1
|
Chen C, Zhang Z, Lei Y, Chen W, Zhang Z, Dai H. The transcription factor MdERF023 negatively regulates salt tolerance by modulating ABA signaling and Na +/H + transport in apple. PLANT CELL REPORTS 2024; 43:187. [PMID: 38958739 DOI: 10.1007/s00299-024-03272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
KEY MESSAGE MdERF023 is a transcription factor that can reduce salt tolerance by inhibiting ABA signaling and Na+/H+ homeostasis. Salt stress is one of the principal environmental stresses limiting the growth and productivity of apple (Malus × domestica). The APETALA2/ethylene response factor (AP2/ERF) family plays key roles in plant growth and various stress responses; however, the regulatory mechanism involved has not been fully elucidated. In the present study, we identified an AP2/ERF transcription factor (TF), MdERF023, which plays a negative role in apple salt tolerance. Stable overexpression of MdERF023 in apple plants and calli significantly decreased salt tolerance. Biochemical and molecular analyses revealed that MdERF023 directly binds to the promoter of MdMYB44-like, a positive modulator of ABA signaling-mediated salt tolerance, and suppresses its transcription. In addition, MdERF023 downregulated the transcription of MdSOS2 and MdAKT1, thereby reducing the Na+ expulsion, K+ absorption, and salt tolerance of apple plants. Taken together, these results suggest that MdERF023 reduces apple salt tolerance by inhibiting ABA signaling and ion transport, and that it could be used as a potential target for breeding new varieties of salt-tolerant apple plants via genetic engineering.
Collapse
Affiliation(s)
- Cui Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhen Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingying Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenjun Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Grondin A, Natividad MA, Ogata T, Jan A, Gaudin ACM, Trijatmiko KR, Liwanag E, Maruyama K, Fujita Y, Yamaguchi-Shinozaki K, Nakashima K, Slamet-Loedin IH, Henry A. A Case Study from the Overexpression of OsTZF5, Encoding a CCCH Tandem Zinc Finger Protein, in Rice Plants Across Nineteen Yield Trials. RICE (NEW YORK, N.Y.) 2024; 17:25. [PMID: 38592643 PMCID: PMC11003944 DOI: 10.1186/s12284-024-00705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Development of transgenic rice overexpressing transcription factors involved in drought response has been previously reported to confer drought tolerance and therefore represents a means of crop improvement. We transformed lowland rice IR64 with OsTZF5, encoding a CCCH-tandem zinc finger protein, under the control of the rice LIP9 stress-inducible promoter and compared the drought response of transgenic lines and nulls to IR64 in successive screenhouse paddy and field trials up to the T6 generation. RESULTS Compared to the well-watered conditions, the level of drought stress across experiments varied from a minimum of - 25 to - 75 kPa at a soil depth of 30 cm which reduced biomass by 30-55% and grain yield by 1-92%, presenting a range of drought severities. OsTZF5 transgenic lines showed high yield advantage under drought over IR64 in early generations, which was related to shorter time to flowering, lower shoot biomass and higher harvest index. However, the increases in values for yield and related traits in the transgenics became smaller over successive generations despite continued detection of drought-induced transgene expression as conferred by the LIP9 promoter. The decreased advantage of the transgenics over generations tended to coincide with increased levels of homozygosity. Background cleaning of the transgenic lines as well as introgression of the transgene into an IR64 line containing major-effect drought yield QTLs, which were evaluated starting at the BC3F1 and BC2F3 generation, respectively, did not result in consistently increased yield under drought as compared to the respective checks. CONCLUSIONS Although we cannot conclusively explain the genetic factors behind the loss of yield advantage of the transgenics under drought across generations, our results help in distinguishing among potential drought tolerance mechanisms related to effectiveness of the transgenics, since early flowering and harvest index most closely reflected the levels of yield advantage in the transgenics across generations while reduced biomass did not.
Collapse
Affiliation(s)
- Alexandre Grondin
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
- Institut de Recherche Pour Le Développement, Université de Montpellier, UMR DIADE, 911 Avenue Agropolis, 34394, Montpellier, France
| | - Mignon A Natividad
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
| | - Takuya Ogata
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Asad Jan
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
- Institute of Biotechnology and Genetics Engineering, The University of Agriculture, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan
| | - Amélie C M Gaudin
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Kurniawan R Trijatmiko
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
| | - Evelyn Liwanag
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
| | - Kyonoshin Maruyama
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Yasunari Fujita
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
- Laboratory of Plant Molecular Physiology, The University of Tokyo, Tokyo, 113-8657, Japan
- Tokyo University of Agriculture, Research Institute for Agricultural and Life Sciences, Tokyo, Japan
| | - Kazuo Nakashima
- Food Program, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Inez H Slamet-Loedin
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines
| | - Amelia Henry
- Rice Breeding Innovations Department, International Rice Research Institute, Pili Drive, Los Baños, Laguna, Philippines.
| |
Collapse
|
3
|
Akter N, Kulsum U, Moniruzzaman M, Yasuda N, Akama K. Truncation of the calmodulin binding domain in rice glutamate decarboxylase 4 ( OsGAD4) leads to accumulation of γ-aminobutyric acid and confers abiotic stress tolerance in rice seedlings. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:21. [PMID: 38435472 PMCID: PMC10904699 DOI: 10.1007/s11032-024-01460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
GABA (Gamma-aminobutyric acid) is a non-protein amino acid widely known as major inhibitory neurotransmitter. It is synthesized from glutamate via the enzyme glutamate decarboxylase (GAD). GAD is ubiquitous in all organisms, but only plant GAD has ability to bind Ca2+/calmodulin (CaM). This kind of binding suppresses the auto-inhibition of Ca2+/calmodulin binding domain (CaMBD) when the active site of GAD is unfolded resulting in stimulated GAD activity. OsGAD4 is one of the five GAD genes in rice genome. It was confirmed that OsGAD4 has ability to bind to Ca2+/CaM. Moreover, it exhibits strongest expression against several stress conditions among the five OsGAD genes. In this study, CRISPR/Cas9-mediated genome editing was performed to trim the coding region of CaMBD from the OsGAD4 gene, to remove its autoinhibitory function. DNA sequence analysis of the genome edited rice plants revealed the truncation of CaMBD (216 bp). Genome edited line (#14-1) produced 11.26 mg GABA/100 g grain, which is almost nine-fold in comparison to wild type. Short deletion in the coding region for CaMBD yielded in mutant (#14-6) with lower GABA content than wild type counterpart. Abiotic stresses like salinity, flooding and drought significantly enhanced GABA accumulation in #14-1 at various time points compared to wild-type and #14-6 under the same stress conditions. Moreover, upregulated mRNA expression in vegetative tissues seems correlated with the stress-responsiveness of OsGAD4 when exposed to the above-mentioned stresses. Stress tolerance of OsGAD4 genome edited lines was evidenced by the higher survival rate indicating the gene may induce tolerance against abiotic stresses in rice. This is the first report on abiotic stress tolerance in rice modulated by endogenous GABA. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01460-1.
Collapse
Affiliation(s)
- Nadia Akter
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
- Genetic Resources and Seed Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Ummey Kulsum
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Mohammad Moniruzzaman
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Norito Yasuda
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Kazuhito Akama
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| |
Collapse
|
4
|
Li M, Li J, Zhang Y, Zhai Y, Chen Y, Lin L, Peng J, Zheng H, Chen J, Yan F, Lu Y. Integrated ATAC-seq and RNA-seq data analysis identifies transcription factors related to rice stripe virus infection in Oryza sativa. MOLECULAR PLANT PATHOLOGY 2024; 25:e13446. [PMID: 38502176 PMCID: PMC10950023 DOI: 10.1111/mpp.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
Animal studies have shown that virus infection causes changes in host chromatin accessibility, but little is known about changes in chromatin accessibility of plants infected by viruses and its potential impact. Here, rice infected by rice stripe virus (RSV) was used to investigate virus-induced changes in chromatin accessibility. Our analysis identified a total of 6462 open- and 3587 closed-differentially accessible chromatin regions (DACRs) in rice under RSV infection by ATAC-seq. Additionally, by integrating ATAC-seq and RNA-seq, 349 up-regulated genes in open-DACRs and 126 down-regulated genes in closed-DACRs were identified, of which 34 transcription factors (TFs) were further identified by search of upstream motifs. Transcription levels of eight of these TFs were validated by reverse transcription-PCR. Importantly, four of these TFs (OsWRKY77, OsWRKY28, OsZFP12 and OsERF91) interacted with RSV proteins and are therefore predicted to play important roles in RSV infection. This is the first application of ATAC-seq and RNA-seq techniques to analyse changes in rice chromatin accessibility caused by RSV infection. Integrating ATAC-seq and RNA-seq provides a new approach to select candidate TFs in response to virus infection.
Collapse
Affiliation(s)
- Miaomiao Li
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jing Li
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yushan Zhai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jianping Chen
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| |
Collapse
|
5
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
6
|
Eragam A, Mohapatra A, Shukla V, Kadumuri RV, George AP, Putta L, Akkareddy S, Chavali S, Vemireddy LR, Ramireddy E. Panicle transcriptome of high-yield mutant indica rice reveals physiological mechanisms and novel candidate regulatory genes for yield under reproductive stage drought stress. BMC PLANT BIOLOGY 2023; 23:493. [PMID: 37833626 PMCID: PMC10571340 DOI: 10.1186/s12870-023-04507-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Reproductive stage drought stress (RDS) is a major global threat to rice production. Due to climate change, water scarcity is becoming an increasingly common phenomenon in major rice-growing areas worldwide. Understanding RDS mechanisms will allow candidate gene identification to generate novel rice genotypes tolerant to RDS. RESULTS To generate novel rice genotypes that can sustain yield under RDS, we performed gamma-irradiation mediated mutation breeding in the drought stress susceptible mega rice variety, MTU1010. One of the mutant MM11 (MTU1010 derived mutant11) shows consistently increased performance in yield-related traits under field conditions consecutively for four generations. In addition, compared to MTU1010, the yield of MM11 is sustained in prolonged drought imposed during the reproductive stage under field and in pot culture conditions. A comparative emerged panicle transcriptome analysis of the MTU1010 and MM11 suggested metabolic adjustment, enhanced photosynthetic ability, and hormone interplay in regulating yield under drought responses during emerged panicle development. Regulatory network analysis revealed few putative significant transcription factor (TF)-target interactions involved in integrated signalling between panicle development, yield and drought stress. CONCLUSIONS A gamma-irradiate rice mutant MM11 was identified by mutation breeding, and it showed higher potential to sustain yield under reproductive stage drought stress in field and pot culture conditions. Further, a comparative panicle transcriptome revealed significant biological processes and molecular regulators involved in emerged panicle development, yield and drought stress integration. The study extends our understanding of the physiological mechanisms and candidate genes involved in sustaining yield under drought stress.
Collapse
Affiliation(s)
- Aparna Eragam
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
- Department of Molecular Biology and Biotechnology, S.V. Agricultural College, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, 517502, India
| | - Ankita Mohapatra
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Vishnu Shukla
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Abin Panackal George
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Latha Putta
- Regional Agricultural Research Station (RARS), ANGRAU, Tirupati, India
| | | | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Lakshminarayana R Vemireddy
- Department of Molecular Biology and Biotechnology, S.V. Agricultural College, Acharya NG Ranga Agricultural University (ANGRAU), Tirupati, 517502, India.
| | - Eswarayya Ramireddy
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, Andhra Pradesh, India.
| |
Collapse
|
7
|
He Y, Guan H, Li B, Zhang S, Xu Y, Yao Y, Yang X, Zha Z, Guo Y, Jiao C, Cai H. Transcriptome Analysis Reveals the Dynamic and Rapid Transcriptional Reprogramming Involved in Heat Stress and Identification of Heat Response Genes in Rice. Int J Mol Sci 2023; 24:14802. [PMID: 37834249 PMCID: PMC10572967 DOI: 10.3390/ijms241914802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
High temperature is one of the most important environmental factors influencing rice growth, development, and yield. Therefore, it is important to understand how rice plants cope with high temperatures. Herein, the heat tolerances of T2 (Jinxibai) and T21 (Taizhongxianxuan2hao) were evaluated at 45 °C, and T21 was found to be sensitive to heat stress at the seedling stage. Analysis of the H2O2 and proline content revealed that the accumulation rate of H2O2 was higher in T21, whereas the accumulation rate of proline was higher in T2 after heat treatment. Meanwhile, transcriptome analysis revealed that several pathways participated in the heat response, including "protein processing in endoplasmic reticulum", "plant hormone signal transduction", and "carbon metabolism". Additionally, our study also revealed that different pathways participate in heat stress responses upon prolonged stress. The pathway of "protein processing in endoplasmic reticulum" plays an important role in stress responses. We found that most genes involved in this pathway were upregulated and peaked at 0.5 or 1 h after heat treatment. Moreover, sixty transcription factors, including the members of the AP2/ERF, NAC, HSF, WRKY, and C2H2 families, were found to participate in the heat stress response. Many of them have also been reported to be involved in biotic or abiotic stresses. In addition, through PPI (protein-protein interactions) analysis, 22 genes were identified as key genes in the response to heat stress. This study improves our understanding of thermotolerance mechanisms in rice, and also lays a foundation for breeding thermotolerant cultivars via molecular breeding.
Collapse
Affiliation(s)
- Yonggang He
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Huimin Guan
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Bo Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Shuo Zhang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yanhao Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yan Yao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Xiaolong Yang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Zhongping Zha
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Ying Guo
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Chunhai Jiao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Haiya Cai
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (Y.H.); (H.G.); (B.L.); (S.Z.); (Y.X.); (Y.Y.); (X.Y.); (Z.Z.); (Y.G.)
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430070, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
8
|
Singh A, Pandey H, Pandey S, Lal D, Chauhan D, Aparna, Antre SH, B S, Kumar A. Drought stress in maize: stress perception to molecular response and strategies for its improvement. Funct Integr Genomics 2023; 23:296. [PMID: 37697159 DOI: 10.1007/s10142-023-01226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Given the future demand for food crops, increasing crop productivity in drought-prone rainfed areas has become essential. Drought-tolerant varieties are warranted to solve this problem in major crops, with drought tolerance as a high-priority trait for future research. Maize is one such crop affected by drought stress, which limits production, resulting in substantial economic losses. It became a more serious issue due to global climate change. The most drought sensitive among all stages of maize is the reproductive stages and the most important for overall maize production. The exact molecular basis of reproductive drought sensitivity remains unclear due to genes' complex regulation of drought stress. Understanding the molecular biology and signaling of the unexplored area of reproductive drought tolerance will provide an opportunity to develop climate-smart drought-tolerant next-generation maize cultivars. In recent decades, significant progress has been made in maize to understand the drought tolerance mechanism. However, improving maize drought tolerance through breeding is ineffective due to the complex nature and multigenic control of drought traits. With the help of advanced breeding techniques, molecular genetics, and a precision genome editing approach like CRISPR-Cas, candidate genes for drought-tolerant maize can be identified and targeted. This review summarizes the effects of drought stress on each growth stage of maize, potential genes, and transcription factors that determine drought tolerance. In addition, we discussed drought stress sensing, its molecular mechanisms, different approaches to developing drought-resistant maize varieties, and how molecular breeding and genome editing will help with the current unpredictable climate change.
Collapse
Affiliation(s)
- Ashutosh Singh
- Centre for Advanced Studies On Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India.
| | | | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Dalpat Lal
- College of Agriculture, Jodhpur Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - Divya Chauhan
- Banasthali University, Radha Kishanpura, Rajasthan, 304022, India
| | - Aparna
- Departments of Agriculture, Jagan Nath University, Jaipur, Rajasthan, 303901, India
| | - Suresh H Antre
- Advanced Centre of Plant Biotechnology, UAS, GKVK, Bangalore, Karnataka, 560065, India
| | - Santhosh B
- Centre for Advanced Studies On Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Amarjeet Kumar
- Department of Genetics and Plant Breeding, MTTC & VTC, Selesih, CAU, Imphal, 795001, India
| |
Collapse
|
9
|
Pooam M, El-Ballat EM, Jourdan N, Ali HM, Hano C, Ahmad M, El-Esawi MA. SNAC3 Transcription Factor Enhances Arsenic Stress Tolerance and Grain Yield in Rice ( Oryza sativa L.) through Regulating Physio-Biochemical Mechanisms, Stress-Responsive Genes, and Cryptochrome 1b. PLANTS (BASEL, SWITZERLAND) 2023; 12:2731. [PMID: 37514345 PMCID: PMC10383536 DOI: 10.3390/plants12142731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
Arsenic (As) is one of the toxic heavy metal pollutants found in the environment. An excess of As poses serious threats to plants and diminishes their growth and productivity. NAC transcription factors revealed a pivotal role in enhancing crops tolerance to different environmental stresses. The present study investigated, for the first time, the functional role of SNAC3 in boosting As stress tolerance and grain productivity in rice (Oryza sativa L.). Two SNAC3-overexpressing (SNAC3-OX) and two SNAC3-RNAi transgenic lines were created and validated. The wild-type and transgenic rice plants were exposed to different As stress levels (0, 25, and 50 µM). The results revealed that SNAC3 overexpression significantly improved rice tolerance to As stress and boosted grain yield traits. Under both levels of As stress (25 and 50 µM), SNAC3-OX rice lines exhibited significantly lower levels of oxidative stress biomarkers and OsCRY1b (cryptochrome 1b) expression, but they revealed increased levels of gas exchange characters, chlorophyll, osmolytes (soluble sugars, proteins, proline, phenols, and flavonoids), antioxidant enzymes (SOD, CAT, APX, and POD), and stress-tolerant genes expression (OsSOD-Cu/Zn, OsCATA, OsCATB, OsAPX2, OsLEA3, OsDREB2B, OsDREB2A, OsSNAC2, and OsSNAC1) in comparison to wild-type plants. By contrast, SNAC3 suppression (RNAi) reduced grain yield components and reversed the aforementioned measured physio-biochemical and molecular traits. Taken together, this study is the first to demonstrate that SNAC3 plays a vital role in boosting As stress resistance and grain productivity in rice through modulating antioxidants, photosynthesis, osmolyte accumulation, and stress-related genes expression, and may be a useful candidate for further genetic enhancement of stress resistance in many crops.
Collapse
Affiliation(s)
- Marootpong Pooam
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
| | - Enas M El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nathalie Jourdan
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 45067 Orleans, France
| | - Margaret Ahmad
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
| | - Mohamed A El-Esawi
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
10
|
Hassan MA, Dahu N, Hongning T, Qian Z, Yueming Y, Yiru L, Shimei W. Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1215371. [PMID: 37534289 PMCID: PMC10391551 DOI: 10.3389/fpls.2023.1215371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023]
Abstract
Rice (Oryza Sativa L.) is an essential constituent of the global food chain. Drought stress significantly diminished its productivity and threatened global food security. This review concisely discussed how drought stress negatively influenced the rice's optimal growth cycle and altered its morpho-physiological, biochemical, and molecular responses. To withstand adverse drought conditions, plants activate their inherent drought resistance mechanism (escape, avoidance, tolerance, and recovery). Drought acclimation response is characterized by many notable responses, including redox homeostasis, osmotic modifications, balanced water relations, and restored metabolic activity. Drought tolerance is a complicated phenomenon, and conventional breeding strategies have only shown limited success. The application of molecular markers is a pragmatic technique to accelerate the ongoing breeding process, known as marker-assisted breeding. This review study compiled information about quantitative trait loci (QTLs) and genes associated with agronomic yield-related traits (grain size, grain yield, harvest index, etc.) under drought stress. It emphasized the significance of modern breeding techniques and marker-assisted selection (MAS) tools for introgressing the known QTLs/genes into elite rice lines to develop drought-tolerant rice varieties. Hence, this study will provide a solid foundation for understanding the complex phenomenon of drought stress and its utilization in future crop development programs. Though modern genetic markers are expensive, future crop development programs combined with conventional and MAS tools will help the breeders produce high-yielding and drought-tolerant rice varieties.
Collapse
Affiliation(s)
- Muhammad A. Hassan
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ni Dahu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Tong Hongning
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhu Qian
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yi Yueming
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Li Yiru
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wang Shimei
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
11
|
Wang R, Liu X, Zhu H, Yang Y, Cui R, Fan Y, Zhai X, Yang Y, Zhang S, Zhang J, Hu D, Zhang D. Transcription factors GmERF1 and GmWRKY6 synergistically regulate low phosphorus tolerance in soybean. PLANT PHYSIOLOGY 2023; 192:1099-1114. [PMID: 36932694 PMCID: PMC10231356 DOI: 10.1093/plphys/kiad170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 06/01/2023]
Abstract
Soybean (Glycine max) is a major grain and oil crop worldwide, but low phosphorus (LP) in soil severely limits the development of soybean production. Dissecting the regulatory mechanism of the phosphorus (P) response is crucial for improving the P use efficiency of soybean. Here, we identified a transcription factor, GmERF1 (ethylene response factor 1), that is mainly expressed in soybean root and localized in the nucleus. Its expression is induced by LP stress and differs substantially in extreme genotypes. The genomic sequences of 559 soybean accessions suggested that the allelic variation of GmERF1 has undergone artificial selection, and its haplotype is significantly related to LP tolerance. GmERF1 knockout or RNA interference resulted in significant increases in root and P uptake efficiency traits, while the overexpression of GmERF1 produced an LP-sensitive phenotype and affected the expression of 6 LP stress-related genes. In addition, GmERF1 directly interacted with GmWRKY6 to inhibit transcription of GmPT5 (phosphate transporter 5), GmPT7, and GmPT8, which affects plant P uptake and use efficiency under LP stress. Taken together, our results show that GmERF1 can affect root development by regulating hormone levels, thus promoting P absorption in soybean, and provide a better understanding of the role of GmERF1 in soybean P signal transduction. The favorable haplotypes from wild soybean will be conducive to the molecular breeding of high P use efficiency in soybean.
Collapse
Affiliation(s)
- Ruiyang Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoqian Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Soybean Biology, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongqing Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruifan Cui
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yukun Fan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xuhao Zhai
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yifei Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shanshan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinyu Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dandan Hu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
12
|
Zhang G, Bi Z, Jiang J, Lu J, Li K, Bai D, Wang X, Zhao X, Li M, Zhao X, Wang W, Xu J, Li Z, Zhang F, Shi Y. Genome-wide association and epistasis studies reveal the genetic basis of saline-alkali tolerance at the germination stage in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1170641. [PMID: 37251777 PMCID: PMC10213895 DOI: 10.3389/fpls.2023.1170641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023]
Abstract
Introduction Saline-alkali stress is one of the main abiotic factors limiting rice production worldwide. With the widespread use of rice direct seeding technology, it has become increasingly important to improve rice saline-alkali tolerance at the germination stage. Methods To understand the genetic basis of saline-alkali tolerance and facilitate breeding efforts for developing saline-alkali tolerant rice varieties, the genetic basis of rice saline-alkali tolerance was dissected by phenotyping seven germination-related traits of 736 diverse rice accessions under the saline-alkali stress and control conditions using genome-wide association and epistasis analysis (GWAES). Results Totally, 165 main-effect quantitative trait nucleotides (QTNs) and 124 additional epistatic QTNs were identified as significantly associated with saline-alkali tolerance, which explained a significant portion of the total phenotypic variation of the saline-alkali tolerance traits in the 736 rice accessions. Most of these QTNs were located in genomic regions either harboring saline-alkali tolerance QTNs or known genes for saline-alkali tolerance reported previously. Epistasis as an important genetic basis of rice saline-alkali tolerance was validated by genomic best linear unbiased prediction in which inclusion of both main-effect and epistatic QTNs showed a consistently better prediction accuracy than either main-effect or epistatic QTNs alone. Candidate genes for two pairs of important epistatic QTNs were suggested based on combined evidence from the high-resolution mapping plus their reported molecular functions. The first pair included a glycosyltransferase gene LOC_Os02g51900 (UGT85E1) and an E3 ligase gene LOC_Os04g01490 (OsSIRP4), while the second pair comprised an ethylene-responsive transcriptional factor, AP59 (LOC_Os02g43790), and a Bcl-2-associated athanogene gene, OsBAG1 (LOC_Os09g35630) for salt tolerance. Detailed haplotype analyses at both gene promoter and CDS regions of these candidate genes for important QTNs identified favorable haplotype combinations with large effects on saline-alkali tolerance, which can be used to improve rice saline-alkali tolerance by selective introgression. Discussion Our findings provided saline-alkali tolerant germplasm resources and valuable genetic information to be used in future functional genomic and breeding efforts of rice saline-alkali tolerance at the germination stage.
Collapse
Affiliation(s)
- Guogen Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Bi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingbing Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Keyang Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Di Bai
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Xinchen Wang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Xueyu Zhao
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiuqin Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
13
|
Li Z, Zhu M, Huang J, Jiang S, Xu S, Zhang Z, He W, Huang W. Genome-Wide Comprehensive Analysis of the Nitrogen Metabolism Toolbox Reveals Its Evolution and Abiotic Stress Responsiveness in Rice ( Oryza sativa L.). Int J Mol Sci 2022; 24:ijms24010288. [PMID: 36613735 PMCID: PMC9820731 DOI: 10.3390/ijms24010288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Nitrogen metabolism (NM) plays an essential role in response to abiotic stresses for plants. Enzyme activities have been extensively studied for nitrogen metabolism-associated pathways, but the knowledge of nitrogen metabolism-associated genes involved in stress response is still limited, especially for rice. In this study, we performed the genome-wide characterization of the genes putatively involved in nitrogen metabolism. A total of 1110 potential genes were obtained to be involved in nitrogen metabolism from eight species (Arabidopsis thaliana (L.) Heynh., Glycine max (L.) Merr., Brassica napus L., Triticum aestivum L., Sorghum bicolor L., Zea mays L., Oryza sativa L. and Amborella trichopoda Baill.), especially 104 genes in rice. The comparative phylogenetic analysis of the superfamily revealed the complicated divergence of different NM genes. The expression analysis among different tissues in rice indicates the NM genes showed diverse functions in the pathway of nitrogen absorption and assimilation. Distinct expression patterns of NM genes were observed in rice under drought stress, heat stress, and salt stress, indicating that the NM genes play a curial role in response to abiotic stress. Most NM genes showed a down-regulated pattern under heat stress, while complicated expression patterns were observed for different genes under salt stress and drought stress. The function of four representative NM genes (OsGS2, OsGLU, OsGDH2, and OsAMT1;1) was further validated by using qRT-PCR analysis to confirm their responses to these abiotic stresses. Based on the predicted transcription factor binding sites (TFBSs), we built a co-expression regulatory network containing transcription factors (TFs) and NM genes, of which the constructed ERF and Dof genes may act as the core genes to respond to abiotic stresses. This study provides novel sights to the interaction between nitrogen metabolism and the response to abiotic stresses.
Collapse
Affiliation(s)
- Zhihui Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mingqiang Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jinqiu Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shan Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuang Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhihong Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Correspondence: (W.H.); (W.H.); Tel.: +86-137-2030-6240 (W.H.); +86-189-0711-8608 (W.H.)
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Correspondence: (W.H.); (W.H.); Tel.: +86-137-2030-6240 (W.H.); +86-189-0711-8608 (W.H.)
| |
Collapse
|
14
|
Molecular Events of Rice AP2/ERF Transcription Factors. Int J Mol Sci 2022; 23:ijms231912013. [PMID: 36233316 PMCID: PMC9569836 DOI: 10.3390/ijms231912013] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
APETALA2/ethylene response factor (AP2/ERF) is widely found in the plant kingdom and plays crucial roles in transcriptional regulation and defense response of plant growth and development. Based on the research progress related to AP2/ERF genes, this paper focuses on the classification and structural features of AP2/ERF transcription factors, reviews the roles of rice AP2/ERF genes in the regulation of growth, development and stress responses, and discusses rice breeding potential and challenges. Taken together; studies of rice AP2/ERF genes may help to elucidate and enrich the multiple molecular mechanisms of how AP2/ERF genes regulate spikelet determinacy and floral organ development, flowering time, grain size and quality, embryogenesis, root development, hormone balance, nutrient use efficiency, and biotic and abiotic response processes. This will contribute to breeding excellent rice varieties with high yield and high resistance in a green, organic manner.
Collapse
|
15
|
Jung SE, Kim TH, Shim JS, Bang SW, Bin Yoon H, Oh SH, Kim YS, Oh SJ, Seo JS, Kim JK. Rice NAC17 transcription factor enhances drought tolerance by modulating lignin accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111404. [PMID: 35914574 DOI: 10.1016/j.plantsci.2022.111404] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/05/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Land plants have developed a comprehensive system to cope with the drought stress, and it is operated by intricate signaling networks, including transcriptional regulation. Herein, we identified the function of OsNAC17, a member of NAC (NAM, ATAF, and CUC2) transcription factor family, in drought tolerance. OsNAC17 is localized to the nucleus, and its expression was significantly induced under drought conditions. A transactivation assay in yeast revealed that the OsNAC17 is a transcriptional activator, harboring an activation domain in the C-terminal region. Overexpressing (OsNAC17OX) transgenic plants showed drought-tolerant, and knock-out (OsNAC17KO) plants exhibited drought susceptible phenotype compared to non-transgenic plants. Further investigation revealed that OsNAC17 positively regulates several lignin biosynthetic genes and promotes lignin accumulation in leaves and roots. Together, our results show that OsNAC17 contributes to drought tolerance through lignin biosynthesis in rice.
Collapse
Affiliation(s)
- Se Eun Jung
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, the Republic of Korea
| | - Tae Hwan Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, the Republic of Korea
| | - Jae Sung Shim
- Crop Biotechnology Institute, Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, the Republic of Korea; School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, the Republic of Korea
| | - Seung Woon Bang
- Crop Biotechnology Institute, Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, the Republic of Korea
| | - Ho Bin Yoon
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, the Republic of Korea
| | - Shin Hee Oh
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, the Republic of Korea
| | - Youn Shic Kim
- Crop Biotechnology Institute, Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, the Republic of Korea
| | - Se-Jun Oh
- LaSemilla Co. Ltd, Pyeongchang 25354, the Republic of Korea
| | - Jun Sung Seo
- Crop Biotechnology Institute, Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, the Republic of Korea
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, the Republic of Korea; Crop Biotechnology Institute, Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, the Republic of Korea; LaSemilla Co. Ltd, Pyeongchang 25354, the Republic of Korea.
| |
Collapse
|
16
|
Hu H, He B, Ma L, Chen X, Han P, Luo Y, Liu Y, Fei X, Wei A. Physiological and transcriptome analyses reveal the photosynthetic response to drought stress in drought-sensitive (Fengjiao) and drought-tolerant (Hanjiao) Zanthoxylum bungeanum cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:968714. [PMID: 36186061 PMCID: PMC9524374 DOI: 10.3389/fpls.2022.968714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
As an important economical plant, Zanthoxylum bungeanum is widely cultivated in arid and semi-arid areas. The studies associated with photosynthesis under drought stress were widely carried out, but not yet in Z. bungeanum. Here, the photosynthesis of two Z. bungeanum cultivars (FJ, Z. bungeanum cv. "Fengjiao"; HJ, Z. bungeanum cv. "Hanjiao") was analyzed under drought stress using physiological indicators and transcriptome data. Drought decreased stomatal aperture and stomatal conductance (Gsw), reduced transpiration rate (E) and sub-stomatal CO2 concentration (Ci), and lowered chlorophyll and carotenoid content, which reduced the net photosynthetic rate (Pn) of Z. bungeanum. The higher photosynthetic rate in HJ stemmed from its higher chlorophyll content, larger stomatal aperture and Gsw, and higher Ci. Weighted gene co-expression network analysis (WGCNA) identified several ABA signal transduction genes (PYL4, PYL9, and PYR1), LCH-encoding genes (LHCB4.3), and chlorophyll metabolism genes (CRD1, PORA, and CHLH). Additionally, seven transcription factor genes were identified as important factors regulating photosynthesis under drought conditions. In general, a photosynthetic response model under drought stress was built firstly in Z. bungeanum, and the key genes involved in photosynthesis under drought stress were identified. Therefore, the results in our research provide important information for photosynthesis under drought and provided key clues for future molecular breeding in Z. bungeanum.
Collapse
Affiliation(s)
- Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Beibei He
- College of Horticulture, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
| | - Lei Ma
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Xin Chen
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Peilin Han
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Yingli Luo
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Yonghong Liu
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Xianyang, Shaanxi, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Xianyang, Shaanxi, China
| |
Collapse
|
17
|
Wu Y, Zhang L, Nie L, Zheng Y, Zhu S, Hou J, Li R, Chen G, Tang X, Wang C, Yuan L. Genome-wide analysis of the DREB family genes and functional identification of the involvement of BrDREB2B in abiotic stress in wucai (Brassica campestris L.). BMC Genomics 2022; 23:598. [PMID: 35978316 PMCID: PMC9382803 DOI: 10.1186/s12864-022-08812-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
Dehydration responsive element binding protein (DREB) is a significant transcription factor class known to be implicated in abiotic stresses. In this study, we systematically conducted a genome-wide identification and expression analysis of the DREB gene family, including gene structures, evolutionary relationships, chromosome distribution, conserved domains, and expression patterns. A total of 65 DREB family gene members were identified in Chinese cabbage (Brassica rapa L.) and were classified into five subgroups based on phylogenetic analysis. Through analysis of the conserved domains of BrDREB family genes, only one exon existed in the gene structure. Through the analysis of cis-acting elements, these genes were mainly involved in hormone regulation and adversity stress. In order to identify the function of BrDREB2B, overexpressed transgenic Arabidopsis was constructed. After different stress treatments, the germination rate, root growth, survival rate, and various plant physiological indicators were measured. The results showed that transgenic Arabidopsis thaliana plants overexpressing BrDREB2B exhibited enhanced tolerance to salt, heat and drought stresses. Taken together, our results are the first to report the BrDREB2B gene response to drought and heat stresses in Chinese cabbage and provide a basis for further studies to determine the function of BrDREBs in response to abiotic stresses.
Collapse
Affiliation(s)
- Ying Wu
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Liting Zhang
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Libing Nie
- College of Horticulture and Forestry, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Yushan Zheng
- College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Shidong Zhu
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Jinfeng Hou
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Renjie Li
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Guohu Chen
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Xiaoyan Tang
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China.,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China
| | - Chenggang Wang
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China. .,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China.
| | - Lingyun Yuan
- College of Horticulture, Anhui Agricultural University, 230036, Hefei, Anhui, China. .,Wanjiang Vegetable Industrial Technology Institute, 238200, Maanshan, Anhui, China.
| |
Collapse
|
18
|
Zhao W, Wang X, Zhang Q, Zheng Q, Yao H, Gu X, Liu D, Tian X, Wang X, Li Y, Zhu Z. H3K36 demethylase JMJ710 negatively regulates drought tolerance by suppressing MYB48-1 expression in rice. PLANT PHYSIOLOGY 2022; 189:1050-1064. [PMID: 35253881 PMCID: PMC9157158 DOI: 10.1093/plphys/kiac095] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 05/14/2023]
Abstract
The homeostasis of histone methylation is maintained by histone methyltransferases and demethylases, which are important for the regulation of gene expression. Here, we report a histone demethylase from rice (Oryza sativa), Jumonji C domain-containing protein (JMJ710), which belongs to the JMJD6 group and plays an important role in the response to drought stress. Overexpression of JMJ710 causes a drought-sensitive phenotype, while RNAi and clustered regularly interspaced short palindromic repeats (CRISPR)-knockout mutant lines show drought tolerance. In vitro and in vivo assays showed that JMJ710 is a histone demethylase. It targets to MYB TRANSCRIPTION FACTOR 48 (MYB48-1) chromatin, demethylates H3K36me2, and negatively regulates the expression of MYB48-1, a positive regulator of drought tolerance. Under drought stress, JMJ710 is downregulated and the expression of MYB48-1 increases, and the subsequent activation of its downstream drought-responsive genes leads to drought tolerance. This research reports a negative regulator of drought stress-responsive genes, JMJ710, that ensures that the drought tolerance mechanism is not mis-activated under normal conditions but allows quick activation upon drought stress.
Collapse
Affiliation(s)
- Weijie Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qian Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Haitao Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiangyang Gu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Dongliang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xuemin Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaoji Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yongqing Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Author for correspondence:
| |
Collapse
|
19
|
Tiwari S, Nutan KK, Deshmukh R, Sarsu F, Gupta KJ, Singh AK, Singla-Pareek SL, Pareek A. Seedling-stage salinity tolerance in rice: Decoding the role of transcription factors. PHYSIOLOGIA PLANTARUM 2022; 174:e13685. [PMID: 35419814 DOI: 10.1111/ppl.13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Rice is an important staple food crop that feeds over half of the human population, particularly in developing countries. Increasing salinity is a major challenge for continuing rice production. Though rice is affected by salinity at all the developmental stages, it is most sensitive at the early seedling stage. The yield thus depends on how many seedlings can withstand saline water at the stage of transplantation, especially in coastal farms. The rapid development of "omics" approaches has assisted researchers in identifying biological molecules that are responsive to salt stress. Several salinity-responsive quantitative trait loci (QTL) contributing to salinity tolerance have been identified and validated, making it essential to narrow down the search for the key genes within QTLs. Owing to the impressive progress of molecular tools, it is now clear that the response of plants toward salinity is highly complex, involving multiple genes, with a specific role assigned to the repertoire of transcription factors (TF). Targeting the TFs for improving salinity tolerance can have an inbuilt advantage of influencing multiple downstream genes, which in turn can contribute toward tolerance to multiple stresses. This is the first comparative study for TF-driven salinity tolerance in contrasting rice cultivars at the seedling stage that shows how tolerant genotypes behave differently than sensitive ones in terms of stress tolerance. Understanding the complexity of salt-responsive TF networks at the seedling stage will be helpful to alleviate crop resilience and prevent crop damage at an early growth stage in rice.
Collapse
Affiliation(s)
- Shalini Tiwari
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Kamlesh Kant Nutan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Fatma Sarsu
- General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | | | - Anil K Singh
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| |
Collapse
|
20
|
Zhang H, Li S, Cheng Y. Antibiofilm Activity of Allicin and Quercetin in Treating Biofilm-Associated Orthopaedics Infection. Appl Biochem Biotechnol 2022:10.1007/s12010-022-03845-4. [PMID: 35142967 DOI: 10.1007/s12010-022-03845-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 01/09/2023]
Abstract
Biofilms formed by bacteria are the group of sessile microbial cells that remain encompassed by self-secreted polymeric substances and have resulted in great health-care concern. The extracellular polymeric substances (EPS) prevent the penetration of antibiotics and other drugs, thereby resulting in the development of multi-drug resistance or antibiotic resistance. The biofilm-associated prosthetics being places at the joins of bone injury are the common sites for the development of biofilm-associated infection. This often spreads and results in the development of orthopaedic infections. Most of the infections are associated with musculoskeletal system and originate from non-living surfaces. The biofilm prevents the penetration of drugs, thereby resulting in the development of antibiotic resistance or multi-drug resistance. The minimum inhibitory concentration (MIC) for allicin and quercetin was found to be 80 µg/mL for quercetin and 100 µg/mL for amoxicillin against the sessile communities of Pseudomonas aeruginosa associated with the orthopaedic infection. The role of quercetin and allicin in reduction of protein, carbohydrate and eDNA content of the exopolysaccharides (EPS) was tested. The anti-quorum sensing activity of quercetin and allicin was confirmed both by biochemical and by photomicrographic studies. The antibiofilm and antimicrobial activities of quercetin and allicin were determined both by in vitro and in silico studies on P. aeruginosa bacterial strain from biofilm-associated orthopaedic infection.
Collapse
Affiliation(s)
- Huajun Zhang
- Department of Orthopaedics, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, 212300, Jiangsu Province, China
| | - Shengjie Li
- The Second Department of Orthopedic, Baiyin Integrated Traditional Chinese and Western Medicine Hospital, Baiyin, 730900, Gansu Province, China
| | - Yujing Cheng
- The First Department of Orthopedic, The First People's Hospital of Taian, Taian, 271000, Shandong Province, China.
| |
Collapse
|
21
|
Huang S, Ma Z, Hu L, Huang K, Zhang M, Zhang S, Jiang W, Wu T, Du X. Involvement of rice transcription factor OsERF19 in response to ABA and salt stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:22-30. [PMID: 34329842 DOI: 10.1016/j.plaphy.2021.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 05/24/2023]
Abstract
Soil salinity is a major environmental stressor that restricts the growth and yield of crops. Plants have evolved more complicated and precise mechanisms to cope with salt stress, as they cannot escape from harmful environments. In the current study we identified and characterized an AP2/ERF transcription factor in rice, OsERF19. The expression of OsERF19 was slightly repressed by salt stress or abscisic acid (ABA) treatment. OsERF19-overexpression (OsERF19-OX) plants displayed enhanced tolerance to salt stress and ABA hypersensitivity compared to wild type and control plants. Furthermore, OsLEA3, OsNHX1, OsHKT6, and OsOTS1 were upregulated in OsERF19-OX plants when the plants were subjected to salt stress. OsRAB21, OsNCED5, and OsP5CS1 were also upregulated in OsERF19-OX plants treated with ABA. Yeast one-hybrid and dual luciferase reporter assays demonstrated that OsERF19 directly targets the promoters of OsOTS1 and OsNCED5 and further increases their transcription. These results suggest that the transcription factor OsERF19 plays a positive role in salt stress and ABA responses in rice.
Collapse
Affiliation(s)
- Shuangzhan Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Ziming Ma
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Lanjuan Hu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Kai Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Mingxing Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Shihan Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Wenzhu Jiang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Tao Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China.
| | - Xinglin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China.
| |
Collapse
|
22
|
Overexpression of OsERF83, a Vascular Tissue-Specific Transcription Factor Gene, Confers Drought Tolerance in Rice. Int J Mol Sci 2021; 22:ijms22147656. [PMID: 34299275 PMCID: PMC8304134 DOI: 10.3390/ijms22147656] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
Abiotic stresses severely affect plant growth and productivity. To cope with abiotic stresses, plants have evolved tolerance mechanisms that are tightly regulated by reprogramming transcription factors (TFs). APETALA2/ethylene-responsive factor (AP2/ERF) transcription factors are known to play an important role in various abiotic stresses. However, our understanding of the molecular mechanisms remains incomplete. In this study, we identified the role of OsERF83, a member of the AP2/ERF transcription factor family, in response to drought stress. OsERF83 is a transcription factor localized to the nucleus and induced in response to various abiotic stresses, such as drought and abscisic acid (ABA). Overexpression of OsERF83 in transgenic plants (OsERF83OX) significantly increased drought tolerance, with higher photochemical efficiency in rice. OsERF83OX was also associated with growth retardation, with reduced grain yields under normal growth conditions. OsERF83 is predominantly expressed in the vascular tissue of all organs. Transcriptome analysis revealed that OsERF83 regulates drought response genes, which are related to the transporter (OsNPF8.10, OsNPF8.17, OsLH1), lignin biosynthesis (OsLAC17, OsLAC10, CAD8D), terpenoid synthesis (OsTPS33, OsTPS14, OsTPS3), cytochrome P450 family (Oscyp71Z4, CYP76M10), and abiotic stress-related genes (OsSAP, OsLEA14, PCC13-62). OsERF83 also up-regulates biotic stress-associated genes, including PATHOGENESIS-RELATED PROTEIN (PR), WALL-ASSOCIATED KINASE (WAK), CELLULOSE SYNTHASE-LIKE PROTEIN E1 (CslE1), and LYSM RECEPTOR-LIKE KINASE (RLK) genes. Our results provide new insight into the multiple roles of OsERF83 in the cross-talk between abiotic and biotic stress signaling pathways.
Collapse
|
23
|
Chen K, Du K, Shi Y, Yin L, Shen WH, Yu Y, Liu B, Dong A. H3K36 methyltransferase SDG708 enhances drought tolerance by promoting abscisic acid biosynthesis in rice. THE NEW PHYTOLOGIST 2021; 230:1967-1984. [PMID: 33606283 DOI: 10.1111/nph.17290] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Chromatin modifications play important roles in plant adaptation to abiotic stresses, but the precise function of histone H3 lysine 36 (H3K36) methylation in drought tolerance remains poorly evaluated. Here, we report that SDG708, a specific H3K36 methyltransferase, functions as a positive regulator of drought tolerance in rice. SDG708 promoted abscisic acid (ABA) biosynthesis by directly targeting and activating the crucial ABA biosynthesis genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (OsNCED3) and NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 5 (OsNCED5). Additionally, SDG708 induced hydrogen peroxide accumulation in the guard cells and promoted stomatal closure to reduce water loss. Overexpression of SDG708 concomitantly enhanced rice drought tolerance and increased grain yield under normal and drought stress conditions. Thus, SDG708 is potentially useful as an epigenetic regulator in breeding for grain yield improvement.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Kangxi Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yichen Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cédex, 67084, France
| | - Yu Yu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
24
|
CRISPR-Cas technology based genome editing for modification of salinity stress tolerance responses in rice (Oryza sativa L.). Mol Biol Rep 2021; 48:3605-3615. [PMID: 33950408 DOI: 10.1007/s11033-021-06375-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein (Cas) technology is an effective tool for site-specific genome editing, used to precisely induce mutagenesis in different plant species including rice. Salinity is one of the most stressful environmental constraints affecting agricultural productivity worldwide. As plant adaptation to salinity stress is under polygenic control therefore, 51 rice genes have been identified that play crucial role in response to salinity. This review offers an exclusive overview of genes identified in rice genome for salinity stress tolerance. This will provide an idea to produce rice varieties with enhanced salt tolerance using the potentially efficient CRISPR-Cas technology. Several undesirable off-target effects of CRISPR-Cas technology and their possible solutions have also been highlighted.
Collapse
|
25
|
Rice Transcription Factor OsWRKY55 Is Involved in the Drought Response and Regulation of Plant Growth. Int J Mol Sci 2021; 22:ijms22094337. [PMID: 33919349 PMCID: PMC8122443 DOI: 10.3390/ijms22094337] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/02/2022] Open
Abstract
WRKY transcription factors (TFs) have been reported to respond to biotic and abiotic stresses and regulate plant growth and development. However, the molecular mechanisms of WRKY TFs involved in drought stress and regulating plant height in rice remain largely unknown. In this study, we found that transgenic rice lines overexpressing OsWRKY55 (OsWRKY55-OE) exhibited reduced drought resistance. The OsWRKY55-OE lines showed faster water loss and greater accumulation of hydrogen peroxide (H2O2) and superoxide radical (O2−·) compared to wild-type (WT) plants under drought conditions. OsWRKY55 was expressed in various tissues and was induced by drought and abscisic acid (ABA) treatments. Through yeast two-hybrid assays, we found that OsWRKY55 interacted with four mitogen-activated protein kinases (MAPKs) that could be induced by drought, including OsMPK7, OsMPK9, OsMPK20-1, and OsMPK20-4. The activation effects of the four OsMPKs on OsWRKY55 transcriptional activity were demonstrated by a GAL4-dependent chimeric transactivation assay in rice protoplasts. Furthermore, OsWRKY55 was able to reduce plant height under normal conditions by decreasing the cell size. In addition, based on a dual luciferase reporter assay, OsWRKY55 was shown to bind to the promoter of OsAP2-39 through a yeast one-hybrid assay and positively regulate OsAP2-39 expression. These results suggest that OsWRKY55 plays a critical role in responses to drought stress and the regulation of plant height in rice, further providing valuable information for crop improvement.
Collapse
|
26
|
Morpho-Physiological, Biochemical, and Genetic Responses to Salinity in Medicago truncatula. PLANTS 2021; 10:plants10040808. [PMID: 33924007 PMCID: PMC8072551 DOI: 10.3390/plants10040808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023]
Abstract
We used an integrated morpho-physiological, biochemical, and genetic approach to investigate the salt responses of four lines (TN1.11, TN6.18, JA17, and A10) of Medicago truncatula. Results showed that TN1.11 exhibited a high tolerance to salinity, compared with the other lines, recording a salinity induced an increase in soluble sugars and soluble proteins, a slight decrease in malondialdehyde (MDA) accumulation, and less reduction in plant biomass. TN6.18 was the most susceptible to salinity as it showed less plant weight, had elevated levels of MDA, and lower levels of soluble sugars and soluble proteins under salt stress. As transcription factors of the APETALA2/ethylene responsive factor (AP2/ERF) family play important roles in plant growth, development, and responses to biotic and abiotic stresses, we performed a functional characterization of MtERF1 gene. Real-time PCR analysis revealed that MtERF1 is mainly expressed in roots and is inducible by NaCl and low temperature. Additionally, under salt stress, a greater increase in the expression of MtERF1 was found in TN1.11 plants than that in TN6.18. Therefore, the MtERF1 pattern of expression may provide a useful marker for discriminating among lines of M. truncatula and can be used as a tool in breeding programs aiming at obtaining Medicago lines with improved salt tolerance.
Collapse
|
27
|
Wang G, Li X, Li Y, Ye N, Li H, Zhang J. Comprehensive epigenome and transcriptome analysis of carbon reserve remobilization in indica and japonica rice stems under moderate soil drying. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1384-1398. [PMID: 33130853 DOI: 10.1093/jxb/eraa502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Moderate soil drying (MD) imposed at the post-anthesis stage significantly improves carbon reserve remobilization in rice stems, increasing grain yield. However, the methylome and transcriptome profiles of carbon reserve remobilization under MD are obscure in indica and japonica rice stems. Here, we generated whole-genome single-base resolution maps of the DNA methylome in indica and japonica rice stems. DNA methylation levels were higher in indica than in japonica and positively correlated with genome size. MD treatment had a weak impact on the changes in methylation levels in indica. Moreover, the number of differentially methylated regions was much lower in indica, indicating the existence of cultivar-specific methylation patterns in response to MD during grain filling. The gene encoding β-glucosidase 1, involved in the starch degradation process, was hypomethylated and up-regulated in indica, resulting in improved starch to sucrose conversion under MD treatment. Additionally, increased expression of MYBS1 transactivated the expression of AMYC2/OsAMY2A in both indica and japonica, leading to enhanced starch degradation under MD. In contrast, down-regulated expression of MYB30 resulted in increased expression of BMY5 in both cultivars. Our findings decode the dynamics of DNA methylation in indica and japonica rice stems and propose candidate genes for improving carbon reserve remobilization.
Collapse
Affiliation(s)
- Guanqun Wang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Xiaozheng Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yongqiang Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Haoxuan Li
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
28
|
Ponce KS, Guo L, Leng Y, Meng L, Ye G. Advances in Sensing, Response and Regulation Mechanism of Salt Tolerance in Rice. Int J Mol Sci 2021; 22:ijms22052254. [PMID: 33668247 PMCID: PMC7956267 DOI: 10.3390/ijms22052254] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/06/2023] Open
Abstract
Soil salinity is a serious menace in rice production threatening global food security. Rice responses to salt stress involve a series of biological processes, including antioxidation, osmoregulation or osmoprotection, and ion homeostasis, which are regulated by different genes. Understanding these adaptive mechanisms and the key genes involved are crucial in developing highly salt-tolerant cultivars. In this review, we discuss the molecular mechanisms of salt tolerance in rice—from sensing to transcriptional regulation of key genes—based on the current knowledge. Furthermore, we highlight the functionally validated salt-responsive genes in rice.
Collapse
Affiliation(s)
- Kimberly S. Ponce
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
- Correspondence: (Y.L.); (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (L.G.); Tel.: +86-514-8797-4757 (Y.L.); +86-571-6337-0136 (L.G.)
| | - Lijun Meng
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (L.M.); (G.Y.)
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (L.M.); (G.Y.)
- Strategic Innovation Platform, International Rice Research Institute, DAPO BOX 7777, Metro Manila 1301, Philippines
| |
Collapse
|
29
|
Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. PLANTS 2021; 10:plants10020259. [PMID: 33525688 PMCID: PMC7911879 DOI: 10.3390/plants10020259] [Citation(s) in RCA: 328] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
Drought stress, being the inevitable factor that exists in various environments without recognizing borders and no clear warning thereby hampering plant biomass production, quality, and energy. It is the key important environmental stress that occurs due to temperature dynamics, light intensity, and low rainfall. Despite this, its cumulative, not obvious impact and multidimensional nature severely affects the plant morphological, physiological, biochemical and molecular attributes with adverse impact on photosynthetic capacity. Coping with water scarcity, plants evolve various complex resistance and adaptation mechanisms including physiological and biochemical responses, which differ with species level. The sophisticated adaptation mechanisms and regularity network that improves the water stress tolerance and adaptation in plants are briefly discussed. Growth pattern and structural dynamics, reduction in transpiration loss through altering stomatal conductance and distribution, leaf rolling, root to shoot ratio dynamics, root length increment, accumulation of compatible solutes, enhancement in transpiration efficiency, osmotic and hormonal regulation, and delayed senescence are the strategies that are adopted by plants under water deficit. Approaches for drought stress alleviations are breeding strategies, molecular and genomics perspectives with special emphasis on the omics technology alteration i.e., metabolomics, proteomics, genomics, transcriptomics, glyomics and phenomics that improve the stress tolerance in plants. For drought stress induction, seed priming, growth hormones, osmoprotectants, silicon (Si), selenium (Se) and potassium application are worth using under drought stress conditions in plants. In addition, drought adaptation through microbes, hydrogel, nanoparticles applications and metabolic engineering techniques that regulate the antioxidant enzymes activity for adaptation to drought stress in plants, enhancing plant tolerance through maintenance in cell homeostasis and ameliorates the adverse effects of water stress are of great potential in agriculture.
Collapse
|
30
|
Wang S, Huang J, Wang X, Fan Y, Liu Q, Han Y. PagERF16 of Populus Promotes Lateral Root Proliferation and Sensitizes to Salt Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:669143. [PMID: 34149765 PMCID: PMC8213033 DOI: 10.3389/fpls.2021.669143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 05/17/2023]
Abstract
The aggravation of soil salinization limits the growth and development of plants. The AP2/ERF transcription factors (TFs) have been identified and play essential roles in plant development and stress response processes. In this study, the function of PagERF16 was detected using the overexpressing (OX) and RNAi transgenic poplar 84K hybrids. Plant growth, stomatal conductance, antioxidant enzymes activity, and PagERF16 co-expressed TFs were analyzed using morphological, physiological, and molecular methods. OX showed a more robust lateral root system with a bigger diameter and volume compared to the wild-type plants (WT). Physiological parameters indicated the bigger stomatal aperture and lower stomatal density of OX along with the lower Catalase (CAT) activity and higher malondialdehyde (MDA) content contributed to the salt sensitivity. The plant height and rooting rate of OX and RNAi were significantly worse compared to WT. Other than that, the morphology and physiology of RNAi plants were similar to WTs, suggesting that the function of PagERF16 may be redundant with other TFs. Our results indicate that when PagERF16 expression is either too high or too low, poplar growth and rooting is negatively affected. In addition, a downstream target TF, NAC45, involved in Auxin biosynthesis, was identified and PagERF16 could directly bind to its promoter to negatively regulate its expression. These results shed new light on the function of ERF TFs in plant root growth and salt stress tolerance.
Collapse
Affiliation(s)
- Shengji Wang
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Juanjuan Huang
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Xingdou Wang
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Yan Fan
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
| | - Qiang Liu
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Youzhi Han
- College of Forestry, Shanxi Agricultural University, Jinzhong, China
- *Correspondence: Youzhi Han
| |
Collapse
|
31
|
Cruz DF, De Meyer S, Ampe J, Sprenger H, Herman D, Van Hautegem T, De Block J, Inzé D, Nelissen H, Maere S. Using single-plant-omics in the field to link maize genes to functions and phenotypes. Mol Syst Biol 2020; 16:e9667. [PMID: 33346944 PMCID: PMC7751767 DOI: 10.15252/msb.20209667] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Most of our current knowledge on plant molecular biology is based on experiments in controlled laboratory environments. However, translating this knowledge from the laboratory to the field is often not straightforward, in part because field growth conditions are very different from laboratory conditions. Here, we test a new experimental design to unravel the molecular wiring of plants and study gene-phenotype relationships directly in the field. We molecularly profiled a set of individual maize plants of the same inbred background grown in the same field and used the resulting data to predict the phenotypes of individual plants and the function of maize genes. We show that the field transcriptomes of individual plants contain as much information on maize gene function as traditional laboratory-generated transcriptomes of pooled plant samples subject to controlled perturbations. Moreover, we show that field-generated transcriptome and metabolome data can be used to quantitatively predict individual plant phenotypes. Our results show that profiling individual plants in the field is a promising experimental design that could help narrow the lab-field gap.
Collapse
Affiliation(s)
- Daniel Felipe Cruz
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Sam De Meyer
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Joke Ampe
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Heike Sprenger
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Dorota Herman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Tom Van Hautegem
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Jolien De Block
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Steven Maere
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| |
Collapse
|
32
|
Huang J, Wang S, Wang X, Fan Y, Han Y. Structure and expression analysis of seven salt-related ERF genes of Populus. PeerJ 2020; 8:e10206. [PMID: 33150090 PMCID: PMC7583627 DOI: 10.7717/peerj.10206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022] Open
Abstract
Ethylene response factors (ERFs) are plant-specific transcription factors (TFs) that play important roles in plant growth and stress defense and have received a great amount of attention in recent years. In this study, seven ERF genes related to abiotic stress tolerance and response were identified in plants of the Populus genus. Systematic bioinformatics, including sequence phylogeny, genome organisation, gene structure, gene ontology (GO) annotation, etc. were detected. Expression-pattern of these seven ERF genes were analyzed using RT-qPCR and cross validated using RNA-Seq. Data from a phylogenetic tree and multiple alignment of protein sequences indicated that these seven ERF TFs belong to three subfamilies and contain AP2, YRG, and RAYD conserved domains, which may interact with downstream target genes to regulate the plant stress response. An analysis of the structure and promoter region of these seven ERF genes showed that they have multiple stress-related motifs and cis-elements, which may play roles in the plant stress-tolerance process through a transcriptional regulation mechanism; moreover, the cellular_component and molecular_function terms associated with these ERFs determined by GO annotation supported this hypothesis. In addition, the spatio-temporal expression pattern of these seven ERFs, as detected using RT-qPCR and RNA-seq, suggested that they play a critical role in mediating the salt response and tolerance in a dynamic and tissue-specific manner. The results of this study provide a solid basis to explore the functions of the stress-related ERF TFs in Populus abiotic stress tolerance and development process.
Collapse
Affiliation(s)
- Juanjuan Huang
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Xingdou Wang
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Yan Fan
- College of Forestry, Shanxi Agricultural University, Taigu, China
| | - Youzhi Han
- College of Forestry, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
33
|
Zia R, Nawaz MS, Siddique MJ, Hakim S, Imran A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol Res 2020; 242:126626. [PMID: 33189069 DOI: 10.1016/j.micres.2020.126626] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022]
Abstract
In many regions of the world, the incidence and extent of drought spells are predicted to increase which will create considerable pressure on global agricultural yields. Most likely among all the abiotic stresses, drought has the strongest effect on soil biota and plants along with complex environmental effects on other ecological systems. Plants being sessile appears the least resilient where drought creates osmotic stress, limits nutrient mobility due to soil heterogeneity, and reduces nutrient access to plant roots. Drought tolerance is a complex quantitative trait controlled by many genes and is one of the difficult traits to study and characterize. Nevertheless, existing studies on drought have indicated the mechanisms of drought resistance in plants on the morphological, physiological, and molecular basis and strategies have been devised to cope with the drought stress such as mass screening, breeding, marker-assisted selection, exogenous application of hormones or osmoprotectants and or engineering for drought resistance. These strategies have largely ignored the role of the rhizosphere in the plant's drought response. Studies have shown that soil microbes have a substantial role in modulation of plant response towards biotic and abiotic stress including drought. This response is complex and involves alteration in host root system architecture through hormones, osmoregulation, signaling through reactive oxygen species (ROS), induction of systemic tolerance (IST), production of large chain extracellular polysaccharides (EPS), and transcriptional regulation of host stress response genes. This review focuses on the integrated rhizosphere management strategy for drought stress mitigation in plants with a special focus on rhizosphere management. This combinatorial approach may include rhizosphere engineering by addition of drought-tolerant bacteria, nanoparticles, liquid nano clay (LNC), nutrients, organic matter, along with plant-modification with next-generation genome editing tool (e.g., CRISPR/Cas9) for quickly addressing emerging challenges in agriculture. Furthermore, large volumes of rainwater and wastewater generated daily can be smartly recycled and reused for agriculture. Farmers and other stakeholders will get a proper knowledge-exchange and an ideal road map to utilize available technologies effectively and to translate the measures into successful plant-water stress management. The proposed approach is cost-effective, eco-friendly, user-friendly, and will impart long-lasting benefits on agriculture and ecosystem and reduce vulnerability to climate change.
Collapse
Affiliation(s)
- Rabisa Zia
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Shoib Nawaz
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Jawad Siddique
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sughra Hakim
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577 Jhang Road, Faisalabad, Pakistan.
| |
Collapse
|
34
|
Yang L, Lei L, Liu H, Wang J, Zheng H, Zou D. Whole-genome mining of abiotic stress gene loci in rice. PLANTA 2020; 252:85. [PMID: 33052473 DOI: 10.1007/s00425-020-03488-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
We projected meta-QTL (MQTL) for drought, salinity, cold state, and high metal ion tolerance in rice using a meta-analysis based on high-density consensus maps. In addition, a genome-wide association analysis was used to validate the results of the meta-analysis, and four new chromosome intervals for mining abiotic stress candidate genes were obtained. Drought, severe cold, high salinity, and high metallic ion concentrations severely restrict rice production. Consequently, the breeding of abiotic stress-tolerant variety is being paid increasingly more attention. This study aimed to identify meta-quantitative trait loci (MQTL) for abiotic stress tolerance in rice, as well as the molecular markers and potential candidate genes of the MQTL regions. We summarized 2785 rice QTL and conducted a meta-analysis of 159 studies. We found 82 drought tolerance (DT), 70 cold tolerance (CT), 70 salt tolerance (ST), and 51 heavy metal ion tolerance (IT) meta-QTL, as well as 20 DT, 11 CT, 22 ST, and 5 IT candidate genes in the MQTL interval. Thirty-one multiple-tolerance related MQTL regions, which were highly enriched, were also detected, and 13 candidate genes related to multiple-tolerance were obtained. In addition, the correlation between DT, CT, and ST was significant in the rice genome. Four candidate genes and four MM-QTL regions were detected simultaneously by GWAS and meta-analysis. The four candidate genes showed distinct genetic differentiation and substantial genetic distance between indica and japonica rice, and the four MM-QTL are potential intervals for mining abiotic stress-related candidate genes. The candidate genes identified in this study will not only be useful for marker-assisted selection and pyramiding but will also accelerate the fine mapping and cloning of the candidate genes associated with abiotic stress-tolerance mechanisms in rice.
Collapse
Affiliation(s)
- Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Lei Lei
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - HuaLong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
35
|
Wang J, Wang R, Mao X, Zhang J, Liu Y, Xie Q, Yang X, Chang X, Li C, Zhang X, Jing R. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5377-5388. [PMID: 32479613 PMCID: PMC7501821 DOI: 10.1093/jxb/eraa271] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/26/2020] [Indexed: 05/16/2023]
Abstract
Salt and drought-induced RING finger1 (SDIR1) is a RING-type E3 ubiquitin ligase that plays a key role in ABA-mediated responses to salinity and drought stress via the ubiquitination pathway in some plant species. However, its function in wheat (Triticum aestivum) is unknown. Here, we isolated a SDIR1 member in wheat, TaSDIR1-4A, and characterized its E3 ubiquitin ligase activity. DNA polymorphism assays showed the presence of two nucleotide variation sites in the promoter region of TaSDIR1-4A, leading to the detection of the haplotypes Hap-4A-1 and Hap-4A-2 in wheat populations. Association analysis showed that TaSDIR1-4A haplotypes were associated with 1000-grain weight (TGW) across a variety of different environments, including well-watered and heat-stress conditions. Genotypes with Hap-4A-2 had higher TGW than those with Hap-4A-1. Phenotypes in both gene-silenced wheat and transgenic Arabidopsis showed that TaSDIR1-4A was a negative regulator of grain size. Gene expression assays indicated that TaSDIR1-4A was most highly expressed in flag leaves, and expression was higher in Hap-4A-1 accessions than in Hap-4A-2 accessions. The difference might be attributable to the fact that TaERF3 (ethylene response factor) can act as a transcriptional repressor of TaSDIR1-4A in Hap-4A-2 but not in Hap-4A-1. Examination of modern wheat varieties shows that the favorable haplotype has been positively selected in breeding programs in China. The functional marker for TaSDIR1-4A developed in this study should be helpful for future wheat breeding.
Collapse
Affiliation(s)
- Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruitong Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jialing Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanna Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyuan Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Wang G, Li H, Meng S, Yang J, Ye N, Zhang J. Analysis of Global Methylome and Gene Expression during Carbon Reserve Mobilization in Stems under Soil Drying. PLANT PHYSIOLOGY 2020; 183:1809-1824. [PMID: 32513834 PMCID: PMC7401115 DOI: 10.1104/pp.20.00141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/01/2020] [Indexed: 05/18/2023]
Abstract
In rice (Oryza sativa), a specific temporary source organ, the stem, is important for grain filling, and moderate soil drying (MD) enhanced carbon reserve flow from stems to increase grain yield. The dynamics and biological relevance of DNA methylation in carbon reserve remobilization during grain filling are unknown. Here, we generated whole-genome single-base resolution maps of the DNA methylome in the stem. During grain filling under MD, we observed an increase in DNA methylation of total cytosines, with more hypomethylated than hypermethylated regions. Genes responsible for DNA methylation and demethylation were up-regulated, suggesting that DNA methylation changes in the stem were regulated by antagonism between DNA methylation and demethylation activity. In addition, methylation in the CG and CHG contexts was negatively associated with gene expression, while that in the CHH context was positively associated with gene expression. A hypermethylated/up-regulated transcription factor of MYBS2 inhibited MYB30 expression and possibly enhanced β-Amylase5 expression, promoting subsequent starch degradation in rice stems under MD treatment. In addition, a hypermethylated/down-regulated transcription factor of ERF24 was predicted to interact with, and thereby decrease the expression of, abscisic acid 8'-hydroxylase1, thus increasing abscisic acid concentration under MD treatment. Our findings provide insight into the DNA methylation dynamics in carbon reserve remobilization of rice stems, demonstrate that MD increased this remobilization, and suggest a link between DNA methylation and gene expression in rice stems during grain filling.
Collapse
Affiliation(s)
- Guanqun Wang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin 99077, Hong Kong
- Department of Biology, Hong Kong Baptist University, Kowloon 99077, Hong Kong
| | - Haoxuan Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin 99077, Hong Kong
- Department of Biology, Hong Kong Baptist University, Kowloon 99077, Hong Kong
| | - Shuan Meng
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Jianchang Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225099, China
| | - Nenghui Ye
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin 99077, Hong Kong
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin 99077, Hong Kong
- Department of Biology, Hong Kong Baptist University, Kowloon 99077, Hong Kong
| |
Collapse
|
37
|
Yang H, Wang T, Yu X, Yang Y, Wang C, Yang Q, Wang X. Enhanced sugar accumulation and regulated plant hormone signalling genes contribute to cold tolerance in hypoploid Saccharum spontaneum. BMC Genomics 2020; 21:507. [PMID: 32698760 PMCID: PMC7376677 DOI: 10.1186/s12864-020-06917-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Wild sugarcane Saccharum spontaneum plants vary in ploidy, which complicates the utilization of its germplasm in sugarcane breeding. Investigations on cold tolerance in relation to different ploidies in S. spontaneum may promote the exploitation of its germplasm and accelerate the improvement of sugarcane varieties. RESULTS A hypoploid clone 12-23 (2n = 54) and hyperploid clone 15-28 (2n = 92) of S. spontaneum were analysed under cold stress from morphological, physiological, and transcriptomic perspectives. Compared with clone 15-28, clone 12-23 plants had lower plant height, leaf length, internode length, stem diameter, and leaf width; depressed stomata and prominent bristles and papillae; and thick leaves with higher bulliform cell groups and thicker adaxial epidermis. Compared with clone 15-28, clone 12-23 showed significantly lower electrical conductivity, significantly higher water content, soluble protein content, and superoxide dismutase activity, and significantly higher soluble sugar content and peroxidase activity. Under cold stress, the number of upregulated genes and downregulated genes of clone 12-23 was higher than clone 15-28, and many stress response genes and pathways were affected and enriched to varying degrees, particularly sugar and starch metabolic pathways and plant hormone signalling pathways. Under cold stress, the activity of 6-phosphate glucose trehalose synthase, trehalose phosphate phosphatase, and brassinosteroid-signalling kinase and the content of trehalose and brassinosteroids of clone 12-23 increased. CONCLUSIONS Compared with hyperploid clone 15-28, hypoploid clone 12-23 maintained a more robust osmotic adjustment system through sugar accumulation and hormonal regulation, which resulted in stronger cold tolerance.
Collapse
Affiliation(s)
- Hongli Yang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China
| | - Tianju Wang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China.,Chuxiong normal university, Chuxiong, 675000, Yunnan Province, PR China
| | - Xinghua Yu
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China.,Wenshan Academy of Agricultural Sciences, Wenshan, 663000, Yunnan Province, PR China
| | - Yang Yang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China
| | - Chunfang Wang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China
| | - Qinghui Yang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China.
| | - Xianhong Wang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan Province, PR China.
| |
Collapse
|
38
|
Lee S, Park J, Lee J, Shin D, Marmagne A, Lim PO, Masclaux-Daubresse C, An G, Nam HG. OsASN1 Overexpression in Rice Increases Grain Protein Content and Yield under Nitrogen-Limiting Conditions. PLANT & CELL PHYSIOLOGY 2020; 61:1309-1320. [PMID: 32384162 PMCID: PMC7377344 DOI: 10.1093/pcp/pcaa060] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/28/2020] [Indexed: 05/10/2023]
Abstract
Nitrogen (N) is a major limiting factor affecting crop yield in unfertilized soil. Thus, cultivars with a high N use efficiency (NUE) and good grain protein content (GPC) are needed to fulfill the growing food demand and to reduce environmental burden. This is especially true for rice (Oryza sativa L.) that is cultivated with a high input of N fertilizer and is a primary staple food crop for more than half of the global population. Here, we report that rice asparagine synthetase 1 (OsASN1) is required for grain yield and grain protein contents under both N-sufficient (conventional paddy fields) and N-limiting conditions from analyses of knockout mutant plants. In addition, we show that overexpression (OX) of OsASN1 results in better nitrogen uptake and assimilation, and increased tolerance to N limitation at the seedling stage. Under field conditions, the OsASN1 OX rice plants produced grains with increased N and protein contents without yield reduction compared to wild-type (WT) rice. Under N-limited conditions, the OX plants displayed increased grain yield and protein content with enhanced photosynthetic activity compared to WT rice. Thus, OsASN1 can be an effective target gene for the development of rice cultivars with higher grain protein content, NUE, and grain yield under N-limiting conditions.
Collapse
Affiliation(s)
- Sichul Lee
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu 42988, Korea
| | - Joonheum Park
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu 42988, Korea
| | - Jinwon Lee
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu 42988, Korea
| | - Dongjin Shin
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Korea
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Pyung Ok Lim
- Department of New Biology, DGIST, Daegu 42988, Korea
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Gynheung An
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
- Corresponding authors: Gynheung An, E-mail, ; Fax, +82312034969; Hong Gil Nam, E-mail, ; Fax, +82537851859
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu 42988, Korea
- Department of New Biology, DGIST, Daegu 42988, Korea
- Corresponding authors: Gynheung An, E-mail, ; Fax, +82312034969; Hong Gil Nam, E-mail, ; Fax, +82537851859
| |
Collapse
|
39
|
Somasundaram S, Véry AA, Vinekar RS, Ishikawa T, Kumari K, Pulipati S, Kumaresan K, Corratgé-Faillie C, Sowdhamini R, Parida A, Shabala L, Shabala S, Venkataraman G. Homology Modeling Identifies Crucial Amino-Acid Residues That Confer Higher Na+ Transport Capacity of OcHKT1;5 from Oryza coarctata Roxb. PLANT & CELL PHYSIOLOGY 2020; 61:1321-1334. [PMID: 32379873 DOI: 10.1093/pcp/pcaa061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 04/28/2020] [Indexed: 05/20/2023]
Abstract
HKT1;5 loci/alleles are important determinants of crop salinity tolerance. HKT1;5s encode plasmalemma-localized Na+ transporters, which move xylem Na+ into xylem parenchyma cells, reducing shoot Na+ accumulation. Allelic variation in rice OsHKT1;5 sequence in specific landraces (Nona Bokra OsHKT1;5-NB/Nipponbare OsHKT1;5-Ni) correlates with variation in salt tolerance. Oryza coarctata, a halophytic wild rice, grows in fluctuating salinity at the seawater-estuarine interface in Indian and Bangladeshi coastal regions. The distinct transport characteristics of the shoots and roots expressing the O. coarctata OcHKT1;5 transporter are reported vis-à-vis OsHKT1;5-Ni. Yeast sodium extrusion-deficient cells expressing OcHKT1;5 are sensitive to increasing Na+ (10-100 mM). Electrophysiological measurements in Xenopus oocytes expressing O. coarctata or rice HKT1;5 transporters indicate that OcHKT1;5, like OsHKT1;5-Ni, is a Na+-selective transporter, but displays 16-fold lower affinity for Na+ and 3.5-fold higher maximal conductance than OsHKT1;5-Ni. For Na+ concentrations >10 mM, OcHKT1;5 conductance is higher than that of OsHKT1;5-Ni, indicating the potential of OcHKT1;5 for increasing domesticated rice salt tolerance. Homology modeling/simulation suggests that four key amino-acid changes in OcHKT1;5 (in loops on the extracellular side; E239K, G207R, G214R, L363V) account for its lower affinity and higher Na+ conductance vis-à-vis OsHKT1;5-Ni. Of these, E239K in OcHKT1;5 confers lower affinity for Na+ transport, as evidenced by Na+ transport assays of reciprocal site-directed mutants for both transporters (OcHKT1;5-K239E, OsHKT1;5-Ni-E270K) in Xenopus oocytes. Both transporters have likely analogous roles in xylem sap desalinization, and differences in xylem sap Na+ concentrations in both species are attributed to differences in Na+ transport affinity/conductance between the transporters.
Collapse
Affiliation(s)
- Suji Somasundaram
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Anne-Aliénor Véry
- Biochimie & Physiologie Moléculaire des Plantes, UMR Univ. Montpellier, CNRS, INRAE, SupAgro, 34060 Montpellier Cedex 2, France
| | - Rithvik S Vinekar
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - Tetsuya Ishikawa
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, TAS 7001, Australia
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
- Biochimie & Physiologie Moléculaire des Plantes, UMR Univ. Montpellier, CNRS, INRAE, SupAgro, 34060 Montpellier Cedex 2, France
| | - Shalini Pulipati
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| | - Kavitha Kumaresan
- Krishi Vigyan Kendra, Thurupathisaram, Kanyakumari District, Tamil Nadu 629901, India
| | - Claire Corratgé-Faillie
- Biochimie & Physiologie Moléculaire des Plantes, UMR Univ. Montpellier, CNRS, INRAE, SupAgro, 34060 Montpellier Cedex 2, France
| | - R Sowdhamini
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - Ajay Parida
- Institute of Life Sciences (ILS), NALCO Square, Bhubaneswar, Odisha 751023, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, TAS 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Private Bag 98, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India
| |
Collapse
|
40
|
Lee S, Marmagne A, Park J, Fabien C, Yim Y, Kim S, Kim T, Lim PO, Masclaux‐Daubresse C, Nam HG. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:7-20. [PMID: 32369636 PMCID: PMC7383903 DOI: 10.1111/tpj.14794] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 05/19/2023]
Abstract
Nitrogen (N) is a major factor for plant development and productivity. However, the application of nitrogenous fertilizers generates environmental and economic problems. To cope with the increasing global food demand, the development of rice varieties with high nitrogen use efficiency (NUE) is indispensable for reducing environmental issues and achieving sustainable agriculture. Here, we report that the concomitant activation of the rice (Oryza sativa) Ammonium transporter 1;2 (OsAMT1;2) and Glutamate synthetase 1 (OsGOGAT1) genes leads to increased tolerance to nitrogen limitation and to better ammonium uptake and N remobilization at the whole plant level. We show that the double activation of OsAMT1;2 and OsGOGAT1 increases plant performance in agriculture, providing better N grain filling without yield penalty under paddy field conditions, as well as better grain yield and N content when plants are grown under N llimitations in field conditions. Combining OsAMT1;2 and OsGOGAT1 activation provides a good breeding strategy for improving plant growth, nitrogen use efficiency and grain productivity, especially under nitrogen limitation, through the enhancement of both nitrogen uptake and assimilation.
Collapse
Affiliation(s)
- Sichul Lee
- Center for Plant Aging ResearchInstitute for Basic Science (IBS)42988DaeguKorea
| | - Anne Marmagne
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐Saclay78000VersaillesFrance
| | - Joonheum Park
- Center for Plant Aging ResearchInstitute for Basic Science (IBS)42988DaeguKorea
| | - Chardon Fabien
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐Saclay78000VersaillesFrance
| | - Yehyun Yim
- Center for Plant Aging ResearchInstitute for Basic Science (IBS)42988DaeguKorea
| | - Sun‐ji Kim
- Center for Plant Aging ResearchInstitute for Basic Science (IBS)42988DaeguKorea
| | - Tae‐Heon Kim
- Department of Southern Area Crop ScienceNational Institute of Crop Science (NICS)RDA50424MiryangRepublic of Korea
| | | | | | - Hong Gil Nam
- Center for Plant Aging ResearchInstitute for Basic Science (IBS)42988DaeguKorea
- Department of New BiologyDGIST42988DaeguKorea
| |
Collapse
|
41
|
Zhang L, Liu P, Wu J, Qiao L, Zhao G, Jia J, Gao L, Wang J. Identification of a novel ERF gene, TaERF8, associated with plant height and yield in wheat. BMC PLANT BIOLOGY 2020; 20:263. [PMID: 32513101 PMCID: PMC7282131 DOI: 10.1186/s12870-020-02473-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/27/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Ethylene Responsive Factor (ERF) is involved in various processes of plant development and stress responses. In wheat, several ERFs have been identified and their roles in mediating biotic or abiotic stresses have been elucidated. However, their effects on wheat plant architecture and yield-related traits remain poorly studied. RESULTS In this study, TaERF8, a new member of the ERF family, was isolated in wheat (Triticum aestivum L.). Three homoeologous TaERF8 genes, TaERF8-2A, TaERF8-2B and TaERF8-2D (named according to sub-genomic origin), were cloned from the common wheat cultivar Chinese Spring. The three homoeologs showed highly similar protein sequences, with identical AP2 domain. Whereas homoeologs sequence polymorphism analysis allowed the establishment of ten, two and three haplotypes, respectively. Expression analysis revealed that TaERF8s were constitutively expressed through entire wheat developmental stages. Analysis of related agronomic traits of TaERF8-2B overexpressing transgenic lines showed that TaERF8-2B plays a role in regulating plant architecture and yield-related traits. Association analysis between TaERF8-2B haplotypes (Hap-2B-1 and Hap-2B-2) and agronomic traits showed that TaERF8-2B was associated with plant height, heading date and 1000 kernel weight (TKW). The TaERF8-2B haplotypes distribution analysis revealed that Hap-2B-2 frequency increased in domesticated emmer wheat and modern varieties, being predominant in five major China wheat producing zones. CONCLUSION These results indicated that TaERF8s are differentially involved in the regulation of wheat growth and development. Haplotype Hap-2B-2 was favored during domestication and in Chinese wheat breeding. Unveiling that the here described molecular marker TaERF8-2B-InDel could be used for marker-assisted selection, plant architecture and TKW improvement in wheat breeding.
Collapse
Affiliation(s)
- Lei Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Pan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linyi Qiao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Guangyao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jianming Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, China.
| |
Collapse
|
42
|
Liu N, Cheng F. Association mapping for yield traits in Paeonia rockii based on SSR markers within transcription factors of comparative transcriptome. BMC PLANT BIOLOGY 2020; 20:245. [PMID: 32487017 PMCID: PMC7265254 DOI: 10.1186/s12870-020-02449-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 05/18/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Allelic variation underlying the quantitative traits in plants is caused by the extremely complex regulation process. Tree peony originated in China is a peculiar ornamental, medicinal and oil woody plant. Paeonia rockii, one of tree peony species, is a precious emerging woody oil crop. However, in this valuable plant, the study of functional loci associated with yield traits has rarely been identified. Therefore, to explore the genetic architecture of 24 yield quantitative traits, the association mapping was first reported in 420 unrelated cultivated P. rockii individuals based on the next-generation sequencing (NGS) and single-molecule long-read sequencing (SMLRS). RESULTS The developed 58 pairs of polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) markers from 959 candidate transcription factors (TFs) associated with yield were used for genotyping the 420 P. rockii accessions. We observed a high level of genetic diversity (polymorphic information content, PIC = 0.514) and low linkage disequilibrium (LD) between EST-SSRs. Moreover, four subpopulations in the association population were revealed by STRUCTURE analyses. Further, single-marker association analysis identified 141 significant associations, involving 17 quantitative traits and 41 EST-SSRs. These loci were mainly from AP2, TCP, MYB, HSF, bHLH, GATA, and B3 gene families and showed a small proportion of the phenotypic variance (3.79 to 37.45%). CONCLUSIONS Our results summarize a valuable collection of functional loci associated with yield traits in P. rockii, and provide a precious resource that reveals allelic variation underlying quantitative traits in Paeonia and other woody oil crops.
Collapse
Affiliation(s)
- Na Liu
- Peony International Institute, Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fangyun Cheng
- Peony International Institute, Beijing Advanced Innovation Center of Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
43
|
Hu J, Zeng T, Xia Q, Huang L, Zhang Y, Zhang C, Zeng Y, Liu H, Zhang S, Huang G, Wan W, Ding Y, Hu F, Yang C, Chen L, Wang W. Identification of Key Genes for the Ultrahigh Yield of Rice Using Dynamic Cross-tissue Network Analysis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2020; 18:256-270. [PMID: 32736037 PMCID: PMC7801251 DOI: 10.1016/j.gpb.2019.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 08/26/2019] [Accepted: 11/08/2019] [Indexed: 11/29/2022]
Abstract
Significantly increasing crop yield is a major and worldwide challenge for food supply and security. It is well-known that rice cultivated at Taoyuan in Yunnan of China can produce the highest yield worldwide. Yet, the gene regulatory mechanism underpinning this ultrahigh yield has been a mystery. Here, we systematically collected the transcriptome data for seven key tissues at different developmental stages using rice cultivated both at Taoyuan as the case group and at another regular rice planting place Jinghong as the control group. We identified the top 24 candidate high-yield genes with their network modules from these well-designed datasets by developing a novel computational systems biology method, i.e., dynamic cross-tissue (DCT) network analysis. We used one of the candidate genes, OsSPL4, whose function was previously unknown, for gene editing experimental validation of the high yield, and confirmed that OsSPL4 significantly affects panicle branching and increases the rice yield. This study, which included extensive field phenotyping, cross-tissue systems biology analyses, and functional validation, uncovered the key genes and gene regulatory networks underpinning the ultrahigh yield of rice. The DCT method could be applied to other plant or animal systems if different phenotypes under various environments with the common genome sequences of the examined sample. DCT can be downloaded from https://github.com/ztpub/DCT.
Collapse
Affiliation(s)
- Jihong Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tao Zeng
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai 201210, China
| | - Qiongmei Xia
- Institute of Food Crop of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Liyu Huang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Yesheng Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; BGI-Baoshan, Baoshan 678004, China
| | - Chuanchao Zhang
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hui Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shilai Zhang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Guangfu Huang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yi Ding
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fengyi Hu
- School of Agriculture, Yunnan University, Kunming 650500, China.
| | - Congdang Yang
- Institute of Food Crop of Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Luonan Chen
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
44
|
Hu Z, Huang X, Amombo E, Liu A, Fan J, Bi A, Ji K, Xin H, Chen L, Fu J. The ethylene responsive factor CdERF1 from bermudagrass (Cynodon dactylon) positively regulates cold tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110432. [PMID: 32234227 DOI: 10.1016/j.plantsci.2020.110432] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/26/2019] [Accepted: 01/31/2020] [Indexed: 05/02/2023]
Abstract
Cold stress is one of the major environmental factors that limit growth and utilization of bermudagrass [Cynodon dactylon (L.) Pers], a prominent warm-season turfgrass. However, the molecular mechanism of cold response in bermudagrass remains largely unknown. In this study, we characterized a cold-responsive ERF (ethylene responsive factor) transcription factor, CdERF1, from bermudagrass. CdERF1 expression was induced by cold, drought and salinity stresses. The CdERF1 protein was nucleus-localized and encompassed transcriptional activation activity. Transgenic Arabidopsis plants overexpressing CdERF1 showed enhanced cold tolerance, whereas CdERF1-underexpressing bermudagrass plants via virus induced gene silencing (VIGS) method exhibited reduced cold resistance compared with control, respectively. Under cold stress, electrolyte leakage (EL), malondialdehyde (MDA), H2O2 and O2- contents were reduced, while the activities of SOD and POD were elevated in transgenic Arabidopsis. By contrast, these above physiological indicators in CdERF1-underexpressing bermudagrass exhibited the opposite trend. To further explore the possible molecular mechanism of bermudagrass cold stress response, the RNA-Seq analyses were performed. The result indicated that overexpression of CdERF1 activated a subset of stress-related genes in transgenic Arabidopsis, such as CBF2, pEARLI1 (lipid transfer protein), PER71 (peroxidase) and LTP (lipid transfer protein). Interestingly, under-expression of CdERF1 suppressed the transcription of many genes in CdERF1-underexpressing bermudagrass, also including pEARLI1 (lipid transfer protein) and PER70 (peroxidase). All these results revealed that CdERF1 positively regulates plant cold response probably by activating stress-related genes, PODs, CBF2 and LTPs. This study also suggests that CdERF1 may be an ideal candidate in the effort to improve cold tolerance of bermudagrass in the further molecular breeding.
Collapse
Affiliation(s)
- Zhengrong Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuebing Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Ao Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou Jiangsu 225009, China
| | - Aoyue Bi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Kang Ji
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China.
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China; Shandong Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai 264025, China.
| |
Collapse
|
45
|
Rajkumar MS, Shankar R, Garg R, Jain M. Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars. Genomics 2020; 112:3537-3548. [PMID: 32278023 DOI: 10.1016/j.ygeno.2020.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022]
Abstract
DNA methylation governs gene regulation in plants in response to environmental conditions. Here, we analyzed role of DNA methylation under desiccation and salinity stresses in three (IR64, stress-sensitive; Nagina 22, drought-tolerant and Pokkali, salinity-tolerant) rice cultivars via bisulphite sequencing. Methylation in CG context within gene body and methylation in CHH context in distal promoter regions were positively correlated with gene expression. Hypomethylation in Nagina 22 and hypermethylation in Pokkali in response to desiccation and salinity stresses, respectively, were correlated with higher expression of few abiotic stress response related genes. Most of the differentially methylated and differentially expressed genes (DMR-DEGs) were cultivar-specific, suggesting an important role of DNA methylation in abiotic stress responses in rice in cultivar-specific manner. DMR-DEGs harboring differentially methylated cytosines due to DNA polymorphisms between the sensitive and tolerant cultivars in their promoter regions and/or coding regions were identified, suggesting the role of epialleles in abiotic stress responses.
Collapse
Affiliation(s)
- Mohan Singh Rajkumar
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rama Shankar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
46
|
Gao S, Song T, Han J, He M, Zhang Q, Zhu Y, Zhu Z. A calcium-dependent lipid binding protein, OsANN10, is a negative regulator of osmotic stress tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110420. [PMID: 32081268 DOI: 10.1016/j.plantsci.2020.110420] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 05/21/2023]
Abstract
Annexin, a multi-gene family in plants, is essential for plant growth and stress responses. Recent studies demonstrated a positive effect of annexin in abiotic stress responses. Interestingly, we found OsANN10, a putative annexin gene in rice, negatively regulated plant responses to osmotic stress. Knocking down OsANN10 significantly decreased the content of H2O2 by increasing Peroxidase (POD) and Catalase (CAT) activities, further reducing oxidative damage in rice leaves, suggesting a negative regulation of OsANN10 in protecting cell membrane against oxidative damage via scavenging ROS under osmotic stress.
Collapse
Affiliation(s)
- Shuxin Gao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Tao Song
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Jianbo Han
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Mengli He
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Qian Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China
| | - Ying Zhu
- The Institute of Viral and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhengge Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
47
|
Wang G, Li H, Wang K, Yang J, Duan M, Zhang J, Ye N. Regulation of gene expression involved in the remobilization of rice straw carbon reserves results from moderate soil drying during grain filling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:604-618. [PMID: 31621135 DOI: 10.1111/tpj.14565] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/09/2019] [Indexed: 05/27/2023]
Abstract
Carbon reserves in rice straw before flowering contribute greatly to grain filling. Moderate soil drying imposed at the post-anthesis stage significantly promotes carbon reserve remobilization in straws of rice, but the regulation of this process at the proteomic and transcriptomic level remains poorly understood. In this study, we applied moderate soil drying (MD) to rice at the post-anthesis stage, which was followed by dynamic proteomic and transcriptomic studies using SWATH-MS and RNA-seq analysis. MD treatment upregulated the proteins alpha-glucosidase, beta-glucosidase and starch phosphorylase, which are responsible for starch degradation. Furthermore, MD treatment enhanced the expression of proteins involved in the sucrose synthesis pathway, including SPS8 and SPP1. In addition, various monosaccharide transporters (MSTs) and sucrose transporter 2 (SUT2), which are pivotal in carbon reserve remobilization, were also upregulated in straw by MD treatment. Differentially expressed transcription factors, including GRAS, TCP, trihelix, TALE, C3H, and NF-YC, were predicted to interact with other proteins to mediate carbon reserve remobilization in response to MD treatment. Further correlation analysis revealed that the abundances of most of the differentially expressed proteins were not correlated with the corresponding transcript levels, indicating that the carbon reserve remobilization process was probably regulated by posttranscriptional modification. Our results provide insights into the molecular mechanisms underlying the regulation of carbon reserve remobilization from straw to grain in rice under MD conditions.
Collapse
Affiliation(s)
- Guanqun Wang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Haoxuan Li
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Kai Wang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jianchang Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, 225000, China
| | - Meijuan Duan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| |
Collapse
|
48
|
Li H, Dong Q, Zhao Q, Shi S, Ran K. Isolation, sequencing, and expression analysis of 30 AP2/ERF transcription factors in apple. PeerJ 2020; 8:e8391. [PMID: 31988809 PMCID: PMC6970539 DOI: 10.7717/peerj.8391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AP2/ERF transcription factors are involved in the regulation of plant growth, development, and stress responses. Our research objective was to characterize novel apple (Malus × domestica Borkh.) genes encoding AP2/ERF transcription factors involved in regulation of plant growth, development, and stress response. The transcriptional level of apple AP2/ERF genes in different tissues and under various biotic and abiotic stress was determined to provide valuable insights into the function of AP2/ERF transcription factors in apple. METHODS Thirty full-length cDNA sequences of apple AP2/ERF genes were isolated from 'Zihong Fuji' apple (Malus × domestica cv. Zihong Fuji) via homologous comparison and RT-PCR confirmation, and the obtained cDNA sequences and the deduced amino acid sequences were analyzed with bioinformatics methods. Expression levels of apple AP2/ERF genes were detected in 16 different tissues using a known array. Expression patterns of apple AP2/ERF genes were detected in response to Alternaria alternata apple pathotype (AAAP) infection using RNA-seq with existing data, and the expression of apple AP2/ERF genes was analyzed under NaCl and mannitol treatments using qRT-PCR. RESULTS The sequencing results produced 30 cDNAs (designated as MdERF3-8, MdERF11, MdERF16-19, MdERF22-28, MdERF31-35, MdERF39, MdAP2D60, MdAP2D62-65, and MdRAV2). Phylogenetic analysis revealed that MdERF11/16, MdERF33/35, MdERF34/39, and MdERF18/23 belonged to groups A-2, A-4, A-5, and A-6 of the DREB subfamily, respectively; MdERF31, MdERF19, MdERF4/25/28/32, MdERF24, MdERF5/6/27, and MdERF3/7/8/17/22/26 belonged to groups B-1, B-2, B-3, B-4, B-5, and B-6 of the ERF subfamily, respectively; MdAP2D60 and MdAP2D62/63/64/65 belonged to the AP2 subfamily; and MdRAV2 belonged to the RAV subfamily. Array results indicated that 30 apple AP2/ERF genes were expressed in all examined tissues to different degrees. RNA-seq results using previously reported data showed that many members of the apple ERF and DREB subfamilies were induced by Alternaria alternate apple pathotype (AAAP) infection. Under salt treatment, many members in the apple ERF and DREB subfamilies were transcriptionally up or down-regulated. Under mannitol treatment, many members of the apple ERF, DREB, and AP2 subfamilies were induced at the transcriptional level. Taken together, the results indicated that the cloned apple AP2/ERF genes were expressed in all examined tissues. These genes were up-regulated or down-regulated in response to AAAP infection and to salt or mannitol treatment, which suggested they may be involved in regulating growth, development, and stress response in apple.
Collapse
Affiliation(s)
- Huifeng Li
- Shandong Institute of Pomology, Tai’an, China
| | - Qinglong Dong
- College of Horticulture, Northwest A and F University, Yangling, China
| | - Qiang Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Song Shi
- Nanjing Agricultural University, Nanjing, China
| | - Kun Ran
- Shandong Institute of Pomology, Tai’an, China
| |
Collapse
|
49
|
Nutan KK, Singla-Pareek SL, Pareek A. The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:684-698. [PMID: 31613368 DOI: 10.1093/jxb/erz368] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/06/2019] [Indexed: 05/23/2023]
Abstract
GATA represents a highly conserved family of transcription factors reported in organisms ranging from fungi to angiosperms. A member of this family, OsGATA8, localized within the Saltol QTL in rice, has been reported to be induced by salinity, drought, and ABA. However, its precise role in stress tolerance has not yet been elucidated. Using genetic, molecular, and physiological analyses, in this study we show that OsGATA8 increases seed size and tolerance to abiotic stresses in both Arabidopsis and rice. Transgenic lines of rice were generated with 3-fold overexpression of OsGATA8 compared to the wild-type together with knockdown lines with 2-fold lower expression. The overexpressing lines showed higher biomass accumulation and higher photosynthetic efficiency in seedlings compared to the wild-type and knockdown lines under both normal and salinity-stress conditions. OsGATA8 appeared to be an integrator of diverse cellular processes, including K+/Na+ content, photosynthetic efficiency, relative water content, Fv/Fm ratio, and the stability to sub-cellular organelles. It also contributed to maintaining yield under stress, which was ~46% higher in overexpression plants compared with the wild-type. OsGATA8 produced these effects by regulating the expression of critical genes involved in stress tolerance, scavenging of reactive oxygen species, and chlorophyll biosynthesis.
Collapse
Affiliation(s)
- Kamlesh K Nutan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
50
|
Nutan KK, Rathore RS, Tripathi AK, Mishra M, Pareek A, Singla-Pareek SL. Integrating the dynamics of yield traits in rice in response to environmental changes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:490-506. [PMID: 31410470 DOI: 10.1093/jxb/erz364] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 05/23/2023]
Abstract
Reductions in crop yields as a consequence of global climate change threaten worldwide food security. It is therefore imperative to develop high-yielding crop plants that show sustainable production under stress conditions. In order to achieve this aim through breeding or genetic engineering, it is crucial to have a complete and comprehensive understanding of the molecular basis of plant architecture and the regulation of its sub-components that contribute to yield under stress. Rice is one of the most widely consumed crops and is adversely affected by abiotic stresses such as drought and salinity. Using it as a model system, in this review we present a summary of our current knowledge of the physiological and molecular mechanisms that determine yield traits in rice under optimal growth conditions and under conditions of environmental stress. Based on physiological functioning, we also consider the best possible combination of genes that may improve grain yield under optimal as well as environmentally stressed conditions. The principles that we present here for rice will also be useful for similar studies in other grain crops.
Collapse
Affiliation(s)
- Kamlesh Kant Nutan
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Amit Kumar Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|