1
|
Sultana MS, Mazarei M, Jurat-Fuentes JL, Hewezi T, Millwood RJ, Stewart CN. Overexpression of soybean trypsin inhibitor genes decreases defoliation by corn earworm ( Helicoverpa zea) in soybean ( Glycine max) and Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1129454. [PMID: 36875574 PMCID: PMC9982021 DOI: 10.3389/fpls.2023.1129454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Trypsin inhibitors (TIs) are widely distributed in plants and are known to play a protective role against herbivores. TIs reduce the biological activity of trypsin, an enzyme involved in the breakdown of many different proteins, by inhibiting the activation and catalytic reactions of proteins. Soybean (Glycine max) contains two major TI classes: Kunitz trypsin inhibitor (KTI) and Bowman-Birk inhibitor (BBI). Both genes encoding TI inactivate trypsin and chymotrypsin enzymes, which are the main digestive enzymes in the gut fluids of Lepidopteran larvae feeding on soybean. In this study, the possible role of soybean TIs in plant defense against insects and nematodes was investigated. A total of six TIs were tested, including three known soybean trypsin inhibitors (KTI1, KTI2 and KTI3) and three genes encoding novel inhibitors identified in soybean (KTI5, KTI7, and BBI5). Their functional role was further examined by overexpression of the individual TI genes in soybean and Arabidopsis. The endogenous expression patterns of these TI genes varied among soybean tissues, including leaf, stem, seed, and root. In vitro enzyme inhibitory assays showed significant increase in trypsin and chymotrypsin inhibitory activities in both transgenic soybean and Arabidopsis. Detached leaf-punch feeding bioassays detected significant reduction in corn earworm (Helicoverpa zea) larval weight when larvae fed on transgenic soybean and Arabidopsis lines, with the greatest reduction observed in KTI7 and BBI5 overexpressing lines. Whole soybean plant greenhouse feeding bioassays with H. zea on KTI7 and BBI5 overexpressing lines resulted in significantly reduced leaf defoliation compared to non-transgenic plants. However, bioassays of KTI7 and BBI5 overexpressing lines with soybean cyst nematode (SCN, Heterodera glycines) showed no differences in SCN female index between transgenic and non-transgenic control plants. There were no significant differences in growth and productivity between transgenic and non-transgenic plants grown in the absence of herbivores to full maturity under greenhouse conditions. The present study provides further insight into the potential applications of TI genes for insect resistance improvement in plants.
Collapse
Affiliation(s)
- Mst Shamira Sultana
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Reginald J. Millwood
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
2
|
Plett JM, Sabotič J, Vogt E, Snijders F, Kohler A, Nielsen UN, Künzler M, Martin F, Veneault-Fourrey C. Mycorrhiza-induced mycocypins of Laccaria bicolor are potent protease inhibitors with nematotoxic and collembola antifeedant activity. Environ Microbiol 2022; 24:4607-4622. [PMID: 35818672 DOI: 10.1111/1462-2920.16115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
Fungivory of mycorrhizal hyphae has a significant impact on fungal fitness and, by extension, on nutrient transfer between fungi and host plants in natural ecosystems. Mycorrhizal fungi have therefore evolved an arsenal of chemical compounds that are hypothesized to protect the hyphal tissues from being eaten, such as the protease inhibitors mycocypins. The genome of the ectomycorrhizal fungus Laccaria bicolor has an unusually high number of mycocypin-encoding genes. We have characterized the evolution of this class of proteins, identified those induced by symbiosis with a host plant and characterized the biochemical properties of two upregulated L. bicolor mycocypins. More than half of L. bicolor mycocypin-encoding genes are differentially expressed during symbiosis or fruiting body formation. We show that two L. bicolor mycocypins that are strongly induced during symbiosis are cysteine protease inhibitors and exhibit similar but distinct localization in fungal tissues at different developmental stages and during interaction with a host plant. Moreover, we show that these L. bicolor mycocypins have toxic and feeding deterrent effect on nematodes and collembolans, respectively. Therefore, L. bicolor mycocypins may be part of a mechanism by which this species deters grazing by different members of the soil food web.
Collapse
Affiliation(s)
- Jonathan M Plett
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France.,Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Eva Vogt
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Fridtjof Snijders
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| | - Uffe N Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| |
Collapse
|
3
|
Bera S, Arena GD, Ray S, Flannigan S, Casteel CL. The Potyviral Protein 6K1 Reduces Plant Proteases Activity during Turnip mosaic virus Infection. Viruses 2022; 14:1341. [PMID: 35746814 PMCID: PMC9229136 DOI: 10.3390/v14061341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 12/25/2022] Open
Abstract
Potyviral genomes encode just 11 major proteins and multifunctionality is associated with most of these proteins at different stages of the virus infection cycle. Some potyviral proteins modulate phytohormones and protein degradation pathways and have either pro- or anti-viral/insect vector functions. Our previous work demonstrated that the potyviral protein 6K1 has an antagonistic effect on vectors when expressed transiently in host plants, suggesting plant defenses are regulated. However, to our knowledge the mechanisms of how 6K1 alters plant defenses and how 6K1 functions are regulated are still limited. Here we show that the 6K1 from Turnip mosaic virus (TuMV) reduces the abundance of transcripts related to jasmonic acid biosynthesis and cysteine protease inhibitors when expressed in Nicotiana benthamiana relative to controls. 6K1 stability increased when cysteine protease activity was inhibited chemically, showing a mechanism to the rapid turnover of 6K1 when expressed in trans. Using RNAseq, qRT-PCR, and enzymatic assays, we demonstrate TuMV reprograms plant protein degradation pathways on the transcriptional level and increases 6K1 stability at later stages in the infection process. Moreover, we show 6K1 decreases plant protease activity in infected plants and increases TuMV accumulation in systemic leaves compared to controls. These results suggest 6K1 has a pro-viral function in addition to the anti-insect vector function we observed previously. Although the host targets of 6K1 and the impacts of 6K1-induced changes in protease activity on insect vectors are still unknown, this study enhances our understanding of the complex interactions occurring between plants, potyviruses, and vectors.
Collapse
Affiliation(s)
- Sayanta Bera
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Gabriella D. Arena
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo 04014-002, Brazil;
| | - Swayamjit Ray
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Sydney Flannigan
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Clare L. Casteel
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| |
Collapse
|
4
|
Kunert KJ, Pillay P. Loop replacement design: a new way to improve potency of plant cystatins. FEBS J 2022; 289:1823-1826. [DOI: 10.1111/febs.16335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/26/2023]
Affiliation(s)
- Karl J. Kunert
- Department of Plant and Soil Sciences Department, Forestry and Agricultural Biotechnology Institute University of Pretoria South Africa
| | - Priyen Pillay
- Future Production Chemicals Cluster Council for Scientific and Industrial Research Pretoria South Africa
| |
Collapse
|
5
|
Sultana MS, Millwood RJ, Mazarei M, Stewart CN. Proteinase inhibitors in legume herbivore defense: from natural to genetically engineered protectants. PLANT CELL REPORTS 2022; 41:293-305. [PMID: 34674016 DOI: 10.1007/s00299-021-02800-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Proteinase inhibitors (PIs) from legumes have the potential for use as protectants in response to pests and pathogens. Legumes have evolved PIs that inhibit digestive proteinases upon herbivory resulting in delayed development, deformities, and reduced fertility of herbivorous insects. Legume PIs (serine proteinase inhibitors and cysteine proteinase inhibitors) have been overexpressed in plants to confer plant protection against herbivores. Recently, the co-expression of multiple PIs in transgenic plants enhanced host defense over single PI expression, i.e., in an additive fashion. Therefore, a synthetic PI could conceivably be designed using different inhibitory domains that may provide multifunctional protection. Little attention has yet given to expanding PI gene repertoires to improve PI efficacy for targeting multiple proteinases. Also, PIs have been shown to play an important role in response to abiotic stresses. Previously published papers have presented several aspects of strategic deployment of PIs in transgenic plants, which is the focus of this review by providing a comprehensive update of the recent progress of using PIs in transgenic plants. We also emphasize broadening the potential usefulness of PIs and their future direction in research, which will likely result in a more potent defense against herbivores.
Collapse
Affiliation(s)
| | | | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
| |
Collapse
|
6
|
Tremblay J, Goulet MC, Vorster J, Goulet C, Michaud D. Harnessing the functional diversity of plant cystatins to design inhibitor variants highly active against herbivorous arthropod digestive proteases. FEBS J 2021; 289:1827-1841. [PMID: 34799995 DOI: 10.1111/febs.16288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022]
Abstract
Protein engineering approaches have been proposed to improve the inhibitory properties of plant cystatins against herbivorous arthropod digestive proteases, generally involving the site-directed mutagenesis of functionally relevant amino acids or the selection of improved inhibitor variants by phage display approaches. Here, we propose a novel approach where the function-related structural elements of a cystatin are substituted by the corresponding elements of an alternative cystatin. Inhibitory assays were first performed with 20 representative plant cystatins and model Cys proteases, including arthropod proteases, to appreciate the extent of functional variability among the plant cystatin family. The most, and less, potent of these cystatins were then used as 'donors' of structural elements to create hybrids of tomato cystatin SlCYS8 used as a model 'recipient' inhibitor. In brief, inhibitory activities against Cys proteases strongly differed from one plant cystatin to another, with Ki (papain) values diverging by more than 30-fold and inhibitory rates against arthropod proteases varying by up to 50-fold depending on the enzymes assessed. In line with theoretical assumptions from docking models generated for different Cys protease-cystatin combinations, structural element substitutions had a strong impact on the activity of recipient cystatin SlCYS8, positive or negative depending on the basic inhibitory potency of the donor cystatin. Our data confirm the wide variety of cystatin inhibitory profiles among plant taxa. They also demonstrate the usefulness of these proteins as a pool of discrete structural elements for the design of cystatin variants with improved potency against herbivorous pest digestive Cys proteases.
Collapse
Affiliation(s)
- Jonathan Tremblay
- Département de phytologie, Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, Québec, Canada
| | - Marie-Claire Goulet
- Département de phytologie, Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, Québec, Canada
| | - Juan Vorster
- Department of Plant and Soil Sciences, The University of Pretoria, Pretoria, South Africa
| | - Charles Goulet
- Département de phytologie, Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, Québec, Canada
| | - Dominique Michaud
- Département de phytologie, Centre de recherche et d'innovation sur les végétaux, Université Laval, Québec, Québec, Canada
| |
Collapse
|
7
|
Alomrani S, Kunert KJ, Foyer CH. Papain-like cysteine proteases are required for the regulation of photosynthetic gene expression and acclimation to high light stress. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3441-3454. [PMID: 33686435 PMCID: PMC8256631 DOI: 10.1093/jxb/erab101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/01/2021] [Indexed: 05/24/2023]
Abstract
Chloroplasts are considered to be devoid of cysteine proteases. Using transgenic Arabidopsis lines expressing the rice cystatin, oryzacystatin I (OC-I), in the chloroplasts (PC lines) or cytosol (CYS lines), we explored the hypothesis that cysteine proteases regulate photosynthesis. The CYS and PC lines flowered later than the wild type (WT) and accumulated more biomass after flowering. In contrast to the PC rosettes, which accumulated more leaf chlorophyll and carotenoid pigments than the WT, the CYS lines had lower amounts of leaf pigments. High-light-dependent decreases in photosynthetic carbon assimilation and the abundance of the Rubisco large subunit protein, the D1 protein, and the phosphorylated form of D1 proteins were attenuated in the CYS lines and reversed in the PC lines relative to the WT. However, the transgenic lines had higher amounts of LHC, rbcs, pasbA, and pasbD transcripts than the WT, and also showed modified chloroplast to nucleus signalling. We conclude that cysteine proteases accelerate the reconfiguration of the chloroplast proteome after flowering and in response to high-light stress. Inhibition of cysteine proteases, such as AtCEP1, slows chloroplast protein degradation and stimulates photosynthetic gene expression and chloroplast to nucleus signalling, enhancing stress tolerance traits.
Collapse
Affiliation(s)
- Sarah Alomrani
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Karl J Kunert
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Christine H Foyer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
8
|
Purification and Characterization of a Novel Thermostable Papain Inhibitor from Moringa oleifera with Antimicrobial and Anticoagulant Properties. Pharmaceutics 2021; 13:pharmaceutics13040512. [PMID: 33917878 PMCID: PMC8068210 DOI: 10.3390/pharmaceutics13040512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/26/2022] Open
Abstract
Plant cystatins (or phytocystatins) comprise a large superfamily of natural bioactive small proteins that typically act as protein inhibitors of papain-like cysteine proteases. In this report, we present the purification and characterization of the first phytocystatin isolated from Moringa oleifera (MoPI). MoPI has a molecular mass of 19 kDa and showed an extraordinary physicochemical stability against acidic pHs and high temperatures. Our findings also revealed that MoPI is one of the most potent cysteine protease inhibitors reported to date, with Ki and IC50 values of 2.1 nM and 5.7 nM, respectively. More interestingly, MoPI presents a strong antimicrobial activity against human pathogens such as Enterococcus faecalis and Staphylococcus aureus. In addition, MoPI also showed important anticoagulant activity, which is an unprecedented property for this family of protease inhibitors. These results highlight the pharmaceutical potential of this plant and its derived bioactive molecules.
Collapse
|
9
|
Jmel MA, Aounallah H, Bensaoud C, Mekki I, Chmelař J, Faria F, M’ghirbi Y, Kotsyfakis M. Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk. Int J Mol Sci 2021; 22:E892. [PMID: 33477394 PMCID: PMC7831016 DOI: 10.3390/ijms22020892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to their pharmacological properties and their high specificity, selectivity, and affinity to their target proteases at the tick-host interface. In this review, we discuss the structure and function of PIs in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug candidates, highlighting the most promising ones tested in vivo and which are now progressing to preclinical and clinical trials.
Collapse
Affiliation(s)
- Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| | - Hajer Aounallah
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; (H.A.); (Y.M.)
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Chaima Bensaoud
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| | - Imen Mekki
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic;
| | - Jindřich Chmelař
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic;
| | - Fernanda Faria
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Youmna M’ghirbi
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; (H.A.); (Y.M.)
| | - Michalis Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| |
Collapse
|
10
|
Lima AM, Barros NLF, Freitas ACO, Tavares LSC, Pirovani CP, Siqueira AS, Gonçalves EC, de Souza CRB. A new Piper nigrum cysteine proteinase inhibitor, PnCPI, with antifungal activity: molecular cloning, recombinant expression, functional analyses and molecular modeling. PLANTA 2020; 252:16. [PMID: 32661769 DOI: 10.1007/s00425-020-03425-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
A new Piper nigrum cysteine proteinase inhibitor, PnCPI, belonging to group I of phytocystatins, with inhibitory activity against papain and growth of Fusarium solani f. sp. piperis, was isolated and characterized. Previous studies (de Souza et al. 2011) have identified a partial cDNA sequence of putative cysteine proteinase inhibitor differentially expressed in roots of black pepper (P. nigrum L.) infected by F. solani f. sp. piperis. Here, we aimed to isolate the full-length cDNA and genomic sequences of the P. nigrum cysteine proteinase inhibitor gene, named PnCPI. Sequence analyses showed that the PnCPI gene encodes a deduced protein of 108 amino acid residues with a predicted molecular mass of 12.3 kDa and isoelectric point of 6.51. Besides the LARFAV-like sequence, common to all phytocystatins, PnCPI contains three conserved motifs of the superfamily cystatin: a glycine residue at the N-terminal region, the QxVxG reactive site more centrally positioned, and one tryptophan in the C-terminal region. PnCPI, belonging to group I of phytocystatins, showed high identity with cystatins isolated from several plant species. Sequence analyses also revealed no putative signal peptide at the N-terminal of PnCPI, as well as no introns within the genomic sequence corresponding to the PnCPI coding region. Molecular modeling showed the ability of PnCPI to interact with papain, while its inhibitory activity against this protease was confirmed after heterologous expression in Escherichia coli. The effects of heat treatments on the inhibitory activity of recombinant PnCPI, rPnCPI, were evaluated. In addition, rPnCPI exhibited in vitro activity against F. solani f. sp. piperis, revealing a new cystatin with the potential antifungal application. The identification of PnCPI as a functional cystatin able to inhibit the in vitro growth of F. solani f. sp. piperis indicates other factors contributing to in vivo susceptibility of black pepper to root rot disease.
Collapse
Affiliation(s)
- Aline Medeiros Lima
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
- Universidade Federal Rural da Amazônia, Tomé-Açu, PA, 68680-000, Brazil
| | - Nicolle Louise Ferreira Barros
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Ana Camila Oliveira Freitas
- Laboratório de Proteômica, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | | | - Carlos Priminho Pirovani
- Laboratório de Proteômica, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | - Andrei Santos Siqueira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | | | | |
Collapse
|
11
|
Mangena P. Phytocystatins and their Potential Application in the Development of Drought Tolerance Plants in Soybeans (Glycine max L.). Protein Pept Lett 2020; 27:135-144. [PMID: 31612812 DOI: 10.2174/0929866526666191014125453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/06/2019] [Accepted: 08/07/2019] [Indexed: 11/22/2022]
Abstract
Plant cystatins, also called phytocystatins constitute a family of specific cysteine protease inhibitors found in several monocots and dicots. In soybean, phytocystatins regulate several endogenous processes contributing immensely to this crop's tolerance to abiotic stress factors. Soybeans offer numerous nutritional, pharmaceutical and industrial benefits; however, their growth and yields is hampered by drought, which causes more than 10% yield losses recorded every harvest period worldwide. This review analyses the role of papain-like cysteine proteases and their inhibitors in soybean plant growth and development under drought stress. It also describes their localisation, regulation, target organs and tissues, and the overall impact of cystatins on generating drought tolerance soybean plants. These proteins have many functions that remain poorly characterized, particularly under abiotic stress. Although much information is available on the utilisation of proteases for industrial applications, very few reports have focused on the impact of proteases on plant stress responses. The exploitation of cystatins in plant engineering, as competitive proteases inhibitors is one of the means that will guarantee the continued utilisation of soybeans as an important oilseed crop.
Collapse
Affiliation(s)
- Phetole Mangena
- Department of Biodiversity, School of Molecular and Life Sciences, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga, 0727,South Africa
| |
Collapse
|
12
|
Jutras PV, Grosse‐Holz F, Kaschani F, Kaiser M, Michaud D, van der Hoorn RA. Activity-based proteomics reveals nine target proteases for the recombinant protein-stabilizing inhibitor SlCYS8 in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1670-1678. [PMID: 30742730 PMCID: PMC6662110 DOI: 10.1111/pbi.13092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 05/23/2023]
Abstract
Co-expression of protease inhibitors like the tomato cystatin SlCYS8 is useful to increase recombinant protein production in plants, but key proteases involved in protein proteolysis are still unknown. Here, we performed activity-based protein profiling to identify proteases that are inhibited by SlCYS8 in agroinfiltrated Nicotiana benthamiana. We discovered that SlCYS8 selectively suppresses papain-like cysteine protease (PLCP) activity in both apoplastic fluids and total leaf extracts, while not affecting vacuolar-processing enzyme and serine hydrolase activity. A robust concentration-dependent inhibition of PLCPs occurred in vitro when purified SlCYS8 was added to leaf extracts, indicating direct cystatin-PLCP interactions. Activity-based proteomics revealed that nine different Cathepsin-L/-F-like PLCPs are strongly inhibited by SlCYS8 in leaves. By contrast, the activity of five other Cathepsin-B/-H-like PLCPs, as well as 87 Ser hydrolases, was unaffected by SlCYS8. SlCYS8 expression prevented protein degradation by inhibiting intermediate and mature isoforms of granulin-containing proteases from the Resistant-to-Desiccation-21 (RD21) PLCP subfamily. Our data underline the key role of endogenous PLCPs on recombinant protein degradation and reveal candidate proteases for depletion strategies.
Collapse
Affiliation(s)
- Philippe V. Jutras
- Department of Plant SciencesPlant Chemetics LaboratoryUniversity of OxfordOxfordUK
| | | | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétauxUniversité LavalQuébecCanada
| | | |
Collapse
|
13
|
Abstract
Dozens of studies have assessed the practical value of plant cystatins as ectopic inhibitors of Cys proteases in biological systems. The potential of these proteins in crop protection to control herbivorous pests and pathogens has been documented extensively over the past 25 years. Their usefulness to regulate endogenous Cys proteases in planta has also been considered recently, notably to implement novel traits of agronomic relevance in crops or to generate protease activity-depleted environments in plants or plant cells used as bioreactors for recombinant proteins. After a brief update on the basic structural characteristics of plant cystatins, we summarize recent advances on the use of these proteins in plant biotechnology. Attention is also paid to the molecular improvement of their structural properties for the improvement of their protease inhibitory effects or the fine-tuning of their biological target range.
Collapse
|
14
|
Aceituno-Valenzuela U, Covarrubias MP, Aguayo MF, Valenzuela-Riffo F, Espinoza A, Gaete-Eastman C, Herrera R, Handford M, Norambuena L. Identification of a type II cystatin in Fragaria chiloensis: A proteinase inhibitor differentially regulated during achene development and in response to biotic stress-related stimuli. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:158-167. [PMID: 29883898 DOI: 10.1016/j.plaphy.2018.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/13/2018] [Accepted: 05/18/2018] [Indexed: 05/24/2023]
Abstract
The equilibrium between protein synthesis and degradation is key to maintaining efficiency in different physiological processes. The proteinase inhibitor cystatin regulates protease activities in different developmental and physiological contexts. Here we describe for the first time the identification and the biological function of the cysteine protease inhibitor cystatin of Fragaria chiloensis, FchCYS1. Based on primary sequence and 3D-structural homology modelling, FchCYS1 is a type II phytocystatin with high identity to other cystatins of the Fragaria genus. Both the papain-like and the legumain-like protease inhibitory domains are indeed functional, based on in vitro assays performed with Escherichia coli protein extracts containing recombinant FchCYS1. FchCYS1 is differentially-expressed in achenes of F. chiloensis fruits, with highest expression as the fruit reaches the ripened stage, suggesting a role in preventing degradation of storage proteins that will nourish the embryo during seed germination. Furthermore, FchCYS1 responds transcriptionally to the application of salicylic acid and to mechanical injury, strongly suggesting that FchCYS1 could be involved in the response against pathogen attack. Overall these results point to a role for FchCYS1 in diverse physiological processes in F. chiloensis.
Collapse
Affiliation(s)
- Uri Aceituno-Valenzuela
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - María Paz Covarrubias
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - María Francisca Aguayo
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | | - Analía Espinoza
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | | - Raúl Herrera
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Michael Handford
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
15
|
Rasoolizadeh A, Goulet MC, Guay JF, Cloutier C, Michaud D. Population-associated heterogeneity of the digestive Cys protease complement in Colorado potato beetle, Leptinotarsa decemlineata. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:125-133. [PMID: 28267460 DOI: 10.1016/j.jinsphys.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/19/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
Herbivorous insects use complex protease complements to process plant proteins, useful to adjust their digestive functions to the plant diet and to elude the antidigestive effects of dietary protease inhibitors. We here assessed whether basic profiles and diet-related adjustments of the midgut protease complement may vary among populations of the insect herbivore Colorado potato beetle (Leptinotarsa decemlineata). Two laboratory colonies of this insect were used as models, derived from insect samples collected in potato fields ∼1200km distant from each other in North America. Synchronized 4th-instar larvae reared on potato were kept on this plant, or switched to tomato or eggplant, to compare their midgut cathepsin activities and content of intestain Cys proteases under different diet regimes. Cathepsin D activity, cathepsin L activity, cathepsin B activity and total intestain content shortly after larval molting on potato leaves were about two times lower in one population compared to the other. By comparison, cathepsin D activity, cathepsin B activity, total intestain content and relative abundance of the most prominent intestain families were similar in the two populations after three days regardless of the plant diet, unlike cathepsin L activity and less prominent intestain families showing population-associated variability. Variation in Cys protease profiles translated into the differential efficiency of a Cys protease inhibitor, tomato cystatin SlCYS8, to inhibit cathepsin L activity in midgut extracts of the two insect groups. Despite quantitative differences, SlCYS8 single variants engineered to strongly inhibit Cys proteases showed improved potency against cathepsin L activity of either population. These data suggest the feasibility of designing cystatins to control L. decemlineata that are effective against different populations of this insect. They underline, on the other hand, the practical relevance of considering natural variability of the protease complement among L. decemlineata target populations, eventually determinant in the success or failure of cystatin-based control strategies on a large-scale basis.
Collapse
Affiliation(s)
- Asieh Rasoolizadeh
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Marie-Claire Goulet
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Conrad Cloutier
- Département de biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Dominique Michaud
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
16
|
Souza TP, Dias RO, Silva-Filho MC. Defense-related proteins involved in sugarcane responses to biotic stress. Genet Mol Biol 2017; 40:360-372. [PMID: 28222203 PMCID: PMC5452140 DOI: 10.1590/1678-4685-gmb-2016-0057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022] Open
Abstract
Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives.
Collapse
Affiliation(s)
- Thais P Souza
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Renata O Dias
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
17
|
Rasoolizadeh A, Munger A, Goulet MC, Sainsbury F, Cloutier C, Michaud D. Functional proteomics-aided selection of protease inhibitors for herbivore insect control. Sci Rep 2016; 6:38827. [PMID: 27958307 PMCID: PMC5153846 DOI: 10.1038/srep38827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/15/2016] [Indexed: 11/09/2022] Open
Abstract
Studies have reported the potential of protease inhibitors to engineer insect resistance in transgenic plants but the general usefulness of this approach in crop protection still remains to be established. Insects have evolved strategies to cope with dietary protease inhibitors, such as the use of proteases recalcitrant to inhibition, that often make the selection of effective inhibitors very challenging. Here, we used a functional proteomics approach for the ‘capture’ of Cys protease targets in crude protein extracts as a tool to identify promising cystatins for plant improvement. Two cystatins found to differ in their efficiency to capture Cys proteases of the coleopteran pest Leptinotarsa decemlineata also differed in their usefulness to produce transgenic potato lines resistant to this insect. Plants expressing the most potent cystatin at high level had a strong repressing effect on larval growth and leaf intake, while plants expressing the weakest cystatin showed no effect on both two parameters compared to untransformed parental line used for genetic transformation. Our data underline the relevance of considering the whole range of possible protease targets when selecting an inhibitor for plant pest control. They also confirm the feasibility of developing cystatin-expressing transgenics resistant to a major pest of potato.
Collapse
Affiliation(s)
| | - Aurélie Munger
- Département de phytologie, Université Laval, Québec City, QC, Canada
| | | | - Frank Sainsbury
- Département de phytologie, Université Laval, Québec City, QC, Canada
| | - Conrad Cloutier
- Département de biologie, Université Laval, Québec City QC, Canada
| | - Dominique Michaud
- Département de phytologie, Université Laval, Québec City, QC, Canada
| |
Collapse
|
18
|
Jutras PV, Marusic C, Lonoce C, Deflers C, Goulet MC, Benvenuto E, Michaud D, Donini M. An Accessory Protease Inhibitor to Increase the Yield and Quality of a Tumour-Targeting mAb in Nicotiana benthamiana Leaves. PLoS One 2016; 11:e0167086. [PMID: 27893815 PMCID: PMC5125672 DOI: 10.1371/journal.pone.0167086] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022] Open
Abstract
The overall quality of recombinant IgG antibodies in plants is dramatically compromised by host endogenous proteases. Different approaches have been developed to reduce the impact of endogenous proteolysis on IgGs, notably involving site-directed mutagenesis to eliminate protease-susceptible sites or the in situ mitigation of host protease activities to minimize antibody processing in the cell secretory pathway. We here characterized the degradation profile of H10, a human tumour-targeting monoclonal IgG, in leaves of Nicotiana benthamiana also expressing the human serine protease inhibitor α1-antichymotrypsin or the cysteine protease inhibitor tomato cystatin SlCYS8. Leaf extracts revealed consistent fragmentation patterns for the recombinant antibody regardless of leaf age and a strong protective effect of SlCYS8 in specific regions of the heavy chain domains. As shown using an antigen-binding ELISA and LC-MS/MS analysis of antibody fragments, SlCYS8 had positive effects on both the amount of fully-assembled antibody purified from leaf tissue and the stability of biologically active antibody fragments containing the heavy chain Fc domain. Our data confirm the potential of Cys protease inhibitors as convenient antibody-stabilizing expression partners to increase the quality of therapeutic antibodies in plant protein biofactories.
Collapse
Affiliation(s)
| | - Carla Marusic
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | - Chiara Lonoce
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | - Carole Deflers
- Département de phytologie, Université Laval, Québec Quebec, Canada
| | | | - Eugenio Benvenuto
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | | | - Marcello Donini
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| |
Collapse
|
19
|
Srp J, Nussbaumerová M, Horn M, Mareš M. Digestive proteolysis in the Colorado potato beetle, Leptinotarsa decemlineata: Activity-based profiling and imaging of a multipeptidase network. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 78:1-11. [PMID: 27539253 DOI: 10.1016/j.ibmb.2016.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a major pest of potato plants, and its digestive system is a promising target for development of pest control strategies. This work focuses on functional proteomic analysis of the digestive proteolytic enzymes expressed in the CPB gut. We identified a set of peptidases using imaging with specific activity-based probes and activity profiling with selective substrates and inhibitors. The secreted luminal peptidases were classified as: (i) endopeptidases of cathepsin D, cathepsin L, and trypsin types and (ii) exopeptidases with aminopeptidase (cathepsin H), carboxypeptidase (serine carboxypeptidase, prolyl carboxypeptidase), and carboxydipeptidase (cathepsin B) activities. The proteolytic arsenal also includes non-luminal peptidases with prolyl oligopeptidase and metalloaminopeptidase activities. Our results indicate that the CPB gut employs a multienzyme network of peptidases with complementary specificities to efficiently degrade ingested proteins. This proteolytic system functions in both CPB larvae and adults and is controlled mainly by cysteine and aspartic peptidases and supported by serine and metallopeptidases. The component enzymes identified here are potential targets for inhibitors with tailored specificities that could be engineered into potato plants to confer resistance to CPB.
Collapse
Affiliation(s)
- Jaroslav Srp
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 166 10, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague 128 40, Czech Republic
| | - Martina Nussbaumerová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 166 10, Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 166 10, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 166 10, Czech Republic.
| |
Collapse
|
20
|
Martinez M, Santamaria ME, Diaz-Mendoza M, Arnaiz A, Carrillo L, Ortego F, Diaz I. Phytocystatins: Defense Proteins against Phytophagous Insects and Acari. Int J Mol Sci 2016; 17:E1747. [PMID: 27775606 PMCID: PMC5085774 DOI: 10.3390/ijms17101747] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 01/31/2023] Open
Abstract
This review deals with phytocystatins, focussing on their potential role as defence proteins against phytophagous arthropods. Information about the evolutionary, molecular and biochemical features and inhibitory properties of phytocystatins are presented. Cystatin ability to inhibit heterologous cysteine protease activities is commented on as well as some approaches of tailoring cystatin specificity to enhance their defence function towards pests. A general landscape on the digestive proteases of phytophagous insects and acari and the remarkable plasticity of their digestive physiology after feeding on cystatins are highlighted. Biotechnological approaches to produce recombinant cystatins to be added to artificial diets or to be sprayed as insecticide-acaricide compounds and the of use cystatins as transgenes are discussed. Multiple examples and applications are included to end with some conclusions and future perspectives.
Collapse
Affiliation(s)
- Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Maria Estrella Santamaria
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Mercedes Diaz-Mendoza
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Ana Arnaiz
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Laura Carrillo
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| | - Felix Ortego
- Departamento de Biologia Medioambiental, Centro de Investigaciones Biologicas, CSIC, Ramiro de Maeztu, 9, Madrid 28040, Spain.
| | - Isabel Diaz
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid 28223, Spain.
| |
Collapse
|
21
|
van Wyk SG, Kunert KJ, Cullis CA, Pillay P, Makgopa ME, Schlüter U, Vorster BJ. Review: The future of cystatin engineering. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:119-127. [PMID: 26993242 DOI: 10.1016/j.plantsci.2016.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 05/09/2023]
Abstract
Plant cystatins are naturally occurring protease inhibitors that prevent proteolysis by papain-like cysteine proteases. Their protective action against environmental stresses has been relatively well characterised. Still, there is a need to greatly improve both potency and specificity based on the current rather poor performance of cystatins in biotechnological applications. Research in creating more potent and specific cystatins, including amino acid substitutions in either conserved cystatin motifs and/or at variable amino acid sites, is reviewed. Existing gaps for better understanding of cystatin-protease interactions are further explored. Current knowledge on multi-cystatins or hybrid protease inhibitors involving cystatins as an additional option for cystatin engineering is further outlined along with the nuances of how cystatins with rather unusual amino acid sequences might actually help in cystatin engineering. Finally, future opportunities for application of cystatins are highlighted which include applications in genetically modified transgenic plants for environmental stress protection and also as nutraceuticals, as part of more nutritious food. Further opportunities might also include the possible management of diseases and disorders, often associated with lifestyle changes, and the most immediate and promising application which is inclusion into plant-based recombinant protein production platforms.
Collapse
Affiliation(s)
- Stefan G van Wyk
- Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Karl J Kunert
- Department of Plant Science, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa.
| | - Christopher A Cullis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | - Priyen Pillay
- Department of Plant Science, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Matome E Makgopa
- Department of Plant Science, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Urte Schlüter
- Department of Plant Science, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Barend J Vorster
- Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
22
|
Rasoolizadeh A, Goulet MC, Sainsbury F, Cloutier C, Michaud D. Single substitutions to closely related amino acids contribute to the functional diversification of an insect-inducible, positively selected plant cystatin. FEBS J 2016; 283:1323-35. [DOI: 10.1111/febs.13671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/12/2016] [Accepted: 01/25/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Frank Sainsbury
- Département de Phytologie; Université Laval; Québec City Canada
| | - Conrad Cloutier
- Département de Biologie; Université Laval; Québec City Canada
| | | |
Collapse
|
23
|
Sainsbury F, Jutras PV, Vorster J, Goulet MC, Michaud D. A Chimeric Affinity Tag for Efficient Expression and Chromatographic Purification of Heterologous Proteins from Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:141. [PMID: 26913045 PMCID: PMC4753422 DOI: 10.3389/fpls.2016.00141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/27/2016] [Indexed: 05/23/2023]
Abstract
The use of plants as expression hosts for recombinant proteins is an increasingly attractive option for the production of complex and challenging biopharmaceuticals. Tools are needed at present to marry recent developments in high-yielding gene vectors for heterologous expression with routine protein purification techniques. In this study, we designed the Cysta-tag, a new purification tag for immobilized metal affinity chromatography (IMAC) of plant-made proteins based on the protein-stabilizing fusion partner SlCYS8. We show that the Cysta-tag may be used to readily purify proteins under native conditions, and then be removed enzymatically to isolate the protein of interest. We also show that commonly used protease recognition sites for linking purification tags are differentially stable in leaves of the commonly used expression host Nicotiana benthamiana, with those linkers susceptible to cysteine proteases being less stable then serine protease-cleavable linkers. As an example, we describe a Cysta-tag experimental scheme for the one-step purification of a clinically useful protein, human α1-antitrypsin, transiently expressed in N. benthamiana. With potential applicability to the variety of chromatography formats commercially available for IMAC-based protein purification, the Cysta-tag provides a convenient means for the efficient and cost-effective purification of recombinant proteins from plant tissues.
Collapse
Affiliation(s)
- Frank Sainsbury
- Département de Phytologie–Centre de Recherche et d’Innovation sur les Végétaux, Université Laval, QuébecQC, Canada
- Centre for Biomolecular Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, BrisbaneQLD, Australia
| | - Philippe V. Jutras
- Département de Phytologie–Centre de Recherche et d’Innovation sur les Végétaux, Université Laval, QuébecQC, Canada
- Centre for Biomolecular Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, BrisbaneQLD, Australia
| | - Juan Vorster
- Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Marie-Claire Goulet
- Département de Phytologie–Centre de Recherche et d’Innovation sur les Végétaux, Université Laval, QuébecQC, Canada
| | - Dominique Michaud
- Département de Phytologie–Centre de Recherche et d’Innovation sur les Végétaux, Université Laval, QuébecQC, Canada
| |
Collapse
|
24
|
Robert S, Jutras PV, Khalf M, D'Aoust MA, Goulet MC, Sainsbury F, Michaud D. Companion Protease Inhibitors for the In Situ Protection of Recombinant Proteins in Plants. Methods Mol Biol 2016; 1385:115-26. [PMID: 26614285 DOI: 10.1007/978-1-4939-3289-4_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We previously described a procedure for the use of plant protease inhibitors as "companion" accessory proteins to prevent unwanted proteolysis of clinically useful recombinant proteins in leaf crude protein extracts (Benchabane et al. Methods Mol Biol 483:265-273, 2009). Here we describe the use of these inhibitors for the protection of recombinant proteins in planta, before their extraction from leaf tissues. A procedure is first described involving inhibitors co-expressed along-and co-migrating-with the protein of interest in host plant cells. An alternative, single transgene scheme is then described involving translational fusions of the recombinant protein and companion inhibitor. These approaches may allow for a significant improvement of protein steady-state levels in leaves, comparable to yield improvements observed with protease-deficient strains of less complex protein expression hosts such as E. coli or yeasts.
Collapse
Affiliation(s)
- Stéphanie Robert
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | - Philippe V Jutras
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | - Moustafa Khalf
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | | | - Marie-Claire Goulet
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
| | - Frank Sainsbury
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Dominique Michaud
- Centre de Recherche et d'Innovation sur les Végétaux, Université Laval, Québec, QC, Canada.
| |
Collapse
|
25
|
Munger A, Simon MA, Khalf M, Goulet MC, Michaud D. Cereal cystatins delay sprouting and nutrient loss in tubers of potato, Solanum tuberosum. BMC PLANT BIOLOGY 2015; 15:296. [PMID: 26691165 PMCID: PMC4687224 DOI: 10.1186/s12870-015-0683-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/13/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Recent studies have reported agronomically useful ectopic effects for recombinant protease inhibitors expressed in leaves of transgenic plants, including improved tolerance to abiotic stress conditions and partial resistance to necrotrophic pathogens. Here we assessed the effects of these proteins on the post-dormancy sprouting of storage organs, using as a model potato tubers expressing cysteine protease inhibitors of the cystatin protein superfamily. RESULTS Sprout emergence and distribution, soluble proteins, starch and soluble sugars were monitored in tubers of cereal cystatin-expressing clones stored for several months at 4 °C. Cystatin expression had a strong repressing effect on sprout growth, associated with an apparent loss of apical dominance and an increased number of small buds at the skin surface. Soluble protein content remained high for up to 48 weeks in cystatin-expressing tubers compared to control (untransformed) tubers, likely explained by a significant stabilization of the major storage protein patatin, decreased hydrolysis of the endogenous protease inhibitor multicystatin and low cystatin-sensitive cysteine protease activity in tuber tissue. Starch content decreased after several months in cystatin-expressing tubers but remained higher than in control tubers, unlike sucrose showing a slower accumulation in the transgenics. Plantlet emergence, storage protein processing and height of growing plants showed similar time-course patterns for control and transgenic tubers, except for a systematic delay of 2 or 3 d in the latter group likely due to limited sprout size at sowing. CONCLUSIONS Our data point overall to the onset of metabolic interference effects for cereal cystatins in sprouting potato tubers. They suggest, in practice, the potential of endogenous cysteine proteases as relevant targets for the development of potato varieties with longer storage capabilities.
Collapse
Affiliation(s)
- Aurélie Munger
- Centre de recherche et d'innovation sur les végétaux|Biotechnologie Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Marie-Aube Simon
- Centre de recherche et d'innovation sur les végétaux|Biotechnologie Université Laval, Québec, QC, G1V 0A6, Canada.
- Present address: Services aux entreprises et formation continue, Cégep de St-Jérôme, St-Jérôme, J7Z 4 V2, QC, Canada.
| | - Moustafa Khalf
- Centre de recherche et d'innovation sur les végétaux|Biotechnologie Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Marie-Claire Goulet
- Centre de recherche et d'innovation sur les végétaux|Biotechnologie Université Laval, Québec, QC, G1V 0A6, Canada.
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétaux|Biotechnologie Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
26
|
Islam A, Leung S, Burgess EPJ, Laing WA, Richardson KA, Hofmann RW, Dijkwel PP, McManus MT. Knock-down of transcript abundance of a family of Kunitz proteinase inhibitor genes in white clover (Trifolium repens) reveals a redundancy and diversity of gene function. THE NEW PHYTOLOGIST 2015; 208:1188-201. [PMID: 26377591 DOI: 10.1111/nph.13543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 06/01/2015] [Indexed: 06/05/2023]
Abstract
The transcriptional regulation of four phylogenetically distinct members of a family of Kunitz proteinase inhibitor (KPI) genes isolated from white clover (Trifolium repens; designated Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5) has been investigated to determine their wider functional role. The four genes displayed differential transcription during seed germination, and in different tissues of the mature plant, and transcription was also ontogenetically regulated. Heterologous over-expression of Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5 in Nicotiana tabacum retarded larval growth of the herbivore Spodoptera litura, and an increase in the transcription of the pathogenesis-related genes PR1 and PR4 was observed in the Tr-KPI1 and Tr-KPI4 over-expressing lines. RNA interference (RNAi) knock-down lines in white clover displayed significantly altered vegetative growth phenotypes with inhibition of shoot growth and a stimulation of root growth, while knock-down of Tr-KPI1, Tr-KPI2 and Tr-KPI5 transcript abundance also retarded larval growth of S. litura. Examination of these RNAi lines revealed constitutive stress-associated phenotypes as well as altered transcription of cellular signalling genes. These results reveal a functional redundancy across members of the KPI gene family. Further, the regulation of transcription of at least one member of the family, Tr-KPI2, may occupy a central role in the maintenance of a cellular homeostasis.
Collapse
Affiliation(s)
- Afsana Islam
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Susanna Leung
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | | | - William A Laing
- Plant & Food Research, Private Bag 92169, Auckland, 1142, New Zealand
| | - Kim A Richardson
- AgResearch Grasslands, Private Bag 11-008, Palmerston North, New Zealand
| | - Rainer W Hofmann
- Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 85084, Lincoln, 7647, New Zealand
| | - Paul P Dijkwel
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - Michael T McManus
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| |
Collapse
|
27
|
Vorster J, Rasoolizadeh A, Goulet MC, Cloutier C, Sainsbury F, Michaud D. Positive selection of digestive Cys proteases in herbivorous Coleoptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:10-19. [PMID: 26264818 DOI: 10.1016/j.ibmb.2015.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 07/22/2015] [Accepted: 07/31/2015] [Indexed: 06/04/2023]
Abstract
Positive selection is thought to contribute to the functional diversification of insect-inducible protease inhibitors in plants in response to selective pressures exerted by the digestive proteases of their herbivorous enemies. Here we assessed whether a reciprocal evolutionary process takes place on the insect side, and whether ingestion of a positively selected plant inhibitor may translate into a measurable rebalancing of midgut proteases in vivo. Midgut Cys proteases of herbivorous Coleoptera, including the major pest Colorado potato beetle (Leptinotarsa decemlineata), were first compared using a codon-based evolutionary model to look for the occurrence of hypervariable, positively selected amino acid sites among the tested sequences. Hypervariable sites were found, distributed within -or close to- amino acid regions interacting with Cys-type inhibitors of the plant cystatin protein family. A close examination of L. decemlineata sequences indicated a link between their assignment to protease functional families and amino acid identity at positively selected sites. A function-diversifying role for positive selection was further suggested empirically by in vitro protease assays and a shotgun proteomic analysis of L. decemlineata Cys proteases showing a differential rebalancing of protease functional family complements in larvae fed single variants of a model cystatin mutated at positively selected amino acid sites. These data confirm overall the occurrence of hypervariable, positively selected amino acid sites in herbivorous Coleoptera digestive Cys proteases. They also support the idea of an adaptive role for positive selection, useful to generate functionally diverse proteases in insect herbivores ingesting functionally diverse, rapidly evolving dietary cystatins.
Collapse
Affiliation(s)
- Juan Vorster
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada; Department of Plant and Soil Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Asieh Rasoolizadeh
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Marie-Claire Goulet
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Conrad Cloutier
- Département de biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Frank Sainsbury
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada; The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St. Lucia, Queensland 4072, Australia
| | - Dominique Michaud
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
28
|
Wang W, Zhao P, Zhou XM, Xiong HX, Sun MX. Genome-wide identification and characterization of cystatin family genes in rice (Oryza sativa L.). PLANT CELL REPORTS 2015; 34:1579-92. [PMID: 26007238 DOI: 10.1007/s00299-015-1810-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/04/2015] [Accepted: 05/13/2015] [Indexed: 05/26/2023]
Abstract
11 Cystatin genes in rice were identified, and their expression patterns were comprehensively analyzed, which reveals multiple roles in both seed development and plant response to environmental variations. Cystatin is a group of small proteins and known to inhibit the activities of cysteine proteases in the papain C1A and legumain C13 peptidase families in plants. Cystatin family genes have only been well characterized recently in a few plant species such as Hordeum vulgare and Nicotiana tabacum, which show their critical roles in programmed cell death and responses to biotic stresses. Up to now, little is known about cystatin family genes and their roles in Oryza sativa, a model plant for cereal biology study. Here, we identified 11 cystatin genes in rice genome. Comprehensive expression profile analysis reveals that cystatin family genes in rice display diverse expression pattern. They are temporally regulated at different developmental stages during the process of seed production and germination. Our experiments also reveal that the majority of cystatin genes are responsive to plant hormones and different environmental cues including cold, drought and other abiotic stresses, while some others are very stable under different stresses, indicating their fundamental roles in normal plant development. In addition, their distribution in rice chromosomes and their evolutionary relation to the members of Cystatin family in A. thaliana and N. tabacum have also been analyzed. These works suggest multiple roles of cystatin family genes in both seed development and plant response to environmental variations.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | |
Collapse
|
29
|
Šmid I, Rotter A, Gruden K, Brzin J, Buh Gašparič M, Kos J, Žel J, Sabotič J. Clitocypin, a fungal cysteine protease inhibitor, exerts its insecticidal effect on Colorado potato beetle larvae by inhibiting their digestive cysteine proteases. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 122:59-66. [PMID: 26071808 DOI: 10.1016/j.pestbp.2014.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/07/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
Colorado potato beetle (Leptinotarsa decemlineata Say, CPB) is a major potato pest that adapts readily to insecticides. Several types of protease inhibitors have previously been investigated as potential control agents, but with limited success. Recently, cysteine protease inhibitors from parasol mushroom, the macrocypins, were reported to inhibit growth of CPB larvae. To further investigate the insecticidal potential and mode of action of cysteine protease inhibitors of fungal origin, clitocypin, a cysteine protease inhibitor from clouded agaric (Clitocybe nebularis), was evaluated for its lethal effects on CPB larvae. Clitocypin isolated from fruiting bodies and recombinant clitocypin produced in Escherichia coli slowed growth and reduced survival of CPB larvae in a concentration dependent manner. Clitocypin was also expressed by transgenic potato, but only at low levels. Nevertheless, it reduced larval weight gain and delayed development. We have additionally shown that younger larvae are more susceptible to the action of clitocypin. The inhibition of digestive cysteine proteases, intestains, by clitocypin was shown to be the underlying mode of action. Protease inhibitors from mushrooms are confirmed as promising candidates for biopesticides.
Collapse
Affiliation(s)
- Ida Šmid
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia
| | - Ana Rotter
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia
| | - Jože Brzin
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia
| | - Meti Buh Gašparič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, Ljubljana 1000, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Jamova cesta 39, Ljubljana 1000, Slovenia.
| |
Collapse
|
30
|
Kunert KJ, van Wyk SG, Cullis CA, Vorster BJ, Foyer CH. Potential use of phytocystatins in crop improvement, with a particular focus on legumes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3559-70. [PMID: 25944929 DOI: 10.1093/jxb/erv211] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phytocystatins are a well-characterized class of naturally occurring protease inhibitors that function by preventing the catalysis of papain-like cysteine proteases. The action of cystatins in biotic stress resistance has been studied intensively, but relatively little is known about their functions in plant growth and defence responses to abiotic stresses, such as drought. Extreme weather events, such as drought and flooding, will have negative impacts on the yields of crop plants, particularly grain legumes. The concepts that changes in cellular protein content and composition are required for acclimation to different abiotic stresses, and that these adjustments are achieved through regulation of proteolysis, are widely accepted. However, the nature and regulation of the protein turnover machinery that underpins essential stress-induced cellular restructuring remain poorly characterized. Cysteine proteases are intrinsic to the genetic programmes that underpin plant development and senescence, but their functions in stress-induced senescence are not well defined. Transgenic plants including soybean that have been engineered to constitutively express phytocystatins show enhanced tolerance to a range of different abiotic stresses including drought, suggesting that manipulation of cysteine protease activities by altered phytocystatin expression in crop plants might be used to improve resilience and quality in the face of climate change.
Collapse
Affiliation(s)
- Karl J Kunert
- Department of Plant Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Stefan G van Wyk
- Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Christopher A Cullis
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Barend J Vorster
- Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
31
|
van Wyk SG, Du Plessis M, Cullis CA, Kunert KJ, Vorster BJ. Cysteine protease and cystatin expression and activity during soybean nodule development and senescence. BMC PLANT BIOLOGY 2014; 14:294. [PMID: 25404209 PMCID: PMC4243279 DOI: 10.1186/s12870-014-0294-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/17/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Nodules play an important role in fixing atmospheric nitrogen for soybean growth. Premature senescence of nodules can negatively impact on nitrogen availability for plant growth and, as such, we need a better understanding of nodule development and senescence. Cysteine proteases are known to play a role in nodule senescence, but knowledge is still fragmented regarding the function their inhibitors (cystatins) during the development and senescence of soybean nodules. This study provides the first data with regard to cystatin expression during nodule development combined with biochemical characterization of their inhibition strength. RESULTS Seventy nine non-redundant cysteine protease gene sequences with homology to papain, belonging to different subfamilies, and several legumain-like cysteine proteases (vacuole processing enzymes) were identified from the soybean genome assembly with eighteen of these cysteine proteases actively transcribed during nodule development and senescence. In addition, nineteen non-redundant cystatins similar to oryzacystatin-I and belonging to cystatin subgroups A and C were identified from the soybean genome assembly with seven actively transcribed in nodules. Most cystatins had preferential affinity to cathepsin L-like cysteine proteases. Transcription of cystatins Glyma05g28250, Glyma15g12211, Glyma15g36180 particularly increased during onset of senescence, possibly regulating proteolysis when nodules senesce and undergo programmed cell death. Both actively transcribed and non-actively transcribed nodule cystatins inhibited cathepsin-L- and B-like activities in different age nodules and they also inhibited papain and cathepsin-L activity when expressed and purified from bacterial cells. CONCLUSIONS Overlap in activities and specificities of actively and non-actively transcribed cystatins raises the question if non-transcribed cystatins provide a reservoir for response to particular environments. This data might be applicable to the development of strategies to extend the active life span of nodules or prevent environmentally induced senescence.
Collapse
Affiliation(s)
- Stefan George van Wyk
- />Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002 South Africa
| | - Magdeleen Du Plessis
- />Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002 South Africa
| | | | - Karl Josef Kunert
- />Department of Plant Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002 South Africa
| | - Barend Juan Vorster
- />Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002 South Africa
| |
Collapse
|
32
|
Zhao P, Zhou XM, Zou J, Wang W, Wang L, Peng XB, Sun MX. Comprehensive analysis of cystatin family genes suggests their putative functions in sexual reproduction, embryogenesis, and seed formation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5093-107. [PMID: 24996653 PMCID: PMC4144781 DOI: 10.1093/jxb/eru274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cystatins are tightly bound and reversible inhibitors of cysteine proteases in C1A and C13 peptidase families, which have been identified in several species and shown to function in vegetative development and response to biotic/abiotic stresses in plants. Recent work revealed their critical role in regulating programmed cell death during embryogenesis in tobacco and suggested their more comprehensive roles in the process of sexual plant reproduction, although little is known about cystatin family genes in the processes. Here, 10 cystatin family genes in Nicotiana tabacum were identified using an expressed sequence tag (EST)-based gene clone strategy. Analysis of their biochemical properties showed that nine of them have the potency to inhibit the activities of both commercial cathepsin L-like proteases and extracted cysteine proteases from seeds, but with different K i values depending on the types of proteases and the developmental stages of the seed tested. This suggests that cystatin-dependent cathepsin L-like proteolytic pathways are probably important for early seed development. Comprehensive expression profile analysis revealed that cystatin family genes showed manifold variations in their transcription levels in different plant cell types, including the sperm, egg, and zygote, especially in the embryo and seed at different developmental stages. More interestingly, intracellular localization analysis of each cystatin revealed that most members of cystatin families are recognized as secretory proteins with signal peptides that direct them to the endoplasmic reticulum. These results suggest their widespread roles in cell fate determination and cell-cell communication in the process of sexual reproduction, especially in gamete and embryo development, as well as in seed formation.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Plant Hybrid rice, Wuhan University, Wuhan 430072, China
| | - Xue-mei Zhou
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Plant Hybrid rice, Wuhan University, Wuhan 430072, China
| | - Jie Zou
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Wei Wang
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Plant Hybrid rice, Wuhan University, Wuhan 430072, China
| | - Lu Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiong-bo Peng
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Plant Hybrid rice, Wuhan University, Wuhan 430072, China
| | - Meng-xiang Sun
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Plant Hybrid rice, Wuhan University, Wuhan 430072, China
| |
Collapse
|
33
|
The diversity of rice phytocystatins. Mol Genet Genomics 2014; 289:1321-30. [DOI: 10.1007/s00438-014-0892-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/24/2014] [Indexed: 11/29/2022]
|
34
|
Cathepsin D-Like Aspartic Proteinase Occurring in a Maize Weevil,Sitophilus zeamais, as a Candidate Digestive Enzyme. Biosci Biotechnol Biochem 2014; 73:2338-40. [DOI: 10.1271/bbb.90372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Smid I, Gruden K, Buh Gašparič M, Koruza K, Petek M, Pohleven J, Brzin J, Kos J, Zel J, Sabotič J. Inhibition of the growth of colorado potato beetle larvae by macrocypins, protease inhibitors from the parasol mushroom. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:12499-12509. [PMID: 24295324 DOI: 10.1021/jf403615f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Proteins from higher fungi have attracted interest because of their exceptional characteristics. Macrocypins, cysteine protease inhibitors from the parasol mushroom Macrolepiota procera , were evaluated for their adverse effects and their mode of action on the major potato pest Colorado potato beetle (CPB, Leptinotarsa decemlineata Say). They were shown to reduce larval growth when expressed in potato or when their recombinant analogues were added to the diet. Macrocypins target a specific set of digestive cysteine proteases, intestains. Additionally, protein-protein interaction analysis revealed potential targets among other digestive enzymes and proteins related to development and primary metabolism. No effect of dietary macrocypins on gene expression of known adaptation-related digestive enzymes was observed in CPB guts. Macrocypins are the first fungal protease inhibitors to be reported as having a negative effect on growth and development of CPB larvae and could also be evaluated as control agents for other pests.
Collapse
Affiliation(s)
- Ida Smid
- Department of Biotechnology and Systems Biology, National Institute of Biology , Večna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sainsbury F, Varennes-Jutras P, Goulet MC, D'Aoust MA, Michaud D. Tomato cystatin SlCYS8 as a stabilizing fusion partner for human serpin expression in plants. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:1058-68. [PMID: 23911079 DOI: 10.1111/pbi.12098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/30/2013] [Accepted: 06/19/2013] [Indexed: 05/18/2023]
Abstract
Studies have reported the usefulness of fusion proteins to bolster recombinant protein yields in plants. Here, we assess the potential of tomato SlCYS8, a Cys protease inhibitor of the cystatin protein superfamily, as a stabilizing fusion partner for human alpha-1-antichymotrypsin (α1ACT) targeted to the plant cell secretory pathway. Using the model expression platform Nicotiana benthamiana, we show that the cystatin imparts a strong stabilizing effect when expressed as a translational fusion with α1ACT, allowing impressive accumulation yields of over 2 mg/g of fresh weight tissue for the human serpin, a 25-fold improvement on the yield of α1ACT expressed alone. Natural and synthetic peptide linkers inserted between SlCYS8 and α1ACT have differential effects on protease inhibitory potency of the two protein partners in vitro. They also have a differential impact on the yield of α1ACT, dependent on the extent to which the hybrid protein may remain intact in the plant cell environment. The stabilizing effect of SlCYS8 does not involve Cys protease inhibition and can be partly reproduced in the cytosol, where peptide linkers are less susceptible to degradation. The effect of SlCYS8 on α1ACT yields could be explained by: (i) an improved translation of the human protein coding sequence; and/or (ii) an overall stabilization of its tertiary structure preventing proteolytic degradation and/or polymerization. These findings suggest the potential of plant cystatins as stabilizing fusion partners for recombinant proteins in plant systems. They also underline the need for an empirical assessment of peptide linker functions in plant cell environments.
Collapse
Affiliation(s)
- Frank Sainsbury
- Département de Phytologie, Université Laval, Pavillon Envirotron, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
37
|
Bode RF, Halitschke R, Kessler A. Herbivore damage-induced production and specific anti-digestive function of serine and cysteine protease inhibitors in tall goldenrod, Solidago altissima L. (Asteraceae). PLANTA 2013; 237:1287-1296. [PMID: 23371287 DOI: 10.1007/s00425-013-1845-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/13/2013] [Indexed: 06/01/2023]
Abstract
Plant protease inhibitors (PIs) are among the most well-studied and widely distributed resistance traits that plants use against their herbivore attackers. There are different types of plant PIs which putatively function against the different types of proteases expressed in insect guts. Serine protease inhibitors (SPIs) and cysteine protease inhibitors (CPIs) are hypothesized to differentially function against the predominant gut proteases in lepidopteran and coleopteran herbivores, respectively. Here, we test the hypothesis that tall goldenrod, Solidago altissima, can specifically respond to damage by different herbivores and differentially induce SPIs and CPIs in response to damage by lepidopteran and coleopteran herbivores. Moreover, we ask if the concerted induction of different types of PIs accounts for variation in induced resistance to herbivory. We altered and optimized a rapid and effective existing methodology to quantitatively analyze both SPI and CPI activity simultaneously from a single tissue sample and to use the same plant extracts directly for characterization of inhibitory effects on insect gut protease activity. We found that both SPIs and CPIs are induced in S. altissima in response to damage, regardless of the damaging herbivore species. However, only SPIs were effective against Spodoptera exigua gut proteases. Our data suggest that plant PI responses are not necessarily specific to the identity of the attacking organism but that different components of generally induced defense traits can specifically affect different herbivore species. While providing an efficient and broadly applicable methodology to analyze multiple PIs extracted from the same tissue, this study furthers our understanding of specificity in induced plant resistance.
Collapse
Affiliation(s)
- Robert F Bode
- Department of Ecology and Evolutionary Biology, Cornell University, E445 Corson Hall, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
38
|
Kushwaha R, Payne CM, Downie AB. Uses of phage display in agriculture: a review of food-related protein-protein interactions discovered by biopanning over diverse baits. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:653759. [PMID: 23710253 PMCID: PMC3655605 DOI: 10.1155/2013/653759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/02/2013] [Indexed: 12/24/2022]
Abstract
This review highlights discoveries made using phage display that impact the use of agricultural products. The contribution phage display made to our fundamental understanding of how various protective molecules serve to safeguard plants and seeds from herbivores and microbes is discussed. The utility of phage display for directed evolution of enzymes with enhanced capacities to degrade the complex polymers of the cell wall into molecules useful for biofuel production is surveyed. Food allergies are often directed against components of seeds; this review emphasizes how phage display has been employed to determine the seed component(s) contributing most to the allergenic reaction and how it has played a central role in novel approaches to mitigate patient response. Finally, an overview of the use of phage display in identifying the mature seed proteome protection and repair mechanisms is provided. The identification of specific classes of proteins preferentially bound by such protection and repair proteins leads to hypotheses concerning the importance of safeguarding the translational apparatus from damage during seed quiescence and environmental perturbations during germination. These examples, it is hoped, will spur the use of phage display in future plant science examining protein-ligand interactions.
Collapse
Affiliation(s)
- Rekha Kushwaha
- Department of Horticulture, Agricultural Science Center North, University of Kentucky, Room 308J, Lexington, KY 40546, USA
- Seed Biology Group, University of Kentucky, Lexington, KY 40546, USA
| | - Christina M. Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Room 159, F. Paul Anderson Tower, Lexington, KY 40546, USA
- Center for Computational Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - A. Bruce Downie
- Seed Biology Group, University of Kentucky, Lexington, KY 40546, USA
- Department of Horticulture, University of Kentucky, Room 401A, Plant Science Building, Lexington, KY 40546, USA
| |
Collapse
|
39
|
Hsieh YC, Chung JD, Wang CN, Chang CT, Chen CY, Hwang SY. Historical connectivity, contemporary isolation and local adaptation in a widespread but discontinuously distributed species endemic to Taiwan, Rhododendron oldhamii (Ericaceae). Heredity (Edinb) 2013; 111:147-56. [PMID: 23591517 DOI: 10.1038/hdy.2013.31] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 11/29/2012] [Accepted: 12/19/2012] [Indexed: 11/09/2022] Open
Abstract
Elucidation of the evolutionary processes that constrain or facilitate adaptive divergence is a central goal in evolutionary biology, especially in non-model organisms. We tested whether changes in dynamics of gene flow (historical vs contemporary) caused population isolation and examined local adaptation in response to environmental selective forces in fragmented Rhododendron oldhamii populations. Variation in 26 expressed sequence tag-simple sequence repeat loci from 18 populations in Taiwan was investigated by examining patterns of genetic diversity, inbreeding, geographic structure, recent bottlenecks, and historical and contemporary gene flow. Selection associated with environmental variables was also examined. Bayesian clustering analysis revealed four regional population groups of north, central, south and southeast with significant genetic differentiation. Historical bottlenecks beginning 9168-13,092 years ago and ending 1584-3504 years ago were revealed by estimates using approximate Bayesian computation for all four regional samples analyzed. Recent migration within and across geographic regions was limited. However, major dispersal sources were found within geographic regions. Altitudinal clines of allelic frequencies of environmentally associated positively selected outliers were found, indicating adaptive divergence. Our results point to a transition from historical population connectivity toward contemporary population isolation and divergence on a regional scale. Spatial and temporal dispersal differences may have resulted in regional population divergence and local adaptation associated with environmental variables, which may have played roles as selective forces at a regional scale.
Collapse
Affiliation(s)
- Y-C Hsieh
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Valadares NF, Oliveira‐Silva R, Cavini IA, Almeida Marques I, D'Muniz Pereira H, Soares‐Costa A, Henrique‐Silva F, Kalbitzer HR, Munte CE, Garratt RC. X
‐ray crystallography and
NMR
studies of domain‐swapped canecystatin‐1. FEBS J 2013; 280:1028-38. [DOI: 10.1111/febs.12095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Napoleão F. Valadares
- Center for Structural Molecular Biotechnology Department of Physics and Informatics Physics Institute of São Carlos University of São Paulo São Carlos‐SP Brazil
| | - Rodrigo Oliveira‐Silva
- Center for Structural Molecular Biotechnology Department of Physics and Informatics Physics Institute of São Carlos University of São Paulo São Carlos‐SP Brazil
| | - Italo A. Cavini
- Center for Structural Molecular Biotechnology Department of Physics and Informatics Physics Institute of São Carlos University of São Paulo São Carlos‐SP Brazil
| | | | - Humberto D'Muniz Pereira
- Center for Structural Molecular Biotechnology Department of Physics and Informatics Physics Institute of São Carlos University of São Paulo São Carlos‐SP Brazil
| | - Andrea Soares‐Costa
- Laboratory of Molecular Biology Department of Genetic and Evolution Federal University of São Carlos Brazil
| | - Flavio Henrique‐Silva
- Laboratory of Molecular Biology Department of Genetic and Evolution Federal University of São Carlos Brazil
| | - Hans R. Kalbitzer
- Institute of Biophysics and Physical Biochemistry University of Regensburg Germany
| | - Claudia E. Munte
- Center for Structural Molecular Biotechnology Department of Physics and Informatics Physics Institute of São Carlos University of São Paulo São Carlos‐SP Brazil
| | - Richard C. Garratt
- Center for Structural Molecular Biotechnology Department of Physics and Informatics Physics Institute of São Carlos University of São Paulo São Carlos‐SP Brazil
| |
Collapse
|
41
|
Sainsbury F, Rhéaume AJ, Goulet MC, Vorster J, Michaud D. Discrimination of Differentially Inhibited Cysteine Proteases by Activity-Based Profiling Using Cystatin Variants with Tailored Specificities. J Proteome Res 2012; 11:5983-93. [DOI: 10.1021/pr300699n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Juan Vorster
- Department of Plant Production
and Soil Science, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
42
|
Munger A, Coenen K, Cantin L, Goulet C, Vaillancourt LP, Goulet MC, Tweddell R, Sainsbury F, Michaud D. Beneficial 'unintended effects' of a cereal cystatin in transgenic lines of potato, Solanum tuberosum. BMC PLANT BIOLOGY 2012; 12:198. [PMID: 23116303 PMCID: PMC3534561 DOI: 10.1186/1471-2229-12-198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/29/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND Studies reported unintended pleiotropic effects for a number of pesticidal proteins ectopically expressed in transgenic crops, but the nature and significance of such effects in planta remain poorly understood. Here we assessed the effects of corn cystatin II (CCII), a potent inhibitor of C1A cysteine (Cys) proteases considered for insect and pathogen control, on the leaf proteome and pathogen resistance status of potato lines constitutively expressing this protein. RESULTS The leaf proteome of lines accumulating CCII at different levels was resolved by 2-dimensional gel electrophoresis and compared with the leaf proteome of a control (parental) line. Out of ca. 700 proteins monitored on 2-D gels, 23 were significantly up- or downregulated in CCII-expressing leaves, including 14 proteins detected de novo or up-regulated by more than five-fold compared to the control. Most up-regulated proteins were abiotic or biotic stress-responsive proteins, including different secretory peroxidases, wound inducible protease inhibitors and pathogenesis-related proteins. Accordingly, infection of leaf tissues by the fungal necrotroph Botryris cinerea was prevented in CCII-expressing plants, despite a null impact of CCII on growth of this pathogen and the absence of extracellular Cys protease targets for the inhibitor. CONCLUSIONS These data point to the onset of pleiotropic effects altering the leaf proteome in transgenic plants expressing recombinant protease inhibitors. They also show the potential of these proteins as ectopic modulators of stress responses in planta, useful to engineer biotic or abiotic stress tolerance in crop plants of economic significance.
Collapse
Affiliation(s)
- Aurélie Munger
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Karine Coenen
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Line Cantin
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Charles Goulet
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
- Current address: Horticulture Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Louis-Philippe Vaillancourt
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Marie-Claire Goulet
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Russell Tweddell
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Frank Sainsbury
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Dominique Michaud
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| |
Collapse
|
43
|
Multimodal protein constructs for herbivore insect control. Toxins (Basel) 2012; 4:455-75. [PMID: 22822457 PMCID: PMC3398420 DOI: 10.3390/toxins4060455] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/01/2012] [Accepted: 06/05/2012] [Indexed: 01/09/2023] Open
Abstract
Transgenic plants expressing combinations of microbial or plant pesticidal proteins represent a promising tool for the efficient, durable control of herbivorous insects. In this review we describe current strategies devised for the heterologous co-expression of pesticidal proteins in planta, some of which have already shown usefulness in plant protection. Emphasis is placed on protein engineering strategies involving the insertion of single DNA constructs within the host plant genome. Multimodal fusion proteins integrating complementary pesticidal functions along a unique polypeptide are first considered, taking into account the structural constraints associated with protein or protein domain grafting to biologically active proteins. Strategies that allow for the co- or post-translational release of two or more pesticidal proteins are then considered, including polyprotein precursors releasing free proteins upon proteolytic cleavage, and multicistronic transcripts for the parallel translation of single protein-encoding mRNA sequences.
Collapse
|
44
|
Goulet C, Khalf M, Sainsbury F, D'Aoust MA, Michaud D. A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:83-94. [PMID: 21895943 DOI: 10.1111/j.1467-7652.2011.00643.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recombinant proteins face major constraints along the plant cell secretory pathway, including proteolytic processing compromising their structural integrity. Here, we demonstrate the potential of protease inhibitors as in situ stabilizing agents for recombinant proteins migrating towards the leaf apoplast. Genomic data for Arabidopsis, rice and Nicotiana spp. were assessed to determine the relative incidence of protease families in the cell secretory pathway. Transient expression assays with the model platform Nicotiana benthamiana were then performed to test the efficiency of protease inhibitors in stabilizing proteins targeted to the apoplast. Current genomic data suggest the occurrence of proteases from several families along the secretory pathway, including A1 and A22 Asp proteases; C1A and C13 Cys proteases; and S1, S8 and S10 Ser proteases. In vitro protease assays confirmed the presence of various proteases in N. benthamiana leaves, notably pointing to the deposition of A1- and S1-type activities preferentially in the apoplast. Accordingly, transient expression and secretion of the A1/S1 protease inhibitor, tomato cathepsin D inhibitor (SlCDI), negatively altered A1 and S1 protease activities in this cell compartment, while increasing the leaf apoplast protein content by ∼45% and improving the accumulation of a murine diagnostic antibody, C5-1, co-secreted in the apoplast. SlCYS9, an inhibitor of C1A and C13 Cys proteases, had no impact on the apoplast proteases and protein content, but stabilized C5-1 in planta, presumably upstream in the secretory pathway. These data confirm, overall, the potential of protease inhibitors for the in situ protection of recombinant proteins along the plant cell secretory pathway.
Collapse
Affiliation(s)
- Charles Goulet
- Département de phytologie, Université Laval, Pavillon des Services (INAF), Québec, QC, Canada
| | | | | | | | | |
Collapse
|
45
|
Chu MH, Liu KL, Wu HY, Yeh KW, Cheng YS. Crystal structure of tarocystatin-papain complex: implications for the inhibition property of group-2 phytocystatins. PLANTA 2011; 234:243-54. [PMID: 21416241 PMCID: PMC3144364 DOI: 10.1007/s00425-011-1398-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/02/2011] [Indexed: 05/07/2023]
Abstract
Tarocystatin (CeCPI) from taro (Colocasia esculenta cv. Kaohsiung no. 1), a group-2 phytocystatin, shares a conserved N-terminal cystatin domain (NtD) with other phytocystatins but contains a C-terminal cystatin-like extension (CtE). The structure of the tarocystatin-papain complex and the domain interaction between NtD and CtE in tarocystatin have not been determined. We resolved the crystal structure of the phytocystatin-papain complex at resolution 2.03 Å. Surprisingly, the structure of the NtD-papain complex in a stoichiometry of 1:1 could be built, with no CtE observed. Only two remnant residues of CtE could be built in the structure of the CtE-papain complex. Therefore, CtE is easily digested by papain. To further characterize the interaction between NtD and CtE, three segments of tarocystatin, including the full-length (FL), NtD and CtE, were used to analyze the domain-domain interaction and the inhibition ability. The results from glutaraldehyde cross-linking and yeast two-hybrid assay indicated the existence of an intrinsic flexibility in the region linking NtD and CtE for most tarocystatin molecules. In the inhibition activity assay, the glutathione-S-transferase (GST)-fused FL showed the highest inhibition ability without residual peptidase activity, and GST-NtD and FL showed almost the same inhibition ability, which was higher than with NtD alone. On the basis of the structures, the linker flexibility and inhibition activity of tarocystatins, we propose that the overhangs from the cystatin domain may enhance the inhibition ability of the cystatin domain against papain.
Collapse
Affiliation(s)
- Ming-Hung Chu
- Department of Life Science and Institute of Plant Biology, National Taiwan University, No 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan, ROC
| | - Kai-Lun Liu
- Department of Life Science and Institute of Plant Biology, National Taiwan University, No 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan, ROC
| | - Hsin-Yi Wu
- Department of Life Science and Institute of Plant Biology, National Taiwan University, No 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan, ROC
| | - Kai-Wun Yeh
- Department of Life Science and Institute of Plant Biology, National Taiwan University, No 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan, ROC
| | - Yi-Sheng Cheng
- Department of Life Science and Institute of Plant Biology, National Taiwan University, No 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan, ROC
| |
Collapse
|
46
|
Sun X, Wang GL. Genome-wide identification, characterization and phylogenetic analysis of the rice LRR-kinases. PLoS One 2011; 6:e16079. [PMID: 21408199 PMCID: PMC3050792 DOI: 10.1371/journal.pone.0016079] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/06/2010] [Indexed: 12/05/2022] Open
Abstract
LRR-kinases constitute the largest subfamily of receptor-like kinases in plants and regulate a wide variety of processes related to development and defense. Through a reiterative process of sequence analysis and re-annotation, we identified 309 LRR-kinase genes in the rice genome (Nipponbare). Among them, 127 genes in the Rice Annotation Project Database and 85 in Refseq of NCBI were amended (in addition, 62 LRR-kinase genes were not annotated in Refseq). The complete set of LRR-kinases was characterized. These LRR-kinases were classified into five groups according to phylogenetic analysis, and the genes in groups 1, 2, 3 and 4 usually have fewer introns than those in group 5. The introns in the LRR domain, which are highly conserved in regards to their positions and configurations, split the first Leu or other amino residues at this position of the ‘xxLxLxx’ motif with phase 2 and usually separate one or more LRR repeats exactly. Tandemly repeated LRR motifs have evolved from exon duplication, mutation and exon shuffling. The extensive distribution and diversity of the LRR-kinase genes have been mainly generated by tandem duplication and mutation after whole genome duplication. Positive selection has made a limited contribution to the sequence diversity after duplication, but positively selected sites located in the LRR domain are thought to involve in the protein-protein interaction.
Collapse
Affiliation(s)
- Xinli Sun
- College of Life Science, Hebei Normal University, Shijiazhuang, China.
| | | |
Collapse
|
47
|
Tastan Bishop O, Kroon M. Study of protein complexes via homology modeling, applied to cysteine proteases and their protein inhibitors. J Mol Model 2011; 17:3163-72. [PMID: 21365221 DOI: 10.1007/s00894-011-0990-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 01/24/2011] [Indexed: 11/29/2022]
Abstract
This paper develops and evaluates large-scale calculation of 3D structures of protein complexes by homology modeling as a promising new approach for protein docking. The complexes investigated were papain-like cysteine proteases and their protein inhibitors, which play numerous roles in human and parasitic metabolisms. The structural modeling was performed in two parts. For the first part (evaluation set), nine crystal structure complexes were selected, 1325 homology models of known complexes were rebuilt by various templates including hybrids, allowing an analysis of the factors influencing the accuracy of the models. The important considerations for modeling the interface were protease coverage and inhibitor sequence identity. In the second part (study set), the findings of the evaluation set were used to select appropriate templates to model novel cysteine protease-inhibitor complexes from human and malaria parasites Plasmodium falciparum and Plasmodium vivax. The energy scores, considering the evaluation set, indicate that the models are of high accuracy.
Collapse
Affiliation(s)
- Ozlem Tastan Bishop
- Rhodes University Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa.
| | | |
Collapse
|
48
|
Schlüter U, Benchabane M, Munger A, Kiggundu A, Vorster J, Goulet MC, Cloutier C, Michaud D. Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:4169-83. [PMID: 20581122 DOI: 10.1093/jxb/erq166] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Protease inhibitors are a promising complement to Bt toxins for the development of insect-resistant transgenic crops, but their limited specificity against proteolytic enzymes and the ubiquity of protease-dependent processes in living organisms raise questions about their eventual non-target effects in agroecosystems. After a brief overview of the main factors driving the impacts of insect-resistant transgenic crops on non-target organisms, the possible effects of protease inhibitors are discussed from a multitrophic perspective, taking into account not only the target herbivore proteases but also the proteases of other organisms found along the trophic chain, including the plant itself. Major progress has been achieved in recent years towards the design of highly potent broad-spectrum inhibitors and the field deployment of protease inhibitor-expressing transgenic plants resistant to major herbivore pests. A thorough assessment of the current literature suggests that, whereas the non-specific inhibitory effects of recombinant protease inhibitors in plant food webs could often be negligible and their 'unintended' pleiotropic effects in planta of potential agronomic value, the innocuity of these proteins might always remain an issue to be assessed empirically, on a case-by-case basis.
Collapse
Affiliation(s)
- Urte Schlüter
- Plant Science Department, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Valadares NF, Dellamano M, Soares-Costa A, Henrique-Silva F, Garratt RC. Molecular determinants of improved cathepsin B inhibition by new cystatins obtained by DNA shuffling. BMC STRUCTURAL BIOLOGY 2010; 10:30. [PMID: 20920298 PMCID: PMC2959088 DOI: 10.1186/1472-6807-10-30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 09/30/2010] [Indexed: 02/03/2023]
Abstract
Background Cystatins are inhibitors of cysteine proteases. The majority are only weak inhibitors of human cathepsin B, which has been associated with cancer, Alzheimer's disease and arthritis. Results Starting from the sequences of oryzacystatin-1 and canecystatin-1, a shuffling library was designed and a hybrid clone obtained, which presented higher inhibitory activity towards cathepsin B. This clone presented two unanticipated point mutations as well as an N-terminal deletion. Reversing each point mutation independently or both simultaneously abolishes the inhibitory activity towards cathepsin B. Homology modeling together with experimental studies of the reverse mutants revealed the likely molecular determinants of the improved inhibitory activity to be related to decreased protein stability. Conclusion A combination of experimental approaches including gene shuffling, enzyme assays and reverse mutation allied to molecular modeling has shed light upon the unexpected inhibitory properties of certain cystatin mutants against Cathepsin B. We conclude that mutations disrupting the hydrophobic core of phytocystatins increase the flexibility of the N-terminus, leading to an increase in inhibitory activity. Such mutations need not affect the inhibitory site directly but may be observed distant from it and manifest their effects via an uncoupling of its three components as a result of increased protein flexibility.
Collapse
Affiliation(s)
- Napoleão F Valadares
- Center for Structural Molecular Biotechnology, Department of Physics and Informatics, Physics Institute of São Carlos, University of São Paulo, Av, Trabalhador são-carlense 400, 13560-970, São Carlos-SP, Brazil
| | | | | | | | | |
Collapse
|
50
|
Benchabane M, Schlüter U, Vorster J, Goulet MC, Michaud D. Plant cystatins. Biochimie 2010; 92:1657-66. [PMID: 20558232 DOI: 10.1016/j.biochi.2010.06.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 06/08/2010] [Indexed: 01/07/2023]
Abstract
Plant cystatins have been the object of intense research since the publication of a first paper reporting their existence more than 20 years ago. These ubiquitous inhibitors of Cys proteases play several important roles in plants, from the control of various physiological and cellular processes in planta to the inhibition of exogenous Cys proteases secreted by herbivorous arthropods and pathogens to digest or colonize plant tissues. After an overview of current knowledge about the evolution, structure and inhibitory mechanism of plant cystatins, we review the different roles attributed to these proteins in plants. The potential of recombinant plant cystatins as effective pesticidal proteins in crop protection is also considered, as well as protein engineering approaches adopted over the years to improve their inhibitory potency and specificity towards Cys proteases of biotechnological interest.
Collapse
Affiliation(s)
- Meriem Benchabane
- Département de phytologie, CRH/INAF, Université Laval, Québec (QC), Canada G1V 0A6
| | | | | | | | | |
Collapse
|