1
|
do Carmo Santos ML, Silva Santos A, Pereira Silva de Novais D, dos Santos Lopes N, Pirovani CP, Micheli F. The family of glutathione peroxidase proteins and their role against biotic stress in plants: a systematic review. FRONTIERS IN PLANT SCIENCE 2025; 16:1425880. [PMID: 40051871 PMCID: PMC11882536 DOI: 10.3389/fpls.2025.1425880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/09/2025] [Indexed: 03/09/2025]
Abstract
Introduction Glutathione peroxidases (GPXs) are extensively studied for their indispensable roles in eliminating reactive oxygen species by catalyzing the reduction of hydrogen peroxide or lipid peroxides to prevent cell damage. However, knowledge of GPXs in plants still has many gaps to be filled. Thus, we present the first systematic review (SR) aimed at examining the function of GPXs and their protective role against cell death in plants subjected to biotic stress. Methods To guide the SR and avoid bias, a protocol was developed that contained inclusion and exclusion criteria based on PRISMA guidelines. Three databases (PubMed, Science Direct, and Springer) were used to identify relevant studies for this research were selected. Results A total of 28 articles related to the proposed objective. The results highlight the importance of GPXs in plant defense against biotic stress, including their role in protecting against cell death, similar to the anti-apoptotic GPXs in animals. Data from gene expression and protein accumulation studies in plants under various biotic stresses reveal that GPXs can both increase resistance and susceptibility to pathogens. In addition to their antioxidant functions, GPXs act as sensors and transmitters of H2O2 signals, integrating with the ABA signaling pathway during stress. Discussion These findings show that GPXs delay senescence or reinforce physical barriers, thereby modulating resistance or susceptibility to pathogens. Additionally, their functions are linked to their cellular localization, which demonstrates an evolutionary relationship between the studied isoforms and their role in plant defense. This information broadens the understanding of molecular strategies involving GPX isoforms and provides a foundation for discussions and actions aimed at controlling necrotrophic and/or hemibiotrophic pathogens.
Collapse
Affiliation(s)
- Maria Luíza do Carmo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Ilhéus, Brazil
| | - Ariana Silva Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Ilhéus, Brazil
| | - Diogo Pereira Silva de Novais
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Ilhéus, Brazil
- Instituto Federal de Educação Ciência e Tecnologia da Bahia (IFBA), Bahia, Brazil
| | - Natasha dos Santos Lopes
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Ilhéus, Brazil
| | - Carlos Priminho Pirovani
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Ilhéus, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Ilhéus, Brazil
- CIRAD, UMR AGAP, Montpellier, France
| |
Collapse
|
2
|
Raihan MT, Tanaka Y, Ishikawa T. Characterization of chloroplastic thioredoxin dependent glutathione peroxidase like protein in Euglena gracilis: biochemical and functional perspectives. Biosci Biotechnol Biochem 2024; 88:1034-1046. [PMID: 38925644 DOI: 10.1093/bbb/zbae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Euglena gracilis, a fascinating organism in the scientific realm, exhibits characteristics of both animals and plants. It maintains redox homeostasis through a variety of enzymatic and non-enzymatic antioxidant molecules. In contrast to mammals, Euglena possesses nonselenocysteine glutathione peroxidase homologues that regulate its intracellular pools of reactive oxygen species. In the present study, a full-length cDNA of chloroplastic EgGPXL-1 was isolated and subjected to biochemical and functional characterization. Recombinant EgGPXL-1 scavenged H2O2 and t-BOOH, utilizing thioredoxin as an electron donor rather than glutathione. Despite its monomeric nature, EgGPXL-1 exhibits allosteric behavior with H2O2 as the electron acceptor and follows typical Michaelis-Menten kinetics with t-BOOH. Suppression of EgGPXL-1 gene expression under normal and high-light conditions did not induce critical situations in E. gracilis, suggesting the involvement of compensatory mechanisms in restoring normal conditions.
Collapse
Affiliation(s)
- Md Topu Raihan
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Yasuhiro Tanaka
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Takahiro Ishikawa
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|
3
|
Noctor G, Cohen M, Trémulot L, Châtel-Innocenti G, Van Breusegem F, Mhamdi A. Glutathione: a key modulator of plant defence and metabolism through multiple mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4549-4572. [PMID: 38676714 DOI: 10.1093/jxb/erae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
Redox reactions are fundamental to energy conversion in living cells, and also determine and tune responses to the environment. Within this context, the tripeptide glutathione plays numerous roles. As an important antioxidant, glutathione confers redox stability on the cell and also acts as an interface between signalling pathways and metabolic reactions that fuel growth and development. It also contributes to the assembly of cell components, biosynthesis of sulfur-containing metabolites, inactivation of potentially deleterious compounds, and control of hormonal signalling intensity. The multiplicity of these roles probably explains why glutathione status has been implicated in influencing plant responses to many different conditions. In particular, there is now a considerable body of evidence showing that glutathione is a crucial player in governing the outcome of biotic stresses. This review provides an overview of glutathione synthesis, transport, degradation, and redox turnover in plants. It examines the expression of genes associated with these processes during pathogen challenge and related conditions, and considers the diversity of mechanisms by which glutathione can influence protein function and gene expression.
Collapse
Affiliation(s)
- Graham Noctor
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Institut Universitaire de France (IUF), France
| | - Mathias Cohen
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lug Trémulot
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Gilles Châtel-Innocenti
- Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France
| | - Frank Van Breusegem
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Amna Mhamdi
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
4
|
Zhang Z, Zhang J, Wang C, Chang Y, Han K, Gao Y, Xie J. Characterization of GPX Gene Family in Pepper ( Capsicum annuum L.) under Abiotic Stress and ABA Treatment. Int J Mol Sci 2024; 25:8343. [PMID: 39125911 PMCID: PMC11313330 DOI: 10.3390/ijms25158343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Plant glutathione peroxidases (GPXs) are important enzymes for removing reactive oxygen species in plant cells and are closely related to the stress resistance of plants. This study identified the GPX gene family members of pepper (Capsicum annuum L.), "CM333", at the whole-genome level to clarify their expression patterns and enzyme activity changes under abiotic stress and ABA treatment. The results showed that eight CaGPX genes were unevenly distributed across four chromosomes and one scaffold of the pepper genome, and their protein sequences had Cys residues typical of the plant GPX domains. The analysis of collinearity, phylogenetic tree, gene structure, and conserved motifs indicated that the CaGPX gene sequence is conserved, structurally similar, and more closely related to the sequence structure of Arabidopsis. Meanwhile, many cis elements involved in stress, hormones, development, and light response were found in the promoter region of the CaGPX gene. In addition, CaGPX1/4 and CaGPX6 were basically expressed in all tissues, and their expression levels were significantly upregulated under abiotic stress and ABA treatment. Subcellular localization showed that CaGPX1 and CaGPX4 are localized in chloroplasts. Additionally, the variations in glutathione peroxidase activity (GSH-Px) mostly agreed with the variations in gene expression. In summary, the CaGPXs gene may play an important role in the development of peppers and their response to abiotic stress and hormones.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (Z.Z.); (J.Z.); (C.W.); (Y.C.); (K.H.); (Y.G.)
| |
Collapse
|
5
|
Hou K, Cao L, Li W, Fang ZH, Sun D, Guo Z, Zhang L. Overexpression of Rhodiola crenulata glutathione peroxidase 5 increases cold tolerance and enhances the pharmaceutical value of the hairy roots. Gene 2024; 917:148467. [PMID: 38615983 DOI: 10.1016/j.gene.2024.148467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Rhodiola crenulata, a plant of great medicinal value found in cold high-altitude regions, has been excessively exploited due to the difficulty in cultivation. Understanding Rhodiola crenulata's adaptation mechanisms to cold environment can provide a theoretical basis for artificial breeding. Glutathione peroxidases (GPXs), critical enzymes found in plants, play essential roles in antioxidant defense through the ascorbate-glutathione cycle. However, it is unknown whether GPX5 contributes to Rhodiola crenulata's cold tolerance. In this study, we investigated the role of GPX5 in Rhodiola crenulata's cold tolerance mechanisms. By overexpressing Rhodiola crenulata GPX5 (RcGPX5) in yeast and Arabidopsis thaliana, we observed down-regulation of Arabidopsis thaliana GPX5 (AtGPX5) and increased cold tolerance in both organisms. Furthermore, the levels of antioxidants and enzyme activities in the ascorbate-glutathione cycle were elevated, and cold-responsive genes such as AtCBFs and AtCORs were induced. Additionally, RcGPX5 overexpressing lines showed insensitivity to exogenous abscisic acid (ABA), suggesting a negative regulation of the ABA pathway by RcGPX5. RcGPX5 also promoted the expression of several thioredoxin genes in Arabidopsis and interacted with two endogenous genes of Rhodiola crenulata, RcTrx2-3 and RcTrxo1, located in mitochondria and chloroplasts. These findings suggest a significantly different model in Rhodiola crenulata compared to Arabidopsis thaliana, highlighting a complex network involving the function of RcGPX5. Moreover, overexpressing RcGPX5 in Rhodiola crenulata hairy roots positively influenced the salidroside synthesis pathway, enhancing its pharmaceutical value for doxorubicin-induced cardiotoxicity. These results suggested that RcGPX5 might be a key component for Rhodiola crenulata to adapt to cold stress and overexpressing RcGPX5 could enhance the pharmaceutical value of the hairy roots.
Collapse
Affiliation(s)
- Kai Hou
- Pu'er People's Hospital, Yunnan, China; Tianjin Chest Hospital, Tianjin, China; Chest Hospital, Tianjin University, Tianjin, China; Tianjin Medical University, Tianjin, China
| | - Lu Cao
- Tianjin Chest Hospital, Tianjin, China; Chest Hospital, Tianjin University, Tianjin, China
| | - Wen Li
- Pu'er People's Hospital, Yunnan, China
| | | | - Daqiang Sun
- Tianjin Chest Hospital, Tianjin, China; Chest Hospital, Tianjin University, Tianjin, China; Tianjin Medical University, Tianjin, China.
| | - Zhigang Guo
- Tianjin Chest Hospital, Tianjin, China; Chest Hospital, Tianjin University, Tianjin, China; Tianjin Medical University, Tianjin, China.
| | - Lipeng Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.
| |
Collapse
|
6
|
Fuchs H, Staszak AM, Vargas PA, Sahrawy M, Serrato AJ, Dyderski MK, Klupczyńska EA, Głodowicz P, Rolle K, Ratajczak E. Redox dynamics in seeds of Acer spp: unraveling adaptation strategies of different seed categories. FRONTIERS IN PLANT SCIENCE 2024; 15:1430695. [PMID: 39114470 PMCID: PMC11303208 DOI: 10.3389/fpls.2024.1430695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Background Seeds of woody plant species, such as those in the Acer genus like Norway maple (Acer platanoides L.) and sycamore (Acer pseudoplatanus L.), exhibit unique physiological traits and responses to environmental stress. Thioredoxins (Trxs) play a central role in the redox regulation of cells, interacting with other redox-active proteins such as peroxiredoxins (Prxs), and contributing to plant growth, development, and responses to biotic and abiotic stresses. However, there is limited understanding of potential variations in this system between seeds categorized as recalcitrant and orthodox, which could provide insights into adaptive strategies. Methods Using proteomic analysis and DDA methods we investigated the Trx-h1 target proteins in seed axes. We complemented the results of the proteomic analysis with gene expression analysis of the Trx-h1, 1-Cys-Prx, and TrxR NTRA genes in the embryonic axes of maturing, mature, and stored seeds from two Acer species. Results and discussion The expression of Trx-h1 and TrxR NTRA throughout seed maturation in both species was low. The expression of 1-Cys-Prx remained relatively stable throughout seed maturation. In stored seeds, the expression levels were minimal, with slightly higher levels in sycamore seeds, which may confirm that recalcitrant seeds remain metabolically active during storage. A library of 289 proteins interacting with Trx-h1 was constructed, comprising 68 from Norway maple and 221 from sycamore, with distinct profiles in each seed category. Recalcitrant seed axes displayed a wide array of metabolic, stress response, and signaling proteins, suggesting sustained metabolic activity during storage and the need to address oxidative stress. Conversely, the orthodox seed axes presented a protein profile, reflecting efficient metabolic shutdown, which contributes to their extended viability. The results of the study provide new insights into seed viability and storage longevity mechanisms. They enhance the understanding of seed biology and lay the foundation for further evolutionary research on seeds of different categories.
Collapse
Affiliation(s)
- Hanna Fuchs
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Aleksandra M. Staszak
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology Faculty of Biology, University of Białystok, Białystok, Poland
| | - Paola A. Vargas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Mariam Sahrawy
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Antonio J. Serrato
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | - Paweł Głodowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Katarzyna Rolle
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | |
Collapse
|
7
|
Raihan MT, Ishikawa T. Biochemical and Functional Profiling of Thioredoxin-Dependent Cytosolic GPX-like Proteins in Euglena gracilis. Biomolecules 2024; 14:765. [PMID: 39062479 PMCID: PMC11275057 DOI: 10.3390/biom14070765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Unlike plants and animals, the phytoflagellate Euglena gracilis lacks catalase and contains a non-selenocysteine glutathione peroxidase-like protein (EgGPXL), two peroxiredoxins (EgPrx1 and EgPrx4), and one ascorbate peroxidase in the cytosol to maintain reactive oxygen species (ROS) homeostasis. In the present study, the full-length cDNA of three cytosolic EgGPXLs was obtained and further characterized biochemically and functionally. These EgGPXLs used thioredoxin instead of glutathione as an electron donor to reduce the levels of H2O2 and t-BOOH. The specific peroxidase activities of these enzymes for H2O2 and t-BOOH were 1.3 to 4.9 and 0.79 to 3.5 µmol/min/mg protein, respectively. Cytosolic EgGPXLs and EgPrx1/EgPrx4 were silenced simultaneously to investigate the synergistic effects of these genes on the physiological function of E. gracilis. The suppression of cytosolic EgGPXL genes was unable to induce any critical phenomena in Euglena under normal (100 μmol photons m-2 s-1) and high-light conditions (350 μmol photons m-2 s-1) at both autotrophic and heterotrophic states. Unexpectedly, the suppression of EgGPXL genes was able to rescue the EgPrx1/EgPrx4-silenced cell line from a critical situation. This study explored the potential resilience of Euglena to ROS, even with restriction of the cytosolic antioxidant system, indicating the involvement of some compensatory mechanisms.
Collapse
Affiliation(s)
- Md Topu Raihan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan;
| | - Takahiro Ishikawa
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8550, Japan;
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan
| |
Collapse
|
8
|
Hou LY, Sommer F, Poeker L, Dziubek D, Schroda M, Geigenberger P. The impact of light and thioredoxins on the plant thiol-disulfide proteome. PLANT PHYSIOLOGY 2024; 195:1536-1560. [PMID: 38214043 PMCID: PMC11142374 DOI: 10.1093/plphys/kiad669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
Thiol-based redox regulation is a crucial posttranslational mechanism to acclimate plants to changing light availability. Here, we conducted a biotin switch-based redox proteomics study in Arabidopsis (Arabidopsis thaliana) to systematically investigate dynamics of thiol-redox networks in response to temporal changes in light availability and across genotypes lacking parts of the thioredoxin (Trx) or NADPH-Trx-reductase C (NTRC) systems in the chloroplast. Time-resolved dynamics revealed light led to marked decreases in the oxidation states of many chloroplast proteins with photosynthetic functions during the first 10 min, followed by their partial reoxidation after 2 to 6 h into the photoperiod. This involved f, m, and x-type Trx proteins showing similar light-induced reduction-oxidation dynamics, while NTRC, 2-Cys peroxiredoxins, and Trx y2 showed an opposing pattern, being more oxidized in light than dark. In Arabidopsis trxf1f2, trxm1m2, or ntrc mutants, most proteins showed increased oxidation states in the light compared to wild type, suggesting their light-dependent dynamics were related to NTRC/Trx networks. While NTRC deficiency had a strong influence in all light conditions, deficiencies in f- or m-type Trxs showed differential impacts on the thiol-redox proteome depending on the light environment, being higher in constant or fluctuating light, respectively. The results indicate plant redox proteomes are subject to dynamic changes in reductive and oxidative pathways to cooperatively fine-tune photosynthetic and metabolic processes in the light. The importance of the individual elements of the NTRC/Trx networks mediating these responses depend on the extent of light variability, with NTRC playing a crucial role to balance protein-redox states in rapidly fluctuating light.
Collapse
Affiliation(s)
- Liang-Yu Hou
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Plant and Microbial Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Frederik Sommer
- Molekulare Biotechnologie und Systembiologie, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Louis Poeker
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Dejan Dziubek
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Michael Schroda
- Molekulare Biotechnologie und Systembiologie, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Peter Geigenberger
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
9
|
Matamoros MA, Romero LC, Tian T, Román Á, Duanmu D, Becana M. Persulfidation of plant and bacteroid proteins is involved in legume nodule development and senescence. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3009-3025. [PMID: 37952184 PMCID: PMC11103110 DOI: 10.1093/jxb/erad436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Legumes establish symbiosis with rhizobia, forming nitrogen-fixing nodules. The central role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in nodule biology has been clearly established. Recently, hydrogen sulfide (H2S) and other reactive sulfur species (RSS) have emerged as novel signaling molecules in animals and plants. A major mechanism by which ROS, RNS, and RSS fulfil their signaling role is the post-translational modification of proteins. To identify possible functions of H2S in nodule development and senescence, we used the tag-switch method to quantify changes in the persulfidation profile of common bean (Phaseolus vulgaris) nodules at different developmental stages. Proteomic analyses indicate that persulfidation plays a regulatory role in plant and bacteroid metabolism and senescence. The effect of a H2S donor on nodule functioning and on several proteins involved in ROS and RNS homeostasis was also investigated. Our results using recombinant proteins and nodulated plants support a crosstalk among H2S, ROS, and RNS, a protective function of persulfidation on redox-sensitive enzymes, and a beneficial effect of H2S on symbiotic nitrogen fixation. We conclude that the general decrease of persulfidation levels observed in plant proteins of aging nodules is one of the mechanisms that disrupt redox homeostasis leading to senescence.
Collapse
Affiliation(s)
- Manuel A Matamoros
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avenida Montañana 1005, 50059 Zaragoza, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Sevilla, Spain
| | - Tao Tian
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ángela Román
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avenida Montañana 1005, 50059 Zaragoza, Spain
| | - Deqiang Duanmu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Manuel Becana
- Departamento de Biología Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Avenida Montañana 1005, 50059 Zaragoza, Spain
| |
Collapse
|
10
|
Chaouachi L, Marín-Sanz M, Barro F, Karmous C. Genetic diversity of durum wheat (Triticum turgidum ssp. durum) to mitigate abiotic stress: Drought, heat, and their combination. PLoS One 2024; 19:e0301018. [PMID: 38574054 PMCID: PMC10994418 DOI: 10.1371/journal.pone.0301018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/09/2024] [Indexed: 04/06/2024] Open
Abstract
Drought and heat are the main abiotic constraints affecting durum wheat production. This study aimed to screen for tolerance to drought, heat, and combined stresses in durum wheat, at the juvenile stage under controlled conditions. Five durum wheat genotypes, including four landraces and one improved genotype, were used to test their tolerance to abiotic stress. After 15 days of growing, treatments were applied as three drought levels (100, 50, and 25% field capacity (FC)), three heat stress levels (24, 30, and 35°C), and three combined treatments (100% FC at 24°C, 50% FC at 30°C and 25% FC at 35°C). The screening was performed using a set of morpho-physiological, and biochemical traits. The results showed that the tested stresses significantly affect all measured parameters. The dry matter content (DM) decreased by 37.1% under heat stress (35°C), by 37.3% under severe drought stress (25% FC), and by 53.2% under severe combined stress (25% FC at 35°C). Correlation analyses of drought and heat stress confirmed that aerial part length, dry matter content, hydrogen peroxide content, catalase, and Glutathione peroxidase activities could be efficient screening criteria for both stresses. The principal component analysis (PCA) showed that only the landrace Aouija tolerated the three studied stresses, while Biskri and Hedhba genotypes were tolerant to drought and heat stresses and showed the same sensitivity under combined stress. Nevertheless, improved genotype Karim and the landrace Hmira were the most affected genotypes by drought, against a minimum growth for the Hmira genotype under heat stress. The results showed that combined drought and heat stresses had a more pronounced impact than simple effects. In addition, the tolerance of durum wheat to drought and heat stresses involves several adjustments of morpho-physiological and biochemical responses, which are proportional to the stress intensity.
Collapse
Affiliation(s)
- Latifa Chaouachi
- Laboratory of Genetics and Cereal Breeding (LR14 AGR01), National Institute of Agronomy of Tunisia, Carthage University, Carthage, Tunisia
| | - Miriam Marín-Sanz
- Department of Plant Breeding, Institute for Sustainable Agriculture-Spanish National Research Council (IAS-CSIC), Córdoba, Spain
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture-Spanish National Research Council (IAS-CSIC), Córdoba, Spain
| | - Chahine Karmous
- Laboratory of Genetics and Cereal Breeding (LR14 AGR01), National Institute of Agronomy of Tunisia, Carthage University, Carthage, Tunisia
| |
Collapse
|
11
|
Imran A, Ghosh A. Evolutionary expansion, functional diversification, and transcript profiling of plant Glutathione Peroxidases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111991. [PMID: 38266716 DOI: 10.1016/j.plantsci.2024.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Glutathione peroxidases (GPXs) play a crucial role in combating activated oxygen species and have been widely studied for their involvement in stress responses. In addition to their stress-related functions, GPXs exhibit diverse roles such as immunological response, and involvement in growth and development. These enzymes are found in both animals and plants, with multiple families identified in the evolutionarily diverse species. These families consist of conserved genes as well as unique members, highlighting the evolutionary diversification of GPX members. While animals have eight GPX families, plants possess five families. Notably, plant genomes undergo duplication and expansion events, leading to an increase in the number of GPX genes and the overall size of the GPX superfamily. This expansion suggests a wide range of functional roles for GPX. In this study, the evolutionary diversification, family expansion, and diverse functional roles of GPX enzymes have been investigated. Additionally, the expression profile of Arabidopsis and Oryza sativa GPX genes were analyzed in different developmental stages, tissues, and abiotic stress conditions. Further extensive research has been required to unravel the intricate interplay between GPX and other proteins, to gain the comprehensive mechanism governing the physiological and developmental roles of GPX.
Collapse
Affiliation(s)
- Al Imran
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| |
Collapse
|
12
|
Peng X, Ma T, Song K, Ji X, Xiang L, Chen N, Zu R, Xu W, Zhu S, Liu W. Overexpression of NtGPX8a Improved Cadmium Accumulation and Tolerance in Tobacco ( Nicotiana tabacum L.). Genes (Basel) 2024; 15:366. [PMID: 38540425 PMCID: PMC10970676 DOI: 10.3390/genes15030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 06/14/2024] Open
Abstract
Cadmium (Cd)-induced oxidative stress detrimentally affects hyperaccumulator growth, thereby diminishing the efficacy of phytoremediation technology aimed at Cd pollution abatement. In the domain of plant antioxidant mechanisms, the role of glutathione peroxidase (GPX) in conferring Cd tolerance to tobacco (Nicotiana tabacum) remained unclear. Our investigation employed genome-wide analysis to identify 14 NtGPX genes in tobacco, revealing their organization into seven subgroups characterized by analogous conserved domain patterns. Notably, qPCR analysis highlighted NtGPX8a as markedly responsive to Cd2+ stress. Subsequent exploration through yeast two-hybridization unveiled NtGPX8a's utilization of thioredoxins AtTrxZ and AtTrxm2 as electron donors, and without interaction with AtTrx5. Introduction of NtGPX8a into Escherichia coli significantly ameliorated Cd-induced adverse effects on bacterial growth. Transgenic tobacco overexpressing NtGPX8a demonstrated significantly augmented activities of GPX, SOD, POD, and CAT under Cd2+ stress compared to the wild type (WT). Conversely, these transgenic plants exhibited markedly reduced levels of MDA, H2O2, and proline. Intriguingly, the expression of NtGPX8a in both E. coli and transgenic tobacco led to increased Cd accumulation, confirming its dual role in enhancing Cd tolerance and accumulation. Consequently, NtGPX8a emerges as a promising candidate gene for engineering transgenic hyperaccumulators endowed with robust tolerance for Cd-contaminated phytoremediation.
Collapse
Affiliation(s)
- Xiang Peng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Tengfei Ma
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Kejin Song
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xue Ji
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Lien Xiang
- College of Environmental Science & Engineering, China West Normal University, Nanchong 637009, China
| | - Nan Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ronglei Zu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenyi Xu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Shunqin Zhu
- School of Life Science, Southwest University, Chongqing 400715, China
| | - Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
13
|
Kamaei R, Kafi M, Afshari RT, Shafaroudi SM, Nabati J. Physiological and molecular changes of onion (Allium cepa L.) seeds under different aging conditions. BMC PLANT BIOLOGY 2024; 24:85. [PMID: 38308226 PMCID: PMC10837900 DOI: 10.1186/s12870-024-04773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Onion seeds have limited storage capacity compared to other vegetable seeds. It is crucial to identify the mechanisms that induce tolerance to storage conditions and reduce seed deterioration. To address this goal, an experiment was conducted to evaluate changes in germination, biochemical, physiological, and molecular characteristics of onion seed landraces (Horand, Kazerun landraces and Zargan cultivar) at different aging levels (control, three-days and six-days accelerated aging, and natural aging for one year). RESULTS The findings suggest that there was an increase in glucose, fructose, total sugar, and electrolyte leakage in the Horand (HOR), Kazerun (KAZ) landraces, and Zarghan (ZAR) cultivar, with Kazerun exhibiting the greatest increase. The percentage and rate of germination of Kazerun decreased by 54% and 33%, respectively, in six-day accelerated aging compared to the control, while it decreased by 12% and 14%, respectively, in Horand. Protein content decreased with increasing levels of aging, with a decrease of 26% in Kazerun landrace at six days of aging, while it was 16% in Horand landrace. The antioxidant activities of catalase, superoxide dismutase, and glutathione peroxidase decreased more intensively in Kazerun. The expression of AMY1, BMY1, CTR1, and NPR1 genes were lower in Kazerun landraces than in Horand and Zargan at different aging levels. CONCLUSIONS The AMY1, BMY1, CTR1, and NPR1 genes play a pivotal role in onion seed germination, and their downregulation under stressful conditions has been shown to decrease germination rates. In addition, the activity of CAT, SOD, and GPx enzymes decreased by seed aging, and the amount of glucose, fructose, total sugar and electrolyte leakage increased, which ultimately led to seed deterioration. Based on the results of this experiment, it is recommended to conduct further studies into the molecular aspects involved in onion seed deterioration. More research on the genes related to this process is suggested, as well as investigating the impact of different priming treatments on the genes expression involved in the onion seed aging process.
Collapse
Affiliation(s)
- Reza Kamaei
- Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Kafi
- Department of Agrotechnonogy, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | | | - Jafar Nabati
- Department of Agrotechnonogy, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
14
|
do Carmo Santos ML, Santos TA, Dos Santos Lopes N, Macedo Ferreira M, Martins Alves AM, Pirovani CP, Micheli F. The selenium-independent phospholipid hydroperoxide glutathione peroxidase from Theobroma cacao (TcPHGPX) protects plant cells against damages and cell death. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108332. [PMID: 38224638 DOI: 10.1016/j.plaphy.2023.108332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/02/2023] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Proteins from the glutathione peroxidase (GPX) family, such as GPX4 or PHGPX in animals, are extensively studied for their antioxidant functions and apoptosis inhibition. GPXs can be selenium-independent or selenium-dependent, with selenium acting as a potential cofactor for GPX activity. However, the relationship of plant GPXs to these functions remains unclear. Recent research indicated an upregulation of Theobroma cacao phospholipid hydroperoxide glutathione peroxidase gene (TcPHGPX) expression during early witches' broom disease stages, suggesting the use of antioxidant mechanisms as a plant defense strategy to reduce disease progression. Witches' broom disease, caused by the hemibiotrophic fungus Moniliophthora perniciosa, induces cell death through elicitors like MpNEP2 in advanced infection stages. In this context, in silico and in vitro analyses of TcPHGPX's physicochemical and functional characteristics may elucidate its antioxidant potential and effects against cell death, enhancing understanding of plant GPXs and informing strategies to control witches' broom disease. Results indicated TcPHGPX interaction with selenium compounds, mainly sodium selenite, but without improving the protein function. Protein-protein interaction network suggested cacao GPXs association with glutathione and thioredoxin metabolism, engaging in pathways like signaling, peroxide detection for ABA pathway components, and anthocyanin transport. Tests on tobacco cells revealed that TcPHGPX reduced cell death, associated with decreased membrane damage and H2O2 production induced by MpNEP2. This study is the first functional analysis of TcPHGPX, contributing to knowledge about plant GPXs and supporting studies for witches' broom disease control.
Collapse
Affiliation(s)
- Maria Luíza do Carmo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Taís Araújo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Natasha Dos Santos Lopes
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Monaliza Macedo Ferreira
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Akyla Maria Martins Alves
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Carlos Priminho Pirovani
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil; CIRAD, UMR AGAP, F-34398, Montpellier, France.
| |
Collapse
|
15
|
Benchabane S, Sour S, Zidi S, Hadjimi Z, Nabila L, Acheli D, Bouzenad A, Belguendouz H, Touil-Boukoffa C. Exploring the relationship between oxidative stress status and inflammatory markers during primary Sjögren's syndrome: A new approach for patient monitoring. Int J Immunopathol Pharmacol 2024; 38:3946320241263034. [PMID: 38901876 PMCID: PMC11191624 DOI: 10.1177/03946320241263034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
INTRODUCTION Primary Sjögren's syndrome (pSS) is a chronic inflammatory disease primarily affects exocrine glands dysfunction. Oxidative stress (OS) is a phenomenon occurring as a result of an imbalance between the generation of free radicals and antioxidant defense system. Hence, we aimed to establish the status of OS and inflammatory response according to the pSS disease activity index. In this context, we investigated malondialdehyde (MDA), and antioxidant enzymes during pSS. The possible association between MDA and nitric oxide (NO) levels and between MDA and some pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-33). METHODS The study has been conducted on 53 pSS patients. The antioxidant enzymes, represented by glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD), were estimated by a colorimetric activity kit. Whereas, MDA value was assessed by measuring thiobarbituric acid reactive substances. Moreover, pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-33) and NO were respectively quantified by enzyme-linked immunosorbent assays (ELISA) and the modified Griess. RESULTS Interestingly, we report a notable reduction in our pSS patients' antioxidant enzyme activity, while NO, MDA and proinflammatory cytokines values were significantly increased. pSS patients with higher disease activity had much stronger increases in NO and MDA levels. No significant difference was assessed in CRP level. Additionally, substantial significant correlations between plasmatic NO and MDA levels and between MDA, NO and IL-1β, IL-6, TNF-α cytokines were reported. However, no significant association was found between NO, MDA and IL-33 concentrations. CONCLUSION Collectively, our data showed altered oxidant-antioxidant balance in pSS patients. MDA, NO, IL-1β, IL-6, TNF-α seem to be good indicators in monitoring disease activity. Oxidative stress was closely related to inflammation in pSS. Exploiting this relationship might provide valuable indicators in the follow-up and prognosis of pSS with a potential therapeutic value.
Collapse
Affiliation(s)
- Sarah Benchabane
- Laboratory of Cellular and Molecular Biology (LBCM), Cytokines and NO Synthases Team, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
- Faculty of Natural Sciences and Life, Department of Biology, Saad Dahlab’s University of Blida, Blida, Algeria
| | - Souad Sour
- Faculty of Natural Sciences and Life, Department of Biology, Saad Dahlab’s University of Blida, Blida, Algeria
| | - Sourour Zidi
- Laboratory of Cellular and Molecular Biology (LBCM), Cytokines and NO Synthases Team, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
- Department of Natural Sciences, Guelma University, Guelma, Algeria
| | - Zohra Hadjimi
- Laboratory of Cellular and Molecular Biology (LBCM), Cytokines and NO Synthases Team, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Lyazidi Nabila
- Internal Medicine Department, Issad Hassani Hospital- Algiers 1 University of Medicine, Algiers, Algeria
| | - Dahbia Acheli
- Internal Medicine Department, Douera Hospital- Algiers 1 University of Medicine, Algiers, Algeria
| | - Amel Bouzenad
- Medical Biology Laboratory, Pasteur Institut- Algiers 1 University of Medicine, Algiers, Algeria
| | - Houda Belguendouz
- Laboratory of Cellular and Molecular Biology (LBCM), Cytokines and NO Synthases Team, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Chafia Touil-Boukoffa
- Laboratory of Cellular and Molecular Biology (LBCM), Cytokines and NO Synthases Team, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
16
|
Kononenko NV, Lazareva EM, Fedoreyeva LI. Mechanisms of Antioxidant Resistance in Different Wheat Genotypes under Salt Stress and Hypoxia. Int J Mol Sci 2023; 24:16878. [PMID: 38069196 PMCID: PMC10707134 DOI: 10.3390/ijms242316878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Various stressors lead to an increase in ROS and damage to plant tissues. Plants have a powerful antioxidant system (AOS), which allows them to neutralize excess ROS. We detected an intense fluorescent glow of ROS in the cells of the cap, meristem, and elongation zones in the roots of wheat Triticum aestivum (Orenburgskaya 22 variety) and Triticum durum (Zolotaya variety). An increase in ROS was accompanied by DNA breaks in the nuclei of wheat root cells, the release of cytochrome c from mitochondria into the cytoplasm, and the translocation of phosphatidylserine into the outer layer of the plasma membrane under salt stress and hypoxia. The different resistances of the two wheat varieties to different abiotic stresses were revealed. The soft wheat variety Orenburgskaya 22 showed high resistance to salt stress but sensitivity to hypoxia, and the durum wheat variety Zolotaya showed tolerance to hypoxia but high sensitivity to salt stress. Different activations of AOS components (GSH, MnSOD, Cu/ZnSOD, CAT, PX, GPX, and GST) were revealed in different wheat genotypes. The basis for the tolerance of the Zolotaya variety to hypoxia is the high content of glutathione (GSH) and the activation of glutathione-dependent enzymes. One of the mechanisms of high resistance to salt stress in the Orenburgskaya 22 variety is a decrease in the level of ROS as a result of the increased activity of the MnSOD and Cu/ZnSOD genes. Identifying the mechanisms of plant tolerance to abiotic stress is the most important task for improving breeding varieties of agricultural plants and increasing their yield.
Collapse
Affiliation(s)
- Neonila V. Kononenko
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (N.V.K.); (E.M.L.)
| | - Elena M. Lazareva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (N.V.K.); (E.M.L.)
- Biological Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Larisa I. Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (N.V.K.); (E.M.L.)
| |
Collapse
|
17
|
Jiang B, Su C, Wang Y, Xu X, Li Y, Ma D. Genome-wide identification of Glutathione peroxidase (GPX) family genes and silencing TaGPX3.2A reduced disease resistance in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108139. [PMID: 37883917 DOI: 10.1016/j.plaphy.2023.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Glutathione peroxidase (GPX) is a crucial enzyme that scavenges reactive oxygen species in plants, playing a vital role in enhancing plant stress resistance. In this study, we identified 14 glutathione peroxidase genes (TaGPXs) from common hexaploid wheat (Triticum aestivum L.). These genes were subsequently categorized into three distinct groups based on their phylogenetic relationships. Simultaneously, a preliminarily analysis was conducted on the protein characteristics, chromosome localization, gene structure, cis-regulatory elements and transcriptome. Using reverse transcription quantitative PCR to analyze the expression patterns of five GPX genes that were investigated under various exogenous hormone treatments. According to the qRT-PCR analysis, it indicated that TaGPX genes have the distinct expression patterns. The enzyme activities in transiently overexpressed Nicotiana benthamiana (TaGPX3.2A and TaGPX3.4A) leaves were measured under salt and drought stresses, showed that peroxidase (POD) exhibited higher enzyme activity under stresses. Silencing TaGPX3.2A by virus-induced gene silencing (VIGS) led to reduced resistance of wheat to Fusarium graminearum, indicating that TaGPX3.2A plays a crucial role in enhancing wheat resistance against F. graminearum. This research provides a foundational basis for further investigations on the functional characterization of TaGPXs family members. And in the future it is provides valuable resources for genetic improvement of wheat resistance.
Collapse
Affiliation(s)
- Baihui Jiang
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Chang Su
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Youning Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China
| | - Xiao Xu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Yan Li
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Dongfang Ma
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
18
|
Zhu M, Liu Y, Bai H, Zhang W, Liu H, Qiu Z. Integrated physio-biochemical and RNA sequencing analysis revealed mechanisms of long non-coding RNA-mediated response to cadmium toxicity in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108028. [PMID: 37708712 DOI: 10.1016/j.plaphy.2023.108028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The yield and quality of wheat (Triticum aestivum L.) is seriously affected by soil cadmium (Cd), a hazardous material to plant and human health. Long non-coding RNAs (lncRNAs) of plants are shown actively involved in response to various biotic and abiotic stresses by mediating the gene regulatory networks. However, the functions of lncRNAs in wheat against Cd stress are still obscure. Using deep strand-specific RNA sequencing, 10,044 confident novel lncRNAs in wheat roots response to Cd stress were identified. It was found that 69 lncRNA-target pairs referred to cis-acting regulation and impacted the expressions of their neighboring genes involving in Cd transport and detoxification, photosynthesis, and antioxidant defense. These findings were positively corelated with the physio-biochemical results, i.e. Cd stress affected Cd accumulation, photosynthesis system and ROS in wheat. Overexpression of lncRNA37228 (targeted to a photosystem II protein D1 coding gene), resulted in enhancing Arabidopsis thaliana resistance against Cd stress. By genome-wide identification and characterization, the possible functions of photosystem II protein gene family in wheat under Cd condition were illustrated. Our findings provide novel knowledge into the molecular mechanisms of lncRNAs-regulated wheat tolerance to Cd toxicity and lay foundations for the further studies concerning lncRNAs in food safety production.
Collapse
Affiliation(s)
- Mo Zhu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China; Xinxiang Key Laboratory of Plant Stress Biology, Xinxiang, 453000, PR China
| | - Yan Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Hongxia Bai
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Wanwan Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Zongbo Qiu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China; Xinxiang Key Laboratory of Plant Stress Biology, Xinxiang, 453000, PR China.
| |
Collapse
|
19
|
Vogelsang L, Dietz KJ. Regeneration of cytosolic thiol peroxidases. PHYSIOLOGIA PLANTARUM 2023; 175:e14042. [PMID: 37882285 DOI: 10.1111/ppl.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023]
Abstract
Three soluble type two peroxiredoxins (PRXIIB, C, D) and two glutathione peroxidase-like enzymes (GPXL2, 8) reside in the cytosol of Arabidopsis thaliana cells and function both as thiol-dependent antioxidants and redox sensors. Their primary substrate is H2 O2 , but they also accept other peroxides with a distinct preference between PRXII and GPXL. Less known is their regeneration specificity in the light of the large set of thiol reductases, namely eight annotated thioredoxin h isoforms (TRXh1-5, 7-9), a few TRX-like proteins, including CxxS1 (formerly TRXh6) and several glutaredoxins (GRX) associated with the cytosol. This study addressed this open question by in vitro enzyme tests using recombinant protein. GPXL2 and 8 exclusively accepted electrons from the TRX system, namely TRXh1-5 and TDX, while PRXIIB/C/D were efficiently regenerated with GRXC1 and C2 but not the TRX-like protein Picot1. They showed significant but low activity (<3% of GRXC2) with TRXh1-5 and TDX. A similar reduction efficiency with TRX was seen in the insulin assay, only TDX was less active. Finally, the reduction of oxidized cytosolic malate dehydrogenase 1, as measured by regained activity, showed an extremely broad ability to accept electrons from different TRXs and GRXs. The results demonstrate redundancy and specificity in the redox regulatory network of the cytosol.
Collapse
Affiliation(s)
- Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
20
|
Wang W, Cheng Y, Ruan M, Ye Q, Yao Z, Wang R, Zhou G, Liu D, Wan H. Comprehensive identification of glutathione peroxidase (GPX) gene family in response to abiotic stress in pepper (Capsicum annuum L.). Gene 2023:147625. [PMID: 37433355 DOI: 10.1016/j.gene.2023.147625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
Plant glutathione peroxidase (GPX) plays an important role in the maintenance of cell homeostasis and in the antioxidant response in plants. In this study, the peroxidase (GPX) gene family was identified in the whole genome of pepper using bioinformatic method. As a result, a total of 5 CaGPX genes were identified, which were unevenly distributed on 3 of the 12 chromosomes of pepper genome. Based on phylogenetic analysis, 89 GPX genes in 17 species from lower plants to higher plants can be divided into 4 groups GroupⅠ, Group Ⅱ, Group Ⅲ, Group Ⅳ). The MEME Suite analysis of GPX proteins shows that all these proteins contain four highly conserved motifs, as well as other conserved sequences and amino acid residues. Gene structure analysis revealed the conservative exon-intron organization pattern of these genes. In the promoter region of CaGPX genes, many cis elements of plant hormone and abiotic stress response were identified in each of CaGPX proteins. In addition, expression patterns of CaGPX genes in different tissues, developmental stages and responses to abiotic stress were also performed. The results of qRT-PCR showed that the transcripts of CaGPX genes varied greatly under abiotic stress at different time points. There results suggest that the GPX gene family of pepper may play a role in plant development andstress response. In conclusion, our research provides new insights into the evolution of pepper GPX gene family, and understanding for functional of these genes in response to abiotic stresses.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Agriculture, Yunnan University, Kunming 650504, China
| | - Yuan Cheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Meiying Ruan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qingjing Ye
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhuping Yao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Rongqing Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guozhi Zhou
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Dandan Liu
- College of Agriculture, Yunnan University, Kunming 650504, China.
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
21
|
Wang S, Sun X, Miao X, Mo F, Liu T, Chen Y. Genome-Wide Analysis and Expression Profiling of the Glutathione Peroxidase-like Enzyme Gene Family in Solanum tuberosum. Int J Mol Sci 2023; 24:11078. [PMID: 37446254 PMCID: PMC10342349 DOI: 10.3390/ijms241311078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Glutathione peroxidase-like enzyme is an important enzymatic antioxidant in plants. It is involved in scavenging reactive oxygen species, which can effectively prevent oxidative damage and improve resistance. GPXL has been studied in many plants but has not been reported in potatoes, the world's fourth-largest food crop. This study identified eight StGPXL genes in potatoes for the first time through genome-wide bioinformatics analysis and further studied the expression patterns of these genes using qRT-PCR. The results showed that the expression of StGPXL1 was significantly upregulated under high-temperature stress, indicating its involvement in potato defense against high-temperature stress, while the expression levels of StGPXL4 and StGPXL5 were significantly downregulated. The expression of StGPXL1, StGPXL2, StGPXL3, and StGPXL6 was significantly upregulated under drought stress, indicating their involvement in potato defense against drought stress. After MeJA hormone treatment, the expression level of StGPXL6 was significantly upregulated, indicating its involvement in the chemical defense mechanism of potatoes. The expression of all StGPXL genes is inhibited under biotic stress, which indicates that GPXL is a multifunctional gene family, which may endow plants with resistance to various stresses. This study will help deepen the understanding of the function of the potato GPXL gene family, provide comprehensive information for the further analysis of the molecular function of the potato GPXL gene family as well as a theoretical basis for potato molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China; (S.W.); (X.S.); (X.M.); (F.M.); (T.L.)
| |
Collapse
|
22
|
Li S. Novel insight into functions of ascorbate peroxidase in higher plants: More than a simple antioxidant enzyme. Redox Biol 2023; 64:102789. [PMID: 37352686 DOI: 10.1016/j.redox.2023.102789] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
As plants are sessile organisms, they are inevitably exposed to a variety of environmental stimuli that trigger rapid changes in the generation and disposal of reactive oxygen species such as hydrogen peroxide (H2O2). A major H2O2 scavenging system in plant cells is the ascorbate-glutathione cycle, in which ascorbate peroxidase (APX) catalyzes the conversion of H2O2 into water employing ascorbate as specific electron donor. In higher plants, distinct APX isoforms can occur in multiple subcellular compartments, including chloroplasts, mitochondria, and peroxisomes and the cytosol, to modulate organellar and cellular levels of H2O2. It is well established that APX plays crucial roles in protecting plant cells against diverse environmental stresses, as well as in plant growth and development. Apart from ascorbate, recently, APXs have been found to have a broader substrate specificity and possess chaperone activity, hence participating various biological processes. In this review, we describe the antioxidant properties of APXs and highlight their novel roles beyond 'ascorbate peroxidases'.
Collapse
Affiliation(s)
- Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
23
|
Née G, Wang F, Châtel-Innocenti G, Mhamdi A, Juranville E, Vanacker H, Noctor G, Issakidis-Bourguet E. Thioredoxins m regulate plastid glucose-6-phosphate dehydrogenase activity in Arabidopsis roots under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1179112. [PMID: 37332692 PMCID: PMC10274509 DOI: 10.3389/fpls.2023.1179112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/05/2023] [Indexed: 06/20/2023]
Abstract
Plants contain several NADPH-producing enzymes including glucose-6-phosphate dehydrogenases (G6PDH) with different sub-cellular localizations. The activity of plastidial G6PDHs is redox-regulated by thioredoxins (TRX). Although specific TRXs are known to regulate chloroplastic isoforms of G6PDH, little information is available for plastidic isoforms found in heterotrophic organs or tissues. Here, we investigated TRX regulation of the two G6PDH plastidic isoforms of Arabidopsis roots during exposure to a mild salt stress. We report that in vitro m-type TRXs are the most efficient regulators of the G6PDH2 and G6PDH3 mainly found in Arabidopsis roots. While expression of the corresponding G6PD and plastidic TRX genes was marginally affected by salt, it impaired root growth of several of the corresponding mutant lines. Using an in situ assay for G6PDH, G6PDH2 was found to be the major contributor to salt-induced increases in activity, while data from ROS assays further provide in vivo evidence that TRX m acts in redox regulation during salt stress. Taken together, our data suggest that regulation of plastid G6PDH activity by TRX m may be an important player regulating NADPH production in Arabidopsis roots undergoing salt stress.
Collapse
Affiliation(s)
- Guillaume Née
- *Correspondence: Guillaume Née, ; Emmanuelle Issakidis-Bourguet,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Casatejada A, Puerto-Galán L, Pérez-Ruiz JM, Cejudo FJ. The contribution of glutathione peroxidases to chloroplast redox homeostasis in Arabidopsis. Redox Biol 2023; 63:102731. [PMID: 37245286 DOI: 10.1016/j.redox.2023.102731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023] Open
Abstract
Oxidizing signals mediated by the thiol-dependent peroxidase activity of 2-Cys peroxiredoxins (PRXs) plays an essential role in fine-tuning chloroplast redox balance in response to changes in light intensity, a function that depends on NADPH-dependent thioredoxin reductase C (NTRC). In addition, plant chloroplasts are equipped with glutathione peroxidases (GPXs), thiol-dependent peroxidases that rely on thioredoxins (TRXs). Despite having a similar reaction mechanism than 2-Cys PRXs, the contribution of oxidizing signals mediated by GPXs to the chloroplast redox homeostasis remains poorly known. To address this issue, we have generated the Arabidopsis (Arabidopsis thaliana) double mutant gpx1gpx7, which is devoid of the two GPXs, 1 and 7, localized in the chloroplast. Furthermore, to analyze the functional relationship of chloroplast GPXs with the NTRC-2-Cys PRXs redox system, the 2cpab-gpx1gpx7 and ntrc-gpx1gpx7 mutants were generated. The gpx1gpx7 mutant displayed wild type-like phenotype indicating that chloroplast GPXs are dispensable for plant growth at least under standard conditions. However, the 2cpab-gpx1gpx7 showed more retarded growth than the 2cpab mutant. The simultaneous lack of 2-Cys PRXs and GPXs affected PSII performance and caused higher delay of enzyme oxidation in the dark. In contrast, the ntrc-gpx1gpx7 mutant combining the lack of NTRC and chloroplast GPXs behaved like the ntrc mutant indicating that the contribution of GPXs to chloroplast redox homeostasis is independent of NTRC. Further supporting this notion, in vitro assays showed that GPXs are not reduced by NTRC but by TRX y2. Based on these results, we propose a role for GPXs in the chloroplast redox hierarchy.
Collapse
Affiliation(s)
- Azahara Casatejada
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Leonor Puerto-Galán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Juan M Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain.
| | - Francisco J Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda. Américo Vespucio 49, 41092-Sevilla, Spain.
| |
Collapse
|
25
|
Lian Z, Zhang J, Hao Z, Zhu L, Liu Y, Fang H, Lu Y, Li X, Shi J, Chen J, Cheng T. The Glutathione Peroxidase Gene Family in Nitraria sibirica: Genome-Wide Identification, Classification, and Gene Expression Analysis under Stress Conditions. Genes (Basel) 2023; 14:genes14040950. [PMID: 37107708 PMCID: PMC10137829 DOI: 10.3390/genes14040950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Plant glutathione peroxidases (GPXs) are the main enzymes in the antioxidant defense system that sustain H2O2 homeostasis and normalize plant reaction to abiotic stress conditions. However, the genome-wide identification of the GPX gene family and its responses to environmental stresses, especially salt stress, in Nitraria sibirica, which is a shrub that can survive in saline environments, has not yet been reported. Here, we first report the genome-wide analysis of the GPX gene family in N. sibirica, leading to a total of seven NsGPX genes that are distributed on six of the twelve chromosomes. Phylogenetic analysis showed that NsGPX genes were grouped into four major groups (Group I-IV). Three types of cis-acting elements were identified in the NsGPX promoters, mainly related to hormones and stress response. The quantitative real-time PCR (qRT-PCR) analysis indicated that NsGPX1 and NsGPX3 were significantly up-regulated in stem and leaf, while NsGPX7 transcriptionally in root in response to salt stress. The current study identified a total seven NsGPX genes in N. sibirica via genome-wide analysis, and discovered that NsGPXs may play an important role in response to salt stress. Taken together, our findings provide a basis for further functional studies of NsGPX genes, especially in regarding to the resistance to salt stress of this halophyte plant N. sibirica, eventually aid in the discovery of new methods to restore overtly saline soil.
Collapse
Affiliation(s)
- Ziming Lian
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jingbo Zhang
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Liu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Fang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Lu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xinle Li
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tielong Cheng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
26
|
Otulak-Kozieł K, Kozieł E, Treder K, Király L. Glutathione Contribution in Interactions between Turnip mosaic virus and Arabidopsis thaliana Mutants Lacking Respiratory Burst Oxidase Homologs D and F. Int J Mol Sci 2023; 24:ijms24087128. [PMID: 37108292 PMCID: PMC10138990 DOI: 10.3390/ijms24087128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Respiratory burst oxidase homologs (Rbohs) play crucial and diverse roles in plant tissue-mediated production of reactive oxygen species during the development, growth, and response of plants to abiotic and biotic stress. Many studies have demonstrated the contribution of RbohD and RbohF in stress signaling in pathogen response differentially modulating the immune response, but the potential role of the Rbohs-mediated response in plant-virus interactions remains unknown. The present study analyzed, for the first time, the metabolism of glutathione in rbohD-, rbohF-, and rbohD/F-transposon-knockout mutants in response to Turnip mosaic virus (TuMV) infection. rbohD-TuMV and Col-0-TuMV interactions were characterized by susceptible reaction to TuMV, associated with significant activity of GPXLs (glutathione peroxidase-like enzymes) and induction of lipid peroxidation in comparison to mock-inoculated plants, with reduced total cellular and apoplastic glutathione content observed at 7-14 dpi and dynamic induction of apoplast GSSG (oxidized glutathione) at 1-14 dpi. Systemic virus infection resulted in the induction of AtGSTU1 and AtGSTU24, which was highly correlated with significant downregulation of GSTs (glutathione transferases) and cellular and apoplastic GGT (γ-glutamyl transferase) with GR (glutathione reductase) activities. On the contrary, resistant rbohF-TuMV reactions, and especially enhanced rbohD/F-TuMV reactions, were characterized by a highly dynamic increase in total cellular and apoplastic glutathione content, with induction of relative expression of AtGGT1, AtGSTU13, and AtGSTU19 genes. Moreover, virus limitation was highly correlated with the upregulation of GSTs, as well as cellular and apoplastic GGT with GR activities. These findings clearly indicate that glutathione can act as a key signaling factor in not only susceptible rbohD reaction but also the resistance reaction presented by rbohF and rbohD/F mutants during TuMV interaction. Furthermore, by actively reducing the pool of glutathione in the apoplast, GGT and GR enzymes acted as a cell first line in the Arabidopsis-TuMV pathosystem response, protecting the cell from oxidative stress in resistant interactions. These dynamically changed signal transductions involved symplast and apoplast in mediated response to TuMV.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Krzysztof Treder
- Laboratory of Molecular Diagnostic and Biochemistry, Bonin Research Center, Plant Breeding and Acclimatization Institute-National Research Institute, 76-009 Bonin, Poland
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), 15 Herman Ottó Str., H-1022 Budapest, Hungary
| |
Collapse
|
27
|
Rai GK, Kumar P, Choudhary SM, Singh H, Adab K, Kosser R, Magotra I, Kumar RR, Singh M, Sharma R, Corrado G, Rouphael Y. Antioxidant Potential of Glutathione and Crosstalk with Phytohormones in Enhancing Abiotic Stress Tolerance in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1133. [PMID: 36903992 PMCID: PMC10005112 DOI: 10.3390/plants12051133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Glutathione (GSH) is an abundant tripeptide that can enhance plant tolerance to biotic and abiotic stress. Its main role is to counter free radicals and detoxify reactive oxygen species (ROS) generated in cells under unfavorable conditions. Moreover, along with other second messengers (such as ROS, calcium, nitric oxide, cyclic nucleotides, etc.), GSH also acts as a cellular signal involved in stress signal pathways in plants, directly or along with the glutaredoxin and thioredoxin systems. While associated biochemical activities and roles in cellular stress response have been widely presented, the relationship between phytohormones and GSH has received comparatively less attention. This review, after presenting glutathione as part of plants' feedback to main abiotic stress factors, focuses on the interaction between GSH and phytohormones, and their roles in the modulation of the acclimatation and tolerance to abiotic stress in crops plants.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Pradeep Kumar
- Division of Integrated Farming System, ICAR—Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Sadiya M. Choudhary
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Hira Singh
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana 141004, India
| | - Komal Adab
- Department of Biotechnology, BGSB University, Rajouri 185131, India
| | - Rafia Kosser
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Isha Magotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110001, India
| | - Monika Singh
- GLBajaj Institute of Technology and Management, Greater Noida 201306, India
| | - Rajni Sharma
- Department of Agronomy, Punjab Agricultural University, Ludhiana 141004, India
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
28
|
Madhu, Sharma A, Kaur A, Tyagi S, Upadhyay SK. Glutathione Peroxidases in Plants: Innumerable Role in Abiotic Stress Tolerance and Plant Development. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:598-613. [DOI: 10.1007/s00344-022-10601-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/02/2022] [Indexed: 10/09/2024]
|
29
|
Hidouri S, Karmous I, Kadri O, Kharbech O, Chaoui A. Clue of zinc oxide and copper oxide nanoparticles in the remediation of cadmium toxicity in Phaseolus vulgaris L. via the modulation of antioxidant and redox systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85271-85285. [PMID: 35793019 DOI: 10.1007/s11356-022-21799-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The present study represents new evidence of the successful use of metal oxide nanoparticles in the remediation of heavy metals. Zinc oxide nanoparticles (ZnO NP) and copper oxide nanoparticles (CuO NP) were assessed to alleviate cadmium (Cd) toxicity in Phaseolus vulgaris L. seedlings and plants. Monitoring physiological and metabolic parameters allowed to elucidate Cd mechanism and process whereby it exerts phytotoxic effects on bean. The response of P. vulgaris seedlings is NP dose-dependent (10 mg/L, 50 mg/L, 100 mg/L, and 200 mg/L). Similarly, applied concentrations triggered a differential response of growing plants in terms of length and biomass. Our physiological data allowed to select 100 mg/L as the most appropriate concentration to apply, in order to avoid any risk of phytotoxicity. The regulatory mechanisms by which ZnO NP and CuO NP act are for the first time compared in the embryonic axes of bean seedlings under Cd stress. Both NP were able to reduce the hypergeneration of hydrogen peroxide (H2O2). They also acted via enhancing ROS scavenging enzymatic capacity, and activity of antioxidant enzymes CAT, APX, GPOX, GPX, and GR, and inhibited the activity of ROS producing enzymes such as GOX and NOX. Another mechanistic effect of NP consisted of the modulation of redox enzymes Trx, NTR, Fd, and FNR evolved in cellular homeostasis and maintaining reduced status in cells. Taken together, ZnO NP triggered more significant metabolic regulations allowing to mitigate the oxidative damage caused by Cd.
Collapse
Affiliation(s)
- Safa Hidouri
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, Zarzouna, Tunisia
| | - Inès Karmous
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, Zarzouna, Tunisia.
- Biology and Environmental Department. Insitute of Applied Biology of Medenine (ISBAM), University of Gabes, Gabes, Tunisia.
- The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut, USA.
| | - Oumaima Kadri
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, Zarzouna, Tunisia
| | - Oussama Kharbech
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, Zarzouna, Tunisia
| | - Abdelilah Chaoui
- Plant Toxicology and Molecular Biology of Microorganisms, Faculty of Sciences of Bizerta, Zarzouna, Tunisia
| |
Collapse
|
30
|
Vogelsang L, Dietz KJ. Plant thiol peroxidases as redox sensors and signal transducers in abiotic stress acclimation. Free Radic Biol Med 2022; 193:764-778. [PMID: 36403735 DOI: 10.1016/j.freeradbiomed.2022.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The temporal and spatial patterns of reactive oxygen species (ROS) in cells and tissues decisively determine the plant acclimation response to diverse abiotic and biotic stresses. Recent progress in developing dynamic cell imaging probes provides kinetic information on changes in parameters like H2O2, glutathione (GSH/GSSG) and NAD(P)H/NAD(P)+, that play a crucial role in tuning the cellular redox state. Central to redox-based regulation is the thiol-redox regulatory network of the cell that integrates reductive information from metabolism and oxidative ROS signals. Sensitive proteomics allow for monitoring changes in redox-related posttranslational modifications. Thiol peroxidases act as sensitive peroxide and redox sensors and play a central role in this signal transduction process. Peroxiredoxins (PRX) and glutathione peroxidases (GPX) are the two main thiol peroxidases and their function in ROS sensing and redox signaling in plants is emerging at present and summarized in this review. Depending on their redox state, PRXs and GPXs act as redox-dependent binding partners, direct oxidants of target proteins and oxidants of thiol redox transmitters that in turn oxidize target proteins. With their versatile functions, the multiple isoforms of plant thiol peroxidases play a central role in plant stress acclimation, e.g. to high light or osmotic stress, but also in ROS-mediated immunity and development.
Collapse
Affiliation(s)
- Lara Vogelsang
- Biochemistry and Physiology of Plants, W5-134, Bielefeld University, 33615, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, W5-134, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
31
|
Zhang M, Li W, Li S, Gao J, Gan T, Li Q, Bao L, Jiao F, Su C, Qian Y. Quantitative Proteomics and Functional Characterization Reveal That Glutathione Peroxidases Act as Important Antioxidant Regulators in Mulberry Response to Drought Stress. PLANTS 2022; 11:plants11182350. [PMID: 36145752 PMCID: PMC9500794 DOI: 10.3390/plants11182350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
Mulberry (Morus alba L.) has been an economically important food crop for the domesticated silkworm, Bombyx mori, in China for more than 5000 years. However, little is known about the mechanism underlying mulberry response to environmental stress. In this study, quantitative proteomics was applied to elucidate the molecular mechanism of drought response in mulberry. A total of 604 differentially expressed proteins (DEPs) were identified via LC-MS/MS. The proteomic profiles associated with antioxidant enzymes, especially five glutathione peroxidase (GPX) isoforms, as a scavenger of reactive oxygen species (ROS), were systematically increased in the drought-stressed mulberry. This was further confirmed by gene expression and enzymatic activity. Furthermore, overexpression of the GPX isoforms led to enhancements in both antioxidant system and ROS-scavenging capacity, and greater tolerance to drought stress in transgenic plants. Taken together, these results indicated that GPX-based antioxidant enzymes play an important role in modulating mulberry response to drought stress, and higher levels of GPX can improve drought tolerance through enhancing the capacity of the antioxidant system for ROS scavenging.
Collapse
Affiliation(s)
- Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Shuaijun Li
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Junru Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Tiantian Gan
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qinying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence: (C.S.); (Y.Q.)
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence: (C.S.); (Y.Q.)
| |
Collapse
|
32
|
Bela K, Riyazuddin R, Csiszár J. Plant Glutathione Peroxidases: Non-Heme Peroxidases with Large Functional Flexibility as a Core Component of ROS-Processing Mechanisms and Signalling. Antioxidants (Basel) 2022; 11:antiox11081624. [PMID: 36009343 PMCID: PMC9404953 DOI: 10.3390/antiox11081624] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Glutathione peroxidases (GPXs) are non-heme peroxidases catalyzing the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using glutathione (GSH) or thioredoxin (TRX) as a reducing agent. In contrast to animal GPXs, the plant enzymes are non-seleno monomeric proteins that generally utilize TRX more effectively than GSH but can be a putative link between the two main redox systems. Because of the substantial differences compared to non-plant GPXs, use of the GPX-like (GPXL) name was suggested for Arabidopsis enzymes. GPX(L)s not only can protect cells from stress-induced oxidative damages but are crucial components of plant development and growth. Due to fine-tuning the H2O2 metabolism and redox homeostasis, they are involved in the whole life cycle even under normal growth conditions. Significantly new mechanisms were discovered related to their transcriptional, post-transcriptional and post-translational modifications by describing gene regulatory networks, interacting microRNA families, or identifying Lys decrotonylation in enzyme activation. Their involvement in epigenetic mechanisms was evidenced. Detailed genetic, evolutionary, and bio-chemical characterization, and comparison of the main functions of GPXs, demonstrated their species-specific roles. The multisided involvement of GPX(L)s in the regulation of the entire plant life ensure that their significance will be more widely recognized and applied in the future.
Collapse
Affiliation(s)
- Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
- Correspondence:
| |
Collapse
|
33
|
Khan MS, Soyk A, Wolf I, Peter M, Meyer AJ, Rausch T, Wirtz M, Hell R. Discriminative Long-Distance Transport of Selenate and Selenite Triggers Glutathione Oxidation in Specific Subcellular Compartments of Root and Shoot Cells in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:894479. [PMID: 35812960 PMCID: PMC9263558 DOI: 10.3389/fpls.2022.894479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Selenium is an essential trace element required for seleno-protein synthesis in many eukaryotic cells excluding higher plants. However, a substantial fraction of organically bound selenide in human nutrition is directly or indirectly derived from plants, which assimilate inorganic selenium into organic seleno-compounds. In humans, selenium deficiency is associated with several health disorders Despite its importance for human health, selenium assimilation and metabolism is barely understood in plants. Here, we analyzed the impact of the two dominant forms of soil-available selenium, selenite and selenate, on plant development and selenium partitioning in plants. We found that the reference plant Arabidopsis thaliana discriminated between selenate and selenite application. In contrast to selenite, selenate was predominantly deposited in leaves. This explicit deposition of selenate caused chlorosis and impaired plant morphology, which was not observed upon selenite application. However, only selenate triggered the accumulation of the macronutrient sulfur, the sister element of selenium in the oxygen group. To understand the oxidation state-specific toxicity mechanisms for selenium in plants, we quantified the impact of selenate and selenite on the redox environment in the plastids and the cytosol in a time-resolved manner. Surprisingly, we found that selenite first caused the oxidation of the plastid-localized glutathione pool and had a marginal impact on the redox state of the cytosolic glutathione pool, specifically in roots. In contrast, selenate application caused more vigorous oxidation of the cytosolic glutathione pool but also impaired the plastidic redox environment. In agreement with the predominant deposition in leaves, the selenate-induced oxidation of both glutathione pools was more pronounced in leaves than in roots. Our results demonstrate that Se-species dependent differences in Se partitioning substantially contribute to whole plant Se toxicity and that these Se species have subcellular compartment-specific impacts on the glutathione redox buffer that correlate with toxicity symptoms.
Collapse
Affiliation(s)
- Muhammad Sayyar Khan
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Anna Soyk
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ingo Wolf
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Miriam Peter
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Andreas J. Meyer
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
- INRES - Chemical Signalling, University of Bonn, Bonn, Germany
| | - Thomas Rausch
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
34
|
Riyazuddin R, Bela K, Poór P, Szepesi Á, Horváth E, Rigó G, Szabados L, Fehér A, Csiszár J. Crosstalk between the Arabidopsis Glutathione Peroxidase-Like 5 Isoenzyme (AtGPXL5) and Ethylene. Int J Mol Sci 2022; 23:ijms23105749. [PMID: 35628560 PMCID: PMC9171577 DOI: 10.3390/ijms23105749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Glutathione peroxidases (GPXs) are important antioxidant enzymes in animals. Plants contain GPX-like (GPXL) enzymes, which-in contrast to GPXs-contain cysteine in their active site instead of selenocysteine. Although several studies proved their importance in development and stress responses, their interaction with ethylene (ET) signalling is not known. Our aim was to investigate the involvement of AtGPXL5 in ET biosynthesis and/or signalling using Atgpxl5 mutant and AtGPXL5 cDNA-overexpressing (OX-AtGPXL5) lines. Four-day-old dark-grown Atgpxl5 seedlings had shorter hypocotyls and primary roots, while OX-AtGPXL5 seedlings exhibited a similar phenotype as wild type under normal conditions. Six-week-old OX-AtGPXL5 plants contained less H2O2 and malondialdehyde, but higher polyamine and similar ascorbate- and glutathione contents and redox potential (EGSH) than the Col-0. One-day treatment with the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC) induced the activity of glutathione- and thioredoxin peroxidases and some other ROS-processing enzymes. In the Atgpxl5 mutants, the EGSH became more oxidised; parallelly, it produced more ethylene after the ACC treatment than other genotypes. Although the enhanced ET evolution measured in the Atgpxl5 mutant can be the result of the increased ROS level, the altered expression pattern of ET-related genes both in the Atgpxl5 and OX-AtGPXL5 plants suggests the interplay between AtGPXL5 and ethylene signalling.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (R.R.); (K.B.); (P.P.); (Á.S.); (E.H.); (A.F.)
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726 Szeged, Hungary; (G.R.); (L.S.)
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (R.R.); (K.B.); (P.P.); (Á.S.); (E.H.); (A.F.)
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (R.R.); (K.B.); (P.P.); (Á.S.); (E.H.); (A.F.)
| | - Ágnes Szepesi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (R.R.); (K.B.); (P.P.); (Á.S.); (E.H.); (A.F.)
| | - Edit Horváth
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (R.R.); (K.B.); (P.P.); (Á.S.); (E.H.); (A.F.)
| | - Gábor Rigó
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726 Szeged, Hungary; (G.R.); (L.S.)
| | - László Szabados
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726 Szeged, Hungary; (G.R.); (L.S.)
| | - Attila Fehér
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (R.R.); (K.B.); (P.P.); (Á.S.); (E.H.); (A.F.)
- Biological Research Centre, Institute of Plant Biology, Temesvári krt. 62., H-6726 Szeged, Hungary; (G.R.); (L.S.)
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (R.R.); (K.B.); (P.P.); (Á.S.); (E.H.); (A.F.)
- Correspondence:
| |
Collapse
|
35
|
Mallikarjuna MG, Sharma R, Veeraya P, Tyagi A, Rao AR, Hirenallur Chandappa L, Chinnusamy V. Evolutionary and functional characterisation of glutathione peroxidases showed splicing mediated stress responses in Maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 178:40-54. [PMID: 35276595 DOI: 10.1016/j.plaphy.2022.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays L) is an important cereal with extensive adaptability and multifaceted usages. However, various abiotic and biotic stresses limit the productivity of maize across the globe. Exposure of plant to stresses disturb the balance between reactive oxygen species (ROS) production and scavenging, which subsequently increases cellular damage and death of plants. Tolerant genotypes have evolved higher output of scavenging antioxidative defence compounds (ADCs) during stresses as one of the protective mechanisms. The glutathione peroxidases (GPXs) are the broad class of ADCs family. The plant GPXs catalyse the reduction of hydrogen peroxide (H2O2), lipid hydroperoxides and organic hydroperoxides to the corresponding alcohol, and facilitate the regulation of stress tolerance mechanisms. The present investigation was framed to study the maize GPXs using evolutionary and functional analyses. Seven GPX genes with thirteen splice-variants and sixty-three types of cis-acting elements were identified through whole-genome scanning in maize. Evolutionary analysis of GPXs in monocots and dicots revealed mixed and lineage-specific grouping patterns in phylogeny. The expression of ZmGPX splice variants was studied in drought and waterlogging tolerant (L1621701) and sensitive (PML10) genotypes in root and shoot tissues. Further, the differential expression of splice variants of ZmGPX1, ZmGPX3, ZmGPX6 and ZmGPX7 and regulatory network analysis suggested the splicing and regulatory elements mediated stress responses. The present investigation suggests targeting the splicing machinery of GPXs as an approach to enhance the stress tolerance in maize.
Collapse
Affiliation(s)
| | - Rinku Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Palanisamy Veeraya
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Akshita Tyagi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | | | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
36
|
OPDAylation of Thiols of the Redox Regulatory Network In Vitro. Antioxidants (Basel) 2022; 11:antiox11050855. [PMID: 35624719 PMCID: PMC9137622 DOI: 10.3390/antiox11050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
cis-(+)-12-Oxophytodienoic acid (OPDA) is a reactive oxylipin produced by catalytic oxygenation of polyunsaturated α-linolenic acid (18:3 (ω − 3)) in the chloroplast. Apart from its function as precursor for jasmonic acid synthesis, OPDA serves as a signaling molecule and regulator on its own, namely by tuning enzyme activities and altering expression of OPDA-responsive genes. A possible reaction mechanism is the covalent binding of OPDA to thiols via the addition to the C=C double bond of its α,β-unsaturated carbonyl group in the cyclopentenone ring. The reactivity allows for covalent modification of accessible cysteinyl thiols in proteins. This work investigated the reaction of OPDA with selected chloroplast and cytosolic thioredoxins (TRX) and glutaredoxins (GRX) of Arabidopsis thaliana. OPDA reacted with TRX and GRX as detected by decreased m-PEG maleimide binding, consumption of OPDA, reduced ability for insulin reduction and inability to activate glyceraldehyde-3-phosphate dehydrogenase and regenerate glutathione peroxidase (GPXL8), and with lower efficiency, peroxiredoxin IIB (PRXIIB). OPDAylation of certain protein thiols occurs quickly and efficiently in vitro and is a potent post-translational modification in a stressful environment.
Collapse
|
37
|
Zhou H, Zhang F, Zhai F, Su Y, Zhou Y, Ge Z, Tilak P, Eirich J, Finkemeier I, Fu L, Li Z, Yang J, Shen W, Yuan X, Xie Y. Rice GLUTATHIONE PEROXIDASE1-mediated oxidation of bZIP68 positively regulates ABA-independent osmotic stress signaling. MOLECULAR PLANT 2022; 15:651-670. [PMID: 34793984 DOI: 10.1016/j.molp.2021.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Osmotic stress caused by drought and high salinity is a significant environmental threat that limits plant growth and agricultural yield. Redox regulation plays an important role in plant stress responses, but the mechanisms by which plants perceive and transduce redox signals are still underexplored. Here, we report a critical function for the thiol peroxidase GPX1 in osmotic stress response in rice, where it serves as a redox sensor and transducer. GPX1 is quickly oxidized upon exposure to osmotic stress and forms an intramolecular disulfide bond, which is required for the activation of bZIP68, a VRE-like basic leucine zipper (bZIP) transcription factor involved in the ABA-independent osmotic stress response pathway. The disulfide exchange between GPX1 and bZIP68 induces homo-tetramerization of bZIP68 and thus positively regulates osmotic stress response by regulating osmotic-responsive gene expression. Furthermore, we discovered that the nuclear translocation of GPX1 is regulated by its acetylation under osmotic stress. Taken together, our findings not only uncover the redox regulation of the GPX1-bZIP68 module during osmotic stress but also highlight the coordination of protein acetylation and redox signaling in plant osmotic stress responses.
Collapse
Affiliation(s)
- Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fengchao Zhai
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ye Su
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ying Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenglin Ge
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Priyadarshini Tilak
- Institute for Biology and Biotechnology of Plants, University of Muenster, 48149 Muenster, Germany
| | - Jürgen Eirich
- Institute for Biology and Biotechnology of Plants, University of Muenster, 48149 Muenster, Germany
| | - Iris Finkemeier
- Institute for Biology and Biotechnology of Plants, University of Muenster, 48149 Muenster, Germany
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center 17 for Protein Sciences ⋅ Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Zongmin Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center 17 for Protein Sciences ⋅ Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center 17 for Protein Sciences ⋅ Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
38
|
Zhu J, Yan X, Liu S, Xia X, An Y, Xu Q, Zhao S, Liu L, Guo R, Zhang Z, Xie DY, Wei C. Alternative splicing of CsJAZ1 negatively regulates flavan-3-ol biosynthesis in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:243-261. [PMID: 35043493 DOI: 10.1111/tpj.15670] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/19/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Flavan-3-ols are abundant in the tea plant (Camellia sinensis) and confer tea with flavor and health benefits. We recently found that alternative splicing of genes is likely involved in the regulation of flavan-3-ol biosynthesis; however, the underlying regulatory mechanisms remain unknown. Here, we integrated metabolomics and transcriptomics to construct metabolite-gene networks in tea leaves, collected over five different months and from five spatial positions, and found positive correlations between endogenous jasmonic acid (JA), flavan-3-ols, and numerous transcripts. Transcriptome mining further identified CsJAZ1, which is negatively associated with flavan-3-ols formation and has three CsJAZ1 transcripts, one full-length (CsJAZ1-1), and two splice variants (CsJAZ1-2 and -3) that lacked 3' coding sequences, with CsJAZ1-3 also lacking the coding region for the Jas domain. Confocal microscopy showed that CsJAZ1-1 was localized to the nucleus, while CsJAZ1-2 and CsJAZ1-3 were present in both the nucleus and the cytosol. In the absence of JA, CsJAZ1-1 was bound to CsMYC2, a positive regulator of flavan-3-ol biosynthesis; CsJAZ1-2 functioned as an alternative enhancer of CsJAZ1-1 and an antagonist of CsJAZ1-1 in binding to CsMYC2; and CsJAZ1-3 did not interact with CsMYC2. In the presence of JA, CsJAZ1-3 interacted with CsJAZ1-1 and CsJAZ1-2 to form heterodimers that stabilized the CsJAZ1-1-CsMYC2 and CsJAZ1-2-CsMYC2 complexes, thereby repressing the transcription of four genes that act late in the flavan-3-ol biosynthetic pathway. These data indicate that the alternative splicing variants of CsJAZ1 coordinately regulate flavan-3-ol biosynthesis in the tea plant and improve our understanding of JA-mediated flavan-3-ol biosynthesis.
Collapse
Affiliation(s)
- Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Qingshan Xu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| |
Collapse
|
39
|
Hakeem KR, Alharby HF, Alghamdi KM, Bhat RA. Antioxidant enzyme responses and metabolite functioning of Pisum sativum L. to sewage sludge in arid and semi-arid environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13201-13210. [PMID: 34585357 DOI: 10.1007/s11356-021-16620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The productivity of plants is a direct variant of the countless biotic and abiotic stresses to which a plant is exposed in an environment. This study aimed to investigate the capabilities of leguminous plant garden pea (Pisum sativum L.) to resist water deficit conditions in arid and semi-arid areas when applied with varied doses of sludge for growth response. The effect of sludge doses was evaluated on crop yield, antioxidant enzymes, viz., ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), superoxide dismutase (SOD), and glutathione reductase (GR), and metabolites (ascorbic acid, glutathione, and total protein content). The effective sludge concentrations with respect to seed weight and crop yield were found to be in the following trend: D2 (6.25%)>D3 (12.5%)>D1 (2.5%)>D0 (control) under organic amendment (OA). Conversely, a high dose of the sludge reduced the seed weight and total crop yield. The sludge doses D2 under arid and semi-arid conditions along with organic amendments (OA) significantly enhance the antioxidant enzyme activity, whereas sludge dose D3 with OA ominously regulates the activity of these enzymes. Besides, seeds depicted a considerable increase in ascorbic acid, glutathione, and total protein content in arid and semi-arid conditions upon the application of sludge with OA. Sewage sludge as a source of nutrients indirectly enhances crop yield, antioxidant enzymes, and antioxidant metabolites. Thus, it improves the defense mechanism, reduces abnormal protein glycation, and depletes the susceptibility of protein to proteolysis.
Collapse
Affiliation(s)
- Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Khalid M Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rouf Ahmad Bhat
- Division of Environmental Science, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir, Srinagar, 190025, India
| |
Collapse
|
40
|
Zhang M, Zhang L, Li H, Liu J. The lack of low temperature tolerance of tropical seagrasses strongly restricts their geographical distribution. MARINE ENVIRONMENTAL RESEARCH 2022; 173:105539. [PMID: 34883354 DOI: 10.1016/j.marenvres.2021.105539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Temperature is considered to be the main factor controlling the growth and eco-distribution of seagrasses. In this study, the joint effects of temperature (27, 24, 21, 18 and 15 °C) combined with three light intensities (0, 200 and 800 μmol m-2 s-1) on chlorophyll fluorescence and activities of antioxidative enzymes were examined for three tropical seagrasses Enhalus acoroides, Thalassia hemperichii and Cymodocea rotundata. The results showed that low temperature could damage the PSII donor side, PSII reaction centers and end electron acceptor pool, thereby directly injured their photosynthetic performance. Furthermore, the lower the temperature and the higher the light intensity, the greater the damage incurred. The antioxidant defense system of seagrass cannot sufficiently counter low temperature stress (for temperatures below 21 °C) under high light. These results help explain why the ecological distribution of these three tropical seagrasses is limited to the low tidal coastal area of warm tropical regions.
Collapse
Affiliation(s)
- Mengjie Zhang
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Litao Zhang
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, 266237, China
| | - Hu Li
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Jianguo Liu
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, 266237, China.
| |
Collapse
|
41
|
Ugalde JM, Lamig L, Herrera-Vásquez A, Fuchs P, Homagk M, Kopriva S, Müller-Schüssele SJ, Holuigue L, Meyer AJ. A dual role for glutathione transferase U7 in plant growth and protection from methyl viologen-induced oxidative stress. PLANT PHYSIOLOGY 2021; 187:2451-2468. [PMID: 34599589 PMCID: PMC8644736 DOI: 10.1093/plphys/kiab444] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/23/2021] [Indexed: 05/17/2023]
Abstract
Plant glutathione S-transferases (GSTs) are glutathione-dependent enzymes with versatile functions, mainly related to detoxification of electrophilic xenobiotics and peroxides. The Arabidopsis (Arabidopsis thaliana) genome codes for 53 GSTs, divided into seven subclasses; however, understanding of their precise functions is limited. A recent study showed that class II TGA transcription factors TGA2, TGA5, and TGA6 are essential for tolerance of UV-B-induced oxidative stress and that this tolerance is associated with an antioxidative function of cytosolic tau-GSTs (GSTUs). Specifically, TGA2 controls the expression of several GSTUs under UV-B light, and constitutive expression of GSTU7 in the tga256 triple mutant is sufficient to revert the UV-B-susceptible phenotype of tga256. To further study the function of GSTU7, we characterized its role in mitigation of oxidative damage caused by the herbicide methyl viologen (MV). Under non-stress conditions, gstu7 null mutants were smaller than wild-type (WT) plants and delayed in the onset of the MV-induced antioxidative response, which led to accumulation of hydrogen peroxide and diminished seedling survival. Complementation of gstu7 by constitutive expression of GSTU7 rescued these phenotypes. Furthermore, live monitoring of the glutathione redox potential in intact cells with the fluorescent probe Grx1-roGFP2 revealed that GSTU7 overexpression completely abolished the MV-induced oxidation of the cytosolic glutathione buffer compared with WT plants. GSTU7 acted as a glutathione peroxidase able to complement the lack of peroxidase-type GSTs in yeast. Together, these findings show that GSTU7 is crucial in the antioxidative response by limiting oxidative damage and thus contributes to oxidative stress resistance in the cell.
Collapse
Affiliation(s)
- José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Liliana Lamig
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Ariel Herrera-Vásquez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Philippe Fuchs
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany
| | - Maria Homagk
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | | | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53113 Bonn, Germany
- Author for communication:
| |
Collapse
|
42
|
Trenz TS, Delaix CL, Turchetto-Zolet AC, Zamocky M, Lazzarotto F, Margis-Pinheiro M. Going Forward and Back: The Complex Evolutionary History of the GPx. BIOLOGY 2021; 10:biology10111165. [PMID: 34827158 PMCID: PMC8614756 DOI: 10.3390/biology10111165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023]
Abstract
Simple Summary Glutathione peroxidases (GPxs) are considered as one of the main antioxidant enzymes, which reduce peroxides into less toxic compounds. This family of enzymes is found in most eukaryotic organisms, but it is highly divergent regarding its structure, catalytic mechanism, and substrate usage. Furthermore, it is still unclear how these enzymes are dispersed in the animal kingdom. Through robust phylogenetic and sequence analyses, we show that all GPx genes originated from a common ancestor and evolved independently across different kingdoms. In Metazoa, GPx genes expanded into three main groups before the rise of bilaterian animals, and they were further expanded in vertebrates. These expansions allowed GPx enzymes to diversify, not only structurally, but also functionally. Our study contributes to the understanding of how this abundant class of antioxidant enzymes evolved. The evolution of GPxs appears to be a continuous process, leading to the diversification of their functions. Abstract There is large diversity among glutathione peroxidase (GPx) enzymes regarding their function, structure, presence of the highly reactive selenocysteine (SeCys) residue, substrate usage, and reducing agent preference. Moreover, most vertebrate GPxs are very distinct from non-animal GPxs, and it is still unclear if they came from a common GPx ancestor. In this study, we aimed to unveil how GPx evolved throughout different phyla. Based on our phylogenetic trees and sequence analyses, we propose that all GPx encoding genes share a monomeric common ancestor and that the SeCys amino acid was incorporated early in the evolution of the metazoan kingdom. In addition, classical GPx and the cysteine-exclusive GPx07 have been present since non-bilaterian animals, but they seem to have been lost throughout evolution in different phyla. Therefore, the birth-and-death of GPx family members (like in other oxidoreductase families) seems to be an ongoing process, occurring independently across different kingdoms and phyla.
Collapse
Affiliation(s)
- Thomaz Stumpf Trenz
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91509-900, Brazil;
| | - Camila Luiza Delaix
- Graduação em Biotecnologia, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91509-900, Brazil;
| | - Andreia Carina Turchetto-Zolet
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91509-900, Brazil;
| | - Marcel Zamocky
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia;
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Fernanda Lazzarotto
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91509-900, Brazil;
- Correspondence: (F.L.); (M.M.-P.)
| | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91509-900, Brazil;
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91509-900, Brazil;
- Correspondence: (F.L.); (M.M.-P.)
| |
Collapse
|
43
|
Wang X, Liu X, An YQC, Zhang H, Meng D, Jin Y, Huo H, Yu L, Zhang J. Identification of Glutathione Peroxidase Gene Family in Ricinus communis and Functional Characterization of RcGPX4 in Cold Tolerance. FRONTIERS IN PLANT SCIENCE 2021; 12:707127. [PMID: 34804079 PMCID: PMC8602854 DOI: 10.3389/fpls.2021.707127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Glutathione peroxidases (GPXs) protect cells against damage caused by reactive oxygen species (ROS) and play key roles in regulating many biological processes. Here, five GPXs were identified in the Ricinus communis genome. Phylogenetic analysis displayed that the GPXs were categorized into five groups. Conserved domain and gene structure analyses showed that the GPXs from different plant species harbored four highly similar motifs and conserved exon-intron arrangement patterns, indicating that their structure and function may have been conserved during evolution. Several abiotic stresses and hormone-responsive cis-acting elements existed in the promoters of the RcGPXs. The expression profiles indicated that the RcGPXs varied substantially, and some RcGPXs were coordinately regulated under abiotic stresses. Overexpression of RcGPX4 in Arabidopsis enhanced cold tolerance at seed germination but reduced freezing tolerance at seedlings. The expression of abscisic acid (ABA) signaling genes (AtABI4 and AtABI5), ABA catabolism genes (AtCYP707A1 and AtCYP707A2), gibberellin acid (GA) catabolism gene (AtGA2ox7), and cytokinin (CTK)-inducible gene (AtARR6) was regulated in the seeds of transgenic lines under cold stress. Overexpression of RcGPX4 can disturb the hydrogen peroxide (H2O2) homeostasis through the modulation of some antioxidant enzymes and compounds involved in the GSH-ascorbate cycle in transgenic plants. Additionally, RcGPX4 depended on the MAPK3-ICE1-C-repeat-binding factor (CBF)-COR signal transduction pathway and ABA-dependent pathway to negatively regulate the freezing tolerance of transgenic plants. This study provides valuable information for understanding the potential function of RcGPXs in regulating the abiotic stress responses of castor beans.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Xuming Liu
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Yong-qiang Charles An
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, Donald Danforth Plant Science Center, Saint Louis, MO, United States
| | - Hongyu Zhang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Di Meng
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Yanan Jin
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Hongyan Huo
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| | - Lili Yu
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Jixing Zhang
- College of Life Science and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Horqin Plant Stress Biology Research Institute of Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
44
|
Peralta JM, Bianucci E, Romero-Puertas MC, Furlan A, Castro S, Travaglia C. Targeting redox metabolism of the maize-Azospirillum brasilense interaction exposed to arsenic-affected groundwater. PHYSIOLOGIA PLANTARUM 2021; 173:1189-1206. [PMID: 34331344 DOI: 10.1111/ppl.13514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Arsenic in groundwater constitutes an agronomic problem due to its potential accumulation in the food chain. Among the agro-sustainable tools to reduce metal(oid)s toxicity, the use of plant growth-promoting bacteria (PGPB) becomes important. For that, and based on previous results in which significant differences of As translocation were observed when inoculating maize plants with Az39 or CD Azospirillum strains, we decided to decipher the redox metabolism changes and the antioxidant system response of maize plants inoculated when exposed to a realistic arsenate (AsV ) dose. Results showed that AsV caused morphological changes in the root exodermis. Photosynthetic pigments decreased only in CD inoculated plants, while oxidative stress evidence was detected throughout the plant, regardless of the assayed strain. The antioxidant response was strain-differential since only CD inoculated plants showed an increase in superoxide dismutase, glutathione S-transferase (GST), and glutathione reductase (GR) activities while other enzymes showed the same behavior irrespective of the inoculated strain. Gene expression assays reported that only GST23 transcript level was upregulated by arsenate, regardless of the inoculated strain. AsV diminished the glutathione (GSH) content of roots inoculated with the Az39 strain, and CD inoculated plants showed a decrease of oxidized GSH (GSSG) levels. We suggest a model in which the antioxidant response of the maize-diazotrophs system is modulated by the strain and that GSH plays a central role acting mainly as a substrate for GST. These findings generate knowledge for a suitable PGPB selection, and its scaling to an effective bioinoculant formulation for maize crops exposed to adverse environmental conditions.
Collapse
Affiliation(s)
- Juan Manuel Peralta
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Eliana Bianucci
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - María C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Ana Furlan
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Stella Castro
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Claudia Travaglia
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| |
Collapse
|
45
|
Née G, Châtel-Innocenti G, Meimoun P, Leymarie J, Montrichard F, Satour P, Bailly C, Issakidis-Bourguet E. A New Role for Plastid Thioredoxins in Seed Physiology in Relation to Hormone Regulation. Int J Mol Sci 2021; 22:10395. [PMID: 34638735 PMCID: PMC8508614 DOI: 10.3390/ijms221910395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 01/16/2023] Open
Abstract
In Arabidopsis seeds, ROS have been shown to be enabling actors of cellular signaling pathways promoting germination, but their accumulation under stress conditions or during aging leads to a decrease in the ability to germinate. Previous biochemical work revealed that a specific class of plastid thioredoxins (Trxs), the y-type Trxs, can fulfill antioxidant functions. Among the ten plastidial Trx isoforms identified in Arabidopsis, Trx y1 mRNA is the most abundant in dry seeds. We hypothesized that Trx y1 and Trx y2 would play an important role in seed physiology as antioxidants. Using reverse genetics, we found important changes in the corresponding Arabidopsis mutant seeds. They display remarkable traits such as increased longevity and higher and faster germination in conditions of reduced water availability or oxidative stress. These phenotypes suggest that Trxs y do not play an antioxidant role in seeds, as further evidenced by no changes in global ROS contents and protein redox status found in the corresponding mutant seeds. Instead, we provide evidence that marker genes of ABA and GAs pathways are perturbed in mutant seeds, together with their sensitivity to specific hormone inhibitors. Altogether, our results suggest that Trxs y function in Arabidopsis seeds is not linked to their previously identified antioxidant roles and reveal a new role for plastid Trxs linked to hormone regulation.
Collapse
Affiliation(s)
- Guillaume Née
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, F-91405 Orsay, France; (G.N.); (G.C.-I.)
| | - Gilles Châtel-Innocenti
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, F-91405 Orsay, France; (G.N.); (G.C.-I.)
| | - Patrice Meimoun
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, F-75005 Paris, France; (P.M.); (J.L.)
| | - Juliette Leymarie
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, F-75005 Paris, France; (P.M.); (J.L.)
| | - Françoise Montrichard
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, F-49071 Beaucouzé, France; (F.M.); (P.S.)
| | - Pascale Satour
- IRHS-UMR1345, INRAE, Institut Agro, SFR 4207 QuaSaV, Université d’Angers, F-49071 Beaucouzé, France; (F.M.); (P.S.)
| | - Christophe Bailly
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, F-75005 Paris, France; (P.M.); (J.L.)
| | - Emmanuelle Issakidis-Bourguet
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Evry, Université Paris-Saclay, F-91405 Orsay, France; (G.N.); (G.C.-I.)
| |
Collapse
|
46
|
Genome-Wide Characterization of Glutathione Peroxidase (GPX) Gene Family in Rapeseed ( Brassica napus L.) Revealed Their Role in Multiple Abiotic Stress Response and Hormone Signaling. Antioxidants (Basel) 2021; 10:antiox10091481. [PMID: 34573113 PMCID: PMC8472808 DOI: 10.3390/antiox10091481] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Plant glutathione peroxidases (GPXs) are the main enzymes in the antioxidant defense system that sustain H2O2 homeostasis and normalize plant reaction to abiotic stress conditions. To understand the major roles of the GPX gene family in rapeseed (Brassica napus L.), for the first time, a genome-wide study identified 25 BnGPX genes in the rapeseed genome. The phylogenetic analysis discovered that GPX genes were grouped into four major groups (Group I-Group IV) from rapeseed and three closely interrelated plant species. The universal investigation uncovered that the BnGPXs gene experienced segmental duplications and positive selection pressure. Gene structure and motifs examination recommended that most of the BnGPX genes demonstrated a comparatively well-maintained exon-intron and motifs arrangement within the identical group. Likewise, we recognized five hormones-, four stress-, and numerous light-reactive cis-elements in the promoters of BnGPXs. Five putative bna-miRNAs from two families were also prophesied, targeting six BnGPXs genes. Gene ontology annotation results proved the main role of BnGPXs in antioxidant defense systems, ROS, and response to stress stimulus. Several BnGPXs genes revealed boosted expression profiles in many developmental tissues/organs, i.e., root, seed, leaf, stem, flower, and silique. The qRT-PCR based expression profiling exhibited that two genes (BnGPX21 and BnGPX23) were suggestively up-regulated against different hormones (ABA, IAA, and MeJA) and abiotic stress (salinity, cold, waterlogging, and drought) treatments. In short, our discoveries provide a basis for additional functional studies on the BnGPX genes in future rapeseed breeding programs.
Collapse
|
47
|
Amin B, Atif MJ, Wang X, Meng H, Ghani MI, Ali M, Ding Y, Li X, Cheng Z. Effect of low temperature and high humidity stress on physiology of cucumber at different leaf stages. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:785-796. [PMID: 33900017 DOI: 10.1111/plb.13276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Low temperature (LT) and high humidity (HH) are important environmental factors in greenhouses and plastic tunnels during the cold season, as they hamper plant growth and development. Here, we studied the effect of LT (day/night: 9/5 °C, 25/18 °C as control) and HH (95%, 80% as control) on young cucumber plants at the 2, 4 or 6 leaf stages. LT+HH stress resulted in a decline in shoot, root and total fresh and dry weights, and decreased Pn , gs , Tr , Fv /Fm , qP, ETR and chlorophyll, and increased MDA, H2 O2 , O2 - , NPQ and Ci as compared to the control at the 2 leaf stage. SOD, POD, CAT, APX and GR were upregulated under LT+HH stress as compared to the control at the 6 leaf stage. ABA and JA increased under LT+HH stress as compared to the control at the 6 leaf stage, while IAA and GA decreased under LT+HH stress as compared to the control at the 2 leaf stage. Our results show that LT+HH stress affects young cucumber plant photosynthetic efficiency, PSII activity, antioxidant defence system, ROS and hormone profile. Plants at the 6 leaf stage were more tolerant than at the 2 and 4 leaf stages under stress conditions.
Collapse
Affiliation(s)
- B Amin
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - M J Atif
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
- Horticultural Research Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | - X Wang
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - H Meng
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - M I Ghani
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - M Ali
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - Y Ding
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| | - X Li
- Tianjin Kerun Cucumber Research Institute, Tianjin, 300192, China
| | - Z Cheng
- College of Horticulture, Northwest A&F University, Yangling, 71210, China
| |
Collapse
|
48
|
PtrMYB3, a R2R3-MYB Transcription Factor from Poncirus trifoliata, Negatively Regulates Salt Tolerance and Hydrogen Peroxide Scavenging. Antioxidants (Basel) 2021; 10:antiox10091388. [PMID: 34573020 PMCID: PMC8466168 DOI: 10.3390/antiox10091388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
MYB transcription factors are widely present in plants and play significant roles in abiotic stresses. However, most MYB genes have not been identified in plants and their functions in abiotic stresses are still unknown. In this study, one MYB gene, designated as PtrMYB3, was cloned from trifoliate orange (Poncirus trifoliata (L.) Raf.), and its function in salt tolerance was investigated. PtrMYB3 contains a conserved R2R3-MYB domain, which is the typical property of R2R3-MYB subfamily proteins. Expression profiling under abiotic stresses indicated that PtrMYB3 could be induced by salt, dehydration and cold stresses. PtrMYB3 was found to be localized to the nucleus and possessed transactivation activity. Overexpression of PtrMYB3 by genetic transformation in tobacco impaired its salt tolerance, whereas silencing of PtrMYB3 by VIGS (virus-induced gene silencing) in trifoliate orange conferred significantly enhanced salt tolerance, indicating that PtrMYB3 negatively regulates salt tolerance. Furthermore, a peroxidase gene (PtrPOD) was found to be greatly upregulated in PtrMYB3-silenced trifoliate orange, and a dual LUC (luciferase) assay confirmed that PtrMYB3 could suppress the expression of PtrPOD. The hydrogen peroxide (H2O2) accumulation in PtrMYB3 transgenic tobacco plants after salt stress was higher than the wild type (WT), further confirming that overexpression of PtrMYB3 inhibited PtrPOD-mediated H2O2 scavenging. Taken together, these results demonstrate that PtrMYB3 negatively regulates salt tolerance, at least in part, due to the excess accumulation of H2O2.
Collapse
|
49
|
Jiménez A, Sevilla F, Martí MC. Reactive oxygen species homeostasis and circadian rhythms in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5825-5840. [PMID: 34270727 DOI: 10.1093/jxb/erab318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Elucidation of the molecular mechanisms by which plants sense and respond to environmental stimuli that influence their growth and yield is a prerequisite for understanding the adaptation of plants to climate change. Plants are sessile organisms and one important factor for their successful acclimation is the temporal coordination of the 24 h daily cycles and the stress response. The crosstalk between second messengers, such as Ca2+, reactive oxygen species (ROS), and hormones is a fundamental aspect in plant adaptation and survival under environmental stresses. In this sense, the circadian clock, in conjunction with Ca2+- and hormone-signalling pathways, appears to act as an important mechanism controlling plant adaptation to stress. The relationship between the circadian clock and ROS-generating and ROS-scavenging mechanisms is still not fully understood, especially at the post-transcriptional level and in stress situations in which ROS levels increase and changes in cell redox state occur. In this review, we summarize the information regarding the relationship between the circadian clock and the ROS homeostasis network. We pay special attention not only to the transcriptional regulation of ROS-generating and ROS-scavenging enzymes, but also to the few studies that have been performed at the biochemical level and those conducted under stress conditions.
Collapse
Affiliation(s)
- Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | - María Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
50
|
Phua SY, De Smet B, Remacle C, Chan KX, Van Breusegem F. Reactive oxygen species and organellar signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5807-5824. [PMID: 34009340 DOI: 10.1093/jxb/erab218] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/14/2021] [Indexed: 05/07/2023]
Abstract
The evolution of photosynthesis and its associated metabolic pathways has been crucial to the successful establishment of plants, but has also challenged plant cells in the form of production of reactive oxygen species (ROS). Intriguingly, multiple forms of ROS are generated in virtually every plant cell compartment through diverse pathways. As a result, a sophisticated network of ROS detoxification and signaling that is simultaneously tailored to individual organelles and safeguards the entire cell is necessary. Here we take an organelle-centric view on the principal sources and sinks of ROS across the plant cell and provide insights into the ROS-induced organelle to nucleus retrograde signaling pathways needed for operational readjustments during environmental stresses.
Collapse
Affiliation(s)
- Su Yin Phua
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Barbara De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems, Université de Liège, Liège,Belgium
| | - Kai Xun Chan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| |
Collapse
|