1
|
Nugroho RAP, Zaag I, Lamade E, Lukman R, Caliman JP, Tcherkez G. Metabolomics-Assisted Breeding in Oil Palm: Potential and Current Perspectives. Int J Mol Sci 2024; 25:9833. [PMID: 39337319 PMCID: PMC11431877 DOI: 10.3390/ijms25189833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Oil palm is presently the most important oil-producing crop worldwide in terms of oil production and consumption. However, oil palm cultivation faces important challenges such as adverse climatic conditions, expensive fertilization requirements, and fungal pathogens, including Ganoderma. Intense efforts in oil palm breeding are devoted to improving both oil production yield and resistance to environmental cues. Metabolomics can be of interest because it provides many quantitative traits and metabolic signatures that can be selected for to optimize oil palm performance. Here, we briefly review how metabolomics can help oil palm breeding, and to do so, we give examples of recent metabolomics analyses and provide a roadmap to use metabolomics-assisted breeding.
Collapse
Affiliation(s)
- Rizki Anjal P Nugroho
- Institut de Recherche en Horticulture et Semences, Université d'Angers, 49070 Beaucouzé, France
- Sinar Mas Agro Resources and Technology Research Institute (SMARTRI), Jalan Teuku Umar 19, Pekanbaru 28112, Riau, Indonesia
| | - Ismail Zaag
- Institut de Recherche en Horticulture et Semences, Université d'Angers, 49070 Beaucouzé, France
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR ABSYS, 34398 Montpellier, France
- Systèmes de Pérennes, University of Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, 34398 Montpellier, France
| | - Emmanuelle Lamade
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR ABSYS, 34398 Montpellier, France
- Systèmes de Pérennes, University of Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, 34398 Montpellier, France
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Rudy Lukman
- Sinar Mas Agro Resources and Technology Research Institute (SMARTRI), Jalan Teuku Umar 19, Pekanbaru 28112, Riau, Indonesia
| | - Jean-Pierre Caliman
- Sinar Mas Agro Resources and Technology Research Institute (SMARTRI), Jalan Teuku Umar 19, Pekanbaru 28112, Riau, Indonesia
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et Semences, Université d'Angers, 49070 Beaucouzé, France
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Westhoff P, Weber APM. The role of metabolomics in informing strategies for improving photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1696-1713. [PMID: 38158893 DOI: 10.1093/jxb/erad508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Photosynthesis plays a vital role in acclimating to and mitigating climate change, providing food and energy security for a population that is constantly growing, and achieving an economy with zero carbon emissions. A thorough comprehension of the dynamics of photosynthesis, including its molecular regulatory network and limitations, is essential for utilizing it as a tool to boost plant growth, enhance crop yields, and support the production of plant biomass for carbon storage. Photorespiration constrains photosynthetic efficiency and contributes significantly to carbon loss. Therefore, modulating or circumventing photorespiration presents opportunities to enhance photosynthetic efficiency. Over the past eight decades, substantial progress has been made in elucidating the molecular basis of photosynthesis, photorespiration, and the key regulatory mechanisms involved, beginning with the discovery of the canonical Calvin-Benson-Bassham cycle. Advanced chromatographic and mass spectrometric technologies have allowed a comprehensive analysis of the metabolite patterns associated with photosynthesis, contributing to a deeper understanding of its regulation. In this review, we summarize the results of metabolomics studies that shed light on the molecular intricacies of photosynthetic metabolism. We also discuss the methodological requirements essential for effective analysis of photosynthetic metabolism, highlighting the value of this technology in supporting strategies aimed at enhancing photosynthesis.
Collapse
Affiliation(s)
- Philipp Westhoff
- CEPLAS Plant Metabolomics and Metabolism Laboratory, Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Cocuron JC, Alonso AP. 13C-labeling reveals non-conventional pathways providing carbon for hydroxy fatty acid synthesis in Physaria fendleri. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1754-1766. [PMID: 37668184 PMCID: PMC11275461 DOI: 10.1093/jxb/erad343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Physaria fendleri is a member of the Brassicaceae that produces in its embryos hydroxy fatty acids, constituents of oils that are very valuable and widely used by industry for cosmetics, lubricants, biofuels, etc. Free of toxins and rich in hydroxy fatty acids, Physaria provides a promising alternative to imported castor oil and is on the verge of being commercialized. This study aims to identify important biochemical step(s) for oil synthesis in Physaria, which may serve as target(s) for future crop improvement. To advance towards this goal, the endosperm composition was analysed by LC-MS/MS to develop and validate culture conditions that mimic the development of the embryos in planta. Using developing Physaria embryos in culture and 13C-labeling, our studies revealed that: (i) Physaria embryos metabolize carbon into biomass with an efficiency significantly lower than other photosynthetic embryos; (ii) the plastidic malic enzyme provides 42% of the pyruvate used for de novo fatty acid synthesis, which is the highest measured so far in developing 'green' oilseed embryos; and (iii) Physaria uses non-conventional pathways to channel carbon into oil, namely the Rubisco shunt, which fixes CO2 released in the plastid, and the reversibility of isocitrate dehydrogenase, which provides additional carbon for fatty acid elongation.
Collapse
Affiliation(s)
| | - Ana Paula Alonso
- BioAnalytical Facility, University of North Texas, Denton, TX 76203, USA
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
4
|
Kambhampati S, Hubbard AH, Koley S, Gomez JD, Marsolais F, Evans BS, Young JD, Allen DK. SIMPEL: using stable isotopes to elucidate dynamics of context specific metabolism. Commun Biol 2024; 7:172. [PMID: 38347116 PMCID: PMC10861564 DOI: 10.1038/s42003-024-05844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
The capacity to leverage high resolution mass spectrometry (HRMS) with transient isotope labeling experiments is an untapped opportunity to derive insights on context-specific metabolism, that is difficult to assess quantitatively. Tools are needed to comprehensively mine isotopologue information in an automated, high-throughput way without errors. We describe a tool, Stable Isotope-assisted Metabolomics for Pathway Elucidation (SIMPEL), to simplify analysis and interpretation of isotope-enriched HRMS datasets. The efficacy of SIMPEL is demonstrated through examples of central carbon and lipid metabolism. In the first description, a dual-isotope labeling experiment is paired with SIMPEL and isotopically nonstationary metabolic flux analysis (INST-MFA) to resolve fluxes in central metabolism that would be otherwise challenging to quantify. In the second example, SIMPEL was paired with HRMS-based lipidomics data to describe lipid metabolism based on a single labeling experiment. Available as an R package, SIMPEL extends metabolomics analyses to include isotopologue signatures necessary to quantify metabolic flux.
Collapse
Affiliation(s)
- Shrikaar Kambhampati
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Allen H Hubbard
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Javier D Gomez
- Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Frédéric Marsolais
- London Research and Development Center, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Bradley S Evans
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Jamey D Young
- Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
- Agricultural Research Service, US Department of Agriculture, St. Louis, MO, 63132, USA.
| |
Collapse
|
5
|
Shi H, Ernst E, Heinzel N, McCorkle S, Rolletschek H, Borisjuk L, Ortleb S, Martienssen R, Shanklin J, Schwender J. Mechanisms of metabolic adaptation in the duckweed Lemna gibba: an integrated metabolic, transcriptomic and flux analysis. BMC PLANT BIOLOGY 2023; 23:458. [PMID: 37789269 PMCID: PMC10546790 DOI: 10.1186/s12870-023-04480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Duckweeds are small, rapidly growing aquatic flowering plants. Due to their ability for biomass production at high rates they represent promising candidates for biofuel feedstocks. Duckweeds are also excellent model organisms because they can be maintained in well-defined liquid media, usually reproduce asexually, and because genomic resources are becoming increasingly available. To demonstrate the utility of duckweed for integrated metabolic studies, we examined the metabolic adaptation of growing Lemna gibba cultures to different nutritional conditions. RESULTS To establish a framework for quantitative metabolic research in duckweeds we derived a central carbon metabolism network model of Lemna gibba based on its draft genome. Lemna gibba fronds were grown with nitrate or glutamine as nitrogen source. The two conditions were compared by quantification of growth kinetics, metabolite levels, transcript abundance, as well as by 13C-metabolic flux analysis. While growing with glutamine, the fronds grew 1.4 times faster and accumulated more protein and less cell wall components compared to plants grown on nitrate. Characterization of photomixotrophic growth by 13C-metabolic flux analysis showed that, under both metabolic growth conditions, the Calvin-Benson-Bassham cycle and the oxidative pentose-phosphate pathway are highly active, creating a futile cycle with net ATP consumption. Depending on the nitrogen source, substantial reorganization of fluxes around the tricarboxylic acid cycle took place, leading to differential formation of the biosynthetic precursors of the Asp and Gln families of proteinogenic amino acids. Despite the substantial reorganization of fluxes around the tricarboxylic acid cycle, flux changes could largely not be associated with changes in transcripts. CONCLUSIONS Through integrated analysis of growth rate, biomass composition, metabolite levels, and metabolic flux, we show that Lemna gibba is an excellent system for quantitative metabolic studies in plants. Our study showed that Lemna gibba adjusts to different nitrogen sources by reorganizing central metabolism. The observed disconnect between gene expression regulation and metabolism underscores the importance of metabolic flux analysis as a tool in such studies.
Collapse
Affiliation(s)
- Hai Shi
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Evan Ernst
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Nicolas Heinzel
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Sean McCorkle
- Brookhaven National Laboratory, Computational Science Initiative, Upton, NY, 11973, USA
| | - Hardy Rolletschek
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Stefan Ortleb
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Robert Martienssen
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
6
|
Lima VF, Freire FBS, Cândido-Sobrinho SA, Porto NP, Medeiros DB, Erban A, Kopka J, Schwarzländer M, Fernie AR, Daloso DM. Unveiling the dark side of guard cell metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107862. [PMID: 37413941 DOI: 10.1016/j.plaphy.2023.107862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Evidence suggests that guard cells have higher rate of phosphoenolpyruvate carboxylase (PEPc)-mediated dark CO2 assimilation than mesophyll cells. However, it is unknown which metabolic pathways are activated following dark CO2 assimilation in guard cells. Furthermore, it remains unclear how the metabolic fluxes throughout the tricarboxylic acid (TCA) cycle and associated pathways are regulated in illuminated guard cells. Here we carried out a13C-HCO3 labelling experiment in tobacco guard cells harvested under continuous dark or during the dark-to-light transition to elucidate principles of metabolic dynamics downstream of CO2 assimilation. Most metabolic changes were similar between dark-exposed and illuminated guard cells. However, illumination altered the metabolic network structure of guard cells and increased the 13C-enrichment in sugars and metabolites associated to the TCA cycle. Sucrose was labelled in the dark, but light exposure increased the 13C-labelling and leads to more drastic reductions in the content of this metabolite. Fumarate was strongly labelled under both dark and light conditions, while illumination increased the 13C-enrichment in pyruvate, succinate and glutamate. Only one 13C was incorporated into malate and citrate in either dark or light conditions. Our results indicate that several metabolic pathways are redirected following PEPc-mediated CO2 assimilation in the dark, including gluconeogenesis and the TCA cycle. We further showed that the PEPc-mediated CO2 assimilation provides carbons for gluconeogenesis, the TCA cycle and glutamate synthesis and that previously stored malate and citrate are used to underpin the specific metabolic requirements of illuminated guard cells.
Collapse
Affiliation(s)
- Valéria F Lima
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Francisco Bruno S Freire
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - Nicole P Porto
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische-Wilhelms-Universität Münster, D-48143, Münster, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60451-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
7
|
Daloso DDM, Morais EG, Oliveira E Silva KF, Williams TCR. Cell-type-specific metabolism in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1093-1114. [PMID: 36987968 DOI: 10.1111/tpj.16214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/31/2023]
Abstract
Every plant organ contains tens of different cell types, each with a specialized function. These functions are intrinsically associated with specific metabolic flux distributions that permit the synthesis of the ATP, reducing equivalents and biosynthetic precursors demanded by the cell. Investigating such cell-type-specific metabolism is complicated by the mosaic of different cells within each tissue combined with the relative scarcity of certain types. However, techniques for the isolation of specific cells, their analysis in situ by microscopy, or modeling of their function in silico have permitted insight into cell-type-specific metabolism. In this review we present some of the methods used in the analysis of cell-type-specific metabolism before describing what we know about metabolism in several cell types that have been studied in depth; (i) leaf source and sink cells; (ii) glandular trichomes that are capable of rapid synthesis of specialized metabolites; (iii) guard cells that must accumulate large quantities of the osmolytes needed for stomatal opening; (iv) cells of seeds involved in storage of reserves; and (v) the mesophyll and bundle sheath cells of C4 plants that participate in a CO2 concentrating cycle. Metabolism is discussed in terms of its principal features, connection to cell function and what factors affect the flux distribution. Demand for precursors and energy, availability of substrates and suppression of deleterious processes are identified as key factors in shaping cell-type-specific metabolism.
Collapse
Affiliation(s)
- Danilo de Menezes Daloso
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Eva Gomes Morais
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Karen Fernanda Oliveira E Silva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília-DF, 70910-900, Brazil
| | | |
Collapse
|
8
|
Zhai Z, Blanford JK, Cai Y, Sun J, Liu H, Shi H, Schwender J, Shanklin J. CYCLIN-DEPENDENT KINASE 8 positively regulates oil synthesis by activating WRINKLED1 transcription. THE NEW PHYTOLOGIST 2023; 238:724-736. [PMID: 36683527 DOI: 10.1111/nph.18764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
CYCLIN-DEPENDENT KINASE 8 (CDK8), a component of the kinase module of the Mediator complex in Arabidopsis, is involved in many processes, including flowering, plant defense, drought, and energy stress responses. Here, we investigated cdk8 mutants and CDK8-overexpressing lines to evaluate whether CDK8 also plays a role in regulating lipid synthesis, an energy-demanding anabolism. Quantitative lipid analysis demonstrated significant reductions in lipid synthesis rates and lipid accumulation in developing siliques and seedlings of cdk8, and conversely, elevated lipid contents in wild-type seed overexpressing CDK8. Transactivation assays show that CDK8 is necessary for maximal transactivation of the master seed oil activator WRINKLED1 (WRI1) by the seed maturation transcription factor ABSCISIC ACID INSENSITIVE3, supporting a direct regulatory role of CDK8 in oil synthesis. Thermophoretic studies show GEMINIVIRUS REP INTERACTING KINASE1, an activating kinase of KIN10 (a catalytic subunit of SUCROSE NON-FERMENTING1-RELATED KINASE1), physically interacts with CDK8, resulting in its phosphorylation and degradation in the presence of KIN10. This work defines a mechanism whereby, once activated, KIN10 downregulates WRI1 expression and suppresses lipid synthesis via promoting the degradation of CDK8. The KIN10-CDK8-dependent regulation of lipid synthesis described herein is additional to our previously reported KIN10-dependent phosphorylation and degradation of WRI1.
Collapse
Affiliation(s)
- Zhiyang Zhai
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jantana K Blanford
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Yingqi Cai
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jing Sun
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Hui Liu
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Hai Shi
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jorg Schwender
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| |
Collapse
|
9
|
Deslandes-Hérold G, Zanella M, Solhaug E, Fischer-Stettler M, Sharma M, Buergy L, Herrfurth C, Colinas M, Feussner I, Abt MR, Zeeman SC. The PRK/Rubisco shunt strongly influences Arabidopsis seed metabolism and oil accumulation, affecting more than carbon recycling. THE PLANT CELL 2023; 35:808-826. [PMID: 36454674 PMCID: PMC9940875 DOI: 10.1093/plcell/koac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The carbon efficiency of storage lipid biosynthesis from imported sucrose in green Brassicaceae seeds is proposed to be enhanced by the PRK/Rubisco shunt, in which ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts outside the context of the Calvin-Benson-Bassham cycle to recycle CO2 molecules released during fatty acid synthesis. This pathway utilizes metabolites generated by the nonoxidative steps of the pentose phosphate pathway. Photosynthesis provides energy for reactions such as the phosphorylation of ribulose 5-phosphate by phosphoribulokinase (PRK). Here, we show that loss of PRK in Arabidopsis thaliana (Arabidopsis) blocks photoautotrophic growth and is seedling-lethal. However, seeds containing prk embryos develop normally, allowing us to use genetics to assess the importance of the PRK/Rubisco shunt. Compared with nonmutant siblings, prk embryos produce one-third less lipids-a greater reduction than expected from simply blocking the proposed PRK/Rubisco shunt. However, developing prk seeds are also chlorotic and have elevated starch contents compared with their siblings, indicative of secondary effects. Overexpressing PRK did not increase embryo lipid content, but metabolite profiling suggested that Rubisco activity becomes limiting. Overall, our findings show that the PRK/Rubisco shunt is tightly integrated into the carbon metabolism of green Arabidopsis seeds, and that its manipulation affects seed glycolysis, starch metabolism, and photosynthesis.
Collapse
Affiliation(s)
- Gabriel Deslandes-Hérold
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Martina Zanella
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Erik Solhaug
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Michaela Fischer-Stettler
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Mayank Sharma
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Léo Buergy
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Cornelia Herrfurth
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
| | - Maite Colinas
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Ivo Feussner
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
| | - Melanie R Abt
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
10
|
Sagun JV, Yadav UP, Alonso AP. Progress in understanding and improving oil content and quality in seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1116894. [PMID: 36778708 PMCID: PMC9909563 DOI: 10.3389/fpls.2023.1116894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The world's population is projected to increase by two billion by 2050, resulting in food and energy insecurity. Oilseed crops have been identified as key to address these challenges: they produce and store lipids in the seeds as triacylglycerols that can serve as a source of food/feed, renewable fuels, and other industrially-relevant chemicals. Therefore, improving seed oil content and composition has generated immense interest. Research efforts aiming to unravel the regulatory pathways involved in fatty acid synthesis and to identify targets for metabolic engineering have made tremendous progress. This review provides a summary of the current knowledge of oil metabolism and discusses how photochemical activity and unconventional pathways can contribute to high carbon conversion efficiency in seeds. It also highlights the importance of 13C-metabolic flux analysis as a tool to gain insights on the pathways that regulate oil biosynthesis in seeds. Finally, a list of key genes and regulators that have been recently targeted to enhance seed oil production are reviewed and additional possible targets in the metabolic pathways are proposed to achieve desirable oil content and quality.
Collapse
Affiliation(s)
| | | | - Ana Paula Alonso
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| |
Collapse
|
11
|
Cai Y, Zhai Z, Blanford J, Liu H, Shi H, Schwender J, Xu C, Shanklin J. Purple acid phosphatase2 stimulates a futile cycle of lipid synthesis and degradation, and mitigates the negative growth effects of triacylglycerol accumulation in vegetative tissues. THE NEW PHYTOLOGIST 2022; 236:1128-1139. [PMID: 35851483 DOI: 10.1111/nph.18392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Storage lipids (mostly triacylglycerols, TAGs) serve as an important energy and carbon reserve in plants, and hyperaccumulation of TAG in vegetative tissues can have negative effects on plant growth. Purple acid phosphatase2 (PAP2) was previously shown to affect carbon metabolism and boost plant growth. However, the effects of PAP2 on lipid metabolism remain unknown. Here, we demonstrated that PAP2 can stimulate a futile cycle of fatty acid (FA) synthesis and degradation, and mitigate negative growth effects associated with high accumulation of TAG in vegetative tissues. Constitutive expression of PAP2 in Arabidopsis thaliana enhanced both lipid synthesis and degradation in leaves and led to a substantial increase in seed oil yield. Suppressing lipid degradation in a PAP2-overexpressing line by disrupting sugar-dependent1 (SDP1), a predominant TAG lipase, significantly elevated vegetative TAG content and improved plant growth. Diverting FAs from membrane lipids to TAGs in PAP2-overexpressing plants by constitutively expressing phospholipid:diacylglycerol acyltransferase1 (PDAT1) greatly increased TAG content in vegetative tissues without compromising biomass yield. These results highlight the potential of combining PAP2 with TAG-promoting factors to enhance carbon assimilation, FA synthesis and allocation to TAGs for optimized plant growth and storage lipid accumulation in vegetative tissues.
Collapse
Affiliation(s)
- Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Zhiyang Zhai
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hai Shi
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
12
|
Koley S, Chu KL, Mukherjee T, Morley SA, Klebanovych A, Czymmek KJ, Allen DK. Metabolic synergy in Camelina reproductive tissues for seed development. SCIENCE ADVANCES 2022; 8:eabo7683. [PMID: 36306367 PMCID: PMC9616503 DOI: 10.1126/sciadv.abo7683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis in fruits is well documented, but its contribution to seed development and yield remains largely unquantified. In oilseeds, the pods are green and elevated with direct access to sunlight. With 13C labeling in planta and through an intact pod labeling system, a unique multi-tissue comprehensive flux model mechanistically described how pods assimilate up to one-half (33 to 45%) of seed carbon by proximal photosynthesis in Camelina sativa. By capturing integrated tissue metabolism, the studies reveal the contribution of plant architecture beyond leaves, to enable seed filling and maximize the number of viable seeds. The latent capacity of the pod wall in the absence of leaves contributes approximately 79% of seed biomass, supporting greater seed sink capacity and higher theoretical yields that suggest an opportunity for crop productivity gains.
Collapse
Affiliation(s)
- Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Kevin L. Chu
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | - Stewart A. Morley
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | | | - Doug K. Allen
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, MO, USA
| |
Collapse
|
13
|
Wang W, Wen H, Jin Q, Yu W, Li G, Wu M, Bai H, Shen L, Wu C. Comparative transcriptome analysis on candidate genes involved in lipid biosynthesis of developing kernels for three walnut cultivars in Xinjiang. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Kuczynski C, McCorkle S, Keereetaweep J, Shanklin J, Schwender J. An expanded role for the transcription factor WRINKLED1 in the biosynthesis of triacylglycerols during seed development. FRONTIERS IN PLANT SCIENCE 2022; 13:955589. [PMID: 35991420 PMCID: PMC9389262 DOI: 10.3389/fpls.2022.955589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/28/2022] [Indexed: 06/12/2023]
Abstract
The transcription factor WRINKLED1 (WRI1) is known as a master regulator of fatty acid synthesis in developing oilseeds of Arabidopsis thaliana and other species. WRI1 is known to directly stimulate the expression of many fatty acid biosynthetic enzymes and a few targets in the lower part of the glycolytic pathway. However, it remains unclear to what extent and how the conversion of sugars into fatty acid biosynthetic precursors is controlled by WRI1. To shortlist possible gene targets for future in-planta experimental validation, here we present a strategy that combines phylogenetic foot printing of cis-regulatory elements with additional layers of evidence. Upstream regions of protein-encoding genes in A. thaliana were searched for the previously described DNA-binding consensus for WRI1, the ASML1/WRI1 (AW)-box. For about 900 genes, AW-box sites were found to be conserved across orthologous upstream regions in 11 related species of the crucifer family. For 145 select potential target genes identified this way, affinity of upstream AW-box sequences to WRI1 was assayed by Microscale Thermophoresis. This allowed definition of a refined WRI1 DNA-binding consensus. We find that known WRI1 gene targets are predictable with good confidence when upstream AW-sites are phylogenetically conserved, specifically binding WRI1 in the in vitro assay, positioned in proximity to the transcriptional start site, and if the gene is co-expressed with WRI1 during seed development. When targets predicted in this way are mapped to central metabolism, a conserved regulatory blueprint emerges that infers concerted control of contiguous pathway sections in glycolysis and fatty acid biosynthesis by WRI1. Several of the newly predicted targets are in the upper glycolysis pathway and the pentose phosphate pathway. Of these, plastidic isoforms of fructokinase (FRK3) and of phosphoglucose isomerase (PGI1) are particularly corroborated by previously reported seed phenotypes of respective null mutations.
Collapse
|
15
|
Experimental Evidence for Seed Metabolic Allometry in Barrel Medic (Medicago truncatula Gaertn.). Int J Mol Sci 2022; 23:ijms23158484. [PMID: 35955618 PMCID: PMC9369157 DOI: 10.3390/ijms23158484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Seed size is often considered to be an important trait for seed quality, i.e., vigour and germination performance. It is believed that seed size reflects the quantity of reserve material and thus the C and N sources available for post-germinative processes. However, mechanisms linking seed size and quality are poorly documented. In particular, specific metabolic changes when seed size varies are not well-known. To gain insight into this aspect, we examined seed size and composition across different accessions of barrel medic (Medicago truncatula Gaertn.) from the genetic core collection. We conducted multi-elemental analyses and isotope measurements, as well as exact mass GC–MS metabolomics. There was a systematic increase in N content (+0.17% N mg−1) and a decrease in H content (–0.14% H mg−1) with seed size, reflecting lower lipid and higher S-poor protein quantity. There was also a decrease in 2H natural abundance (δ2H), due to the lower prevalence of 2H-enriched lipid hydrogen atoms that underwent isotopic exchange with water during seed development. Metabolomics showed that seed size correlates with free amino acid and hexoses content, and anticorrelates with amino acid degradation products, disaccharides, malic acid and free fatty acids. All accessions followed the same trend, with insignificant differences in metabolic properties between them. Our results show that there is no general, proportional increase in metabolite pools with seed size. Seed size appears to be determined by metabolic balance (between sugar and amino acid degradation vs. utilisation for storage), which is in turn likely determined by phloem source metabolite delivery during seed development.
Collapse
|
16
|
Nwafor CC, Li D, Qin P, Li L, Zhang W, Zhou Y, Xu J, Yin Y, Cao J, He L, Xiang F, Liu C, Guo L, Zhou Y, Cahoon EB, Zhang C. Genetic and Biochemical Investigation of Seed Fatty Acid Accumulation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:942054. [PMID: 35909728 PMCID: PMC9328158 DOI: 10.3389/fpls.2022.942054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
As a vegetable oil, consisting principally of triacylglycerols, is the major storage form of photosynthetically-fixed carbon in oilseeds which are of significant agricultural and industrial value. Photosynthesis in chlorophyll-containing green seeds, along with photosynthesis in leaves and other green organs, generates ATP and reductant (NADPH and NADH) needed for seed fatty acid production. However, contribution of seed photosynthesis to fatty acid accumulation in seeds have not been well-defined. Here, we report the contribution of seed-photosynthesis to fatty acid production by probing segregating green (photosynthetically-competent) and non-green or yellow (photosynthetically-non-competent) seeds in siliques of an Arabidopsis chlorophyll synthase mutant. Using this mutant, we found that yellow seeds lacking photosynthetic capacity reached 80% of amounts of oil in green seeds at maturity. Combining this with studies using shaded siliques, we determined that seed-photosynthesis accounts for 20% and silique and leaf/stem photosynthesis each account for ~40% of the ATP and reductant for seed oil production. Transmission electron microscopy (TEM) and pyridine nucleotides and ATP analyses revealed that seed photosynthesis provides ATP and reductant for oil production mostly during early development, as evidenced by delayed oil accumulation in non-green seeds. Transcriptomic analyses suggests that the oxidative pentose phosphate pathway could be the source of carbon, energy and reductants required for fatty acid synthesis beyond the early stages of seed development.
Collapse
Affiliation(s)
- Chinedu Charles Nwafor
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Delin Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- Department of Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yuanwei Zhou
- Yichang Academy of Agricultural Science, Yichang, China
| | - Jingjing Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Cao
- Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan, China
| | - Limin He
- Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan, China
| | - Fu Xiang
- Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains and College of Biology and Agriculture Resource, Huanggang Normal University, Huanggang, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Chu KL, Koley S, Jenkins LM, Bailey SR, Kambhampati S, Foley K, Arp JJ, Morley SA, Czymmek KJ, Bates PD, Allen DK. Metabolic flux analysis of the non-transitory starch tradeoff for lipid production in mature tobacco leaves. Metab Eng 2022; 69:231-248. [PMID: 34920088 PMCID: PMC8761171 DOI: 10.1016/j.ymben.2021.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/12/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022]
Abstract
The metabolic plasticity of tobacco leaves has been demonstrated via the generation of transgenic plants that can accumulate over 30% dry weight as triacylglycerols. In investigating the changes in carbon partitioning in these high lipid-producing (HLP) leaves, foliar lipids accumulated stepwise over development. Interestingly, non-transient starch was observed to accumulate with plant age in WT but not HLP leaves, with a drop in foliar starch concurrent with an increase in lipid content. The metabolic carbon tradeoff between starch and lipid was studied using 13CO2-labeling experiments and isotopically nonstationary metabolic flux analysis, not previously applied to the mature leaves of a crop. Fatty acid synthesis was investigated through assessment of acyl-acyl carrier proteins using a recently derived quantification method that was extended to accommodate isotopic labeling. Analysis of labeling patterns and flux modeling indicated the continued production of unlabeled starch, sucrose cycling, and a significant contribution of NADP-malic enzyme to plastidic pyruvate production for the production of lipids in HLP leaves, with the latter verified by enzyme activity assays. The results suggest an inherent capacity for a developmentally regulated carbon sink in tobacco leaves and may in part explain the uniquely successful leaf lipid engineering efforts in this crop.
Collapse
Affiliation(s)
- Kevin L Chu
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Lauren M Jenkins
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Sally R Bailey
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | | | - Kevin Foley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Jennifer J Arp
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Stewart A Morley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.
| |
Collapse
|
18
|
Lima VF, Erban A, Daubermann AG, Freire FBS, Porto NP, Cândido-Sobrinho SA, Medeiros DB, Schwarzländer M, Fernie AR, Dos Anjos L, Kopka J, Daloso DM. Establishment of a GC-MS-based 13 C-positional isotopomer approach suitable for investigating metabolic fluxes in plant primary metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1213-1233. [PMID: 34486764 DOI: 10.1111/tpj.15484] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
13 C-Metabolic flux analysis (13 C-MFA) has greatly contributed to our understanding of plant metabolic regulation. However, the generation of detailed in vivo flux maps remains a major challenge. Flux investigations based on nuclear magnetic resonance have resolved small networks with high accuracy. Mass spectrometry (MS) approaches have broader potential, but have hitherto been limited in their power to deduce flux information due to lack of atomic level position information. Herein we established a gas chromatography (GC) coupled to MS-based approach that provides 13 C-positional labelling information in glucose, malate and glutamate (Glu). A map of electron impact (EI)-mediated MS fragmentation was created and validated by 13 C-positionally labelled references via GC-EI-MS and GC-atmospheric pressure chemical ionization-MS technologies. The power of the approach was revealed by analysing previous 13 C-MFA data from leaves and guard cells, and 13 C-HCO3 labelling of guard cells harvested in the dark and after the dark-to-light transition. We demonstrated that the approach is applicable to established GC-EI-MS-based 13 C-MFA without the need for experimental adjustment, but will benefit in the future from paired analyses by the two GC-MS platforms. We identified specific glucose carbon atoms that are preferentially labelled by photosynthesis and gluconeogenesis, and provide an approach to investigate the phosphoenolpyruvate carboxylase (PEPc)-derived 13 C-incorporation into malate and Glu. Our results suggest that gluconeogenesis and the PEPc-mediated CO2 assimilation into malate are activated in a light-independent manner in guard cells. We further highlight that the fluxes from glycolysis and PEPc toward Glu are restricted by the mitochondrial thioredoxin system in illuminated leaves.
Collapse
Affiliation(s)
- Valéria F Lima
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - André G Daubermann
- Departamento de Biologia, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras-MG, 37200-900, Brazil
| | - Francisco Bruno S Freire
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Nicole P Porto
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - Silvio A Cândido-Sobrinho
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| | - David B Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische-Wilhelms-Universität Münster, Münster, D-48143, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Leticia Dos Anjos
- Departamento de Biologia, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras-MG, 37200-900, Brazil
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Danilo M Daloso
- LabPLant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brazil
| |
Collapse
|
19
|
Cloutier M, Xiang D, Gao P, Kochian LV, Zou J, Datla R, Wang E. Integrative Modeling of Gene Expression and Metabolic Networks of Arabidopsis Embryos for Identification of Seed Oil Causal Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:642938. [PMID: 33889166 PMCID: PMC8056077 DOI: 10.3389/fpls.2021.642938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Fatty acids in crop seeds are a major source for both vegetable oils and industrial applications. Genetic improvement of fatty acid composition and oil content is critical to meet the current and future demands of plant-based renewable seed oils. Addressing this challenge can be approached by network modeling to capture key contributors of seed metabolism and to identify underpinning genetic targets for engineering the traits associated with seed oil composition and content. Here, we present a dynamic model, using an Ordinary Differential Equations model and integrated time-course gene expression data, to describe metabolic networks during Arabidopsis thaliana seed development. Through in silico perturbation of genes, targets were predicted in seed oil traits. Validation and supporting evidence were obtained for several of these predictions using published reports in the scientific literature. Furthermore, we investigated two predicted targets using omics datasets for both gene expression and metabolites from the seed embryo, and demonstrated the applicability of this network-based model. This work highlights that integration of dynamic gene expression atlases generates informative models which can be explored to dissect metabolic pathways and lead to the identification of causal genes associated with seed oil traits.
Collapse
Affiliation(s)
- Mathieu Cloutier
- Laboratory of Bioinformatics and Systems Biology, National Research Council Canada, Montreal, QC, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Edwin Wang
- Laboratory of Bioinformatics and Systems Biology, National Research Council Canada, Montreal, QC, Canada
- Centre for Health Genomics and Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Daloso DDM, Williams TCR. Current Challenges in Plant Systems Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:155-170. [DOI: 10.1007/978-3-030-80352-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Correa SM, Alseekh S, Atehortúa L, Brotman Y, Ríos-Estepa R, Fernie AR, Nikoloski Z. Model-assisted identification of metabolic engineering strategies for Jatropha curcas lipid pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:76-95. [PMID: 33001507 DOI: 10.1111/tpj.14906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Efficient approaches to increase plant lipid production are necessary to meet current industrial demands for this important resource. While Jatropha curcas cell culture can be used for in vitro lipid production, scaling up the system for industrial applications requires an understanding of how growth conditions affect lipid metabolism and yield. Here we present a bottom-up metabolic reconstruction of J. curcas supported with labeling experiments and biomass characterization under three growth conditions. We show that the metabolic model can accurately predict growth and distribution of fluxes in cell cultures and use these findings to pinpoint energy expenditures that affect lipid biosynthesis and metabolism. In addition, by using constraint-based modeling approaches we identify network reactions whose joint manipulation optimizes lipid production. The proposed model and computational analyses provide a stepping stone for future rational optimization of other agronomically relevant traits in J. curcas.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Grupo de Biotecnología, Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Saleh Alseekh
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Lucía Atehortúa
- Grupo de Biotecnología, Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Departamento de Ingeniería Química, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Zoran Nikoloski
- Centre for Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany
- Systems Biology and Mathematical Modelling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
22
|
Correa SM, Fernie AR, Nikoloski Z, Brotman Y. Towards model-driven characterization and manipulation of plant lipid metabolism. Prog Lipid Res 2020; 80:101051. [PMID: 32640289 DOI: 10.1016/j.plipres.2020.101051] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Plant lipids have versatile applications and provide essential fatty acids in human diet. Therefore, there has been a growing interest to better characterize the genetic basis, regulatory networks, and metabolic pathways that shape lipid quantity and composition. Addressing these issues is challenging due to context-specificity of lipid metabolism integrating environmental, developmental, and tissue-specific cues. Here we systematically review the known metabolic pathways and regulatory interactions that modulate the levels of storage lipids in oilseeds. We argue that the current understanding of lipid metabolism provides the basis for its study in the context of genome-wide plant metabolic networks with the help of approaches from constraint-based modeling and metabolic flux analysis. The focus is on providing a comprehensive summary of the state-of-the-art of modeling plant lipid metabolic pathways, which we then contrast with the existing modeling efforts in yeast and microalgae. We then point out the gaps in knowledge of lipid metabolism, and enumerate the recent advances of using genome-wide association and quantitative trait loci mapping studies to unravel the genetic regulations of lipid metabolism. Finally, we offer a perspective on how advances in the constraint-based modeling framework can propel further characterization of plant lipid metabolism and its rational manipulation.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel; Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modelling Group, Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
23
|
Rolletschek H, Schwender J, König C, Chapman KD, Romsdahl T, Lorenz C, Braun HP, Denolf P, Van Audenhove K, Munz E, Heinzel N, Ortleb S, Rutten T, McCorkle S, Borysyuk T, Guendel A, Shi H, Vander Auwermeulen M, Bourot S, Borisjuk L. Cellular Plasticity in Response to Suppression of Storage Proteins in the Brassica napus Embryo. THE PLANT CELL 2020; 32:2383-2401. [PMID: 32358071 PMCID: PMC7346569 DOI: 10.1105/tpc.19.00879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 05/16/2023]
Abstract
The tradeoff between protein and oil storage in oilseed crops has been tested here in oilseed rape (Brassica napus) by analyzing the effect of suppressing key genes encoding protein storage products (napin and cruciferin). The phenotypic outcomes were assessed using NMR and mass spectrometry imaging, microscopy, transcriptomics, proteomics, metabolomics, lipidomics, immunological assays, and flux balance analysis. Surprisingly, the profile of storage products was only moderately changed in RNA interference transgenics. However, embryonic cells had undergone remarkable architectural rearrangements. The suppression of storage proteins led to the elaboration of membrane stacks enriched with oleosin (sixfold higher protein abundance) and novel endoplasmic reticulum morphology. Protein rebalancing and amino acid metabolism were focal points of the metabolic adjustments to maintain embryonic carbon/nitrogen homeostasis. Flux balance analysis indicated a rather minor additional demand for cofactors (ATP and NADPH). Thus, cellular plasticity in seeds protects against perturbations to its storage capabilities and, hence, contributes materially to homeostasis. This study provides mechanistic insights into the intriguing link between lipid and protein storage, which have implications for biotechnological strategies directed at improving oilseed crops.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Seeland, Germany
| | - Jörg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Christina König
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Kent D Chapman
- University of North Texas, BioDiscovery Institute, Department of Biological Sciences, Denton, Texas 76203
| | - Trevor Romsdahl
- University of North Texas, BioDiscovery Institute, Department of Biological Sciences, Denton, Texas 76203
| | - Christin Lorenz
- Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany
| | - Peter Denolf
- BASF Innovation Center Ghent, 9052-Zwijnaarde, Belgium
| | | | - Eberhard Munz
- Leibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Seeland, Germany
| | - Nicolas Heinzel
- Leibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Seeland, Germany
| | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Seeland, Germany
| | - Sean McCorkle
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | | | - André Guendel
- Leibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Seeland, Germany
| | - Hai Shi
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | | | | | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
24
|
Schroeder WL, Saha R. Introducing an Optimization- and explicit Runge-Kutta- based Approach to Perform Dynamic Flux Balance Analysis. Sci Rep 2020; 10:9241. [PMID: 32514037 PMCID: PMC7280247 DOI: 10.1038/s41598-020-65457-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/04/2020] [Indexed: 11/17/2022] Open
Abstract
In this work we introduce the generalized Optimization- and explicit Runge-Kutta-based Approach (ORKA) to perform dynamic Flux Balance Analysis (dFBA), which is numerically more accurate and computationally tractable than existing approaches. ORKA is applied to a four-tissue (leaf, root, seed, and stem) model of Arabidopsis thaliana, p-ath773, uniquely capturing the core-metabolism of several stages of growth from seedling to senescence at hourly intervals. Model p-ath773 has been designed to show broad agreement with published plant-scale properties such as mass, maintenance, and senescence, yet leaving reaction-level behavior unconstrainted. Hence, it serves as a framework to study the reaction-level behavior necessary for observed plant-scale behavior. Two such case studies of reaction-level behavior include the lifecycle progression of sulfur metabolism and the diurnal flow of water throughout the plant. Specifically, p-ath773 shows how transpiration drives water flow through the plant and how water produced by leaf tissue metabolism may contribute significantly to transpired water. Investigation of sulfur metabolism elucidates frequent cross-compartment exchange of a standing pool of amino acids which is used to regulate the proton flow. Overall, p-ath773 and ORKA serve as scaffolds for dFBA-based lifecycle modeling of plants and other systems to further broaden the scope of in silico metabolic investigation.
Collapse
Affiliation(s)
- Wheaton L Schroeder
- Department of Chemical and Biomolecular Engineering, University of Nebraska - Lincoln, Lincoln, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska - Lincoln, Lincoln, USA.
| |
Collapse
|
25
|
Tsogtbaatar E, Cocuron JC, Alonso AP. Non-conventional pathways enable pennycress (Thlaspi arvense L.) embryos to achieve high efficiency of oil biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3037-3051. [PMID: 32006014 PMCID: PMC7260723 DOI: 10.1093/jxb/eraa060] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/03/2020] [Indexed: 05/22/2023]
Abstract
Pennycress (Thlaspi arvense L.) accumulates oil up to 35% of the total seed biomass, and its overall fatty acid composition is suitable for aviation fuel. However, for this plant to become economically viable, its oil production needs to be improved. In vivo culture conditions that resemble the development of pennycress embryos in planta were developed based on the composition of the liquid endosperm. Then, substrate uptake rates and biomass accumulation were measured from cultured pennycress embryos, revealing a biosynthetic efficiency of 93%, which is one of the highest in comparison with other oilseeds to date. Additionally, the ratio of carbon in oil to CO2 indicated that non-conventional pathways are likely to be responsible for such a high carbon conversion efficiency. To identify the reactions enabling this phenomenon, parallel labeling experiments with 13C-labeled substrates were conducted in pennycress embryos. The main findings of these labeling experiments include: (i) the occurrence of the oxidative reactions of the pentose phosphate pathway in the cytosol; (ii) the reversibility of isocitrate dehydrogenase; (iii) the operation of the plastidic NADP-dependent malic enzyme; and (iv) the refixation of CO2 by Rubisco. These reactions are key providers of carbon and reductant for fatty acid synthesis and elongation.
Collapse
Affiliation(s)
| | | | - Ana Paula Alonso
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
- Correspondence:
| |
Collapse
|
26
|
Sink/Source Balance of Leaves Influences Amino Acid Pools and Their Associated Metabolic Fluxes in Winter Oilseed Rape ( Brassica napus L.). Metabolites 2020; 10:metabo10040150. [PMID: 32295054 PMCID: PMC7240945 DOI: 10.3390/metabo10040150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 11/18/2022] Open
Abstract
Nitrogen remobilization processes from source to sink tissues in plants are determinant for seed yield and their implementation results in a complete reorganization of the primary metabolism during sink/source transition. Here, we decided to characterize the impact of the sink/source balance on amino acid metabolism in the leaves of winter oilseed rape grown at the vegetative stage. We combined a quantitative metabolomics approach with an instationary 15N-labeling experiment by using [15N]L-glycine as a metabolic probe on leaf ranks with a gradual increase in their source status. We showed that the acquisition of the source status by leaves was specifically accompanied by a decrease in asparagine, glutamine, proline and S-methyl-l-cysteine sulphoxide contents and an increase in valine and threonine contents. Dynamic analysis of 15N enrichment and concentration of amino acids revealed gradual changes in the dynamics of amino acid metabolism with respect to the sink/source status of leaf ranks. Notably, nitrogen assimilation into valine, threonine and proline were all decreased in source leaves compared to sink leaves. Overall, our results suggested a reduction in de novo amino acid biosynthesis during sink/source transition at the vegetative stage.
Collapse
|
27
|
Dellero Y, Heuillet M, Marnet N, Bellvert F, Millard P, Bouchereau A. Sink/Source Balance of Leaves Influences Amino Acid Pools and Their Associated Metabolic Fluxes in Winter Oilseed Rape ( Brassica napus L.). Metabolites 2020; 10:metabo10040150. [PMID: 32295054 DOI: 10.15454/1i9pet] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 05/27/2023] Open
Abstract
Nitrogen remobilization processes from source to sink tissues in plants are determinant for seed yield and their implementation results in a complete reorganization of the primary metabolism during sink/source transition. Here, we decided to characterize the impact of the sink/source balance on amino acid metabolism in the leaves of winter oilseed rape grown at the vegetative stage. We combined a quantitative metabolomics approach with an instationary 15N-labeling experiment by using [15N]L-glycine as a metabolic probe on leaf ranks with a gradual increase in their source status. We showed that the acquisition of the source status by leaves was specifically accompanied by a decrease in asparagine, glutamine, proline and S-methyl-l-cysteine sulphoxide contents and an increase in valine and threonine contents. Dynamic analysis of 15N enrichment and concentration of amino acids revealed gradual changes in the dynamics of amino acid metabolism with respect to the sink/source status of leaf ranks. Notably, nitrogen assimilation into valine, threonine and proline were all decreased in source leaves compared to sink leaves. Overall, our results suggested a reduction in de novo amino acid biosynthesis during sink/source transition at the vegetative stage.
Collapse
Affiliation(s)
- Younès Dellero
- Department Plant Biology and Breeding, Agrocampus Ouest, Institute for Genetics, Environment and Plant Protection, French National Research Institute for Agriculture, Food and Environment, University of Rennes II, 35653 Le Rheu, France
| | - Maud Heuillet
- Department Plant Biology and Breeding, Department Microbiology and Food Chain, INSA, TBI, French National Center for Scientific Research, French National Research Institute for Agriculture, Food and Environment, University of Toulouse, 31400 Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, 33140 Toulouse, France
| | - Nathalie Marnet
- Department Plant Biology and Breeding and Department Transform, Agrocampus Ouest, Plateau de Profilage Métabolique et Métabolique (P2M2), Biopolymers Interactions Assemblies, Institute for Genetics, Environment and Plant Protection, French National Research Institute for Agriculture, Food and Environment, University of Rennes II, 35653 Le Rheu, France
| | - Floriant Bellvert
- Department Plant Biology and Breeding, Department Microbiology and Food Chain, INSA, TBI, French National Center for Scientific Research, French National Research Institute for Agriculture, Food and Environment, University of Toulouse, 31400 Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, 33140 Toulouse, France
| | - Pierre Millard
- Department Plant Biology and Breeding, Department Microbiology and Food Chain, INSA, TBI, French National Center for Scientific Research, French National Research Institute for Agriculture, Food and Environment, University of Toulouse, 31400 Toulouse, France
| | - Alain Bouchereau
- Department Plant Biology and Breeding, Agrocampus Ouest, Institute for Genetics, Environment and Plant Protection, French National Research Institute for Agriculture, Food and Environment, University of Rennes II, 35653 Le Rheu, France
- Department Plant Biology and Breeding and Department Transform, Agrocampus Ouest, Plateau de Profilage Métabolique et Métabolique (P2M2), Biopolymers Interactions Assemblies, Institute for Genetics, Environment and Plant Protection, French National Research Institute for Agriculture, Food and Environment, University of Rennes II, 35653 Le Rheu, France
| |
Collapse
|
28
|
Carey LM, Clark TJ, Deshpande RR, Cocuron JC, Rustad EK, Shachar-Hill Y. High Flux Through the Oxidative Pentose Phosphate Pathway Lowers Efficiency in Developing Camelina Seeds. PLANT PHYSIOLOGY 2020; 182:493-506. [PMID: 31699846 PMCID: PMC6945844 DOI: 10.1104/pp.19.00740] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/19/2019] [Indexed: 05/25/2023]
Abstract
Many seeds are green during development, and light has been shown to play a role in the efficiency with which maternally supplied substrates are converted into storage compounds. However, the effects of light on the fluxes through central metabolism that determine this efficiency are poorly understood. Here, we used metabolic flux analysis to determine the effects of light on central metabolism in developing embryos of false flax (Camelina sativa). Metabolic efficiency in C. sativa is of interest because, despite its growing importance as a model oilseed and engineering target and its potential as a biofuel crop, its yields are lower than other major oilseed species. Culture conditions under which steady-state growth and composition of developing embryos match those in planta were used to quantify substrate uptake and respiration rates. The carbon conversion efficiency (CCE) was 21% ± 3% in the dark and 42% ± 4% under high light. Under physiological illumination, the CCE (32% ± 2%) was substantially lower than in green and nongreen oilseeds studied previously. 13C and 14C isotopic labeling experiments were used together with computer-aided modeling to map fluxes through central metabolism. Fluxes through the oxidative pentose phosphate pathway (OPPP) were the principal source of CO2 production and strongly negatively correlated with CCE across light levels. OPPP fluxes were greatly in excess of demand for NAD(P)H for biosynthesis and larger than those measured in other systems. Excess reductant appears to be dissipated via cyanide-insensitive respiration. OPPP enzymes therefore represent a potential target for increasing efficiency and yield in C. sativa.
Collapse
Affiliation(s)
- Lisa M Carey
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Teresa J Clark
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Rahul R Deshpande
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | | | - Emily K Rustad
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
29
|
Acket S, Degournay A, Rossez Y, Mottelet S, Villon P, Troncoso-Ponce A, Thomasset B. 13C-Metabolic Flux Analysis in Developing Flax ( Linum usitatissinum L.) Embryos to Understand Storage Lipid Biosynthesis. Metabolites 2019; 10:metabo10010014. [PMID: 31878240 PMCID: PMC7022742 DOI: 10.3390/metabo10010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 11/26/2022] Open
Abstract
Flax (Linum usitatissinum L.) oil is an important source of α-linolenic (C18:3 ω-3). This polyunsaturated fatty acid is well known for its nutritional role in human and animal diets. Understanding storage lipid biosynthesis in developing flax embryos can lead to an increase in seed yield via marker-assisted selection. While a tremendous amount of work has been done on different plant species to highlight their metabolism during embryo development, a comprehensive analysis of metabolic flux in flax is still lacking. In this context, we have utilized in vitro cultured developing embryos of flax and determined net fluxes by performing three complementary parallel labeling experiments with 13C-labeled glucose and glutamine. Metabolic fluxes were estimated by computer-aided modeling of the central metabolic network including 11 cofactors of 118 reactions of the central metabolism and 12 pseudo-fluxes. A focus on lipid storage biosynthesis and the associated pathways was done in comparison with rapeseed, arabidopsis, maize and sunflower embryos. In our hands, glucose was determined to be the main source of carbon in flax embryos, leading to the conversion of phosphoenolpyruvate to pyruvate. The oxidative pentose phosphate pathway (OPPP) was identified as the producer of NADPH for fatty acid biosynthesis. Overall, the use of 13C-metabolic flux analysis provided new insights into the flax embryo metabolic processes involved in storage lipid biosynthesis. The elucidation of the metabolic network of this important crop plant reinforces the relevance of the application of this technique to the analysis of complex plant metabolic systems.
Collapse
Affiliation(s)
- Sébastien Acket
- Alliance Sorbonne Université, Université de Technologie de Compiègne, 60205 Compiègne CEDEX, France; (A.D.); (Y.R.); (A.T.-P.); (B.T.)
- Correspondence:
| | - Anthony Degournay
- Alliance Sorbonne Université, Université de Technologie de Compiègne, 60205 Compiègne CEDEX, France; (A.D.); (Y.R.); (A.T.-P.); (B.T.)
| | - Yannick Rossez
- Alliance Sorbonne Université, Université de Technologie de Compiègne, 60205 Compiègne CEDEX, France; (A.D.); (Y.R.); (A.T.-P.); (B.T.)
| | - Stéphane Mottelet
- Alliance Sorbonne Université, EA 4297 TIMR, Transformations Intégrées de la Matière Renouvelable, Université de Technologie de Compiègne, 60205 Compiègne CEDEX, France;
| | - Pierre Villon
- Alliance Sorbonne Université, Laboratoire Roberval, FRE UTC CNRS 2012, Université de Technologie de Compiègne, 60205 Compiègne CEDEX, France;
| | - Adrian Troncoso-Ponce
- Alliance Sorbonne Université, Université de Technologie de Compiègne, 60205 Compiègne CEDEX, France; (A.D.); (Y.R.); (A.T.-P.); (B.T.)
| | - Brigitte Thomasset
- Alliance Sorbonne Université, Université de Technologie de Compiègne, 60205 Compiègne CEDEX, France; (A.D.); (Y.R.); (A.T.-P.); (B.T.)
| |
Collapse
|
30
|
Allen DK, Young JD. Tracing metabolic flux through time and space with isotope labeling experiments. Curr Opin Biotechnol 2019; 64:92-100. [PMID: 31864070 PMCID: PMC7302994 DOI: 10.1016/j.copbio.2019.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Metabolism is dynamic and must function in context-specific ways to adjust to changes in the surrounding cellular and ecological environment. When isotopic tracers are used, metabolite flow (i.e. metabolic flux) can be quantified through biochemical networks to assess metabolic pathway operation. The cellular activities considered across multiple tissues and organs result in the observed phenotype and can be analyzed to discover emergent, whole-system properties of biology and elucidate misconceptions about network operation. However, temporal and spatial challenges remain significant hurdles and require novel approaches and creative solutions. We survey current investigations in higher plant and animal systems focused on dynamic isotope labeling experiments, spatially resolved measurement strategies, and observations from re-analysis of our own studies that suggest prospects for future work. Related discoveries will be necessary to push the frontier of our understanding of metabolism to suggest novel solutions to cure disease and feed a growing future world population.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| | - Jamey D Young
- Department of Chemical & Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235, United States; Department of Molecular Physiology & Biophysics, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235, United States.
| |
Collapse
|
31
|
Nanda AK, El Habti A, Hocart CH, Masle J. ERECTA receptor-kinases play a key role in the appropriate timing of seed germination under changing salinity. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6417-6435. [PMID: 31504732 PMCID: PMC6859730 DOI: 10.1093/jxb/erz385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
Appropriate timing of seed germination is crucial for the survival and propagation of plants, and for crop yield, especially in environments prone to salinity or drought. However, the exact mechanisms by which seeds perceive changes in soil conditions and integrate them to trigger germination remain elusive, especially once the seeds are non-dormant. In this study, we determined that the Arabidopsis ERECTA (ER), ERECTA-LIKE1 (ERL1), and ERECTA-LIKE2 (ERL2) leucine-rich-repeat receptor-like kinases regulate seed germination and its sensitivity to changes in salt and osmotic stress levels. Loss of ER alone, or in combination with ERL1 and/or ERL2, slows down the initiation of germination and its progression to completion, or arrests it altogether under saline conditions, until better conditions return. This function is maternally controlled via the tissues surrounding the embryo, with a primary role being played by the properties of the seed coat and its mucilage. These relate to both seed-coat expansion and subsequent differentiation and to salinity-dependent interactions between the mucilage, subtending seed coat layers and seed interior in the germinating seed. Salt-hypersensitive er105, er105 erl1.2, er105 erl2.1 and triple-mutant seeds also exhibit increased sensitivity to exogenous ABA during germination, and under salinity show an enhanced up-regulation of the germination repressors and inducers of dormancy ABA-insensitive-3, ABA-insensitive-5, DELLA-encoding RGL2, and Delay-Of-Germination-1. These findings reveal a novel role of the ERECTA receptor-kinases in the sensing of conditions at the seed surface and the integration of developmental, dormancy and stress signalling pathways in seeds. They also open novel avenues for the genetic improvement of plant adaptation to changing drought and salinity patterns.
Collapse
Affiliation(s)
- Amrit K Nanda
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | - Abdeljalil El Habti
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | - Charles H Hocart
- Research School of Biology, The Australian National University, Canberra ACT, Australia
| | | |
Collapse
|
32
|
Cocuron JC, Koubaa M, Kimmelfield R, Ross Z, Alonso AP. A Combined Metabolomics and Fluxomics Analysis Identifies Steps Limiting Oil Synthesis in Maize Embryos. PLANT PHYSIOLOGY 2019; 181:961-975. [PMID: 31530627 PMCID: PMC6836839 DOI: 10.1104/pp.19.00920] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/06/2019] [Indexed: 05/21/2023]
Abstract
Enhancing fatty acid synthesis (FAS) in maize (Zea mays) has tremendous potential nutritional and economic benefits due to the rapidly growing demand for vegetable oil. In maize kernels, the endosperm and the embryo are the main sites for synthesis and accumulation of starch and oil, respectively. So far, breeding efforts to achieve elevated oil content in maize have resulted in smaller endosperms and therefore lower yield. Directly changing their carbon metabolism may be the key to increasing oil content in maize kernels without affecting yield. To test this hypothesis, the intracellular metabolite levels were compared in maize embryos from two different maize lines, ALEXHO S K SYNTHETIC (Alex) and LH59, which accumulate 48% and 34% of oil, respectively. Comparative metabolomics highlighted the metabolites and pathways that were active in the embryos and important for oil production. The contribution of each pathway to FAS in terms of carbon, reductant, and energy provision was assessed by measuring the carbon flow through the metabolic network (13C-metabolic flux analysis) in developing Alex embryos to build a map of carbon flow through the central metabolism. This approach combined mathematical modeling with biochemical quantification to identify metabolic bottlenecks in FAS in maize embryos. This study describes a combination of innovative tools that will pave the way for controlling seed composition in important food crops.
Collapse
Affiliation(s)
- Jean-Christophe Cocuron
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Mohamed Koubaa
- Laboratoire Transformations Intégrées de la Matière Renouvelable (Université de Technologie de Compiègne/École Supérieure de Chimie Organique et Minérale, Équipe d'Accueil 4297 Transformations Integrées de la Matière Renouvelable), Centre de Recherche de Royallieu, Université de Technologie de Compiègne, course spéciale 60319, F-60203 Compiègne cedex, France
| | - Rebecca Kimmelfield
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Zacchary Ross
- Ohio University Heritage College of Osteopathic Medicine, Dublin, Ohio 43016
| | - Ana Paula Alonso
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| |
Collapse
|
33
|
Yoon H, Kang YG, Chang YS, Kim JH. Effects of Zerovalent Iron Nanoparticles on Photosynthesis and Biochemical Adaptation of Soil-Grown Arabidopsis thaliana. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1543. [PMID: 31671607 PMCID: PMC6915611 DOI: 10.3390/nano9111543] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/21/2023]
Abstract
Nanoscale zerovalent iron (nZVI) is the most widely used nanomaterial for environmental remediation. The impacts of nZVI on terrestrial organisms have been recently reported, and in particular, plant growth was promoted by nZVI treatment in various concentrations. Therefore, it is necessary to investigate the detailed physiological and biochemical responses of plants toward nZVI treatment for agricultural application. Here, the effects of nZVI on photosynthesis and related biochemical adaptation of soil-grown Arabidopsis thaliana were examined. After treatment with 500 mg nZVI/kg soil, the plant biomass increased by 38% through enhanced photosynthesis, which was confirmed by the gas-exchange system, carbon isotope ratio and chlorophyll content analysis. Besides, the iron uptake of the plant increased in roots and leaves. The magnetic property measurements and transmission electron microscopy showed that the transformed particles were accumulated in parts of the plant tissues. The accumulation of carbohydrates such as glucose, sucrose and starch increased by the enhanced photosynthesis, and photosynthetic-related inorganic nutrients such as phosphorus, manganese and zinc maintained homeostasis, according to the increased iron uptake. These findings suggest that nZVI has additional or alternative benefits as a nano-fertilizer and a promoter of CO2 uptake in plants.
Collapse
Affiliation(s)
- Hakwon Yoon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Yu-Gyeong Kang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Jae-Hwan Kim
- Advanced Geo-materials R&D Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources (KIGAM), Pohang 37559, Korea.
| |
Collapse
|
34
|
Domergue JB, Abadie C, Limami A, Way D, Tcherkez G. Seed quality and carbon primary metabolism. PLANT, CELL & ENVIRONMENT 2019; 42:2776-2788. [PMID: 31323691 DOI: 10.1111/pce.13618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 05/28/2023]
Abstract
Improving seed quality is amongst the most important challenges of contemporary agriculture. In fact, using plant varieties with better germination rates that are more tolerant to stress during seedling establishment may improve crop yield considerably. Therefore, intense efforts are currently being devoted to improve seed quality in many species, mostly using genomics tools. However, despite its considerable importance during seed imbibition and germination processes, primary carbon metabolism in seeds is less studied. Our knowledge of the physiology of seed respiration and energy generation and the impact of these processes on seed performance have made limited progress over the past three decades. In particular, (isotope-assisted) metabolomics of seeds has only been assessed occasionally, and there is limited information on possible quantitative relationships between metabolic fluxes and seed quality. Here, we review the recent literature and provide an overview of potential links between metabolic efficiency, metabolic biomarkers, and seed quality and discuss implications for future research, including a climate change context.
Collapse
Affiliation(s)
- Jean-Baptiste Domergue
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
| | - Cyril Abadie
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
| | - Anis Limami
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
| | - Danielle Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Guillaume Tcherkez
- IRHS Institut de Recherche en Horticultures et Séances, UMR 1345, INRA, Agrocampus-Ouest, Université d'Angers SFR 4207 QuaSaV, Beaucouzé, 49070, France
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
35
|
Yang Z, Liu X, Li N, Du C, Wang K, Zhao C, Wang Z, Hu Y, Zhang M. WRINKLED1 homologs highly and functionally express in oil-rich endosperms of oat and castor. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110193. [PMID: 31481195 DOI: 10.1016/j.plantsci.2019.110193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/11/2019] [Accepted: 07/16/2019] [Indexed: 05/03/2023]
Abstract
Oat (Avena sativa) and castor (Ricinus communis) accumulate a large amount of lipids in their endosperms, however the molecular mechanism remains unknown. In this study, differences in oil regulators between oat and wheat (Triticum aestivum) as well as common features between oat and castor were tested by analyzing their transcriptomes with further q-PCR analysis. Results indicated that WRINKLED1 (WRI1) homologs and their target genes highly expressed in the endosperms of oat and castor, but not in the starchy endosperms of wheat. Expression pattern of WRI1s was in agreement with that of oil accumulation. Three AsWRI1s (AsWRI1a, AsWRI1b and AsWRI1c) and one RcWRI1 were identified in the endosperms of oat and castor, respectively. AsWRI1c lacks VYL motif, which is different from the other three WRI1s. Expressions of these four WRI1s all complemented the phenotypes of Arabidopsis wri1-1 mutant. Overexpression of these WRI1s in Arabidopsis and tobacco BY2 cells increased oil contents of seeds and total fatty acids of the cells, respectively. Moreover, this overexpression also resulted in up-regulations of WRI1 target genes, such as PKp-β1. Taken together, our results suggest that high and functional expression of WRI1 play a key role in the oil-rich endosperms and the VYL motif is dispensable for WRI1 function.
Collapse
Affiliation(s)
- Zheng Yang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiangling Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Na Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Chang Du
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Kai Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhonghua Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yingang Hu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
36
|
He Y, Li Z, Tan F, Liu H, Zhu M, Yang H, Bi G, Wan H, Wang J, Xu R, Wen W, Zeng Y, Xu J, Guo W, Xue S, Cheng Y, Deng X. Fatty acid metabolic flux and lipid peroxidation homeostasis maintain the biomembrane stability to improve citrus fruit storage performance. Food Chem 2019; 292:314-324. [DOI: 10.1016/j.foodchem.2019.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 11/28/2022]
|
37
|
AL-Amery M, Downie B, DeBolt S, Crocker M, Urschel K, Goff B, Teets N, Gollihue J, Hildebrand D. Proximate composition of enhanced DGAT high oil, high protein soybeans. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Koley S, Raorane ML, Junker BH. Shoot tip culture: a step towards 13C metabolite flux analysis of sink leaf metabolism. PLANT METHODS 2019; 15:48. [PMID: 31139238 PMCID: PMC6526604 DOI: 10.1186/s13007-019-0434-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/10/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Better understanding of the physiological and metabolic status of plants can only be obtained when metabolic fluxes are accurately assessed in a growing plant. Steady state 13C-MFA has been established as a routine method for analysis of fluxes in plant primary metabolism. However, the experimental system needs to be improved for continuous carbon enrichment from labelled sugars into metabolites for longer periods until complex secondary metabolism reaches steady state. RESULTS We developed an in vitro plant culture strategy by using peppermint as a model plant with minimizing unlabelled carbon fixation where growing shoot tip was strongly dependent on labelled glucose for their carbon necessity. We optimized the light condition and detected the satisfactory phenotypical growth under the lower light intensity. Total volatile terpenes were also highest at the same light. Analysis of label incorporation into pulegone monoterpene after continuous U-13C6 glucose feeding revealed nearly 100% 13C, even at 15 days after first leaf visibility (DALV). Label enrichment was gradually scrambled with increasing light intensity and leaf age. This study was validated by showing similar levels of label enrichment in proteinogenic amino acids. The efficiency of this method was also verified in oregano. CONCLUSIONS Our shoot tip culture depicted a method in achieving long term, stable and a high percentage of label accumulation in secondary metabolites within a fully functional growing plant system. It recommends the potential application for the investigations of various facets of plant metabolism by steady state 13C-MFA. The system also provides a greater potential to study sink leaf metabolism. Overall, we propose a system to accurately describe complex metabolic phenotypes in a growing plant.
Collapse
Affiliation(s)
- Somnath Koley
- Institute of Pharmacy, Martin Luther University, Hoher Weg 8, Halle (Saale), Germany
| | - Manish L. Raorane
- Institute of Pharmacy, Martin Luther University, Hoher Weg 8, Halle (Saale), Germany
| | - Björn H. Junker
- Institute of Pharmacy, Martin Luther University, Hoher Weg 8, Halle (Saale), Germany
| |
Collapse
|
39
|
Jiang J, Zhu S, Yuan Y, Wang Y, Zeng L, Batley J, Wang YP. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. BMC PLANT BIOLOGY 2019; 19:203. [PMID: 31096923 PMCID: PMC6524335 DOI: 10.1186/s12870-019-1821-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/07/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Brassica napus is of substantial economic value for vegetable oil, biofuel, and animal fodder production. The breeding of yellow-seeded B. napus to improve seed quality with higher oil content, improved oil and meal quality with fewer antinutrients merits attention. Screening the genes related to this phenotype is valuable for future rapeseed breeding. RESULTS A total of 85,407 genes, including 4317 novel genes, were identified in the developing seeds of yellow- and black-seeded B. napus, and yellow rapeseed was shown to be an introgression line between black-seeded B. napus and yellow-seeded Sinapis alba. A total of 15,251 differentially expressed genes (DEGs) were identified among all the libraries, and 563 and 397 common DEGs were identified throughout black and yellow seed development, including 80 upregulated and 151 downregulated genes related to seed development and fatty acid accumulation. In addition, 11 up-DEGs and 31 down-DEGs were identified in all developmental stages of yellow rapeseed compared with black seed. Enrichment analysis revealed that many DEGs were involved in biosynthetic processes, pigment metabolism, and oxidation-reduction processes, such as flavonoid and phenylpropanoid biosynthesis, phenylalanine metabolism, flavone and flavonol biosynthesis, and fatty acid biosynthesis and metabolism. We found that more than 77 DEGs were related to flavonoid and lignin biosynthesis, including 4CL, C4H, and PAL, which participated in phenylalanine metabolism, and BAN, CHI/TT5, DFR, F3H, FLS, LDOX, PAP, CHS/TT4, TT5, bHLH/TT8, WD40, MYB, TCP, and CYP, which were involved in flavonoid biosynthesis. Most of these DEGs were downregulated in yellow rapeseed and were consistent with the decreased flavonoid and lignin contents. Both up- and down-DEGs related to fatty acid biosynthesis and metabolism were also analyzed, which could help to explain the improved oil content of yellow rapeseed. CONCLUSION This research provided comprehensive transcriptome data for yellow-seeded B. napus with a unique genetic background, and all the DEGs in comparison with the black-seeded counterpart could help to explain seed quality differences, such as lower pigmentation and lignin contents, and higher oil content.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Shuang Zhu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Yi Yuan
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Yue Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Lei Zeng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA Australia
| | - You-Ping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
40
|
Intracellular Fate of Universally Labelled 13C Isotopic Tracers of Glucose and Xylose in Central Metabolic Pathways of Xanthomonas oryzae. Metabolites 2018; 8:metabo8040066. [PMID: 30326608 PMCID: PMC6316632 DOI: 10.3390/metabo8040066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/26/2018] [Accepted: 10/11/2018] [Indexed: 11/16/2022] Open
Abstract
The goal of this study is to map the metabolic pathways of poorly understood bacterial phytopathogen, Xanthomonas oryzae (Xoo) BXO43 fed with plant mimicking media XOM2 containing glutamate, methionine and either 40% [13C₅] xylose or 40% [13C₆] glucose. The metabolic networks mapped using the KEGG mapper and the mass isotopomer fragments of proteinogenic amino acids derived from GC-MS provided insights into the activities of Xoo central metabolic pathways. The average 13C in histidine, aspartate and other amino acids confirmed the activities of PPP, the TCA cycle and amino acid biosynthetic routes, respectively. The similar labelling patterns of amino acids (His, Ala, Ser, Val and Gly) from glucose and xylose feeding experiments suggests that PPP would be the main metabolic route in Xoo. Owing to the lack of annotated gene phosphoglucoisomerase in BXO43, the 13C incorporation in alanine could not be attributed to the competing pathways and hence warrants additional positional labelling experiments. The negligible presence of 13C incorporation in methionine brings into question its potential role in metabolism and pathogenicity. The extent of the average 13C labelling in several amino acids highlighted the contribution of pre-existing pools that need to be accounted for in 13C-flux analysis studies. This study provided the first qualitative insights into central carbon metabolic pathway activities in Xoo.
Collapse
|
41
|
Bahaji A, Almagro G, Ezquer I, Gámez-Arcas S, Sánchez-López ÁM, Muñoz FJ, Barrio RJ, Sampedro MC, De Diego N, Spíchal L, Doležal K, Tarkowská D, Caporali E, Mendes MA, Baroja-Fernández E, Pozueta-Romero J. Plastidial Phosphoglucose Isomerase Is an Important Determinant of Seed Yield through Its Involvement in Gibberellin-Mediated Reproductive Development and Storage Reserve Biosynthesis in Arabidopsis. THE PLANT CELL 2018; 30:2082-2098. [PMID: 30099384 PMCID: PMC6181017 DOI: 10.1105/tpc.18.00312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 05/04/2023]
Abstract
The plastid-localized phosphoglucose isomerase isoform PGI1 is an important determinant of growth in Arabidopsis thaliana, likely due to its involvement in the biosynthesis of plastidial isoprenoid-derived hormones. Here, we investigated whether PGI1 also influences seed yields. PGI1 is strongly expressed in maturing seed embryos and vascular tissues. PGI1-null pgi1-2 plants had ∼60% lower seed yields than wild-type plants, with reduced numbers of inflorescences and thus fewer siliques and seeds per plant. These traits were associated with low bioactive gibberellin (GA) contents. Accordingly, wild-type phenotypes were restored by exogenous GA application. pgi1-2 seeds were lighter and accumulated ∼50% less fatty acids (FAs) and ∼35% less protein than wild-type seeds. Seeds of cytokinin-deficient plants overexpressing CYTOKININ OXIDASE/DEHYDROGENASE1 (35S:AtCKX1) and GA-deficient ga20ox1 ga20ox2 mutants did not accumulate low levels of FAs, and exogenous application of the cytokinin 6-benzylaminopurine and GAs did not rescue the reduced weight and FA content of pgi1-2 seeds. Seeds from reciprocal crosses between pgi1-2 and wild-type plants accumulated wild-type levels of FAs and proteins. Therefore, PGI1 is an important determinant of Arabidopsis seed yield due to its involvement in two processes: GA-mediated reproductive development and the metabolic conversion of plastidial glucose-6-phosphate to storage reserves in the embryo.
Collapse
Affiliation(s)
- Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192 Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192 Mutiloabeti, Nafarroa, Spain
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192 Mutiloabeti, Nafarroa, Spain
| | | | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192 Mutiloabeti, Nafarroa, Spain
| | - Ramón José Barrio
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country, UPV/EHU, E-01006 Vitoria-Gasteiz, Spain
| | - M Carmen Sampedro
- Central Service of Analysis of Alava, SGIker, University of the Basque Country, UPV/EHU, E-01006 Vitoria-Gasteiz, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Elisabetta Caporali
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marta Adelina Mendes
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192 Mutiloabeti, Nafarroa, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192 Mutiloabeti, Nafarroa, Spain
| |
Collapse
|
42
|
Abstract
Studying seed oil metabolism. The seeds of higher plants represent valuable factories capable of converting photosynthetically derived sugars into a variety of storage compounds, including oils. Oils are the most energy-dense plant reserves and fatty acids composing these oils represent an excellent nutritional source. They supply humans with much of the calories and essential fatty acids required in their diet. These oils are then increasingly being utilized as renewable alternatives to petroleum for the chemical industry and for biofuels. Plant oils therefore represent a highly valuable agricultural commodity, the demand for which is increasing rapidly. Knowledge regarding seed oil production is extensively exploited in the frame of breeding programs and approaches of metabolic engineering for oilseed crop improvement. Complementary aspects of this research include (1) the study of carbon metabolism responsible for the conversion of photosynthetically derived sugars into precursors for fatty acid biosynthesis, (2) the identification and characterization of the enzymatic actors allowing the production of the wide set of fatty acid structures found in seed oils, and (3) the investigation of the complex biosynthetic pathways leading to the production of storage lipids (waxes, triacylglycerols). In this review, we outline the most recent developments in our understanding of the underlying biochemical and molecular mechanisms of seed oil production, focusing on fatty acids and oils that can have a significant impact on the emerging bioeconomy.
Collapse
Affiliation(s)
- Sébastien Baud
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France.
| |
Collapse
|
43
|
Aguirre M, Kiegle E, Leo G, Ezquer I. Carbohydrate reserves and seed development: an overview. PLANT REPRODUCTION 2018; 31:263-290. [PMID: 29728792 DOI: 10.1007/s00497-018-0336-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Seeds are one of the most important food sources, providing humans and animals with essential nutrients. These nutrients include carbohydrates, lipids, proteins, vitamins and minerals. Carbohydrates are one of the main energy sources for both plant and animal cells and play a fundamental role in seed development, human nutrition and the food industry. Many studies have focused on the molecular pathways that control carbohydrate flow during seed development in monocot and dicot species. For this reason, an overview of seed biodiversity focused on the multiple metabolic and physiological mechanisms that govern seed carbohydrate storage function in the plant kingdom is required. A large number of mutants affecting carbohydrate metabolism, which display defective seed development, are currently available for many plant species. The physiological, biochemical and biomolecular study of such mutants has led researchers to understand better how metabolism of carbohydrates works in plants and the critical role that these carbohydrates, and especially starch, play during seed development. In this review, we summarize and analyze the newest findings related to carbohydrate metabolism's effects on seed development, pointing out key regulatory genes and enzymes that influence seed sugar import and metabolism. Our review also aims to provide guidelines for future research in the field and in this way to assist seed quality optimization by targeted genetic engineering and classical breeding programs.
Collapse
Affiliation(s)
- Manuel Aguirre
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
- FNWI, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Edward Kiegle
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Giulia Leo
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
44
|
Wang Q, Xu J, Sun Z, Luan Y, Li Y, Wang J, Liang Q, Qi Q. Engineering an in vivo EP-bifido pathway in Escherichia coli for high-yield acetyl-CoA generation with low CO 2 emission. Metab Eng 2018; 51:79-87. [PMID: 30102971 DOI: 10.1016/j.ymben.2018.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/25/2018] [Accepted: 08/09/2018] [Indexed: 11/20/2022]
Abstract
The low carbon yield from native metabolic machinery produces unfavorable process economics during the biological conversion of substrates to desirable bioproducts. To obtain higher carbon yields, we constructed a carbon conservation pathway named EP-bifido pathway in Escherichia coli by combining Embden-Meyerhof-Parnas Pathway, Pentose Phosphate Pathway and "bifid shunt", to generate high yield acetyl-CoA from glucose. 13C-Metabolic flux analysis confirmed the successful and appropriate employment of the EP-bifido pathway. The CO2 release during fermentation significantly reduced compared with the control strains. Then we demonstrated the in vivo effectiveness of the EP-bifido pathway using poly-β-hydroxybutyrate (PHB), mevalonate and fatty acids as example products. The engineered EP-bifido strains showed greatly improved PHB yield (from 26.0 mol% to 63.7 mol%), fatty acid yield (from 9.17% to 14.36%), and the highest mevalonate yield yet reported (64.3 mol% without considering the substrates used for cell mass formation). The synthetic pathway can be employed in the production of chemicals that use acetyl-CoA as a precursor and can be extended to other microorganisms.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, PR China
| | - Jiasheng Xu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, PR China
| | - Zhijie Sun
- Marine Biology Institute, Shantou University, Shantou 515063, PR China
| | - Yaqi Luan
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, PR China
| | - Ying Li
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, PR China
| | - Junshu Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, PR China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, PR China; CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR China.
| |
Collapse
|
45
|
Skraly FA, Ambavaram MMR, Peoples O, Snell KD. Metabolic engineering to increase crop yield: From concept to execution. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:23-32. [PMID: 29907305 DOI: 10.1016/j.plantsci.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 05/18/2023]
Abstract
Although the return on investment over the last 20 years for mass screening of individual plant genes to improve crop performance has been low, the investment in these activities was essential to establish the infrastructure and tools of modern plant genomics. Complex traits such as crop yield are likely multigenic, and the exhaustive screening of random gene combinations to achieve yield gains is not realistic. Clearly, smart approaches must be developed. In silico analyses of plant metabolism and gene networks can move a trait discovery program beyond trial-and-error approaches and towards rational design strategies. Metabolic models employing flux-balance analysis are useful to determine the contribution of individual genes to a trait, or to compare, optimize, or even design metabolic pathways. Regulatory association networks provide a transcriptome-based view of the plant and can lead to the identification of transcription factors that control expression of multiple genes affecting a trait. In this review, the use of these models from the perspective of an Ag innovation company's trait discovery and development program will be discussed. Important decisions that can have significant impacts on the cost and timeline to develop a commercial trait will also be presented.
Collapse
Affiliation(s)
- Frank A Skraly
- Yield10 Bioscience, Inc., 19 Presidential Way, Woburn, MA 01801, United States
| | | | - Oliver Peoples
- Yield10 Bioscience, Inc., 19 Presidential Way, Woburn, MA 01801, United States
| | - Kristi D Snell
- Yield10 Bioscience, Inc., 19 Presidential Way, Woburn, MA 01801, United States.
| |
Collapse
|
46
|
Wang P, Guo L, Jaini R, Klempien A, McCoy RM, Morgan JA, Dudareva N, Chapple C. A 13C isotope labeling method for the measurement of lignin metabolic flux in Arabidopsis stems. PLANT METHODS 2018; 14:51. [PMID: 29977324 PMCID: PMC6015466 DOI: 10.1186/s13007-018-0318-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/16/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Metabolic fluxes represent the functional phenotypes of biochemical pathways and are essential to reveal the distribution of precursors among metabolic networks. Although analysis of metabolic fluxes, facilitated by stable isotope labeling and mass spectrometry detection, has been applied in the studies of plant metabolism, we lack experimental measurements for carbon flux towards lignin, one of the most abundant polymers in nature. RESULTS We developed a feeding strategy of excised Arabidopsis stems with 13C labeled phenylalanine (Phe) for the analysis of lignin biosynthetic flux. We optimized the feeding methods and found the stems continued to grow and lignify. Consistent with lignification profiles along the stems, higher levels of phenylpropanoids and activities of lignin biosynthetic enzymes were detected in the base of the stem. In the feeding experiments, 13C labeled Phe was quickly accumulated and used for the synthesis of phenylpropanoid intermediates and lignin. The intermediates displayed two different patterns of labeling kinetics during the feeding period. Analysis of lignin showed rapid incorporation of label into all three subunits in the polymers. CONCLUSIONS Our feeding results demonstrate the effectiveness of the stem feeding system and suggest a potential application for the investigations of other aspects in plant metabolism. The supply of exogenous Phe leading to a higher lignin deposition rate indicates the availability of Phe is a determining factor for lignification rates.
Collapse
Affiliation(s)
- Peng Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Longyun Guo
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Rohit Jaini
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Antje Klempien
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Rachel M. McCoy
- Department of Horticulture and Landscape, Purdue University, West Lafayette, IN 47907 USA
| | - John A. Morgan
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
47
|
Zhang X, Misra A, Nargund S, Coleman GD, Sriram G. Concurrent isotope-assisted metabolic flux analysis and transcriptome profiling reveal responses of poplar cells to altered nitrogen and carbon supply. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:472-488. [PMID: 29193384 DOI: 10.1111/tpj.13792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/15/2017] [Accepted: 11/23/2017] [Indexed: 05/20/2023]
Abstract
Reduced nitrogen is indispensable to plants. However, its limited availability in soil combined with the energetic and environmental impacts of nitrogen fertilizers motivates research into molecular mechanisms toward improving plant nitrogen use efficiency (NUE). We performed a systems-level investigation of this problem by employing multiple 'omics methodologies on cell suspensions of hybrid poplar (Populus tremula × Populus alba). Acclimation and growth of the cell suspensions in four nutrient regimes ranging from abundant to deficient supplies of carbon and nitrogen revealed that cell growth under low-nitrogen levels was associated with substantially higher NUE. To investigate the underlying metabolic and molecular mechanisms, we concurrently performed steady-state 13 C metabolic flux analysis with multiple isotope labels and transcriptomic profiling with cDNA microarrays. The 13 C flux analysis revealed that the absolute flux through the oxidative pentose phosphate pathway (oxPPP) was substantially lower (~threefold) under low-nitrogen conditions. Additionally, the flux partitioning ratio between the tricarboxylic acid cycle and anaplerotic pathways varied from 84%:16% under abundant carbon and nitrogen to 55%:45% under deficient carbon and nitrogen. Gene expression data, together with the flux results, suggested a plastidic localization of the oxPPP as well as transcriptional regulation of certain metabolic branchpoints, including those between glycolysis and the oxPPP. The transcriptome data also indicated that NUE-improving mechanisms may involve a redirection of excess carbon to aromatic metabolic pathways and extensive downregulation of potentially redundant genes (in these heterotrophic cells) that encode photosynthetic and light-harvesting proteins, suggesting the recruitment of these proteins as nitrogen sinks in nitrogen-abundant conditions.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Ashish Misra
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shilpa Nargund
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Gary D Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Ganesh Sriram
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
48
|
Lima VF, de Souza LP, Williams TCR, Fernie AR, Daloso DM. Gas Chromatography-Mass Spectrometry-Based 13C-Labeling Studies in Plant Metabolomics. Methods Mol Biol 2018; 1778:47-58. [PMID: 29761430 DOI: 10.1007/978-1-4939-7819-9_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Stable-isotope labeling analysis has been used to discover new metabolic pathways and their key regulatory points in a wide range of organisms. Given the complexity of the plant metabolic network, this analysis provides information complementary to that obtained from metabolite profiling that can be used to understand how plants cope with adverse conditions, and how metabolism varies between different cells, tissues, and organs. Here we describe the experimental procedures from sample harvesting and extraction to mass spectral analysis and interpretation that allow the researcher to perform 13C-labeling experiments. A wide range of plant material, from single cells to whole plants, can be used to investigate the metabolic fate of the 13C from a predefined tracer. Thus, a key point of this analysis is to choose the correct biological system, the substrate and the condition to be investigated; all of which implicitly relies on the biological question to be investigated. Rapid sample quenching and a careful data analysis are also critical points in such studies. By contrast to other metabolomic approaches, stable-isotope labeling can provide information concerning the fluxes through metabolic networks, which is essential for understanding and manipulating metabolic phenotypes and therefore of pivotal importance for both systems biology and plant metabolic engineering.
Collapse
Affiliation(s)
- Valéria F Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
49
|
Deborde C, Moing A, Roch L, Jacob D, Rolin D, Giraudeau P. Plant metabolism as studied by NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:61-97. [PMID: 29157494 DOI: 10.1016/j.pnmrs.2017.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 05/07/2023]
Abstract
The study of plant metabolism impacts a broad range of domains such as plant cultural practices, plant breeding, human or animal nutrition, phytochemistry and green biotechnologies. Plant metabolites are extremely diverse in terms of structure or compound families as well as concentrations. This review attempts to illustrate how NMR spectroscopy, with its broad variety of experimental approaches, has contributed widely to the study of plant primary or specialized metabolism in very diverse ways. The review presents recent developments of one-dimensional and multi-dimensional NMR methods to study various aspects of plant metabolism. Through recent examples, it highlights how NMR has proved to be an invaluable tool for the global characterization of sample composition within metabolomic studies, and shows some examples of use for targeted phytochemistry, with a special focus on compound identification and quantitation. In such cases, NMR approaches are often used to provide snapshots of the plant sample composition. The review also covers dynamic aspects of metabolism, with a description of NMR techniques to measure metabolic fluxes - in most cases after stable isotope labelling. It is mainly intended for NMR specialists who would be interested to learn more about the potential of their favourite technique in plant sciences and about specific details of NMR approaches in this field. Therefore, as a practical guide, a paragraph on the specific precautions that should be taken for sample preparation is also included. In addition, since the quality of NMR metabolic studies is highly dependent on approaches to data processing and data sharing, a specific part is dedicated to these aspects. The review concludes with perspectives on the emerging methods that could change significantly the role of NMR in the field of plant metabolism by boosting its sensitivity. The review is illustrated throughout with examples of studies selected to represent diverse applications of liquid-state or HR-MAS NMR.
Collapse
Affiliation(s)
- Catherine Deborde
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France
| | - Annick Moing
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France
| | - Léa Roch
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France
| | - Daniel Jacob
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France
| | - Dominique Rolin
- Plateforme Métabolome Bordeaux - MetaboHUB, Centre de Génomique Fonctionnelle Bordeaux, IBVM, Centre INRA Bordeaux, F-33140 Villenave d'Ornon, France; Univ. Bordeaux, UMR1332, Biologie du Fruit et Pathologie, 71 av Edouard Bourlaux, 33140 Villenave d'Ornon, France
| | - Patrick Giraudeau
- Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230, CNRS, Université de Nantes, Faculté des Sciences, BP 92208, 2 rue de la Houssinière, F-44322 Nantes Cedex 03, France; Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France.
| |
Collapse
|
50
|
13C labeling analysis of sugars by high resolution-mass spectrometry for metabolic flux analysis. Anal Biochem 2017; 527:45-48. [DOI: 10.1016/j.ab.2017.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 11/21/2022]
|