1
|
Plskova Z, Van Breusegem F, Kerchev P. Redox regulation of chromatin remodelling in plants. PLANT, CELL & ENVIRONMENT 2024; 47:2780-2792. [PMID: 38311877 DOI: 10.1111/pce.14843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
Changes in the cellular redox balance that occur during plant responses to unfavourable environmental conditions significantly affect a myriad of redox-sensitive processes, including those that impact on the epigenetic state of the chromatin. Various epigenetic factors, like histone modifying enzymes, chromatin remodelers, and DNA methyltransferases can be targeted by oxidative posttranslational modifications. As their combined action affects the epigenetic regulation of gene expression, they form an integral part of plant responses to (a)biotic stress. Epigenetic changes triggered by unfavourable environmental conditions are intrinsically linked with primary metabolism that supplies intermediates and donors, such acetyl-CoA and S-adenosyl-methionine, that are critical for the epigenetic decoration of histones and DNA. Here, we review the recent advances in our understanding of redox regulation of chromatin remodelling, dynamics of epigenetic marks, and the interplay between epigenetic control of gene expression, redox signalling and primary metabolism within an (a)biotic stress context.
Collapse
Affiliation(s)
- Zuzana Plskova
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Frank Van Breusegem
- VIB Center of Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, UGent, Ghent, Belgium
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
2
|
Lemke MD, Woodson JD. A genetic screen for dominant chloroplast reactive oxygen species signaling mutants reveals life stage-specific singlet oxygen signaling networks. FRONTIERS IN PLANT SCIENCE 2024; 14:1331346. [PMID: 38273946 PMCID: PMC10809407 DOI: 10.3389/fpls.2023.1331346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Introduction Plants employ intricate molecular mechanisms to respond to abiotic stresses, which often lead to the accumulation of reactive oxygen species (ROS) within organelles such as chloroplasts. Such ROS can produce stress signals that regulate cellular response mechanisms. One ROS, singlet oxygen (1O2), is predominantly produced in the chloroplast during photosynthesis and can trigger chloroplast degradation, programmed cell death (PCD), and retrograde (organelle-to-nucleus) signaling. However, little is known about the molecular mechanisms involved in these signaling pathways or how many different signaling 1O2 pathways may exist. Methods The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant conditionally accumulates chloroplast 1O2, making fc2 a valuable genetic system for studying chloroplast 1O2-initiated signaling. Here, we have used activation tagging in a new forward genetic screen to identify eight dominant fc2 activation-tagged (fas) mutations that suppress chloroplast 1O2-initiated PCD. Results While 1O2-triggered PCD is blocked in all fc2 fas mutants in the adult stage, such cellular degradation in the seedling stage is blocked in only two mutants. This differential blocking of PCD suggests that life-stage-specific 1O2-response pathways exist. In addition to PCD, fas mutations generally reduce 1O2-induced retrograde signals. Furthermore, fas mutants have enhanced tolerance to excess light, a natural mechanism to produce chloroplast 1O2. However, general abiotic stress tolerance was only observed in one fc2 fas mutant (fc2 fas2). Together, this suggests that plants can employ general stress tolerance mechanisms to overcome 1O2 production but that this screen was mostly specific to 1O2 signaling. We also observed that salicylic acid (SA) and jasmonate (JA) stress hormone response marker genes were induced in 1O2-stressed fc2 and generally reduced by fas mutations, suggesting that SA and JA signaling is correlated with active 1O2 signaling and PCD. Discussion Together, this work highlights the complexity of 1O2 signaling by demonstrating that multiple pathways may exist and introduces a suite of new 1O2 signaling mutants to investigate the mechanisms controlling chloroplast-initiated degradation, PCD, and retrograde signaling.
Collapse
Affiliation(s)
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
3
|
Zhou H, Huang J, Willems P, Van Breusegem F, Xie Y. Cysteine thiol-based post-translational modification: What do we know about transcription factors? TRENDS IN PLANT SCIENCE 2023; 28:415-428. [PMID: 36494303 DOI: 10.1016/j.tplants.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Reactive electrophilic species are ubiquitous in plant cells, where they contribute to specific redox-regulated signaling events. Redox signaling is known to modulate gene expression during diverse biological processes, including plant growth, development, and environmental stress responses. Emerging data demonstrates that transcription factors (TFs) are a main target of cysteine thiol-based oxidative post-translational modifications (OxiPTMs), which can alter their transcriptional activity and thereby convey redox information to the nucleus. Here, we review the significant progress that has been made in characterizing cysteine thiol-based OxiPTMs, their biochemical properties, and their functional effects on plant TFs. We discuss the underlying mechanism of redox regulation and its contribution to various physiological processes as well as still outstanding challenges in redox regulation of plant gene expression.
Collapse
Affiliation(s)
- Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; VIB Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
4
|
Sandalio LM, Collado-Arenal AM, Romero-Puertas MC. Deciphering peroxisomal reactive species interactome and redox signalling networks. Free Radic Biol Med 2023; 197:58-70. [PMID: 36642282 DOI: 10.1016/j.freeradbiomed.2023.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Plant peroxisomes are highly dynamic organelles with regard to metabolic pathways, number and morphology and participate in different metabolic processes and cell responses to their environment. Peroxisomes from animal and plant cells house a complex system of reactive oxygen species (ROS) production associated to different metabolic pathways which are under control of an important set of enzymatic and non enzymatic antioxidative defenses. Nitric oxide (NO) and its derivate reactive nitrogen species (RNS) are also produced in these organelles. Peroxisomes can regulate ROS and NO/RNS levels to allow their role as signalling molecules. The metabolism of other reactive species such as carbonyl reactive species (CRS) and sulfur reactive species (SRS) in peroxisomes and their relationship with ROS and NO have not been explored in depth. In this review, we define a peroxisomal reactive species interactome (PRSI), including all reactive species ROS, RNS, CRS and SRS, their interaction and effect on target molecules contributing to the dynamic redox/ROS homeostasis and plasticity of peroxisomes, enabling fine-tuned regulation of signalling networks associated with peroxisome-dependent H2O2. Particular attention will be paid to update the information available on H2O2-dependent peroxisomal retrograde signalling and to discuss a specific peroxisomal footprint.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain.
| | - Aurelio M Collado-Arenal
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), C/ Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
5
|
Tano DW, Kozlowska MA, Easter RA, Woodson JD. Multiple pathways mediate chloroplast singlet oxygen stress signaling. PLANT MOLECULAR BIOLOGY 2023; 111:167-187. [PMID: 36266500 DOI: 10.1007/s11103-022-01319-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Chloroplast singlet oxygen initiates multiple pathways to control chloroplast degradation, cell death, and nuclear gene expression. Chloroplasts can respond to stress and changes in the environment by producing reactive oxygen species (ROS). Aside from being cytotoxic, ROS also have signaling capabilities. For example, the ROS singlet oxygen (1O2) can initiate nuclear gene expression, chloroplast degradation, and cell death. To unveil the signaling mechanisms involved, researchers have used several 1O2-producing Arabidopsis thaliana mutants as genetic model systems, including plastid ferrochelatase two (fc2), fluorescent in blue light (flu), chlorina 1 (ch1), and accelerated cell death 2 (acd2). Here, we compare these 1O2-producing mutants to elucidate if they utilize one or more signaling pathways to control cell death and nuclear gene expression. Using publicly available transcriptomic data, we demonstrate fc2, flu, and ch1 share a core response to 1O2 accumulation, but maintain unique responses, potentially tailored to respond to their specific stresses. Subsequently, we used a genetic approach to determine if these mutants share 1O2 signaling pathways by testing the ability of genetic suppressors of one 1O2 producing mutant to suppress signaling in a different 1O2 producing mutant. Our genetic analyses revealed at least two different chloroplast 1O2 signaling pathways control cellular degradation: one specific to the flu mutant and one shared by fc2, ch1, and acd2 mutants, but with life-stage-specific (seedling vs. adult) features. Overall, this work reveals chloroplast stress signaling involving 1O2 is complex and may allow cells to finely tune their physiology to environmental inputs.
Collapse
Affiliation(s)
- David W Tano
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Marta A Kozlowska
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Robert A Easter
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA.
| |
Collapse
|
6
|
Gouesbet G. Deciphering Macromolecular Interactions Involved in Abiotic Stress Signaling: A Review of Bioinformatics Analysis. Methods Mol Biol 2023; 2642:257-294. [PMID: 36944884 DOI: 10.1007/978-1-0716-3044-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Plant functioning and responses to abiotic stresses largely involve regulations at the transcriptomic level via complex interactions of signal molecules, signaling cascades, and regulators. Nevertheless, all the signaling networks involved in responses to abiotic stresses have not yet been fully established. The in-depth analysis of transcriptomes in stressed plants has become a relevant state-of-the-art methodology to study these regulations and signaling pathways that allow plants to cope with or attempt to survive abiotic stresses. The plant science and molecular biology community has developed databases about genes, proteins, protein-protein interactions, protein-DNA interactions and ontologies, which are valuable sources of knowledge for deciphering such regulatory and signaling networks. The use of these data and the development of bioinformatics tools help to make sense of transcriptomic data in specific contexts, such as that of abiotic stress signaling, using functional biological approaches. The aim of this chapter is to present and assess some of the essential online tools and resources that will allow novices in bioinformatics to decipher transcriptomic data in order to characterize the cellular processes and functions involved in abiotic stress responses and signaling. The analysis of case studies further describes how these tools can be used to conceive signaling networks on the basis of transcriptomic data. In these case studies, particular attention was paid to the characterization of abiotic stress responses and signaling related to chemical and xenobiotic stressors.
Collapse
Affiliation(s)
- Gwenola Gouesbet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)] - UMR 6553, Rennes, France.
| |
Collapse
|
7
|
Koh E, Brandis A, Fluhr R. Plastid and cytoplasmic origins of 1O 2-mediated transcriptomic responses. FRONTIERS IN PLANT SCIENCE 2022; 13:982610. [PMID: 36420020 PMCID: PMC9676463 DOI: 10.3389/fpls.2022.982610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The reactive oxygen species singlet oxygen, 1O2, has an extremely short half-life, yet is intimately involved with stress signalling in the cell. We previously showed that the effects of 1O2 on the transcriptome are highly correlated with 80S ribosomal arrest due to oxidation of guanosine residues in mRNA. Here, we show that dysregulation of chlorophyll biosynthesis in the flu mutant or through feeding by δ-aminolevulinic acid can lead to accumulation of photoactive chlorophyll intermediates in the cytoplasm, which generates 1O2 upon exposure to light and causes the oxidation of RNA, eliciting 1O2-responsive genes. In contrast, transcriptomes derived from DCMU treatment, or the Ch1 mutant under moderate light conditions display commonalties with each other but do not induce 1O2 gene signatures. Comparing 1O2 related transcriptomes to an index transcriptome induced by cycloheximide inhibition enables distinction between 1O2 of cytosolic or of plastid origin. These comparisons provide biological insight to cases of mutants or environmental conditions that produce 1O2.
Collapse
Affiliation(s)
- Eugene Koh
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Sciences Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Fluhr
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Terrón-Camero LC, Peláez-Vico MÁ, Rodríguez-González A, del Val C, Sandalio LM, Romero-Puertas MC. Gene network downstream plant stress response modulated by peroxisomal H 2O 2. FRONTIERS IN PLANT SCIENCE 2022; 13:930721. [PMID: 36082297 PMCID: PMC9445673 DOI: 10.3389/fpls.2022.930721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) act as secondary messengers that can be sensed by specific redox-sensitive proteins responsible for the activation of signal transduction culminating in altered gene expression. The subcellular site, in which modifications in the ROS/oxidation state occur, can also act as a specific cellular redox network signal. The chemical identity of ROS and their subcellular origin is actually a specific imprint on the transcriptome response. In recent years, a number of transcriptomic studies related to altered ROS metabolism in plant peroxisomes have been carried out. In this study, we conducted a meta-analysis of these transcriptomic findings to identify common transcriptional footprints for plant peroxisomal-dependent signaling at early and later time points. These footprints highlight the regulation of various metabolic pathways and gene families, which are also found in plant responses to several abiotic stresses. Major peroxisomal-dependent genes are associated with protein and endoplasmic reticulum (ER) protection at later stages of stress while, at earlier stages, these genes are related to hormone biosynthesis and signaling regulation. Furthermore, in silico analyses allowed us to assign human orthologs to some of the peroxisomal-dependent proteins, which are mainly associated with different cancer pathologies. Peroxisomal footprints provide a valuable resource for assessing and supporting key peroxisomal functions in cellular metabolism under control and stress conditions across species.
Collapse
Affiliation(s)
- Laura C. Terrón-Camero
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - M. Ángeles Peláez-Vico
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - A. Rodríguez-González
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Coral del Val
- Department of Artificial Intelligence, University of Granada, Granada, Spain
- Andalusian Data Science and Computational Intelligence (DaSCI) Research Institute, University of Granada, Granada, Spain
| | - Luisa M. Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - María C. Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
9
|
Castro PH, Couto D, Santos MÂ, Freitas S, Lourenço T, Dias E, Huguet S, Marques da Silva J, Tavares RM, Bejarano ER, Azevedo H. SUMO E3 ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis. PLANT PHYSIOLOGY 2022; 189:934-954. [PMID: 35238389 PMCID: PMC9157161 DOI: 10.1093/plphys/kiac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The ubiquitin-like modifying peptide SMALL UBIQUITIN-LIKE MODIFIER (SUMO) has become a known modulator of the plant response to multiple environmental stimuli. A common feature of many of these external stresses is the production of reactive oxygen species (ROS). Taking into account that SUMO conjugates rapidly accumulate in response to an external oxidative stimulus, it is likely that ROS and sumoylation converge at the molecular and regulatory levels. In this study, we explored the SUMO-ROS relationship, using as a model the Arabidopsis (Arabidopsis thaliana) null mutant of the major SUMO-conjugation enhancer, the E3 ligase SAP AND MIZ 1 (SIZ1). We showed that SIZ1 is involved in SUMO conjugate increase when primed with both exogenous and endogenous ROS. In siz1, seedlings were sensitive to oxidative stress imposition, and mutants accumulated different ROS throughout development. We demonstrated that the deregulation in hydrogen peroxide and superoxide homeostasis, but not of singlet O2 (1O2), was partially due to SA accumulation in siz1. Furthermore, transcriptomic analysis highlighted a transcriptional signature that implicated siz1 with 1O2 homeostasis. Subsequently, we observed that siz1 displayed chloroplast morphological defects and altered energy dissipation activity and established a link between the chlorophyll precursor protochlorophyllide and deregulation of PROTOCHLOROPHYLLIDE OXIDOREDUCTASE A (PORA), which is known to drive overproduction of 1O2. Ultimately, network analysis uncovered known and additional associations between transcriptional control of PORA and SIZ1-dependent sumoylation. Our study connects sumoylation, and specifically SIZ1, to the control of chloroplast functions and places sumoylation as a molecular mechanism involved in ROS homeostatic and signaling events.
Collapse
Affiliation(s)
- Pedro Humberto Castro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Daniel Couto
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Miguel Ângelo Santos
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Sara Freitas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Tiago Lourenço
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Eva Dias
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
| | - Jorge Marques da Silva
- Biosystems and Integrative Sciences Institute (BioISI) and Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Rui Manuel Tavares
- Biosystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga 4710-057, Portugal
| | - Eduardo Rodríguez Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Department of Biología Celular, Genética y Fisiología, Universidad de Málaga, Málaga 29071, Spain
| | - Herlander Azevedo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto 4099-002, Portugal
| |
Collapse
|
10
|
Arce RC, Carrillo N, Pierella Karlusich JJ. The chloroplast redox-responsive transcriptome of solanaceous plants reveals significant nuclear gene regulatory motifs associated to stress acclimation. PLANT MOLECULAR BIOLOGY 2022; 108:513-530. [PMID: 35044587 DOI: 10.1007/s11103-022-01240-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Transcriptomes of solanaceous plants expressing a plastid-targeted antioxidant protein were analysed to identify chloroplast redox networks modulating the expression of nuclear genes associated with stress acclimation. Plastid functions depend on the coordinated expression of nuclear genes, many of them associated to developmental and stress response pathways. Plastid-generated signals mediate this coordination via retrograde signaling, which includes sensing of chloroplast redox state and levels of reactive oxygen species (ROS), although it remains a poorly understood process. Chloroplast redox poise and ROS build-up can be modified by recombinant expression of a plastid-targeted antioxidant protein, i.e., cyanobacterial flavodoxin, with the resulting plants displaying increased tolerance to multiple environmental challenges. Here we analysed the transcriptomes of these flavodoxin-expressing plants to study the coordinated transcriptional responses of the nucleus to the chloroplast redox status and ROS levels during normal growth and stress responses (drought or biotic stress) in tobacco and potato, members of the economically important Solanaceae family. We compared their transcriptomes against those from stressed and mutant plants accumulating ROS in different subcellular compartments and found distinct ROS-related imprints modulated by flavodoxin expression and/or stress. By introducing our datasets in a large-scale interaction network, we identified transcriptional factors related to ROS and stress responses potentially involved in flavodoxin-associated signaling. Finally, we discovered identical cis elements in the promoters of many genes that respond to flavodoxin in the same direction as in wild-type plants under stress, suggesting a priming effect of flavodoxin before stress manifestation. The results provide a genome-wide picture illustrating the relevance of chloroplast redox status on biotic and abiotic stress responses and suggest new cis and trans targets to generate stress-tolerant solanaceous crops.
Collapse
Affiliation(s)
- Rocío C Arce
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Juan J Pierella Karlusich
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
11
|
Hartmann A, Berkowitz O, Whelan J, Narsai R. Cross-species transcriptomic analyses reveals common and opposite responses in Arabidopsis, rice and barley following oxidative stress and hormone treatment. BMC PLANT BIOLOGY 2022; 22:62. [PMID: 35120438 PMCID: PMC8815143 DOI: 10.1186/s12870-021-03406-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/14/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND For translational genomics, a roadmap is needed to know the molecular similarities or differences between species, such as model species and crop species. This knowledge is invaluable for the selection of target genes and pathways to alter downstream in response to the same stimuli. Here, the transcriptomic responses to six treatments including hormones (abscisic acid - ABA and salicylic acid - SA); treatments that cause oxidative stress (3-amino-1,2,4-triazole - 3AT, methyl viologen - MV); inhibit respiration (antimycin A - AA) or induce genetic damage (ultraviolet radiation -UV) were analysed and compared between Arabidopsis (Arabidopsis thaliana), barley (Hordeum vulgare) and rice (Oryza sativa). RESULTS Common and opposite responses were identified between species, with the number of differentially expressed genes (DEGs) varying greatly between treatments and species. At least 70% of DEGs overlapped with at least one other treatment within a species, indicating overlapping response networks. Remarkably, 15 to 34% of orthologous DEGs showed opposite responses between species, indicating diversity in responses, despite orthology. Orthologous DEGs with common responses to multiple treatments across the three species were correlated with experimental data showing the functional importance of these genes in biotic/abiotic stress responses. The mitochondrial dysfunction response was revealed to be highly conserved in all three species in terms of responsive genes and regulation via the mitochondrial dysfunction element. CONCLUSIONS The orthologous DEGs that showed a common response between species indicate conserved transcriptomic responses of these pathways between species. However, many genes, including prominent salt-stress responsive genes, were oppositely responsive in multiple-stresses, highlighting fundamental differences in the responses and regulation of these genes between species. This work provides a resource for translation of knowledge or functions between species.
Collapse
Affiliation(s)
- Andreas Hartmann
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
12
|
Romero-Puertas MC, Peláez-Vico MÁ, Pazmiño DM, Rodríguez-Serrano M, Terrón-Camero L, Bautista R, Gómez-Cadenas A, Claros MG, León J, Sandalio LM. Insights into ROS-dependent signalling underlying transcriptomic plant responses to the herbicide 2,4-D. PLANT, CELL & ENVIRONMENT 2022; 45:572-590. [PMID: 34800292 DOI: 10.1111/pce.14229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) functions as an agronomic weed control herbicide. High concentrations of 2,4-D induce plant growth defects, particularly leaf epinasty and stem curvature. Although the 2,4-D triggered reactive oxygen species (ROS) production, little is known about its signalling. In this study, by using a null mutant in peroxisomal acyl CoA oxidase 1 (acx1-2), we identified acyl-coenzyme A oxidase 1 (ACX1) as one of the main sources of ROS production and, in part, also causing the epinastic phenotype following 2,4-D application. Transcriptomic analyses of wild type (WT) plants after treatment with 2,4-D revealed a ROS-related peroxisomal footprint in early plant responses, while other organelles, such as mitochondria and chloroplasts, are involved in later responses. Interestingly, a group of 2,4-D-responsive ACX1-dependent transcripts previously associated with epinasty is related to auxin biosynthesis, metabolism, and signalling. We found that the auxin receptor auxin signalling F-box 3 (AFB3), a component of Skp, Cullin, F-box containing complex (SCF) (ASK-cullin-F-box) E3 ubiquitin ligase complexes, which mediates auxin/indole acetic acid (AUX/IAA) degradation by the 26S proteasome, acts downstream of ACX1 and is involved in the epinastic phenotype induced by 2,4-D. We also found that protein degradation associated with ubiquitin E3-RING and E3-SCF-FBOX in ACX1-dependent signalling in plant responses to 2,4-D is significantly regulated over longer treatment periods.
Collapse
Affiliation(s)
- María C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| | | | - Diana M Pazmiño
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| | - María Rodríguez-Serrano
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| | | | - Rocío Bautista
- Plataforma Andaluza de Bioinformática-SCBI, Universidad de Málaga, Málaga, Spain
| | - Aurelio Gómez-Cadenas
- Department Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló de la Plana, Spain
| | - M Gonzalo Claros
- Plataforma Andaluza de Bioinformática-SCBI, Universidad de Málaga, Málaga, Spain
- Departamento de Biología Molecular y Bioquímica, Ciencias, Univ. de Málaga, Málaga, Spain
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Málaga, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Univ. Valencia), CPI Edificio 8E, Valencia, Spain
| | - Luisa M Sandalio
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ, CSIC, Granada, Spain
| |
Collapse
|
13
|
Rane J, Singh AK, Tiwari M, Prasad PVV, Jagadish SVK. Effective Use of Water in Crop Plants in Dryland Agriculture: Implications of Reactive Oxygen Species and Antioxidative System. FRONTIERS IN PLANT SCIENCE 2022; 12:778270. [PMID: 35082809 PMCID: PMC8784697 DOI: 10.3389/fpls.2021.778270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/02/2021] [Indexed: 05/03/2023]
Abstract
Under dryland conditions, annual and perennial food crops are exposed to dry spells, severely affecting crop productivity by limiting available soil moisture at critical and sensitive growth stages. Climate variability continues to be the primary cause of uncertainty, often making timing rather than quantity of precipitation the foremost concern. Therefore, mitigation and management of stress experienced by plants due to limited soil moisture are crucial for sustaining crop productivity under current and future harsher environments. Hence, the information generated so far through multiple investigations on mechanisms inducing drought tolerance in plants needs to be translated into tools and techniques for stress management. Scope to accomplish this exists in the inherent capacity of plants to manage stress at the cellular level through various mechanisms. One of the most extensively studied but not conclusive physiological phenomena is the balance between reactive oxygen species (ROS) production and scavenging them through an antioxidative system (AOS), which determines a wide range of damage to the cell, organ, and the plant. In this context, this review aims to examine the possible roles of the ROS-AOS balance in enhancing the effective use of water (EUW) by crops under water-limited dryland conditions. We refer to EUW as biomass produced by plants with available water under soil moisture stress rather than per unit of water (WUE). We hypothesize that EUW can be enhanced by an appropriate balance between water-saving and growth promotion at the whole-plant level during stress and post-stress recovery periods. The ROS-AOS interactions play a crucial role in water-saving mechanisms and biomass accumulation, resulting from growth processes that include cell division, cell expansion, photosynthesis, and translocation of assimilates. Hence, appropriate strategies for manipulating these processes through genetic improvement and/or application of exogenous compounds can provide practical solutions for improving EUW through the optimized ROS-AOS balance under water-limited dryland conditions. This review deals with the role of ROS-AOS in two major EUW determining processes, namely water use and plant growth. It describes implications of the ROS level or content, ROS-producing, and ROS-scavenging enzymes based on plant water status, which ultimately affects photosynthetic efficiency and growth of plants.
Collapse
Affiliation(s)
- Jagadish Rane
- ICAR-National Institute of Abiotic Stress Management, Baramati, India
| | - Ajay Kumar Singh
- ICAR-National Institute of Abiotic Stress Management, Baramati, India
| | - Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
14
|
Zentgraf U, Andrade-Galan AG, Bieker S. Specificity of H 2O 2 signaling in leaf senescence: is the ratio of H 2O 2 contents in different cellular compartments sensed in Arabidopsis plants? Cell Mol Biol Lett 2022; 27:4. [PMID: 34991444 PMCID: PMC8903538 DOI: 10.1186/s11658-021-00300-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023] Open
Abstract
Leaf senescence is an integral part of plant development and is driven by endogenous cues such as leaf or plant age. Developmental senescence aims to maximize the usage of carbon, nitrogen and mineral resources for growth and/or for the sake of the next generation. This requires efficient reallocation of the resources out of the senescing tissue into developing parts of the plant such as new leaves, fruits and seeds. However, premature senescence can be induced by severe and long-lasting biotic or abiotic stress conditions. It serves as an exit strategy to guarantee offspring in an unfavorable environment but is often combined with a trade-off in seed number and quality. In order to coordinate the very complex process of developmental senescence with environmental signals, highly organized networks and regulatory cues have to be in place. Reactive oxygen species, especially hydrogen peroxide (H2O2), are involved in senescence as well as in stress signaling. Here, we want to summarize the role of H2O2 as a signaling molecule in leaf senescence and shed more light on how specificity in signaling might be achieved. Altered hydrogen peroxide contents in specific compartments revealed a differential impact of H2O2 produced in different compartments. Arabidopsis lines with lower H2O2 levels in chloroplasts and cytoplasm point to the possibility that not the actual contents but the ratio between the two different compartments is sensed by the plant cells.
Collapse
Affiliation(s)
- Ulrike Zentgraf
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
| | - Ana Gabriela Andrade-Galan
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Stefan Bieker
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| |
Collapse
|
15
|
Doron S, Lampl N, Savidor A, Katina C, Gabashvili A, Levin Y, Rosenwasser S. SPEAR: A proteomics approach for simultaneous protein expression and redox analysis. Free Radic Biol Med 2021; 176:366-377. [PMID: 34619326 DOI: 10.1016/j.freeradbiomed.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/02/2023]
Abstract
Oxidation and reduction of protein cysteinyl thiols serve as molecular switches, which is considered the most central mechanism for redox regulation of biological processes, altering protein structure, biochemical activity, subcellular localization, and binding affinity. Redox proteomics allows global identification of redox-modified cysteine (Cys) sites and quantification of their reversible oxidation/reduction responses, serving as a hypothesis-generating platform to stimulate redox biology mechanistic research. Here, we developed Simultaneous Protein Expression and Redox (SPEAR) analysis, a new redox-proteomics approach based on differential labeling of reversibly oxidized and reduced cysteines with light and heavy isotopic forms of commercially available isotopically-labeled N-ethylmaleimide (NEM). The presented method does not require enrichment for labeled peptides, thus enabling simultaneous quantification of Cys reversible oxidation state and protein abundance. Using SPEAR, we were able to quantify the in-vivo reversible oxidation state of thousands of cysteines across the Arabidopsis proteome under steady-state and oxidative stress conditions. Functional assignment of the identified redox-sensitive proteins demonstrated the widespread effect of oxidative conditions on various cellular functions and highlighted the enrichment of chloroplastic proteins. SPEAR provides a simple, straightforward, and cost-effective means of studying redox proteome dynamics. The presented data provide a global quantitative view of the reversible oxidation of well-known redox-regulated active sites and many novel redox-sensitive sites whose role in plant acclimation to stress conditions remains to be further explored.
Collapse
Affiliation(s)
- Shani Doron
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Nardy Lampl
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Corine Katina
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alexandra Gabashvili
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel.
| | - Shilo Rosenwasser
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel.
| |
Collapse
|
16
|
Koh E, Cohen D, Brandis A, Fluhr R. Attenuation of cytosolic translation by RNA oxidation is involved in singlet oxygen-mediated transcriptomic responses. PLANT, CELL & ENVIRONMENT 2021; 44:3597-3615. [PMID: 34370334 DOI: 10.1111/pce.14162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Singlet oxygen (1 O2 ) production is associated with stress signalling. Here, using Arabidopsis as a model system, we study the effects of the accumulation of 8-hydroxyguanosine (8-oxoG), a major product of 1 O2 -mediated RNA oxidation. We show that 8-oxoG can accumulate in vivo when 1 O2 is produced in the cytoplasm. Conditions for such production include the application of RB in the light, dark-to-light transitions in the flu mutant, or subjecting plants to combined dehydration/light exposure. Transcriptomes of these treatments displayed a significant overlap with transcripts stimulated by the cytosolic 80S ribosomal translation inhibitors, cycloheximide and homoharringtonine. We demonstrate that 8-oxoG accumulation correlates with a decrease in RNA translatability, resulting in the rapid decrease of the levels of labile gene repressor elements such as IAA1 and JAZ1 in a proteasome-dependent manner. Indeed, genes regulated by the labile repressors of the jasmonic acid signalling pathway were induced by cycloheximide, RB or dehydration/light treatment independently of the hormone. The results suggest that 1 O2 , by oxidizing RNA, attenuated cellular translatability and caused specific genes to be released from the repression of their cognate short half-life repressors. The findings here describe a novel means of gene regulation via the direct interaction of 1 O2 with RNA.
Collapse
Affiliation(s)
- Eugene Koh
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dekel Cohen
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Sciences Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Fluhr
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Lemke MD, Fisher KE, Kozlowska MA, Tano DW, Woodson JD. The core autophagy machinery is not required for chloroplast singlet oxygen-mediated cell death in the Arabidopsis thaliana plastid ferrochelatase two mutant. BMC PLANT BIOLOGY 2021; 21:342. [PMID: 34281507 PMCID: PMC8290626 DOI: 10.1186/s12870-021-03119-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Chloroplasts respond to stress and changes in the environment by producing reactive oxygen species (ROS) that have specific signaling abilities. The ROS singlet oxygen (1O2) is unique in that it can signal to initiate cellular degradation including the selective degradation of damaged chloroplasts. This chloroplast quality control pathway can be monitored in the Arabidopsis thaliana mutant plastid ferrochelatase two (fc2) that conditionally accumulates chloroplast 1O2 under diurnal light cycling conditions leading to rapid chloroplast degradation and eventual cell death. The cellular machinery involved in such degradation, however, remains unknown. Recently, it was demonstrated that whole damaged chloroplasts can be transported to the central vacuole via a process requiring autophagosomes and core components of the autophagy machinery. The relationship between this process, referred to as chlorophagy, and the degradation of 1O2-stressed chloroplasts and cells has remained unexplored. RESULTS To further understand 1O2-induced cellular degradation and determine what role autophagy may play, the expression of autophagy-related genes was monitored in 1O2-stressed fc2 seedlings and found to be induced. Although autophagosomes were present in fc2 cells, they did not associate with chloroplasts during 1O2 stress. Mutations affecting the core autophagy machinery (atg5, atg7, and atg10) were unable to suppress 1O2-induced cell death or chloroplast protrusion into the central vacuole, suggesting autophagosome formation is dispensable for such 1O2-mediated cellular degradation. However, both atg5 and atg7 led to specific defects in chloroplast ultrastructure and photosynthetic efficiencies, suggesting core autophagy machinery is involved in protecting chloroplasts from photo-oxidative damage. Finally, genes predicted to be involved in microautophagy were shown to be induced in stressed fc2 seedlings, indicating a possible role for an alternate form of autophagy in the dismantling of 1O2-damaged chloroplasts. CONCLUSIONS Our results support the hypothesis that 1O2-dependent cell death is independent from autophagosome formation, canonical autophagy, and chlorophagy. Furthermore, autophagosome-independent microautophagy may be involved in degrading 1O2-damaged chloroplasts. At the same time, canonical autophagy may still play a role in protecting chloroplasts from 1O2-induced photo-oxidative stress. Together, this suggests chloroplast function and degradation is a complex process utilizing multiple autophagy and degradation machineries, possibly depending on the type of stress or damage incurred.
Collapse
Affiliation(s)
- Matthew D. Lemke
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - Karen E. Fisher
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - Marta A. Kozlowska
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - David W. Tano
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ 85721-0036 USA
| |
Collapse
|
18
|
Sandalio LM, Peláez-Vico MA, Molina-Moya E, Romero-Puertas MC. Peroxisomes as redox-signaling nodes in intracellular communication and stress responses. PLANT PHYSIOLOGY 2021; 186:22-35. [PMID: 33587125 PMCID: PMC8154099 DOI: 10.1093/plphys/kiab060] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/22/2021] [Indexed: 05/05/2023]
Abstract
Peroxisomes are redox nodes playing a diverse range of roles in cell functionality and in the perception of and responses to changes in their environment.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
- Author for communication:
| | - Maria Angeles Peláez-Vico
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Eliana Molina-Moya
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Maria C Romero-Puertas
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
19
|
Kumar A, Friedman H, Tsechansky L, Graber ER. Distinctive in-planta acclimation responses to basal growth and acute heat stress were induced in Arabidopsis by cattle manure biochar. Sci Rep 2021; 11:9875. [PMID: 33972570 PMCID: PMC8110981 DOI: 10.1038/s41598-021-88856-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
In-planta mechanisms of biochar (BC)-mediated improved growth were evaluated by examining oxidative stress, metabolic, and hormonal changes of Arabidopsis wild-type plants under basal or acute heat stress (-HS/ + HS) conditions with or without BC (+ BC/-BC). The oxidative stress was evaluated by using Arabidopsis expressing redox-sensitive green fluorescent protein in the plastids (pla-roGFP2). Fresh biomass and inflorescence height were greater in + BC(‒HS) plants than in the -BC(‒HS) plants, despite similar leaf nutrient levels, photosystem II (PSII) maximal efficiencies and similar oxidative poise. Endogenous levels of jasmonic and abscisic acids were higher in the + BC(‒HS) treatment, suggesting their role in growth improvement. HS in ‒BC plants caused reductions in inflorescence height and PSII maximum quantum yield, as well as significant oxidative stress symptoms manifested by increased lipid peroxidation, greater chloroplast redox poise (oxidized form of roGFP), increased expression of DNAJ heat shock proteins and Zn-finger genes, and reduced expression of glutathione-S-transferase gene in addition to higher abscisic acid and salicylic acid levels. Oxidative stress symptoms were significantly reduced by BC. Results suggest that growth improvements by BC occurring under basal and HS conditions are induced by acclimation mechanisms to 'microstresses' associated with basal growth and to oxidative stress of HS, respectively.
Collapse
Affiliation(s)
- Abhay Kumar
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| | - Haya Friedman
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| | - Ludmila Tsechansky
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel
| | - Ellen R Graber
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
20
|
Safi A, Medici A, Szponarski W, Martin F, Clément-Vidal A, Marshall-Colon A, Ruffel S, Gaymard F, Rouached H, Leclercq J, Coruzzi G, Lacombe B, Krouk G. GARP transcription factors repress Arabidopsis nitrogen starvation response via ROS-dependent and -independent pathways. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3881-3901. [PMID: 33758916 PMCID: PMC8096604 DOI: 10.1093/jxb/erab114] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/22/2021] [Indexed: 05/04/2023]
Abstract
Plants need to cope with strong variations of nitrogen availability in the soil. Although many molecular players are being discovered concerning how plants perceive NO3- provision, it is less clear how plants recognize a lack of nitrogen. Following nitrogen removal, plants activate their nitrogen starvation response (NSR), which is characterized by the activation of very high-affinity nitrate transport systems (NRT2.4 and NRT2.5) and other sentinel genes involved in N remobilization such as GDH3. Using a combination of functional genomics via transcription factor perturbation and molecular physiology studies, we show that the transcription factors belonging to the HHO subfamily are important regulators of NSR through two potential mechanisms. First, HHOs directly repress the high-affinity nitrate transporters, NRT2.4 and NRT2.5. hho mutants display increased high-affinity nitrate transport activity, opening up promising perspectives for biotechnological applications. Second, we show that reactive oxygen species (ROS) are important to control NSR in wild-type plants and that HRS1 and HHO1 overexpressors and mutants are affected in their ROS content, defining a potential feed-forward branch of the signaling pathway. Taken together, our results define the relationships of two types of molecular players controlling the NSR, namely ROS and the HHO transcription factors. This work (i) up opens perspectives on a poorly understood nutrient-related signaling pathway and (ii) defines targets for molecular breeding of plants with enhanced NO3- uptake.
Collapse
Affiliation(s)
- Alaeddine Safi
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Correspondence: or
| | - Anna Medici
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | | | - Florence Martin
- CIRAD, AGAP Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Anne Clément-Vidal
- CIRAD, AGAP Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Amy Marshall-Colon
- New York University, Department of Biology, Center for Genomics & Systems Biology, New York, NY, USA
- Present address: Department of Plant Biology, University of Illinois at Urbana -Champaign, Urbana, IL, USA
| | - Sandrine Ruffel
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Frédéric Gaymard
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Hatem Rouached
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Department of Plant, Soil, and Microbial Sciences, and Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Julie Leclercq
- CIRAD, AGAP Institut, Montpellier, France
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gloria Coruzzi
- New York University, Department of Biology, Center for Genomics & Systems Biology, New York, NY, USA
| | - Benoît Lacombe
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Gabriel Krouk
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- Correspondence: or
| |
Collapse
|
21
|
Chen T, Cohen D, Itkin M, Malitsky S, Fluhr R. Lipoxygenase functions in 1O2 production during root responses to osmotic stress. PLANT PHYSIOLOGY 2021; 185:1638-1651. [PMID: 33793947 PMCID: PMC8133667 DOI: 10.1093/plphys/kiab025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/07/2021] [Indexed: 05/27/2023]
Abstract
Drought induces osmotic stress in roots, a condition simulated by the application of high-molecular-weight polyethylene glycol. Osmotic stress results in the reduction of Arabidopsis thaliana root growth and production of 1O2 from an unknown non-photosynthetic source. Reduced root growth can be alleviated by application of the 1O2 scavenger histidine (HIS). Here, we examined the possibility that 1O2 production involves Russell reactions occurring among the enzymatic products of lipoxygenases (LOXs), the fatty acid hydroperoxides. LOX activity was measured for purified soybean (Glycine max) LOX1 and in crude Arabidopsis root extracts using linoleic acid as substrate. Formation of the 13(S)-Hydroperoxy-9(Z),11(E)-octadecadienoic acid product was inhibited by salicylhdroxamic acid, which is a LOX inhibitor, but not by HIS, whereas 1O2 production was inhibited by both. D2O, which specifically extends the half-life of 1O2, augmented the LOX-dependent generation of 1O2, as expected from a Russell-type reaction. The addition of linoleic acid to roots stimulated 1O2 production and inhibited growth, suggesting that the availability of LOX substrate is a rate-limiting step. Indeed, water stress rapidly increased linoleic and linolenic acids by 2.5-fold in roots. Mutants with root-specific microRNA repression of LOXs showed downregulation of LOX protein and activity. The lines with downregulated LOX displayed significantly less 1O2 formation, improved root growth in osmotic stress, and an altered transcriptome response compared with wild type. The results show that LOXs can serve as an enzymatic source of "dark" 1O2 during osmotic stress and demonstrate a role for 1O2 in defining the physiological response.
Collapse
Affiliation(s)
- Tomer Chen
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| | - Dekel Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| |
Collapse
|
22
|
Al-Mohanna T, Nejat N, Iannetta AA, Hicks LM, Popescu GV, Popescu SC. Arabidopsis thimet oligopeptidases are redox-sensitive enzymes active in the local and systemic plant immune response. J Biol Chem 2021; 296:100695. [PMID: 33894200 PMCID: PMC8215294 DOI: 10.1016/j.jbc.2021.100695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/22/2023] Open
Abstract
Upon pathogen infection, receptors in plants will activate a localized immune response, the effector-triggered immunity (ETI), and a systemic immune response, the systemic acquired response (SAR). Infection also induces oscillations in the redox environment of plant cells, triggering response mechanisms involving sensitive cysteine residues that subsequently alter protein function. Arabidopsis thaliana thimet oligopeptidases TOP1 and TOP2 are required for plant defense against pathogens and the oxidative stress response. Herein, we evaluated the biochemical attributes of TOP isoforms to determine their redox sensitivity using ex vivo Escherichia coli cultures and recombinant proteins. Moreover, we explored the link between their redox regulation and plant immunity in wild-type and mutant Arabidopsis lines. These analyses revealed that redox regulation of TOPs occurs through two mechanisms: (1) oxidative dimerization of full-length TOP1 via intermolecular disulfides engaging cysteines in the N-terminal signal peptide, and (2) oxidative activation of all TOPs via cysteines that are unique and conserved. Further, we detected increased TOP activity in wild-type plants undergoing ETI or SAR following inoculation with Pseudomonas syringae strains. Mutants unable to express the chloroplast NADPH-dependent thioredoxin reductase C (NTRC) showed elevated TOP activity under unstressed conditions and were SAR-incompetent. A top1top2 knockout mutant challenged with P. syringae exhibited misregulation of ROS-induced gene expression in pathogen-inoculated and distal tissues. Furthermore, TOP1 and TOP2 could cleave a peptide derived from the immune component ROC1 with distinct efficiencies at common and specific sites. We propose that Arabidopsis TOPs are thiol-regulated peptidases active in redox-mediated signaling of local and systemic immunity.
Collapse
Affiliation(s)
- Thualfeqar Al-Mohanna
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Najmeh Nejat
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Anthony A Iannetta
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - George V Popescu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, Mississippi, USA
| | - Sorina C Popescu
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, USA.
| |
Collapse
|
23
|
Shen T, Zhang C, Liu F, Wang W, Lu Y, Chen R, He Y. High-Throughput Screening of Free Proline Content in Rice Leaf under Cadmium Stress Using Hyperspectral Imaging with Chemometrics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3229. [PMID: 32517150 PMCID: PMC7308835 DOI: 10.3390/s20113229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
Tracking of free proline (FP)-an indicative substance of heavy metal stress in rice leaf-is conducive to improve plant phenotype detection, which has important guiding significance for precise management of rice production. Hyperspectral imaging was used for high-throughput screening FP in rice leaves under cadmium (Cd) stress with five concentrations and four periods. The average spectral of rice leaves were used to show differences in optical properties. Partial least squares (PLS), least-squares support vector machine (LS-SVM) and extreme learning machine (ELM) models based on full spectra and effective wavelengths were established to detect FP content. Genetic algorithm (GA), competitive adaptive weighted sampling (CARS) and PLS weighting regression coefficient (Bw) were compared to screen the most effective wavelengths. Distribution map of the FP content in rice leaves were obtained to display the changes in the FP of leaves visually. The results illustrated that spectral differences increased with Cd stress time and FP content increased with Cd stress concentration. The best result for FP detection is the ELM model based on 27 wavelengths selected by CARS and Rp is 0.9426. Undoubtedly, hyperspectral imaging combined with chemometrics was a rapid, cost effective and non-destructive technique to excavate changes of FP in rice leaves under Cd stress.
Collapse
Affiliation(s)
- Tingting Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (T.S.); (C.Z.); (W.W.); (Y.L.); (R.C.); (Y.H.)
| | - Chu Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (T.S.); (C.Z.); (W.W.); (Y.L.); (R.C.); (Y.H.)
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (T.S.); (C.Z.); (W.W.); (Y.L.); (R.C.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
- Huanan Industrial Technology Research Institute of Zhejiang University, Guangzhou 510700, China
| | - Wei Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (T.S.); (C.Z.); (W.W.); (Y.L.); (R.C.); (Y.H.)
| | - Yi Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (T.S.); (C.Z.); (W.W.); (Y.L.); (R.C.); (Y.H.)
| | - Rongqin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (T.S.); (C.Z.); (W.W.); (Y.L.); (R.C.); (Y.H.)
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (T.S.); (C.Z.); (W.W.); (Y.L.); (R.C.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
24
|
Joshi JR, Singh V, Friedman H. Arabidopsis cysteine-rich trans-membrane module (CYSTM) small proteins play a protective role mainly against heat and UV stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:195-202. [PMID: 32007127 DOI: 10.1071/fp19236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The genomes of Arabidopsis and other plants contain cysteine-rich small protein of unknown function, harbouring a transmembrane module (CYSTM proteins). In this work we show that the transcript of one gene (At1g05340) encoding a CYSTM protein is induced mainly by heat and to a lesser extent by UV, but less by NaCl or sorbitol. A functional analysis of At1g05340 and its paralog At2g32210 using T-DNA insertional mutants revealed a decrease in seedlings root length, and a lower PSII efficiency in mature plant, due to heat stress and to a lesser extent due to UV stress, in comparison to the effect on wild-type plants. The sensitivity of these mutants to salt or osmotic stresses did not differ from wild type response, indicating a specific function for these genes in heat and UV. Heat and UV increased reactive oxygen species levels in wild type; however, the levels were higher in the mutant line than in wild type due to heat treatment, but was similar in the mutant lines and wild type due to UV stress. Taken together, our results suggest that these small cysteine-rich proteins are necessary for thermotolerance and protection from UV exposure. The proteins encoded by these genes most likely, act in heat stress by reducing reactive oxygen species level by yet unknown mechanism.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organisation (ARO), The Volcani Centre, Bet Dagan, Israel; and Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Kennedy-Leigh Centre for Horticultural Research, Faculty of Agriculture, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | - Vikram Singh
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organisation (ARO), The Volcani Centre, Bet Dagan, Israel
| | - Haya Friedman
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organisation (ARO), The Volcani Centre, Bet Dagan, Israel; and Corresponding author.
| |
Collapse
|
25
|
Mayta ML, Hajirezaei MR, Carrillo N, Lodeyro AF. Leaf Senescence: The Chloroplast Connection Comes of Age. PLANTS (BASEL, SWITZERLAND) 2019; 8:E495. [PMID: 31718069 PMCID: PMC6918220 DOI: 10.3390/plants8110495] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
Abstract
Leaf senescence is a developmental process critical for plant fitness, which involves genetically controlled cell death and ordered disassembly of macromolecules for reallocating nutrients to juvenile and reproductive organs. While natural leaf senescence is primarily associated with aging, it can also be induced by environmental and nutritional inputs including biotic and abiotic stresses, darkness, phytohormones and oxidants. Reactive oxygen species (ROS) are a common thread in stress-dependent cell death and also increase during leaf senescence. Involvement of chloroplast redox chemistry (including ROS propagation) in modulating cell death is well supported, with photosynthesis playing a crucial role in providing redox-based signals to this process. While chloroplast contribution to senescence received less attention, recent findings indicate that changes in the redox poise of these organelles strongly affect senescence timing and progress. In this review, the involvement of chloroplasts in leaf senescence execution is critically assessed in relation to available evidence and the role played by environmental and developmental cues such as stress and phytohormones. The collected results indicate that chloroplasts could cooperate with other redox sources (e.g., mitochondria) and signaling molecules to initiate the committed steps of leaf senescence for a best use of the recycled nutrients in plant reproduction.
Collapse
Affiliation(s)
- Martín L. Mayta
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina;
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, D-06466 Stadt Seeland, Germany;
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina;
| | - Anabella F. Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina;
| |
Collapse
|
26
|
Nilo-Poyanco R, Vizoso P, Sanhueza D, Balic I, Meneses C, Orellana A, Campos-Vargas R. A Prunus persica genome-wide RNA-seq approach uncovers major differences in the transcriptome among chilling injury sensitive and non-sensitive varieties. PHYSIOLOGIA PLANTARUM 2019; 166:772-793. [PMID: 30203620 DOI: 10.1111/ppl.12831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 05/14/2023]
Abstract
Chilling injury represents a major constrain for crops productivity. Prunus persica, one of the most relevant rosacea crops, have early season varieties that are resistant to chilling injury, in contrast to late season varieties, which display chilling symptoms such as mealiness (dry, sandy fruit mesocarp) after prolonged storage at chilling temperatures. To uncover the molecular processes related to the ability of early varieties to withstand mealiness, postharvest and genome-wide RNA-seq assessments were performed in two early and two late varieties. Differences in juice content and ethylene biosynthesis were detected among early and late season fruits that became mealy after exposed to prolonged chilling. Principal component and data distribution analysis revealed that cold-stored late variety fruit displayed an exacerbated and unique transcriptome profile when compared to any other postharvest condition. A differential expression analysis performed using an empirical Bayes mixture modeling approach followed by co-expression and functional enrichment analysis uncover processes related to ethylene, lipids, cell wall, carotenoids and DNA metabolism, light response, and plastid homeostasis associated to the susceptibility or resistance of P. persica varieties to chilling stress. Several of the genes related to these processes are in quantitative trait loci (QTL) associated to mealiness in P. persica. Together, these analyses exemplify how P. persica can be used as a model for studying chilling stress in plants.
Collapse
Affiliation(s)
- Ricardo Nilo-Poyanco
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paula Vizoso
- Centro de Propagación y Conservación Vegetal, Universidad Mayor, Santiago, Chile
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Iván Balic
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Departamento de Ciencias Biológicas, Universidad de Los Lagos, Osorno, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Reinaldo Campos-Vargas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
27
|
Sng NJ, Kolaczkowski B, Ferl RJ, Paul AL. A member of the CONSTANS-Like protein family is a putative regulator of reactive oxygen species homeostasis and spaceflight physiological adaptation. AOB PLANTS 2019; 11:ply075. [PMID: 30705745 PMCID: PMC6348315 DOI: 10.1093/aobpla/ply075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/12/2018] [Indexed: 05/20/2023]
Abstract
A feature of the physiological adaptation to spaceflight in Arabidopsis thaliana (Arabidopsis) is the induction of reactive oxygen species (ROS)-associated gene expression. The patterns of ROS-associated gene expression vary among Arabidopsis ecotypes, and the role of ROS signalling in spaceflight acclimation is unknown. What could differences in ROS gene regulation between ecotypes on orbit reveal about physiological adaptation to novel environments? Analyses of ecotype-dependent responses to spaceflight resulted in the elucidation of a previously uncharacterized gene (OMG1) as being ROS-associated. The OMG1 5' flanking region is an active promoter in cells where ROS activity is commonly observed, such as in pollen tubes, root hairs, and in other tissues upon wounding. qRT-PCR analyses revealed that upon wounding on Earth, OMG1 is an apparent transcriptional regulator of MYB77 and GRX480, which are associated with the ROS pathway. Fluorescence-based ROS assays show that OMG1 affects ROS production. Phylogenetic analysis of OMG1 and closely related homologs suggests that OMG1 is a distant, unrecognized member of the CONSTANS-Like protein family, a member that arose via gene duplication early in the angiosperm lineage and subsequently lost its first DNA-binding B-box1 domain. These data illustrate that members of the rapidly evolving COL protein family play a role in regulating ROS pathway functions, and their differential regulation on orbit suggests a role for ROS signalling in spaceflight physiological adaptation.
Collapse
Affiliation(s)
- Natasha J Sng
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| | - Bryan Kolaczkowski
- Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Robert J Ferl
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
- Horticultural Science Department, University of Florida, Gainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| | - Anna-Lisa Paul
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
- Horticultural Science Department, University of Florida, Gainesville, FL, USA
- Corresponding author’s e-mail address:
| |
Collapse
|
28
|
Yu L, Fan J, Xu C. Peroxisomal fatty acid β-oxidation negatively impacts plant survival under salt stress. PLANT SIGNALING & BEHAVIOR 2019; 14:1561121. [PMID: 30618323 PMCID: PMC6351088 DOI: 10.1080/15592324.2018.1561121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 05/25/2023]
Abstract
Peroxisomal β-oxidation is the sole pathway for metabolic breakdown of fatty acids to generate energy and carbon skeletons in plants, is essential for oilseed germination and plays an important role in growth, development and cellular homeostasis. Yet, this process also produces cytotoxic reactive oxygen species (ROS) as byproducts. We recently showed that disruption of fatty acid β-oxidation enhance plant survival under carbon starvation conditions. Here, we extend these findings by demonstrating that blocking fatty acid import into peroxisomes reduces ROS accumulation and increases plant tolerance to salt stress, whereas increasing fatty acid flux into the β-oxidation pathway has opposite effects. Together, these results support the view that peroxisomal β-oxidation of fatty acids enhances stress-induced ROS production, thereby negatively impacting plant survival under adverse environmental conditions.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
29
|
Chen T, Fluhr R. Singlet Oxygen Plays an Essential Role in the Root's Response to Osmotic Stress. PLANT PHYSIOLOGY 2018; 177:1717-1727. [PMID: 29954869 PMCID: PMC6084678 DOI: 10.1104/pp.18.00634] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/19/2018] [Indexed: 05/21/2023]
Abstract
The high osmotic potentials in plants subjected to drought stress can be mimicked by the application of high molecular weight polyethylene glycol. Here, we quantified the effects of exposure to polyethylene glycol on the growth of the main and lateral roots of Arabidopsis (Arabidopsis thaliana) seedlings. The effects on root growth were highly correlated with the appearance of singlet oxygen, as visualized using the singlet oxygen-specific probe singlet oxygen sensor green. The production of singlet oxygen was followed by cell death, as indicated by the intracellular accumulation of propidium iodide due to the loss of membrane integrity. Cell death began in the epidermal region of the root tip and spread in a dynamic manner to meristematic sections. In parallel, gene expression changes specific to the presence of singlet oxygen were observed. The accumulation of other reactive oxygen species, namely hydrogen, peroxide, nitric oxide, and superoxide, did not correlate with cell death. In addition, both the singlet oxygen scavenger His and the lipoxygenase inhibitor salicylhydroxamic acid specifically inhibited singlet oxygen accumulation and cell death. These results suggest a light-independent, type-I source of singlet oxygen production. Serpin-protease interactions were used as a model to assess the possibility of vacuolar-type cell death. Osmotic stress induced the accumulation of complexes between the cytoplasmic serpin AtSERPIN1 and its cognate vacuolar proteases, indicating that vacuolar integrity was compromised. These findings imply that singlet oxygen plays an essential role in conveying the root response to osmotic stress.
Collapse
Affiliation(s)
- Tomer Chen
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Robert Fluhr
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
30
|
Stevens RG, Baldet P, Bouchet JP, Causse M, Deborde C, Deschodt C, Faurobert M, Garchery C, Garcia V, Gautier H, Gouble B, Maucourt M, Moing A, Page D, Petit J, Poëssel JL, Truffault V, Rothan C. A Systems Biology Study in Tomato Fruit Reveals Correlations between the Ascorbate Pool and Genes Involved in Ribosome Biogenesis, Translation, and the Heat-Shock Response. FRONTIERS IN PLANT SCIENCE 2018; 9:137. [PMID: 29491875 PMCID: PMC5817626 DOI: 10.3389/fpls.2018.00137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/24/2018] [Indexed: 05/03/2023]
Abstract
Changing the balance between ascorbate, monodehydroascorbate, and dehydroascorbate in plant cells by manipulating the activity of enzymes involved in ascorbate synthesis or recycling of oxidized and reduced forms leads to multiple phenotypes. A systems biology approach including network analysis of the transcriptome, proteome and metabolites of RNAi lines for ascorbate oxidase, monodehydroascorbate reductase and galactonolactone dehydrogenase has been carried out in orange fruit pericarp of tomato (Solanum lycopersicum). The transcriptome of the RNAi ascorbate oxidase lines is inversed compared to the monodehydroascorbate reductase and galactonolactone dehydrogenase lines. Differentially expressed genes are involved in ribosome biogenesis and translation. This transcriptome inversion is also seen in response to different stresses in Arabidopsis. The transcriptome response is not well correlated with the proteome which, with the metabolites, are correlated to the activity of the ascorbate redox enzymes-ascorbate oxidase and monodehydroascorbate reductase. Differentially accumulated proteins include metacaspase, protein disulphide isomerase, chaperone DnaK and carbonic anhydrase and the metabolites chlorogenic acid, dehydroascorbate and alanine. The hub genes identified from the network analysis are involved in signaling, the heat-shock response and ribosome biogenesis. The results from this study therefore reveal one or several putative signals from the ascorbate pool which modify the transcriptional response and elements downstream.
Collapse
Affiliation(s)
- Rebecca G. Stevens
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Pierre Baldet
- Institut National de la Recherche Agronomique, Université de Bordeaux, UMR1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Jean-Paul Bouchet
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Mathilde Causse
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Catherine Deborde
- Institut National de la Recherche Agronomique, Université de Bordeaux, UMR1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, Centre Institut National de la Recherche Agronomique de Bordeaux, Villenave d'Ornon, France
| | - Claire Deschodt
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Mireille Faurobert
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Cécile Garchery
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Virginie Garcia
- Institut National de la Recherche Agronomique, Université de Bordeaux, UMR1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Hélène Gautier
- Institut National de la Recherche Agronomique, UR1115, Plantes et Systèmes de culture Horticoles, Avignon, France
| | - Barbara Gouble
- Institut National de la Recherche Agronomique, Université d'Avignon et des Pays du Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, Avignon, France
| | - Mickaël Maucourt
- Institut National de la Recherche Agronomique, Université de Bordeaux, UMR1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, Centre Institut National de la Recherche Agronomique de Bordeaux, Villenave d'Ornon, France
| | - Annick Moing
- Institut National de la Recherche Agronomique, Université de Bordeaux, UMR1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, Centre Institut National de la Recherche Agronomique de Bordeaux, Villenave d'Ornon, France
| | - David Page
- Institut National de la Recherche Agronomique, Université d'Avignon et des Pays du Vaucluse, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, Avignon, France
| | - Johann Petit
- Institut National de la Recherche Agronomique, Université de Bordeaux, UMR1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Jean-Luc Poëssel
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Vincent Truffault
- Institut National de la Recherche Agronomique, UR1052, Génétique et Amélioration des Fruits et Légumes, Montfavet, France
| | - Christophe Rothan
- Institut National de la Recherche Agronomique, Université de Bordeaux, UMR1332, Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| |
Collapse
|
31
|
Woehle C, Dagan T, Landan G, Vardi A, Rosenwasser S. Expansion of the redox-sensitive proteome coincides with the plastid endosymbiosis. NATURE PLANTS 2017; 3:17066. [PMID: 28504699 PMCID: PMC5438061 DOI: 10.1038/nplants.2017.66] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/07/2017] [Indexed: 05/19/2023]
Abstract
The redox-sensitive proteome (RSP) consists of protein thiols that undergo redox reactions, playing an important role in coordinating cellular processes. Here, we applied a large-scale phylogenomic reconstruction approach in the model diatom Phaeodactylum tricornutum to map the evolutionary origins of the eukaryotic RSP. The majority of P. tricornutum redox-sensitive cysteines (76%) is specific to eukaryotes, yet these are encoded in genes that are mostly of a prokaryotic origin (57%). Furthermore, we find a threefold enrichment in redox-sensitive cysteines in genes that were gained by endosymbiotic gene transfer during the primary plastid acquisition. The secondary endosymbiosis event coincides with frequent introduction of reactive cysteines into existing proteins. While the plastid acquisition imposed an increase in the production of reactive oxygen species, our results suggest that it was accompanied by significant expansion of the RSP, providing redox regulatory networks the ability to cope with fluctuating environmental conditions.
Collapse
Affiliation(s)
| | - Tal Dagan
- Institute of Microbiology, Kiel University, 24118 Kiel, Germany
| | - Giddy Landan
- Institute of Microbiology, Kiel University, 24118 Kiel, Germany
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shilo Rosenwasser
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
32
|
Carmody M, Waszczak C, Idänheimo N, Saarinen T, Kangasjärvi J. ROS signalling in a destabilised world: A molecular understanding of climate change. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:69-83. [PMID: 27364884 DOI: 10.1016/j.jplph.2016.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 05/29/2023]
Abstract
Climate change results in increased intensity and frequency of extreme abiotic and biotic stress events. In plants, reactive oxygen species (ROS) accumulate in proportion to the level of stress and are major signalling and regulatory metabolites coordinating growth, defence, acclimation and cell death. Our knowledge of ROS homeostasis, sensing, and signalling is therefore key to understanding the impacts of climate change at the molecular level. Current research is uncovering new insights into temporal-spatial, cell-to-cell and systemic ROS signalling pathways, particularly how these affect plant growth, defence, and more recently acclimation mechanisms behind stress priming and long term stress memory. Understanding the stabilising and destabilising factors of ROS homeostasis and signalling in plants exposed to extreme and fluctuating stress will concomitantly reveal how to address future climate change challenges in global food security and biodiversity management.
Collapse
Affiliation(s)
- Melanie Carmody
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Cezary Waszczak
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Niina Idänheimo
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Timo Saarinen
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland; Distinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
33
|
Dietz KJ, Turkan I, Krieger-Liszkay A. Redox- and Reactive Oxygen Species-Dependent Signaling into and out of the Photosynthesizing Chloroplast. PLANT PHYSIOLOGY 2016; 171:1541-50. [PMID: 27255485 PMCID: PMC4936569 DOI: 10.1104/pp.16.00375] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/26/2016] [Indexed: 05/18/2023]
Abstract
Photosynthesis is a high-rate redox metabolic process that is subjected to rapid changes in input parameters, particularly light. Rapid transients of photon capture, electron fluxes, and redox potentials during photosynthesis cause reactive oxygen species (ROS) to be released, including singlet oxygen, superoxide anion radicals, and hydrogen peroxide. Thus, the photosynthesizing chloroplast functions as a conditional source of important redox and ROS information, which is exploited to tune processes both inside the chloroplast and, following retrograde release or processing, in the cytosol and nucleus. Analyses of mutants and comparative transcriptome profiling have led to the identification of these processes and associated players and have allowed the specificity and generality of response patterns to be defined. The release of ROS and oxidation products, envelope permeabilization (for larger molecules), and metabolic interference with mitochondria and peroxisomes produce an intricate ROS and redox signature, which controls acclimation processes. This photosynthesis-related ROS and redox information feeds into various pathways (e.g. the mitogen-activated protein kinase and OXI1 signaling pathways) and controls processes such as gene expression and translation.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- University of Bielefeld, Faculty of Biology, Department of Biochemistry and Physiology of Plants, D-33615 Bielefeld, Germany (K.-J.D.);Ege University, Faculty of Science, Department of Biology, TR-35100 Izmir, Turkey (I.T.); andInstitute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France (A.K.-L.)
| | - Ismail Turkan
- University of Bielefeld, Faculty of Biology, Department of Biochemistry and Physiology of Plants, D-33615 Bielefeld, Germany (K.-J.D.);Ege University, Faculty of Science, Department of Biology, TR-35100 Izmir, Turkey (I.T.); andInstitute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France (A.K.-L.)
| | - Anja Krieger-Liszkay
- University of Bielefeld, Faculty of Biology, Department of Biochemistry and Physiology of Plants, D-33615 Bielefeld, Germany (K.-J.D.);Ege University, Faculty of Science, Department of Biology, TR-35100 Izmir, Turkey (I.T.); andInstitute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, F-91198 Gif-sur-Yvette cedex, France (A.K.-L.)
| |
Collapse
|
34
|
Rogers H, Munné-Bosch S. Production and Scavenging of Reactive Oxygen Species and Redox Signaling during Leaf and Flower Senescence: Similar But Different. PLANT PHYSIOLOGY 2016; 171:1560-8. [PMID: 27208233 PMCID: PMC4936548 DOI: 10.1104/pp.16.00163] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/08/2016] [Indexed: 05/16/2023]
Abstract
Reactive oxygen species (ROS) play a key role in the regulation of many developmental processes, including senescence, and in plant responses to biotic and abiotic stresses. Several mechanisms of ROS generation and scavenging are similar, but others differ between senescing leaves and petals, despite these organs sharing a common evolutionary origin. Photosynthesis-derived ROS, nutrient remobilization, and reversibility of senescence are necessarily distinct features of the progression of senescence in the two organs. Furthermore, recent studies have revealed specific redox signaling processes that act in concert with phytohormones and transcription factors to regulate senescence-associated genes in leaves and petals. Here, we review some of the recent advances in our understanding of the mechanisms underpinning the production and elimination of ROS in these two organs. We focus on unveiling common and differential aspects of redox signaling in leaf and petal senescence, with the aim of linking physiological, biochemical, and molecular processes. We conclude that the spatiotemporal impact of ROS in senescing tissues differs between leaves and flowers, mainly due to the specific functionalities of these organs.
Collapse
Affiliation(s)
- Hilary Rogers
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom (H.R.); andDepartment of Plant Biology, Faculty of Biology, University of Barcelona, 08019 Barcelona, Spain (S.M.-B.)
| | - Sergi Munné-Bosch
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom (H.R.); andDepartment of Plant Biology, Faculty of Biology, University of Barcelona, 08019 Barcelona, Spain (S.M.-B.)
| |
Collapse
|
35
|
Willems P, Mhamdi A, Stael S, Storme V, Kerchev P, Noctor G, Gevaert K, Van Breusegem F. The ROS Wheel: Refining ROS Transcriptional Footprints. PLANT PHYSIOLOGY 2016; 171:1720-33. [PMID: 27246095 PMCID: PMC4936575 DOI: 10.1104/pp.16.00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/30/2016] [Indexed: 05/19/2023]
Abstract
In the last decade, microarray studies have delivered extensive inventories of transcriptome-wide changes in messenger RNA levels provoked by various types of oxidative stress in Arabidopsis (Arabidopsis thaliana). Previous cross-study comparisons indicated how different types of reactive oxygen species (ROS) and their subcellular accumulation sites are able to reshape the transcriptome in specific manners. However, these analyses often employed simplistic statistical frameworks that are not compatible with large-scale analyses. Here, we reanalyzed a total of 79 Affymetrix ATH1 microarray studies of redox homeostasis perturbation experiments. To create hierarchy in such a high number of transcriptomic data sets, all transcriptional profiles were clustered on the overlap extent of their differentially expressed transcripts. Subsequently, meta-analysis determined a single magnitude of differential expression across studies and identified common transcriptional footprints per cluster. The resulting transcriptional footprints revealed the regulation of various metabolic pathways and gene families. The RESPIRATORY BURST OXIDASE HOMOLOG F-mediated respiratory burst had a major impact and was a converging point among several studies. Conversely, the timing of the oxidative stress response was a determining factor in shaping different transcriptome footprints. Our study emphasizes the need to interpret transcriptomic data sets in a systematic context, where initial, specific stress triggers can converge to common, aspecific transcriptional changes. We believe that these refined transcriptional footprints provide a valuable resource for assessing the involvement of ROS in biological processes in plants.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Medical Biotechnology Center, VIB, 9000 Ghent, Belgium (P.W., S.S., K.G.);Department of Biochemistry, Ghent University, 9000 Ghent, Belgium (P.W., S.S., K.G.);Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France (A.M., G.N.); andUnité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (A.M., G.N.)
| | - Amna Mhamdi
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Medical Biotechnology Center, VIB, 9000 Ghent, Belgium (P.W., S.S., K.G.);Department of Biochemistry, Ghent University, 9000 Ghent, Belgium (P.W., S.S., K.G.);Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France (A.M., G.N.); andUnité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (A.M., G.N.)
| | - Simon Stael
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Medical Biotechnology Center, VIB, 9000 Ghent, Belgium (P.W., S.S., K.G.);Department of Biochemistry, Ghent University, 9000 Ghent, Belgium (P.W., S.S., K.G.);Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France (A.M., G.N.); andUnité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (A.M., G.N.)
| | - Veronique Storme
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Medical Biotechnology Center, VIB, 9000 Ghent, Belgium (P.W., S.S., K.G.);Department of Biochemistry, Ghent University, 9000 Ghent, Belgium (P.W., S.S., K.G.);Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France (A.M., G.N.); andUnité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (A.M., G.N.)
| | - Pavel Kerchev
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Medical Biotechnology Center, VIB, 9000 Ghent, Belgium (P.W., S.S., K.G.);Department of Biochemistry, Ghent University, 9000 Ghent, Belgium (P.W., S.S., K.G.);Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France (A.M., G.N.); andUnité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (A.M., G.N.)
| | - Graham Noctor
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Medical Biotechnology Center, VIB, 9000 Ghent, Belgium (P.W., S.S., K.G.);Department of Biochemistry, Ghent University, 9000 Ghent, Belgium (P.W., S.S., K.G.);Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France (A.M., G.N.); andUnité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (A.M., G.N.)
| | - Kris Gevaert
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Medical Biotechnology Center, VIB, 9000 Ghent, Belgium (P.W., S.S., K.G.);Department of Biochemistry, Ghent University, 9000 Ghent, Belgium (P.W., S.S., K.G.);Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France (A.M., G.N.); andUnité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (A.M., G.N.)
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium (P.W., A.M., S.S., V.S., P.K., F.V.B.);Medical Biotechnology Center, VIB, 9000 Ghent, Belgium (P.W., S.S., K.G.);Department of Biochemistry, Ghent University, 9000 Ghent, Belgium (P.W., S.S., K.G.);Institut des Sciences des Plantes de Paris-Saclay, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique, Université de Paris-Sud, 91405 Orsay cedex, France (A.M., G.N.); andUnité Mixte de Recherche 9213/Unité Mixte de Recherche 1403, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, 91405 Orsay, France (A.M., G.N.)
| |
Collapse
|
36
|
Kerchev P, De Smet B, Waszczak C, Messens J, Van Breusegem F. Redox Strategies for Crop Improvement. Antioxid Redox Signal 2015; 23:1186-205. [PMID: 26062101 DOI: 10.1089/ars.2014.6033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Recently, the agro-biotech industry has been driven by overcoming the limitations imposed by fluctuating environmental stress conditions on crop productivity. A common theme among (a)biotic stresses is the perturbation of the redox homeostasis. RECENT ADVANCES As a strategy to engineer stress-tolerant crops, many approaches have been centered on restricting the negative impact of reactive oxygen species (ROS) accumulation. CRITICAL ISSUES In this study, we discuss the scientific background of the existing redox-based strategies to improve crop performance and quality. In this respect, a special focus goes to summarizing the current patent landscape because this aspect is very often ignored, despite constituting the forefront of applied research. FUTURE DIRECTIONS The current increased understanding of ROS acting as signaling molecules has opened new avenues to exploit redox biology for crop improvement required for sustainable food security.
Collapse
Affiliation(s)
- Pavel Kerchev
- 1 Department of Plant Systems Biology , VIB, Ghent, Belgium .,2 Department of Plant Biotechnology and Bioinformatics, Ghent University , Ghent, Belgium
| | - Barbara De Smet
- 1 Department of Plant Systems Biology , VIB, Ghent, Belgium .,2 Department of Plant Biotechnology and Bioinformatics, Ghent University , Ghent, Belgium .,3 Structural Biology Research Center , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussel, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussel, Belgium
| | - Cezary Waszczak
- 1 Department of Plant Systems Biology , VIB, Ghent, Belgium .,2 Department of Plant Biotechnology and Bioinformatics, Ghent University , Ghent, Belgium .,3 Structural Biology Research Center , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussel, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussel, Belgium
| | - Joris Messens
- 3 Structural Biology Research Center , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussel, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussel, Belgium
| | - Frank Van Breusegem
- 1 Department of Plant Systems Biology , VIB, Ghent, Belgium .,2 Department of Plant Biotechnology and Bioinformatics, Ghent University , Ghent, Belgium
| |
Collapse
|
37
|
Chmielowska-Bąk J, Izbiańska K, Deckert J. Products of lipid, protein and RNA oxidation as signals and regulators of gene expression in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:405. [PMID: 26082792 PMCID: PMC4451250 DOI: 10.3389/fpls.2015.00405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/19/2015] [Indexed: 05/21/2023]
Abstract
Reactive oxygen species (ROS) are engaged in several processes essential for normal cell functioning, such as differentiation, anti-microbial defense, stimulus sensing and signaling. Interestingly, recent studies imply that cellular signal transduction and gene regulation are mediated not only directly by ROS but also by the molecules derived from ROS-mediated oxidation. Lipid peroxidation leads to non-enzymatic formation of oxylipins. These molecules were shown to modulate expression of signaling associated genes including genes encoding phosphatases, kinases and transcription factors. Oxidized peptides derived from protein oxidation might be engaged in organelle-specific ROS signaling. In turn, oxidation of particular mRNAs leads to decrease in the level of encoded proteins and thus, contributes to the post-transcriptional regulation of gene expression. Present mini review summarizes latest findings concerning involvement of products of lipid, protein and RNA oxidation in signal transduction and gene regulation.
Collapse
Affiliation(s)
| | | | - Joanna Deckert
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
38
|
Pons Puig C, Dagar A, Marti Ibanez C, Singh V, Crisosto CH, Friedman H, Lurie S, Granell A. Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms. BMC Genomics 2015; 16:245. [PMID: 25887353 PMCID: PMC4391166 DOI: 10.1186/s12864-015-1395-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cold storage induces chilling injury (CI) disorders in peach fruit (woolliness/mealiness, flesh browning and reddening/bleeding) manifested when ripened at shelf life. To gain insight into the mechanisms underlying CI, we analyzed the transcriptome of 'Oded' (high tolerant) and 'Hermoza' (relatively tolerant to woolliness, but sensitive to browning and bleeding) peach cultivars at pre-symptomatic stages. The expression profiles were compared and validated with two previously analyzed pools (high and low sensitive to woolliness) from the Pop-DG population. The four fruit types cover a wide range of sensitivity to CI. The four fruit types were also investigated with the ROSMETER that provides information on the specificity of the transcriptomic response to oxidative stress. RESULTS We identified quantitative differences in a subset of core cold responsive genes that correlated with sensitivity or tolerance to CI at harvest and during cold storage, and also subsets of genes correlating specifically with high sensitivity to woolliness and browning. Functional analysis indicated that elevated levels, at harvest and during cold storage, of genes related to antioxidant systems and the biosynthesis of metabolites with antioxidant activity correlates with tolerance. Consistent with these results, ROSMETER analysis revealed oxidative stress in 'Hermoza' and the progeny pools, but not in the cold resistant 'Oded'. By contrast, cold storage induced, in sensitivity to woolliness dependant manner, a gene expression program involving the biosynthesis of secondary cell wall and pectins. Furthermore, our results indicated that while ethylene is related to CI tolerance, differential auxin subcellular accumulation and signaling may play a role in determining chilling sensitivity/tolerance. In addition, sugar partitioning and demand during cold storage may also play a role in the tolerance/sensitive mechanism. The analysis also indicates that vesicle trafficking, membrane dynamics and cytoskeleton organization could have a role in the tolerance/sensitive mechanism. In the case of browning, our results suggest that elevated acetaldehyde related genes together with the core cold responses may increase sensitivity to browning in shelf life. CONCLUSIONS Our data suggest that in sensitive fruit a cold response program is activated and regulated by auxin distribution and ethylene and these hormones have a role in sensitivity to CI even before fruit are cold stored.
Collapse
Affiliation(s)
- Clara Pons Puig
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politecnica de Valencia, E-48022, Valencia, Spain.
| | - Anurag Dagar
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Cristina Marti Ibanez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politecnica de Valencia, E-48022, Valencia, Spain.
| | - Vikram Singh
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Carlos H Crisosto
- Plant Sciences Department, University of California Davis, 1 Shields Ave, Davis, CA, 95616, USA.
| | - Haya Friedman
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Susan Lurie
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan, 50250, Israel.
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politecnica de Valencia, E-48022, Valencia, Spain.
| |
Collapse
|
39
|
El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, Balzergue S, Baudouin E, Bailly C. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. PLANT, CELL & ENVIRONMENT 2015; 38:364-74. [PMID: 24811898 DOI: 10.1111/pce.12371] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 04/24/2014] [Accepted: 04/27/2014] [Indexed: 05/06/2023]
Abstract
Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination.
Collapse
|
40
|
Vaahtera L, Brosché M, Wrzaczek M, Kangasjärvi J. Specificity in ROS signaling and transcript signatures. Antioxid Redox Signal 2014; 21:1422-41. [PMID: 24180661 PMCID: PMC4158988 DOI: 10.1089/ars.2013.5662] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS), important signaling molecules in plants, are involved in developmental control and stress adaptation. ROS production can trigger broad transcriptional changes; however, it is not clear how specificity in transcriptional regulation is achieved. RECENT ADVANCES A large collection of public transcriptome data from the model plant Arabidopsis thaliana is available for analysis. These data can be used for the analysis of biological processes that are associated with ROS signaling and for the identification of suitable transcriptional indicators. Several online tools, such as Genevestigator and Expression Angler, have simplified the task to analyze, interpret, and visualize this wealth of data. CRITICAL ISSUES The analysis of the exact transcriptional responses to ROS requires the production of specific ROS in distinct subcellular compartments with precise timing, which is experimentally difficult. Analyses are further complicated by the effect of ROS production in one subcellular location on the ROS accumulation in other compartments. In addition, even subtle differences in the method of ROS production or treatment can lead to significantly different outcomes when various stimuli are compared. FUTURE DIRECTIONS Due to the difficulty of inducing ROS production specifically with regard to ROS type, subcellular localization, and timing, we propose that the concept of a "ROS marker gene" should be re-evaluated. We suggest guidelines for the analysis of transcriptional data in ROS signaling. The use of "ROS signatures," which consist of a set of genes that together can show characteristic and indicative responses, should be preferred over the use of individual marker genes.
Collapse
Affiliation(s)
- Lauri Vaahtera
- 1 Division of Plant Biology, Department of Biosciences, University of Helsinki , Helsinki, Finland
| | | | | | | |
Collapse
|
41
|
Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms. ISME JOURNAL 2014; 9:385-95. [PMID: 25083933 PMCID: PMC4303632 DOI: 10.1038/ismej.2014.136] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 06/12/2014] [Accepted: 06/18/2014] [Indexed: 01/01/2023]
Abstract
Diatoms are ubiquitous marine photosynthetic eukaryotes that are responsible for about 20% of global photosynthesis. Nevertheless, little is known about the redox-based mechanisms that mediate diatom sensing and acclimation to environmental stress. Here we used a redox-sensitive green fluorescent protein sensor targeted to various subcellular organelles in the marine diatom Phaeodactylum tricornutum, to map the spatial and temporal oxidation patterns in response to environmental stresses. Specific organelle oxidation patterns were found in response to various stress conditions such as oxidative stress, nutrient limitation and exposure to diatom-derived infochemicals. We found a strong correlation between the mitochondrial glutathione (GSH) redox potential (EGSH) and subsequent induction of cell death in response to the diatom-derived unsaturated aldehyde 2E,4E/Z-decadienal (DD), and a volatile halocarbon (BrCN) that mediate trophic-level interactions in marine diatoms. Induction of cell death in response to DD was mediated by oxidation of mitochondrial EGSH and was reversible by application of GSH only within a narrow time frame. We found that cell fate can be accurately predicted by a distinct life-death threshold of mitochondrial EGSH (−335 mV). We propose that compartmentalized redox-based signaling can integrate the input of diverse environmental cues and will determine cell fate decisions as part of algal acclimation to stress conditions.
Collapse
|
42
|
Sewelam N, Jaspert N, Van Der Kelen K, Tognetti VB, Schmitz J, Frerigmann H, Stahl E, Zeier J, Van Breusegem F, Maurino VG. Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially. MOLECULAR PLANT 2014; 7:1191-210. [PMID: 24908268 DOI: 10.1093/mp/ssu070] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogen peroxide (H2O2) operates as a signaling molecule in eukaryotes, but the specificity of its signaling capacities remains largely unrevealed. Here, we analyzed whether a moderate production of H2O2 from two different plant cellular compartments has divergent effects on the plant transcriptome. Arabidopsis thaliana overexpressing glycolate oxidase in the chloroplast (Fahnenstich et al., 2008; Balazadeh et al., 2012) and plants deficient in peroxisomal catalase (Queval et al., 2007; Inzé et al., 2012) were grown under non-photorespiratory conditions and then transferred to photorespiratory conditions to foster the production of H2O2 in both organelles. We show that H2O2 originating in a specific organelle induces two types of responses: one that integrates signals independently from the subcellular site of H2O2 production and another that is dependent on the H2O2 production site. H2O2 produced in peroxisomes induces transcripts involved in protein repair responses, while H2O2 produced in chloroplasts induces early signaling responses, including transcription factors and biosynthetic genes involved in production of secondary signaling messengers. There is a significant bias towards the induction of genes involved in responses to wounding and pathogen attack by chloroplastic-produced H2O2, including indolic glucosinolates-, camalexin-, and stigmasterol-biosynthetic genes. These transcriptional responses were accompanied by the accumulation of 4-methoxy-indol-3-ylmethyl glucosinolate and stigmasterol.
Collapse
Affiliation(s)
- Nasser Sewelam
- Institut of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany Botany Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt
| | - Nils Jaspert
- Institut of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Katrien Van Der Kelen
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Vanesa B Tognetti
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium Present address: Mendel Centre for Plant Genomics and Proteomics, CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Jessica Schmitz
- Institut of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Henning Frerigmann
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf and 50674 Cologne, Germany
| | - Elia Stahl
- Molecular Ecophysiology of Plants, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf and 50674 Cologne, Germany Molecular Ecophysiology of Plants, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Veronica G Maurino
- Institut of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf and 50674 Cologne, Germany
| |
Collapse
|
43
|
Mor A, Koh E, Weiner L, Rosenwasser S, Sibony-Benyamini H, Fluhr R. Singlet oxygen signatures are detected independent of light or chloroplasts in response to multiple stresses. PLANT PHYSIOLOGY 2014; 165:249-61. [PMID: 24599491 PMCID: PMC4012584 DOI: 10.1104/pp.114.236380] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/03/2014] [Indexed: 05/18/2023]
Abstract
The production of singlet oxygen is typically associated with inefficient dissipation of photosynthetic energy or can arise from light reactions as a result of accumulation of chlorophyll precursors as observed in fluorescent (flu)-like mutants. Such photodynamic production of singlet oxygen is thought to be involved in stress signaling and programmed cell death. Here we show that transcriptomes of multiple stresses, whether from light or dark treatments, were correlated with the transcriptome of the flu mutant. A core gene set of 118 genes, common to singlet oxygen, biotic and abiotic stresses was defined and confirmed to be activated photodynamically by the photosensitizer Rose Bengal. In addition, induction of the core gene set by abiotic and biotic selected stresses was shown to occur in the dark and in nonphotosynthetic tissue. Furthermore, when subjected to various biotic and abiotic stresses in the dark, the singlet oxygen-specific probe Singlet Oxygen Sensor Green detected rapid production of singlet oxygen in the Arabidopsis (Arabidopsis thaliana) root. Subcellular localization of Singlet Oxygen Sensor Green fluorescence showed its accumulation in mitochondria, peroxisomes, and the nucleus, suggesting several compartments as the possible origins or targets for singlet oxygen. Collectively, the results show that singlet oxygen can be produced by multiple stress pathways and can emanate from compartments other than the chloroplast in a light-independent manner. The results imply that the role of singlet oxygen in plant stress regulation and response is more ubiquitous than previously thought.
Collapse
|
44
|
Alsharafa K, Vogel MO, Oelze ML, Moore M, Stingl N, König K, Friedman H, Mueller MJ, Dietz KJ. Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130424. [PMID: 24591725 DOI: 10.1098/rstb.2013.0424] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High light acclimation depends on retrograde control of nuclear gene expression. Retrograde regulation uses multiple signalling pathways and thus exploits signal patterns. To maximally challenge the acclimation system, Arabidopsis thaliana plants were either adapted to 8 (low light (L-light)) or 80 µmol quanta m(-2) s(-1) (normal light (N-light)) and subsequently exposed to a 100- and 10-fold light intensity increase, respectively, to high light (H-light, 800 µmol quanta m(-2) s(-1)), for up to 6 h. Both L → H- and N → H-light plants efficiently regulated CO2 assimilation to a constant level without apparent damage and inhibition. This experimental set-up was scrutinized for time-dependent regulation and efficiency of adjustment. Transcriptome profiles revealed that N-light and L-light plants differentially accumulated 2119 transcripts. After 6 h in H-light, only 205 remained differently regulated between the L → H- and N → H-light plants, indicating efficient regulation allowing the plants to reach a similar transcriptome state. Time-dependent analysis of transcripts as markers for signalling pathways, and of metabolites and hormones as possibly involved transmitters, suggests that oxylipins such as oxophytodienoic acid and jasmonic acid, metabolites and redox cues predominantly control the acclimation response, whereas abscisic acid, salicylic acid and auxins play an insignificant or minor role.
Collapse
Affiliation(s)
- Khalid Alsharafa
- Biochemistry and Physiology of Plants, Bielefeld University, , Bielefeld 33501, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|