1
|
Bruhn D, Povlsen P, Gardner A, Mercado LM. Instantaneous Q 10 of night-time leaf respiratory CO 2 efflux - measurement and analytical protocol considerations. THE NEW PHYTOLOGIST 2024; 243:23-28. [PMID: 38600045 DOI: 10.1111/nph.19753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
The temperature sensitivity (e.g. Q10) of night-time leaf respiratory CO2 efflux (RCO2) is a fundamental aspect of leaf physiology. The Q10 typically exhibits a dependence on measurement temperature, and it is speculated that this is due to temperature-dependent shifts in the relative control of leaf RCO2. Two decades ago, a review hypothesized that this mechanistically caused change in values of Q10 is predictable across plant taxa and biomes. Here, we discuss the most appropriate measuring protocol among existing data and for future data collection, to form the foundation of a future mechanistic understanding of Q10 of leaf RCO2 at different temperature ranges. We do this primarily via a review of existing literature on Q10 of night-time RCO2 and only supplement this to a lesser degree with our own original data. Based on mechanistic considerations, we encourage that instantaneous Q10 of leaf RCO2 to represent night-time should be measured: only at night-time; only in response to short-term narrow temperature variation (e.g. max. 10°C) to represent a given midpoint temperature at a time; in response to as many temperatures as possible within the chosen temperature range; and on still attached leaves.
Collapse
Affiliation(s)
- Dan Bruhn
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Peter Povlsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, 9220, Denmark
| | - Anna Gardner
- Faculty of Environment, Science and Economy, University of Exeter, EX4 4QE, Exeter, UK
- School of Biosciences, University of Birmingham, Birmingham, B14 2TT, UK
| | - Lina M Mercado
- Faculty of Environment, Science and Economy, University of Exeter, EX4 4QE, Exeter, UK
| |
Collapse
|
2
|
Walker BJ, Driever SM, Kromdijk J, Lawson T, Busch FA. Tools for Measuring Photosynthesis at Different Scales. Methods Mol Biol 2024; 2790:1-26. [PMID: 38649563 DOI: 10.1007/978-1-0716-3790-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this chapter is to provide a broad overview of the current tools available for the study of photosynthesis, both in vivo and in vitro, so as to provide a foundation for selecting appropriate techniques, many of which are presented in detail in subsequent chapters. This chapter will also organize current methods into a comparative framework and provide examples of how they have been applied to research questions of broad agronomical, ecological, or biological importance. This chapter closes with an argument that the future of in vivo measurements of photosynthesis lies in the ability to use multiple methods simultaneously and discusses the benefits of this approach to currently open physiological questions. This chapter, combined with the relevant methods chapters, could serve as a laboratory course in methods in photosynthesis research or as part of a more comprehensive laboratory course in general plant physiology methods.
Collapse
Affiliation(s)
- Berkley J Walker
- Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Florian A Busch
- School of Biosciences and The Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Fang L, Yin X, van der Putten PEL, Martre P, Struik PC. Drought exerts a greater influence than growth temperature on the temperature response of leaf day respiration in wheat (Triticum aestivum). PLANT, CELL & ENVIRONMENT 2022; 45:2062-2077. [PMID: 35357701 PMCID: PMC9324871 DOI: 10.1111/pce.14324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 05/22/2023]
Abstract
We assessed how the temperature response of leaf day respiration (Rd ) in wheat responded to contrasting water regimes and growth temperatures. In Experiment 1, well-watered and drought-stressed conditions were imposed on two genotypes; in Experiment 2, the two water regimes combined with high (HT), medium (MT) and low (LT) growth temperatures were imposed on one of the genotypes. Rd was estimated from simultaneous gas exchange and chlorophyll fluorescence measurements at six leaf temperatures (Tleaf ) for each treatment, using the Yin method for nonphotorespiratory conditions and the nonrectangular hyperbolic fitting method for photorespiratory conditions. The two genotypes responded similarly to growth and measurement conditions. Estimates of Rd for nonphotorespiratory conditions were generally higher than those for photorespiratory conditions, but their responses to Tleaf were similar. Under well-watered conditions, Rd and its sensitivity to Tleaf slightly acclimated to LT, but did not acclimate to HT. Temperature sensitivities of Rd were considerably suppressed by drought, and the suppression varied among growth temperatures. Thus, it is necessary to quantify interactions between drought and growth temperature for reliably modelling Rd under climate change. Our study also demonstrated that the Kok method, one of the currently popular methods for estimating Rd , underestimated Rd significantly.
Collapse
Affiliation(s)
- Liang Fang
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Xinyou Yin
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Peter E. L. van der Putten
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Pierre Martre
- LEPSE, Institut Agro SupAgro, INRAE, Univ MontpellierMontpellierFrance
| | - Paul C. Struik
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
4
|
Tombesi S, Frioni T, Grisafi F, Sabbatini P, Poni S, Palliotti A. The Decrease of Leaf Dark Respiration during Water Stress Is Related to Leaf Non-Structural Carbohydrate Pool in Vitis vinifera L. PLANTS 2021; 11:plants11010036. [PMID: 35009039 PMCID: PMC8747558 DOI: 10.3390/plants11010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
Dark respiration (Rd) is a fundamental plant process used to gain biomass and maintain plant physiological activity. It accounts for the metabolization of a large share of the carbon fixed by photosynthesis. However, Rd during conditions of severe plant water stress is still poorly understood. The decrease in leaf transpiration increases temperature, one of the most important drivers of leaf Rd. On the other hand, water stress decreases the pool of leaf carbohydrates, which are the most important substrate for respiration. The aim of the present work was to determine the impact of water shortage on leaf Rd in grapevine and understand the driving factors in modulating leaf Rd response under plant water stress conditions. Water stressed vines had lower Rd as the water shortage severity increased. Rd was correlated with leaf temperature in well-watered vines. Instead, in water stressed vines, Rd correlated with leaf soluble sugars. The decrease of leaf Rd in water stressed vines was due to the decrease of leaf non-structural carbohydrate that, under water stress conditions, exerted a limiting effect on Rd.
Collapse
Affiliation(s)
- Sergio Tombesi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (T.F.); (F.G.); (S.P.)
- Correspondence: ; Tel.: +39-0523-599-221
| | - Tommaso Frioni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (T.F.); (F.G.); (S.P.)
| | - Francesca Grisafi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (T.F.); (F.G.); (S.P.)
| | - Paolo Sabbatini
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA;
| | - Stefano Poni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (T.F.); (F.G.); (S.P.)
| | - Alberto Palliotti
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Borgo 20 Giugno 74, 06154 Perugia, Italy;
| |
Collapse
|
5
|
Bergman ME, González-Cabanelas D, Wright LP, Walker BJ, Phillips MA. Isotope ratio-based quantification of carbon assimilation highlights the role of plastidial isoprenoid precursor availability in photosynthesis. PLANT METHODS 2021; 17:32. [PMID: 33781281 PMCID: PMC8008545 DOI: 10.1186/s13007-021-00731-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/13/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND We report a method to estimate carbon assimilation based on isotope ratio-mass spectrometry (IRMS) of 13CO2 labeled plant tissue. Photosynthetic carbon assimilation is the principal experimental observable which integrates important aspects of primary plant metabolism. It is traditionally measured through gas exchange. Despite its centrality in plant research, gas exchange performs poorly with rosette growth habits typical of Arabidopsis thaliana, mutant lines with limited biomass, and accounts poorly for leaf shading. RESULTS IRMS-based carbon assimilation values from plants labeled at different light intensities were compared to those obtained by gas exchange, and the two methods yielded similar values. Using this method, we observed a strong correlation between 13C content and labeling time (R2 = 0.999) for 158 wild-type plants labeled for 6 to 42 min. Plants cultivated under different light regimes showed a linear response with respect to carbon assimilation, varying from 7.38 nmol 13C mg-1 leaf tissue min-1 at 80 PAR to 19.27 nmol 13C mg-1 leaf tissue min-1 at 500 PAR. We applied this method to examine the link between inhibition of the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway and suppression of photosynthesis. A significant decrease in carbon assimilation was observed when metabolic activity in the MEP pathway was compromised by mutation or herbicides targeting the MEP pathway. Mutants affected in MEP pathway genes 1-DEOXY-D-XYLULOSE 5-PHOSPHATE SYNTHASE (DXS) or 1-HYDROXY-2-METHYL-2-(E)-BUTENYL 4-DIPHOSPHATE SYNTHASE (HDS) showed assimilation rates 36% and 61% lower than wild type. Similarly, wild type plants treated with the MEP pathway inhibitors clomazone or fosmidomycin showed reductions of 52% and 43%, respectively, while inhibition of the analogous mevalonic acid pathway, which supplies the same isoprenoid intermediates in the cytosol, did not, suggesting inhibition of photosynthesis was specific to disruption of the MEP pathway. CONCLUSIONS This method provides an alternative to gas exchange that offers several advantages: resilience to differences in leaf overlap, measurements based on tissue mass rather than leaf surface area, and compatibility with mutant Arabidopsis lines which are not amenable to gas exchange measurements due to low biomass and limited leaf surface area. It is suitable for screening large numbers of replicates simultaneously as well as post-hoc analysis of previously labeled plant tissue and is complementary to downstream detection of isotopic label in targeted metabolite pools.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | | | - Louwrance P Wright
- Zeiselhof Research Farm, Menlo Park, P.O. Box 35984, Pretoria, 0102, South Africa
| | - Berkley J Walker
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Michael A Phillips
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
6
|
Zhu K, Wang A, Wu J, Yuan F, Guan D, Jin C, Zhang Y, Gong C. Effects of nitrogen additions on mesophyll and stomatal conductance in Manchurian ash and Mongolian oak. Sci Rep 2020; 10:10038. [PMID: 32572068 PMCID: PMC7308411 DOI: 10.1038/s41598-020-66886-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/28/2020] [Indexed: 12/02/2022] Open
Abstract
The response of plant CO2 diffusion conductances (mesophyll and stomatal conductances, gm and gsc) to soil drought has been widely studied, but few studies have investigated the effects of soil nitrogen addition levels on gm and gsc. In this study, we investigated the responses of gm and gsc of Manchurian ash and Mongolian oak to four soil nitrogen addition levels (control, low nitrogen, medium nitrogen and high nitrogen) and the changes in leaf anatomy and associated enzyme activities (aquaporin (AQP) and carbonic anhydrase (CA)). Both gm and gsc increased with the soil nitrogen addition levels for both species, but then decreased under the high nitrogen addition level, which primarily resulted from the enlargements in leaf and mesophyll cell thicknesses, mesophyll surface area exposed to intercellular space per unit leaf area and stomatal opening status with soil nitrogen addition. Additionally, the improvements in leaf N content and AQP and CA activities also significantly promoted gm and gsc increases. The addition of moderate levels of soil nitrogen had notably positive effects on CO2 diffusion conductance in leaf anatomy and physiology in Manchurian ash and Mongolian oak, but these positive effects were weakened with the addition of high levels of soil nitrogen.
Collapse
Affiliation(s)
- Kai Zhu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anzhi Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jiabing Wu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Fenghui Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Dexin Guan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Changjie Jin
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yushu Zhang
- The Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, 110166, China
| | - Chunjuan Gong
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
From Genome to Field-Observation of the Multimodal Nematicidal and Plant Growth-Promoting Effects of Bacillus firmus I-1582 on Tomatoes Using Hyperspectral Remote Sensing. PLANTS 2020; 9:plants9050592. [PMID: 32384661 PMCID: PMC7285481 DOI: 10.3390/plants9050592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 12/26/2022]
Abstract
Root-knot nematodes are considered the most important group of plant-parasitic nematodes due to their wide range of plant hosts and subsequent role in yield losses in agricultural production systems. Chemical nematicides are the primary control method, but ecotoxicity issues with some compounds has led to their phasing-out and consequential development of new control strategies, including biological control. We evaluated the nematicidal activity of Bacillus firmus I-1582 in pot and microplot experiments against Meloidogyne luci. I-1582 reduced nematode counts by 51% and 53% compared to the untreated control in pot and microplot experiments, respectively. I-1582 presence in the rhizosphere had concurrent nematicidal and plant growth-promoting effects, measured using plant morphology, relative chlorophyll content, elemental composition and hyperspectral imaging. Hyperspectral imaging in the 400–2500 nm spectral range and supervised classification using partial least squares support vector machines successfully differentiated B. firmus-treated and untreated plants, with 97.4% and 96.3% accuracy in pot and microplot experiments, respectively. Visible and shortwave infrared spectral regions associated with chlorophyll, N–H and C–N stretches in proteins were most relevant for treatment discrimination. This study shows the ability of hyperspectral imaging to rapidly assess the success of biological measures for pest control.
Collapse
|
8
|
Walker BJ, Kramer DM, Fisher N, Fu X. Flexibility in the Energy Balancing Network of Photosynthesis Enables Safe Operation under Changing Environmental Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E301. [PMID: 32121540 PMCID: PMC7154899 DOI: 10.3390/plants9030301] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
Given their ability to harness chemical energy from the sun and generate the organic compounds necessary for life, photosynthetic organisms have the unique capacity to act simultaneously as their own power and manufacturing plant. This dual capacity presents many unique challenges, chiefly that energy supply must be perfectly balanced with energy demand to prevent photodamage and allow for optimal growth. From this perspective, we discuss the energy balancing network using recent studies and a quantitative framework for calculating metabolic ATP and NAD(P)H demand using measured leaf gas exchange and assumptions of metabolic demand. We focus on exploring how the energy balancing network itself is structured to allow safe and flexible energy supply. We discuss when the energy balancing network appears to operate optimally and when it favors high capacity instead. We also present the hypothesis that the energy balancing network itself can adapt over longer time scales to a given metabolic demand and how metabolism itself may participate in this energy balancing.
Collapse
Affiliation(s)
- Berkley J. Walker
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - David M. Kramer
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Nicholas Fisher
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA; (D.M.K.); (N.F.); (X.F.)
| |
Collapse
|
9
|
Berghuijs HNC, Yin X, Ho QT, Retta MA, Nicolaï BM, Struik PC. Using a reaction-diffusion model to estimate day respiration and reassimilation of (photo)respired CO 2 in leaves. THE NEW PHYTOLOGIST 2019; 223:619-631. [PMID: 31002400 PMCID: PMC6618012 DOI: 10.1111/nph.15857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/05/2019] [Indexed: 05/29/2023]
Abstract
Methods using gas exchange measurements to estimate respiration in the light (day respiration R d ) make implicit assumptions about reassimilation of (photo)respired CO2 ; however, this reassimilation depends on the positions of mitochondria. We used a reaction-diffusion model without making these assumptions to analyse datasets on gas exchange, chlorophyll fluorescence and anatomy for tomato leaves. We investigated how R d values obtained by the Kok and the Yin methods are affected by these assumptions and how those by the Laisk method are affected by the positions of mitochondria. The Kok method always underestimated R d . Estimates of R d by the Yin method and by the reaction-diffusion model agreed only for nonphotorespiratory conditions. Both the Yin and Kok methods ignore reassimilation of (photo)respired CO2 , and thus underestimated R d for photorespiratory conditions, but this was less so in the Yin than in the Kok method. Estimates by the Laisk method were affected by assumed positions of mitochondria. It did not work if mitochondria were in the cytosol between the plasmamembrane and the chloroplast envelope. However, mitochondria were found to be most likely between the tonoplast and chloroplasts. Our reaction-diffusion model effectively estimates R d , enlightens the dependence of R d estimates on reassimilation and clarifies (dis)advantages of existing methods.
Collapse
Affiliation(s)
- Herman N. C. Berghuijs
- Centre for Crop Systems AnalysisWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
- Flanders Center of Postharvest Technology/BIOSYST‐MeBioSKatholieke Universiteit LeuvenWillem de Croylaan 42LeuvenB‐3001Belgium
- Department of Crop Production EcologySwedish University of Agricultural SciencesUlls väg 16Uppsala75651Sweden
| | - Xinyou Yin
- Centre for Crop Systems AnalysisWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Q. Tri Ho
- Flanders Center of Postharvest Technology/BIOSYST‐MeBioSKatholieke Universiteit LeuvenWillem de Croylaan 42LeuvenB‐3001Belgium
- Food Chemistry & Technology DepartmentTeagasc Food Research CentreMoorepark, Fermoy, Co.CorkP61 C996Ireland
| | - Moges A. Retta
- Centre for Crop Systems AnalysisWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
- Flanders Center of Postharvest Technology/BIOSYST‐MeBioSKatholieke Universiteit LeuvenWillem de Croylaan 42LeuvenB‐3001Belgium
| | - Bart M. Nicolaï
- Flanders Center of Postharvest Technology/BIOSYST‐MeBioSKatholieke Universiteit LeuvenWillem de Croylaan 42LeuvenB‐3001Belgium
| | - Paul C. Struik
- Centre for Crop Systems AnalysisWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| |
Collapse
|
10
|
Reassimilation of Leaf Internal CO2 Contributes to Isoprene Emission in the Neotropical Species Inga edulis Mart. FORESTS 2019. [DOI: 10.3390/f10060472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Isoprene (C5H8) is a hydrocarbon gas emitted by many tree species and has been shown to protect photosynthesis under abiotic stress. Under optimal conditions for photosynthesis, ~70%–90% of carbon used for isoprene biosynthesis is produced from recently assimilated atmospheric CO2. While the contribution of alternative carbon sources that increase with leaf temperature and other stresses have been demonstrated, uncertainties remain regarding the biochemical source(s) of isoprene carbon. In this study, we investigated leaf isoprene emissions (Is) from neotropical species Inga edulis Mart. as a function of light and temperature under ambient (450 µmol m−2 s−1) and CO2-free (0 µmol m−2 s−1) atmosphere. Is under CO2-free atmosphere showed light-dependent emission patterns similar to those observed under ambient CO2, but with lower light saturation point. Leaves treated with the photosynthesis inhibitor DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) failed to produce detectable Is in normal light under a CO2-free atmosphere. While strong temperature-dependent Is were observed under CO2-free atmosphere in the light, dark conditions failed to produce detectable Is even at the highest temperatures studied (40 °C). Treatment of leaves with 13C-labeled sodium bicarbonate under CO2-free atmosphere resulted in Is with over 50% containing at least one 13C atom. Is under CO2-free atmosphere and standard conditions of light and leaf temperature represented 19% ± 7% of emissions under ambient CO2. The results show that the reassimilation of leaf internal CO2 contributes to Is in the neotropical species I. edulis. Through the consumption of excess photosynthetic energy, our results support a role of isoprene biosynthesis, together with photorespiration, as a key tolerance mechanism against high temperature and high light in the tropics.
Collapse
|
11
|
Way DA, Aspinwall MJ, Drake JE, Crous KY, Campany CE, Ghannoum O, Tissue DT, Tjoelker MG. Responses of respiration in the light to warming in field-grown trees: a comparison of the thermal sensitivity of the Kok and Laisk methods. THE NEW PHYTOLOGIST 2019; 222:132-143. [PMID: 30372524 DOI: 10.1111/nph.15566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
The Kok and Laisk techniques can both be used to estimate light respiration Rlight . We investigated whether responses of Rlight to short- and long-term changes in leaf temperature depend on the technique used to estimate Rlight . We grew Eucalyptus tereticornis in whole-tree chambers under ambient temperature (AT) or AT + 3°C (elevated temperature, ET). We assessed dark respiration Rdark and light respiration with the Kok (RKok ) and Laisk (RLaisk ) methods at four temperatures to determine the degree of light suppression of respiration using both methods in AT and ET trees. The ET treatment had little impact on Rdark , RKok or RLaisk . Although the thermal sensitivities of RKok or RLaisk were similar, RKok was higher than RLaisk . We found negative values of RLaisk at the lowest measurement temperatures, indicating positive net CO2 uptake, which we propose may be related to phosphoenolpyruvate carboxylase activity. Light suppression of Rdark decreased with increasing leaf temperature, but the degree of suppression depended on the method used. The Kok and Laisk methods do not generate the same estimates of Rlight or light suppression of Rdark between 20 and 35°C. Negative rates of RLaisk imply that this method may become less reliable at low temperatures.
Collapse
Affiliation(s)
- Danielle A Way
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Nicholas School for the Environment, Duke University, 9 Circuit Drive, Box 90328, Durham, NC, 27708, USA
| | - Michael J Aspinwall
- Hawkesbury Institute of the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW, 2751, Australia
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
| | - John E Drake
- Hawkesbury Institute of the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW, 2751, Australia
- Forest and Natural Resources Management, SUNY-ESF, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Kristine Y Crous
- Hawkesbury Institute of the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW, 2751, Australia
| | - Courtney E Campany
- Hawkesbury Institute of the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW, 2751, Australia
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Oula Ghannoum
- Hawkesbury Institute of the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW, 2751, Australia
| | - David T Tissue
- Hawkesbury Institute of the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW, 2751, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute of the Environment, Western Sydney University, Locked bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
12
|
Rurek M, Czołpińska M, Pawłowski TA, Staszak AM, Nowak W, Krzesiński W, Spiżewski T. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins. Int J Mol Sci 2018; 19:ijms19041130. [PMID: 29642585 PMCID: PMC5979313 DOI: 10.3390/ijms19041130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial responses under drought within Brassica genus are poorly understood. The main goal of this study was to investigate mitochondrial biogenesis of three cauliflower (Brassica oleracea var. botrytis) cultivars with varying drought tolerance. Diverse quantitative changes (decreases in abundance mostly) in the mitochondrial proteome were assessed by two-dimensional gel electrophoresis (2D PAGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Respiratory (e.g., complex II, IV (CII, CIV) and ATP synthase subunits), transporter (including diverse porin isoforms) and matrix multifunctional proteins (e.g., components of RNA editing machinery) were diversely affected in their abundance under two drought levels. Western immunoassays showed additional cultivar-specific responses of selected mitochondrial proteins. Dehydrin-related tryptic peptides (found in several 2D spots) immunopositive with dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for the drought response. The abundance of selected mRNAs participating in drought response was also determined. We conclude that mitochondrial biogenesis was strongly, but diversely affected in various cauliflower cultivars, and associated with drought tolerance at the proteomic and functional levels. However, discussed alternative oxidase (AOX) regulation at the RNA and protein level were largely uncoordinated due to the altered availability of transcripts for translation, mRNA/ribosome interactions, and/or miRNA impact on transcript abundance and translation.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Magdalena Czołpińska
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | | | - Aleksandra Maria Staszak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
- Present address: Department of Plant Physiology, Institute of Biology, Faculty of Biology and Chemistry, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Witold Nowak
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Włodzimierz Krzesiński
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| | - Tomasz Spiżewski
- Department of Vegetable Crops, Poznan University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| |
Collapse
|
13
|
Abstract
Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this chapter is to provide a broad overview of the current tools available for the study of in vivo photosynthesis so as to provide a foundation for selecting appropriate techniques, many of which are presented in detail in subsequent chapters. This chapter also organizes current methods into a comparative framework and provides examples of how they have been applied to research questions of broad agronomical, ecological, or biological importance. The chapter closes with an argument that the future of in vivo measurements of photosynthesis lies in the ability to use multiple methods simultaneously and discusses the benefits of this approach to currently open physiological questions. This chapter, combined with the relevant methods chapters, could serve as a laboratory course in methods in photosynthesis research or as part of a more comprehensive laboratory course in general plant physiology methods.
Collapse
|
14
|
Localization of (photo)respiration and CO2 re-assimilation in tomato leaves investigated with a reaction-diffusion model. PLoS One 2017; 12:e0183746. [PMID: 28880924 PMCID: PMC5589127 DOI: 10.1371/journal.pone.0183746] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022] Open
Abstract
The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. However, most reaction-diffusion models are complex and unattractive for procedures that require a large number of runs, like parameter optimisation. This study provides a simpler reaction-diffusion model. It is parameterized by both leaf physiological and leaf anatomical data. The anatomical data consisted of the thickness of the cell wall, cytosol and stroma, and the area ratios of mesophyll exposed to the intercellular air space to leaf surfaces and exposed chloroplast to exposed mesophyll surfaces. The model was used directly to estimate photosynthetic parameters from a subset of the measured light and CO2 response curves; the remaining data were used for validation. The model predicted light and CO2 response curves reasonably well for 15 days old tomato (cv. Admiro) leaves, if (photo)respiratory CO2 release was assumed to take place in the inner cytosol or in the gaps between the chloroplasts. The model was also used to calculate the fraction of CO2 produced by (photo)respiration that is re-assimilated in the stroma, and this fraction ranged from 56 to 76%. In future research, the model should be further validated to better understand how the re-assimilation of (photo)respired CO2 is affected by environmental conditions and physiological parameters.
Collapse
|
15
|
Berghuijs HNC, Yin X, Ho QT, Driever SM, Retta MA, Nicolaï BM, Struik PC. Mesophyll conductance and reaction-diffusion models for CO 2 transport in C 3 leaves; needs, opportunities and challenges. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:62-75. [PMID: 27717479 DOI: 10.1016/j.plantsci.2016.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 05/24/2023]
Abstract
One way to increase potential crop yield could be increasing mesophyll conductance gm. This variable determines the difference between the CO2 partial pressure in the intercellular air spaces (Ci) and that near Rubisco (Cc). Various methods can determine gm from gas exchange measurements, often combined with measurements of chlorophyll fluorescence or carbon isotope discrimination. gm lumps all biochemical and physical factors that cause the difference between Cc and Ci. gm appears to vary with Ci. This variability indicates that gm does not satisfy the physical definition of a conductance according to Fick's first law and is thus an apparent parameter. Uncertainty about the mechanisms that determine gm can be limited to some extent by using analytical models that partition gm into separate conductances. Such models are still only capable of describing the CO2 diffusion pathway to a limited extent, as they make implicit assumptions about the position of mitochondria in the cells, which affect the re-assimilation of (photo)respired CO2. Alternatively, reaction-diffusion models may be used. Rather than quantifying gm, these models explicitly account for factors that affect the efficiency of CO2 transport in the mesophyll. These models provide a better mechanistic description of the CO2 diffusion pathways than mesophyll conductance models. Therefore, we argue that reaction-diffusion models should be used as an alternative to mesophyll conductance models, in case the aim of such a study is to identify traits that can be improved to increase gm.
Collapse
Affiliation(s)
- Herman N C Berghuijs
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Q Tri Ho
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Moges A Retta
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Bart M Nicolaï
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, Katholieke Universiteit Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
16
|
Wang H, Huang J, Li Y, Li C, Hou J, Liang W. Involvement of nitric oxide-mediated alternative pathway in tolerance of wheat to drought stress by optimizing photosynthesis. PLANT CELL REPORTS 2016; 35:2033-44. [PMID: 27294277 DOI: 10.1007/s00299-016-2014-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/07/2016] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE NO-mediated alternative pathway plays an important role in protecting wheat seedlings against drought stress through dissipating excessive reducing equivalents generated by photosynthesis. Alternative pathway (AP) has been proven to be involved in responses to various stresses. However, the mechanisms of AP in defense response to drought stress are still lacking. The aims of this work are to investigate the role of AP in drought tolerance and how AP is induced under drought stress using two wheat cultivars with different drought tolerance. Our results showed that Longchun22 cultivar is more tolerant to drought than 98SN146 cultivar. Seedlings exposed to drought led to a significant increase in AP, and it increased more in Longchun22. Furthermore, chlorophyll fluorescence parameters (Fv/Fm, ΦPSII, qP) decreased significantly in drought-treated seedlings, especially in 98SN146, indicating that photoinhibition occurred under drought stress. Pretreatment with SHAM, the malate-oxaloacetate shuttle activity and photosynthetic efficiency were further inhibited in drought-treated seedlings, resulting in more serious oxidative damage as indicated by higher levels of malondialdehyde and hydrogen peroxide. Moreover, NO modulated AP under drought stress by increasing AOX1a expression and pyruvate content. Taken together, these results indicate that NO-mediated AP is involved in optimizing photosynthesis under drought stress by avoiding the over-reduction of photosynthetic electron transport chain, thus reducing reactive oxygen species production and oxidative damage in wheat leaves.
Collapse
Affiliation(s)
- Huahua Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| | - Junjun Huang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Yan Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Changan Li
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Science, Lanzhou, 730000, People's Republic of China
| | - Junjie Hou
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Weihong Liang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, People's Republic of China
| |
Collapse
|
17
|
Feller U. Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:84-94. [PMID: 27083537 DOI: 10.1016/j.jplph.2016.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
Global change is characterized by increased CO2 concentration in the atmosphere, increasing average temperature and more frequent extreme events including drought periods, heat waves and flooding. Especially the impacts of drought and of elevated temperature on carbon assimilation are considered in this review. Effects of extreme events on the subcellular level as well as on the whole plant level may be reversible, partially reversible or irreversible. The photosynthetically active biomass depends on the number and the size of mature leaves and the photosynthetic activity in this biomass during stress and subsequent recovery phases. The total area of active leaves is determined by leaf expansion and senescence, while net photosynthesis per leaf area is primarily influenced by stomatal opening (stomatal conductance), mesophyll conductance, activity of the photosynthetic apparatus (light absorption and electron transport, activity of the Calvin cycle) and CO2 release by decarboxylation reactions (photorespiration, dark respiration). Water status, stomatal opening and leaf temperature represent a "magic triangle" of three strongly interacting parameters. The response of stomata to altered environmental conditions is important for stomatal limitations. Rubisco protein is quite thermotolerant, but the enzyme becomes at elevated temperature more rapidly inactivated (decarbamylation, reversible effect) and must be reactivated by Rubisco activase (carbamylation of a lysine residue). Rubisco activase is present under two forms (encoded by separate genes or products of alternative splicing of the pre-mRNA from one gene) and is very thermosensitive. Rubisco activase was identified as a key protein for photosynthesis at elevated temperature (non-stomatal limitation). During a moderate heat stress Rubisco activase is reversibly inactivated, but during a more severe stress (higher temperature and/or longer exposure) the protein is irreversibly inactivated, insolubilized and finally degraded. On the level of the leaf, this loss of photosynthetic activity may still be reversible when new Rubisco activase is produced by protein synthesis. Rubisco activase as well as enzymes involved in the detoxification of reactive oxygen species or in osmoregulation are considered as important targets for breeding crop plants which are still productive under drought and/or at elevated leaf temperature in a changing climate.
Collapse
Affiliation(s)
- Urs Feller
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland.
| |
Collapse
|
18
|
Carmody M, Waszczak C, Idänheimo N, Saarinen T, Kangasjärvi J. ROS signalling in a destabilised world: A molecular understanding of climate change. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:69-83. [PMID: 27364884 DOI: 10.1016/j.jplph.2016.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 05/29/2023]
Abstract
Climate change results in increased intensity and frequency of extreme abiotic and biotic stress events. In plants, reactive oxygen species (ROS) accumulate in proportion to the level of stress and are major signalling and regulatory metabolites coordinating growth, defence, acclimation and cell death. Our knowledge of ROS homeostasis, sensing, and signalling is therefore key to understanding the impacts of climate change at the molecular level. Current research is uncovering new insights into temporal-spatial, cell-to-cell and systemic ROS signalling pathways, particularly how these affect plant growth, defence, and more recently acclimation mechanisms behind stress priming and long term stress memory. Understanding the stabilising and destabilising factors of ROS homeostasis and signalling in plants exposed to extreme and fluctuating stress will concomitantly reveal how to address future climate change challenges in global food security and biodiversity management.
Collapse
Affiliation(s)
- Melanie Carmody
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Cezary Waszczak
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Niina Idänheimo
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Timo Saarinen
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland; Distinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
19
|
Cui LL, Lu YS, Li Y, Yang C, Peng XX. Overexpression of Glycolate Oxidase Confers Improved Photosynthesis under High Light and High Temperature in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1165. [PMID: 27540387 PMCID: PMC4972838 DOI: 10.3389/fpls.2016.01165] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/20/2016] [Indexed: 05/19/2023]
Abstract
While glycolate oxidase (GLO) is well known as a key enzyme for the photorespiratory metabolism in plants, its physiological function and mechanism remains to be further clarified. Our previous studies have shown that suppression of GLO in rice leads to stunted growth and inhibited photosynthesis (Pn) which is positively and linearly correlated with decreased GLO activities. It is, therefore, of interest to further understand whether Pn can be improved when GLO is up-regulated? In this study, four independent overexpression rice lines, with gradient increases in GLO activity, were generated and functionally analyzed. Phenotypic observations showed that the growth could be improved when GLO activities were increased by 60 or 100%, whereas reduced growth was noticed when the activity was further increased by 150 or 210%. As compared with WT plants, all the overexpression plants exhibited significantly improved Pn under conditions of high light and high temperature, but not under normal conditions. In addition, the overexpression plants were more resistant to the MV-induced photooxidative stress. It was further demonstrated that the antioxidant enzymes, and the antioxidant metabolite glutathione was not significantly altered in the overexpression plants. In contrast, H2O2 and salicylic acid (SA) were correspondingly induced upon the GLO overexpression. Taken together, the results suggest that GLO may play an important role for plants to cope with high light and high temperature, and that H2O2 and SA may serve as signaling molecules to trigger stress defense responses but antioxidant reactions appear not to be involved in the defense.
Collapse
Affiliation(s)
- Li-Li Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| | - Yu-sheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| | - Yong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| | - Chengwei Yang
- College of Life Sciences, South China Normal UniversityGuangzhou, China
| | - Xin-Xiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural UniversityGuangzhou, China
- *Correspondence: Xin-Xiang Peng,
| |
Collapse
|
20
|
Ho QT, Berghuijs HNC, Watté R, Verboven P, Herremans E, Yin X, Retta MA, Aernouts B, Saeys W, Helfen L, Farquhar GD, Struik PC, Nicolaï BM. Three-dimensional microscale modelling of CO2 transport and light propagation in tomato leaves enlightens photosynthesis. PLANT, CELL & ENVIRONMENT 2016; 39:50-61. [PMID: 26082079 DOI: 10.1111/pce.12590] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/23/2015] [Accepted: 05/27/2015] [Indexed: 05/24/2023]
Abstract
We present a combined three-dimensional (3-D) model of light propagation, CO2 diffusion and photosynthesis in tomato (Solanum lycopersicum L.) leaves. The model incorporates a geometrical representation of the actual leaf microstructure that we obtained with synchrotron radiation X-ray laminography, and was evaluated using measurements of gas exchange and leaf optical properties. The combination of the 3-D microstructure of leaf tissue and chloroplast movement induced by changes in light intensity affects the simulated CO2 transport within the leaf. The model predicts extensive reassimilation of CO2 produced by respiration and photorespiration. Simulations also suggest that carbonic anhydrase could enhance photosynthesis at low CO2 levels but had little impact on photosynthesis at high CO2 levels. The model confirms that scaling of photosynthetic capacity with absorbed light would improve efficiency of CO2 fixation in the leaf, especially at low light intensity.
Collapse
Affiliation(s)
- Quang Tri Ho
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Herman N C Berghuijs
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK, Wageningen, The Netherlands
- BioSolar Cells, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
| | - Rodrigo Watté
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Pieter Verboven
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Els Herremans
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK, Wageningen, The Netherlands
- BioSolar Cells, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
| | - Moges A Retta
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK, Wageningen, The Netherlands
| | - Ben Aernouts
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Wouter Saeys
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| | - Lukas Helfen
- Laboratory for Application of Synchrotron Radiation/ANKA, Karlsruhe Institute of Technology, P.O. Box 3640, D-76021, Karlsruhe, Germany
- ESRF - The European Synchrotron, CS40220, F-38043, Grenoble Cedex 9, France
| | - Graham D Farquhar
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK, Wageningen, The Netherlands
- BioSolar Cells, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
| | - Bart M Nicolaï
- Flanders Center of Postharvest Technology/BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, B-3001, Leuven, Belgium
| |
Collapse
|
21
|
|
22
|
Yuan H, Cheung CYM, Poolman MG, Hilbers PAJ, van Riel NAW. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:289-304. [PMID: 26576489 DOI: 10.1111/tpj.13075] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/01/2015] [Accepted: 11/03/2015] [Indexed: 05/09/2023]
Abstract
Tomato (Solanum lycopersicum L.) has been studied extensively due to its high economic value in the market, and high content in health-promoting antioxidant compounds. Tomato is also considered as an excellent model organism for studying the development and metabolism of fleshy fruits. However, the growth, yield and fruit quality of tomatoes can be affected by drought stress, a common abiotic stress for tomato. To investigate the potential metabolic response of tomato plants to drought, we reconstructed iHY3410, a genome-scale metabolic model of tomato leaf, and used this metabolic network to simulate tomato leaf metabolism. The resulting model includes 3410 genes and 2143 biochemical and transport reactions distributed across five intracellular organelles including cytosol, plastid, mitochondrion, peroxisome and vacuole. The model successfully described the known metabolic behaviour of tomato leaf under heterotrophic and phototrophic conditions. The in silico investigation of the metabolic characteristics for photorespiration and other relevant metabolic processes under drought stress suggested that: (i) the flux distributions through the mevalonate (MVA) pathway under drought were distinct from that under normal conditions; and (ii) the changes in fluxes through core metabolic pathways with varying flux ratio of RubisCO carboxylase to oxygenase may contribute to the adaptive stress response of plants. In addition, we improved on previous studies of reaction essentiality analysis for leaf metabolism by including potential alternative routes for compensating reaction knockouts. Altogether, the genome-scale model provides a sound framework for investigating tomato metabolism and gives valuable insights into the functional consequences of abiotic stresses.
Collapse
Affiliation(s)
- Huili Yuan
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Mark G Poolman
- Cell Systems Modelling Group, Department of Biomedical and Medical Science, Oxford Brookes University, Oxford, UK
| | - Peter A J Hilbers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Natal A W van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
23
|
Wohlfahrt G, Gu L. The many meanings of gross photosynthesis and their implication for photosynthesis research from leaf to globe. PLANT, CELL & ENVIRONMENT 2015; 38:2500-7. [PMID: 25988305 PMCID: PMC4681079 DOI: 10.1111/pce.12569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/13/2015] [Indexed: 05/18/2023]
Abstract
(1) Gross photosynthesis is a key term in plant biology and carbon cycle science, however has been used with different meanings by different communities (2) We review the history of this term and associated concepts to clarify the terminology and make recommendations about a consistent use of terms in accordance with photosynthetic theory. (3) We show that a widely used eddy covariance CO2 flux partitioning approach yields estimates which are quantitatively closer to the definition of true photosynthesis despite aiming at estimating apparent photosynthesis.
Collapse
Affiliation(s)
- Georg Wohlfahrt
- Institute of Ecology, University of Innsbruck, 6020, Innsbruck, Austria
- European Academy of Bolzano, 39100, Bolzano, Italy
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
24
|
Dahal K, Martyn GD, Vanlerberghe GC. Improved photosynthetic performance during severe drought in Nicotiana tabacum overexpressing a nonenergy conserving respiratory electron sink. THE NEW PHYTOLOGIST 2015; 208:382-95. [PMID: 26032897 DOI: 10.1111/nph.13479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/23/2015] [Indexed: 05/02/2023]
Abstract
Chloroplasts have means to manage excess reducing power but these mechanisms may become restricted by rates of ATP turnover. Alternative oxidase (AOX) is a mitochondrial terminal oxidase that uncouples the consumption of reducing power from ATP synthesis. Physiological and biochemical analyses were used to compare respiration and photosynthesis of Nicotiana tabacum wild-type (WT) plants with that of transgenic lines overexpressing AOX, under both well-watered and drought stress conditions. With increasing drought severity, AOX overexpression acted to increase respiration in the light (RL ) relative to WT. CO2 and light response curves indicated that overexpression also improved photosynthetic performance relative to WT, as drought severity increased. This was not due to an effect of AOX amount on leaf water status or the development of the diffusive limitations that occur due to drought. Rather, AOX overexpression dampened photosystem stoichiometry adjustments and losses of key photosynthetic components that occurred in WT. The results indicate that AOX amount influences RL , particularly during severe drought, when cytochrome pathway respiration may become increasingly restricted. This impacts the chloroplast redox state, influencing how the photosynthetic apparatus responds to increasing drought severity. In particular, the development of biochemical limitations to photosynthesis are dampened in plants with increased nonenergy conserving RL .
Collapse
Affiliation(s)
- Keshav Dahal
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| | - Greg D Martyn
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada
| |
Collapse
|
25
|
Chen J, Han G, Shang C, Li J, Zhang H, Liu F, Wang J, Liu H, Zhang Y. Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa. FRONTIERS IN PLANT SCIENCE 2015; 6:105. [PMID: 25774161 PMCID: PMC4343008 DOI: 10.3389/fpls.2015.00105] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/09/2015] [Indexed: 05/11/2023]
Abstract
Cold acclimation in alfalfa (Medicago sativa L.) plays a crucial role in cold tolerance to harsh winters. To examine the cold acclimation mechanisms in freezing-tolerant alfalfa (ZD) and freezing-sensitive alfalfa (W5), holoproteins, and low-abundance proteins (after the removal of RuBisCO) from leaves were extracted to analyze differences at the protein level. A total of 84 spots were selected, and 67 spots were identified. Of these, the abundance of 49 spots and 24 spots in ZD and W5, respectively, were altered during adaptation to chilling stress. Proteomic results revealed that proteins involved in photosynthesis, protein metabolism, energy metabolism, stress and redox and other proteins were mobilized in adaptation to chilling stress. In ZD, a greater number of changes were observed in proteins, and autologous metabolism and biosynthesis were slowed in response to chilling stress, thereby reducing consumption, allowing for homeostasis. The capability for protein folding and protein biosynthesis in W5 was enhanced, which allows protection against chilling stress. The ability to perceive low temperatures was more sensitive in freezing-tolerant alfalfa compared to freezing-sensitive alfalfa. This proteomics study provides new insights into the cold acclimation mechanism in alfalfa.
Collapse
Affiliation(s)
- Jing Chen
- College of Life Sciences and Technology, Harbin Normal UniversityHarbin, China
| | - Guiqing Han
- College of Life Sciences and Technology, Harbin Normal UniversityHarbin, China
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Chen Shang
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Jikai Li
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Hailing Zhang
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Fengqi Liu
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Jianli Wang
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Huiying Liu
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Yuexue Zhang
- Institute of Grass Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| |
Collapse
|
26
|
Jardine K, Chambers J, Alves EG, Teixeira A, Garcia S, Holm J, Higuchi N, Manzi A, Abrell L, Fuentes JD, Nielsen LK, Torn MS, Vickers CE. Dynamic balancing of isoprene carbon sources reflects photosynthetic and photorespiratory responses to temperature stress. PLANT PHYSIOLOGY 2014; 166:2051-64. [PMID: 25318937 PMCID: PMC4256868 DOI: 10.1104/pp.114.247494] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-(13)C]glycine (a photorespiratory intermediate) stimulated emissions of [(13)C1-5]isoprene and (13)CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures.
Collapse
Affiliation(s)
- Kolby Jardine
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (K.J., J.C., J.H., M.S.T.);National Institute for Amazon Research, Manaus, Amazonas 69080-971, Brazil (E.G.A., A.T., S.G., N.H., A.M.);Departments of Chemistry and Biochemistry and Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721 (L.A.);Department of Meteorology, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, Pennsylvania 16802 (J.D.F.); andAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (L.K.N., C.E.V.)
| | - Jeffrey Chambers
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (K.J., J.C., J.H., M.S.T.);National Institute for Amazon Research, Manaus, Amazonas 69080-971, Brazil (E.G.A., A.T., S.G., N.H., A.M.);Departments of Chemistry and Biochemistry and Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721 (L.A.);Department of Meteorology, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, Pennsylvania 16802 (J.D.F.); andAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (L.K.N., C.E.V.)
| | - Eliane G Alves
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (K.J., J.C., J.H., M.S.T.);National Institute for Amazon Research, Manaus, Amazonas 69080-971, Brazil (E.G.A., A.T., S.G., N.H., A.M.);Departments of Chemistry and Biochemistry and Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721 (L.A.);Department of Meteorology, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, Pennsylvania 16802 (J.D.F.); andAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (L.K.N., C.E.V.)
| | - Andrea Teixeira
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (K.J., J.C., J.H., M.S.T.);National Institute for Amazon Research, Manaus, Amazonas 69080-971, Brazil (E.G.A., A.T., S.G., N.H., A.M.);Departments of Chemistry and Biochemistry and Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721 (L.A.);Department of Meteorology, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, Pennsylvania 16802 (J.D.F.); andAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (L.K.N., C.E.V.)
| | - Sabrina Garcia
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (K.J., J.C., J.H., M.S.T.);National Institute for Amazon Research, Manaus, Amazonas 69080-971, Brazil (E.G.A., A.T., S.G., N.H., A.M.);Departments of Chemistry and Biochemistry and Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721 (L.A.);Department of Meteorology, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, Pennsylvania 16802 (J.D.F.); andAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (L.K.N., C.E.V.)
| | - Jennifer Holm
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (K.J., J.C., J.H., M.S.T.);National Institute for Amazon Research, Manaus, Amazonas 69080-971, Brazil (E.G.A., A.T., S.G., N.H., A.M.);Departments of Chemistry and Biochemistry and Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721 (L.A.);Department of Meteorology, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, Pennsylvania 16802 (J.D.F.); andAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (L.K.N., C.E.V.)
| | - Niro Higuchi
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (K.J., J.C., J.H., M.S.T.);National Institute for Amazon Research, Manaus, Amazonas 69080-971, Brazil (E.G.A., A.T., S.G., N.H., A.M.);Departments of Chemistry and Biochemistry and Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721 (L.A.);Department of Meteorology, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, Pennsylvania 16802 (J.D.F.); andAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (L.K.N., C.E.V.)
| | - Antonio Manzi
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (K.J., J.C., J.H., M.S.T.);National Institute for Amazon Research, Manaus, Amazonas 69080-971, Brazil (E.G.A., A.T., S.G., N.H., A.M.);Departments of Chemistry and Biochemistry and Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721 (L.A.);Department of Meteorology, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, Pennsylvania 16802 (J.D.F.); andAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (L.K.N., C.E.V.)
| | - Leif Abrell
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (K.J., J.C., J.H., M.S.T.);National Institute for Amazon Research, Manaus, Amazonas 69080-971, Brazil (E.G.A., A.T., S.G., N.H., A.M.);Departments of Chemistry and Biochemistry and Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721 (L.A.);Department of Meteorology, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, Pennsylvania 16802 (J.D.F.); andAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (L.K.N., C.E.V.)
| | - Jose D Fuentes
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (K.J., J.C., J.H., M.S.T.);National Institute for Amazon Research, Manaus, Amazonas 69080-971, Brazil (E.G.A., A.T., S.G., N.H., A.M.);Departments of Chemistry and Biochemistry and Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721 (L.A.);Department of Meteorology, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, Pennsylvania 16802 (J.D.F.); andAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (L.K.N., C.E.V.)
| | - Lars K Nielsen
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (K.J., J.C., J.H., M.S.T.);National Institute for Amazon Research, Manaus, Amazonas 69080-971, Brazil (E.G.A., A.T., S.G., N.H., A.M.);Departments of Chemistry and Biochemistry and Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721 (L.A.);Department of Meteorology, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, Pennsylvania 16802 (J.D.F.); andAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (L.K.N., C.E.V.)
| | - Margaret S Torn
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (K.J., J.C., J.H., M.S.T.);National Institute for Amazon Research, Manaus, Amazonas 69080-971, Brazil (E.G.A., A.T., S.G., N.H., A.M.);Departments of Chemistry and Biochemistry and Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721 (L.A.);Department of Meteorology, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, Pennsylvania 16802 (J.D.F.); andAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (L.K.N., C.E.V.)
| | - Claudia E Vickers
- Climate Science Department, Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (K.J., J.C., J.H., M.S.T.);National Institute for Amazon Research, Manaus, Amazonas 69080-971, Brazil (E.G.A., A.T., S.G., N.H., A.M.);Departments of Chemistry and Biochemistry and Soil, Water, and Environmental Science, University of Arizona, Tucson, Arizona 85721 (L.A.);Department of Meteorology, College of Earth and Mineral Sciences, Pennsylvania State University, University Park, Pennsylvania 16802 (J.D.F.); andAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (L.K.N., C.E.V.)
| |
Collapse
|
27
|
Dahal K, Wang J, Martyn GD, Rahimy F, Vanlerberghe GC. Mitochondrial alternative oxidase maintains respiration and preserves photosynthetic capacity during moderate drought in Nicotiana tabacum. PLANT PHYSIOLOGY 2014; 166:1560-74. [PMID: 25204647 PMCID: PMC4226348 DOI: 10.1104/pp.114.247866] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/07/2014] [Indexed: 05/18/2023]
Abstract
The mitochondrial electron transport chain includes an alternative oxidase (AOX) that is hypothesized to aid photosynthetic metabolism, perhaps by acting as an additional electron sink for photogenerated reductant or by dampening the generation of reactive oxygen species. Gas exchange, chlorophyll fluorescence, photosystem I (PSI) absorbance, and biochemical and protein analyses were used to compare respiration and photosynthesis of Nicotiana tabacum 'Petit Havana SR1' wild-type plants with that of transgenic AOX knockdown (RNA interference) and overexpression lines, under both well-watered and moderate drought-stressed conditions. During drought, AOX knockdown lines displayed a lower rate of respiration in the light than the wild type, as confirmed by two independent methods. Furthermore, CO2 and light response curves indicated a nonstomatal limitation of photosynthesis in the knockdowns during drought, relative to the wild type. Also relative to the wild type, the knockdowns under drought maintained PSI and PSII in a more reduced redox state, showed greater regulated nonphotochemical energy quenching by PSII, and displayed a higher relative rate of cyclic electron transport around PSI. The origin of these differences may lie in the chloroplast ATP synthase amount, which declined dramatically in the knockdowns in response to drought. None of these effects were seen in plants overexpressing AOX. The results show that AOX is necessary to maintain mitochondrial respiration during moderate drought. In its absence, respiration rate slows and the lack of this electron sink feeds back on the photosynthetic apparatus, resulting in a loss of chloroplast ATP synthase that then limits photosynthetic capacity.
Collapse
Affiliation(s)
- Keshav Dahal
- Departments of Biological Sciences and Cell and Systems Biology, University of Toronto, Scarborough, Toronto, Ontario, Canada M1C1A4
| | - Jia Wang
- Departments of Biological Sciences and Cell and Systems Biology, University of Toronto, Scarborough, Toronto, Ontario, Canada M1C1A4
| | - Greg D Martyn
- Departments of Biological Sciences and Cell and Systems Biology, University of Toronto, Scarborough, Toronto, Ontario, Canada M1C1A4
| | - Farkhunda Rahimy
- Departments of Biological Sciences and Cell and Systems Biology, University of Toronto, Scarborough, Toronto, Ontario, Canada M1C1A4
| | - Greg C Vanlerberghe
- Departments of Biological Sciences and Cell and Systems Biology, University of Toronto, Scarborough, Toronto, Ontario, Canada M1C1A4
| |
Collapse
|
28
|
Corrales AR, Nebauer SG, Carrillo L, Fernández-Nohales P, Marqués J, Renau-Morata B, Granell A, Pollmann S, Vicente-Carbajosa J, Molina RV, Medina J. Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:995-1012. [PMID: 24399177 DOI: 10.1093/jxb/ert451] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA binding with One Finger (DOF) transcription factors are involved in multiple aspects of plant growth and development but their precise roles in abiotic stress tolerance are largely unknown. Here we report a group of five tomato DOF genes, homologous to Arabidopsis Cycling DOF Factors (CDFs), that function as transcriptional regulators involved in responses to drought and salt stress and flowering-time control in a gene-specific manner. SlCDF1-5 are nuclear proteins that display specific binding with different affinities to canonical DNA target sequences and present diverse transcriptional activation capacities in vivo. SlCDF1-5 genes exhibited distinct diurnal expression patterns and were differentially induced in response to osmotic, salt, heat, and low-temperature stresses. Arabidopsis plants overexpressing SlCDF1 or SlCDF3 showed increased drought and salt tolerance. In addition, the expression of various stress-responsive genes, such as COR15, RD29A, and RD10, were differentially activated in the overexpressing lines. Interestingly, overexpression in Arabidopsis of SlCDF3 but not SlCDF1 promotes late flowering through modulation of the expression of flowering control genes such as CO and FT. Overall, our data connect SlCDFs to undescribed functions related to abiotic stress tolerance and flowering time through the regulation of specific target genes and an increase in particular metabolites.
Collapse
Affiliation(s)
- Alba-Rocío Corrales
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus Montegancedo, Autopista M40 (km 38), 28223 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Busch FA. Current methods for estimating the rate of photorespiration in leaves. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:648-655. [PMID: 23186383 DOI: 10.1111/j.1438-8677.2012.00694.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/22/2012] [Indexed: 05/19/2023]
Abstract
Photorespiration is a process that competes with photosynthesis, in which Rubisco oxygenates, instead of carboxylates, its substrate ribulose 1,5-bisphosphate. The photorespiratory metabolism associated with the recovery of 3-phosphoglycerate is energetically costly and results in the release of previously fixed CO2. The ability to quantify photorespiration is gaining importance as a tool to help improve plant productivity in order to meet the increasing global food demand. In recent years, substantial progress has been made in the methods used to measure photorespiration. Current techniques are able to measure multiple aspects of photorespiration at different points along the photorespiratory C2 cycle. Six different methods used to estimate photorespiration are reviewed, and their advantages and disadvantages discussed.
Collapse
Affiliation(s)
- F A Busch
- Research School of Biology, Australian National University, Canberra, Australia.
| |
Collapse
|
30
|
Gu X, Gao Z, Zhuang W, Qiao Y, Wang X, Mi L, Zhang Z, Lin Z. Comparative proteomic analysis of rd29A:RdreB1BI transgenic and non-transgenic strawberries exposed to low temperature. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:696-706. [PMID: 23394786 DOI: 10.1016/j.jplph.2012.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 12/05/2012] [Accepted: 12/11/2012] [Indexed: 05/25/2023]
Abstract
Low-temperature stress is one of the major abiotic stresses in plants worldwide, and the dehydration responsive element binding protein (DREB) transcription factor induces expression of genes involved in environmental stress tolerance in plants. A proteomic approach based on two-dimensional gel electrophoresis (2-DE) and subsequent mass spectrometric identification was used to study the changes in the leaf proteome profiles of rd29A:RdreB1BI transgenic and non-transgenic strawberries exposed to low-temperature conditions. By comparing the proteomic profiles, we located 21 protein spots that were reproducibly up- or down-regulated by more than twofold between transgenic and non-transgenic strawberries. Eight identified proteins function in energy and metabolism, four in biosynthetic processes, four were stress and defense related, three spots were identified as cold-stress related expressed sequence tags (ESTs), and two were unknown proteins. The change patterns of low-temperature tolerance proteins, including photosynthetic proteins (RuBisCO large subunit and RuBisCO activase), cytoplasmic Cu/Zn-superoxide dismutase (Cu/Zn-SOD), late embryogenesis abundant protein 14-A (Lea14-A), eukaryotic translation initiation factor 5A (eIF5A), and cold-stress related ESTs, were differentially regulated between non-transgenic and rd29A:RdreB1BI transgenic strawberries. They are likely important gene products in the regulatory network of the RdreB1BI gene. Consequently, this study provides the first characterization of the transgenic strawberry proteome and the predicted target proteins of the RdreB1BI gene by using proteomic approaches.
Collapse
Affiliation(s)
- Xianbin Gu
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Busch FA, Sage TL, Cousins AB, Sage RF. C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. PLANT, CELL & ENVIRONMENT 2013; 36:200-12. [PMID: 22734462 DOI: 10.1111/j.1365-3040.2012.02567.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photosynthetic carbon gain in plants using the C(3) photosynthetic pathway is substantially inhibited by photorespiration in warm environments, particularly in atmospheres with low CO(2) concentrations. Unlike C(4) plants, C(3) plants are thought to lack any mechanism to compensate for the loss of photosynthetic productivity caused by photorespiration. Here, for the first time, we demonstrate that the C(3) plants rice and wheat employ a specific mechanism to trap and reassimilate photorespired CO(2) . A continuous layer of chloroplasts covering the portion of the mesophyll cell periphery that is exposed to the intercellular air space creates a diffusion barrier for CO(2) exiting the cell. This facilitates the capture and reassimilation of photorespired CO(2) in the chloroplast stroma. In both species, 24-38% of photorespired and respired CO(2) were reassimilated within the cell, thereby boosting photosynthesis by 8-11% at ambient atmospheric CO(2) concentration and 17-33% at a CO(2) concentration of 200 µmol mol(-1) . Widespread use of this mechanism in tropical and subtropical C(3) plants could explain why the diversity of the world's C(3) flora, and dominance of terrestrial net primary productivity, was maintained during the Pleistocene, when atmospheric CO(2) concentrations fell below 200 µmol mol(-1) .
Collapse
Affiliation(s)
- Florian A Busch
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
32
|
Tholen D, Ethier G, Genty B, Pepin S, Zhu XG. Variable mesophyll conductance revisited: theoretical background and experimental implications. PLANT, CELL & ENVIRONMENT 2012; 35:2087-103. [PMID: 22590996 DOI: 10.1111/j.1365-3040.2012.02538.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The CO(2) concentration at the site of carboxylation inside the chloroplast stroma depends not only on the stomatal conductance, but also on the conductance of CO(2) between substomatal cavities and the site of CO(2) fixation. This conductance, commonly termed mesophyll conductance (g(m) ), significantly constrains the rate of photosynthesis. Here we show that estimates of g(m) are influenced by the amount of respiratory and photorespiratory CO(2) from the mitochondria diffusing towards the chloroplasts. This results in an apparent CO(2) and oxygen sensitivity of g(m) that does not imply a change in intrinsic diffusion properties of the mesophyll, but depends on the ratio of mitochondrial CO(2) release to chloroplast CO(2) uptake. We show that this effect (1) can bias the estimation of the CO(2) photocompensation point and non-photorespiratory respiration in the light; (2) can affect the estimates of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) kinetic constants in vivo; and (3) results in an apparent obligatory correlation between stomatal conductance and g(m) . We further show that the amount of photo(respiratory) CO(2) that is refixed by Rubisco can be directly estimated through measurements of g(m) .
Collapse
Affiliation(s)
- Danny Tholen
- State Key Laboratory of Hybrid Rice Research, Chinese Academy of Sciences, Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yueyang Road 320, Shanghai, 200031, China.
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Sage RF, Sage TL, Kocacinar F. Photorespiration and the evolution of C4 photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:19-47. [PMID: 22404472 DOI: 10.1146/annurev-arplant-042811-105511] [Citation(s) in RCA: 408] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
C(4) photosynthesis is one of the most convergent evolutionary phenomena in the biological world, with at least 66 independent origins. Evidence from these lineages consistently indicates that the C(4) pathway is the end result of a series of evolutionary modifications to recover photorespired CO(2) in environments where RuBisCO oxygenation is high. Phylogenetically informed research indicates that the repositioning of mitochondria in the bundle sheath is one of the earliest steps in C(4) evolution, as it may establish a single-celled mechanism to scavenge photorespired CO(2) produced in the bundle sheath cells. Elaboration of this mechanism leads to the two-celled photorespiratory concentration mechanism known as C(2) photosynthesis (commonly observed in C(3)-C(4) intermediate species) and then to C(4) photosynthesis following the upregulation of a C(4) metabolic cycle.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
35
|
Archontoulis SV, Yin X, Vos J, Danalatos NG, Struik PC. Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:895-911. [PMID: 22021569 PMCID: PMC3254689 DOI: 10.1093/jxb/err321] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/31/2011] [Accepted: 09/07/2011] [Indexed: 05/07/2023]
Abstract
Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C(3) leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO(2) at the stomatal cavity (A(n)-C(i)), the model was parameterized by analysing the photosynthesis response to incident light intensity (A(n)-I(inc)). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from A(n)-C(i) or from A(n)-I(inc) data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored A(n)-I(inc) data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model.
Collapse
Affiliation(s)
- S. V. Archontoulis
- Centre for Crop Systems Analysis, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
- Laboratory of Agronomy and Applied Crop Physiology, Department of Agriculture, University of Thessaly, Volos, Greece
| | - X. Yin
- Centre for Crop Systems Analysis, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - J. Vos
- Centre for Crop Systems Analysis, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - N. G. Danalatos
- Laboratory of Agronomy and Applied Crop Physiology, Department of Agriculture, University of Thessaly, Volos, Greece
| | - P. C. Struik
- Centre for Crop Systems Analysis, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
36
|
AN BY, LIU XY, TAN H, LIN WH, SUN LW. Comparative Profile of Rubisco-interacting Proteins From Arabidopsis: Photosynthesis Under Cold Conditions*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Yin X, Sun Z, Struik PC, Gu J. Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3489-99. [PMID: 21382918 PMCID: PMC3130174 DOI: 10.1093/jxb/err038] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Day respiration (R(d)) is an important parameter in leaf ecophysiology. It is difficult to measure directly and is indirectly estimated from gas exchange (GE) measurements of the net photosynthetic rate (A), commonly using the Laisk method or the Kok method. Recently a new method was proposed to estimate R(d) indirectly from combined GE and chlorophyll fluorescence (CF) measurements across a range of low irradiances. Here this method is tested for estimating R(d) in five C(3) and one C(4) crop species. Values estimated by this new method agreed with those by the Laisk method for the C(3) species. The Laisk method, however, is only valid for C(3) species and requires measurements at very low CO(2) levels. In contrast, the new method can be applied to both C(3) and C(4) plants and at any CO(2) level. The R(d) estimates by the new method were consistently somewhat higher than those by the Kok method, because using CF data corrects for errors due to any non-linearity between A and irradiance of the used data range. Like the Kok and Laisk methods, the new method is based on the assumption that R(d) varies little with light intensity, which is still subject to debate. Theoretically, the new method, like the Kok method, works best for non-photorespiratory conditions. As CF information is required, data for the new method are usually collected using a small leaf chamber, whereas the Kok and Laisk methods use only GE data, allowing the use of a larger chamber to reduce the noise-to-signal ratio of GE measurements.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Gong P, Zhang J, Li H, Yang C, Zhang C, Zhang X, Khurram Z, Zhang Y, Wang T, Fei Z, Ye Z. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3563-75. [PMID: 20643807 PMCID: PMC2921197 DOI: 10.1093/jxb/erq167] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 05/14/2010] [Accepted: 05/17/2010] [Indexed: 05/18/2023]
Abstract
To unravel the molecular mechanisms of drought responses in tomato, gene expression profiles of two drought-tolerant lines identified from a population of Solanum pennellii introgression lines, and the recurrent parent S. lycopersicum cv. M82, a drought-sensitive cultivar, were investigated under drought stress using tomato microarrays. Around 400 genes identified were responsive to drought stress only in the drought-tolerant lines. These changes in genes expression are most likely caused by the two inserted chromosome segments of S. pennellii, which possibly contain drought-tolerance quantitative trait loci (QTLs). Among these genes are a number of transcription factors and signalling proteins which could be global regulators involved in the tomato responses to drought stress. Genes involved in organism growth and development processes were also specifically regulated by drought stress, including those controlling cell wall structure, wax biosynthesis, and plant height. Moreover, key enzymes in the pathways of gluconeogenesis (fructose-bisphosphate aldolase), purine and pyrimidine nucleotide biosynthesis (adenylate kinase), tryptophan degradation (aldehyde oxidase), starch degradation (beta-amylase), methionine biosynthesis (cystathionine beta-lyase), and the removal of superoxide radicals (catalase) were also specifically affected by drought stress. These results indicated that tomato plants could adapt to water-deficit conditions through decreasing energy dissipation, increasing ATP energy provision, and reducing oxidative damage. The drought-responsive genes identified in this study could provide further information for understanding the mechanisms of drought tolerance in tomato.
Collapse
Affiliation(s)
- Pengjuan Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changxian Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chanjuan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziaf Khurram
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853 and USDA Robert W Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Zhibiao Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
39
|
Bauwe H. Chapter 6 Photorespiration: The Bridge to C4 Photosynthesis. C4 PHOTOSYNTHESIS AND RELATED CO2 CONCENTRATING MECHANISMS 2010. [DOI: 10.1007/978-90-481-9407-0_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Yin X, Struik PC, Romero P, Harbinson J, Evers JB, VAN DER Putten PEL, Vos J. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. PLANT, CELL & ENVIRONMENT 2009; 32:448-64. [PMID: 19183300 DOI: 10.1111/j.1365-3040.2009.01934.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We appraised the literature and described an approach to estimate the parameters of the Farquhar, von Caemmerer and Berry model using measured CO(2) assimilation rate (A) and photosystem II (PSII) electron transport efficiency (Phi(2)). The approach uses curve fitting to data of A and Phi(2) at various levels of incident irradiance (I(inc)), intercellular CO(2) (C(i)) and O(2). Estimated parameters include day respiration (R(d)), conversion efficiency of I(inc) into linear electron transport of PSII under limiting light [kappa(2(LL))], electron transport capacity (J(max)), curvature factor (theta) for the non-rectangular hyperbolic response of electron flux to I(inc), ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) CO(2)/O(2) specificity (S(c/o)), Rubisco carboxylation capacity (V(cmax)), rate of triose phosphate utilization (T(p)) and mesophyll conductance (g(m)). The method is used to analyse combined gas exchange and chlorophyll fluorescence measurements on leaves of various ages and positions in wheat plants grown at two nitrogen levels. Estimated S(c/o) (25 degrees C) was 3.13 mbar microbar(-1); R(d) was lower than respiration in the dark; J(max) was lower and theta was higher at 2% than at 21% O(2); kappa(2(LL)), V(cmax), J(max) and T(p) correlated to leaf nitrogen content; and g(m) decreased with increasing C(i) and with decreasing I(inc). Based on the parameter estimates, we surmised that there was some alternative electron transport.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Atkin OK, Macherel D. The crucial role of plant mitochondria in orchestrating drought tolerance. ANNALS OF BOTANY 2009; 103:581-97. [PMID: 18552366 PMCID: PMC2707344 DOI: 10.1093/aob/mcn094] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/21/2008] [Accepted: 05/09/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Around the world, the frequency and intensity of droughts is increasing as a result of global climate change, with important consequences for the growth and survival of agricultural and native plant species. Understanding how plants respond to water stress is thus crucial for predicting the impacts of climate change on the crop productivity and ecosystem functioning. In contrast to the large number of studies assessing drought impacts on photosynthesis, relatively little attention has been devoted to understanding how mitochondrial respiratory metabolism is altered under water stress conditions. SCOPE This review provides an overview of the impacts of water stress on mitochondrial respiration (R), combining studies at the whole-plant, individual organ, cellular and organelle levels. To establish whether there are clear patterns in the response of in vivo R to water stress, a wide range of root, leaf and whole-plant studies are reviewed. It is shown that water stress almost always inhibits R in actively growing roots and whole plants. However, in fully expanded, mature leaves the response is more variable, with water stress reducing R in near two-thirds of reported studies, with most of the remainder showing no change. Only a few studies reported increases in leaf R under severe water stress conditions. The mechanisms responsible for these variable responses are discussed. Importantly, the fact is highlighted that irrespective of whether drought increases or decreases respiration, overall the changes in R are minor compared with the large decreases in photosynthetic carbon gain in response to drought. Based on recent work highlighting the link between chloroplast and mitochondrial functions in leaves, we propose a model by which mitochondrial R enables survival and rapid recovery of productivity under water stress conditions. Finally, the effects of water stress on mitochondrial function, protein abundance and overall metabolism are reviewed.
Collapse
Affiliation(s)
- Owen K. Atkin
- Functional Ecology Group, Research School of Biological Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - David Macherel
- IFR 149 QUASAV, Unité Mixte de Recherche 1191 Physiologie Moléculaire des Semences, Université d'Angers/Institut National d'Horticulture/Institut National de la Recherche Agronomique, ARES, 49045 Angers Cedex 01, France
| |
Collapse
|
42
|
Mohammadkhani N, Heidari R. Effects of water stress on respiration, photosynthetic pigments and water content in two maize cultivars. Pak J Biol Sci 2009; 10:4022-8. [PMID: 19090274 DOI: 10.3923/pjbs.2007.4022.4028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Water stress is one of the most important environmental factors that reduce growth, development and production of plants. Stress was applied with polyethyleneglycol (PEG) 6000 and water potentials were: zero (control), -0.15 (PEG 10%), -0.49 (PEG 20%), -1.03 (PEG 30%) and -1.76 (PEG 40%) MPa. The roots and leaves respiration of two maize (Zea mays L.) cultivars -704 and 301- were determined in various concentrations of PEG 6000. Oxygen uptake declined in leaves and roots with increasing PEG concentrations. Decrease of oxygen uptake in roots and leaves of 704 variety were higher than 301 variety. Chlorophyll a, b and total chlorophyll content were significantly decreased (p < 0.05), but carotenoids content increased (p < 0.05) under water stress. Decrease of chlorophyll content in 704 var. was higher than 301 var., but carotenoids content in 301 var. was higher than 704 var. Relative Water Content (RWC) was used to indicate the degree of stress. RWC decreased with increasing PEG concentrations. Lowering of RWC reduced growth and increased shoot/root ratio. Decrease of water content in 704 plants was higher than 301 plants. Shoot/root ratio in 704 var. was higher than 301 var.
Collapse
|
43
|
. GAES, . AMYM, . EAES. Comparative Phytochemical Investigation of Beneficial Essential Fatty Acids on a Variety of Marine Seaweeds Algae. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/rjphyto.2008.18.26] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
. DM, . JO. Comparative Assessment of Antifungal Activity of Extracts from Eucalyptus globulus and Eucalyptus citriodora. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/rjphyto.2008.35.43] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
. AMYM, . GAES, . EAES. Comparative Phycochemical Investigation of Hydrocarbons Content on Some Marine Seaweeds Algae. RESEARCH JOURNAL OF PHYTOCHEMISTRY 2008; 2:10-17. [DOI: 10.3923/rjphyto.2008.10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
46
|
Morales F, Abadía A, AbadÞa J. Photoinhibition and Photoprotection under Nutrient Deficiencies, Drought and Salinity. PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Pärnik T, Ivanova H, Keerberg O. Photorespiratory and respiratory decarboxylations in leaves of C3 plants under different CO2 concentrations and irradiances. PLANT, CELL & ENVIRONMENT 2007; 30:1535-1544. [PMID: 17986155 DOI: 10.1111/j.1365-3040.2007.01725.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We used an advanced radiogasometric method to study the effects of short-term changes in CO2 concentration ([CO2]) on the rates and substrates of photorespiratory and respiratory decarboxylations under steady-state photosynthesis and in the dark. Experiments were carried out on Plantago lanceolata, Poa trivialis, Secale cereale, Triticum aestivum, Helianthus annuus and Arabidopsis thaliana plants. Rates of photorespiration and respiration measured at a low [CO2] (40 micromol mol(-1)) were equal to those at normal [CO2] (360 micromol mol(-1)). Under low [CO2], the substrates of decarboxylation reactions were derived mainly from stored photosynthates, while under normal [CO2] primary photosynthates were preferentially consumed. An increase in [CO2] from 320 to 2300 micromol mol(-1) brought about a fourfold decrease in the rate of photorespiration with a concomitant 50% increase in the rate of respiration in the light. Respiration in the dark did not depend on [CO2] up to 30 mmol mol(-1). A positive correlation was found between the rate of respiration in the dark and the rate of photosynthesis during the preceding light period. The respiratory decarboxylation of stored photosynthates was suppressed by light. The extent of light inhibition decreased with increasing [CO2]; no inhibition was detected at 30 mmol mol(-1) CO2.
Collapse
Affiliation(s)
- T Pärnik
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | | | | |
Collapse
|
48
|
Abstract
The advent of proteomics has made it possible to identify a broad spectrum of proteins in living systems. This capability is especially useful for crops as it may give clues not only about nutritional value, but also about yield and how these factors are affected by adverse conditions. In this review, we describe the recent progress in crop proteomics and highlight the achievements made in understanding the proteomes of major crops. The major emphasis will be on crop responses to abiotic stresses. Rigorous genetic testing of the role of possibly important proteins can be conducted. The increasing ease with the DNA, mRNA and protein levels can be conducted and connected suggests that proteomics data will not be difficult to apply to practical crop breeding.
Collapse
|
49
|
|
50
|
Correia MJ, Osório ML, Osório J, Barrote I, Martins M, David MM. Influence of transient shade periods on the effects of drought on photosynthesis, carbohydrate accumulation and lipid peroxidation in sunflower leaves. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2006. [PMID: 0 DOI: 10.1016/j.envexpbot.2005.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|