1
|
Machado J, Fernandes APG, Bokor B, Vaculík M, Kostoláni D, Kokavcová A, Heuvelink E, Vasconcelos MW, Carvalho SMP. Tomato responses to nitrogen, drought and combined stresses: Shared and specific effects on vascular plant anatomy, nutrient partitioning and amino acids profile. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109649. [PMID: 39977970 DOI: 10.1016/j.plaphy.2025.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Crops are often subjected to various abiotic stresses and interactions between them may occur, but how plants cope with them remains poorly understood. This study explored how combined nitrogen and drought stress impact tomato vascular stem anatomy, nutrient partitioning and amino acids profile. Tomato seedlings were exposed to control (CTR; 100N + 100%W), N stress (N; 50%N), drought stress (W; 50%W), or combined stress (N + W; 50%N+50%W) for 27 days. All treatments similarly reduced the phloem and xylem areas. Plants under N + W stress exhibited increased root synthesis of asparagine and arginine (up to 230% compared to W stress and 66% compared to N stress) and showed a higher reallocation and synthesis of osmolytes such as K+ and proline, respectively. This, along with the specific increase in other amino acids related to osmoregulation (alanine, tyrosine and phenylalanine), contributed to an enhanced stomatal closure and lower transpiration rate compared to W stressed plants. Conversely, N stressed plants responded mainly through N remobilization from the photosynthetic machinery, leading to decreased chlorophyll content (up to 32%) and photosynthetic rate (up to 57%). Under single W stress, plants invested more in the root system as a strategy to increase W and nutrients' uptake, compared to those grown under N + W stress, and maintained the photosynthetic rate at the level of CTR plants. It is concluded that tomato plants employed distinct mechanisms for reallocating nitrogen and regulating osmosis to withstand either single or combined stresses and that amino acids and nutrients' homeostasis have an important role in these processes.
Collapse
Affiliation(s)
- J Machado
- GreenUPorto - Sustainable Agrifood Production Research Centre / Inov4Agro, DGAOT, Faculty of Sciences of University of Porto, Campus de Vairão, Rua da Agrária 747, Vairão, 4485-646, Portugal; Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands; Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - A P G Fernandes
- GreenUPorto - Sustainable Agrifood Production Research Centre / Inov4Agro, DGAOT, Faculty of Sciences of University of Porto, Campus de Vairão, Rua da Agrária 747, Vairão, 4485-646, Portugal
| | - B Bokor
- Comenius University Science Park, 841 04, Bratislava, Slovakia; Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - M Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia; Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, 845 23, Bratislava, Slovakia
| | - D Kostoláni
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - A Kokavcová
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - E Heuvelink
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - M W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - S M P Carvalho
- GreenUPorto - Sustainable Agrifood Production Research Centre / Inov4Agro, DGAOT, Faculty of Sciences of University of Porto, Campus de Vairão, Rua da Agrária 747, Vairão, 4485-646, Portugal.
| |
Collapse
|
2
|
Duan S, Meng X, Zhang H, Wang X, Kang X, Liu Z, Ma Z, Li G, Guo X. The Effect of Heat Stress on Wheat Flag Leaves Revealed by Metabolome and Transcriptome Analyses During the Reproductive Stage. Int J Mol Sci 2025; 26:1468. [PMID: 40003947 PMCID: PMC11855456 DOI: 10.3390/ijms26041468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, we were dedicated to investigating the effect caused by heat stress on wheat flag leaves. Metabolome and transcriptome analysis were introduced to identify some key biological processes. As a result, 182 and 214 metabolites were significantly changed at the anthesis and post-anthesis stages, respectively; most of them were lipids, amino acids and derivatives, phenolic acids, and alkaloids. Aminoacyl-tRNA biosynthesis was the most significantly enriched pathway by metabolites at both two stages, each of which included 13 types of amino acid, and 12 of them were shared and up-regulated. Therefore, we further measured 22 kinds of amino acid content in ten different wheat genotypes at the post-anthesis stage. Based on the average content of each amino acid, 17 kinds of them were significantly increased after heat stress, and 4 types were significantly decreased. Both the metabolism analysis and the transcriptome analysis had a higher number of significantly changed metabolites or differential expressed genes at the post-anthesis stage, which indicated that the post-anthesis stage is more sensitive to heat stress, with 21,361 and 17,130 differential expressed genes, respectively. Two pathways, protein processing in endoplasmic reticulum and ABC transporters, were significantly enriched at two stages. The differential expressed genes in processing in endoplasmic reticulum pathway mainly encoded various types of molecular chaperones; among them, the HSP20 family was the most predominant and intensively up-regulated. The ABC transporter gene family is another pathway that is deeply involved in heat-stress response, which could be classified into five subfamilies; among them, subfamilies B and G were the most active. In summary, this study revealed the heat response pattern of amino acids, HSPs, and ABC transporter which may play a vital role during the wheat reproductive stage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (S.D.); (X.M.); zhn.8888-@163.com (H.Z.); (X.W.); (X.K.); (Z.L.); (Z.M.)
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (S.D.); (X.M.); zhn.8888-@163.com (H.Z.); (X.W.); (X.K.); (Z.L.); (Z.M.)
| |
Collapse
|
3
|
Van Hautegem T, Takasaki H, Lorenzo CD, Demuynck K, Claeys H, Villers T, Sprenger H, Debray K, Schaumont D, Verbraeken L, Pevernagie J, Merchie J, Cannoot B, Aesaert S, Coussens G, Yamaguchi-Shinozaki K, Nuccio ML, Van Ex F, Pauwels L, Jacobs TB, Ruttink T, Inzé D, Nelissen H. Division Zone Activity Determines the Potential of Drought-Stressed Maize Leaves to Resume Growth after Rehydration. PLANT, CELL & ENVIRONMENT 2025; 48:1242-1258. [PMID: 39444139 DOI: 10.1111/pce.15227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/19/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Drought is one of the most devastating causes of yield losses in crops like maize, and the anticipated increases in severity and duration of drought spells due to climate change pose an imminent threat to agricultural productivity. To understand the drought response, phenotypic and molecular studies are typically performed at a given time point after drought onset, representing a steady-state adaptation response. Because growth is a dynamic process, we monitored the drought response with high temporal resolution and examined cellular and transcriptomic changes after rehydration at 4 and 6 days after leaf four appearance. These data showed that division zone activity is a determinant for full organ growth recovery upon rehydration. Moreover, a prolonged maintenance of cell division by the ectopic expression of PLASTOCHRON1 extends the ability to resume growth after rehydration. The transcriptome analysis indicated that GROWTH-REGULATING FACTORS (GRFs) affect leaf growth by impacting cell division duration, which was confirmed by a prolonged recovery potential of the GRF1-overexpression line after rehydration. Finally, we used a multiplex genome editing approach to evaluate the most promising differentially expressed genes from the transcriptome study and as such narrowed down the gene space from 40 to seven genes for future functional characterization.
Collapse
Affiliation(s)
- Tom Van Hautegem
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Hironori Takasaki
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Christian Damian Lorenzo
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Kirin Demuynck
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | - Timothy Villers
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Heike Sprenger
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Kevin Debray
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Dries Schaumont
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Lennart Verbraeken
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Julie Pevernagie
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Julie Merchie
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Bernard Cannoot
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stijn Aesaert
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Griet Coussens
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | - Laurens Pauwels
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Thomas B Jacobs
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Tom Ruttink
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Dirk Inzé
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Hilde Nelissen
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Renzetti M, Funck D, Trovato M. Proline and ROS: A Unified Mechanism in Plant Development and Stress Response? PLANTS (BASEL, SWITZERLAND) 2024; 14:2. [PMID: 39795262 PMCID: PMC11723217 DOI: 10.3390/plants14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
The proteinogenic amino acid proline plays crucial roles in both plant development and stress responses, far exceeding its role in protein synthesis. However, the molecular mechanisms and the relative importance of these additional functions of proline remain under study. It is well documented that both stress responses and developmental processes are associated with proline accumulation. Under stress conditions, proline is believed to confer stress tolerance, while under physiological conditions, it assists in developmental processes, particularly during the reproductive phase. Due to proline's properties as a compatible osmolyte and potential reactive oxygen species (ROS) scavenger, most of its beneficial effects have historically been attributed to the physicochemical consequences of its accumulation in plants. However, emerging evidence points to proline metabolism as the primary driver of these beneficial effects. Recent reports have shown that proline metabolism, in addition to supporting reproductive development, can modulate root meristem size by controlling ROS accumulation and distribution in the root meristem. The dynamic interplay between proline and ROS highlights a sophisticated regulatory network essential for plant resilience and survival. This fine-tuning mechanism, enabled by the pro-oxidant and antioxidant properties of compartmentalized proline metabolism, can modulate redox balance and ROS homeostasis, potentially explaining many of the multiple roles attributed to proline. This review uniquely integrates recent findings on the dual role of proline in both ROS scavenging and signaling, provides an updated overview of the most recent research published to date, and proposes a unified mechanism that could account for many of the multiple roles assigned to proline in plant development and stress defense. By focusing on the interplay between proline and ROS, we aim to provide a comprehensive understanding of this proposed mechanism and highlight the potential applications in improving crop resilience to environmental stress. Additionally, we address current gaps in understanding and suggest future research directions to further elucidate the complex roles of proline in plant biology.
Collapse
Affiliation(s)
- Marco Renzetti
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Dietmar Funck
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany;
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
5
|
Chen L, Wu F, Duan Z, Wang S, Qu Y, Ao B, Sun X, Zhang J. Comparative Transcriptome Analysis Revealing the Potential Salt Tolerance Mechanism of Exogenous Abscisic Acid Application in Melilotus albus. Int J Mol Sci 2024; 25:13261. [PMID: 39769026 PMCID: PMC11676779 DOI: 10.3390/ijms252413261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Melilotus albus, which contains abundant pharmacologically active coumarins, is usually used as a rotation crop and green manure worldwide. Abscisic acid (ABA) is a crucial plant hormone that plays an important role in plant stress responses. There is a paucity of information about the ABA signaling pathway and its regulatory network in M. albus. Here, we performed a comparative physiological and transcriptomic analysis to assess the response of M. albus to exogenous ABA. Physiological analysis revealed that proline (Pro), soluble protein and H2O2 content after ABA treatment 3 h significantly increased by 14.0%, 12.0% and 32.4% compared with 0 h in M. albus. A total of 19,855 differentially expressed genes (DEGs) were identified under ABA treatment, including 13,392 in shoots and 15,471 in roots. We obtained two modules that were significantly correlated with the ABA treatment (the darkorange module was positively correlated at 24 h in the shoot, brown2 module positively correlated at 3 h in the root) by weighted correlation network analysis (WGCNA). KEGG enrichment analysis showed that genes within two modules were primarily enriched in protein synthesis and metabolism, secondary metabolites, purine and pyrimidine metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis. GO enrichment analysis indicated that genes within two modules were primarily enriched in energy substance metabolism. These pathways were mainly associated with abiothic stress, which indicated that exogenous application of ABA activated the stress resistance system of M. albus. The hub gene 4CL1 (4-Coumarate: CoA ligase 1) was translated and expressed in yeast, resulting in enhanced salt and ABA tolerance in the transgenic yeast. Overexpression of Ma4CL1 in M. albus improved the salt resistance of the transgenic plants. Profiling ABA-responsive genes offers valuable insights into the molecular functions of regulatory genes and will facilitate future molecular breeding efforts in M. albus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiyu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (L.C.); (F.W.); (Z.D.); (S.W.); (Y.Q.); (B.A.); (X.S.)
| |
Collapse
|
6
|
Thives Santos W, Dwivedi V, Ngoc Duong H, Miederhoff M, Vanden Hoek K, Angelovici R, Schenck CA. Mechanism of action of the toxic proline mimic azetidine 2-carboxylic acid in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2904-2918. [PMID: 39625042 DOI: 10.1111/tpj.17154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Plants have an amazing capacity to outcompete neighboring organisms for space and resources. Toxic metabolites are major players in these interactions, which can have a broad range of effectiveness by targeting conserved molecular mechanisms, such as protein biosynthesis. However, lack of knowledge about defensive metabolite pathways, their mechanisms of action, and resistance mechanisms limits our ability to manipulate these pathways for enhanced crop resilience. Nonproteogenic amino acids (NPAAs) are a structurally diverse class of metabolites with a variety of functions but are typically not incorporated during protein biosynthesis. Here, we investigate the mechanism of action of the NPAA azetidine-2-carboxylic acid (Aze), an analog of the amino acid proline (Pro). Using a combination of plate-based assays, metabolite feeding, metabolomics, and proteomics, we show that Aze inhibits the root growth of Arabidopsis and other plants. Aze-induced growth reduction was restored by supplementing L-, but not D-Pro, and nontargeted proteomics confirm that Aze is misincorporated for Pro during protein biosynthesis, specifically on cytosolically translated proteins. Gene expression analysis, free amino acid profiling, and proteomics show that the unfolded protein response is upregulated during Aze treatment implicating that Aze misincorporation results in accumulation of misfolded proteins triggering a global stress response. This study demonstrates the mechanism of action of Aze in plants and provides a foundation for understanding the biological functions of proteotoxic metabolites.
Collapse
Affiliation(s)
- William Thives Santos
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Varun Dwivedi
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Ha Ngoc Duong
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Madison Miederhoff
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Kathryn Vanden Hoek
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Ruthie Angelovici
- Department of Biological Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Craig A Schenck
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
7
|
Sun Z, Liu W, Wang X, Ai X, Li Z, Zhou D, Ma Q, Li Y, Wang J, Ma X, Wang X, Zhong C, Jiang C, Zhao S, Zhang H, Zhao X, Kang S, Wang J, Yu H. Transcriptome-Based Spatiotemporal Analysis of Drought Response Mechanisms in Two Distinct Peanut Cultivars. Int J Mol Sci 2024; 25:11895. [PMID: 39595964 PMCID: PMC11593740 DOI: 10.3390/ijms252211895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Drought tolerance varies among different peanut (Arachis hypogaea L.) cultivars. Here, drought responses of two cultivars, Huayu 22 (HY22) with drought tolerance and Fuhua 18 (FH18) with drought sensitivity, were compared at the morphological, physiological, biochemical, photosynthetic, and transcriptional levels. Drought stress caused wilting and curling of leaves, bending of stems, and water loss in both cultivars. There was an increase in malondialdehyde (MDA) content under prolonged drought stress, more so in FH18. But the levels of reactive oxygen species (H2O2) and lipid peroxidation were low in HY22. The activities of superoxide dismutase (SOD), peroxidase (POD), and glutathione reductase (GR) were considerably elevated, corresponding with rapid increases in the accumulation of soluble proteins, soluble sugars, and proline. Transcriptional sequencing showed gene expression varied seriously in HY22, which was upregulated in both stems of two cultivars, though downregulation was less pronounced in HY22. KEGG pathway analysis revealed significant enrichment in four leaf and six stem pathways. Additionally, core genes relating to photosynthesis, carbon fixation, proline synthesis, and sucrose and starch synthesis pathways were identified by correlation analysis. Those gene expressions were variously upregulated in stems of two cultivars, especially in HY22, giving a novel view of the shoot as a whole participating in stress response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jing Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China; (Z.S.); (W.L.); (X.W.); (X.A.); (Z.L.); (D.Z.); (Q.M.); (Y.L.); (J.W.); (X.M.); (X.W.); (C.Z.); (C.J.); (S.Z.); (H.Z.); (X.Z.); (S.K.)
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China; (Z.S.); (W.L.); (X.W.); (X.A.); (Z.L.); (D.Z.); (Q.M.); (Y.L.); (J.W.); (X.M.); (X.W.); (C.Z.); (C.J.); (S.Z.); (H.Z.); (X.Z.); (S.K.)
| |
Collapse
|
8
|
Wang M, Yan Y, Liu W, Fan J, Li E, Chen L, Wang X. Proline metabolism is essential for alkaline adaptation of Nile tilapia (Oreochromis niloticus). J Anim Sci Biotechnol 2024; 15:142. [PMID: 39397002 PMCID: PMC11472467 DOI: 10.1186/s40104-024-01100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Saline-alkaline water aquaculture has become a key way to mitigate the reduction of freshwater aquaculture space and meet the increasing global demand for aquatic products. To enhance the comprehensive utilization capability of saline-alkaline water, it is necessary to understand the regulatory mechanisms of aquatic animals coping with saline-alkaline water. In this study, our objective was to elucidate the function of proline metabolism in the alkaline adaptation of Nile tilapia (Oreochromis niloticus). RESULTS Expose Nile tilapia to alkaline water of different alkalinity for 2 weeks to observe changes in its growth performance and proline metabolism. Meanwhile, to further clarify the role of proline metabolism, RNA interference experiments were conducted to disrupt the normal operation of proline metabolic axis by knocking down pycr (pyrroline-5-carboxylate reductases), the final rate-limiting enzyme in proline synthesis. The results showed that both the synthesis and degradation of proline were enhanced under carbonate alkalinity stress, and the environmental alkalinity impaired the growth performance of tilapia, and the higher the alkalinity, the greater the impairment. Moreover, environmental alkalinity caused oxidative stress in tilapia, enhanced ion transport, ammonia metabolism, and altered the intensity and form of energy metabolism in tilapia. When the expression level of the pycr gene decreased, the proline metabolism could not operate normally, and the ion transport, antioxidant defense system, and energy metabolism were severely damaged, ultimately leading to liver damage and a decreased survival rate of tilapia under alkalinity stress. CONCLUSIONS The results indicated that proline metabolism plays an important role in the alkaline adaptation of Nile tilapia and is a key regulatory process in various biochemical and physiological processes.
Collapse
Affiliation(s)
- Minxu Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuxi Yan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei Liu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jinquan Fan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
9
|
Awadalla RA, Sallam A, Börner A, Elshamy MM, Heikal YM. The role of salicylic acid in modulating phenotyping in spring wheat varieties for mitigating drought stress. BMC PLANT BIOLOGY 2024; 24:948. [PMID: 39394092 PMCID: PMC11468136 DOI: 10.1186/s12870-024-05620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Climate change-related droughts that recur frequently are one of the biggest obstacles to wheat (Triticum aestivum L.) productivity. Worldwide, attempts are being done to establish drought-resistant cultivars. However, progress is slow since drought tolerance is a complex trait controlled by numerous genes, and its expression is influenced by the environment. Phenotypic, biochemical physiological, and genotyping approaches are highlighted as critical research components for leveraging genetic variation in eight wheat genotypes. Treatments included eight spring wheat genotypes (IPK_040, IPK_046, IPK_050, IPK_071, IPK_105, WAS_007, WAS_024 and WAS_031), normal irrigation (NI), drought stress (D) (30% field capacity (FC)), normal irrigation with 0.5 mM SA (NSA), and drought treated with SA (DSA). The results revealed that there was a reduction in relative water content, an increase membrane leakage, and leaf chlorophyll content under drought stress. SA induced the defense responses against drought by increasing the osmolytes and the antioxidative enzymes activities. Compared to the NI group, the DSA treatment improved the water regulation, antioxidant capacity, and drought stress resistance. SA significantly reduced the deleterious effects of water stress on phenotyping more in WAS_ 024 and IPK_ 105 genotypes. The most responsive genotypes to salicylic acid were IPK_ 046 among the IPK genotypes, whereas WAS_031 genotype was amongst WAS genotypes based on the morpho-physiological traits. The findings of this study give a solid foundation for assessing drought resistance in T. aestivum and developing cultivation-specific water management methods.
Collapse
Affiliation(s)
- Rawan A Awadalla
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed Sallam
- Department Genebank, Resources Genetics and Reproduction, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D, Stadt Seeland, 06466, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Andreas Börner
- Department Genebank, Resources Genetics and Reproduction, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D, Stadt Seeland, 06466, Germany
| | - Maha M Elshamy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
10
|
Upadhyay-Tiwari N, Huang XJ, Lee YC, Singh SK, Hsu CC, Huang SS, Verslues PE. The nonphototrophic hypocotyl 3 (NPH3) domain protein NRL5 is a trafficking-associated GTPase essential for drought resistance. SCIENCE ADVANCES 2024; 10:eado5429. [PMID: 39121213 PMCID: PMC11313873 DOI: 10.1126/sciadv.ado5429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/02/2024] [Indexed: 08/11/2024]
Abstract
The mechanisms of plant drought resistance are unclear but may involve membrane trafficking and metabolic reprogramming, including proline accumulation. Forward genetic screening using a proline dehydrogenase 1 (ProDH1) promoter:reporter identified a drought hypersensitive mutant with a single-amino acid substitution (P335L) in the nonphototrophic hypocotyl 3 (NPH3) domain of NPH3/root phototropism 2-like 5 (NRL5)/naked pins in Yucca 8 (NPY8). Further experiments found that NRL5 and other NPH3 domain proteins are guanosine triphosphatases (GTPases). NRL5, but not NRL5P335L, interacted with the RABE1c and RABH1b GTPases and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Vesicle-Associated Membrane Protein (VAMP)721/722. These proteins controlled NRL5 localization and connection to trafficking while also being genetically downstream of, and potentially regulated by, NRL5. These data demonstrate that NRL5-mediated restraint of proline catabolism is required for drought resistance and also reveal unexpected functions of the NPH3 domain such that the role of NPH3 domain proteins in signaling, trafficking, and cellular polarity can be critically reevaluated.
Collapse
Affiliation(s)
| | - Xin-Jie Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | - Shih-Shan Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
11
|
Renzetti M, Bertolini E, Trovato M. Proline Metabolism Genes in Transgenic Plants: Meta-Analysis under Drought and Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1913. [PMID: 39065440 PMCID: PMC11280441 DOI: 10.3390/plants13141913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The amino acid proline accumulates in plants during abiotic stresses such as drought and salinity and is considered a reliable marker of environmental stress. While its accumulation is well established, its precise role in stress tolerance and its underlying molecular mechanism remain less clear. To address these issues, we performed a meta-analysis-a robust statistical technique that synthesizes results from multiple independent studies while accounting for experimental differences. We focused on 16 physiological and morphological parameters affected by drought and salt stress in transgenic plants expressing proline metabolic genes. For each parameter, we calculated the effect size as the response ratio (RR), which represents the logarithm of the mean value in the transgenic group over the mean value of the control group (lnRR). Under stress, most parameters exhibited significantly higher response ratios in the transgenic group, confirming the beneficial effects of proline during drought and salt stress. Surprisingly, under non-stressed conditions, most stress markers showed no significant differences between transgenic and non-transgenic plants, despite elevated proline levels in the former. These results suggest that the benefits of proline may be related to proline catabolism or may only become apparent during stress, possibly due to interactions with reactive oxygen species (ROS), which accumulate predominantly under stress conditions.
Collapse
Affiliation(s)
- Marco Renzetti
- Department of Biology and Biotechnologies, Sapienza University, 00185 Rome, Italy;
| | - Elisa Bertolini
- Biocomputing Group, Department of Pharmacy and Biotechnology, Bologna University, 40126 Bologna, Italy;
| | - Maurizio Trovato
- Department of Biology and Biotechnologies, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
12
|
Longkumer T, Grillet L, Chang HY, Lường TC, Chen CY, Putra H, Schmidt W, Verslues PE. Insertion of YFP at P5CS1 and AFL1 shows the potential, and potential complications, of gene tagging for functional analyses of stress-related proteins. PLANT, CELL & ENVIRONMENT 2024; 47:2011-2026. [PMID: 38392921 DOI: 10.1111/pce.14861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Crispr/CAS9-enabled homologous recombination to insert a tag in frame with an endogenous gene can circumvent difficulties such as context-dependent promoter activity that complicate analysis of gene expression and protein accumulation patterns. However, there have been few reports examining whether such gene targeting/gene tagging (GT) can alter expression of the target gene. The enzyme encoded by Δ1-pyrroline-5-carboxylate synthetase 1 (P5CS1) is key for stress-induced proline synthesis and drought resistance, yet its expression pattern and protein localisation have been difficult to assay. We used GT to insert YFP in frame with the 5' or 3' ends of the endogenous P5CS1 and At14a-Like 1 (AFL1) coding regions. Insertion at the 3' end of either gene generated homozygous lines with expression of the gene-YFP fusion indistinguishable from the wild type allele. However, for P5CS1 this occurred only after selfing and advancement to the T5 generation allowed initial homozygous lethality of the insertion to be overcome. Once this was done, the GT-generated P5CS1-YFP plants revealed new information about P5CS1 localisation and tissue-specific expression. In contrast, insertion of YFP at the 5' end of either gene blocked expression. The results demonstrate that GT can be useful for functional analyses of genes that are problematic to properly express by other means but also show that, in some cases, GT can disrupt expression of the target gene.
Collapse
Affiliation(s)
| | - Louis Grillet
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hao-Yi Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Tài Chiến Lường
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Yun Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Hadi Putra
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
13
|
Liu W, Wei JW, Shan Q, Liu M, Xu J, Gong B. Genetic engineering of drought- and salt-tolerant tomato via Δ1-pyrroline-5-carboxylate reductase S-nitrosylation. PLANT PHYSIOLOGY 2024; 195:1038-1052. [PMID: 38478428 DOI: 10.1093/plphys/kiae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 06/02/2024]
Abstract
Drought and soil salinization substantially impact agriculture. While proline's role in enhancing stress tolerance is known, the exact molecular mechanism by which plants process stress signals and control proline synthesis under stress is still not fully understood. In tomato (Solanum lycopersicum L.), drought and salt stress stimulate nitric oxide (NO) production, which boosts proline synthesis by activating Δ1-pyrroline-5-carboxylate synthetase (SlP5CS) and Δ1-pyrroline-5-carboxylate reductase (SlP5CR) genes and the P5CR enzyme. The crucial factor is stress-triggered NO production, which regulates the S-nitrosylation of SlP5CR at Cys-5, thereby increasing its NAD(P)H affinity and enzymatic activity. S-nitrosylation of SlP5CR enables tomato plants to better adapt to changing NAD(P)H levels, boosting both SlP5CR activity and proline synthesis during stress. By comparing tomato lines genetically modified to express different forms of SlP5CR, including a variant mimicking S-nitrosylation (SlP5CRC5W), we found that SlP5CRC5W plants show superior growth and stress tolerance. This is attributed to better P5CR activity, proline production, water use efficiency, reactive oxygen species scavenging, and sodium excretion. Overall, this study demonstrates that tomato engineered to mimic S-nitrosylated SlP5CR exhibits enhanced growth and yield under drought and salt stress conditions, highlighting a promising approach for stress-tolerant tomato cultivation.
Collapse
Affiliation(s)
- Wei Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jin-Wei Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Shan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Minghui Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Jinghao Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
14
|
Voothuluru P, Wu Y, Sharp RE. Not so hidden anymore: Advances and challenges in understanding root growth under water deficits. THE PLANT CELL 2024; 36:1377-1409. [PMID: 38382086 PMCID: PMC11062450 DOI: 10.1093/plcell/koae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Limited water availability is a major environmental factor constraining plant development and crop yields. One of the prominent adaptations of plants to water deficits is the maintenance of root growth that enables sustained access to soil water. Despite early recognition of the adaptive significance of root growth maintenance under water deficits, progress in understanding has been hampered by the inherent complexity of root systems and their interactions with the soil environment. We highlight selected milestones in the understanding of root growth responses to water deficits, with emphasis on founding studies that have shaped current knowledge and set the stage for further investigation. We revisit the concept of integrated biophysical and metabolic regulation of plant growth and use this framework to review central growth-regulatory processes occurring within root growth zones under water stress at subcellular to organ scales. Key topics include the primary processes of modifications of cell wall-yielding properties and osmotic adjustment, as well as regulatory roles of abscisic acid and its interactions with other hormones. We include consideration of long-recognized responses for which detailed mechanistic understanding has been elusive until recently, for example hydrotropism, and identify gaps in knowledge, ongoing challenges, and opportunities for future research.
Collapse
Affiliation(s)
- Priya Voothuluru
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Yajun Wu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Robert E Sharp
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
15
|
Silverman SN, Wijker RS, Sessions AL. Biosynthetic and catabolic pathways control amino acid δ 2H values in aerobic heterotrophs. Front Microbiol 2024; 15:1338486. [PMID: 38646628 PMCID: PMC11026604 DOI: 10.3389/fmicb.2024.1338486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 04/23/2024] Open
Abstract
The hydrogen isotope ratios (δ2HAA values) of amino acids in all organisms are substantially fractionated relative to growth water. In addition, they exhibit large variations within microbial biomass, animals, and human tissues, hinting at rich biochemical information encoded in such signals. In lipids, such δ2H variations are thought to primarily reflect NADPH metabolism. Analogous biochemical controls for amino acids remain largely unknown, but must be elucidated to inform the interpretation of these measurements. Here, we measured the δ2H values of amino acids from five aerobic, heterotrophic microbes grown on different carbon substrates, as well as five Escherichia coli mutant organisms with perturbed NADPH metabolisms. We observed similar δ2HAA patterns across all organisms and growth conditions, which-consistent with previous hypotheses-suggests a first-order control by biosynthetic pathways. Moreover, δ2HAA values varied systematically with the catabolic pathways activated for substrate degradation, with variations explainable by the isotopic compositions of important cellular metabolites, including pyruvate and NADPH, during growth on each substrate. As such, amino acid δ2H values may be useful for interrogating organismal physiology and metabolism in the environment, provided we can further elucidate the mechanisms underpinning these signals.
Collapse
Affiliation(s)
- Shaelyn N. Silverman
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | | | | |
Collapse
|
16
|
Forlani G, Sabbioni G, Barera S, Funck D. A complex array of factors regulate the activity of Arabidopsis thaliana δ 1 -pyrroline-5-carboxylate synthetase isoenzymes to ensure their specific role in plant cell metabolism. PLANT, CELL & ENVIRONMENT 2024; 47:1348-1362. [PMID: 38223941 DOI: 10.1111/pce.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
The first and committed step in proline synthesis from glutamate is catalyzed by δ1 -pyrroline-5-carboxylate synthetase (P5CS). Two P5CS genes have been found in most angiosperms, one constitutively expressed to satisfy proline demand for protein synthesis, the other stress-induced. Despite the number of papers to investigate regulation at the transcriptional level, to date, the properties of the enzymes have been subjected to limited study. The isolation of Arabidopsis thaliana P5CS isoenzymes was achieved through heterologous expression and affinity purification. The two proteins were characterized with respect to kinetic and biochemical properties. AtP5CS2 showed KM values in the micro- to millimolar range, and its activity was inhibited by NADP+ , ADP and proline, and by glutamine and arginine at high levels. Mg2+ ions were required for activity, which was further stimulated by K+ and other cations. AtP5CS1 displayed positive cooperativity with glutamate and was almost insensitive to inhibition by proline. In the presence of physiological, nonsaturating concentrations of glutamate, proline was slightly stimulatory, and glutamine strongly increased the catalytic rate. Data suggest that the activity of AtP5CS isoenzymes is differentially regulated by a complex array of factors including the concentrations of proline, glutamate, glutamine, monovalent cations and pyridine dinucleotides.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Sabbioni
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Simone Barera
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dietmar Funck
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| |
Collapse
|
17
|
The SV, Santiago JP, Pappenberger C, Hammes UZ, Tegeder M. UMAMIT44 is a key player in glutamate export from Arabidopsis chloroplasts. THE PLANT CELL 2024; 36:1119-1139. [PMID: 38092462 PMCID: PMC10980354 DOI: 10.1093/plcell/koad310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/15/2023] [Indexed: 04/01/2024]
Abstract
Selective partitioning of amino acids among organelles, cells, tissues, and organs is essential for cellular metabolism and plant growth. Nitrogen assimilation into glutamine and glutamate and de novo biosynthesis of most protein amino acids occur in chloroplasts; therefore, various transport mechanisms must exist to accommodate their directional efflux from the stroma to the cytosol and feed the amino acids into the extraplastidial metabolic and long-distance transport pathways. Yet, Arabidopsis (Arabidopsis thaliana) transporters functioning in plastidial export of amino acids remained undiscovered. Here, USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER 44 (UMAMIT44) was identified and shown to function in glutamate export from Arabidopsis chloroplasts. UMAMIT44 controls glutamate homeostasis within and outside of chloroplasts and influences nitrogen partitioning from leaves to sinks. Glutamate imbalances in chloroplasts and leaves of umamit44 mutants impact cellular redox state, nitrogen and carbon metabolism, and amino acid (AA) and sucrose supply of growing sinks, leading to negative effects on plant growth. Nonetheless, the mutant lines adjust to some extent by upregulating alternative pathways for glutamate synthesis outside the plastids and by mitigating oxidative stress through the production of other amino acids and antioxidants. Overall, this study establishes that the role of UMAMIT44 in glutamate export from chloroplasts is vital for controlling nitrogen availability within source leaf cells and for sink nutrition, with an impact on growth and seed yield.
Collapse
Affiliation(s)
- Samantha Vivia The
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - James P Santiago
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Clara Pappenberger
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
18
|
Mahmoud LM, Killiny N, Dutt M. Melatonin supplementation enhances browning suppression and improves transformation efficiency and regeneration of transgenic rough lemon plants (Citrus × jambhiri). PLoS One 2024; 19:e0294318. [PMID: 38446779 PMCID: PMC10917246 DOI: 10.1371/journal.pone.0294318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/31/2023] [Indexed: 03/08/2024] Open
Abstract
Enzymatic browning poses a significant challenge that limits in vitro propagation and genetic transformation of plant tissues. This research focuses on investigating how adding antioxidant substances can suppress browning, leading to improved efficiency in transforming plant tissues using Agrobacterium and subsequent plant regeneration from rough lemon (Citrus × jambhiri). When epicotyl segments of rough lemon were exposed to Agrobacterium, they displayed excessive browning and tissue decay. This was notably different from the 'Hamlin' explants, which did not exhibit the same issue. The regeneration process failed completely in rough lemon explants, and they accumulated high levels of total phenolic compounds (TPC) and polyphenol oxidase (PPO), which contribute to browning. To overcome these challenges, several antioxidant and osmoprotectant compounds, including lipoic acid, melatonin, glycine betaine, and proline were added to the tissue culture medium to reduce the oxidation of phenolic compounds and mitigate browning. Treating epicotyl segments with 100 or 200 μM melatonin led to a significant reduction in browning and phenolic compound accumulation. This resulted in enhanced shoot regeneration, increased transformation efficiency, and reduced tissue decay. Importantly, melatonin supplementation effectively lowered the levels of TPC and PPO in the cultured explants. Molecular and physiological analyses also confirmed the successful overexpression of the CcNHX1 transcription factor, which plays a key role in imparting tolerance to salinity stress. This study emphasizes the noteworthy impact of supplementing antioxidants in achieving successful genetic transformation and plant regeneration in rough lemon. These findings provide valuable insights for developing strategies to address enzymatic browning and enhance the effectiveness of plant tissue culture and genetic engineering methods with potential applications across diverse plant species.
Collapse
Affiliation(s)
- Lamiaa M. Mahmoud
- Department of Horticultural Science, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, Florida, United States of America
| | - Manjul Dutt
- Department of Horticultural Science, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| |
Collapse
|
19
|
Verslues PE. Please, carefully, pass the P5C. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:663-666. [PMID: 38307518 PMCID: PMC10837010 DOI: 10.1093/jxb/erad446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
This article comments on:
Zheng Y, Cabassa-Hourton C, Eubel H, Chevreux G, Lignieres L, Crilat E, Braun H-P, Lebreton S, Savouré A. 2024. Pyrroline-5-carboxylate metabolism protein complex detected in Arabidopsis thaliana leaf mitochondria. Journal of Experimental Botany 75, 917–934.
Collapse
Affiliation(s)
- Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11528, Taiwan
| |
Collapse
|
20
|
Kijowska-Oberc J, Wawrzyniak MK, Ciszewska L, Ratajczak E. Evaluation of P5CS and ProDH activity in Paulownia tomentosa (Steud.) as an indicator of oxidative changes induced by drought stress. PeerJ 2024; 12:e16697. [PMID: 38282856 PMCID: PMC10822135 DOI: 10.7717/peerj.16697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024] Open
Abstract
The aim of the study was to investigate changes in proline metabolism in seedlings of tree species during drought stress. One month old Paulownia tomentosa seedlings were exposed to moisture conditions at various levels (irrigation at 100, 75, 50 and 25% of field capacity), and then the material (leaves and roots) was collected three times at 10-day intervals. The activity of enzymes involved in proline metabolism was closely related to drought severity; however, proline content was not directly impacted. The activity of pyrroline-5-carboxylate synthetase (P5CS), which catalyzes proline biosynthesis, increased in response to hydrogen peroxide accumulation, which was correlated with soil moisture. In contrast, the activity of proline dehydrogenase (ProDH), which catalyzes proline catabolism, decreased. Compared to proline, the activity of these enzymes may be a more reliable biochemical marker of stress-induced oxidative changes. The content of proline is dependent on numerous additional factors, i.e., its degradation is an important alternative energy source. Moreover, we noted tissue-specific differences in this species, in which roots appeared to be proline biosynthesis sites and leaves appeared to be proline catabolism sites. Further research is needed to examine a broader view of proline metabolism as a cycle regulated by multiple mechanisms and differences between species.
Collapse
Affiliation(s)
| | | | - Liliana Ciszewska
- Laboratory of RNA Biochemistry, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Wielkopolskie, Polska
| | - Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Wielkopolskie, Polska
| |
Collapse
|
21
|
Ingrisano R, Tosato E, Trost P, Gurrieri L, Sparla F. Proline, Cysteine and Branched-Chain Amino Acids in Abiotic Stress Response of Land Plants and Microalgae. PLANTS (BASEL, SWITZERLAND) 2023; 12:3410. [PMID: 37836150 PMCID: PMC10574504 DOI: 10.3390/plants12193410] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Proteinogenic amino acids are the building blocks of protein, and plants synthesize all of them. In addition to their importance in plant growth and development, growing evidence underlines the central role played by amino acids and their derivatives in regulating several pathways involved in biotic and abiotic stress responses. In the present review, we illustrate (i) the role of amino acids as an energy source capable of replacing sugars as electron donors to the mitochondrial electron transport chain and (ii) the role of amino acids as precursors of osmolytes as well as (iii) precursors of secondary metabolites. Among the amino acids involved in drought stress response, proline and cysteine play a special role. Besides the large proline accumulation occurring in response to drought stress, proline can export reducing equivalents to sink tissues and organs, and the production of H2S deriving from the metabolism of cysteine can mediate post-translational modifications that target protein cysteines themselves. Although our general understanding of microalgae stress physiology is still fragmentary, a general overview of how unicellular photosynthetic organisms deal with salt stress is also provided because of the growing interest in microalgae in applied sciences.
Collapse
Affiliation(s)
| | | | | | - Libero Gurrieri
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, 40126 Bologna, Italy; (R.I.); (E.T.); (P.T.); (F.S.)
| | | |
Collapse
|
22
|
Abbas K, Li J, Gong B, Lu Y, Wu X, Lü G, Gao H. Drought Stress Tolerance in Vegetables: The Functional Role of Structural Features, Key Gene Pathways, and Exogenous Hormones. Int J Mol Sci 2023; 24:13876. [PMID: 37762179 PMCID: PMC10530793 DOI: 10.3390/ijms241813876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The deleterious effects of drought stress have led to a significant decline in vegetable production, ultimately affecting food security. After sensing drought stress signals, vegetables prompt multifaceted response measures, eventually leading to changes in internal cell structure and external morphology. Among them, it is important to highlight that the changes, including changes in physiological metabolism, signal transduction, key genes, and hormone regulation, significantly influence drought stress tolerance in vegetables. This article elaborates on vegetable stress tolerance, focusing on structural adaptations, key genes, drought stress signaling transduction pathways, osmotic adjustments, and antioxidants. At the same time, the mechanisms of exogenous hormones such as abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) toward improving the adaptive drought tolerance of vegetables were also reviewed. These insights can enhance the understanding of vegetable drought tolerance, supporting vegetable tolerance enhancement by cultivation technology improvements under changing climatic conditions, which provides theoretical support and technical reference for innovative vegetable stress tolerance breeding and food security.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongbo Gao
- Key Laboratory of North China Water-Saving Irrigation Engineering, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
23
|
Abd El-Samad HM, Taha RM. The strategy role of natural products on growth, primary and secondary metabolites of two wheat cultivars under drought stress. JOURNAL OF CROP SCIENCE AND BIOTECHNOLOGY 2023. [DOI: 10.1007/s12892-023-00205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 09/02/2023]
|
24
|
Shim JS, Jeong HI, Bang SW, Jung SE, Kim G, Kim YS, Redillas MCFR, Oh SJ, Seo JS, Kim JK. DROUGHT-INDUCED BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE enhances drought tolerance in rice. PLANT PHYSIOLOGY 2023; 191:1435-1447. [PMID: 36493384 PMCID: PMC9922417 DOI: 10.1093/plphys/kiac560] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Plants accumulate several metabolites in response to drought stress, including branched-chain amino acids (BCAAs). However, the roles of BCAAs in plant drought responses and the underlying molecular mechanisms for BCAA accumulation remain elusive. Here, we demonstrate that rice (Oryza sativa) DROUGHT-INDUCED BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (OsDIAT) mediates the accumulation of BCAAs in rice in response to drought stress. An in vitro enzyme activity assay indicated that OsDIAT is a branched-chain amino acid aminotransferase, and subcellular localization analysis revealed that OsDIAT localizes to the cytoplasm. The expression of OsDIAT was induced in plants upon exposure to abiotic stress. OsDIAT-overexpressing (OsDIATOX) plants were more tolerant to drought stress, whereas osdiat plants were more susceptible to drought stress compared with nontransgenic (NT) plants. Amino acid analysis revealed that BCAA levels were higher in OsDIATOX but lower in osdiat compared with in NT plants. Finally, the exogenous application of BCAAs improved plant tolerance to osmotic stress compared with that in control plants. Collectively, these findings suggest that OsDIAT mediates drought tolerance by promoting the accumulation of BCAAs.
Collapse
Affiliation(s)
| | | | - Seung Woon Bang
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Se Eun Jung
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Goeun Kim
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Mark Christian Felipe R Redillas
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
- Department of Biology, De La Salle University, Manila 1004, Philippines
| | - Se-Jun Oh
- LaSemilla Co. Ltd., Pyeongchang 25354, Korea
| | - Jun Sung Seo
- Author for correspondence: (J. S. S.); (J.-K. K.)
| | - Ju-Kon Kim
- Author for correspondence: (J. S. S.); (J.-K. K.)
| |
Collapse
|
25
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
26
|
Ivanov A, Kosobryukhov A, Kreslavski V, Allakhverdiev S. Changes in the photosynthetic performance, the activity of enzymes of nitrogen metabolism, and proline content in the leaves of wheat plants after exposure to low CO 2 concentration. PHOTOSYNTHETICA 2022; 61:190-202. [PMID: 39650672 PMCID: PMC11515816 DOI: 10.32615/ps.2022.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/11/2022] [Indexed: 12/11/2024]
Abstract
The changes in photosynthetic activity, as well as the activity of nitrogen-metabolism enzymes, the intensity of lipid peroxidation, and proline content were studied in Triticum aestivum L. plants after their incubation at a low CO2 concentration in a sealed chamber for 10 d. CO2 deficiency (-CO2) compared to normal CO2 concentration (control) led to a decrease in the rate of O2 gas exchange at the plateau of the light curve and quantum yield of photosynthesis. The maximum and effective quantum photochemical yields also decreased. CO2 deficiency reduced the activity of nitrate reductase, but increased the activities of nitrite reductase, glutamine synthetase, and glutamate dehydrogenase, and promoted proline accumulation. It is assumed that with a lack of CO2, an excess of nitrogen-containing compounds occurs, which must be removed from metabolic processes. Also, we suggest the partial storage of nitrogen in the form of nitrogen-containing compounds such as proline.
Collapse
Affiliation(s)
- A. Ivanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, 142290 Moscow Region, Russia
| | - A. Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, 142290 Moscow Region, Russia
| | - V. Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, 142290 Moscow Region, Russia
| | - S.I. Allakhverdiev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, 142290 Moscow Region, Russia
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
- Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
27
|
Shrestha A, Fendel A, Nguyen TH, Adebabay A, Kullik AS, Benndorf J, Leon J, Naz AA. Natural diversity uncovers P5CS1 regulation and its role in drought stress tolerance and yield sustainability in barley. PLANT, CELL & ENVIRONMENT 2022; 45:3523-3536. [PMID: 36130879 DOI: 10.1111/pce.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/15/2023]
Abstract
Proline accumulation is one of the major responses of plants to many abiotic stresses. However, the significance of proline accumulation for drought stress tolerance remains enigmatic in crop plants. First, we examined the natural variation of the pyrolline-5-carboxylate synthase (P5CS1) among 49 barley genotypes. Allele mining identified a previously unknown allelic series that showed polymorphisms at 42 cis-elements across the P5CS1 promoter. Selected haplotypes had quantitative variation in P5CS1 gene expression and proline accumulation, putatively influenced by both abscisic acid-dependent and independent pathways under drought stress. Next, we introgressed the P5CS1 allele from a high proline accumulating wild barley accession ISR42-8 into cultivar Scarlett developing a near-isogenic line (NIL-143). NIL-143 accumulated higher proline concentrations than Scarlett under drought stress at seedling and reproductive stages. Under drought stress, NIL-143 showed less pigment damage, sustained photosynthetic health, and higher drought stress recovery compared to Scarlett. Further, the drought-induced damage to yield-related traits, mainly thousand-grain weight, was lower in NIL-143 compared with Scarlett in field conditions. Our data uncovered new variants of the P5CS1 promoter and the significance of the increased proline accumulation regulated by the P5CS1 allele of ISR42-8 in drought stress tolerance and yield stability in barley.
Collapse
Affiliation(s)
- Asis Shrestha
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Alexander Fendel
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Thuy H Nguyen
- Department of Crop Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Anteneh Adebabay
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Annika Stina Kullik
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Jan Benndorf
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Jens Leon
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Ali A Naz
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Sweetman C, Waterman CD, Wong DC, Day DA, Jenkins CL, Soole KL. Altering the balance between AOX1A and NDB2 expression affects a common set of transcripts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:876843. [PMID: 36466234 PMCID: PMC9716356 DOI: 10.3389/fpls.2022.876843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Stress-responsive components of the mitochondrial alternative electron transport pathway have the capacity to improve tolerance of plants to abiotic stress, particularly the alternative oxidase AOX1A but also external NAD(P)H dehydrogenases such as NDB2, in Arabidopsis. NDB2 and AOX1A can cooperate to entirely circumvent the classical electron transport chain in Arabidopsis mitochondria. Overexpression of AOX1A or NDB2 alone can have slightly negative impacts on plant growth under optimal conditions, while simultaneous overexpression of NDB2 and AOX1A can reverse these phenotypic effects. We have taken a global transcriptomic approach to better understand the molecular shifts that occur due to overexpression of AOX1A alone and with concomitant overexpression of NDB2. Of the transcripts that were significantly up- or down- regulated in the AOX1A overexpression line compared to wild type (410 and 408, respectively), the majority (372 and 337, respectively) reverted to wild type levels in the dual overexpression line. Several mechanisms for the AOX1A overexpression phenotype are proposed based on the functional classification of these 709 genes, which can be used to guide future experiments. Only 28 genes were uniquely up- or down-regulated when NDB2 was overexpressed in the AOX1A overexpression line. On the other hand, many unique genes were deregulated in the NDB2 knockout line. Furthermore, several changes in transcript abundance seen in the NDB2 knockout line were consistent with changes in the AOX1A overexpression line. The results suggest that an imbalance in AOX1A:NDB2 protein levels caused by under- or over-expression of either component, triggers a common set of transcriptional responses that may be important in mitochondrial redox regulation. The most significant changes were transcripts associated with photosynthesis, secondary metabolism and oxidative stress responses.
Collapse
Affiliation(s)
- Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Darren C.J. Wong
- College of Science, Australian National University, Canberra, ACT, Australia
| | - David A. Day
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Colin L.D. Jenkins
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kathleen L. Soole
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
29
|
Guo S, Ma X, Cai W, Wang Y, Gao X, Fu B, Li S. Exogenous Proline Improves Salt Tolerance of Alfalfa through Modulation of Antioxidant Capacity, Ion Homeostasis, and Proline Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212994. [PMID: 36365447 PMCID: PMC9657615 DOI: 10.3390/plants11212994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 05/24/2023]
Abstract
Alfalfa (Medicago sativa L.) is an important forage crop, and its productivity is severely affected by salt stress. Although proline is a compatible osmolyte that plays an important role in regulating plant abiotic stress resistance, the basic mechanism of proline requires further clarification regarding the effect of proline in mitigating the harmful effects of salinity. Here, we investigate the protective effects and regulatory mechanisms of proline on salt tolerance of alfalfa. The results show that exogenous proline obviously promotes seed germination and seedling growth of salt-stressed alfalfa. Salt stress results in stunted plant growth, while proline application alleviates this phenomenon by increasing photosynthetic capacity and antioxidant enzyme activities and decreasing cell membrane damage and reactive oxygen species (ROS) accumulation. Plants with proline treatment maintain a better K+/Na+ ratio by reducing Na+ accumulation and increasing K+ content under salt stress. Additionally, proline induces the expression of genes related to antioxidant biosynthesis (Cu/Zn-SOD and APX) and ion homeostasis (SOS1, HKT1, and NHX1) under salt stress conditions. Proline metabolism is mainly regulated by ornithine-δ-aminotransferase (OAT) and proline dehydrogenase (ProDH) activities and their transcription levels, with the proline-treated plants displaying an increase in proline content under salt stress. In addition, OAT activity in the ornithine (Orn) pathway rather than Δ1-pyrroline-5-carboxylate synthetase (P5CS) activity in the glutamate (Glu) pathway is strongly increased under salt stress, made evident by the sharp increase in the expression level of the OAT gene compared to P5CS1 and P5CS2. Our study provides new insight into how exogenous proline improves salt tolerance in plants and that it might be used as a significant practical strategy for cultivating salt-tolerant alfalfa.
Collapse
Affiliation(s)
- Shuaiqi Guo
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xuxia Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Wenqi Cai
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Yuan Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xueqin Gao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Bingzhe Fu
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan 750021, China
| | - Shuxia Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan 750021, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan 750021, China
| |
Collapse
|
30
|
Jia X, Liu Y, Wang S, Ma J, Yu J, Yue X, Zhang Y, Wang X. Screening of metabolic markers present in Oxytropis by UHPLC-Q-TOF/MS and preliminary pharmacophylogenetic investigation. FRONTIERS IN PLANT SCIENCE 2022; 13:958460. [PMID: 36340402 PMCID: PMC9631219 DOI: 10.3389/fpls.2022.958460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Plants belonging to the Oxytropis genus, family Leguminosae, are found throughout the world, with about 80 species mainly distributed in northwest and northeast China. The plants have medicinal properties and many plants have been used as folk medicine for the treatment of colds, inflammation of carbuncle swelling, pain, and different types of bleeding. In recent years, due to the reduced availability of wild resources and increased clinical demand, additional Oxytropis species have been used in Mongolian medicine. This study explored the medicinal potential of four Oxytropis species, investigating their phylogeny, chemical components, and pharmacological activities. Oxytropis myriophylla (Pall) DC., Oxytropis hirta Bunge, and Oxytropis bicolor Bge. were found to be closely related at the taxonomic level. While previous investigations on the bioactive constituents of Oxytropis have been limited and have concentrated largely on flavonoids and saponins, the present study established a novel UHPLC-Q-TOF/MS based on metabolite profiling to comprehensively analyze the chemical composition of the four Oxytropis species and to identify marker compounds. A total of 75 compounds were identified from the four species, with 23 identified as characteristic marker components. Twenty-six marker compounds were identified in O. myriophylla from different geographical regions. Analysis of pharmacological activity showed that extracts of O. myriophylla and O. hirta had stronger anti-inflammatory activity than the extracts from the other species. The relationships between the chemical components, traditional curative uses, and pharmacological activities were analyzed to provide a preliminary documentation of the pharmacophylogenetic characteristics of the Oxytropis family as a whole. Several marker compounds, including licoricesaponin G2, licoricesaponin J2, and glycyrrhizic acid found in O. hirta were found to have effective anti-inflammatory activity, consistent with the traditional application of reducing swelling and healing wounds. This preliminary investigation into the pharmacophylogeny of the genus Oxytropis will contribute to the conservation and exploitation of the medicinal resources of this genus.
Collapse
|
31
|
Silicon Supplementation Alleviates the Salinity Stress in Wheat Plants by Enhancing the Plant Water Status, Photosynthetic Pigments, Proline Content and Antioxidant Enzyme Activities. PLANTS 2022; 11:plants11192525. [PMID: 36235391 PMCID: PMC9572231 DOI: 10.3390/plants11192525] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Silicon (Si) is the most abundant element on earth after oxygen and is very important for plant growth under stress conditions. In the present study, we inspected the role of Si in the mitigation of the negative effect of salt stress at three concentrations (40 mM, 80 mM, and 120 mM NaCl) in two wheat varieties (KRL-210 and WH-1105) with or without Si (0 mM and 2 mM) treatment. Our results showed that photosynthetic pigments, chlorophyll stability index, relative water content, protein content, and carbohydrate content were reduced at all three salt stress concentrations in both wheat varieties. Moreover, lipid peroxidation, proline content, phenol content, and electrolyte leakage significantly increased under salinity stress. The antioxidant enzyme activities, like catalase and peroxidase, were significantly enhanced under salinity in both leaves and roots; however, SOD activity was drastically decreased under salt stress in both leaves and roots. These negative effects of salinity were more pronounced in WH-1105, as KRL-210 is a salt-tolerant wheat variety. On the other hand, supplementation of Si improved the photosynthetic pigments, relative water, protein, and carbohydrate contents in both varieties. In addition, proline content, MDA content, and electrolyte leakage were shown to decline following Si application under salt stress. It was found that applying Si enhanced the antioxidant enzyme activities under stress conditions. Si showed better results in WH-1105 than in KRL-210. Furthermore, Si was found to be more effective at a salt concentration of 120 mM compared to low salt concentrations (40 mM, 80 mM), indicating that it significantly improved plant growth under stressed conditions. Our experimental findings will open a new area of research in Si application for the identification and implication of novel genes involved in enhancing salinity tolerance.
Collapse
|
32
|
Tarchevsky IA, Egorova AM. Participation of Proline in Plant Adaptation to Stress Factors and Its Application in Agrobiotechnology (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Dubrovna OV, Mykhalska SI, Komisarenko AG. Using Proline Metabolism Genes in Plant Genetic Engineering. CYTOL GENET+ 2022. [DOI: 10.3103/s009545272204003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Kavi Kishor PB, Suravajhala P, Rathnagiri P, Sreenivasulu N. Intriguing Role of Proline in Redox Potential Conferring High Temperature Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:867531. [PMID: 35795343 PMCID: PMC9252438 DOI: 10.3389/fpls.2022.867531] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/21/2022] [Indexed: 05/24/2023]
Abstract
Proline is a proteinogenic amino acid synthesized from glutamate and ornithine. Pyrroline-5-carboxylate synthetase and pyrroline-5-carboxylate reductase are the two key enzymes involved in proline synthesis from glutamate. On the other hand, ornithine-δ-aminotransferase converts ornithine to pyrroline 5-carboxylate (P5C), an intermediate in the synthesis of proline as well as glutamate. Both proline dehydrogenase and P5C dehydrogenase convert proline back to glutamate. Proline accumulation is widespread in response to environmental challenges such as high temperatures, and it is known to defend plants against unpropitious situations promoting plant growth and flowering. While proline accumulation is positively correlated with heat stress tolerance in some crops, it has detrimental consequences in others. Although it has been established that proline is a key osmolyte, its exact physiological function during heat stress and plant ontogeny remains unknown. Emerging evidence pointed out its role as an overriding molecule in alleviating high temperature stress (HTS) by quenching singlet oxygen and superoxide radicals. Proline cycle acts as a shuttle and the redox couple (NAD+/NADH, NADP+/NADPH) appears to be highly crucial for energy transfer among different cellular compartments during plant development, exposure to HTS conditions and also during the recovery of stress. In this review, the progress made in recent years regarding its involvement in heat stress tolerance is highlighted.
Collapse
Affiliation(s)
- P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to Be University), Guntur, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham University, Kerala, India
| | - P. Rathnagiri
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to Be University), Guntur, India
| | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Research Unit, International Rice Research Institute, Los Banos, Philippines
| |
Collapse
|
35
|
Goswami G, Hazarika DJ, Chowdhury N, Bora SS, Sarmah U, Naorem RS, Boro RC, Barooah M. Proline confers acid stress tolerance to Bacillus megaterium G18. Sci Rep 2022; 12:8875. [PMID: 35614097 PMCID: PMC9133035 DOI: 10.1038/s41598-022-12709-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Proline plays a multifunctional role in several organisms including bacteria in conferring protection under stress conditions. In this paper we report the role of proline in conferring acid tolerance to Bacillus megaterium G18. An acid susceptible mutant of B. megaterium G18 which required proline for its growth under acid stress condition was generated through Tn5 mutagenesis. Further, targeted inactivation of proC involved in osmo-adaptive proline synthesis in B. megaterium G18 resulted in the loss of ability of the bacterium to grow at low pH (pH 4.5). Exogenous supply of proline (1 mM) to the growth medium restored the ability of the mutant cells to grow at pH 4.5 which was not the same in case of other osmoprotectants tested. Proline was produced and secreted to extracellular medium by B. megaterium G18 when growing in low pH condition as evidenced by the use of Escherichia coli proline auxotrophs and HPLC analysis. Further, pHT01 vector based expression of full length proC gene in the ∆proC mutant cells restored the survival capacity of the mutant cells in acidic pH, suggesting that proline production is an important strategy employed by B. megaterium G18 to survive under acid stress induced osmotic stress.
Collapse
Affiliation(s)
- Gunajit Goswami
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Dibya Jyoti Hazarika
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Naimisha Chowdhury
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Sudipta Sankar Bora
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Unmona Sarmah
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Romen Singh Naorem
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
36
|
Vuković R, Čamagajevac IŠ, Vuković A, Šunić K, Begović L, Mlinarić S, Sekulić R, Sabo N, Španić V. Physiological, Biochemical and Molecular Response of Different Winter Wheat Varieties under Drought Stress at Germination and Seedling Growth Stage. Antioxidants (Basel) 2022; 11:antiox11040693. [PMID: 35453378 PMCID: PMC9028496 DOI: 10.3390/antiox11040693] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/24/2023] Open
Abstract
Due to climate change in recent years, there has been an increasing water deficit during the winter wheat sowing period. This study evaluated six Croatian winter wheat varieties’ physiological, biochemical, and molecular responses under two drought stress levels at the germination/seedling growth stage. Lipid peroxidation was mainly induced under both drought stress treatments, while the antioxidative response was variety-specific. The most significant role in the antioxidative response had glutathione along with the ascorbate-glutathione pathway. Under drought stress, wheat seedlings responded in proline accumulation that was correlated with the P5CS gene expression. Expression of genes encoding dehydrins (DHN5, WZY2) was highly induced under the drought stress in all varieties, while genes encoding transcription factors were differentially regulated. Expression of DREB1 was upregulated under severe drought stress in most varieties, while the expression of WRKY2 was downregulated or revealed control levels. Different mechanisms were shown to contribute to the drought tolerance in different varieties, which was mainly associated with osmotic adjustment and dehydrins expression. Identifying different mechanisms in drought stress response would advance our understanding of the complex strategies contributing to wheat tolerance to drought in the early growth stage and could contribute to variety selection useful for developing new drought-tolerant varieties.
Collapse
Affiliation(s)
- Rosemary Vuković
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Ivna Štolfa Čamagajevac
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Ana Vuković
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Katarina Šunić
- Department of Small Cereal Crops, Agricultural Institute Osijek, 31000 Osijek, Croatia;
| | - Lidija Begović
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Selma Mlinarić
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Ramona Sekulić
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Nikolina Sabo
- Department of Biology, University of Osijek, 31000 Osijek, Croatia; (R.V.); (I.Š.Č.); (A.V.); (L.B.); (S.M.); (R.S.); (N.S.)
| | - Valentina Španić
- Department of Small Cereal Crops, Agricultural Institute Osijek, 31000 Osijek, Croatia;
- Correspondence:
| |
Collapse
|
37
|
Chen Z, Guo Z, Niu J, Xu N, Sui X, Kareem HA, Hassan MU, Yan M, Zhang Q, Wang Z, Mi F, Kang J, Cui J, Wang Q. Phytotoxic effect and molecular mechanism induced by graphene towards alfalfa (Medicago sativa L.) by integrating transcriptomic and metabolomics analysis. CHEMOSPHERE 2022; 290:133368. [PMID: 34933027 DOI: 10.1016/j.chemosphere.2021.133368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Although the widespread use of nanoparticles has been reported in various fields, the toxic mechanisms of molecular regulation involved in the alfalfa treated by nanomaterials is still in the preliminary research stage. In this study, Bara 310 SC (Bara, tolerant genotype) and Gold Empress (Gold, susceptible genotype) were used to investigate how the leaves of alfalfa interpret the physiological responses to graphene stress based on metabolome and transcriptome characterizations. Herein, graphene at different concentrations (0, 1% and 2%, w/w) were selected as the analytes. Physiological results showed antioxidant defence system and photosynthesis was significantly disturbed under high environmental concentration of graphene. With Ultra high performance liquid chromatography electrospray tandem mass spectrometry (UPLC-ESI-MS/MS), 406 metabolites were detected and 62/13 and 110/58 metabolites significantly changed in the leaves of Gold/Bara under the 1% and 2%-graphene treatments (w/w), respectively. The most important metabolites which were accumulated under graphene stress includes amino acids, flavonoids, organic acids and sugars. Transcriptomic analysis reveals 1125 of core graphene-responsive genes in alfalfa that was robustly differently expressed in both genotypes. And differential expression genes (DEGs) potentially related to photosynthetic enzymes, antioxidant enzymes, amino acids metabolism, and sucrose and starch metabolic which finding was supported by the metabolome study. Gold was more disturbed by graphene stress at both transcriptional and metabolic levels, since more stress-responsive genes/metabolites were identified in Gold. A comprehensive analysis of transcriptomic and metabolomic data highlights the important role of amino acid metabolism and nicotinate and nicotinamide metabolism pathways for graphene tolerance in alfalfa. Our study provide necessary information for better understanding the phytotoxicity molecular mechanism underlying nanomaterials tolerance of plant.
Collapse
Affiliation(s)
- Zhao Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Nan Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Sui
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Hafiz Abdul Kareem
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Mahmood Ul Hassan
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Mingke Yan
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Quan Zhang
- Jiuquan Daye Seed Industry Co. Ltd., Jiefang Road 325#, Suzhouqu, Jiuquan, 735000, Gansu Province, China
| | - Zhaolan Wang
- Institute of Grassland Research, Chinese Academy of Agricultural Science, Hohhot, 010010, Inner Mongolia, China
| | - Fugui Mi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010010, Inner Mongolia, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100094, China
| | - Jian Cui
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
38
|
Lahuta LB, Szablińska-Piernik J, Horbowicz M. Changes in Metabolic Profiles of Pea ( Pisum sativum L.) as a Result of Repeated Short-Term Soil Drought and Subsequent Re-Watering. Int J Mol Sci 2022; 23:1704. [PMID: 35163626 PMCID: PMC8836265 DOI: 10.3390/ijms23031704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/09/2023] Open
Abstract
The metabolic re-arrangements of peas (Pisum sativum L.) under soil drought and re-watering are still not fully explained. The search for metabolic markers of the stress response is important in breeding programs, to allow for the selection drought-resistant cultivars. During the present study, changes in the polar metabolite content in pea plant shoots were measured under repeated short-term soil drought and subsequent re-watering. A gas chromatograph, equipped with a mass spectrometer (GC-MS), was used for the metabolite profiling of pea plants during their middle stage of vegetation (14-34 days after sowing, DAS). The major changes occurred in the concentration of amino acids and some soluble carbohydrates. Among them, proline, γ-aminobutyric acid (GABA), branched-chain amino acids, hydroxyproline, serine, myo-inositol, and raffinose were accumulated under each soil drought and decreased after re-watering. Besides, the obtained results show that the first drought/re-watering cycle increased the ability of pea plants to restore a metabolic profile similar to the control after the second similar stress. The accumulation of proline seems to be an important part of drought memory in pea plants. However, confirmation of this suggestion requires metabolite profiling studies on a broader spectrum of pea cultivars.
Collapse
Affiliation(s)
- Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A/103A, 10719 Olsztyn, Poland; (J.S.-P.); (M.H.)
| | | | | |
Collapse
|
39
|
Mansour MMF, Hassan FAS. How salt stress-responsive proteins regulate plant adaptation to saline conditions. PLANT MOLECULAR BIOLOGY 2022; 108:175-224. [PMID: 34964081 DOI: 10.1007/s11103-021-01232-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/06/2021] [Indexed: 05/20/2023]
Abstract
An overview is presented of recent advances in our knowledge of candidate proteins that regulate various physiological and biochemical processes underpinning plant adaptation to saline conditions. Salt stress is one of the environmental constraints that restrict plant distribution, growth and yield in many parts of the world. Increased world population surely elevates food demands all over the globe, which anticipates to add a great challenge to humanity. These concerns have necessitated the scientists to understand and unmask the puzzle of plant salt tolerance mechanisms in order to utilize various strategies to develop salt tolerant crop plants. Salt tolerance is a complex trait involving alterations in physiological, biochemical, and molecular processes. These alterations are a result of genomic and proteomic complement readjustments that lead to tolerance mechanisms. Proteomics is a crucial molecular tool that indicates proteins expressed by the genome, and also identifies the functions of proteins accumulated in response to salt stress. Recently, proteomic studies have shed more light on a range of promising candidate proteins that regulate various processes rendering salt tolerance to plants. These proteins have been shown to be involved in photosynthesis and energy metabolism, ion homeostasis, gene transcription and protein biosynthesis, compatible solute production, hormone modulation, cell wall structure modification, cellular detoxification, membrane stabilization, and signal transduction. These candidate salt responsive proteins can be therefore used in biotechnological approaches to improve tolerance of crop plants to salt conditions. In this review, we provided comprehensive updated information on the proteomic data of plants/genotypes contrasting in salt tolerance in response to salt stress. The roles of salt responsive proteins that are potential determinants for plant salt adaptation are discussed. The relationship between changes in proteome composition and abundance, and alterations observed in physiological and biochemical features associated with salt tolerance are also addressed.
Collapse
Affiliation(s)
| | - Fahmy A S Hassan
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
40
|
Stallmann J, Pons CAA, Schweiger R, Müller C. Time point- and plant part-specific changes in phloem exudate metabolites of leaves and ears of wheat in response to drought and effects on aphids. PLoS One 2022; 17:e0262671. [PMID: 35077467 PMCID: PMC8789166 DOI: 10.1371/journal.pone.0262671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022] Open
Abstract
Alterations in the frequency and intensity of drought events are expected due to climate change and might have consequences for plant metabolism and the development of plant antagonists. In this study, the responses of spring wheat (Triticum aestivum) and one of its major pests, the aphid Sitobion avenae, to different drought regimes were investigated, considering different time points and plant parts. Plants were kept well-watered or subjected to either continuous or pulsed drought. Phloem exudates were collected twice from leaves and once from ears during the growth period and concentrations of amino acids, organic acids and sugars were determined. Population growth and survival of the aphid S. avenae were monitored on these plant parts. Relative concentrations of metabolites in the phloem exudates varied with the time point, the plant part as well as the irrigation regime. Pronounced increases in relative concentrations were found for proline, especially in pulsed drought-stressed plants. Moreover, relative concentrations of sucrose were lower in phloem exudates of ears than in those of leaves. The population growth and survival of aphids were decreased on plants subjected to drought and populations grew twice as large on ears compared to leaves. Our study revealed that changes in irrigation frequency and intensity modulate plant-aphid interactions. These effects may at least partly be mediated by changes in the metabolic composition of the phloem sap.
Collapse
Affiliation(s)
- Jana Stallmann
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | | | - Rabea Schweiger
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
41
|
Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, Saqib HSA, Yuan W, Xu W, Zhang Q. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. Int J Mol Sci 2022; 23:ijms23031084. [PMID: 35163008 PMCID: PMC8835272 DOI: 10.3390/ijms23031084] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Drought is one of the major constraints to rain-fed agricultural production, especially under climate change conditions. Plants evolved an array of adaptive strategies that perceive stress stimuli and respond to these stress signals through specific mechanisms. Abscisic acid (ABA) is a premier signal for plants to respond to drought and plays a critical role in plant growth and development. ABA triggers a variety of physiological processes such as stomatal closure, root system modulation, organizing soil microbial communities, activation of transcriptional and post-transcriptional gene expression, and metabolic alterations. Thus, understanding the mechanisms of ABA-mediated drought responses in plants is critical for ensuring crop yield and global food security. In this review, we highlighted how plants adjust ABA perception, transcriptional levels of ABA- and drought-related genes, and regulation of metabolic pathways to alter drought stress responses at both cellular and the whole plant level. Understanding the synergetic role of drought and ABA will strengthen our knowledge to develop stress-resilient crops through integrated advanced biotechnology approaches. This review will elaborate on ABA-mediated drought responses at genetic, biochemical, and molecular levels in plants, which is critical for advancement in stress biology research.
Collapse
Affiliation(s)
- Mehtab Muhammad Aslam
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Waseem
- Department of Botany, University of Narowal, Narowal 51600, Pakistan;
- College of Horticulture, Hainan University, Haikou 570100, China
| | - Bello Hassan Jakada
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, College of Life Science, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China;
| | - Eyalira Jacob Okal
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Zuliang Lei
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
| | - Hafiz Sohaib Ahmad Saqib
- Guangdong Provincial Key Laboratory of Marine Biology, College of Science, Shantou University, Shantou 515063, China;
| | - Wei Yuan
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.Y.); (Q.Z.)
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Qian Zhang
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.M.A.); (Z.L.); (W.X.)
- Correspondence: (W.Y.); (Q.Z.)
| |
Collapse
|
42
|
Nanopotassium, Nanosilicon, and Biochar Applications Improve Potato Salt Tolerance by Modulating Photosynthesis, Water Status, and Biochemical Constituents. SUSTAINABILITY 2022. [DOI: 10.3390/su14020723] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Salinity is one of the main environmental stresses, and it affects potato growth and productivity in arid and semiarid regions by disturbing physiological process, such as the photosynthesis rate, the absorption of essential nutrients and water, plant hormonal functions, and vital metabolic pathways. Few studies are available on the application of combined nanomaterials to mitigate salinity stress on potato plants (Solanum tuberosum L. cv. Diamont). In order to assess the effects of the sole or combined application of silicon (Si) and potassium (K) nanoparticles and biochar (Bc) on the agro-physiological properties and biochemical constituents of potato plants grown in saline soil, two open-field experiments were executed on a randomized complete block design (RCBD), with five replicates. The results show that the biochar application and nanoelements (n-K and n-Si) significantly improved the plant heights, the fresh and dry plant biomasses, the numbers of stems/plant, the leaf relative water content, the leaf chlorophyll content, the photosynthetic rate (Pn), the leaf stomatal conductance (Gc), and the tuber yields, compared to the untreated potato plants (CT). Moreover, the nanoelements and biochar improved the content of the endogenous elements of the plant tissues (N, P, K, Mg, Fe, Mn, and B), the leaf proline, and the leaf gibberellic acid (GA3), in addition to reducing the leaf abscisic acid content (ABA), the activity of catalase (CAT), and the peroxidase (POD) and polyphenol oxidase (PPO) in the leaves of salt-stressed potato plants. The combined treatment achieved maximum plant growth parameters, physiological parameters, and nutrient concentrations, and minimum transpiration rates (Tr), leaf abscisic acid content (ABA), and activities of the leaf antioxidant enzymes (CAT, POD, and PPO). Furthermore, the combined treatment also showed the highest tuber yield and tuber quality, including the contents of carbohydrates, proteins, and the endogenous nutrients of the tuber tissues (N, P, and K), and the lowest starch content. Moreover, Pearson’s correlation showed that the plant growth and the tuber yields of potato plants significantly and positively correlated with the photosynthesis rate, the internal CO2 concentration, the relative water content, the proline, the chlorophyll content, and the GA3, and that they were negatively correlated with the leaf Na content, PPO, CAT, ABA, MDA, and Tr. It might be concluded that nanoelement (n-K and n-Si) and biochar applications are a promising method to enhance the plant growth and crop productivity of potato plants grown under salinity conditions.
Collapse
|
43
|
Liu J, Zhang X, Sheng J. Integrative Analysis of the Transcriptome and Metabolome Reveals the Mechanism of Saline–Alkali Stress Tolerance in Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge.) Hsiao. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Saline–alkali stress is a major abiotic stress affecting the quality and yield of crops. Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge.) Hsiao (A. mongholicus) is a well-known medicine food homology species with various pharmacological effects and health benefits that can grow well in saline–alkali soil. However, the molecular mechanisms underlying the adaptation of A. mongholicus plants to saline–alkali stress have not yet been clarified. Here, A. mongholicus plants were exposed to long-term saline–alkali stress (200 mmol·L -1 mixed saline–alkali solution), which limited the growth of A. mongholicus. The roots of A. mongholicus could resist long-term saline–alkali stress by increasing the activity of antioxidant enzymes and the content of osmolytes. Transcriptome analysis (via the Illumina platform) and metabolome analysis (via the Nexera UPLC Series QE Liquid Mass Coupling System) revealed that saline–alkali stress altered the activity of various metabolic pathways (e.g., amino acid metabolism, carbohydrate metabolism, lipid metabolism, and biosynthesis of other secondary metabolites). A total of 3,690 differentially expressed genes (DEGs) and 997 differentially accumulated metabolites (DAMs) were identified in A. mongholicus roots under saline–alkali stress, and flavonoid-related DEGs and DAMs were significantly up-regulated. Pearson correlation analysis revealed significant correlations between DEGs and DAMs related to flavonoid metabolism. MYB transcription factors might also contribute to the regulation of flavonoid biosynthesis. Overall, the results indicate that A. mongholicus plants adapt to saline–alkali stress by up-regulating the biosynthesis of flavonoids, which enhances the medicinal value of A. mongholicus.
Collapse
|
44
|
Hoermiller II, Funck D, Schönewolf L, May H, Heyer AG. Cytosolic proline is required for basal freezing tolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:147-155. [PMID: 34605046 DOI: 10.1111/pce.14196] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The amino acid proline accumulates in many plant species under abiotic stress conditions, and various protective functions have been proposed. During cold stress, however, proline content in Arabidopsis thaliana does not correlate with freezing tolerance. Freezing sensitivity of a starchless plastidic phosphoglucomutase mutant (pgm) indicated that localization of proline in the cytosol might stabilize the plasma membrane during freeze-thaw events. Here, we show that re-allocation of proline from cytosol to vacuole was similar in the pyrroline-5-carboxylate synthase 2-1 (p5cs2-1) mutant and the pgm mutant and caused similar reduction of basal freezing tolerance. In contrast, the starch excess 1-1 mutant (sex1-1) had even lower freezing tolerance than pgm but did not affect sub-cellular localization of proline. Freezing sensitivity of sex1-1 mutants affected primarily the photosynthetic electron transport and was enhanced in a sex1-1::p5cs2-1 double mutant. These findings indicate that several independent factors determine basal freezing tolerance. In a pgm::p5cs2-1 double mutant, freezing sensitivity and proline allocation to the vacuole were the same as in the parental lines, indicating that the lack of cytosolic proline was the common cause of reduced basal freezing tolerance in both mutants. We conclude that cytosolic proline is an important factor in freezing tolerance of non-acclimated plants.
Collapse
Affiliation(s)
- Imke I Hoermiller
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| | - Dietmar Funck
- Department of Biology, University of Konstanz, Constance, Germany
| | - Lilli Schönewolf
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| | - Henrik May
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| | - Arnd G Heyer
- Department of Plant Biotechnology, University of Stuttgart, Institute of Biomaterials & Biomolecular Systems, Stuttgart, Germany
| |
Collapse
|
45
|
Alvarez ME, Savouré A, Szabados L. Proline metabolism as regulatory hub. TRENDS IN PLANT SCIENCE 2022; 27:39-55. [PMID: 34366236 DOI: 10.1016/j.tplants.2021.07.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 05/21/2023]
Abstract
Proline is a multifunctional amino acid that is accumulated in high concentrations in plants under various stress conditions. Proline accumulation is intimately connected to many cellular processes, such as osmotic pressure, energy status, nutrient availability, changes in redox balance, and defenses against pathogens. Proline biosynthesis and catabolism is linked to photosynthesis and mitochondrial respiration, respectively. Proline can function as a signal, modulating gene expression and certain metabolic processes. We review important findings on proline metabolism and function of the last decade, giving a more informative picture about the function of this unusual amino acid in maintaining cellular homeostasis, modulating plant development, and promoting stress acclimation.
Collapse
Affiliation(s)
- María E Alvarez
- CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina.
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Hungary.
| |
Collapse
|
46
|
Ur Rahman S, Basit A, Ara N, Ullah I, Rehman AU. Morpho-physiological Responses of Tomato Genotypes Under Saline Conditions. GESUNDE PFLANZEN 2021; 73:541-553. [DOI: 10.1007/s10343-021-00576-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/20/2021] [Indexed: 10/26/2023]
|
47
|
Živanović B, Milić Komić S, Nikolić N, Mutavdžić D, Srećković T, Veljović Jovanović S, Prokić L. Differential Response of Two Tomato Genotypes, Wild Type cv. Ailsa Craig and Its ABA-Deficient Mutant flacca to Short-Termed Drought Cycles. PLANTS 2021; 10:plants10112308. [PMID: 34834671 PMCID: PMC8617711 DOI: 10.3390/plants10112308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023]
Abstract
Two tomato genotypes with constitutively different ABA level, flacca mutant and wild type of Ailsa Craig cv. (WT), were subjected to three repeated drought cycles, with the aim to reveal the role of the abscisic acid (ABA) threshold in developing drought tolerance. Differential responses to drought of two genotypes were obtained: more pronounced stomatal closure, ABA biosynthesis and proline accumulation in WT compared to the mutant were compensated by dry weight accumulation accompanied by transient redox disbalance in flacca. Fourier-transform infrared (FTIR) spectra analysis of isolated cell wall material and morphological parameter measurements on tomato leaves indicated changes in dry weight accumulation and carbon re-allocation to cell wall constituents in flacca, but not in WT. A higher proportion of cellulose, pectin and lignin in isolated cell walls from flacca leaves further increased with repeated drought cycles. Different ABA-dependent stomatal closure between drought cycles implies that acquisition of stomatal sensitivity may be a part of stress memory mechanism developed under given conditions. The regulatory role of ABA in the cell wall restructuring and growth regulation under low leaf potential was discussed with emphasis on the beneficial effects of drought priming in developing differential defense strategies against drought.
Collapse
Affiliation(s)
- Bojana Živanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Sonja Milić Komić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Nenad Nikolić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
| | - Dragosav Mutavdžić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Tatjana Srećković
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (B.Ž.); (S.M.K.); (N.N.); (D.M.); (T.S.)
- Center for Green Technologies, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
- Correspondence: (S.V.J.); (L.P.)
| | - Ljiljana Prokić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
- Correspondence: (S.V.J.); (L.P.)
| |
Collapse
|
48
|
Zheng Y, Cabassa-Hourton C, Planchais S, Lebreton S, Savouré A. The proline cycle as an eukaryotic redox valve. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6856-6866. [PMID: 34331757 DOI: 10.1093/jxb/erab361] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The amino acid proline has been known for many years to be a component of proteins as well as an osmolyte. Many recent studies have demonstrated that proline has other roles such as regulating redox balance and energy status. In animals and plants, the well-described proline cycle is concomitantly responsible for the preferential accumulation of proline and shuttling of redox equivalents from the cytosol to mitochondria. The impact of the proline cycle goes beyond regulating proline levels. In this review, we focus on recent evidence of how the proline cycle regulates redox status in relation to other redox shuttles. We discuss how the interconversion of proline and glutamate shuttles reducing power between cellular compartments. Spatial aspects of the proline cycle in the entire plant are considered in terms of proline transport between organs with different metabolic regimes (photosynthesis versus respiration). Furthermore, we highlight the importance of this shuttle in the regulation of energy and redox power in plants, through a particularly intricate coordination, notably between mitochondria and cytosol.
Collapse
Affiliation(s)
- Yao Zheng
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Séverine Planchais
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Sandrine Lebreton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| |
Collapse
|
49
|
Alves FM, Joshi M, Djidonou D, Joshi V, Gomes CN, Leskovar DI. Physiological and Biochemical Responses of Tomato Plants Grafted onto Solanum pennellii and Solanum peruvianum under Water-Deficit Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112236. [PMID: 34834599 PMCID: PMC8625872 DOI: 10.3390/plants10112236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/01/2023]
Abstract
Grafting using suitable rootstocks mitigates the adverse effects caused by environmental stresses such as water deficit in the tomato crop. Solanum pennellii and Solanum peruvianum, the wild relatives of tomato, are used as rootstocks due to their tolerance to water deficit and soil-borne diseases. This study focused on evaluating physiological and biochemical responses of tomato plants grafted onto S. pennellii and S. peruvianum rootstocks during water deficit. The commercial tomato cultivar 'HM 1823' (HM) either self-grafted (HM/HM) or grafted onto S. pennellii (HM/PN), S. peruvianum (HM/PR), and 'Multifort' (HM/MU) rootstocks were subjected to water-deficit stress by withholding irrigation for eight days. The performance of the grafted plants under water deficit was evaluated using physiological and biochemical parameters in vegetative tissues of the grafted plants. Plants grafted using S. pennellii (PN) and S. peruvianum (PR) rootstocks showed higher values of water potential (Ψw), relative water content (RWC), net photosynthetic rate (A), and leaf water use efficiencies (WUE) compared to HM, HM/HM, and HM/MU. Plants grafted onto tomato wild relatives showed the lowest malondialdehyde (MDA) and proline content. This study demonstrated that the rootstocks of wild tomato relatives reduced the effect of water deficit to a greater extent through better physiological, metabolic, and biochemical adjustments than self-grafting plants.
Collapse
Affiliation(s)
- Flávia Maria Alves
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil; (F.M.A.); (C.N.G.)
| | - Madhumita Joshi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Uvalde, TX 78801, USA; (M.J.); (V.J.)
| | - Desire Djidonou
- College of Agricultural Sciences and Natural Resources, Texas A&M University, Commerce, TX 75428, USA;
| | - Vijay Joshi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Uvalde, TX 78801, USA; (M.J.); (V.J.)
| | - Carlos Nick Gomes
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil; (F.M.A.); (C.N.G.)
| | - Daniel Ivan Leskovar
- Texas A&M AgriLife Research and Extension Center, Texas A&M University, Uvalde, TX 78801, USA; (M.J.); (V.J.)
| |
Collapse
|
50
|
Seed Priming Boost Adaptation in Pea Plants under Drought Stress. PLANTS 2021; 10:plants10102201. [PMID: 34686010 PMCID: PMC8541019 DOI: 10.3390/plants10102201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022]
Abstract
In the present investigation, we study the effect of Bacillus thuringiensis MH161336 (106–8 CFU/cm3), silicon (25 mL L−1), and carrot extract (75 mL L−1) as seed primers, individually or in combination, on morphological, physio-biochemical and yield components of drought-stressed pea plants (Master B) during 2019/2020 and 2020/2021 seasons. Our results indicated that drought causes a remarkable reduction in plant height, leaf area, number of leaves per plant, and number of flowers per plant in stressed pea plants during two seasons. Likewise, number of pods, pod length, seeds weight of 10 dried plants, and dry weight of 100 seeds were decreased significantly in drought-stressed pea plants. Nevertheless, seed priming with the individual treatments or in combination boosted the morphological, physio-biochemical, and yield characters of pea plants. The best results were obtained with the Bacillus thuringiensis + carrot extract treatment, which led to a remarkable increase in the number of leaves per plant, leaf area, plant height, and number of flowers per plant in stressed pea plants in both seasons. Moreover, pod length, number of seeds per pod, seeds weight of 10 dried plants, and dry weight of 100 seeds were significantly increased as well. Bacillus thuringiensis + carrot extract treatment led to improved biochemical and physiological characters, such as relative water content, chlorophyll a, chlorophyll b, regulated the up-regulation of antioxidant enzymes, increased seed yield, and decreased lipid peroxidation and reactive oxygen species, mainly superoxide and hydrogen peroxide, in drought-stressed pea plants.
Collapse
|