1
|
Mohammadbagherlou S, Samari E, Sagharyan M, Zargar M, Chen M, Ghorbani A. Hydrogen sulfide mechanism of action in plants; from interaction with regulatory molecules to persulfidation of proteins. Nitric Oxide 2025; 156:27-41. [PMID: 40024432 DOI: 10.1016/j.niox.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/23/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Hydrogen sulfide (H2S), previously known as a toxic gas, is currently considered one of the most important gaseous transmitters in plants. This novel signaling molecule has been determined to play notable roles in plant growth, development, and maturation. In addition, pharmacological and genetic evidence indicated that this regulatory molecule effectively ameliorates various plant stress conditions. H2S is involved in these processes by changing gene expression, enzyme activities, and metabolite concentrations. During its regulatory function, H2S interacts with other signaling pathways such as hydrogen peroxide (H2O2), nitric oxide (NO), Ca2+, carbon monoxide (CO), phosphatidic acid (PA), phytohormones, etc. The H2S mechanism of action may depend on the persulfidation post-translational modification (PTM), which attacks the cysteine (Cys) residues on the target proteins and changes their structure and activities. This review summarized H2S biosynthesis pathways, its role in sulfide state, and its donors in plant biology. We also discuss recent progress in the research on the interactions of H2S with other signaling molecules, as well as the role of persulfidation in modulating various plant reactions.
Collapse
Affiliation(s)
- Shirin Mohammadbagherlou
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Samari
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mostafa Sagharyan
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Moseler A, Wagner S, Meyer AJ. Protein persulfidation in plants: mechanisms and functions beyond a simple stress response. Biol Chem 2024:hsz-2024-0038. [PMID: 39303198 DOI: 10.1515/hsz-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Posttranslational modifications (PTMs) can modulate the activity, localization and interactions of proteins and (re)define their biological function. Understanding how changing environments can alter cellular processes thus requires detailed knowledge about the dynamics of PTMs in time and space. A PTM that gained increasing attention in the last decades is protein persulfidation, where a cysteine thiol (-SH) is covalently bound to sulfane sulfur to form a persulfide (-SSH). The precise cellular mechanisms underlying the presumed persulfide signaling in plants are, however, only beginning to emerge. In the mitochondrial matrix, strict regulation of persulfidation and H2S homeostasis is of prime importance for maintaining mitochondrial bioenergetic processes because H2S is a highly potent poison for cytochrome c oxidase. This review summarizes the current knowledge about protein persulfidation and corresponding processes in mitochondria of the model plant Arabidopsis. These processes will be compared to the respective processes in non-plant models to underpin similarities or highlight apparent differences. We provide an overview of mitochondrial pathways that contribute to H2S and protein persulfide generation and mechanisms for H2S fixation and de-persulfidation. Based on current proteomic data, we compile a plant mitochondrial persulfidome and discuss how persulfidation may regulate protein function.
Collapse
Affiliation(s)
- Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
3
|
Boter M, Diaz I. Contrasting defence mechanisms against spider mite infestation in cyanogenic and non-cyanogenic legumes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112118. [PMID: 38776983 DOI: 10.1016/j.plantsci.2024.112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Understanding the complex interactions between plants and herbivores is essential for improving crop resistance. Aiming to expand the role of cyanogenesis in plant defence, we investigated the response of the cyanogenic Phaseolus lunatus (lima bean) and the non-cyanogenic Phaseolus vulgaris (common bean) to Tetranychus urticae (spider mite) infestation. Despite mite infesting both legumes, leaf damage infringed by this feeder was reduced in lima bean. Comparative transcriptome analyses revealed that both species exhibited substantial metabolic and transcriptional changes upon infestation, although alterations in P. lunatus were significantly more pronounced. Specific differences in amino acid homeostasis and key genes associated with the cyanogenic pathway were observed in these species, as well as the upregulation of the mandelonitrile lyase gene (PlMNL1) following T. urticae feeding. Concomitantly, the PIMNL1 activity increased. Lima bean plants also displayed an induction of β-cyanoalanine synthase (PlCYSC1), a key enzyme for cyanide detoxification, suggesting an internal regulatory mechanism to manage the toxicity of their defence responses. These findings contribute to our understanding of the legume-herbivore interactions and underscore the potential role of cyanogenesis in the elaboration of specific defensive responses, even within the same genus, which may reflect distinctive evolutionary adaptations or varying metabolic capabilities between species.
Collapse
Affiliation(s)
- Marta Boter
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Madrid 20223, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Madrid 20223, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain.
| |
Collapse
|
4
|
Chen Y, Li Y, Luo G, Luo C, Xiao Z, Lu Y, Xiang Z, Hou Z, Xiao Q, Zhou Y, Tang Q. Gene identification, expression analysis, and molecular docking of SAT and OASTL in the metabolic pathway of selenium in Cardamine hupingshanensis. PLANT CELL REPORTS 2024; 43:148. [PMID: 38775862 PMCID: PMC11111505 DOI: 10.1007/s00299-024-03227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
KEY MESSAGE Identification of selenium stress-responsive expression and molecular docking of serine acetyltransferase (SAT) and O-acetyl serine (thiol) lyase (OASTL) in Cardamine hupingshanensis. A complex coupled with serine acetyltransferase (SAT) and O-acetyl serine (thiol) lyase (OASTL) is the key enzyme that catalyzes selenocysteine (Sec) synthesis in plants. The functions of SAT and OASTL genes were identified in some plants, but it is still unclear whether SAT and OASTL are involved in the selenium metabolic pathway in Cardamine hupingshanensis. In this study, genome-wide identification and comparative analysis of ChSATs and ChOASTLs were performed. The eight ChSAT genes were divided into three branches, and the thirteen ChOASTL genes were divided into four branches by phylogenetic analysis and sequence alignment, indicating the evolutionary conservation of the gene structure and its association with other plant species. qRT-PCR analysis showed that the ChSAT and ChOASTL genes were differentially expressed in different tissues under various selenium levels, suggesting their important roles in Sec synthesis. The ChSAT1;2 and ChOASTLA1;2 were silenced by the VIGS system to investigate their involvement in selenium metabolites in C. hupingshanensis. The findings contribute to understanding the gene functions of ChSATs and ChOASTLs in the selenium stress and provide a reference for further exploration of the selenium metabolic pathway in plants.
Collapse
Affiliation(s)
- Yushan Chen
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 44500, China
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 44500, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Yao Li
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Guoqiang Luo
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Cihang Luo
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Zhijing Xiao
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Yanke Lu
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 44500, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Zhixin Xiang
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 44500, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Zhi Hou
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 44500, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China
| | - Qiang Xiao
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 44500, China
- College of Forestry and Horticulture, Hubei Minzu University, Enshi, 44500, China
| | - Yifeng Zhou
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 44500, China.
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi, 44500, China.
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, 44500, China.
| | - Qiaoyu Tang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, 44500, China.
- College of Forestry and Horticulture, Hubei Minzu University, Enshi, 44500, China.
| |
Collapse
|
5
|
Feng YX, Tian P, Li CZ, Hu XD, Lin YJ. Elucidating the intricacies of the H 2S signaling pathway in gasotransmitters: Highlighting the regulation of plant thiocyanate detoxification pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116307. [PMID: 38593497 DOI: 10.1016/j.ecoenv.2024.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
In recent decades, there has been increasing interest in elucidating the role of sulfur-containing compounds in plant metabolism, particularly emphasizing their function as signaling molecules. Among these, thiocyanate (SCN-), a compound imbued with sulfur and nitrogen, has emerged as a significant environmental contaminant frequently detected in irrigation water. This compound is known for its potential to adversely impact plant growth and agricultural yield. Although adopting exogenous SCN- as a nitrogen source in plant cells has been the subject of thorough investigation, the fate of sulfur resulting from the assimilation of exogenous SCN- has not been fully explored. There is burgeoning curiosity in probing the fate of SCN- within plant systems, especially considering the possible generation of the gaseous signaling molecule, hydrogen sulfide (H2S) during the metabolism of SCN-. Notably, the endogenous synthesis of H2S occurs predominantly within chloroplasts, the cytosol, and mitochondria. In contrast, the production of H2S following the assimilation of exogenous SCN- is explicitly confined to chloroplasts and mitochondria. This phenomenon indicates complex interplay and communication among various subcellular organelles, influencing signal transduction and other vital physiological processes. This review, augmented by a small-scale experimental study, endeavors to provide insights into the functional characteristics of H2S signaling in plants subjected to SCN--stress. Furthermore, a comparative analysis of the occurrence and trajectory of endogenous H2S and H2S derived from SCN--assimilation within plant organisms was performed, providing a focused lens for a comprehensive examination of the multifaceted roles of H2S in rice plants. By delving into these dimensions, our objective is to enhance the understanding of the regulatory mechanisms employed by the gasotransmitter H2S in plant adaptations and responses to SCN--stress, yielding invaluable insights into strategies for plant resilience and adaptive capabilities.
Collapse
Affiliation(s)
- Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China; Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology (Guangzhou), Jiangmen, Guangdong 529199, People's Republic of China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541004, People's Republic of China.
| | - Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Cheng-Zhi Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Xiao-Dong Hu
- Jiangmen Laboratory of Carbon Science and Technology, Hong Kong University of Science and Technology (Guangzhou), Jiangmen, Guangdong 529199, People's Republic of China
| | - Yu-Juan Lin
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, People's Republic of China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541004, People's Republic of China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, People's Republic of China.
| |
Collapse
|
6
|
Wawrzyńska A, Sirko A. Sulfate Availability and Hormonal Signaling in the Coordination of Plant Growth and Development. Int J Mol Sci 2024; 25:3978. [PMID: 38612787 PMCID: PMC11012643 DOI: 10.3390/ijms25073978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Sulfur (S), one of the crucial macronutrients, plays a pivotal role in fundamental plant processes and the regulation of diverse metabolic pathways. Additionally, it has a major function in plant protection against adverse conditions by enhancing tolerance, often interacting with other molecules to counteract stresses. Despite its significance, a thorough comprehension of how plants regulate S nutrition and particularly the involvement of phytohormones in this process remains elusive. Phytohormone signaling pathways crosstalk to modulate growth and developmental programs in a multifactorial manner. Additionally, S availability regulates the growth and development of plants through molecular mechanisms intertwined with phytohormone signaling pathways. Conversely, many phytohormones influence or alter S metabolism within interconnected pathways. S metabolism is closely associated with phytohormones such as abscisic acid (ABA), auxin (AUX), brassinosteroids (BR), cytokinins (CK), ethylene (ET), gibberellic acid (GA), jasmonic acid (JA), salicylic acid (SA), and strigolactones (SL). This review provides a summary of the research concerning the impact of phytohormones on S metabolism and, conversely, how S availability affects hormonal signaling. Although numerous molecular details are yet to be fully understood, several core signaling components have been identified at the crossroads of S and major phytohormonal pathways.
Collapse
Affiliation(s)
- Anna Wawrzyńska
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, 02-106 Warsaw, Poland;
| | | |
Collapse
|
7
|
Gautam H, Khan S, Nidhi, Sofo A, Khan NA. Appraisal of the Role of Gaseous Signaling Molecules in Thermo-Tolerance Mechanisms in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:791. [PMID: 38592775 PMCID: PMC10975175 DOI: 10.3390/plants13060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
A significant threat to the ongoing rise in temperature caused by global warming. Plants have many stress-resistance mechanisms, which is responsible for maintaining plant homeostasis. Abiotic stresses largely increase gaseous molecules' synthesis in plants. The study of gaseous signaling molecules has gained attention in recent years. The role of gaseous molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and ethylene, in plants under temperature high-temperature stress are discussed in the current review. Recent studies revealed the critical function that gaseous molecules play in controlling plant growth and development and their ability to respond to various abiotic stresses. Here, we provide a thorough overview of current advancements that prevent heat stress-related plant damage via gaseous molecules. We also explored and discussed the interaction of gaseous molecules. In addition, we provided an overview of the role played by gaseous molecules in high-temperature stress responses, along with a discussion of the knowledge gaps and how this may affect the development of high-temperature-resistant plant species.
Collapse
Affiliation(s)
- Harsha Gautam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Nidhi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment, Cultural Heritage (DiCEM), University of Basilicata, 75100 Matera, Italy
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
8
|
Lagarda-Clark EA, Goulet C, Duarte-Sierra A. Biochemical dynamics during postharvest: Highlighting the interplay of stress during storage and maturation of fresh produce. Biomol Concepts 2024; 15:bmc-2022-0048. [PMID: 38587059 DOI: 10.1515/bmc-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
The lifecycle of fresh produce involves a sequence of biochemical events during their ontology, and these events are particularly significant for climacteric fruits. A high demand during ripening is observed in these plant products, which is reflected in a high rate of respiration and ethylene production. Increased respiratory demand triggers the activation of secondary pathways such as alternate oxidase, which do not experience critical increases in energy consumption in non-climacteric fruit. In addition, biochemical events produced by external factors lead to compensatory responses in fresh produce to counteract the oxidative stress caused by the former. The dynamics of these responses are accompanied by signaling, where reactive oxygen species play a pivotal role in fresh product cell perception. This review aims to describe the protection mechanisms of fresh produce against environmental challenges and how controlled doses of abiotic stressors can be used to improve quality and prolong their shelf-life through the interaction of stress and defense mechanisms.
Collapse
Affiliation(s)
- Ernesto Alonso Lagarda-Clark
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada
- Center for Research in Plant Innovation (CRIV), Laval University, Quebec, QC G1V 6 0A6, Canada
- Institute on Nutrition and Functional Foods (INAF), Laval University, Quebec, QC G1V 8 0A6, Canada
| | - Charles Goulet
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada
- Center for Research in Plant Innovation (CRIV), Laval University, Quebec, QC G1V 6 0A6, Canada
- Department of Phytology, Université Laval, Québec, QC G1V 0A6, Canada
| | - Arturo Duarte-Sierra
- Food Science Department, Laval University, Quebec, QC G1V 0A6, Canada
- Center for Research in Plant Innovation (CRIV), Laval University, Quebec, QC G1V 6 0A6, Canada
- Institute on Nutrition and Functional Foods (INAF), Laval University, Quebec, QC G1V 8 0A6, Canada
| |
Collapse
|
9
|
Díaz-Rueda P, Morales de los Ríos L, Romero LC, García I. Old poisons, new signaling molecules: the case of hydrogen cyanide. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6040-6051. [PMID: 37586035 PMCID: PMC10575699 DOI: 10.1093/jxb/erad317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
The high phenotypic plasticity developed by plants includes rapid responses and adaptations to aggressive or changing environments. To achieve this, they evolved extremely efficient mechanisms of signaling mediated by a wide range of molecules, including small signal molecules. Among them, hydrogen cyanide (HCN) has been largely ignored due to its toxic characteristics. However, not only is it present in living organisms, but it has been shown that it serves several functions in all kingdoms of life. Research using model plants has changed the traditional point of view, and it has been demonstrated that HCN plays a positive role in the plant response to pathogens independently of its toxicity. Indeed, HCN induces a response aimed at protecting the plant from pathogen attack, and the HCN is provided either exogenously (in vitro or by some cyanogenic bacteria species present in the rhizosphere) or endogenously (in reactions involving ethylene, camalexin, or other cyanide-containing compounds). The contribution of different mechanisms to HCN function, including a new post-translational modification of cysteines in proteins, namely S-cyanylation, is discussed here. This work opens up an expanding 'HCN field' of research related to plants and other organisms.
Collapse
Affiliation(s)
- Pablo Díaz-Rueda
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| | | | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), CSIC-Universidad de Sevilla, 41092-Sevilla, Spain
| |
Collapse
|
10
|
Meng Y, Cui Y, Peng F, Guo L, Cui R, Xu N, Huang H, Han M, Fan Y, Zhang M, Sun Y, Wang L, Yang Z, Liu M, Chen W, Ni K, Wang D, Zhao L, Lu X, Chen X, Wang J, Wang S, Ye W. GhCYS2 governs the tolerance against cadmium stress by regulating cell viability and photosynthesis in cotton. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115386. [PMID: 37598545 DOI: 10.1016/j.ecoenv.2023.115386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Cysteine, an early sulfur-containing compound in plants, is of significant importance in sulfur metabolism. CYS encodes cysteine synthetase that further catalyzes cysteine synthesis. In this investigation, CYS genes, identified from genome-wide analysis of Gossypium hirsutum bioinformatically, led to the discovery of GhCYS2 as the pivotal gene responsible for Cd2+ response. The silencing of GhCYS2 through virus-induced gene silencing (VIGS) rendered plants highly susceptible to Cd2+ stress. Silencing GhCYS2 in plants resulted in diminished levels of cysteine and glutathione while leading to the accumulation of MDA and ROS within cells, thereby impeding the regular process of photosynthesis. Consequently, the stomatal aperture of leaves decreased, epidermal cells underwent distortion and deformation, intercellular connections are dramatically disrupted, and fissures manifested between cells. Ultimately, these detrimental effected culminating in plant wilting and a substantial reduction in biomass. The association established between Cd2+ and cysteine in this investigation offered a valuable reference point for further inquiry into the functional and regulatory mechanisms of cysteine synthesis genes.
Collapse
Affiliation(s)
- Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Changde 415101, Hunan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Nan Xu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Menghao Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yupin Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Lidong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Zhining Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China.
| |
Collapse
|
11
|
Bajguz A, Piotrowska-Niczyporuk A. Biosynthetic Pathways of Hormones in Plants. Metabolites 2023; 13:884. [PMID: 37623827 PMCID: PMC10456939 DOI: 10.3390/metabo13080884] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Phytohormones exhibit a wide range of chemical structures, though they primarily originate from three key metabolic precursors: amino acids, isoprenoids, and lipids. Specific amino acids, such as tryptophan, methionine, phenylalanine, and arginine, contribute to the production of various phytohormones, including auxins, melatonin, ethylene, salicylic acid, and polyamines. Isoprenoids are the foundation of five phytohormone categories: cytokinins, brassinosteroids, gibberellins, abscisic acid, and strigolactones. Furthermore, lipids, i.e., α-linolenic acid, function as a precursor for jasmonic acid. The biosynthesis routes of these different plant hormones are intricately complex. Understanding of these processes can greatly enhance our knowledge of how these hormones regulate plant growth, development, and physiology. This review focuses on detailing the biosynthetic pathways of phytohormones.
Collapse
Affiliation(s)
- Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | | |
Collapse
|
12
|
Ranner JL, Schalk S, Martyniak C, Parniske M, Gutjahr C, Stark TD, Dawid C. Primary and Secondary Metabolites in Lotus japonicus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466334 DOI: 10.1021/acs.jafc.3c02709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Lotus japonicus is a leguminous model plant used to gain insight into plant physiology, stress response, and especially symbiotic plant-microbe interactions, such as root nodule symbiosis or arbuscular mycorrhiza. Responses to changing environmental conditions, stress, microbes, or insect pests are generally accompanied by changes in primary and secondary metabolism to account for physiological needs or to produce defensive or signaling compounds. Here we provide an overview of the primary and secondary metabolites identified in L. japonicus to date. Identification of the metabolites is mainly based on mass spectral tags (MSTs) obtained by gas chromatography linked with tandem mass spectrometry (GC-MS/MS) or liquid chromatography-MS/MS (LC-MS/MS). These MSTs contain retention index and mass spectral information, which are compared to databases with MSTs of authentic standards. More than 600 metabolites are grouped into compound classes such as polyphenols, carbohydrates, organic acids and phosphates, lipids, amino acids, nitrogenous compounds, phytohormones, and additional defense compounds. Their physiological effects are briefly discussed, and the detection methods are explained. This review of the exisiting literature on L. japonicus metabolites provides a valuable basis for future metabolomics studies.
Collapse
Affiliation(s)
- Josef L Ranner
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Sabrina Schalk
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Cindy Martyniak
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Martin Parniske
- Faculty of Biology, Genetics, University of Munich (LMU), Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Caroline Gutjahr
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Timo D Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
- Professorship of Functional Phytometabolomics, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
13
|
Xu F, Peng Y, He ZQ, Yu LL. The role of cyanoalanine synthase and alternative oxidase in promoting salt stress tolerance in Arabidopsis thaliana. BMC PLANT BIOLOGY 2023; 23:163. [PMID: 36973660 PMCID: PMC10041793 DOI: 10.1186/s12870-023-04167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cyanide is a toxic chemical that inhibits cellular respiration. In plants, cyanide can be produced by themselves, especially under stressful conditions. Cyanoalanine synthase (CAS) is a key enzyme involved in plant cyanide detoxification. There are three genes encoding CAS in Arabidopsis thaliana, but the roles of these genes in the plant's response to stress are less studied. In addition, it is known that alternative oxidase (AOX) mediates cyanide-resistant respiration, but the relationship between CAS and AOX in regulating the plant stress response remains largely unknown. RESULTS Here, the effects of the overexpression or mutation of these three CAS genes on salt stress tolerance were investigated. The results showed that under normal conditions, the overexpression or mutation of the CAS genes had no significant effect on the seed germination and growth of Arabidopsis thaliana compared with wild type (WT). However, under 50, 100, and 200 mM NaCl conditions, the seeds overexpressing CAS genes showed stronger salt stress resistance, i.e., higher germination speed than WT seeds, especially those that overexpressed the CYS-C1 and CYS-D1 genes. In contrast, the seeds with CAS gene mutations exhibited salt sensitivity, and their germination ability and growth were significantly damaged by 100 and 200 mM NaCl. Importantly, this difference in salt stress resistance became more pronounced in CAS-OE, WT, and mutant seeds with increasing salt concentration. The CAS-OE seeds maintained higher respiration rates than the WT and CAS mutant seeds under salt stress conditions. The cyanide contents in CAS mutant seeds were approximately 3 times higher than those in WT seeds and more than 5 times higher than those in CAS-OE seeds. In comparison, plants overexpressing CYS-C1 had the fastest detoxification of cyanide and the best salt tolerance, followed by those overexpressing CYS-D1 and CYS-D2. Furthermore, less hydrogen sulfide (H2S) was observed in CAS-OE seedlings than in WT seedlings under long-term salt stress conditions. Nonetheless, the lack of AOX impaired CAS-OE-mediated plant salt stress resistance, suggesting that CAS and AOX interact to improve salt tolerance is essential. The results also showed that CAS and AOX contributed to the reduction in oxidative damage by helping maintain relatively high levels of antioxidant enzyme activity. CONCLUSION In summary, the findings of the present study suggest that overexpression of Arabidopsis CAS family genes plays a positive role in salt stress tolerance and highlights the contribution of AOX to CAS-mediated plant salt resistance, mainly by reducing cyanide and H2S toxicity.
Collapse
Affiliation(s)
- Fei Xu
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, 443002, China
- School of Life Science and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, China
| | - Ye Peng
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, 443002, China
- School of Life Science and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, China
| | - Zheng-Quan He
- College of Biological and Pharmaceutical, China Three Gorges University, Yichang, 443002, China
| | - Lu-Lu Yu
- School of Life Science and Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, China.
| |
Collapse
|
14
|
Abstract
SIGNIFICANCE Hydrogen sulfide (H2S) is a multitasking potent regulator that facilitates plant growth, development, and responses to environmental stimuli. RECENT ADVANCES The important beneficial effects of H2S in various aspects of plant physiology aroused the interest of this chemical for agriculture. Protein cysteine persulfidation has been recognized as the main redox regulatory mechanism of H2S signaling. An increasing number of studies, including large-scale proteomic analyses and function characterizations, have revealed that H2S-mediated persulfidations directly regulate protein functions, altering downstream signaling in plants. To date, the importance of H2S-mediated persufidation in several abscisic acid signaling-controlling key proteins has been assessed as well as their role in stomatal movements, largely contributing to the understanding of the plant H2S-regulatory mechanism. CRITICAL ISSUES The molecular mechanisms of the H2S sensing and transduction in plants remain elusive. The correlation between H2S-mediated persulfidation with other oxidative posttranslational modifications of cysteines are still to be explored. FUTURE DIRECTIONS Implementation of advanced detection approaches for the spatiotemporal monitoring of H2S levels in cells and the current proteomic profiling strategies for the identification and quantification of the cysteine site-specific persulfidation will provide insight into the H2S signaling in plants.
Collapse
Affiliation(s)
- Jingjing Huang
- Ghent University, 26656, Department of Plant Biotechnology and Bioinformatics, Gent, Belgium;
| | - Yanjie Xie
- Nanjing Agricultural University College of Life Sciences, 98430, No.1 Weigang, Nanjing, Jiangsu, China, 210095;
| |
Collapse
|
15
|
Arif MAR, Tripodi P, Waheed MQ, Afzal I, Pistrick S, Schütze G, Börner A. Genetic Analyses of Seed Longevity in Capsicum annuum L. in Cold Storage Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1321. [PMID: 36987009 PMCID: PMC10057624 DOI: 10.3390/plants12061321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Seed longevity is the most important trait in the genebank management system. No seed can remain infinitely viable. There are 1241 accessions of Capsicum annuum L. available at the German Federal ex situ genebank at IPK Gatersleben. C. annuum (Capsicum) is the most economically important species of the genus Capsicum. So far, there is no report that has addressed the genetic basis of seed longevity in Capsicum. Here, we convened a total of 1152 Capsicum accessions that were deposited in Gatersleben over forty years (from 1976 to 2017) and assessed their longevity by analyzing the standard germination percentage after 5-40 years of storage at -15/-18 °C. These data were used to determine the genetic causes of seed longevity, along with 23,462 single nucleotide polymorphism (SNP) markers covering all of the 12 Capsicum chromosomes. Using the association-mapping approach, we identified a total of 224 marker trait associations (MTAs) (34, 25, 31, 35, 39, 7, 21 and 32 MTAs after 5-, 10-, 15-, 20-, 25-, 30-, 35- and 40-year storage intervals) on all the Capsicum chromosomes. Several candidate genes were identified using the blast analysis of SNPs, and these candidate genes are discussed.
Collapse
Affiliation(s)
| | - Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA), 84098 Pontecagnano Faiano, Italy
| | | | - Irfan Afzal
- Seed Physiology Lab, Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sibylle Pistrick
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland, Germany
| | - Gudrun Schütze
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, 06466 Seeland, Germany
| |
Collapse
|
16
|
Hilal B, Khan TA, Fariduddin Q. Recent advances and mechanistic interactions of hydrogen sulfide with plant growth regulators in relation to abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1065-1083. [PMID: 36921557 DOI: 10.1016/j.plaphy.2023.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Adverse environmental constraints such as drought, heat, cold, salinity, and heavy metal toxicity are the primary concerns of the agricultural industry across the globe, as these stresses negatively affect yield and quality of crop production and therefore can be a major threat to world food security. Recently, it has been demonstrated that hydrogen sulfide (H2S), which is well-known as a gasotransmitter in animals, also plays a potent role in various growth and developmental processes in plants. H2S, as a potent signaling molecule, is involved in several plant processes such as in the regulation of stomatal pore movements, seed germination, photosynthesis and plant adaptation to environmental stress through gene regulation, post-translation modification of proteins and redox homeostasis. Moreover, a number of experimental studies have revealed that H2S could improve the adaptation capabilities of plants against diverse environmental constraints by mitigating the toxic and damaging effects triggered by stressful environments. An attempt has been made to uncover recent development in the biosynthetic and metabolic pathways of H2S and various physiological functions modulated in plants, H2S donors, their functional mechanism, and application in plants. Specifically, our focus has been on how H2S is involved in combating the destructive effects of abiotic stresses and its role in persulfidation. Furthermore, we have comprehensively elucidated the crosstalk of H2S with plant growth regulators.
Collapse
Affiliation(s)
- Bisma Hilal
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Tanveer Ahmad Khan
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
17
|
Wang Y, Cheng P, Zhao G, Li L, Shen W. Phytomelatonin and gasotransmitters: a crucial combination for plant physiological functions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5851-5862. [PMID: 35430633 DOI: 10.1093/jxb/erac159] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/13/2022] [Indexed: 05/05/2023]
Abstract
Melatonin, a molecule that was first identified in animal tissues, has been confirmed to be involved as a potential phytohormone in a variety of plant physiological responses. It is considered primarily as an antioxidant with important actions in controlling reactive oxygen and reactive nitrogen species. In addition to its role in regulating plant growth and development, phytomelatonin is involved in protection against abiotic and biotic stresses. The 'gasotransmitter'-that is, a gaseous signaling molecule-is a new concept that has been advanced in the past two decades, with functions in animal and plant physiological regulation. Gasotransmitters including nitric oxide, carbon monoxide, hydrogen sulfide, methane, and, more recently identified, hydrogen gas are critical and indispensable in a wide range of biological processes. This review investigates the interrelationship between phytomelatonin and the above-mentioned gasotransmitters from the perspective of biosynthetic origin and functions. Moreover, the potential future research directions for phytomelatonin and gasotransmitters interactions are discussed.
Collapse
Affiliation(s)
- Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Gan Zhao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Wang Z, He F, Mu Y, Zhang L, Liu Z, Liu D, Yang J, Jin Z, Pei Y. Identification and functional characterization of a cystathionine β-lyase (CBL) enzyme for H 2S production in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:76-89. [PMID: 35472754 DOI: 10.1016/j.plaphy.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Sulfide or sulfur metabolism plays an important role in the growth and development of plants. Cystathionine β-lyase (CBL) is an important enzyme in methionine synthesis, but a comprehensive understanding of CBL functions is limited. As the third gasotransmitter, hydrogen sulfide (H2S) plays important physiological roles in plants. In this study, we found that the endogenous H2S content in Arabidopsis thaliana cbl mutants was lower than that in the wild type. Under PEG-based osmotic stress conditions, the H2S contents of CBL-overexpression (OE-CBL) plants increased significantly compared with the wild type. Additionally, the OE-CBL plants increased their tolerance to osmotic stress by increasing the transcription levels of drought-related genes and their relative water-loss rates. Compared with cbl and wild type, OE-CBL plants resisted drought stress by significantly closing their stomata, resulting in improved survival rates. Root tip-bending experiments showed that CBL overexpression relieved osmotic, heavy metal and cold stresses in Arabidopsis. The recombinant CBL activity in vitro revealed that CBL produced H2S using L-cysteine as a substrate. Thus, CBL had a very strong cysteine desulfhydrase activity that could produce endogenous H2S using L-cysteine as a substrate, and it played an important role in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Zhiqing Wang
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi Province, 030006, China
| | - Feng He
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi Province, 030006, China; The Affiliated High School of Shanxi University, Taiyuan, Shanxi Province, 030006, China
| | - Yao Mu
- Institute of Space Information, Space Engineering University, Beijing, 101416, China
| | - Liping Zhang
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi Province, 030006, China
| | - Zhiqiang Liu
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi Province, 030006, China
| | - Danmei Liu
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi Province, 030006, China
| | - Jinbao Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhuping Jin
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi Province, 030006, China.
| | - Yanxi Pei
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi Province, 030006, China.
| |
Collapse
|
19
|
Choudhary AK, Singh S, Khatri N, Gupta R. Hydrogen sulphide: an emerging regulator of plant defence signalling. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:532-539. [PMID: 34904345 DOI: 10.1111/plb.13376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Hydrogen sulphide (H2 S), a gaseous signalling molecule in plants, has gained considerable attention in recent years because of its emerging roles in the regulation of plant growth and development and responses to abiotic stressors. Although the involvement of H2 S in biotic stress is not well documented in the literature, a growing body of evidence indicates its potential role in plant defence, particularly against bacterial and fungal pathogens. Recent reports have suggested that H2 S participates in plant defence signalling potentially by (1) regulating glutathione metabolism, (2) inducing expression of pathogenesis-related (PR) and other defence-related genes, (3) modulating enzyme activity through post-translational modifications, and (4) interacting with phytohormones such as jasmonic acid, ethylene and auxin. In this review, we discuss the biosynthesis, metabolism and interaction of H2 S with phytohormones, and highlight evidence gathered so far to support the emerging roles of H2 S in plant defence against invading pathogens.
Collapse
Affiliation(s)
- A K Choudhary
- Department of Botany, University of Delhi, New Delhi, India
| | - S Singh
- Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj, New Delhi, India
| | - N Khatri
- Department of Botany, Dyal Singh College, New Delhi, India
| | - R Gupta
- College of General Education, Kookmin University, Seoul, South Korea
| |
Collapse
|
20
|
The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022; 23:ijms23084272. [PMID: 35457090 PMCID: PMC9032328 DOI: 10.3390/ijms23084272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant–environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants.
Collapse
|
21
|
Jiang HY, Jiang ND, Wang L, Guo JJ, Chen KX, Dai YJ. Characterization of nitrilases from Variovorax boronicumulans that functions in insecticide flonicamid degradation and β-cyano-L-alanine detoxification. J Appl Microbiol 2022; 133:311-322. [PMID: 35365856 DOI: 10.1111/jam.15561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
AIMS To characterize the functions of nitrilases of Variovorax boronicumulans CGMCC 4969 and evaluate flonicamid (FLO) degradation and β-cyano-L-alanine (Ala(CN)) detoxification by this bacterium. METHODS AND RESULTS V. boronicumulans CGMCC 4969 nitrilases (NitA and NitB) were purified and substrate specificity assay indicated that both of them degraded insecticide FLO to N-(4-trifluoromethylnicotinoyl)glycinamide (TFNG-AM) and 4-(trifluoromethyl)nicotinol glycine (TFNG). Ala(CN), a plant detoxification intermediate, was hydrolyzed by NitB. Escherichia coli overexpressing NitA and NitB degraded 41.2 and 93.8% of FLO (0.87 mmol·L-1 ) within 1 h, with half-lives of 1.30 and 0.25 h, respectively. NitB exhibited the highest nitrilase activity toward FLO. FLO was used as a substrate to compare their enzymatic properties. NitB was more tolerant to acidic conditions and organic solvents than NitA. Conversely, NitA was more tolerant to metal ions than NitB. CGMCC 4969 facilitated FLO degradation in soil and surface water and utilized Ala(CN) as a sole nitrogen source for growth. CONCLUSIONS CGMCC 4969 efficiently degraded FLO mediated by NitA and NitB; NitB was involved in Ala(CN) detoxification. SIGNIFICANCE AND IMPACT OF THE STUDY This study promotes our understanding of versatile functions of nitrilases from CGMCC 4969 that is promising for environmental remediation.
Collapse
Affiliation(s)
- H Y Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - N D Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - L Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - J J Guo
- Nanjing Normal University Zhongbei College, Zhenjiang, People's Republic of China
| | - K X Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Y J Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
22
|
de Bont L, Mu X, Wei B, Han Y. Abiotic stress-triggered oxidative challenges: Where does H 2S act? J Genet Genomics 2022; 49:748-755. [PMID: 35276389 DOI: 10.1016/j.jgg.2022.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/08/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide (H2S) was once principally considered the perpetrator of plant growth cessation and cell death. However, this has become an antiquated view, with cumulative evidence showing that the H2S serves as a biological signaling molecule notably involved in abiotic stress response and adaptation, such as defense by phytohormone activation, stomatal movement, gene reprogramming, and plant growth modulation. Reactive oxygen species (ROS)-dependent oxidative stress is involved in these responses. Remarkably, an ever-growing body of evidence indicates that H2S can directly interact with ROS processing systems in a redox-dependent manner, while it has been gradually recognized that H2S-based posttranslational modifications of key protein cysteine residues determine stress responses. Furthermore, the reciprocal interplay between H2S and nitric oxide (NO) in regulating oxidative stress has significant importance. The interaction of H2S with NO and ROS during acclimation to abiotic stress may vary from synergism to antagonism. However, the molecular pathways and factors involved remain to be identified. This review not only aims to provide updated information on H2S action in regulating ROS-dependent redox homeostasis and signaling, but also discusses the mechanisms of H2S-dependent regulation in the context of oxidative stress elicited by environmental cues.
Collapse
Affiliation(s)
- Linda de Bont
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China; Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Xiujie Mu
- School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Bo Wei
- School of Biology, Food and Environment, Hefei University, 230601, Hefei, China
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, 230036, Hefei, China; School of Food and Biological Engineering, Hefei University of Technology, 230009, Hefei, China.
| |
Collapse
|
23
|
Wang L, Mu X, Chen X, Han Y. Hydrogen sulfide attenuates intracellular oxidative stress via repressing glycolate oxidase activities in Arabidopsis thaliana. BMC PLANT BIOLOGY 2022; 22:98. [PMID: 35247968 PMCID: PMC8897949 DOI: 10.1186/s12870-022-03490-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2S) has been proposed to exert anti-oxidative effect under many environmental stresses; however, how it influences oxidative stress remains largely unclear. RESULTS Here, we assessed the effects of H2S on oxidative stress responses such as salicylic acid (SA)-dependent cell death, which triggered by increased H2O2 availability in Arabidopsis thaliana catalase-deficient mutants cat2 displaying around 20% wild-type catalase activity. H2S generation and its producing enzyme L-cysteine desulfhydrase (LCD/DES) were found to transient increase in response to intracellular oxidative stress. Although introducing the mutation of des1, an important LCD, into the cat2 background produced little effect, H2S fumigation not only rescued the cell death phenotype of cat2 plant, but also attenuated SA accumulation and oxidation of the glutathione pool. Unexpectedly, the activities of major components of ascorbate-glutathione pathway were less affected by the presence of H2S treatment, but decreased glycolate oxidase (GOX) in combination with accumulation of glycolate implied H2S treatment impacts the cellular redox homeostasis by repressing the GOX-catalyzed reaction likely via altering the major GOX transcript levels. CONCLUSIONS Our findings reveal a link between H2S and peroxisomal H2O2 production that has implications for the understanding of the multifaceted roles of H2S in the regulation of oxidative stress responses.
Collapse
Affiliation(s)
- Lijuan Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiujie Mu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xi Chen
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong, 212400, China
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
24
|
Yuan Y, Song T, Yu J, Zhang W, Hou X, Kong Ling Z, Cui G. Genome-Wide Investigation of the Cysteine Synthase Gene Family Shows That Overexpression of CSase Confers Alkali Tolerance to Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 12:792862. [PMID: 35058952 PMCID: PMC8765340 DOI: 10.3389/fpls.2021.792862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Alfalfa is widely grown worldwide as a perennial high-quality legume forage and as a good ecological landcover. The cysteine synthase (CSase) gene family is actively involved in plant growth and development and abiotic stress resistance but has not been systematically investigated in alfalfa. We identified 39 MsCSase genes on 4 chromosomes of the alfalfa genome. Phylogenetic analysis demonstrated that these genes were clustered into six subfamilies, and members of the same subfamily had similar physicochemical properties and sequence structures. Overexpression of the CSase gene in alfalfa increased alkali tolerance. Compared with control plants, the overexpression lines presented higher proline, soluble sugars, and cysteine and reduced glutathione contents and superoxide dismutase and peroxidase activities as well as lower hydrogen peroxide and superoxide anion contents after alkali stress. The relative expression of γ-glutamyl cysteine synthetase gene (a downstream gene of CSase) in the overexpression lines was much higher than that in the control line. The CSase gene enhanced alkalinity tolerance by regulating osmoregulatory substances and improving antioxidant capacity. These results provide a reference for studying the CSase gene family in alfalfa and expanding the alkali tolerance gene resources of forage plants.
Collapse
|
25
|
Easson MLAE, Malka O, Paetz C, Hojná A, Reichelt M, Stein B, van Brunschot S, Feldmesser E, Campbell L, Colvin J, Winter S, Morin S, Gershenzon J, Vassão DG. Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci. Sci Rep 2021; 11:13244. [PMID: 34168179 PMCID: PMC8225905 DOI: 10.1038/s41598-021-92553-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Two-component plant defenses such as cyanogenic glucosides are produced by many plant species, but phloem-feeding herbivores have long been thought not to activate these defenses due to their mode of feeding, which causes only minimal tissue damage. Here, however, we report that cyanogenic glycoside defenses from cassava (Manihot esculenta), a major staple crop in Africa, are activated during feeding by a pest insect, the whitefly Bemisia tabaci, and the resulting hydrogen cyanide is detoxified by conversion to beta-cyanoalanine. Additionally, B. tabaci was found to utilize two metabolic mechanisms to detoxify cyanogenic glucosides by conversion to non-activatable derivatives. First, the cyanogenic glycoside linamarin was glucosylated 1–4 times in succession in a reaction catalyzed by two B. tabaci glycoside hydrolase family 13 enzymes in vitro utilizing sucrose as a co-substrate. Second, both linamarin and the glucosylated linamarin derivatives were phosphorylated. Both phosphorylation and glucosidation of linamarin render this plant pro-toxin inert to the activating plant enzyme linamarase, and thus these metabolic transformations can be considered pre-emptive detoxification strategies to avoid cyanogenesis.
Collapse
Affiliation(s)
| | - Osnat Malka
- The Hebrew University of Jerusalem, 7610001, Rehovot, Israel.
| | - Christian Paetz
- Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Anna Hojná
- Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | | | - Beate Stein
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38104, Braunschweig, Germany
| | - Sharon van Brunschot
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK.,University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Lahcen Campbell
- EMBL-European Bioinformatics Institute, Cambridge, CB10 1SD, UK
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK
| | - Stephan Winter
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38104, Braunschweig, Germany
| | - Shai Morin
- The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | | | - Daniel G Vassão
- Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
| |
Collapse
|
26
|
Song Y, Wang L, Liu F, Jiao C, Nan H, Shen X, Chen H, Li Y, Lei B, Jiang J, Chen P, Xu Q. β-Cyanoalanine Synthase Regulates the Accumulation of β-ODAP via Interaction with Serine Acetyltransferase in Lathyrus sativus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1953-1962. [PMID: 33538593 DOI: 10.1021/acs.jafc.0c07542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
β-N-Oxalyl-l-α,β-diaminopropionic acid (β-ODAP), found in Lathyrus sativus at first, causes a neurological disease, lathyrism, when over ingested in an unbalanced diet. Our previous research suggested that β-ODAP biosynthesis is related to sulfur metabolism. In this study, β-cyanoalanine synthase (β-CAS) was confirmed to be responsible for β-ODAP biosynthesis via in vitro enzymatic analysis. LsCAS was found to be pyridoxal phosphate (PLP)-dependent via spectroscopic analysis and dual functional via enzymatic activity analysis. Generation of a M135T/M235S/S239T triple mutant of LsCAS, which are the key sites to control the ratio of CAS/cysteine synthase (CS) activity, switches reaction chemistry to that of a CS. LsCAS interactions were further screened and verified via Y2H, BiFC and pull-down assay. It was suggested that LsSAT2 interacts and forms a cysteine regulatory complex (CRC) with LsCAS in mitochondria, which improves LsSAT while reduces LsCAS activities to affect β-ODAP content positively. These results provide new insights into the molecular regulation of β-ODAP content in L. sativus.
Collapse
Affiliation(s)
- Yaoyao Song
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lei Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Fengjuan Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chengjin Jiao
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741000, Gansu, China
| | - Hao Nan
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao Shen
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yifan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Beilei Lei
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinglong Jiang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Peng Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Quanle Xu
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
27
|
Zhang J, Zhou M, Zhou H, Zhao D, Gotor C, Romero LC, Shen J, Ge Z, Zhang Z, Shen W, Yuan X, Xie Y. Hydrogen sulfide, a signaling molecule in plant stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:146-160. [PMID: 33058490 DOI: 10.1111/jipb.13022] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 05/22/2023]
Abstract
Gaseous molecules, such as hydrogen sulfide (H2 S) and nitric oxide (NO), are crucial players in cellular and (patho)physiological processes in biological systems. The biological functions of these gaseous molecules, which were first discovered and identified as gasotransmitters in animals, have received unprecedented attention from plant scientists in recent decades. Researchers have arrived at the consensus that H2 S is synthesized endogenously and serves as a signaling molecule throughout the plant life cycle. However, the mechanisms of H2 S action in redox biology is still largely unexplored. This review highlights what we currently know about the characteristics and biosynthesis of H2 S in plants. Additionally, we summarize the role of H2 S in plant resistance to abiotic stress. Moreover, we propose and discuss possible redox-dependent mechanisms by which H2 S regulates plant physiology.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingjian Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Didi Zhao
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Sevilla, 41092, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, Sevilla, 41092, Spain
| | - Jie Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenglin Ge
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhirong Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
28
|
Di Silvestre D, Vigani G, Mauri P, Hammadi S, Morandini P, Murgia I. Network Topological Analysis for the Identification of Novel Hubs in Plant Nutrition. FRONTIERS IN PLANT SCIENCE 2021; 12:629013. [PMID: 33679842 PMCID: PMC7928335 DOI: 10.3389/fpls.2021.629013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 05/08/2023]
Abstract
Network analysis is a systems biology-oriented approach based on graph theory that has been recently adopted in various fields of life sciences. Starting from mitochondrial proteomes purified from roots of Cucumis sativus plants grown under single or combined iron (Fe) and molybdenum (Mo) starvation, we reconstructed and analyzed at the topological level the protein-protein interaction (PPI) and co-expression networks. Besides formate dehydrogenase (FDH), already known to be involved in Fe and Mo nutrition, other potential mitochondrial hubs of Fe and Mo homeostasis could be identified, such as the voltage-dependent anion channel VDAC4, the beta-cyanoalanine synthase/cysteine synthase CYSC1, the aldehyde dehydrogenase ALDH2B7, and the fumaryl acetoacetate hydrolase. Network topological analysis, applied to plant proteomes profiled in different single or combined nutritional conditions, can therefore assist in identifying novel players involved in multiple homeostatic interactions.
Collapse
Affiliation(s)
| | - Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, ITB-CNR, Segrate, Italy
| | - Sereen Hammadi
- Proteomic and Metabolomic Laboratory, ITB-CNR, Segrate, Italy
| | - Piero Morandini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Irene Murgia
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Irene Murgia,
| |
Collapse
|
29
|
Pattyn J, Vaughan‐Hirsch J, Van de Poel B. The regulation of ethylene biosynthesis: a complex multilevel control circuitry. THE NEW PHYTOLOGIST 2021; 229:770-782. [PMID: 32790878 PMCID: PMC7820975 DOI: 10.1111/nph.16873] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
The gaseous plant hormone ethylene is produced by a fairly simple two-step biosynthesis route. Despite this pathway's simplicity, recent molecular and genetic studies have revealed that the regulation of ethylene biosynthesis is far more complex and occurs at different layers. Ethylene production is intimately linked with the homeostasis of its general precursor S-adenosyl-l-methionine (SAM), which experiences transcriptional and posttranslational control of its synthesising enzymes (SAM synthetase), as well as the metabolic flux through the adjacent Yang cycle. Ethylene biosynthesis continues from SAM by two dedicated enzymes: 1-aminocyclopropane-1-carboxylic (ACC) synthase (ACS) and ACC oxidase (ACO). Although the transcriptional dynamics of ACS and ACO have been well documented, the first transcription factors that control ACS and ACO expression have only recently been discovered. Both ACS and ACO display a type-specific posttranslational regulation that controls protein stability and activity. The nonproteinogenic amino acid ACC also shows a tight level of control through conjugation and translocation. Different players in ACC conjugation and transport have been identified over the years, however their molecular regulation and biological significance is unclear, yet relevant, as ACC can also signal independently of ethylene. In this review, we bring together historical reports and the latest findings on the complex regulation of the ethylene biosynthesis pathway in plants.
Collapse
Affiliation(s)
- Jolien Pattyn
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - John Vaughan‐Hirsch
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| |
Collapse
|
30
|
Rao S, Yu T, Cong X, Xu F, Lai X, Zhang W, Liao Y, Cheng S. Integration analysis of PacBio SMRT- and Illumina RNA-seq reveals candidate genes and pathway involved in selenium metabolism in hyperaccumulator Cardamine violifolia. BMC PLANT BIOLOGY 2020; 20:492. [PMID: 33109081 PMCID: PMC7590678 DOI: 10.1186/s12870-020-02694-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/12/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cardamine violifolia, native to China, is one of the selenium (Se) hyperaccumulators. The mechanism of Se metabolism and tolerance remains unclear, and only limited genetic information is currently available. Therefore, we combined a PacBio single-molecule real-time (SMRT) transcriptome library and the Illumina RNA-seq data of sodium selenate (Na2SeO4)-treated C. violifolia to further reveal the molecular mechanism of Se metabolism. RESULTS The concentrations of the total, inorganic, and organic Se in C. violifolia seedlings significantly increased as the Na2SeO4 treatment concentration increased. From SMRT full-length transcriptome of C. violifolia, we obtained 26,745 annotated nonredundant transcripts, 14,269 simple sequence repeats, 283 alternative splices, and 3407 transcription factors. Fifty-one genes from 134 transcripts were identified to be involved in Se metabolism, including transporter, assimilatory enzyme, and several specific genes. Analysis of Illumina RNA-Seq data showed that a total of 948 differentially expressed genes (DEGs) were filtered from the four groups with Na2SeO4 treatment, among which 11 DEGs were related to Se metabolism. The enrichment analysis of KEGG pathways of all the DEGs showed that they were significantly enriched in five pathways, such as hormone signal transduction and plant-pathogen interaction pathways. Four genes related to Se metabolism, adenosine triphosphate sulfurase 1, adenosine 5'-phosphosulfate reductase 3, cysteine (Cys) desulfurase 1, and serine acetyltransferase 2, were regulated by lncRNAs. Twenty potential hub genes (e.g., sulfate transporter 1;1, Cys synthase, methionine gamma-lyase, and Se-binding protein 1) were screened and identified to play important roles in Se accumulation and tolerance in C. violifolia as concluded by weighted gene correlation network analysis. Based on combinative analysis of expression profiling and annotation of genes as well as Se speciation and concentration in C. violifolia under the treatments with different Na2SeO4 concentrations, a putative Se metabolism and assimilation pathway in C. violifolia was proposed. CONCLUSION Our data provide abundant information on putative gene transcriptions and pathway involved in Se metabolism of C. violifolia. The findings present a genetic resource and provide novel insights into the mechanism of Se hyperaccumulation in C. violifolia.
Collapse
Affiliation(s)
- Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Tian Yu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023 China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, 445000 China
| | - Xin Cong
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023 China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, 445000 China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Xiaozhuo Lai
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025 China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023 China
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, 445000 Hubei China
| |
Collapse
|
31
|
González-Gordo S, Palma JM, Corpas FJ. Appraisal of H 2S metabolism in Arabidopsis thaliana: In silico analysis at the subcellular level. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:579-588. [PMID: 32846393 DOI: 10.1016/j.plaphy.2020.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 05/15/2023]
Abstract
Hydrogen sulfide (H2S) has become a new signal molecule in higher plants which seems to be involved in almost all physiological processes from seed germination, root and plant growth until flowering and fruit ripening. Moreover, H2S also participates in the mechanism of response against adverse environmental stresses. However, its basic biochemistry in plant cells can be considered in a nascent stage. Using the available information of the model plant Arabidopsis thaliana, the goal of the present study is to provide a broad overview of H2S metabolism and to display an in silico analysis of the 26 enzymatic components involved in the metabolism of H2S and their subcellular compartmentation (cytosol, chloroplast and mitochondrion) thus providing a wide picture of the cross-talk inside the organelles and amongst them and, consequently, to get a better understanding of the cellular and tissue implications of H2S. This information will be also relevant for other crop species, especially those whose whole genome is not yet available.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - José M Palma
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Francisco J Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.
| |
Collapse
|
32
|
Rather BA, Mir IR, Sehar Z, Anjum NA, Masood A, Khan NA. The outcomes of the functional interplay of nitric oxide and hydrogen sulfide in metal stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:523-534. [PMID: 32836198 DOI: 10.1016/j.plaphy.2020.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 08/03/2020] [Indexed: 05/24/2023]
Abstract
Phytotoxicity of metals constraints plants health, metabolism and productivity. The sustainable approaches for minimizing major metals-accrued phytotoxicity have been least explored. The gasotransmitters signaling molecules such as nitric oxide (NO) and hydrogen sulfide (H2S) play a significant role in the mitigation of major consequences of metals stress. Versatile gaseous signaling molecules, NO and H2S are involved in the regulation of various physiological processes in plants and their tolerance to abiotic stresses. However, literature available on NO or H2S stand alone, and the major insights into the roles of NO and/or H2S in plant tolerance, particularly to metals, remained unclear. Given above, this paper aimed to (a) briefly overview metals and highlight their major phytotoxicity; (b) appraises literature reporting potential mechanisms underlying the roles of NO and H2S in plant-metal tolerance; (c) crosstalk on NO and H2S in relation to plant metal tolerance. Additionally, major aspects so far unexplored in the current context have also been mentioned.
Collapse
Affiliation(s)
- Bilal A Rather
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Iqbal R Mir
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Naser A Anjum
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Asim Masood
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
33
|
Meng X, Li L, Narsai R, De Clercq I, Whelan J, Berkowitz O. Mitochondrial signalling is critical for acclimation and adaptation to flooding in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:227-247. [PMID: 32064696 DOI: 10.1111/tpj.14724] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 05/23/2023]
Abstract
Mitochondria have critical functions in the acclimation to abiotic and biotic stresses. Adverse environmental conditions lead to increased demands in energy supply and metabolic intermediates, which are provided by mitochondrial ATP production and the tricarboxylic acid (TCA) cycle. Mitochondria also play a role as stress sensors to adjust nuclear gene expression via retrograde signalling with the transcription factor (TF) ANAC017 and the kinase CDKE1 key components to integrate various signals into this pathway. To determine the importance of mitochondria as sensors of stress and their contribution in the tolerance to adverse growth conditions, a comparative phenotypical, physiological and transcriptomic characterisation of Arabidopsis mitochondrial signalling mutants (cdke1/rao1 and anac017/rao2) and a set of contrasting accessions was performed after applying the complex compound stress of submergence. Our results showed that impaired mitochondrial retrograde signalling leads to increased sensitivity to the stress treatments. The multi-factorial approach identified a network of 702 co-expressed genes, including several WRKY TFs, overlapping in the transcriptional responses in the mitochondrial signalling mutants and stress-sensitive accessions. Functional characterisation of two WRKY TFs (WRKY40 and WRKY45), using both knockout and overexpressing lines, confirmed their role in conferring tolerance to submergence. Together, the results revealed that acclimation to submergence is dependent on mitochondrial retrograde signalling, and underlying transcriptional re-programming is used as an adaptation mechanism.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Lu Li
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Inge De Clercq
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
34
|
Crosstalk between Hydrogen Sulfide and Other Signal Molecules Regulates Plant Growth and Development. Int J Mol Sci 2020; 21:ijms21134593. [PMID: 32605208 PMCID: PMC7370202 DOI: 10.3390/ijms21134593] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulfide (H2S), once recognized only as a poisonous gas, is now considered the third endogenous gaseous transmitter, along with nitric oxide (NO) and carbon monoxide (CO). Multiple lines of emerging evidence suggest that H2S plays positive roles in plant growth and development when at appropriate concentrations, including seed germination, root development, photosynthesis, stomatal movement, and organ abscission under both normal and stress conditions. H2S influences these processes by altering gene expression and enzyme activities, as well as regulating the contents of some secondary metabolites. In its regulatory roles, H2S always interacts with either plant hormones, other gasotransmitters, or ionic signals, such as abscisic acid (ABA), ethylene, auxin, CO, NO, and Ca2+. Remarkably, H2S also contributes to the post-translational modification of proteins to affect protein activities, structures, and sub-cellular localization. Here, we review the functions of H2S at different stages of plant development, focusing on the S-sulfhydration of proteins mediated by H2S and the crosstalk between H2S and other signaling molecules.
Collapse
|
35
|
Yu LL, Liu Y, Liu CJ, Zhu F, He ZQ, Xu F. Overexpressed β-cyanoalanine synthase functions with alternative oxidase to improve tobacco resistance to salt stress by alleviating oxidative damage. FEBS Lett 2020; 594:1284-1295. [PMID: 31858584 DOI: 10.1002/1873-3468.13723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 11/09/2022]
Abstract
β-Cyanoalanine synthase (β-CAS) is an enzyme involved in cyanide detoxification. However, little information is available regarding the effects of β-CAS activity changes on plant resistance to environmental stress. Here, we found that β-CAS overexpression (CAS-OE) improves the resistance of tobacco plants to salt stress, whereas plants with β-CAS silencing suffer more oxidative damage than wild-type plants. Notably, blocking respiration by the alternative oxidase (AOX) pathway significantly aggravates stress injury and impairs the salt stress tolerance mediated by CAS-OE. These findings present novel insights into the synergistic effect between β-CAS and AOX in protecting plants from salt stress, where β-CAS plays a vital role in restraining cyanide accumulation, and AOX helps to alleviate the toxic effect of cyanide.
Collapse
Affiliation(s)
- Lu-Lu Yu
- Applied Biotechnology Center, Wuhan University of Bioengineering, China
| | - Yang Liu
- Applied Biotechnology Center, Wuhan University of Bioengineering, China
| | - Cui-Jiao Liu
- Applied Biotechnology Center, Wuhan University of Bioengineering, China
| | - Feng Zhu
- College of Horticulture and Plant Protection, Yangzhou University, China
| | - Zheng-Quan He
- The Key Laboratory of Plant Genetics Development and Germplasm Innovation in the Three Gorges Region, Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Fei Xu
- Applied Biotechnology Center, Wuhan University of Bioengineering, China
- The Key Laboratory of Plant Genetics Development and Germplasm Innovation in the Three Gorges Region, Biotechnology Research Center, China Three Gorges University, Yichang, China
| |
Collapse
|
36
|
Singh S, Kumar V, Kapoor D, Kumar S, Singh S, Dhanjal DS, Datta S, Samuel J, Dey P, Wang S, Prasad R, Singh J. Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions. PHYSIOLOGIA PLANTARUM 2020; 168:301-317. [PMID: 31264712 DOI: 10.1111/ppl.13002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 05/20/2023]
Abstract
In the recent times, plants are facing certain types of environmental stresses, which give rise to formation of reactive oxygen species (ROS) such as hydroxyl radicals, hydrogen peroxides, superoxide anions and so on. These are required by the plants at low concentrations for signal transduction and at high concentrations, they repress plant root growth. Apart from the ROS activities, hydrogen sulfide (H2 S) and nitric oxide (NO) have major contributions in regulating growth and developmental processes in plants, as they also play key roles as signaling molecules and act as chief plant immune defense mechanisms against various biotic as well as abiotic stresses. H2 S and NO are the two pivotal gaseous messengers involved in growth, germination and improved tolerance in plants under stressed and non-stress conditions. H2 S and NO mediate cell signaling in plants as a response to several abiotic stresses like temperature, heavy metal exposure, water and salinity. They alter gene expression levels to induce the synthesis of antioxidant enzymes, osmolytes and also trigger their interactions with each other. However, research has been limited to only cross adaptations and signal transductions. Understanding the change and mechanism of H2 S and NO mediated cell signaling will broaden our knowledge on the various biochemical changes that occur in plant cells related to different stresses. A clear understanding of these molecules in various environmental stresses would help to confer biotechnological applications to protect plants against abiotic stresses and to improve crop productivity.
Collapse
Affiliation(s)
- Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, India
- Punjab Biotechnology Incubators, Mohali, 160059, India
- Regional Advanced Water Testing Laboratory, Mohali, 160059, India
| | - Vijay Kumar
- Regional Ayurveda Research Institute for Drug Development, Gwalior, 474009, India
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara, 144411, India
| | - Sanjay Kumar
- Punjab Biotechnology Incubators, Mohali, 160059, India
- Regional Advanced Water Testing Laboratory, Mohali, 160059, India
| | - Satyender Singh
- Regional Advanced Water Testing Laboratory, Mohali, 160059, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, India
| | - Shivika Datta
- Department of Zoology, Doaba College, Jalandhar, 144005, India
| | - Jastin Samuel
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, India
- Waste Valorization Research Lab, Lovely Professional University, Phagwara, 144411, India
| | - Pinaki Dey
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Shanquan Wang
- School of Civil and Environmental Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ram Prasad
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, India
| |
Collapse
|
37
|
Fuchs P, Rugen N, Carrie C, Elsässer M, Finkemeier I, Giese J, Hildebrandt TM, Kühn K, Maurino VG, Ruberti C, Schallenberg-Rüdinger M, Steinbeck J, Braun HP, Eubel H, Meyer EH, Müller-Schüssele SJ, Schwarzländer M. Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:420-441. [PMID: 31520498 DOI: 10.1111/tpj.14534] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 05/14/2023]
Abstract
Mitochondria host vital cellular functions, including oxidative phosphorylation and co-factor biosynthesis, which are reflected in their proteome. At the cellular level plant mitochondria are organized into hundreds of discrete functional entities, which undergo dynamic fission and fusion. It is the individual organelle that operates in the living cell, yet biochemical and physiological assessments have exclusively focused on the characteristics of large populations of mitochondria. Here, we explore the protein composition of an individual average plant mitochondrion to deduce principles of functional and structural organisation. We perform proteomics on purified mitochondria from cultured heterotrophic Arabidopsis cells with intensity-based absolute quantification and scale the dataset to the single organelle based on criteria that are justified by experimental evidence and theoretical considerations. We estimate that a total of 1.4 million protein molecules make up a single Arabidopsis mitochondrion on average. Copy numbers of the individual proteins span five orders of magnitude, ranging from >40 000 for Voltage-Dependent Anion Channel 1 to sub-stoichiometric copy numbers, i.e. less than a single copy per single mitochondrion, for several pentatricopeptide repeat proteins that modify mitochondrial transcripts. For our analysis, we consider the physical and chemical constraints of the single organelle and discuss prominent features of mitochondrial architecture, protein biogenesis, oxidative phosphorylation, metabolism, antioxidant defence, genome maintenance, gene expression, and dynamics. While assessing the limitations of our considerations, we exemplify how our understanding of biochemical function and structural organization of plant mitochondria can be connected in order to obtain global and specific insights into how organelles work.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Nils Rugen
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Marlene Elsässer
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
- Institut für Zelluläre und Molekulare Botanik (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Iris Finkemeier
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Jonas Giese
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Tatjana M Hildebrandt
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Kristina Kühn
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Cristina Ruberti
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Mareike Schallenberg-Rüdinger
- Institut für Zelluläre und Molekulare Botanik (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Janina Steinbeck
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Etienne H Meyer
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Stefanie J Müller-Schüssele
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Markus Schwarzländer
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| |
Collapse
|
38
|
Harun-Ur-Rashid M, Oogai S, Parveen S, Inafuku M, Iwasaki H, Fukuta M, Amzad Hossain M, Oku H. Molecular cloning of putative chloroplastic cysteine synthase in Leucaena leucocephala. JOURNAL OF PLANT RESEARCH 2020; 133:95-108. [PMID: 31828681 DOI: 10.1007/s10265-019-01158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/02/2019] [Indexed: 05/14/2023]
Abstract
Cysteine biosynthesis is directed by the successive commitments of serine acetyltransferase, and O-acetylserine (thiol) lyase (OASTL) compounds, which subsequently frame the decameric cysteine synthase complex. The isoforms of OASTL are found in three compartments of the cell: the cytosol, plastid, and mitochondria. In this investigation, we first isolated putative chloroplastic OASTL (Ch-OASTL) from Leucaena leucocephala, and the Ch-OASTL was then expressed in BL21-competent Escherichia coli. The putative Ch-OASTL cDNA clone had 1,543 base pairs with 391 amino acids in its open reading frame and a molecular weight of 41.54 kDa. The purified protein product exhibited cysteine synthesis ability, but not mimosine synthesis activity. However, they both make the common α-aminoacrylate intermediate in their first half reaction scheme with the conventional substrate O-acetyl serine (OAS). Hence, we considered putative Ch-OASTL a cysteine-specific enzyme. Kinetic studies demonstrated that the optimum pH for cysteine synthesis was 7.0, and the optimum temperature was 40 °C. In the cysteine synthesis assay, the Km and kcat values were 838 ± 26 µM and 72.83 s-1 for OAS, respectively, and 60 ± 2 µM and 2.43 s-1 for Na2S, respectively. We can infer that putative Ch-OASTL regulatory role is considered a sensor for sulfur constraint conditions, and it acts as a forerunner of various metabolic compound molecules.
Collapse
Affiliation(s)
- Md Harun-Ur-Rashid
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Shigeki Oogai
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Shahanaz Parveen
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Molecular Biotechnology Group, Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Masashi Inafuku
- Molecular Biotechnology Group, Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Hironori Iwasaki
- Molecular Biotechnology Group, Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Masakazu Fukuta
- Department of Subtropical Biochemistry and Biotechnology, Graduate School of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan.
| | - Md Amzad Hossain
- Department of Subtropical Biochemistry and Biotechnology, Graduate School of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Hirosuke Oku
- Molecular Biotechnology Group, Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
39
|
Cyanide produced with ethylene by ACS and its incomplete detoxification by β-CAS in mango inflorescence leads to malformation. Sci Rep 2019; 9:18361. [PMID: 31797981 PMCID: PMC6892883 DOI: 10.1038/s41598-019-54787-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
Malformation of mango inflorescences (MMI) disease causes severe economic losses worldwide. Present research investigates the underlying causes of MMI. Results revealed significantly higher levels of cyanide, a by-product of ethylene biosynthesis, in malformed inflorescences (MI) of mango cultivars. There was a significant rise in ACS transcripts, ACS enzyme activity and cyanide and ethylene levels in MI as compared to healthy inflorescences (HI). Significant differences in levels of methionine, phosphate, S-adenosyl-L-methionine, S-adenosyl-L-homocysteine, ascorbate and glutathione, and activities of dehydroascorbate reductase and glutathione reductase were seen in MI over HI. Further, a lower expression of β-cyanoalanine synthase (β-CAS) transcript was associated with decreased cellular β-CAS activity in MI, indicating accumulation of unmetabolized cyanide. TEM studies showed increased gum-resinosis and necrotic cell organelles, which might be attributed to unmetabolized cyanide. In field trials, increased malformed-necrotic-inflorescence (MNI) by spraying ethrel and decreased MNI by treating with ethylene inhibitors (silver and cobalt ions) further confirmed the involvement of cyanide in MMI. Implying a role for cyanide in MMI at the physiological and molecular level, this study will contribute to better understanding of the etiology of mango inflorescence malformation, and also help manipulate mango varieties genetically for resistance to malformation.
Collapse
|
40
|
Joshi J, Renaud JB, Sumarah MW, Marsolais F. Deciphering S-methylcysteine biosynthesis in common bean by isotopic tracking with mass spectrometry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:176-186. [PMID: 31215701 DOI: 10.1111/tpj.14438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
The suboptimal content of sulfur-containing amino acids methionine and cysteine prevents common bean (Phaseolus vulgaris) from being an excellent source of protein. Nutritional improvements to this significant crop require a better understanding of the biosynthesis of sulfur-containing compounds including the nonproteogenic amino acid S-methylcysteine and the dipeptide γ-glutamyl-S-methylcysteine, which accumulate in seed. In this study, seeds were incubated with isotopically labelled serine, cysteine or methionine and analyzed by reverse phase chromatography-high resolution mass spectrometry to track stable isotopes as they progressed through the sulfur metabolome. We determined that serine and methionine are the sole precursors of free S-methylcysteine in developing seeds, indicating that this compound is likely to be synthesized through the condensation of O-acetylserine and methanethiol. BSAS4;1, a cytosolic β-substituted alanine synthase preferentially expressed in developing seeds, catalyzed the formation of S-methylcysteine in vitro. A higher flux of labelled serine or cysteine was observed in a sequential pathway involving γ-glutamyl-cysteine, homoglutathione and S-methylhomoglutathione, a likely precursor to γ-glutamyl-S-methylcysteine. Preferential incorporation of serine over cysteine supports a subcellular compartmentation of this pathway, likely to be in the chloroplast. The origin of the methyl group in S-methylhomoglutathione was traced to methionine. There was substantial incorporation of carbons from methionine into the β-alanine portion of homoglutathione and S-methylhomoglutathione, suggesting the breakdown of methionine by methionine γ-lyase and conversion of α-ketobutyrate to β-alanine via propanoate metabolism. These findings delineate the biosynthetic pathways of the sulfur metabolome of common bean and provide an insight that will aid future efforts to improve nutritional quality.
Collapse
Affiliation(s)
- Jaya Joshi
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - Justin B Renaud
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Mark W Sumarah
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Frédéric Marsolais
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| |
Collapse
|
41
|
Liao Y, Cui R, Yuan T, Xie Y, Gao Y. Cysteine and methionine contribute differentially to regulate alternative oxidase in leaves of poplar (Populus deltoides x Populus euramericana 'Nanlin 895') seedlings exposed to different salinity. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153017. [PMID: 31376640 DOI: 10.1016/j.jplph.2019.153017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 05/25/2023]
Abstract
The effects of different doses of NaCl on the expression profiles of genes involved in the mitochondrial electron transport chain (miETC), H2O2 and O2- levels, and antioxidant enzymes and amino acid metabolism were investigated in the leaves of poplar (Populus deltoides x Populus euramericana 'Nanlin 895'). In the miETC, complexes II and III and bypasses of the cytochrome c pathway including AOX and UCP displayed higher transcript abundance, whereas COX6b encoding cytochrome c oxidase were suppressed at 200 and 400 mM. H2O2 accumulated at 200 mM NaCl but O2- was generated at 400 mM. Accordingly, CAT was enhanced at 200 and 400 mM, while G-POD strengthened only at 400 mM. In addition, cysteine was reduced at 400 mM but did not change at 200 mM, although methionine was accumulated at 200 mM but not altered at 400 mM. Exogenous cysteine accumulated H2S and methionine increased ACC at 200 mM NaCl. At 400 mM NaCl, cysteine elevated the expression of CGS encoding cystathionine gamma-synthase and MS2 encoding methionine synthase as well as ACC and H2S levels, and methionine increased ACC content with repressed CGS and MS2. Moreover, exogenous KCN decreased cysteine levels, with an augment in H2S and up-regulation of CYS C1 encoding β-cyanoalanine synthase at all salinity conditions, whereas antimycin A (AA) and salicylhydroxamic acid (SHAM) affected neither the levels of cysteine or H2S, nor the CYS C1 expression. However, neither KCN, AA nor SHAM affected ACC content. AOX1b was induced both by exogenous cysteine and methionine as well as KCN and AA but suppressed by SHAM at 200 and 400 mM NaCl, in negative correlation with MDA content. These results suggest that poplar leaf evolved diverse strategies in amino acid metabolism of manipulating the AOX pathway to defend against different levels of salt stress.
Collapse
Affiliation(s)
- Yangwenke Liao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.
| | - Rongrong Cui
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Tingting Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yinfeng Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yongxin Gao
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| |
Collapse
|
42
|
Gotor C, García I, Aroca Á, Laureano-Marín AM, Arenas-Alfonseca L, Jurado-Flores A, Moreno I, Romero LC. Signaling by hydrogen sulfide and cyanide through post-translational modification. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4251-4265. [PMID: 31087094 DOI: 10.1093/jxb/erz225] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/03/2019] [Indexed: 05/04/2023]
Abstract
Two cysteine metabolism-related molecules, hydrogen sulfide and hydrogen cyanide, which are considered toxic, have now been considered as signaling molecules. Hydrogen sulfide is produced in chloroplasts through the activity of sulfite reductase and in the cytosol and mitochondria by the action of sulfide-generating enzymes, and regulates/affects essential plant processes such as plant adaptation, development, photosynthesis, autophagy, and stomatal movement, where interplay with other signaling molecules occurs. The mechanism of action of sulfide, which modifies protein cysteine thiols to form persulfides, is related to its chemical features. This post-translational modification, called persulfidation, could play a protective role for thiols against oxidative damage. Hydrogen cyanide is produced during the biosynthesis of ethylene and camalexin in non-cyanogenic plants, and is detoxified by the action of sulfur-related enzymes. Cyanide functions include the breaking of seed dormancy, modifying the plant responses to biotic stress, and inhibition of root hair elongation. The mode of action of cyanide is under investigation, although it has recently been demonstrated to perform post-translational modification of protein cysteine thiols to form thiocyanate, a process called S-cyanylation. Therefore, the signaling roles of sulfide and most probably of cyanide are performed through the modification of specific cysteine residues, altering protein functions.
Collapse
Affiliation(s)
- Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Ángeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Ana M Laureano-Marín
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Lucía Arenas-Alfonseca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Inmaculada Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| |
Collapse
|
43
|
Common Bean ( Phaseolus vulgaris L.) Accumulates Most S-Methylcysteine as Its γ-Glutamyl Dipeptide. PLANTS 2019; 8:plants8050126. [PMID: 31091711 PMCID: PMC6572574 DOI: 10.3390/plants8050126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023]
Abstract
The common bean (Phaseolus vulgaris) constitutes an excellent source of vegetable dietary protein. However, there are sub-optimal levels of the essential amino acids, methionine and cysteine. On the other hand, P. vulgaris accumulates large amounts of the γ-glutamyl dipeptide of S-methylcysteine, and lower levels of free S-methylcysteine and S-methylhomoglutathione. Past results suggest two distinct metabolite pools. Free S-methylcysteine levels are high at the beginning of seed development and decline at mid-maturation, while there is a biphasic accumulation of γ-glutamyl-S-methylcysteine, at early cotyledon and maturation stages. A possible model involves the formation of S-methylcysteine by cysteine synthase from O-acetylserine and methanethiol, whereas the majority of γ-glutamyl-S-methylcysteine may arise from S-methylhomoglutathione. Metabolite profiling during development and in genotypes differing in total S-methylcysteine accumulation showed that γ-glutamyl-S-methylcysteine accounts for most of the total S-methylcysteine in mature seed. Profiling of transcripts for candidate biosynthetic genes indicated that BSAS4;1 expression is correlated with both the developmental timing and levels of free S-methylcysteine accumulated, while homoglutathione synthetase (hGS) expression was correlated with the levels of γ-glutamyl-S-methylcysteine. Analysis of S-methylated phytochelatins by liquid chromatography and high resolution tandem mass spectrometry revealed only small amounts of homophytochelatin-2 with a single S-methylcysteine. The mitochondrial localization of phytochelatin synthase 2—predominant in seed, determined by confocal microscopy of a fusion with the yellow fluorescent protein—and its spatial separation from S-methylhomoglutathione may explain the lack of significant accumulation of S-methylated phytochelatins.
Collapse
|
44
|
Wang Y, Zhong P, Zhang X, Liu J, Zhang C, Yang X, Wan C, Liu C, Zhou H, Yang B, Sun C, Deng X, Wang P. GRA78 encoding a putative S-sulfocysteine synthase is involved in chloroplast development at the early seedling stage of rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:321-329. [PMID: 30824011 DOI: 10.1016/j.plantsci.2018.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Cysteine functions not only as an amino acid in proteins but also as a precursor for a large number of essential biomolecules. Cysteine is synthesized via the incorporation of sulfide to O-acetylserine under the catalysis of O-acetylserine(thiol)lyase (OASTL). In dicotyledonous Arabidopsis, nine OASTL genes have been reported. However, in their null mutants, only the mutant of CS26 encoding S-sulfocysteine synthase showed the visible phenotypic changes, displaying significantly small plants and pale-green leaves under long-day condition but not short-day condition. Up to now, no OASTL gene or mutant has been identified in monocotyledon. In this study, we isolated a green-revertible albino mutant gra78 in rice (Oryza sativa). Its albino phenotype at the early seedling stage was sensitive to temperature but independent of photoperiod. Map-based cloning revealed that candidate gene LOC_Os01g59920 of GRA78 encodes a putative S-sulfocysteine synthase showing significant similarity with Arabidopsis CS26. Complementation experiment confirmed that mutation in LOC_Os01g59920 accounted for the mutant phenotype of gra78. GRA78 is constitutively expressed in all tissues and its encoded protein is targeted to the chloroplast. In addition, qRT-PCR suggested that expression levels of four OASTL homolog genes and five photosynthetic genes were remarkably down-regulated.
Collapse
Affiliation(s)
- Yang Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Zhong
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangyu Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiqing Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoyang Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaorong Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chunmei Wan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuanqiang Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hui Zhou
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changhui Sun
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaojian Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
45
|
García I, Arenas-Alfonseca L, Moreno I, Gotor C, Romero LC. HCN Regulates Cellular Processes through Posttranslational Modification of Proteins by S-cyanylation. PLANT PHYSIOLOGY 2019; 179:107-123. [PMID: 30377236 PMCID: PMC6324243 DOI: 10.1104/pp.18.01083] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/23/2018] [Indexed: 05/07/2023]
Abstract
Hydrogen cyanide (HCN) is coproduced with ethylene in plant cells and is primarily enzymatically detoxified by the mitochondrial β-CYANOALANINE SYNTHASE (CAS-C1). Permanent or transient depletion of CAS-C1 activity in Arabidopsis (Arabidopsis thaliana) results in physiological alterations in the plant that suggest that HCN acts as a gasotransmitter molecule. Label-free quantitative proteomic analysis of mitochondrially enriched samples isolated from the wild type and cas-c1 mutant revealed significant changes in protein content, identifying 451 proteins that are absent or less abundant in cas-c1 and 353 proteins that are only present or more abundant in cas-c1 Gene ontology classification of these proteins identified proteomic changes that explain the root hairless phenotype and the altered immune response observed in the cas-c1 mutant. The mechanism of action of cyanide as a signaling molecule was addressed using two proteomic approaches aimed at identifying the S-cyanylation of Cys as a posttranslational modification of proteins. Both the 2-imino-thiazolidine chemical method and the direct untargeted analysis of proteins using liquid chromatography-tandem mass spectrometry identified a set of 163 proteins susceptible to S-cyanylation that included SEDOHEPTULOSE 1,7-BISPHOSPHATASE (SBPase), the PEPTIDYL-PROLYL CIS-TRANS ISOMERASE 20-3 (CYP20-3), and ENOLASE2 (ENO2). In vitro analysis of these enzymes showed that S-cyanylation of SBPase Cys74, CYP20-3 Cys259, and ENO2 Cys346 residues affected their enzymatic activity. Gene Ontology classification and protein-protein interaction cluster analysis showed that S-cyanylation is involved in the regulation of primary metabolic pathways, such as glycolysis, and the Calvin and S-adenosyl-Met cycles.
Collapse
Affiliation(s)
- Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Lucía Arenas-Alfonseca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Inmaculada Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
46
|
Adams E, Miyazaki T, Watanabe S, Ohkama-Ohtsu N, Seo M, Shin R. Glutathione and Its Biosynthetic Intermediates Alleviate Cesium Stress in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1711. [PMID: 32038683 PMCID: PMC6985154 DOI: 10.3389/fpls.2019.01711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/05/2019] [Indexed: 05/07/2023]
Abstract
Phytoremediation is optimized when plants grow vigorously while accumulating the contaminant of interest. Here we show that sulphur supply alleviates aerial chlorosis and growth retardation caused by cesium stress without reducing cesium accumulation in Arabidopsis thaliana. This alleviation was not due to recovery of cesium-induced potassium decrease in plant tissues. Sulphur supply also alleviated sodium stress but not potassium deficiency stress. Cesium-induced root growth inhibition has previously been demonstrated as being mediated through jasmonate biosynthesis and signalling but it was found that sulphur supply did not decrease the levels of jasmonate accumulation or jasmonate-responsive transcripts. Instead, induction of a glutathione synthetase gene GSH2 and reduction of a phytochelatin synthase gene PCS1 as well as increased accumulation of glutathione and cysteine were observed in response to cesium. Exogenous application of glutathione or concomitant treatments of its biosynthetic intermediates indeed alleviated cesium stress. Interestingly, concomitant treatments of glutathione biosynthetic intermediates together with a glutathione biosynthesis inhibitor did not cancel the alleviatory effects against cesium suggesting the existence of a glutathione-independent pathway. Taken together, our findings demonstrate that plants exposed to cesium increase glutathione accumulation to alleviate the deleterious effects of cesium and that exogenous application of sulphur-containing compounds promotes this innate process.
Collapse
Affiliation(s)
- Eri Adams
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Eri Adams, ; Ryoung Shin,
| | - Takae Miyazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ryoung Shin
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Eri Adams, ; Ryoung Shin,
| |
Collapse
|
47
|
Akbudak MA, Filiz E, Uylas S. Identification of O-acetylserine(thiol)lyase (OASTL) genes in sorghum (Sorghum bicolor) and gene expression analysis under cadmium stress. Mol Biol Rep 2018; 46:343-354. [PMID: 30443823 DOI: 10.1007/s11033-018-4477-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
Cysteine (Cys) is the first identified molecule in plant metabolism which includes both sulfur and nitrogen. It can be synthesized in three cellular compartments, containing chloroplast, cytoplasm and mitochondrion. The final step of cysteine biosynthesis is catalyzed by the O-acetylserine(thiol)lyase enzyme (OASTL, E.C. 4.2.99). In the present study, seven members of the OASTL gene family in the sorghum (Sorghum bicolor) genome were identified at a genome-wide scale and comparative bioinformatics analyses were performed between sorghum and Arabidopsis OASTLs. In all OASTL proteins, a pyridoxal-phosphate dependent domain structure (PALP, PF00291) was identified. The gene ontology annotations also revealed that all sorghum OASTL genes have KOG1252 (Cystathionine beta-synthase and related enzyme) and K01738 (cysteine synthase A) activities. In promotor sequences of OASTL genes, diverse cis-acting elements were found, including hormone and light responsiveness, abiotic stress responsiveness, and tissue-specific ones (meristem and endosperm). Sorghum OASTL genes demonstrated medium or high level expressions in anatomical parts and developmental stages based on the digital expression data. Expression of OASTL genes were also analyzed under cadmium (Cd) stress in sorghum by Real Time-quantitative PCR (RT-qPCR). The results exclusively showed that OASTL A1-2 gene was 1.12 fold up-regulated in roots, whereas cysteine synthase 26 was 2.25 fold down-regulated in leaves. The predicted 3D structure of OASTLs indicated some structural diversities as well as variations in the secondary structures.
Collapse
Affiliation(s)
- M Aydın Akbudak
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey.
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Duzce University, Cilimli Vocational School, Cilimli, Duzce, Turkey.
| | - Senem Uylas
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
48
|
Günther J, Irmisch S, Lackus ND, Reichelt M, Gershenzon J, Köllner TG. The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa. BMC PLANT BIOLOGY 2018; 18:251. [PMID: 30348089 PMCID: PMC6196558 DOI: 10.1186/s12870-018-1478-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/10/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Nitrilases are nitrile-converting enzymes commonly found within the plant kingdom that play diverse roles in nitrile detoxification, nitrogen recycling, and phytohormone biosynthesis. Although nitrilases are present in all higher plants, little is known about their function in trees. Upon herbivory, poplars produce considerable amounts of toxic nitriles such as benzyl cyanide, 2-methylbutyronitrile, and 3-methylbutyronitrile. In addition, as byproduct of the ethylene biosynthetic pathway upregulated in many plant species after herbivory, toxic β-cyanoalanine may accumulate in damaged poplar leaves. In this work, we studied the nitrilase gene family in Populus trichocarpa and investigated the potential role of the nitrilase PtNIT1 in the catabolism of herbivore-induced nitriles. RESULTS A BLAST analysis revealed three putative nitrilase genes (PtNIT1, PtNIT2, PtNIT3) in the genome of P. trichocarpa. While PtNIT1 was expressed in poplar leaves and showed increased transcript accumulation after leaf herbivory, PtNIT2 and PtNIT3 appeared not to be expressed in undamaged or herbivore-damaged leaves. Recombinant PtNIT1 produced in Escherichia coli accepted biogenic nitriles such as β-cyanoalanine, benzyl cyanide, and indole-3-acetonitrile as substrates in vitro and converted them into the corresponding acids. In addition to this nitrilase activity, PtNIT1 showed nitrile hydratase activity towards β-cyanoalanine, resulting in the formation of the amino acid asparagine. The kinetic parameters of PtNIT1 suggest that the enzyme utilizes β-cyanoalanine and benzyl cyanide as substrates in vivo. Indeed, β-cyanoalanine and benzyl cyanide were found to accumulate in herbivore-damaged poplar leaves. The upregulation of ethylene biosynthesis genes after leaf herbivory indicates that herbivore-induced β-cyanoalanine accumulation is likely caused by ethylene formation. CONCLUSIONS Our data suggest a role for PtNIT1 in the catabolism of herbivore-induced β-cyanoalanine and benzyl cyanide in poplar leaves.
Collapse
Affiliation(s)
- Jan Günther
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Sandra Irmisch
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
- Present Address: Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Nathalie D. Lackus
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| |
Collapse
|
49
|
Ziogas V, Molassiotis A, Fotopoulos V, Tanou G. Hydrogen Sulfide: A Potent Tool in Postharvest Fruit Biology and Possible Mechanism of Action. FRONTIERS IN PLANT SCIENCE 2018; 9:1375. [PMID: 30283483 PMCID: PMC6157321 DOI: 10.3389/fpls.2018.01375] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/29/2018] [Indexed: 05/04/2023]
Abstract
Hydrogen sulfide (H2S), an endogenous gaseous molecule, is considered as a signaling agent, in parallel with other low molecular weight reactive substances, mainly hydrogen peroxide (H2O2) and nitric oxide (NO), in various plant systems. New studies are now revealing that the postharvest application of H2S, through H2S donors such as sodium hydrosulfide (NaSH) or sodium sulfide (Na2S), can inhibit fruit ripening and senescence programs in numerous fruits. We discuss here current knowledge on the impact of H2S in postharvest physiology of several climacteric and non-climacteric fruits such as banana, apple, pear, kiwifruit, strawberry, mulberry fruit, and grape. Although there is still a considerable lack of studies establishing the mechanisms by which H2S signaling is linked to fruit metabolism, we highlight several candidate mechanisms, including a putative cross-talk between H2S and ethylene, reactive oxygen and nitrogen species, oxidative/nitrosative stress signaling, sulfate metabolism, and post-translational modification of protein cysteine residues (S-sulfhydration) as being functional in this H2S postharvest action. Understanding H2S metabolism and signaling during postharvest storage and the interplay with other key player molecules would therefore provide new, improved strategies for better fruit postharvest storage. To achieve this understanding, postharvest fruit physiology research will need to focus increasingly on the spatial interaction between H2S and ethylene perception as well as on the interplay between S-sulfhydration/desulfhydration and S-nitrosylation/denitrosylation under several postharvest conditions.
Collapse
Affiliation(s)
- Vasileios Ziogas
- Institute of Olive Tree, Subtropical Plants and Viticulture, ELGO-DEMETER, Chania, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-DEMETER, Thessaloniki, Greece
| |
Collapse
|
50
|
Cytosolic Cysteine Synthase Switch Cysteine and Mimosine Production in Leucaena leucocephala. Appl Biochem Biotechnol 2018; 186:613-632. [PMID: 29691793 DOI: 10.1007/s12010-018-2745-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
In higher plants, multiple copies of the cysteine synthase gene are present for cysteine biosynthesis. Some of these genes also have the potential to produce various kinds of β-substitute alanine. In the present study, we cloned a 1275-bp cDNA for cytosolic O-acetylserine(thiol)lyase (cysteine synthase) (Cy-OASTL) from Leucaena leucocephala. The purified protein product showed a dual function of cysteine and mimosine synthesis. Kinetics studies showed pH optima of 7.5 and 8.0, while temperature optima of 40 and 35 °C, respectively, for cysteine and mimosine synthesis. The kinetic parameters such as apparent Km, kcat were determined for both cysteine and mimosine synthesis with substrates O-acetylserine (OAS) and Na2S or 3-hydroxy-4-pyridone (3H4P). From the in vitro results with the common substrate OAS, the apparent kcat for Cys production is over sixfold higher than mimosine synthesis and the apparent Km is 3.7 times lower, suggesting Cys synthesis is the favored pathway.
Collapse
|