1
|
Sanhueza D, Sepúlveda-Orellana P, Salazar-Carrasco A, Zúñiga S, Herrera R, Moya-León MA, Saez-Aguayo S. Mucilage extracted from Chilean papaya seeds is enriched with homogalacturonan domains. FRONTIERS IN PLANT SCIENCE 2024; 15:1380533. [PMID: 38872878 PMCID: PMC11169631 DOI: 10.3389/fpls.2024.1380533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
Chilean papaya, also known as mountain papaya (Vasconcellea pubescens), is a fruit valued for its nutritional value and pleasant fragrance. The oblong fruit, featuring five ridges and a seed-filled mucilage cavity, is typically consumed cooked due to its high protease content. The mucilage and the seeds are usually discarded as byproducts. This study analyzed the biochemical composition of mountain papaya seed mucilage using methods such as HPAEC and immunolabeling. Results revealed that papaya seeds yield nearly 20% of their weight in mucilage polysaccharides, which can be separated into soluble and adherent layers. The mucilage exhibited a high proportion of acidic sugars, indicating that homogalacturonan (HG) is the predominant domain. It also contained other domains like rhamnogalacturonan-I (RG-I) and hemicelluloses, predominantly xyloglucan. The HG-rich mucilage, currently considered waste, emerges as a promising source of polysaccharides, indicating its multifaceted utility in various industrial applications.
Collapse
Affiliation(s)
- Dayan Sanhueza
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Pablo Sepúlveda-Orellana
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Alejandra Salazar-Carrasco
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Sebastian Zúñiga
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
| | - Raúl Herrera
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María Alejandra Moya-León
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Anillo de Investigación en Ciencia y Tecnología - Chilean Fruits Cell Wall Components as Biotechnological Resources (CHICOBIO) ACT210025, Talca, Chile
- Agencia Nacional de Investigación y Desarollo (ANID) - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| |
Collapse
|
2
|
Sionkowski P, Kruszewska N, Kreitschitz A, Gorb SN, Domino K. Application of Recurrence Plot Analysis to Examine Dynamics of Biological Molecules on the Example of Aggregation of Seed Mucilage Components. ENTROPY (BASEL, SWITZERLAND) 2024; 26:380. [PMID: 38785629 PMCID: PMC11119629 DOI: 10.3390/e26050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
The goal of the research is to describe the aggregation process inside the mucilage produced by plant seeds using molecular dynamics (MD) combined with time series algorithmic analysis based on the recurrence plots. The studied biological molecules model is seed mucilage composed of three main polysaccharides, i.e. pectins, hemicellulose, and cellulose. The modeling of biological molecules is based on the assumption that a classical-quantum passage underlies the aggregation process in the mucilage, resulting from non-covalent interactions, as they affect the macroscopic properties of the system. The applied recurrence plot approach is an important tool for time series analysis and data mining dedicated to analyzing time series data originating from complex, chaotic systems. In the current research, we demonstrated that advanced algorithmic analysis of seed mucilage data can reveal some features of the dynamics of the system, namely temperature-dependent regions with different dynamics of increments of a number of hydrogen bonds and regions of stable oscillation of increments of a number of hydrophobic-polar interactions. Henceforth, we pave the path for automatic data-mining methods for the analysis of biological molecules with the intermediate step of the application of recurrence plot analysis, as the generalization of recurrence plot applications to other (biological molecules) datasets is straightforward.
Collapse
Affiliation(s)
- Piotr Sionkowski
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland; (P.S.); (K.D.)
| | - Natalia Kruszewska
- Group of Modeling of Physicochemical Processes, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland
| | - Agnieszka Kreitschitz
- Department of Plant Developmental Biology, University of Wrocław, ul. Kanonia 6/8, 50-328 Wrocław, Poland;
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany;
| | - Krzysztof Domino
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland; (P.S.); (K.D.)
| |
Collapse
|
3
|
Zhong R, Zhou D, Phillips DR, Adams ER, Chen L, Rose JP, Wang BC, Ye ZH. A rice GT61 glycosyltransferase possesses dual activities mediating 2-O-xylosyl and 2-O-arabinosyl substitutions of xylan. PLANTA 2024; 259:115. [PMID: 38589536 DOI: 10.1007/s00425-024-04396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
MAIN CONCLUSION A member of the rice GT61 clade B is capable of transferring both 2-O-xylosyl and 2-O-arabinosyl residues onto xylan and another member specifically catalyses addition of 2-O-xylosyl residue onto xylan. Grass xylan is substituted predominantly with 3-O-arabinofuranose (Araf) as well as with some minor side chains, such as 2-O-Araf and 2-O-(methyl)glucuronic acid [(Me)GlcA]. 3-O-Arabinosylation of grass xylan has been shown to be catalysed by grass-expanded clade A members of the glycosyltransferase family 61. However, glycosyltransferases mediating 2-O-arabinosylation of grass xylan remain elusive. Here, we performed biochemical studies of two rice GT61 clade B members and found that one of them was capable of transferring both xylosyl (Xyl) and Araf residues from UDP-Xyl and UDP-Araf, respectively, onto xylooligomer acceptors, whereas the other specifically catalysed Xyl transfer onto xylooligomers, indicating that the former is a xylan xylosyl/arabinosyl transferase (named OsXXAT1 herein) and the latter is a xylan xylosyltransferase (named OsXYXT2). Structural analysis of the OsXXAT1- and OsXYXT2-catalysed reaction products revealed that the Xyl and Araf residues were transferred onto O-2 positions of xylooligomers. Furthermore, we demonstrated that OsXXAT1 and OsXYXT2 were able to substitute acetylated xylooligomers, but only OsXXAT1 could xylosylate GlcA-substituted xylooligomers. OsXXAT1 and OsXYXT2 were predicted to adopt a GT-B fold structure and molecular docking revealed candidate amino acid residues at the predicted active site involved in binding of the nucleotide sugar donor and the xylohexaose acceptor substrates. Together, our results establish that OsXXAT1 is a xylan 2-O-xylosyl/2-O-arabinosyl transferase and OsXYXT2 is a xylan 2-O-xylosyltransferase, which expands our knowledge of roles of the GT61 family in grass xylan synthesis.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dayong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Earle R Adams
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - John P Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Costantini S, Benedetti M, Pontiggia D, Giovannoni M, Cervone F, Mattei B, De Lorenzo G. Berberine bridge enzyme-like oxidases of cellodextrins and mixed-linked β-glucans control seed coat formation. PLANT PHYSIOLOGY 2023; 194:296-313. [PMID: 37590952 DOI: 10.1093/plphys/kiad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Plants have evolved various resistance mechanisms to cope with biotic stresses that threaten their survival. The BBE23 member (At5g44360/BBE23) of the Arabidopsis berberine bridge enzyme-like (BBE-l) protein family (Arabidopsis thaliana) has been characterized in this paper in parallel with the closely related and previously described CELLOX (At4g20860/BBE22). In addition to cellodextrins, both enzymes, renamed here as CELLODEXTRIN OXIDASE 2 and 1 (CELLOX2 and CELLOX1), respectively, oxidize the mixed-linked β-1→3/β-1→4-glucans (MLGs), recently described as capable of activating plant immunity, reinforcing the view that the BBE-l family includes members that are devoted to the control of the homeostasis of potential cell wall-derived damage-associated molecular patterns (DAMPs). The 2 putatively paralogous genes display different expression profiles. Unlike CELLOX1, CELLOX2 is not expressed in seedlings or adult plants and is not involved in immunity against Botrytis cinerea. Both are instead expressed in a concerted manner in the seed coat during development. Whereas CELLOX2 is expressed mainly during the heart stage, CELLOX1 is expressed at the immediately later stage, when the expression of CELLOX2 decreases. Analysis of seeds of cellox1 and cellox2 knockout mutants shows alterations in the coat structure: the columella area is smaller in cellox1, radial cell walls are thicker in both cellox1 and cellox2, and the mucilage halo is reduced in cellox2. However, the coat monosaccharide composition is not significantly altered, suggesting an alteration of the organization of the cell wall, thus reinforcing the notion that the architecture of the cell wall in specific organs is determined not only by the dynamics of the synthesis/degradation of the main polysaccharides but also by its enzymatic oxidation.
Collapse
Affiliation(s)
- Sara Costantini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Pontiggia
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, 00185 Rome, Italy
| | - Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Felice Cervone
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
Quinn O, Kumar M, Turner S. The role of lipid-modified proteins in cell wall synthesis and signaling. PLANT PHYSIOLOGY 2023; 194:51-66. [PMID: 37682865 PMCID: PMC10756762 DOI: 10.1093/plphys/kiad491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
The plant cell wall is a complex and dynamic extracellular matrix. Plant primary cell walls are the first line of defense against pathogens and regulate cell expansion. Specialized cells deposit a secondary cell wall that provides support and permits water transport. The composition and organization of the cell wall varies between cell types and species, contributing to the extensibility, stiffness, and hydrophobicity required for its proper function. Recently, many of the proteins involved in the biosynthesis, maintenance, and remodeling of the cell wall have been identified as being post-translationally modified with lipids. These modifications exhibit diverse structures and attach to proteins at different sites, which defines the specific role played by each lipid modification. The introduction of relatively hydrophobic lipid moieties promotes the interaction of proteins with membranes and can act as sorting signals, allowing targeted delivery to the plasma membrane regions and secretion into the apoplast. Disruption of lipid modification results in aberrant deposition of cell wall components and defective cell wall remodeling in response to stresses, demonstrating the essential nature of these modifications. Although much is known about which proteins bear lipid modifications, many questions remain regarding the contribution of lipid-driven membrane domain localization and lipid heterogeneity to protein function in cell wall metabolism. In this update, we highlight the contribution of lipid modifications to proteins involved in the formation and maintenance of plant cell walls, with a focus on the addition of glycosylphosphatidylinositol anchors, N-myristoylation, prenylation, and S-acylation.
Collapse
Affiliation(s)
- Oliver Quinn
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Simon Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
6
|
Ishida K, Ohba Y, Yoshimi Y, Wilson LFL, Echevarría-Poza A, Yu L, Iwai H, Dupree P. Differing structures of galactoglucomannan in eudicots and non-eudicot angiosperms. PLoS One 2023; 18:e0289581. [PMID: 38127933 PMCID: PMC10735049 DOI: 10.1371/journal.pone.0289581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
The structures of cell wall mannan hemicelluloses have changed during plant evolution. Recently, a new structure called β-galactoglucomannan (β-GGM) was discovered in eudicot plants. This galactoglucomannan has β-(1,2)-Gal-α-(1,6)-Gal disaccharide branches on some mannosyl residues of the strictly alternating Glc-Man backbone. Studies in Arabidopsis revealed β-GGM is related in structure, biosynthesis and function to xyloglucan. However, when and how plants acquired β-GGM remains elusive. Here, we studied mannan structures in many sister groups of eudicots. All glucomannan structures were distinct from β-GGM. In addition, we searched for candidate mannan β-galactosyltransferases (MBGT) in non-eudicot angiosperms. Candidate AtMBGT1 orthologues from rice (OsGT47A-VII) and Amborella (AtrGT47A-VII) did not show MBGT activity in vivo. However, the AtMBGT1 orthologue from rice showed MUR3-like xyloglucan galactosyltransferase activity in complementation analysis using Arabidopsis. Further, reverse genetic analysis revealed that the enzyme (OsGT47A-VII) contributes to proper root growth in rice. Together, gene duplication and diversification of GT47A-VII in eudicot evolution may have been involved in the acquisition of mannan β-galactosyltransferase activity. Our results indicate that β-GGM is likely to be a eudicot-specific mannan.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, United Kingdom
| | - Yusuke Ohba
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshihisa Yoshimi
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, United Kingdom
| | - Louis F. L. Wilson
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, United Kingdom
| | - Alberto Echevarría-Poza
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, United Kingdom
| | - Li Yu
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, United Kingdom
| | - Hiroaki Iwai
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, United Kingdom
| |
Collapse
|
7
|
Aoi Y, Benamar A, Saulnier L, Ralet MC, North HM. Biochemical data documenting variations in mucilage polysaccharides in a range of glycosyltransferase mutants. Sci Data 2023; 10:702. [PMID: 37838800 PMCID: PMC10576798 DOI: 10.1038/s41597-023-02604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
During Arabidopsis seed coat development, copious amounts of mucilage polysaccharides are produced in the epidermal cells. When hydrated on imbibition, these polysaccharides expand and are released to encapsulate the seed as a two-layered hydrogel. Polysaccharides are synthesized from UDP-sugars by glycosyltransferases (GTs) and several GTs, with differing activities, have been identified that contribute to mucilage polysaccharide synthesis. How these GTs orchestrate production of the complex polysaccharides found in mucilage remains to be determined. In this study, we generated a range of multiple GT mutants using either CRISPR/Cas9 targeted mutation or genetic crosses of existing T-DNA insertion mutants. Four traits for mucilage amounts or macromolecular properties were examined for four replicate seed lots from 31 different GT mutant combinations. This data provides a valuable resource for future genetic, biochemical, structural, and functional studies of the roles and properties of polysaccharides present in Arabidopsis mucilage and the relative contributions of different GTs to mucilage production.
Collapse
Affiliation(s)
- Yuki Aoi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
- INRAE, UR1268 BIA, 3 impasse Yvette Cauchois, CS71627, 44316 Cedex3, Nantes, France
| | - Abdelilah Benamar
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Luc Saulnier
- INRAE, UR1268 BIA, 3 impasse Yvette Cauchois, CS71627, 44316 Cedex3, Nantes, France
| | - Marie-Christine Ralet
- INRAE, UR1268 BIA, 3 impasse Yvette Cauchois, CS71627, 44316 Cedex3, Nantes, France.
| | - Helen M North
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| |
Collapse
|
8
|
Guillotin B, Rahni R, Passalacqua M, Mohammed MA, Xu X, Raju SK, Ramírez CO, Jackson D, Groen SC, Gillis J, Birnbaum KD. A pan-grass transcriptome reveals patterns of cellular divergence in crops. Nature 2023; 617:785-791. [PMID: 37165193 PMCID: PMC10657638 DOI: 10.1038/s41586-023-06053-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
Different plant species within the grasses were parallel targets of domestication, giving rise to crops with distinct evolutionary histories and traits1. Key traits that distinguish these species are mediated by specialized cell types2. Here we compare the transcriptomes of root cells in three grass species-Zea mays, Sorghum bicolor and Setaria viridis. We show that single-cell and single-nucleus RNA sequencing provide complementary readouts of cell identity in dicots and monocots, warranting a combined analysis. Cell types were mapped across species to identify robust, orthologous marker genes. The comparative cellular analysis shows that the transcriptomes of some cell types diverged more rapidly than those of others-driven, in part, by recruitment of gene modules from other cell types. The data also show that a recent whole-genome duplication provides a rich source of new, highly localized gene expression domains that favour fast-evolving cell types. Together, the cell-by-cell comparative analysis shows how fine-scale cellular profiling can extract conserved modules from a pan transcriptome and provide insight on the evolution of cells that mediate key functions in crops.
Collapse
Affiliation(s)
- Bruno Guillotin
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ramin Rahni
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | - Mohammed Ateequr Mohammed
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Xiaosa Xu
- Cold Spring Harbor Laboratory, New York, NY, USA
| | - Sunil Kenchanmane Raju
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Carlos Ortiz Ramírez
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
- UGA-LANGEBIO Cinvestav, Guanajuato, México
| | | | - Simon C Groen
- Department of Nematology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Jesse Gillis
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, New York University, New York, NY, USA.
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Xu Y, Hu R, Li S. Regulation of seed coat mucilage production and modification in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111591. [PMID: 36623642 DOI: 10.1016/j.plantsci.2023.111591] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The Arabidopsis seed coat mucilage is a polysaccharide-rich matrix synthesized by the seed coat epidermal cells. It is a specialized cell wall mainly composed of three types of polysaccharides (i. e. pectin, hemicellulose, and cellulose), and represents as an ideal model system for plant cell wall research. A large number of genes responsible for the synthesis and modification of cell wall polysaccharides have been identified using this model system. Moreover, a subset of regulators controlling mucilage production and modification have been characterized, and the underlying transcriptional regulatory mechanisms have been elucidated. This substantially contributes to the understanding of the molecular mechanisms underlying mucilage synthesis and modification. In this review, we concisely summarize the various genes and regulators involved in seed coat cell differentiation, mucilage biosynthesis and modification, and secondary cell wall formation. In particular, we put emphasis on the latest knowledge gained regarding the transcriptional regulation of mucilage production, which is composed of a hierarchal cascade with three-layer transcriptional regulators. Collectively, we propose an updated schematic framework of the genetic regulatory network controlling mucilage production and modification in the Arabidopsis mucilage secretory cells.
Collapse
Affiliation(s)
- Yan Xu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Ruibo Hu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| | - Shengjun Li
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| |
Collapse
|
10
|
A chromosome-level genome assembly of Plantago ovata. Sci Rep 2023; 13:1528. [PMID: 36707685 PMCID: PMC9883528 DOI: 10.1038/s41598-022-25078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/24/2022] [Indexed: 01/29/2023] Open
Abstract
Plantago ovata is cultivated for production of its seed husk (psyllium). When wet, the husk transforms into a mucilage with properties suitable for pharmaceutical industries, utilised in supplements for controlling blood cholesterol levels, and food industries for making gluten-free products. There has been limited success in improving husk quantity and quality through breeding approaches, partly due to the lack of a reference genome. Here we constructed the first chromosome-scale reference assembly of P. ovata using a combination of 5.98 million PacBio and 636.5 million Hi-C reads. We also used corrected PacBio reads to estimate genome size and transcripts to generate gene models. The final assembly covers ~ 500 Mb with 99.3% gene set completeness. A total of 97% of the sequences are anchored to four chromosomes with an N50 of ~ 128.87 Mb. The P. ovata genome contains 61.90% repeats, where 40.04% are long terminal repeats. We identified 41,820 protein-coding genes, 411 non-coding RNAs, 108 ribosomal RNAs, and 1295 transfer RNAs. This genome will provide a resource for plant breeding programs to, for example, reduce agronomic constraints such as seed shattering, increase psyllium yield and quality, and overcome crop disease susceptibility.
Collapse
|
11
|
Grieß-Osowski A, Voiniciuc C. Branched mannan and xyloglucan as a dynamic duo in plant cell walls. Cell Surf 2023; 9:100098. [PMID: 36756196 PMCID: PMC9900609 DOI: 10.1016/j.tcsw.2023.100098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Affiliation(s)
- Annika Grieß-Osowski
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany,Department of Biological Data Science, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany,Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States,Corresponding author at: Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
12
|
Mokshina N, Panina A, Galinousky D, Sautkina O, Mikshina P. Transcriptome profiling of celery petiole tissues reveals peculiarities of the collenchyma cell wall formation. PLANTA 2022; 257:18. [PMID: 36538078 DOI: 10.1007/s00425-022-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Transcriptome and biochemical analyses are applied to individual plant cell types to reveal potential players involved in the molecular machinery of cell wall formation in specialized cells such as collenchyma. Plant collenchyma is a mechanical tissue characterized by an irregular, thickened cell wall and the ability to support cell elongation. The composition of the collenchyma cell wall resembles that of the primary cell wall and includes cellulose, xyloglucan, and pectin; lignin is absent. Thus, the processes associated with the formation of the primary cell wall in the collenchyma can be more pronounced compared to other tissues due to its thickening. Primary cell walls intrinsic to different tissues may differ in structure and composition, which should be reflected at the transcriptomic level. For the first time, we conducted transcriptome profiling of collenchyma strands isolated from young celery petioles and compared them with other tissues, such as parenchyma and vascular bundles. Genes encoding proteins involved in the primary cell wall formation during cell elongation, such as xyloglucan endotransglucosylase/hydrolases, expansins, and leucine-rich repeat proteins, were significantly activated in the collenchyma. As the key players in the transcriptome orchestra of collenchyma, xyloglucan endotransglucosylase/hydrolase transcripts were characterized in more detail, including phylogeny and expression patterns. The comprehensive approach that included transcriptome and biochemical analyses allowed us to reveal peculiarities of collenchyma cell wall formation and modification, matching the abundance of upregulated transcripts and their potential substrates for revealed gene products. As a result, specific isoforms of multigene families were determined for further functional investigation.
Collapse
Affiliation(s)
- Natalia Mokshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia.
| | - Anastasia Panina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Dmitry Galinousky
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576, CNRS, Université de Lille, 59655, Villeneuve d'Ascq, France
| | - Olga Sautkina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Polina Mikshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| |
Collapse
|
13
|
Yu L, Yoshimi Y, Cresswell R, Wightman R, Lyczakowski JJ, Wilson LFL, Ishida K, Stott K, Yu X, Charalambous S, Wurman-Rodrich J, Terrett OM, Brown SP, Dupree R, Temple H, Krogh KBRM, Dupree P. Eudicot primary cell wall glucomannan is related in synthesis, structure, and function to xyloglucan. THE PLANT CELL 2022; 34:4600-4622. [PMID: 35929080 PMCID: PMC9614514 DOI: 10.1093/plcell/koac238] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Hemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned β-galactoglucomannan (β-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of β-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that β-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis β-GGM synthesis mutants show no obvious growth defects, genetic crosses between β-GGM and XyG mutants produce exacerbated phenotypes compared with XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of β-GGM and XyG in PCWs.
Collapse
Affiliation(s)
- Li Yu
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Yoshihisa Yoshimi
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | | | | | - Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Xiaolan Yu
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Stephan Charalambous
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Henry Temple
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | |
Collapse
|
14
|
Yang B, Stamm G, Bürstenbinder K, Voiniciuc C. Microtubule-associated IQD9 orchestrates cellulose patterning in seed mucilage. THE NEW PHYTOLOGIST 2022; 235:1096-1110. [PMID: 35488480 DOI: 10.1111/nph.18188] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis seeds release large capsules of mucilaginous polysaccharides, which are shaped by an intricate network of cellulosic microfibrils. Cellulose synthase complexes are guided by the microtubule cytoskeleton, but it is unclear which proteins mediate this process in the seed coat epidermis. Using reverse genetics, we identified IQ67 DOMAIN 9 (IQD9) and KINESIN LIGHT CHAIN-RELATED 1 (KLCR1) as two highly expressed genes during seed development and comprehensively characterized their roles in cell wall polysaccharide biosynthesis. Mutations in IQD9 as well as in KLCR1 lead to compact mucilage capsules with aberrant cellulose distribution, which can be rescued by transgene complementation. IQD9 physically interacts with KLCR1 and localizes to cortical microtubules (MTs) to maintain their organization in seed coat epidermal (SCE) cells. IQD9 as well as a previously identified TONNEAU1 (TON1) RECRUITING MOTIF 4 (TRM4) protein act to maintain cellulose synthase velocity. Our results demonstrate that IQD9, KLCR1 and TRM4 are MT-associated proteins that are required for seed mucilage architecture. This study provides the first direct evidence that members of the IQD, KLCR and TRM families have overlapping roles in cell wall biosynthesis. Therefore, SCE cells provide an attractive system to further decipher the complex genetic regulation of polarized cellulose deposition.
Collapse
Affiliation(s)
- Bo Yang
- Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Gina Stamm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
15
|
Du J, Ruan M, Li X, Lan Q, Zhang Q, Hao S, Gou X, Anderson CT, Xiao C. Pectin methyltransferase QUASIMODO2 functions in the formation of seed coat mucilage in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153709. [PMID: 35597109 DOI: 10.1016/j.jplph.2022.153709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Pectin, cellulose, and hemicelluloses are major components of primary cell walls in plants. In addition to cell adhesion and expansion, pectin plays a central role in seed mucilage. Seed mucilage contains abundant pectic rhamnogalacturonan-I (RG-I) and lower amounts of homogalacturonan (HG), cellulose, and hemicelluloses. Previously, accumulated evidence has addressed the role of pectin RG-I in mucilage production and adherence. However, less is known about the function of pectin HG in seed coat mucilage formation. In this study, we analyzed a novel mutant, designated things fall apart2 (tfa2), which contains a mutation in HG methyltransferase QUASIMODO2 (QUA2). Etiolated tfa2 seedlings display short hypocotyls and adhesion defects similar to qua2 and tumorous shoot development2 (tsd2) alleles, and show seed mucilage defects. The diminished uronic acid content and methylesterification degree of HG in mutant seed mucilage indicate the role of HG in the formation of seed mucilage. Cellulosic rays in mutant mucilage are collapsed. The epidermal cells of seed coat in tfa2 and tsd2 display deformed columellae and reduced radial wall thickness. Under polyethylene glycol treatment, seeds from these three mutant alleles exhibit reduced germination rates. Together, these data emphasize the requirement of pectic HG biosynthesis for the synthesis of seed mucilage, and the functions of different pectin domains together with cellulose in regulating its formation, expansion, and release.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Mei Ruan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Xiaokun Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Qiuyan Lan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Qing Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Shuang Hao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Xin Gou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
16
|
Park ME, Lee KR, Chen GQ, Kim HU. Enhanced production of hydroxy fatty acids in Arabidopsis seed through modification of multiple gene expression. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:66. [PMID: 35717237 PMCID: PMC9206371 DOI: 10.1186/s13068-022-02167-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Castor (Ricinus communis L.) seeds contain unusual fatty acid, hydroxy fatty acid (HFA) used as a chemical feedstock for numerous industrial products. Castor cultivation is limited by the potent toxin ricin in its seeds and other poor agronomic traits, so it is advantageous to develop a suitable HFA-producing crop. Significant research efforts have been made to produce HFA in model Arabidopsis, but the level of HFA produced in transgenic Arabidopsis is much less than the level found in castor seeds which produce 90% HFA in seed oil. RESULTS We designed a transformation construct that allowed co-expression of five essential castor genes (named pCam5) involved in HFA biosynthesis, including an oleate [Formula: see text] 12-hydroxylase (FAH12), diacylglycerol (DAG) acyltransferase 2 (DGAT2), phospholipid: DAG acyltransferase 1-2 (PDAT1-2), phosphatidylcholine (PC): DAG cholinephosphotransferase (PDCT) and Lyso-PC acyltransferase (LPCAT). Transgenic Arabidopsis pCam5 lines produced HFA counting for 25% in seed oil. By knocking out Arabidopsis Fatty acid elongase 1 (AtFAE1) in pCam5 using CRISPR/Cas9 technology, the resulted pCam5-atfae1 lines produced over 31% of HFA. Astonishingly, the pCam5-atfae1 line increased seed size, weight, and total oil per seed exceeding wild type by 40%. Seed germination, seedling growth and seed mucilage content of pCam5-atfae1 lines were not affected by the genetic modification. CONCLUSIONS Our results provide not only insights for future research uncovering mechanisms of HFA synthesis in seed, but also metabolic engineering strategies for generating safe HFA-producing crops.
Collapse
Affiliation(s)
- Mid-Eum Park
- grid.263333.40000 0001 0727 6358Department of Molecular Biology, Sejong University, Seoul, Republic of Korea
| | - Kyeong-Ryeol Lee
- grid.420186.90000 0004 0636 2782Department of Agricultural Biotechnology, Rural Development Administration, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Grace Q. Chen
- grid.417548.b0000 0004 0478 6311Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA USA
| | - Hyun Uk Kim
- grid.263333.40000 0001 0727 6358Department of Molecular Biology, Sejong University, Seoul, Republic of Korea ,grid.263333.40000 0001 0727 6358Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, 05006 Republic of Korea
| |
Collapse
|
17
|
Voiniciuc C. Modern mannan: a hemicellulose's journey. THE NEW PHYTOLOGIST 2022; 234:1175-1184. [PMID: 35285041 DOI: 10.1111/nph.18091] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Hemicellulosic polysaccharides built of β-1,4-linked mannose units have been found throughout the plant kingdom and have numerous industrial applications. Here, I review recent advances in the biosynthesis and modification of plant β-mannans. These matrix polymers can associate with cellulose bundles to impact the mechanical properties of plant fibers or biocomposites. In certain algae, mannan microfibrils even replace cellulose as the dominant structural component of the cell wall. Conversely, patterned galactoglucomannan found in Arabidopsis thaliana seed mucilage significantly modulates cell wall architecture and abiotic stress tolerance despite its relatively low content. I also discuss the subcellular requirements for β-mannan biosynthesis, the increasing number of carbohydrate-active enzymes involved in this process, and the players that continue to be puzzling. I discuss how cellulose synthase-like enzymes elongate (gluco)mannans in orthogonal hosts and highlight the discoveries of plant enzymes that add specific galactosyl or acetyl decorations. Hydrolytic enzymes such as endo-β-1,4-mannanases have recently been involved in a wide range of biological contexts including seed germination, wood formation, heavy metal tolerance, and defense responses. Synthetic biology tools now provide faster tracks to modulate the increasingly-relevant mannan structures for improved plant traits and bioproducts.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
18
|
Zhang S, Sheng H, Ma Y, Wei Y, Liu D, Dou Y, Cui H, Liang B, Liesche J, Li J, Chen S. Mutation of CESA1 phosphorylation site influences pectin synthesis and methylesterification with a role in seed development. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153631. [PMID: 35180541 DOI: 10.1016/j.jplph.2022.153631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 05/27/2023]
Abstract
Cell wall biogenesis is required for the production of seeds of higher plants. However, little is known about regulatory mechanisms underlying cell wall biogenesis during seed formation. Here we show a role for the phosphorylation of Arabidopsis cellulose synthase 1 (AtCESA1) in modulating pectin synthesis and methylesterification in seed coat mucilage. A phosphor-null mutant of AtCESA1 on T166 (AtCESA1T166A) was constructed and introduced into a null mutant of AtCESA1 (Atcesa1-1). The resulting transgenic lines showed a slight but significant decrease in cellulose contents in mature seeds. Defects in cellulosic ray architecture along with reduced levels of non-adherent and adherent mucilage were observed on the seeds of the AtCESA1T166A mutant. Reduced mucilage pectin synthesis was also reflected by a decrease in the level of uronic acid. Meanwhile, an increase in the degree of pectin methylesterification was also observed in the seed coat mucilage of AtCESA1T166A mutant. Change in seed development was further reflected by a delayed germination and about 50% increase in the accumulation of proanthocyanidins, which is known to bind pectin and inhibit seed germination as revealed by previous studies. Taken together, the results suggest a role of AtCESA1 phosphorylation on T166 in modulating mucilage pectin synthesis and methylesterification as well as cellulose synthesis with a role in seed development.
Collapse
Affiliation(s)
- Shuangxi Zhang
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huachun Sheng
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yue Ma
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanping Wei
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dan Liu
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanhua Dou
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiying Cui
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Boyou Liang
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Johannes Liesche
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jisheng Li
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shaolin Chen
- Biomass Energy Center for Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
19
|
Zhong R, Cui D, Phillips DR, Sims NT, Ye ZH. Functional analysis of GT61 glycosyltransferases from grass species in xylan substitutions. PLANTA 2021; 254:131. [PMID: 34821996 DOI: 10.1007/s00425-021-03794-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Multiple rice GT61 members were demonstrated to be xylan arabinosyltransferases (XATs) mediating 3-O-arabinosylation of xylan and the functions of XATs and xylan 2-O-xylosyltransferases were shown to be conserved in grass species. Xylan is the major hemicellulose in the cell walls of grass species and it is typified by having arabinofuranosyl (Araf) substitutions. In this report, we demonstrated that four previously uncharacterized, Golgi-localized glycosyltransferases residing in clade A or B of the rice GT61 family were able to mediate 3-O-arabinosylation of xylan when heterologously expressed in the Arabidopsis gux1/2/3 triple mutant. Biochemical characterization of their recombinant proteins established that they were xylan arabinosyltransferases (XATs) capable of transferring Araf residues onto xylohexaose acceptors, and thus they were named OsXAT4, OsXAT5, OsXAT6 and OsXAT7. OsXAT5 and the previously identified OsXAT2 were shown to be able to arabinosylate xylooligomers with a degree of polymerization of as low as 3. Furthermore, a number of XAT homologs from maize, sorghum, Brachypodium and switchgrass were found to exhibit activities catalyzing Araf transfer onto xylohexaose, indicating that they are XATs involved in xylan arabinosylation in these grass species. Moreover, we revealed that homologs of another GT61 member, xylan 2-O-xylosyltransferase (XYXT1), from these grass species could mediate 2-O-xylosylation of xylan when expressed in the Arabidopsis gux1/2/3 mutant. Together, our findings indicate that multiple OsXATs are involved in 3-O-arabinosylation of xylan and the functions of XATs and XYXTs are conserved in grass species.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dongtao Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Nathanael T Sims
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
20
|
Nishigaki N, Yoshimi Y, Kuki H, Kunieda T, Hara-Nishimura I, Tsumuraya Y, Takahashi D, Dupree P, Kotake T. Galactoglucomannan structure of Arabidopsis seed-coat mucilage in GDP-mannose synthesis impaired mutants. PHYSIOLOGIA PLANTARUM 2021; 173:1244-1252. [PMID: 34380178 DOI: 10.1111/ppl.13519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Cell-wall polysaccharides are synthesized from nucleotide sugars by glycosyltransferases. However, in what way the level of nucleotide sugars affects the structure of the polysaccharides is not entirely clear. guanosine diphosphate (GDP)-mannose (GDP-Man) is one of the major nucleotide sugars in plants and serves as a substrate in the synthesis of mannan polysaccharides. GDP-Man is synthesized from mannose 1-phosphate and GTP by a GDP-Man pyrophosphorylase, VITAMIN C DEFECTIVE1 (VTC1), which is positively regulated by the interacting protein KONJAC1 (KJC1) in Arabidopsis. Since seed-coat mucilage can serve as a model of the plant cell wall, we examined the influence of vtc1 and kjc1 mutations on the synthesis of mucilage galactoglucomannan. Sugar composition analysis showed that mannose content in adherent mucilage of kjc1 and vtc1 mutants was only 42% and 11% of the wild-type, respectively, indicating a drastic decrease of galactoglucomannan. On the other hand, structural analysis based on specific oligosaccharides released by endo-β-1,4-mannanase indicated that galactoglucomannan had a patterned glucomannan backbone consisting of alternating residues of glucose and mannose and the frequency of α-galactosyl branches was also similar to the wild type structure. These results suggest that the structure of mucilage galactoglucomannan is mainly determined by properties of glycosyltransferases rather than the availability of nucleotide sugars.
Collapse
Affiliation(s)
- Naho Nishigaki
- Graduate School of Science and Engineering, Saitama, Japan
| | | | - Hiroaki Kuki
- Graduate School of Science and Engineering, Saitama, Japan
| | - Tadashi Kunieda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama, Japan
- Green Biology Research Center, Saitama University, Saitama, Japan
| |
Collapse
|
21
|
Sterol Glucosyltransferases Tailor Polysaccharide Accumulation in Arabidopsis Seed Coat Epidermal Cells. Cells 2021; 10:cells10102546. [PMID: 34685527 PMCID: PMC8533880 DOI: 10.3390/cells10102546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
The conjugation of sterols with a Glc moiety is catalyzed by sterol glucosyltransferases (SGTs). A portion of the resulting steryl glucosides (SG) are then esterified with a long-chain fatty acid to form acyl-SG (ASG). SG and ASG are prevalent components of plant cellular membranes and influence their organization and functional properties. Mutant analysis had previously inferred that two Arabidopsis SGTs, UGT80A2 and UGT80B1/TT15, could have specialized roles in the production of SG in seeds, despite an overlap in their enzymatic activity. Here, we establish new roles for both enzymes in the accumulation of polysaccharides in seed coat epidermal cells (SCEs). The rhamnogalacturonan-I (RG-I) content of the inner layer of seed mucilage was higher in ugt80A2, whereas RG-I accumulation was lower in mutants of UGT80B1, with double mutant phenotypes indicating that UGT80A2 acts independently from UGT80B1. In contrast, an additive phenotype was observed in double mutants for increased galactoglucomannan (GGM) content. Double mutants also exhibited increased polymer density within the inner mucilage layer. In contrast, cell wall defects were only observed in mutants defective for UGT80B1, while more mucilage cellulose was only observed when UGT80A2 was mutated. The generation of a range of phenotypic effects, simultaneously within a single cell type, demonstrates that the adjustment of the SG and ASG composition of cellular membranes by UGT80A2 and UGT80B1 tailors polysaccharide accumulation in Arabidopsis seeds.
Collapse
|
22
|
de Vries L, Guevara-Rozo S, Cho M, Liu LY, Renneckar S, Mansfield SD. Tailoring renewable materials via plant biotechnology. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:167. [PMID: 34353358 PMCID: PMC8344217 DOI: 10.1186/s13068-021-02010-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 05/03/2023]
Abstract
Plants inherently display a rich diversity in cell wall chemistry, as they synthesize an array of polysaccharides along with lignin, a polyphenolic that can vary dramatically in subunit composition and interunit linkage complexity. These same cell wall chemical constituents play essential roles in our society, having been isolated by a variety of evolving industrial processes and employed in the production of an array of commodity products to which humans are reliant. However, these polymers are inherently synthesized and intricately packaged into complex structures that facilitate plant survival and adaptation to local biogeoclimatic regions and stresses, not for ease of deconstruction and commercial product development. Herein, we describe evolving techniques and strategies for altering the metabolic pathways related to plant cell wall biosynthesis, and highlight the resulting impact on chemistry, architecture, and polymer interactions. Furthermore, this review illustrates how these unique targeted cell wall modifications could significantly extend the number, diversity, and value of products generated in existing and emerging biorefineries. These modifications can further target the ability for processing of engineered wood into advanced high performance materials. In doing so, we attempt to illuminate the complex connection on how polymer chemistry and structure can be tailored to advance renewable material applications, using all the chemical constituents of plant-derived biopolymers, including pectins, hemicelluloses, cellulose, and lignins.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA
| | - Sydne Guevara-Rozo
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - MiJung Cho
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Li-Yang Liu
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Scott Renneckar
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA.
| |
Collapse
|
23
|
Kim MH, Tran TNA, Cho JS, Park EJ, Lee H, Kim DG, Hwang S, Ko JH. Wood transcriptome analysis of Pinus densiflora identifies genes critical for secondary cell wall formation and NAC transcription factors involved in tracheid formation. TREE PHYSIOLOGY 2021; 41:1289-1305. [PMID: 33440425 DOI: 10.1093/treephys/tpab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 05/27/2023]
Abstract
Although conifers have significant ecological and economic value, information on transcriptional regulation of wood formation in conifers is still limited. Here, to gain insight into secondary cell wall (SCW) biosynthesis and tracheid formation in conifers, we performed wood tissue-specific transcriptome analyses of Pinus densiflora (Korean red pine) using RNA sequencing. In addition, to obtain full-length transcriptome information, PacBio single molecule real-time iso-sequencing was carried out using RNAs from 28 tissues of P. densiflora. Subsequent comparative tissue-specific transcriptome analysis successfully pinpointed critical genes encoding key proteins involved in biosynthesis of the major secondary wall components (cellulose, galactoglucomannan, xylan and lignin). Furthermore, we predicted a total of 62 NAC (NAM, ATAF1/2 and CUC2) family transcription factor members and identified seven PdeNAC genes preferentially expressed in developing xylem tissues in P. densiflora. Protoplast-based transcriptional activation analysis found that four PdeNAC genes, homologous to VND, NST and SND/ANAC075, upregulated GUS activity driven by an SCW-specific cellulose synthase promoter. Consistently, transient overexpression of the four PdeNACs induced xylem vessel cell-like SCW deposition in both tobacco (Nicotiana benthamiana) and Arabidopsis leaves. Taken together, our data provide a foundation for further research to unravel transcriptional regulation of wood formation in conifers, especially SCW formation and tracheid differentiation.
Collapse
Affiliation(s)
- Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Thi Ngoc Anh Tran
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Eung-Jun Park
- Division of Forest Biotechnology, National Institute of Forest Science, 39 Onjeong-ro, Suwon 16631, Republic of Korea
| | - Hyoshin Lee
- Division of Forest Biotechnology, National Institute of Forest Science, 39 Onjeong-ro, Suwon 16631, Republic of Korea
| | - Dong-Gwan Kim
- Department of Bioindustry and Bioresource Engineering, Department of Molecular Biology and Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Seoul 05006, Republic of Korea
| | - Seongbin Hwang
- Department of Bioindustry and Bioresource Engineering, Department of Molecular Biology and Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Seoul 05006, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| |
Collapse
|
24
|
Robert M, Waldhauer J, Stritt F, Yang B, Pauly M, Voiniciuc C. Modular biosynthesis of plant hemicellulose and its impact on yeast cells. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:140. [PMID: 34147122 PMCID: PMC8214268 DOI: 10.1186/s13068-021-01985-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND The carbohydrate polymers that encapsulate plants cells have benefited humans for centuries and have valuable biotechnological uses. In the past 5 years, exciting possibilities have emerged in the engineering of polysaccharide-based biomaterials. Despite impressive advances on bacterial cellulose-based hydrogels, comparatively little is known about how plant hemicelluloses can be reconstituted and modulated in cells suitable for biotechnological purposes. RESULTS Here, we assembled cellulose synthase-like A (CSLA) enzymes using an optimized Pichia pastoris platform to produce tunable heteromannan (HM) polysaccharides in yeast. By swapping the domains of plant mannan and glucomannan synthases, we engineered chimeric CSLA proteins that made β-1,4-linked mannan in quantities surpassing those of the native enzymes while minimizing the burden on yeast growth. Prolonged expression of a glucomannan synthase from Amorphophallus konjac was toxic to yeast cells: reducing biomass accumulation and ultimately leading to compromised cell viability. However, an engineered glucomannan synthase as well as CSLA pure mannan synthases and a CSLC glucan synthase did not inhibit growth. Interestingly, Pichia cell size could be increased or decreased depending on the composition of the CSLA protein sequence. HM yield and glucose incorporation could be further increased by co-expressing chimeric CSLA proteins with a MANNAN-SYNTHESIS-RELATED (MSR) co-factor from Arabidopsis thaliana. CONCLUSION The results provide novel routes for the engineering of polysaccharide-based biomaterials that are needed for a sustainable bioeconomy. The characterization of chimeric cellulose synthase-like enzymes in yeast offers an exciting avenue to produce plant polysaccharides in a tunable manner. Furthermore, cells modified with non-toxic plant polysaccharides such as β-mannan offer a modular chassis to produce and encapsulate sensitive cargo such as therapeutic proteins.
Collapse
Affiliation(s)
- Madalen Robert
- Independent Junior Research Group - Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany
| | - Julian Waldhauer
- Independent Junior Research Group - Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany
| | - Fabian Stritt
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Bo Yang
- Independent Junior Research Group - Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group - Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany.
| |
Collapse
|
25
|
Ajayi OO, Held MA, Showalter AM. Two β-glucuronosyltransferases involved in the biosynthesis of type II arabinogalactans function in mucilage polysaccharide matrix organization in Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:245. [PMID: 34051740 PMCID: PMC8164333 DOI: 10.1186/s12870-021-03012-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Arabinogalactan-proteins (AGPs) are heavily glycosylated with type II arabinogalactan (AG) polysaccharides attached to hydroxyproline residues in their protein backbone. Type II AGs are necessary for plant growth and critically important for the establishment of normal cellular functions. Despite the importance of type II AGs in plant development, our understanding of the underlying role of these glycans/sugar residues in mucilage formation and seed coat epidermal cell development is poorly understood and far from complete. One such sugar residue is the glucuronic acid residues of AGPs that are transferred onto AGP glycans by the action of β-glucuronosyltransferase genes/enzymes. RESULTS Here, we have characterized two β-glucuronosyltransferase genes, GLCAT14A and GLCAT14C, that are involved in the transfer of β-glucuronic acid (GlcA) to type II AGs. Using a reverse genetics approach, we observed that glcat14a-1 mutants displayed subtle alterations in mucilage pectin homogalacturonan (HG) compared to wild type (WT), while glcat14a-1glcat14c-1 mutants displayed much more severe mucilage phenotypes, including loss of adherent mucilage and significant alterations in cellulose ray formation and seed coat morphology. Monosaccharide composition analysis showed significant alterations in the sugar amounts of glcat14a-1glcat14c-1 mutants relative to WT in the adherent and non-adherent seed mucilage. Also, a reduction in total mucilage content was observed in glcat14a-1glcat14c-1 mutants relative to WT. In addition, glcat14a-1glcat14c-1 mutants showed defects in pectin formation, calcium content and the degree of pectin methyl-esterification (DM) as well as reductions in crystalline cellulose content and seed size. CONCLUSIONS These results raise important questions regarding cell wall polymer interactions and organization during mucilage formation. We propose that the enzymatic activities of GLCAT14A and GLCAT14C play partially redundant roles and are required for the organization of the mucilage matrix and seed size in Arabidopsis thaliana. This work brings us a step closer towards identifying potential gene targets for engineering plant cell walls for industrial applications.
Collapse
Affiliation(s)
- Oyeyemi O. Ajayi
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA
| | - Michael A. Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 USA
| | - Allan M. Showalter
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701 USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
26
|
Liu Y, Liu Z, Zhu X, Hu X, Zhang H, Guo Q, Yada RY, Cui SW. Seed coat mucilages: Structural, functional/bioactive properties, and genetic information. Compr Rev Food Sci Food Saf 2021; 20:2534-2559. [PMID: 33836113 DOI: 10.1111/1541-4337.12742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Seed coat mucilages are mainly polysaccharides covering the outer layer of the seeds to facilitate seed hydration and germination, thereby improving seedling emergence and reducing seedling mortality. Four types of polysaccharides are found in mucilages including xylan, pectin, glucomannan, and cellulose. Recently, mucilages from flaxseed, yellow mustard seed, chia seed, and so on, have been used extensively in the areas of food, pharmaceutical, and cosmetics contributing to stability, texture, and appearance. This review, for the first time, addresses the similarities and differences in physicochemical properties, molecular structure, and functional/bioactive properties of mucilages among different sources; highlights their structure and function relationships; and systematically summarizes the related genetic information, aiming with the intent to explore the potential functions thereby extending their future industrial applications.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhenfei Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Xuerui Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steve W Cui
- Guelph Research and Development Centre, Agri- and Agri-food Canada, Guelph, Ontario, Canada
| |
Collapse
|
27
|
Allelign Ashagre H, Zaltzman D, Idan-Molakandov A, Romano H, Tzfadia O, Harpaz-Saad S. FASCICLIN-LIKE 18 Is a New Player Regulating Root Elongation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:645286. [PMID: 33897736 PMCID: PMC8058476 DOI: 10.3389/fpls.2021.645286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 05/26/2023]
Abstract
The plasticity of root development represents a key trait that enables plants to adapt to diverse environmental cues. The pattern of cell wall deposition, alongside other parameters, affects the extent, and direction of root growth. In this study, we report that FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 18 (FLA18) plays a role during root elongation in Arabidopsis thaliana. Using root-specific co-expression analysis, we identified FLA18 to be co-expressed with a sub-set of genes required for root elongation. FLA18 encodes for a putative extra-cellular arabinogalactan protein from the FLA-gene family. Two independent T-DNA insertion lines, named fla18-1 and fla18-2, display short and swollen lateral roots (LRs) when grown on sensitizing condition of high-sucrose containing medium. Unlike fla4/salt overly sensitive 5 (sos5), previously shown to display short and swollen primary root (PR) and LRs under these conditions, the PR of the fla18 mutants is slightly longer compared to the wild-type. Overexpression of the FLA18 CDS complemented the fla18 root phenotype. Genetic interaction between either of the fla18 alleles and sos5 reveals a more severe perturbation of anisotropic growth in both PR and LRs, as compared to the single mutants and the wild-type under restrictive conditions of high sucrose or high-salt containing medium. Additionally, under salt-stress conditions, fla18sos5 had a small, chlorotic shoot phenotype, that was not observed in any of the single mutants or the wild type. As previously shown for sos5, the fla18-1 and fla18-1sos5 root-elongation phenotype is suppressed by abscisic acid (ABA) and display hypersensitivity to the ABA synthesis inhibitor, Fluridon. Last, similar to other cell wall mutants, fla18 root elongation is hypersensitive to the cellulose synthase inhibitor, Isoxaben. Altogether, the presented data assign a new role for FLA18 in the regulation of root elongation. Future studies of the unique vs. redundant roles of FLA proteins during root elongation is anticipated to shed a new light on the regulation of root architecture during plant adaptation to different growth conditions.
Collapse
Affiliation(s)
- Hewot Allelign Ashagre
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Zaltzman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anat Idan-Molakandov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hila Romano
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Tzfadia
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Institute for Tropical Medicine, Antwerp, Belgium
| | - Smadar Harpaz-Saad
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
28
|
Saez-Aguayo S, Parra-Rojas JP, Sepúlveda-Orellana P, Celiz-Balboa J, Arenas-Morales V, Sallé C, Salinas-Grenet H, Largo-Gosens A, North HM, Ralet MC, Orellana A. Transport of UDP-rhamnose by URGT2, URGT4, and URGT6 modulates rhamnogalacturonan-I length. PLANT PHYSIOLOGY 2021; 185:914-933. [PMID: 33793913 PMCID: PMC8133686 DOI: 10.1093/plphys/kiaa070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/19/2020] [Indexed: 05/10/2023]
Abstract
Rhamnogalacturonan-I biosynthesis occurs in the lumen of the Golgi apparatus, a compartment where UDP-Rhamnose and UDP-Galacturonic Acid are the main substrates for synthesis of the backbone polymer of pectin. Recent studies showed that UDP-Rha is transported from the cytosol into the Golgi apparatus by a family of six UDP-rhamnose/UDP-galactose transporters (URGT1-6). In this study, analysis of adherent and soluble mucilage (SM) of Arabidopsis thaliana seeds revealed distinct roles of URGT2, URGT4, and URGT6 in mucilage biosynthesis. Characterization of SM polymer size showed shorter chains in the urgt2 urgt4 and urgt2 urgt4 urgt6 mutants, suggesting that URGT2 and URGT4 are mainly involved in Rhamnogalacturonan-I (RG-I) elongation. Meanwhile, mutants in urgt6 exhibited changes only in adherent mucilage (AM). Surprisingly, the estimated number of RG-I polymer chains present in urgt2 urgt4 and urgt2 urgt4 urgt6 mutants was higher than in wild-type. Interestingly, the increased number of shorter RG-I chains was accompanied by an increased amount of xylan. In the urgt mutants, expression analysis of other genes involved in mucilage biosynthesis showed some compensation. Studies of mutants of transcription factors regulating mucilage formation indicated that URGT2, URGT4, and URGT6 are likely part of a gene network controlled by these regulators and involved in RG-I synthesis. These results suggest that URGT2, URGT4, and URGT6 play different roles in the biosynthesis of mucilage, and the lack of all three affects the production of shorter RG-I polymers and longer xylan domains.
Collapse
Affiliation(s)
- Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
| | | | | | | | | | - Christine Sallé
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, F-78026 Versailles Cedex, France
| | | | - Asier Largo-Gosens
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Helen M North
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, F-78026 Versailles Cedex, France
| | | | - Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago 8370146, Chile
- FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Author for communication:
| |
Collapse
|
29
|
Cambert M, Berger A, Sallé C, Esling S, Charif D, Cadoret T, Ralet MC, North HM, Rondeau-Mouro C. Datasets of seed mucilage traits for Arabidopsis thaliana natural accessions with atypical outer mucilage. Sci Data 2021; 8:79. [PMID: 33750820 PMCID: PMC7943791 DOI: 10.1038/s41597-021-00857-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/12/2021] [Indexed: 11/09/2022] Open
Abstract
The seeds of Arabidopsis thaliana become encapsulated by a layer of mucilage when imbibed. This polysaccharide-rich hydrogel is constituted of two layers, an outer layer that can be easily extracted with water and an inner layer that must be examined in situ in order to study its properties and structure in a non-destructive manner or disintegrated through hydrolysis or physical means in order to analyze its constituents. Mucilage production is an adaptive trait and we have exploited 19 natural accessions previously found to have atypical and varied outer mucilage characteristics. A detailed study using biochemical, histological and Time-Domain NMR analyses has been used to generate three related datasets covering 33 traits measured in four biological replicates. This data will be a rich resource for genetic, biochemical, structural and functional analyses investigating mucilage constituent polysaccharides or their role as adaptive traits.
Collapse
Affiliation(s)
- Mireille Cambert
- INRAE, UR1466 OPAALE, 17 avenue de Cucillé, CS 64427, 35044, Rennes Cedex, France
| | - Adeline Berger
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Route de Saint Cyr, RD10, 78000, Versailles, France
| | - Christine Sallé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Route de Saint Cyr, RD10, 78000, Versailles, France
| | - Stéphanie Esling
- INRAE, UR1466 OPAALE, 17 avenue de Cucillé, CS 64427, 35044, Rennes Cedex, France
| | - Delphine Charif
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Route de Saint Cyr, RD10, 78000, Versailles, France
| | - Tudel Cadoret
- INRAE, UR1268 BIA, 3, Impasse Yvette Cauchois, CS 71627, 44316 Cedex 3, Nantes, France
| | - Marie-Christine Ralet
- INRAE, UR1268 BIA, 3, Impasse Yvette Cauchois, CS 71627, 44316 Cedex 3, Nantes, France
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Route de Saint Cyr, RD10, 78000, Versailles, France.
| | | |
Collapse
|
30
|
Yang B, Hofmann F, Usadel B, Voiniciuc C. Seed hemicelluloses tailor mucilage properties and salt tolerance. THE NEW PHYTOLOGIST 2021; 229:1946-1954. [PMID: 33128402 DOI: 10.1111/nph.17056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
While Arabidopsis seed coat epidermal cells have become an excellent genetic system to study the biosynthesis and structural roles of various cell wall polymers, the physiological function of the secreted mucilaginous polysaccharides remains ambiguous. Seed mucilage is shaped by two distinct classes of highly substituted hemicelluloses along with cellulose and structural proteins, but their interplay has not been explored. We deciphered the functions of four distinct classes of cell wall polymers by generating a series of double mutants with defects in heteromannan, xylan, cellulose, or the arabinogalactan protein SALT-OVERLY SENSITIVE 5 (SOS5), and evaluating their impact on mucilage architecture and seed germination during salt stress. We discovered that muci10 seeds, lacking heteromannan branches, had elevated tolerance to salt stress, while heteromannan elongation mutants exhibited reduced germination in calcium chloride (CaCl2 ). By contrast, xylan made by MUCILAGE-RELATED21 (MUCI21) was found to be required for the adherence of mucilage pectin to microfibrils made by CELLULOSE SYNTHASE5 (CESA5) as well as to a SOS5-mediated network. Our results indicate that the substitution of xylan and glucomannan in seeds can fine-tune mucilage adherence and salt tolerance, respectively. The study of germinating seeds can thus provide insights into the synthesis, modification and function of complex glycans.
Collapse
Affiliation(s)
- Bo Yang
- Independent Junior Research Group - Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Institute for Botany and Molecular Genetics (IBMG), BioSC, RWTH Aachen University, Aachen, 52074, Germany
| | - Florian Hofmann
- Institute for Botany and Molecular Genetics (IBMG), BioSC, RWTH Aachen University, Aachen, 52074, Germany
- Institute for Biosciences and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Björn Usadel
- Institute for Botany and Molecular Genetics (IBMG), BioSC, RWTH Aachen University, Aachen, 52074, Germany
- Institute for Biosciences and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group - Designer Glycans, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Institute for Botany and Molecular Genetics (IBMG), BioSC, RWTH Aachen University, Aachen, 52074, Germany
- Institute for Biosciences and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Jülich, 52425, Germany
| |
Collapse
|
31
|
Mielke S, Zimmer M, Meena MK, Dreos R, Stellmach H, Hause B, Voiniciuc C, Gasperini D. Jasmonate biosynthesis arising from altered cell walls is prompted by turgor-driven mechanical compression. SCIENCE ADVANCES 2021; 7:7/7/eabf0356. [PMID: 33568489 PMCID: PMC7875531 DOI: 10.1126/sciadv.abf0356] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/22/2020] [Indexed: 05/15/2023]
Abstract
Despite the vital roles of jasmonoyl-isoleucine (JA-Ile) in governing plant growth and environmental acclimation, it remains unclear what intracellular processes lead to its induction. Here, we provide compelling genetic evidence that mechanical and osmotic regulation of turgor pressure represents a key elicitor of JA-Ile biosynthesis. After identifying cell wall mutant alleles in KORRIGAN1 (KOR1) with elevated JA-Ile in seedling roots, we found that ectopic JA-Ile resulted from cell nonautonomous signals deriving from enlarged cortex cells compressing inner tissues and stimulating JA-Ile production. Restoring cortex cell size by cell type-specific KOR1 complementation, by isolating a genetic kor1 suppressor, and by lowering turgor pressure with hyperosmotic treatments abolished JA-Ile signaling. Conversely, hypoosmotic treatment activated JA-Ile signaling in wild-type plants. Furthermore, constitutive JA-Ile levels guided mutant roots toward greater water availability. Collectively, these findings enhance our understanding on JA-Ile biosynthesis initiation and reveal a previously undescribed role of JA-Ile in orchestrating environmental resilience.
Collapse
Affiliation(s)
- Stefan Mielke
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Marlene Zimmer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Mukesh Kumar Meena
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hagen Stellmach
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| |
Collapse
|
32
|
Cheng T, Zhao P, Ren Y, Zou J, Sun MX. AtMIF1 increases seed oil content by attenuating GL2 inhibition. THE NEW PHYTOLOGIST 2021; 229:2152-2162. [PMID: 33098089 DOI: 10.1111/nph.17016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/30/2020] [Indexed: 05/22/2023]
Abstract
Vegetable oil is a major edible oil and an important industrial raw material. However, breeders have found it challenging to improve the oil content of crop seeds, and little is known about regulators with the potential to increase oil content via molecular engineering in modern oil crop breeding. We reported an F-box protein, Arabidopsis thaliana MYB Interaction Factor 1 (AtMIF1), which is a member of the ubiquitin-protein ligase E3 complex involved in the 26S proteasome protein degradation pathway. AtMIF1 physically interacts with MYB domain protein 5 (MYB5), which results in MYB5 degradation, so that transcriptional activation of the MYB/bHLH/WD-repeat (MBW) complex does not occur normally and GLABRA2 (GL2), encoding an inhibitor of oil content and functioning as a direct downstream gene of MBW, is not properly transcribed. AtMIF1 functioned as a positive regulator that increases oil content by attenuating GL2 inhibition. We overexpressed AtMIF1 and obtained transgenic plants with significantly higher seed oil contents. Importantly, both vegetative and reproductive growth of the transgenic plants appeared normal. In summary, this work reveals a novel regulator, AtMIF1, and a new regulatory pathway, 26S proteasome-AtMIF1-MYB5, for increasing the oil content of seeds without affecting plant growth, thus facilitating oil crop breeding.
Collapse
Affiliation(s)
- Tianhe Cheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanru Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
33
|
Chai S, Yao Q, Zhang X, Xiao X, Fan X, Zeng J, Sha L, Kang H, Zhang H, Li J, Zhou Y, Wang Y. The semi-dwarfing gene Rht-dp from dwarf polish wheat (Triticum polonicum L.) is the "Green Revolution" gene Rht-B1b. BMC Genomics 2021; 22:63. [PMID: 33468043 PMCID: PMC7814455 DOI: 10.1186/s12864-021-07367-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/01/2021] [Indexed: 11/20/2022] Open
Abstract
Background The wheat dwarfing gene increases lodging resistance, the grain number per spike and harvest index. Dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB, DPW), initially collected from Tulufan, Xinjiang, China, carries a semi-dwarfing gene Rht-dp on chromosome 4BS. However, Rht-dp and its dwarfing mechanism are unknown. Results Homologous cloning and mapping revealed that Rht-dp is the ‘Green Revolution’ gene Rht-B1b. A haplotype analysis in 59 tetraploid wheat accessions showed that Rht-B1b was only present in T. polonicum. Transcriptomic analysis of two pairs of near-isogenic lines (NILs) of DPW × Tall Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB, TPW) revealed 41 differentially expressed genes (DEGs) as potential dwarfism-related genes. Among them, 28 functionally annotated DEGs were classed into five sub-groups: hormone-related signalling transduction genes, transcription factor genes, cell wall structure-related genes, reactive oxygen-related genes, and nitrogen regulation-related genes. Conclusions These results indicated that Rht-dp is Rht-B1b, which regulates pathways related to hormones, reactive oxygen species, and nitrogen assimilation to modify the cell wall structure, and then limits cell wall loosening and inhibits cell elongation, thereby causing dwarfism in DPW. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07367-x.
Collapse
Affiliation(s)
- Songyue Chai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qin Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
34
|
Verhertbruggen Y, Bouder A, Vigouroux J, Alvarado C, Geairon A, Guillon F, Wilkinson MD, Stritt F, Pauly M, Lee MY, Mortimer JC, Scheller HV, Mitchell RAC, Voiniciuc C, Saulnier L, Chateigner-Boutin AL. The TaCslA12 gene expressed in the wheat grain endosperm synthesizes wheat-like mannan when expressed in yeast and Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110693. [PMID: 33288007 DOI: 10.1016/j.plantsci.2020.110693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 06/12/2023]
Abstract
Mannan is a class of cell wall polysaccharides widespread in the plant kingdom. Mannan structure and properties vary according to species and organ. The cell walls of cereal grains have been extensively studied due to their role in cereal processing and to their beneficial effect on human health as dietary fiber. Recently, we showed that mannan in wheat (Triticum aestivum) grain endosperm has a linear structure of β-1,4-linked mannose residues. The aim of this work was to study the biosynthesis and function of wheat grain mannan. We showed that mannan is deposited in the endosperm early during grain development, and we identified candidate mannan biosynthetic genes expressed in the endosperm. The functional study in wheat was unsuccessful therefore our best candidate genes were expressed in heterologous systems. The endosperm-specificTaCslA12 gene expressed in Pichia pastoris and in an Arabidopsis thaliana mutant depleted in glucomannan led to the production of wheat-like linear mannan lacking glucose residues and with moderate acetylation. Therefore, this gene encodes a mannan synthase and is likely responsible for the synthesis of wheat endosperm mannan.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark D Wilkinson
- Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JK, UK
| | - Fabian Stritt
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Mi Yeon Lee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | - Cătălin Voiniciuc
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | | | | |
Collapse
|
35
|
Płachno BJ, Kapusta M, Świątek P, Stolarczyk P, Kocki J. Immunodetection of Pectic Epitopes, Arabinogalactan Proteins, and Extensins in Mucilage Cells from the Ovules of Pilosella officinarum Vaill. and Taraxacum officinale Agg. (Asteraceae). Int J Mol Sci 2020; 21:E9642. [PMID: 33348898 PMCID: PMC7766254 DOI: 10.3390/ijms21249642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
The main aim of this study was to compare the cytological difference between ovular mucilage cells in two Asteraceae species-Pilosella officinarum and Taraxacum officinale-in order to determine whether pectic epitopes, arabinogalactan proteins, or extensins are present. The immunocytochemical technique was used. Both the Taracacum and Pilosella genera have been used recently as models for understanding the mechanisms of apomixis. Knowledge of the presence of signal molecules (pectic epitopes, arabinogalactan proteins, and extensins) can help better understand the developmental processes in these plants during seed growth. The results showed that in Pilosella officinarum, there was an accumulation of pectins in the mucilage, including both weakly and highly esterified pectins, which was in contrast to the mucilage of Taraxacum officinale, which had low amounts of these pectins. However, Taraxacum protoplasts of mucilage cells were rich in weakly methyl-esterified pectins. While the mucilage contained arabinogalactan proteins in both of the studied species, the types of arabinogalactan proteins were different. In both of the studied species, extensins were recorded in the transmitting tissues. Arabinogalactan proteins as well as weakly and highly esterified pectins and extensins occurred in close proximity to calcium oxalate crystals in both Taraxacum and Pilosella cells.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Kraków, Poland
| | - Małgorzata Kapusta
- Department of Plant Cytology and Embryology, University of Gdańsk, 59. Wita Stwosza St., 80-308 Gdańsk, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Kraków, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłowska St., 20-080 Lublin, Poland;
| |
Collapse
|
36
|
Ropitaux M, Bernard S, Schapman D, Follet-Gueye ML, Vicré M, Boulogne I, Driouich A. Root Border Cells and Mucilage Secretions of Soybean, Glycine Max (Merr) L.: Characterization and Role in Interactions with the Oomycete Phytophthora Parasitica. Cells 2020; 9:E2215. [PMID: 33008016 PMCID: PMC7650559 DOI: 10.3390/cells9102215] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 01/06/2023] Open
Abstract
Root border cells (BCs) and their associated secretions form a protective structure termed the root extracellular trap (RET) that plays a major role in root interactions with soil borne microorganisms. In this study, we investigated the release and morphology of BCs of Glycine max using light and cryo-scanning electron microscopy (SEM). We also examined the occurrence of cell-wall glycomolecules in BCs and secreted mucilage using immunofluorescence microscopy in conjunction with anti-glycan antibodies. Our data show that root tips released three populations of BCs defined as spherical, intermediate and elongated cells. The mechanism of shedding seemed to be cell morphotype-specific. The data also show that mucilage contained pectin, cellulose, extracellular DNA, histones and two hemicellulosic polysaccharides, xyloglucan and heteromannan. The latter has never been reported previously in any plant root secretions. Both hemicellulosic polysaccharides formed a dense fibrillary network embedding BCs and holding them together within the mucilage. Finally, we investigated the effect of the RET on the interactions of root with the pathogenic oomycete Phytophthora parasitica early during infection. Our findings reveal that the RET prevented zoospores from colonizing root tips by blocking their entry into root tissues and inducing their lysis.
Collapse
Affiliation(s)
- Marc Ropitaux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
| | - Sophie Bernard
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
- Cell Imaging Platform (PRIMACEN-IRIB), Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France;
| | - Damien Schapman
- Cell Imaging Platform (PRIMACEN-IRIB), Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France;
| | - Marie-Laure Follet-Gueye
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
- Cell Imaging Platform (PRIMACEN-IRIB), Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France;
| | - Maïté Vicré
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
| | - Isabelle Boulogne
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, UPRES-EA 4358, Fédération de Recherche « Normandie-Végétal »-FED 4277, Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France; (M.R.); (S.B.); (M.-L.F.-G.); (M.V.); (I.B.)
- Cell Imaging Platform (PRIMACEN-IRIB), Université de ROUEN Normandie, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France;
| |
Collapse
|
37
|
Pfaff J, Denton AK, Usadel B, Pfaff C. Phosphate starvation causes different stress responses in the lipid metabolism of tomato leaves and roots. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158763. [DOI: 10.1016/j.bbalip.2020.158763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
|
38
|
Phan JL, Cowley JM, Neumann KA, Herliana L, O'Donovan LA, Burton RA. The novel features of Plantago ovata seed mucilage accumulation, storage and release. Sci Rep 2020; 10:11766. [PMID: 32678191 PMCID: PMC7366641 DOI: 10.1038/s41598-020-68685-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Seed mucilage polysaccharide production, storage and release in Plantagoovata is strikingly different to that of the model plant Arabidopsis. We have used microscopy techniques to track the development of mucilage secretory cells and demonstrate that mature P.ovata seeds do not have an outer intact cell layer within which the polysaccharides surround internal columellae. Instead, dehydrated mucilage is spread in a thin homogenous layer over the entire seed surface and upon wetting expands directly outwards, away from the seed. Observing mucilage expansion in real time combined with compositional analysis allowed mucilage layer definition and the roles they play in mucilage release and architecture upon hydration to be explored. The first emergent layer of hydrated mucilage is rich in pectin, extremely hydrophilic, and forms an expansion front that functions to ‘jumpstart’ hydration and swelling of the second layer. This next layer, comprising the bulk of the expanded seed mucilage, is predominantly composed of heteroxylan and appears to provide much of the structural integrity. Our results indicate that the synthesis, deposition, desiccation, and final storage position of mucilage polysaccharides must be carefully orchestrated, although many of these processes are not yet fully defined and vary widely between myxospermous plant species.
Collapse
Affiliation(s)
- Jana L Phan
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.,Australian Academy of Science, Ian Potter House, 9 Gordon St, Canberra, ACT, 2601, Australia
| | - James M Cowley
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.,Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Kylie A Neumann
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.,Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.,IP Australia, PO Box 200, Woden, ACT, 2606, Australia
| | - Lina Herliana
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Lisa A O'Donovan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia. .,Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
39
|
Hassan MM, Yuan G, Chen JG, Tuskan GA, Yang X. Prime Editing Technology and Its Prospects for Future Applications in Plant Biology Research. BIODESIGN RESEARCH 2020; 2020:9350905. [PMID: 37849904 PMCID: PMC10530660 DOI: 10.34133/2020/9350905] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/19/2020] [Indexed: 10/19/2023] Open
Abstract
Many applications in plant biology requires editing genomes accurately including correcting point mutations, incorporation of single-nucleotide polymorphisms (SNPs), and introduction of multinucleotide insertion/deletions (indels) into a predetermined position in the genome. These types of modifications are possible using existing genome-editing technologies such as the CRISPR-Cas systems, which require induction of double-stranded breaks in the target DNA site and the supply of a donor DNA molecule that contains the desired edit sequence. However, low frequency of homologous recombination in plants and difficulty of delivering the donor DNA molecules make this process extremely inefficient. Another kind of technology known as base editing can perform precise editing; however, only certain types of modifications can be obtained, e.g., C/G-to-T/A and A/T-to-G/C. Recently, a new type of genome-editing technology, referred to as "prime editing," has been developed, which can achieve various types of editing such as any base-to-base conversion, including both transitions (C→T, G→A, A→G, and T→C) and transversion mutations (C→A, C→G, G→C, G→T, A→C, A→T, T→A, and T→G), as well as small indels without the requirement for inducing double-stranded break in the DNA. Because prime editing has wide flexibility to achieve different types of edits in the genome, it holds a great potential for developing superior crops for various purposes, such as increasing yield, providing resistance to various abiotic and biotic stresses, and improving quality of plant product. In this review, we describe the prime editing technology and discuss its limitations and potential applications in plant biology research.
Collapse
Affiliation(s)
- Md. Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
40
|
Insight on Extraction and Characterisation of Biopolymers as the Green Coagulants for Microalgae Harvesting. WATER 2020. [DOI: 10.3390/w12051388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review presents the extractions, characterisations, applications and economic analyses of natural coagulant in separating pollutants and microalgae from water medium, known as microalgae harvesting. The promising future of microalgae as a next-generation energy source is reviewed and the significant drawbacks of conventional microalgae harvesting using alum are evaluated. The performances of natural coagulant in microalgae harvesting are studied and proven to exceed the alum. In addition, the details of each processing stage in the extraction of natural coagulant (plant, microbial and animal) are comprehensively discussed with justifications. This information could contribute to future exploration of novel natural coagulants by providing description of optimised extraction steps for a number of natural coagulants. Besides, the characterisations of natural coagulants have garnered a great deal of attention, and the strategies to enhance the flocculating activity based on their characteristics are discussed. Several important characterisations have been tabulated in this review such as physical aspects, including surface morphology and surface charges; chemical aspects, including molecular weight, functional group and elemental properties; and thermal stability parameters including thermogravimetry analysis and differential scanning calorimetry. Furthermore, various applications of natural coagulant in the industries other than microalgae harvesting are revealed. The cost analysis of natural coagulant application in mass harvesting of microalgae is allowed to evaluate its feasibility towards commercialisation in the industrial. Last, the potentially new natural coagulants, which are yet to be exploited and applied, are listed as the additional information for future study.
Collapse
|
41
|
Xu Y, Wang Y, Wang X, Pei S, Kong Y, Hu R, Zhou G. Transcription Factors BLH2 and BLH4 Regulate Demethylesterification of Homogalacturonan in Seed Mucilage. PLANT PHYSIOLOGY 2020; 183:96-111. [PMID: 32111623 PMCID: PMC7210630 DOI: 10.1104/pp.20.00011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/19/2020] [Indexed: 05/22/2023]
Abstract
The polysaccharide pectin is a major component of the plant cell wall. The pectic glycan homogalacturonan (HG) is a proportionally small but important component of a specialized seed cell wall called mucilage. HG is synthesized in a highly methylesterified form, and, following secretion, is de-methylesterified by pectin methylesterases (PMEs). The degree of methylesterification of HG determines the structural and functional properties of pectin, but how methylesterification is regulated remains largely unknown. Here, we identified two BEL1-Like homeodomain (BLH) transcription factors, BLH2 and BLH4, as positive regulators of HG de-methylesterification in Arabidopsis (Arabidopsis thaliana) seed coat mucilage. BLH2 and BLH4 were significantly expressed in mucilage secretory cells during seed mucilage production. BLH2 and BLH4 single mutants exhibited no obvious mucilage phenotype, but the blh2 blh4 double mutant displayed significantly reduced mucilage adherence to the seed. Reduced mucilage adherence in blh2 blh4 was caused by decreased PME activity in the seed coat, which increased the degree of methylesterification of HG in mucilage. The expression of several PME metabolism-related genes, including PME58, PECTIN METHYLESTERASE INHIBITOR6, SEEDSTICK, and MYB52 was significantly altered in blh2 blh4 seeds. BLH2 and BLH4 directly activated PME58 expression by binding to its TGACAGGT cis-element. Moreover, pme58 mutants exhibited reduced mucilage adherence similar to that of blh2 blh4, and the blh2 blh4 pme58 triple mutant exhibited no additional mucilage adherence defects. Furthermore, overexpression of PME58 in blh2 blh4 rescued the mucilage adherence defect. Together, these results demonstrate that BLH2 and BLH4 redundantly regulate de-methylesterification of HG in seed mucilage by directly activating PME58.
Collapse
Affiliation(s)
- Yan Xu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yiping Wang
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiaoyu Wang
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Shengqiang Pei
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yingzhen Kong
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ruibo Hu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
42
|
Cowley JM, Herliana L, Neumann KA, Ciani S, Cerne V, Burton RA. A small-scale fractionation pipeline for rapid analysis of seed mucilage characteristics. PLANT METHODS 2020; 16:20. [PMID: 32123537 PMCID: PMC7038624 DOI: 10.1186/s13007-020-00569-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Myxospermy is a process by which the external surfaces of seeds of many plant species produce mucilage-a polysaccharide-rich gel with numerous fundamental research and industrial applications. Due to its functional properties the mucilage can be difficult to remove from the seed and established methods for mucilage extraction are often incomplete, time-consuming and unnecessarily wasteful of precious seed stocks. RESULTS Here we tested the efficacy of several established protocols for seed mucilage extraction and then downsized and adapted the most effective elements into a rapid, small-scale extraction and analysis pipeline. Within 4 h, three chemically- and functionally-distinct mucilage fractions were obtained from myxospermous seeds. These fractions were used to study natural variation and demonstrate structure-function links, to screen for known mucilage quality markers in a field trial, and to identify research and industry-relevant lines from a large mutant population. CONCLUSION The use of this pipeline allows rapid analysis of mucilage characteristics from diverse myxospermous germplasm which can contribute to fundamental research into mucilage production and properties, quality testing for industrial manufacturing, and progressing breeding efforts in myxospermous crops.
Collapse
Affiliation(s)
- James M. Cowley
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
| | - Lina Herliana
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
| | - Kylie A. Neumann
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
| | - Silvano Ciani
- Dr. Schär R&D Centre, AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Virna Cerne
- Dr. Schär R&D Centre, AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Rachel A. Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA Australia
| |
Collapse
|
43
|
Kunieda T, Hara-Nishimura I, Demura T, Haughn GW. Arabidopsis FLYING SAUCER 2 Functions Redundantly with FLY1 to Establish Normal Seed Coat Mucilage. PLANT & CELL PHYSIOLOGY 2020; 61:308-317. [PMID: 31626281 DOI: 10.1093/pcp/pcz195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Following exposure to water, mature Arabidopsis seeds are surrounded by a gelatinous capsule, termed mucilage. The mucilage consists of pectin-rich polysaccharides, which are produced in epidermal cells of the seed coat. Although pectin is a major component of plant cell walls, its biosynthesis and biological functions are not fully understood. Previously, we reported that a transmembrane RING E3 ubiquitin ligase, FLYING SAUCER 1 (FLY1) regulates the degree of pectin methyl esterification for mucilage capsule formation. The Arabidopsis thaliana genome has a single FLY1 homolog, FLY2. In this study, we show that the FLY2 protein functions in mucilage modification together with FLY1. FLY2 was expressed in seed coat epidermal cells during mucilage synthesis, but its expression level was much lower than that of FLY1. While fly2 showed no obvious difference in mucilage capsule formation from wild type, the fly1 fly2 double mutants showed more severe defects in mucilage than fly1 alone. FLY2-EYFP that was expressed under the control of the FLY1 promoter rescued fly1 mucilage, showing that FLY2 has the same molecular function as FLY1. FLY2-EYFP colocalized with marker proteins of Golgi apparatus (sialyltransferase-mRFP) and late endosome (mRFP-ARA7), indicating that as FLY1, FLY2 controls pectin modification by functioning in these endomembrane organelles. Furthermore, phylogenetic analysis suggests that FLY1 and FLY2 originated from a common ancestral gene by gene duplication prior to the emergence of Brassicaceae. Taken together, our findings suggest that FLY2 functions in the Golgi apparatus and/or the late endosome of seed coat epidermal cells in a manner similar to FLY1.
Collapse
Affiliation(s)
- Tadashi Kunieda
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Faculty of Science and Engineering, Konan University, Kobe, 658-8501 Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | | | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - George W Haughn
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
44
|
Fabrissin I, Cueff G, Berger A, Granier F, Sallé C, Poulain D, Ralet MC, North HM. Natural Variation Reveals a Key Role for Rhamnogalacturonan I in Seed Outer Mucilage and Underlying Genes. PLANT PHYSIOLOGY 2019; 181:1498-1518. [PMID: 31591153 PMCID: PMC6878024 DOI: 10.1104/pp.19.00763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/19/2019] [Indexed: 05/21/2023]
Abstract
On imbibition, Arabidopsis (Arabidopsis thaliana) seeds release polysaccharides from their epidermal cells that form a two-layered hydrogel, termed mucilage. Analysis of a publicly available data set of outer seed mucilage traits of over 300 accessions showed little natural variation in composition. This mucilage is almost exclusively made up of rhamnogalacturonan I (RGI), highlighting the importance of this pectin for outer mucilage function. In a genome-wide association study, observed variations in polymer amount and macromolecular characteristics were linked to several genome polymorphisms, indicating the complexity of their genetic regulation. Natural variants with high molar mass were associated with a gene encoding a putative glycosyltransferase called MUCILAGE-RELATED70 (MUCI70). muci70 insertion mutants produced many short RGI polymers that were highly substituted with xylan, confirming that polymorphism in this gene can affect RGI polymer size. A second gene encoding a putative copper amine oxidase of clade 1a (CuAOα1) was associated with natural variation in the amount of RGI present in the outer mucilage layer; cuaoα1 mutants validated its role in pectin production. As the mutant phenotype is unique, with RGI production only impaired for outer mucilage, this indicates that CuAOα1 contributes to a further mechanism controlling mucilage synthesis.
Collapse
Affiliation(s)
- Isabelle Fabrissin
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, RD10, 78026 Versailles cedex, France
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, RD10, 78026 Versailles cedex, France
| | - Adeline Berger
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, RD10, 78026 Versailles cedex, France
| | - Fabienne Granier
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, RD10, 78026 Versailles cedex, France
| | - Christine Sallé
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, RD10, 78026 Versailles cedex, France
| | - Damien Poulain
- Institut National de la Recherche Agronomique, UR 1268 Biopolymères Interactions Assemblages, F-44316 Nantes, France
| | - Marie-Christine Ralet
- Institut National de la Recherche Agronomique, UR 1268 Biopolymères Interactions Assemblages, F-44316 Nantes, France
| | - Helen M North
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, RD10, 78026 Versailles cedex, France
| |
Collapse
|
45
|
Pauly M, Gawenda N, Wagner C, Fischbach P, Ramírez V, Axmann IM, Voiniciuc C. The Suitability of Orthogonal Hosts to Study Plant Cell Wall Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2019; 8:E516. [PMID: 31744209 PMCID: PMC6918405 DOI: 10.3390/plants8110516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Abstract
Plant cells are surrounded by an extracellular matrix that consists mainly of polysaccharides. Many molecular components involved in plant cell wall polymer synthesis have been identified, but it remains largely unknown how these molecular players function together to define the length and decoration pattern of a polysaccharide. Synthetic biology can be applied to answer questions beyond individual glycosyltransferases by reconstructing entire biosynthetic machineries required to produce a complete wall polysaccharide. Recently, this approach was successful in establishing the production of heteromannan from several plant species in an orthogonal host-a yeast-illuminating the role of an auxiliary protein in the biosynthetic process. In this review we evaluate to what extent a selection of organisms from three kingdoms of life (Bacteria, Fungi and Animalia) might be suitable for the synthesis of plant cell wall polysaccharides. By identifying their key attributes for glycoengineering as well as analyzing the glycosidic linkages of their native polymers, we present a valuable comparison of their key advantages and limitations for the production of different classes of plant polysaccharides.
Collapse
Affiliation(s)
- Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Niklas Gawenda
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Christine Wagner
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Patrick Fischbach
- Institute of Synthetic Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Cătălin Voiniciuc
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| |
Collapse
|
46
|
Verhertbruggen Y, Falourd X, Sterner M, Guillon F, Girousse C, Foucat L, Le Gall S, Chateigner-Boutin AL, Saulnier L. Challenging the putative structure of mannan in wheat (Triticum aestivum) endosperm. Carbohydr Polym 2019; 224:115063. [DOI: 10.1016/j.carbpol.2019.115063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022]
|
47
|
Parra-Rojas JP, Largo-Gosens A, Carrasco T, Celiz-Balboa J, Arenas-Morales V, Sepúlveda-Orellana P, Temple H, Sanhueza D, Reyes FC, Meneses C, Saez-Aguayo S, Orellana A. New steps in mucilage biosynthesis revealed by analysis of the transcriptome of the UDP-rhamnose/UDP-galactose transporter 2 mutant. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5071-5088. [PMID: 31145803 PMCID: PMC6793455 DOI: 10.1093/jxb/erz262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/05/2019] [Indexed: 05/04/2023]
Abstract
Upon imbibition, epidermal cells of Arabidopsis thaliana seeds release a mucilage formed mostly by pectic polysaccharides. The Arabidopsis mucilage is composed mainly of unbranched rhamnogalacturonan-I (RG-I), with low amounts of cellulose, homogalacturonan, and traces of xylan, xyloglucan, galactoglucomannan, and galactan. The pectin-rich composition of the mucilage and their simple extractability makes this structure a good candidate to study the biosynthesis of pectic polysaccharides and their modification. Here, we characterize the mucilage phenotype of a mutant in the UDP-rhamnose/galactose transporter 2 (URGT2), which exhibits a reduction in RG-I and also shows pleiotropic changes, suggesting the existence of compensation mechanisms triggered by the lack of URGT2. To gain an insight into the possible compensation mechanisms activated in the mutant, we performed a transcriptome analysis of developing seeds using RNA sequencing (RNA-seq). The results showed a significant misregulation of 3149 genes, 37 of them (out of the 75 genes described to date) encoding genes proposed to be involved in mucilage biosynthesis and/or its modification. The changes observed in urgt2 included the up-regulation of UAFT2, a UDP-arabinofuranose transporter, and UUAT3, a paralog of the UDP-uronic acid transporter UUAT1, suggesting that they play a role in mucilage biosynthesis. Mutants in both genes showed changes in mucilage composition and structure, confirming their participation in mucilage biosynthesis. Our results suggest that plants lacking a UDP-rhamnose/galactose transporter undergo important changes in gene expression, probably to compensate modifications in the plant cell wall due to the lack of a gene involved in its biosynthesis.
Collapse
Affiliation(s)
- Juan Pablo Parra-Rojas
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Asier Largo-Gosens
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Tomás Carrasco
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jonathan Celiz-Balboa
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Verónica Arenas-Morales
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo Sepúlveda-Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Dayan Sanhueza
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
48
|
Zhong R, Cui D, Ye ZH. Evolutionary origin of O-acetyltransferases responsible for glucomannan acetylation in land plants. THE NEW PHYTOLOGIST 2019; 224:466-479. [PMID: 31183872 DOI: 10.1111/nph.15988] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Mannans are an abundant cell wall polysaccharide in bryophytes, seedless vascular plants and gymnosperms. A previous study has shown that mannan acetylation in Arabidopsis and konjac is mediated by mannan O-acetyltransferases belonging to the Domain of Unknown Function (DUF) 231 family. However, little is known about the acetylation patterns of mannans in bryophytes and seedless vascular plants, and the evolutionary origin of mannan O-acetyltransferases in land plants has not yet been studied. Phylogenetic analysis of the DUF231 family revealed that DUF231 members were present in the charophycean green algae and evolved to form overlapped and divergent phylogenetic groups in different taxa of land plants. Acetyltransferase activity assays of recombinant proteins demonstrated that a number of group II DUF231 members from moss, Selaginella, pine, spruce, rice and poplar were mannan 2-O- and 3-O-acetyltransferases, whereas the two group I DUF231 members from the alga Klebsormidium nitens were not. Structural analysis of mannans from moss and Selaginella showed they were composed of mannosyl and glucosyl residues and the mannosyl residues were acetylated at O-2 and O-3. These findings indicate that although the DUF231 genes originated in algae, their recruitment as mannan O-acetyltransferases probably occurred in bryophytes, and the biochemical functions of these O-acetyltransferases are evolutionarily conserved throughout land plants.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dongtao Cui
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
49
|
Šola K, Gilchrist EJ, Ropartz D, Wang L, Feussner I, Mansfield SD, Ralet MC, Haughn GW. RUBY, a Putative Galactose Oxidase, Influences Pectin Properties and Promotes Cell-To-Cell Adhesion in the Seed Coat Epidermis of Arabidopsis. THE PLANT CELL 2019; 31:809-831. [PMID: 30852555 PMCID: PMC6501606 DOI: 10.1105/tpc.18.00954] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/15/2019] [Accepted: 03/08/2019] [Indexed: 05/21/2023]
Abstract
Cell-to-cell adhesion is essential for establishment of multicellularity. In plants, such adhesion is mediated through a middle lamella composed primarily of pectic polysaccharides. The molecular interactions that influence cell-to-cell adhesion are not fully understood. We have used Arabidopsis (Arabidopsis thaliana) seed coat mucilage as a model system to investigate interactions between cell wall carbohydrates. Using a forward-genetic approach, we have discovered a gene, RUBY PARTICLES IN MUCILAGE (RUBY), encoding a protein that is annotated as a member of the Auxiliary Activity 5 (AA5) family of Carbohydrate-Active Enzymes (Gal/glyoxal oxidases) and is secreted to the apoplast late in the differentiation of seed coat epidermal cells. We show that RUBY is required for the Gal oxidase activity of intact seeds; the oxidation of Gal in side-chains of rhamnogalacturonan-I (RG-I) present in mucilage-modified2 (mum2) mucilage, but not in wild-type mucilage; the retention of branched RG-I in the seed following extrusion; and the enhancement of cell-to-cell adhesion in the seed coat epidermis. These data support the hypothesis that RUBY is a Gal oxidase that strengthens pectin cohesion within the middle lamella, and possibly the mucilage of wild-type seed coat epidermal cells, through oxidation of RG-I Gal side-chains.
Collapse
Affiliation(s)
- Krešimir Šola
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Erin J Gilchrist
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David Ropartz
- Institut National de la Recherche Agronomique (INRA), Nantes 44316, France
| | - Lisa Wang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen 37077, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | - George W Haughn
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
50
|
Wang M, Xu Z, Ahmed RI, Wang Y, Hu R, Zhou G, Kong Y. Tubby-like Protein 2 regulates homogalacturonan biosynthesis in Arabidopsis seed coat mucilage. PLANT MOLECULAR BIOLOGY 2019; 99:421-436. [PMID: 30707395 DOI: 10.1007/s11103-019-00827-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
A possible transcription factor TLP2 was identified to be involved in the regulation of HG biosynthesis in Arabidopsis seed mucilage. TLP2 can translocate into nucleus from plasma membrane by interacting with NF-YC3. The discovery of TLP2 gene function can further fulfill the regulatory network of pectin biosynthesis in Arabidopsis thaliana. Arabidopsis seed coat mucilage is an excellent model system to study the biosynthesis, function and regulation of pectin. Rhamnogalacturonan I (RG-I) and homogalacturonan (HG) are the major polysaccharides constituent of the Arabidopsis seed coat mucilage. Here, we identified a Tubby-like gene, Tubby-like protein 2 (TLP2), which was up-regulated in developing siliques when mucilage began to be produced. Ruthenium red (RR) staining of the seeds showed defective mucilage of tlp2-1 mutant after vigorous shaking compared to wild type (WT). Monosaccharide composition analysis revealed that the amount of total sugars and galacturonic acid (GalA) decreased significantly in the adherent mucilage (AM) of tlp2-1 mutant. Immunolabelling and dot immunoblotting analysis showed that unesterified HG decreased in the tlp2-1 mutant. Furthermore, TLP2 can translocate into nucleus by interacting with Nuclear Factor Y subunit C3 (NF-YC3) to function as a transcription factor. RNA-sequence and transactivation assays revealed that TLP2 could activate UDP-glucose 4-epimerase 1 (UGE1). In all, it is concluded that TLP2 could regulate the biosynthesis of HG possibly through the positive activation of UGE1.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Zongchang Xu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Rana Imtiaz Ahmed
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Yiping Wang
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Graduate School of University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruibo Hu
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Gongke Zhou
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yingzhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|