of AgNPs treatments on the α, β esterase (EST), and peroxidase (POX) enzymes expression as well as gain or loss of inter-simple sequence repeats (ISSRs) markers has been described. Results Different structural malformations in the cell wall and mitochondria, as well as plasmolysis and vacuolation were recorded in root cells. Damaged chloroplast and mitochondria were frequently observed in leaves and the osmiophilic plastoglobuli were more observed as AgNPs concentration increased. Starch grains increased by the treatment with 20 mg/L AgNPs. The expressions of α, β EST, and POX were slightly changed but considerable polymorphism in ISSR profiles, using 17 different primers, were scored indicating gain or loss of gene loci as a result of AgNPs treatments. This indicates considerable variations in genomic DNA and point mutations that may be induced by AgNPs as a genotoxic nanomaterial. Conclusion AgNPs may be used to induce genetic variation at low concentrations. However, considerations should be given to the uncontrolled use of nanoparticles and calls for evaluating their impact on plant growth and potential genotoxicity are justified.
Collapse
Affiliation(s)
- May Labeeb
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Soliman A Haroun
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Magdy Z Mattar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin Elkom, Egypt
| | - Aziza S El-Kholy
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr Elsheikh, Egypt.
| |
Collapse
|
35
|
Lundquist PK. Tracking subplastidic localization of carotenoid metabolic enzymes with proteomics. Methods Enzymol 2022; 671:327-350. [DOI: 10.1016/bs.mie.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Modelling of the Citrus CCD4 Family Members: In Silico Analysis of Membrane Binding and Substrate Preference. Int J Mol Sci 2021; 22:ijms222413616. [PMID: 34948418 PMCID: PMC8708828 DOI: 10.3390/ijms222413616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022] Open
Abstract
Coloring is one of the most important characteristics in commercial flowers and fruits, generally due to the accumulation of carotenoid pigments. Enzymes of the CCD4 family in citrus intervene in the generation of β-citraurin, an apocarotenoid responsible for the reddish-orange color of mandarins. Citrus CCD4s enzymes could be capable of interacting with the thylakoid membrane inside chloroplasts. However, to date, this interaction has not been studied in detail. In this work, we present three new complete models of the CCD4 family members (CCD4a, CCD4b, and CCD4c), modeled with a lipid membrane. To identify the preference for substrates, typical carotenoids were inserted in the active site of the receptors and the protein–ligand interaction energy was evaluated. The results show a clear preference of CCD4s for xanthophylls over aliphatic carotenes. Our findings indicate the ability to penetrate the membrane and maintain a stable interaction through the N-terminal α-helical domain, spanning a contact surface of 2250 to 3250 Å2. The orientation and depth of penetration at the membrane surface suggest that CCD4s have the ability to extract carotenoids directly from the membrane through a tunnel consisting mainly of hydrophobic residues that extends up to the catalytic center of the enzyme.
Collapse
|
37
|
Villa-Rivera MG, Ochoa-Alejo N. Transcriptional Regulation of Ripening in Chili Pepper Fruits ( Capsicum spp.). Int J Mol Sci 2021; 22:12151. [PMID: 34830031 PMCID: PMC8624906 DOI: 10.3390/ijms222212151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Chili peppers represent a very important horticultural crop that is cultivated and commercialized worldwide. The ripening process makes the fruit palatable, desirable, and attractive, thus increasing its quality and nutritional value. This process includes visual changes, such as fruit coloration, flavor, aroma, and texture. Fruit ripening involves a sequence of physiological, biochemical, and molecular changes that must be finely regulated at the transcriptional level. In this review, we integrate current knowledge about the transcription factors involved in the regulation of different stages of the chili pepper ripening process.
Collapse
Affiliation(s)
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36824, Mexico;
| |
Collapse
|
38
|
Wójtowicz J, Grzyb J, Szach J, Mazur R, Gieczewska KB. Bean and Pea Plastoglobules Change in Response to Chilling Stress. Int J Mol Sci 2021; 22:11895. [PMID: 34769326 PMCID: PMC8584975 DOI: 10.3390/ijms222111895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Plastoglobules (PGs) might be characterised as microdomains of the thylakoid membrane that serve as a platform to recruit proteins and metabolites in their spatial proximity in order to facilitate metabolic channelling or signal transduction. This study provides new insight into changes in PGs isolated from two plant species with different responses to chilling stress, namely chilling-tolerant pea (Pisum sativum) and chilling-sensitive bean (Phaseolus coccineus). Using multiple analytical methods, such as high-performance liquid chromatography and visualisation techniques including transmission electron microscopy and atomic force microscopy, we determined changes in PGs' biochemical and biophysical characteristics as a function of chilling stress. Some of the observed alterations occurred in both studied plant species, such as increased particle size and plastoquinone-9 content, while others were more typical of a particular type of response to chilling stress. Additionally, PGs of first green leaves were examined to highlight differences at this stage of development. Observed changes appear to be a dynamic response to the demands of photosynthetic membranes under stress conditions.
Collapse
Affiliation(s)
- Joanna Wójtowicz
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, I. Miecznikowa 1, PL-02096 Warsaw, Poland; (J.W.); (J.S.)
| | - Joanna Grzyb
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie Street 14a, PL-50383 Wrocław, Poland;
| | - Joanna Szach
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, I. Miecznikowa 1, PL-02096 Warsaw, Poland; (J.W.); (J.S.)
| | - Radosław Mazur
- Department of Metabolic Regulation, Faculty of Biology, Institute of Biochemistry, University of Warsaw, I. Miecznikowa 1, PL-02096 Warsaw, Poland;
| | - Katarzyna B. Gieczewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, I. Miecznikowa 1, PL-02096 Warsaw, Poland; (J.W.); (J.S.)
| |
Collapse
|
39
|
Zechmann B, Müller M, Möstl S, Zellnig G. Three-dimensional quantitative imaging of Tobacco mosaic virus and Zucchini yellow mosaic virus induced ultrastructural changes. PROTOPLASMA 2021; 258:1201-1211. [PMID: 33619654 DOI: 10.1007/s00709-021-01626-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Two-dimensional ultrastructural changes of Tobacco mosaic virus (TMV) and Zucchini yellow mosaic virus (ZYMV) in tobacco and pumpkin plants, respectively, are well studied. To provide 3D data, representative control and infected cells were reconstructed using serial sectioning and transmission electron microscopy. Quantitative data of 3D ultrastructural changes were then extracted from the cytosol and organelles by image analysis. While TMV induced the accumulation of an average of 40 virus inclusion bodies in the cytosol, which covered about 13% of the cell volume, ZYMV caused the accumulation of an average of 1752 cylindrical inclusions in the cytosol, which covered about 2.7% of the total volume of the cell. TMV infection significantly decreased the number and size of mitochondria (- 49 and - 20%) and peroxisomes (- 62 and - 28%) of the reconstructed cell. The reconstructed ZYMV-infected cell contained more (105%) and larger (109%) mitochondria when compared to the control cell. While the reconstructed TMV-infected cell contained larger (20%) and the ZYMV-infected smaller (19%) chloroplasts, both contained less chloroplasts (- 40% for TMV and - 23% for ZYMV). In chloroplasts, the volume of starch and plastoglobules increased (664% and 150% for TMV and 1324% and 1300% for ZYMV) when compared to the control. The latter was correlated with a decrease in the volume of thylakoids in the reconstructed ZYMV-infected cell (- 31%) indicating that degradation products from thylakoids are transported and stored in plastoglobules. Summing up, the data collected in this study give a comprehensive overview of 3D changes induced by TMV and ZYMV in plants.
Collapse
Affiliation(s)
- Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX, 76798, USA.
| | - Maria Müller
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, Schubertstrasse 51, 8010, Graz, Austria
| | - Stefan Möstl
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, Schubertstrasse 51, 8010, Graz, Austria
| | - Günther Zellnig
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, Schubertstrasse 51, 8010, Graz, Austria
| |
Collapse
|
40
|
Gong J, Zeng Y, Meng Q, Guan Y, Li C, Yang H, Zhang Y, Ampomah-Dwamena C, Liu P, Chen C, Deng X, Cheng Y, Wang P. Red light-induced kumquat fruit coloration is attributable to increased carotenoid metabolism regulated by FcrNAC22. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6274-6290. [PMID: 34125891 DOI: 10.1093/jxb/erab283] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/11/2021] [Indexed: 05/29/2023]
Abstract
Carotenoids play vital roles in the coloration of plant tissues and organs, particularly fruits; however, the regulation of carotenoid metabolism in fruits during ripening is largely unknown. Here, we show that red light promotes fruit coloration by inducing accelerated degreening and carotenoid accumulation in kumquat fruits. Transcriptome profiling revealed that a NAC (NAM/ATAF/CUC2) family transcription factor, FcrNAC22, is specifically induced in red light-irradiated fruits. FcrNAC22 localizes to the nucleus, and its gene expression is up-regulated as fruits change color. Results from dual luciferase, yeast one-hybrid assays and electrophoretic mobility shift assays indicate that FcrNAC22 directly binds to, and activates the promoters of three genes encoding key enzymes in the carotenoid metabolic pathway. Moreover, FcrNAC22 overexpression in citrus and tomato fruits as well as in citrus callus enhances expression of most carotenoid biosynthetic genes, accelerates plastid conversion into chromoplasts, and promotes color change. Knock down of FcrNAC22 expression in transiently transformed citrus fruits attenuates fruit coloration induced by red light. Taken together, our results demonstrate that FcrNAC22 is an important transcription factor that mediates red light-induced fruit coloration via up-regulation of carotenoid metabolism.
Collapse
Affiliation(s)
- Jinli Gong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiunan Meng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajie Guan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengyang Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbin Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingzi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, New Zealand
| | - Ping Liu
- Guangxi Academy of Specialty Crops, Guilin, Guangxi, China
| | - Chuanwu Chen
- Guangxi Academy of Specialty Crops, Guilin, Guangxi, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
41
|
Torres-Montilla S, Rodriguez-Concepcion M. Making extra room for carotenoids in plant cells: New opportunities for biofortification. Prog Lipid Res 2021; 84:101128. [PMID: 34530006 DOI: 10.1016/j.plipres.2021.101128] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022]
Abstract
Plant carotenoids are essential for photosynthesis and photoprotection and provide colors in the yellow to red range to non-photosynthetic organs such as petals and ripe fruits. They are also the precursors of biologically active molecules not only in plants (including hormones and retrograde signals) but also in animals (including retinoids such as vitamin A). A carotenoid-rich diet has been associated with improved health and cognitive capacity in humans, whereas the use of carotenoids as natural pigments is widespread in the agrofood and cosmetic industries. The nutritional and economic relevance of carotenoids has spurred a large number of biotechnological strategies to enrich plant tissues with carotenoids. Most of such approaches to alter carotenoid contents in plants have been focused on manipulating their biosynthesis or degradation, whereas improving carotenoid sink capacity in plant tissues has received much less attention. Our knowledge on the molecular mechanisms influencing carotenoid storage in plants has substantially grown in the last years, opening new opportunities for carotenoid biofortification. Here we will review these advances with a particular focus on those creating extra room for carotenoids in plant cells either by promoting the differentiation of carotenoid-sequestering structures within plastids or by transferring carotenoid production to the cytosol.
Collapse
Affiliation(s)
- Salvador Torres-Montilla
- Institute for Plant Molecular and Cell Biology (IBMCP), Agencia Estatal Consejo Superior de Investigaciones Cientificas - Universitat Politècnica de València, 46022 Valencia, Spain
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), Agencia Estatal Consejo Superior de Investigaciones Cientificas - Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
42
|
Varghese R, S UK, C GPD, Ramamoorthy S. Unraveling the versatility of CCD4: Metabolic engineering, transcriptomic and computational approaches. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110991. [PMID: 34315605 DOI: 10.1016/j.plantsci.2021.110991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Carotenoids are economically valuable isoprenoids synthesized by plants and microorganisms, which play a paramount role in their overall growth and development. Carotenoid cleavage dioxygenases are a vast group of enzymes that specifically cleave thecarotenoids to produce apocarotenoids. Recently, CCDs are a subject of talk because of their contributions to different aspects of plant growth and due to their significance in the production of economically valuable apocarotenoids. Among them, CCD4 stands unique because of its versatility in performing metabolic roles. This review focuses on the multiple functionalities of CCD4 like pigmentation, volatile apocarotenoid production, stress responses, etc. Interestingly, through our literature survey we arrived at a conclusion that CCD4 could perform functions of other carotenoid cleaving enzymes.The metabolic engineering, transcriptomic, and computational approaches adopted to reveal the contributions of CCD4 were also considered here for the study.Phylogenetic analysis was performed to delve into the evolutionary relationships of CCD4 in different plant groups. A tree of 81CCD genes from 64 plant species was constructed, signifying the presence of well-conserved families. Gene structures were illustrated and the difference in the number and position of exons could be considered as a factor behind functional versatility and substrate tolerance of CCD4 in different plants.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Udhaya Kumar S
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - George Priya Doss C
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
43
|
Domínguez F, Cejudo FJ. Chloroplast dismantling in leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5905-5918. [PMID: 33959761 PMCID: PMC8760853 DOI: 10.1093/jxb/erab200] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/03/2021] [Indexed: 05/02/2023]
Abstract
In photosynthetic plant cells, chloroplasts act as factories of metabolic intermediates that support plant growth. Chloroplast performance is highly influenced by environmental cues. Thus, these organelles have the additional function of sensing ever changing environmental conditions, thereby playing a key role in harmonizing the growth and development of different organs and in plant acclimation to the environment. Moreover, chloroplasts constitute an excellent source of metabolic intermediates that are remobilized to sink tissues during senescence so that chloroplast dismantling is a tightly regulated process that plays a key role in plant development. Stressful environmental conditions enhance the generation of reactive oxygen species (ROS) by chloroplasts, which may lead to oxidative stress causing damage to the organelle. These environmental conditions trigger mechanisms that allow the rapid dismantling of damaged chloroplasts, which is crucial to avoid deleterious effects of toxic by-products of the degradative process. In this review, we discuss the effect of redox homeostasis and ROS generation in the process of chloroplast dismantling. Furthermore, we summarize the structural and biochemical events, both intra- and extraplastid, that characterize the process of chloroplast dismantling in senescence and in response to environmental stresses.
Collapse
Affiliation(s)
- Fernando Domínguez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | | |
Collapse
|
44
|
Coulon D, Bréhélin C. Isolation of Plastoglobules for Lipid Analyses. Methods Mol Biol 2021; 2295:321-335. [PMID: 34047984 DOI: 10.1007/978-1-0716-1362-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Plastoglobules are plastid compartments designed for the storage of neutral lipids. They share physical and structural characteristics with cytosolic lipid droplets. Hence, special care must be taken to avoid contamination by cytosolic lipid droplets during plastoglobule purification. We describe the isolation of pure plastoglobules from Arabidopsis thaliana leaves, and the methods we use to determine their lipid composition. After preparation of a crude chloroplast fraction, plastoglobules are isolated from plastid membranes by two steps of ultracentrifugation on discontinuous sucrose gradients. For lipid analyses, total lipids are then extracted by a standard chloroform-methanol protocol, and polar lipids are separated from neutral lipids by liquid-liquid extraction. While polar lipid classes are subsequently separated by thin-layer chromatography (TLC) with the classical Vitiello solvent mix, a double TLC development has to be performed for neutral lipids, to separate phytyl and steryl esters. Lipids are quantified by gas chromatography after conversion of the fatty acids into methyl esters.
Collapse
Affiliation(s)
- Denis Coulon
- CNRS, Laboratoire de Biogenése Membranaire, UMR 5200, Univ. Bordeaux, Villenave d'Ornon, France. .,Bordeaux INP, Talence, France.
| | - Claire Bréhélin
- CNRS, Laboratoire de Biogenése Membranaire, UMR 5200, Univ. Bordeaux, Villenave d'Ornon, France
| |
Collapse
|
45
|
Michel EJS, Ponnala L, van Wijk KJ. Tissue-type specific accumulation of the plastoglobular proteome, transcriptional networks, and plastoglobular functions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4663-4679. [PMID: 33884419 DOI: 10.1093/jxb/erab175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
Plastoglobules are dynamic protein-lipid microcompartments in plastids enriched for isoprenoid-derived metabolites. Chloroplast plastoglobules support formation, remodeling, and controlled dismantling of thylakoids during developmental transitions and environmental responses. However, the specific molecular functions of most plastoglobule proteins are still poorly understood. This review harnesses recent co-mRNA expression data from combined microarray and RNA-seq information in ATTED-II on an updated inventory of 34 PG proteins, as well as proteomics data across 30 Arabidopsis tissue types from ATHENA. Hierarchical clustering based on relative abundance for the plastoglobule proteins across non-photosynthetic and photosynthetic tissue types showed their coordinated protein accumulation across Arabidopsis parts, tissue types, development, and senescence. Evaluation of mRNA-based forced networks at different coefficient thresholds identified a central hub with seven plastoglobule proteins and four peripheral modules. Enrichment of specific nuclear transcription factors (e.g. Golden2-like) and support for crosstalk between plastoglobules and the plastid gene expression was observed, and specific ABC1 kinases appear part of a light signaling network. Examples of other specific findings are that FBN7b is involved with upstream steps of tetrapyrrole biosynthesis and that ABC1K9 is involved in starch metabolism. This review provides new insights into the functions of plastoglobule proteins and an improved framework for experimental studies.
Collapse
Affiliation(s)
- Elena J S Michel
- School of Integrative Plant Sciences (SIPS), Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Klaas J van Wijk
- School of Integrative Plant Sciences (SIPS), Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
46
|
Espinoza-Corral R, Schwenkert S, Lundquist PK. Molecular changes of Arabidopsis thaliana plastoglobules facilitate thylakoid membrane remodeling under high light stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1571-1587. [PMID: 33783866 DOI: 10.1111/tpj.15253] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 05/21/2023]
Abstract
Plants require rapid responses to adapt to environmental stresses. This includes dramatic changes in the size and number of plastoglobule lipid droplets within chloroplasts. Although the morphological changes of plastoglobules are well documented, little is known about the corresponding molecular changes. To address this gap, we have compared the quantitative proteome, oligomeric state, prenyl-lipid content and kinase activities of Arabidopsis thaliana plastoglobules under unstressed and 5-day light-stressed conditions. Our results show a specific recruitment of proteins related to leaf senescence and jasmonic acid biosynthesis under light stress, and identify nearly half of the plastoglobule proteins in high native molecular weight masses. Additionally, a specific increase in plastoglobule carotenoid abundance under the light stress was consistent with enhanced thylakoid disassembly and leaf senescence, supporting a specific role for plastoglobules in senescence and thylakoid remodeling as an intermediate storage site for photosynthetic pigments. In vitro kinase assays of isolated plastoglobules demonstrated kinase activity towards multiple target proteins, which was more pronounced in the plastoglobules of unstressed than light-stressed leaf tissue, and which was diminished in plastoglobules of the abc1k1/abc1k3 double-mutant. These results strongly suggest that plastoglobule-localized ABC1 kinases hold endogenous kinase activity, as these were the only known or putative kinases identified in the isolated plastoglobules by deep bottom-up proteomics. Collectively, our study reveals targeted changes to the protein and prenyl-lipid composition of plastoglobules under light stress that present strategies by which plastoglobules appear to facilitate stress adaptation within chloroplasts.
Collapse
Affiliation(s)
- Roberto Espinoza-Corral
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Serena Schwenkert
- Department I, Plant Biochemistry, Ludwig Maximilians University Munich, Großhadernerstr. 2-4, Planegg-Martinsried, 82152, Germany
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
47
|
Challenges and Potential in Increasing Lutein Content in Microalgae. Microorganisms 2021; 9:microorganisms9051068. [PMID: 34063406 PMCID: PMC8156089 DOI: 10.3390/microorganisms9051068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
Research on enhancing lutein content in microalgae has made significant progress in recent years. However, strategies are needed to address the possible limitations of microalgae as practical lutein producers. The capacity of lutein sequestration may determine the upper limit of cellular lutein content. The preliminary estimation presented in this work suggests that the lutein sequestration capacity of the light-harvesting complex (LHC) of microalgae is most likely below 2% on the basis of dry cell weight (DCW). Due to its nature as a structural pigment, higher lutein content might interfere with the LHC in fulfilling photosynthetic functions. Storing lutein in a lipophilic environment is a mechanism for achieving high lutein content but several critical barriers must be overcome such as lutein degradation and access to lipid droplet to be stored through esterification. Understanding the mechanisms underlying lipid droplet biogenesis in chloroplasts, as well as carotenoid trafficking through chloroplast membranes and carotenoid esterification, may provide insight for new approaches to achieve high lutein contents in algae. In the meantime, building the machinery for esterification and sequestration of lutein and other hydroxyl-carotenoids in model microorganisms, such as yeast, with synthetic biology technology provides a promising option.
Collapse
|
48
|
Yokoyama R, de Oliveira MVV, Kleven B, Maeda HA. The entry reaction of the plant shikimate pathway is subjected to highly complex metabolite-mediated regulation. THE PLANT CELL 2021; 33:671-696. [PMID: 33955484 PMCID: PMC8136874 DOI: 10.1093/plcell/koaa042] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/19/2020] [Indexed: 05/22/2023]
Abstract
The plant shikimate pathway directs bulk carbon flow toward biosynthesis of aromatic amino acids (AAAs, i.e. tyrosine, phenylalanine, and tryptophan) and numerous aromatic phytochemicals. The microbial shikimate pathway is feedback inhibited by AAAs at the first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DHS). However, AAAs generally do not inhibit DHS activities from plant extracts and how plants regulate the shikimate pathway remains elusive. Here, we characterized recombinant Arabidopsis thaliana DHSs (AthDHSs) and found that tyrosine and tryptophan inhibit AthDHS2, but not AthDHS1 or AthDHS3. Mixing AthDHS2 with AthDHS1 or 3 attenuated its inhibition. The AAA and phenylpropanoid pathway intermediates chorismate and caffeate, respectively, strongly inhibited all AthDHSs, while the arogenate intermediate counteracted the AthDHS1 or 3 inhibition by chorismate. AAAs inhibited DHS activity in young seedlings, where AthDHS2 is highly expressed, but not in mature leaves, where AthDHS1 is predominantly expressed. Arabidopsis dhs1 and dhs3 knockout mutants were hypersensitive to tyrosine and tryptophan, respectively, while dhs2 was resistant to tyrosine-mediated growth inhibition. dhs1 and dhs3 also had reduced anthocyanin accumulation under high light stress. These findings reveal the highly complex regulation of the entry reaction of the plant shikimate pathway and lay the foundation for efforts to control the production of AAAs and diverse aromatic natural products in plants.
Collapse
Affiliation(s)
- Ryo Yokoyama
- Department of Botany, University of Wisconsin–Madison, 430 Lincoln Dr. Madison, WI 53706, USA
| | - Marcos V V de Oliveira
- Department of Botany, University of Wisconsin–Madison, 430 Lincoln Dr. Madison, WI 53706, USA
| | - Bailey Kleven
- Department of Botany, University of Wisconsin–Madison, 430 Lincoln Dr. Madison, WI 53706, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin–Madison, 430 Lincoln Dr. Madison, WI 53706, USA
| |
Collapse
|
49
|
Carrera DÁ, George GM, Fischer-Stettler M, Galbier F, Eicke S, Truernit E, Streb S, Zeeman SC. Distinct plastid fructose bisphosphate aldolases function in photosynthetic and non-photosynthetic metabolism in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3739-3755. [PMID: 33684221 PMCID: PMC8628874 DOI: 10.1093/jxb/erab099] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/01/2021] [Indexed: 05/31/2023]
Abstract
Plastid metabolism is critical in both photoautotrophic and heterotrophic plant cells. In chloroplasts, fructose-1,6-bisphosphate aldolase (FBA) catalyses the formation of both fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate within the Calvin-Benson cycle. Three Arabidopsis genes, AtFBA1-AtFBA3, encode plastidial isoforms of FBA, but the contribution of each isoform is unknown. Phylogenetic analysis indicates that FBA1 and FBA2 derive from a recently duplicated gene, while FBA3 is a more ancient paralog. fba1 mutants are phenotypically indistinguishable from the wild type, while both fba2 and fba3 have reduced growth. We show that FBA2 is the major isoform in leaves, contributing most of the measurable activity. Partial redundancy with FBA1 allows both single mutants to survive, but combining both mutations is lethal, indicating a block of photoautotrophy. In contrast, FBA3 is expressed predominantly in heterotrophic tissues, especially the leaf and root vasculature, but not in the leaf mesophyll. We show that the loss of FBA3 affects plastidial glycolytic metabolism of the root, potentially limiting the biosynthesis of essential compounds such as amino acids. However, grafting experiments suggest that fba3 is dysfunctional in leaf phloem transport, and we suggest that a block in photoassimilate export from leaves causes the buildup of high carbohydrate concentrations and retarded growth.
Collapse
Affiliation(s)
| | - Gavin M George
- Department of Biology, ETH Zurich, 8092
Zurich, Switzerland
| | | | | | - Simona Eicke
- Department of Biology, ETH Zurich, 8092
Zurich, Switzerland
| | | | | | | |
Collapse
|
50
|
Chloroplast Localized FIBRILLIN11 Is Involved in the Osmotic Stress Response during Arabidopsis Seed Germination. BIOLOGY 2021; 10:biology10050368. [PMID: 33922967 PMCID: PMC8145590 DOI: 10.3390/biology10050368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The FIBRILLIN11 (FBN11) of Arabidopsis has a lipid-binding FBN domain and a kinase domain. FBN11 is present in chloroplasts and is involved in salt and osmotic stress responses during seed germination. In mannitol, the seed germination rate of the fbn11 mutants significantly reduced compared to that of the wild type. The ABA-dependent and -independent stress response regulating genes were differentially expressed in fbn11 mutants and wild-type when grown in mannitol supplemented medium. These results suggest that chloroplast localized FBN11 is involved in mediating osmotic stress tolerance through the signaling pathway that regulates the stress response in the nucleus. Abstract Plants live in ever-changing environments, facing adverse environmental conditions including pathogen infection, herbivore attack, drought, high temperature, low temperature, nutrient deficiency, toxic metal soil contamination, high salt, and osmotic imbalance that inhibit overall plant growth and development. Plants have evolved mechanisms to cope with these stresses. In this study, we found that the FIBRILLIN11 (FBN11) gene in Arabidopsis, which has a lipid-binding FBN domain and a kinase domain, is involved in the plant’s response to abiotic stressors, including salt and osmotic stresses. FBN11 protein localizes to the chloroplast. FBN11 gene expression significantly changed when plants were exposed to the abiotic stress response mediators such as abscisic acid (ABA), sodium chloride (NaCl), and mannitol. The seed germination rates of fbn11 homozygous mutants in different concentrations of mannitol and NaCl were significantly reduced compared to wild type. ABA-dependent and -independent stress response regulatory genes were differentially expressed in the fbn11 mutant compared with wild type when grown in mannitol medium. These results suggest a clear role for chloroplast-localized FBN11 in mediating osmotic stress tolerance via the stress response regulatory signaling pathway in the nucleus.
Collapse
|