1
|
Li C, Wu X, Wang P, Wang H, Wang L, Sun F, Lu C, Hao H, Chu C, Jing HC. Genome-wide association study of image-based trait reveals the genetic architecture of dark-induced leaf senescence in rice. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:331-345. [PMID: 39305212 DOI: 10.1093/jxb/erae391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/20/2024] [Indexed: 01/11/2025]
Abstract
Darkness is often used as an effective measure to induce leaf senescence. Although many senescence-related genes in rice have been reported, the genome-wide genetic architecture underlying leaf senescence remains poorly understood. In our study, indica and japonica rice showed contrasting responses to dark-induced leaf senescence (DILS). Genome-wide association studies (GWAS) combined with transcriptomic analyses revealed 57, 97, and 48 loci involved in the regulation of the onset, progression, and ending of DILS, respectively. Haplotype analyses showed that the senescence-related loci differentially accumulated in indica and japonica accessions and functioned additively to regulate DILS. A total of 357 candidate genes were identified that are involved in various senescence-related processes such as lipid and amino acid catabolism, photosynthesis, response to reactive oxygen species, and regulation of defence response. In addition, functional analyses of candidate genes revealed that OsMYB21 positively regulates the onset of DILS, while OsSUB1B negatively regulates its progression. Thus, our results provide new insights into the genetic regulation of DILS in rice.
Collapse
Affiliation(s)
- Chao Li
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Xiaoyuan Wu
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Pengna Wang
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongru Wang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Lidong Wang
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Sun
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Lu
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaiqing Hao
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chengcai Chu
- College of Agriculture, South China Agricultural University, Guangzhou, 510000, China
| | - Hai-Chun Jing
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
2
|
Lourenco AB, Casajús V, Ramos R, Massolo F, Salinas C, Civello P, Martínez G. Postharvest shelf life extension of minimally processed kale at ambient and refrigerated storage by use of modified atmosphere. FOOD SCI TECHNOL INT 2024; 30:713-721. [PMID: 37608535 DOI: 10.1177/10820132231195379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Kale is becoming an important vegetable worldwide, mainly due to its nutritional properties. Kale leaves can be marketed whole, although minimal processing is also in demand. In this article, it was analyzed the effect of packaging in a modified atmosphere of fresh-cut kale leaves stored at 20 °C and 4 °C. Kale leaves were cut into 4 × 4 cm strips and stored in low-density polyethylene bags. Samples processed in the same way but stored in PVC were used as controls. Leaves kept in a modified atmosphere showed a delay in color change with Hue values from about 130 to 120 under PMA against 130 to 100 in control group (CTR) leaves. Chlorophyll degradation was also delayed in both storage temperatures. Samples stored under PMA showed about two times the levels of total chlorophylls with respect to CTR samples at the end of the storage. No changes in total sugar content were detected during storage and no differences were detected between control and modified atmospheres stored samples. Samples maintained in a modified atmosphere showed a lower decrement in soluble proteins and a lower rate of RUBISCO degradation at both temperatures. The relation of RUBISCO content PMA/CTR ranged from 1 to about 3 toward the end of storage No changes in phenols content were found when comparing control and treated samples. However, flavonoid and the antioxidant contents increased in samples stored in modified atmospheres with respect to their controls. We demonstrated that storage in modified atmospheres could be an adequate and simple methodology to extend postharvest life of this minimally processed product at both ambient and refrigerated storage.
Collapse
Affiliation(s)
| | | | - Romina Ramos
- Instituto de Fisiología Vegetal (INFIVE), La Plata, Argentina
| | - Facundo Massolo
- Instituto de Fisiología Vegetal (INFIVE), La Plata, Argentina
- Laboratorio de Investigación en Productos Agroindustriales (LIPA), La Plata, Argentina
| | - Corel Salinas
- Instituto de Fisiología Vegetal (INFIVE), La Plata, Argentina
| | - Pedro Civello
- Instituto de Fisiología Vegetal (INFIVE), La Plata, Argentina
- Facultad de Ciencias Exactas. Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Gustavo Martínez
- Instituto de Fisiología Vegetal (INFIVE), La Plata, Argentina
- Facultad de Ciencias Exactas. Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
3
|
Aubert M, Clouet V, Guilbaud F, Berardocco S, Marnet N, Bouchereau A, Dellero Y. Sink-source driven metabolic acclimation of winter oilseed rape leaves (Brassica napus L.) to drought. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154377. [PMID: 39522458 DOI: 10.1016/j.jplph.2024.154377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The crop cycle of winter oilseed rape (WOSR) incorporates source-to-sink remobilisation during the vegetative stage as a principal factor influencing the ultimate seed yield. These processes are supported by the coordinated activity of the plant's central metabolism. However, climate change-induced drought will affect the metabolic acclimation of WOSR sink/source relationships at this vegetative stage, with consequences that remain to be determined. In this study, we subjected WOSR to severe soil dehydration for 18 days and analysed the physiological and metabolic acclimation of sink and source leaves along the kinetics in combination with measurements of enzymatic activities and transcript levels. Overall, the acclimation of WOSR to drought led to subtle regulations of central metabolism in relation to leaf growth and Pro-induced osmotic adjustment. Notably, sink leaves drastically reduced their growth and transiently accumulated starch. Subsequent starch degradation correlated with the induction of beta-amylases, sucrose transporters, pyrroline-5-carboxylate synthases and proline accumulation. The functioning of the tricarboxylic acid cycle was also altered in sink leaves, as evidenced by variations in citrate, malate and associated enzymatic activities. The metabolic origin of Pro in sink leaves is discussed in relation to Pro accumulation in source leaves and the up-regulation of amino acid permease 1 and glutamine synthetase genes.
Collapse
Affiliation(s)
- Mathieu Aubert
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, France.
| | - Vanessa Clouet
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, France.
| | - Florian Guilbaud
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, France.
| | - Solenne Berardocco
- Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, France.
| | - Nathalie Marnet
- Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, France.
| | - Alain Bouchereau
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, France; Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, France.
| | - Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, France; Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, France.
| |
Collapse
|
4
|
Garnik EY, Vilyanen DV, Vlasova AA, Tarasenko VI, Konstantinov YM. Arabidopsis GDH1 and GDH2 genes double knock-out results in a stay-green phenotype during dark-induced senescence. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1631-1642. [PMID: 39506990 PMCID: PMC11534964 DOI: 10.1007/s12298-024-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Yellowing is the first visually observable sign of plant leaf senescence. We found that Arabidopsis double knockout mutant gdh1gdh2 for genes of NAD(H)-dependent glutamate dehydrogenase retains green color of the leaves (stay-green phenotype) during a dark-induced senescence, in contrast to wild-type plants, whose leaves turn yellow. When the gdh1gdh2 plants are exposed to the dark more than four days, they demonstrate slower chlorophyll degradation than in the wild-type plants under the same conditions, as well as dysregulation of chlorophyll breakdown genes encoding chlorophyll b reductase, Mg-dechelatase, pheophytinase and pheophorbide a oxygenase. The slowed degradation of chlorophyll b in gdh1gdh2 plants significantly alters the chlorophyll a/b ratio. Ion leakage in the mutant plants increases significantly from four to eight days in the darkness, correlating with their premature death during this period. The discovered facts suggest a functional connection between activity of NAD(H)-dependent glutamate dehydrogenase and dark-induced senescence progress in Arabidopsis.
Collapse
Affiliation(s)
- Elena Yu. Garnik
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova Str. 132, Irkutsk, Russia 664033
| | - Daria V. Vilyanen
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova Str. 132, Irkutsk, Russia 664033
- Present Address: Institute of Basic Biological Problems RAS, Federal Research Center, Pushchino Scientific Center for Biological Research RAS, Prospekt Nauki 3, Pushchino, Moscow Region, Russia 142290
| | - Anfisa A. Vlasova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova Str. 132, Irkutsk, Russia 664033
- Present Address: Irkutsk State University, Karl Marx Str. 1, Irkutsk, Russia 664003
| | - Vladislav I. Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova Str. 132, Irkutsk, Russia 664033
| | - Yuri M. Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova Str. 132, Irkutsk, Russia 664033
- Present Address: Irkutsk State University, Karl Marx Str. 1, Irkutsk, Russia 664003
| |
Collapse
|
5
|
Albert B, Dellero Y, Leport L, Aubert M, Bouchereau A, Le Cahérec F. Low Nitrogen Input Mitigates Quantitative but Not Qualitative Reconfiguration of Leaf Primary Metabolism in Brassica napus L. Subjected to Drought and Rehydration. PLANTS (BASEL, SWITZERLAND) 2024; 13:969. [PMID: 38611498 PMCID: PMC11013775 DOI: 10.3390/plants13070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
In the context of climate change and the reduction of mineral nitrogen (N) inputs applied to the field, winter oilseed rape (WOSR) will have to cope with low-N conditions combined with water limitation periods. Since these stresses can significantly reduce seed yield and seed quality, maintaining WOSR productivity under a wide range of growth conditions represents a major goal for crop improvement. N metabolism plays a pivotal role during the metabolic acclimation to drought in Brassica species by supporting the accumulation of osmoprotective compounds and the source-to-sink remobilization of nutrients. Thus, N deficiency could have detrimental effects on the acclimation of WOSR to drought. Here, we took advantage of a previously established experiment to evaluate the metabolic acclimation of WOSR during 14 days of drought, followed by 8 days of rehydration under high- or low-N fertilization regimes. For this purpose, we selected three leaf ranks exhibiting contrasted sink/source status to perform absolute quantification of plant central metabolites. Besides the well-described accumulation of proline, we observed contrasted accumulations of some "respiratory" amino acids (branched-chain amino acids, lysineand tyrosine) in response to drought under high- and low-N conditions. Drought also induced an increase in sucrose content in sink leaves combined with a decrease in source leaves. N deficiency strongly decreased the levels of major amino acids and subsequently the metabolic response to drought. The drought-rehydration sequence identified proline, phenylalanine, and tryptophan as valuable metabolic indicators of WOSR water status for sink leaves. The results were discussed with respect to the metabolic origin of sucrose and some amino acids in sink leaves and the impact of drought on source-to-sink remobilization processes depending on N nutrition status. Overall, this study identified major metabolic signatures reflecting a similar response of oilseed rape to drought under low- and high-N conditions.
Collapse
Affiliation(s)
- Benjamin Albert
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| | - Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
- Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, 31400 Toulouse, France
| | - Laurent Leport
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| | - Mathieu Aubert
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| | - Alain Bouchereau
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
- Metabolic Profiling and Metabolomic Platform (P2M2), MetaboHUB-Grand-Ouest, 31400 Toulouse, France
| | - Françoise Le Cahérec
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro Rennes-Angers, Université Rennes, 35650 Le Rheu, France
| |
Collapse
|
6
|
Zheng Y, Cabassa-Hourton C, Eubel H, Chevreux G, Lignieres L, Crilat E, Braun HP, Lebreton S, Savouré A. Pyrroline-5-carboxylate metabolism protein complex detected in Arabidopsis thaliana leaf mitochondria. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:917-934. [PMID: 37843921 DOI: 10.1093/jxb/erad406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/14/2023] [Indexed: 10/18/2023]
Abstract
Proline dehydrogenase (ProDH) and pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyse the oxidation of proline into glutamate via the intermediates P5C and glutamate-semialdehyde (GSA), which spontaneously interconvert. P5C and GSA are also intermediates in the production of glutamate from ornithine and α-ketoglutarate catalysed by ornithine δ-aminotransferase (OAT). ProDH and P5CDH form a fused bifunctional PutA enzyme in Gram-negative bacteria and are associated in a bifunctional substrate-channelling complex in Thermus thermophilus; however, the physical proximity of ProDH and P5CDH in eukaryotes has not been described. Here, we report evidence of physical proximity and interactions between Arabidopsis ProDH, P5CDH, and OAT in the mitochondria of plants during dark-induced leaf senescence when all three enzymes are expressed. Pairwise interactions and localization of the three enzymes were investigated using bimolecular fluorescence complementation with confocal microscopy in tobacco and sub-mitochondrial fractionation in Arabidopsis. Evidence for a complex composed of ProDH, P5CDH, and OAT was revealed by co-migration of the proteins in native conditions upon gel electrophoresis. Co-immunoprecipitation coupled with mass spectrometry analysis confirmed the presence of the P5C metabolism complex in Arabidopsis. Pull-down assays further demonstrated a direct interaction between ProDH1 and P5CDH. P5C metabolism complexes might channel P5C among the constituent enzymes and directly provide electrons to the respiratory electron chain via ProDH.
Collapse
Affiliation(s)
- Yao Zheng
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Holger Eubel
- Institute of Plant Genetics, Leibniz Universität Hannover, Germany
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Laurent Lignieres
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Emilie Crilat
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, Germany
| | - Sandrine Lebreton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| |
Collapse
|
7
|
Barros JAS, Cavalcanti JHF, Pimentel KG, Magen S, Soroka Y, Weiss S, Medeiros DB, Nunes-Nesi A, Fernie AR, Avin-Wittenberg T, Araújo WL. The interplay between autophagy and chloroplast vesiculation pathways under dark-induced senescence. PLANT, CELL & ENVIRONMENT 2023; 46:3721-3736. [PMID: 37615309 DOI: 10.1111/pce.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
In cellular circumstances where carbohydrates are scarce, plants can use alternative substrates for cellular energetic maintenance. In plants, the main protein reserve is present in the chloroplast, which contains most of the total leaf proteins and represents a rich source of nitrogen and amino acids. Autophagy plays a key role in chloroplast breakdown, a well-recognised symptom of both natural and stress-induced plant senescence. Remarkably, an autophagic-independent route of chloroplast degradation associated with chloroplast vesiculation (CV) gene was previously demonstrated. During extended darkness, CV is highly induced in the absence of autophagy, contributing to the early senescence phenotype of atg mutants. To further investigate the role of CV under dark-induced senescence conditions, mutants with low expression of CV (amircv) and double mutants amircv1xatg5 were characterised. Following darkness treatment, no aberrant phenotypes were observed in amircv single mutants; however, amircv1xatg5 double mutants displayed early senescence and altered dismantling of chloroplast and membrane structures under these conditions. Metabolic characterisation revealed that the functional lack of both CV and autophagy leads to higher impairment of amino acid release and differential organic acid accumulation during starvation conditions. The data obtained are discussed in the context of the role of CV and autophagy, both in terms of cellular metabolism and the regulation of chloroplast degradation.
Collapse
Affiliation(s)
- Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - João Henrique F Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá, Amazonas, Brazil
| | - Karla G Pimentel
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sahar Magen
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Yoram Soroka
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Shahar Weiss
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - David B Medeiros
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
8
|
Tran HC, Schmitt V, Lama S, Wang C, Launay-Avon A, Bernfur K, Sultan K, Khan K, Brunaud V, Liehrmann A, Castandet B, Levander F, Rasmusson AG, Mireau H, Delannoy E, Van Aken O. An mTRAN-mRNA interaction mediates mitochondrial translation initiation in plants. Science 2023; 381:eadg0995. [PMID: 37651534 DOI: 10.1126/science.adg0995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
Plant mitochondria represent the largest group of respiring organelles on the planet. Plant mitochondrial messenger RNAs (mRNAs) lack Shine-Dalgarno-like ribosome-binding sites, so it is unknown how plant mitoribosomes recognize mRNA. We show that "mitochondrial translation factors" mTRAN1 and mTRAN2 are land plant-specific proteins, required for normal mitochondrial respiration chain biogenesis. Our studies suggest that mTRANs are noncanonical pentatricopeptide repeat (PPR)-like RNA binding proteins of the mitoribosomal "small" subunit. We identified conserved Adenosine (A)/Uridine (U)-rich motifs in the 5' regions of plant mitochondrial mRNAs. mTRAN1 binds this motif, suggesting that it is a mitoribosome homing factor to identify mRNAs. We demonstrate that mTRANs are likely required for translation of all plant mitochondrial mRNAs. Plant mitochondrial translation initiation thus appears to use a protein-mRNA interaction that is divergent from bacteria or mammalian mitochondria.
Collapse
Affiliation(s)
| | | | - Sbatie Lama
- Department of Biology, Lund University, Lund, Sweden
| | - Chuande Wang
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Alexandra Launay-Avon
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Katja Bernfur
- Department of Chemistry, Lund University, Lund, Sweden
| | - Kristin Sultan
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Kasim Khan
- Department of Biology, Lund University, Lund, Sweden
| | - Véronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Arnaud Liehrmann
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université Paris-Saclay, CNRS, Université d'Évry, Laboratoire de Mathématiques et Modélisation d'Évry, 91037 Évry-Courcouronnes, France
| | - Benoît Castandet
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | | | - Hakim Mireau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Université d'Évry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405 Orsay, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | | |
Collapse
|
9
|
Li Z, Oelmüller R, Guo H, Miao Y. Editorial: Signal transduction of plant organ senescence and cell death. FRONTIERS IN PLANT SCIENCE 2023; 14:1172373. [PMID: 37056504 PMCID: PMC10086363 DOI: 10.3389/fpls.2023.1172373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Affiliation(s)
- Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ralf Oelmüller
- Matthias Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Estiarte M, Campioli M, Mayol M, Penuelas J. Variability and limits of nitrogen and phosphorus resorption during foliar senescence. PLANT COMMUNICATIONS 2023; 4:100503. [PMID: 36514281 PMCID: PMC10030369 DOI: 10.1016/j.xplc.2022.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/17/2022] [Accepted: 12/08/2022] [Indexed: 05/04/2023]
Abstract
Foliar nutrient resorption (NuR) plays a key role in ecosystem functioning and plant nutrient economy. Most of this recycling occurs during the senescence of leaves and is actively addressed by cells. Here, we discuss the importance of cell biochemistry, physiology, and subcellular anatomy to condition the outcome of NuR at the cellular level and to explain the existence of limits to NuR. Nutrients are transferred from the leaf in simple metabolites that can be loaded into the phloem. Proteolysis is the main mechanism for mobilization of N, whereas P mobilization requires the involvement of different catabolic pathways, making the dynamics of P in leaves more variable than those of N before, during, and after foliar senescence. The biochemistry and fate of organelles during senescence impose constraints that limit NuR. The efficiency of NuR decreases, especially in evergreen species, as soil fertility increases, which is attributed to the relative costs of nutrient acquisition from soil decreasing with increasing soil nutrient availability, while the energetic costs of NuR from senescing leaves remain constant. NuR is genetically determined, with substantial interspecific variability, and is environmentally regulated in space and time, with nutrient availability being a key driver of intraspecific variability in NuR.
Collapse
Affiliation(s)
- Marc Estiarte
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Matteo Campioli
- Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Maria Mayol
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain.
| |
Collapse
|
11
|
Zheng Y, Cabassa-Hourton C, Planchais S, Crilat E, Clément G, Dacher M, Durand N, Bordenave-Jacquemin M, Guivarc'h A, Dourmap C, Carol P, Lebreton S, Savouré A. Pyrroline-5-carboxylate dehydrogenase is an essential enzyme for proline dehydrogenase function during dark-induced senescence in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2023; 46:901-917. [PMID: 36583533 DOI: 10.1111/pce.14529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
During leaf senescence, nitrogen is remobilized and carbon backbones are replenished by amino acid catabolism, with many of the key reactions occurring in mitochondria. The intermediate Δ1 -pyrroline-5-carboxylate (P5C) is common to some catabolic pathways, thus linking the metabolism of several amino acids, including proline and arginine. Specifically, mitochondrial proline catabolism involves sequential action of proline dehydrogenase (ProDH) and P5C dehydrogenase (P5CDH) to produce P5C and then glutamate. Arginine catabolism produces urea and ornithine, the latter in the presence of α-ketoglutarate being converted by ornithine δ-aminotransferase (OAT) into P5C and glutamate. Metabolic changes during dark-induced leaf senescence (DIS) were studied in Arabidopsis thaliana leaves of Col-0 and in prodh1prodh2, p5cdh and oat mutants. Progression of DIS was followed by measuring chlorophyll and proline contents for 5 days. Metabolomic profiling of 116 compounds revealed similar profiles of Col-0 and oat metabolism, distinct from prodh1prodh2 and p5cdh metabolism. Metabolic dynamics were accelerated in p5cdh by 1 day. Notably, more P5C and proline accumulated in p5cdh than in prodh1prodh2. ProDH1 enzymatic activity and protein amount were significantly down-regulated in p5cdh mutant at Day 4 of DIS. Mitochondrial P5C levels appeared critical in determining the flow through interconnected amino acid remobilization pathways to sustain senescence.
Collapse
Affiliation(s)
- Yao Zheng
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| | - Séverine Planchais
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| | - Emilie Crilat
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE-AgroParisTech, Centre INRAE, Versailles, France
| | - Matthieu Dacher
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| | - Nina Durand
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| | - Marianne Bordenave-Jacquemin
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| | - Anne Guivarc'h
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| | - Corentin Dourmap
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| | - Pierre Carol
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| | - Sandrine Lebreton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, France
| |
Collapse
|
12
|
Hu Y, Li M, Hu Y, Han D, Wei J, Zhang T, Guo J, Shi L. Wild soybean salt tolerance metabolic model: Assessment of storage protein mobilization in cotyledons and C/N balance in the hypocotyl/root axis. PHYSIOLOGIA PLANTARUM 2023; 175:e13863. [PMID: 36688582 DOI: 10.1111/ppl.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Salt stress has become one of the main factors limiting crop yield in recent years. The post-germinative growth is most sensitive to salt stress in soybean. In this study, cultivated and wild soybeans were used for an integrated metabonomics and transcriptomics analysis to determine whether wild soybean can resist salt stress by maintaining the mobilization of stored substances in cotyledons and the balance of carbon and nitrogen in the hypocotyl/root axis (HRA). Compared with wild soybean, the growth of cultivated soybean was significantly inhibited during the post-germinative growth period under salt stress. Integrating analysis found that the breakdown products of proteins, such as glutamate, glutamic acid, aspartic acid, and asparagine, increased significantly in wild soybean cotyledons. Asparagine synthase and fumarate hydratase genes and genes encoding HSP20 family proteins were specifically upregulated. In wild soybean HRA, levels of glutamic acid, aspartic acid, asparagine, citric acid, and succinic acid increased significantly, and the glutamate decarboxylase gene and the gene encoding carbonic anhydrase in nitrogen metabolism were significantly upregulated. The metabolic model indicated that wild soybean enhanced the decomposition of stored proteins and the transport of amino acids to the HRA in cotyledons and the GABA shunt to maintain carbon and nitrogen balance in the HRA to resist salt stress. This study provided a theoretical basis for cultivating salt-tolerant soybean varieties and opened opportunities for the development of sustainable agricultural practices.
Collapse
Affiliation(s)
- Yunan Hu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Mingxia Li
- School of Life Sciences, ChangChun Normal University, Changchun, China
| | - Yongjun Hu
- School of Life Sciences, ChangChun Normal University, Changchun, China
| | - Defu Han
- School of Life Sciences, ChangChun Normal University, Changchun, China
| | - Jian Wei
- School of Life Sciences, ChangChun Normal University, Changchun, China
| | - Tao Zhang
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jixun Guo
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Lianxuan Shi
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| |
Collapse
|
13
|
Burgess AJ, Masclaux‐Daubresse C, Strittmatter G, Weber APM, Taylor SH, Harbinson J, Yin X, Long S, Paul MJ, Westhoff P, Loreto F, Ceriotti A, Saltenis VLR, Pribil M, Nacry P, Scharff LB, Jensen PE, Muller B, Cohan J, Foulkes J, Rogowsky P, Debaeke P, Meyer C, Nelissen H, Inzé D, Klein Lankhorst R, Parry MAJ, Murchie EH, Baekelandt A. Improving crop yield potential: Underlying biological processes and future prospects. Food Energy Secur 2022; 12:e435. [PMID: 37035025 PMCID: PMC10078444 DOI: 10.1002/fes3.435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | - Günter Strittmatter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | | | - Jeremy Harbinson
- Laboratory for Biophysics Wageningen University and Research Wageningen The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences Wageningen University & Research Wageningen The Netherlands
| | - Stephen Long
- Lancaster Environment Centre Lancaster University Lancaster UK
- Plant Biology and Crop Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | | | - Peter Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR), Rome, Italy and University of Naples Federico II Napoli Italy
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ Montpellier, INRAE, CNRS Institut Agro Montpellier France
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Copenhagen Denmark
| | - Bertrand Muller
- Université de Montpellier ‐ LEPSE – INRAE Institut Agro Montpellier France
| | | | - John Foulkes
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Peter Rogowsky
- INRAE UMR Plant Reproduction and Development Lyon France
| | | | - Christian Meyer
- IJPB UMR1318 INRAE‐AgroParisTech‐Université Paris Saclay Versailles France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| |
Collapse
|
14
|
Kacprzak SM, Van Aken O. Carbon starvation, senescence and specific mitochondrial stresses, but not nitrogen starvation and general stresses, are major triggers for mitophagy in Arabidopsis. Autophagy 2022; 18:2894-2912. [PMID: 35311445 PMCID: PMC9673927 DOI: 10.1080/15548627.2022.2054039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Selective degradation of mitochondria by autophagy (mitophagy) is thought to play an important role in mitochondrial quality control, but our understanding of which conditions induce mitophagy in plants is limited. Here, we developed novel reporter lines to monitor mitophagy in plants and surveyed the rate of mitophagy under a wide range of stresses and developmental conditions. Especially carbon starvation induced by dark-incubation causes a dramatic increase in mitophagy within a few hours, further increasing as dark-induced senescence progresses. Natural senescence was also a strong trigger of mitophagy, peaking when leaf yellowing became prominent. In contrast, nitrogen starvation, a trigger of general autophagy, does not induce strong increases in mitophagy. Similarly, general stresses such as hydrogen peroxide, heat, UV-B and hypoxia did not appear to trigger substantial mitophagy in plants. Additionally, we exposed plants to inhibitors of the mitochondrial electron transport chain, mitochondrial translation and protein import. Although short-term treatments did not induce high mitophagy rates, longer term exposures to uncoupling agent and inhibitors of mitochondrial protein import/translation could clearly increase mitophagic flux. These findings could further be confirmed using confocal microscopy. To validate that mitophagy is mediated by the autophagy pathway, we showed that mitophagic flux is abolished or strongly decreased in atg5/AuTophaGy 5 and atg11 mutants, respectively. Finally, we observed high rates of mitophagy in etiolated seedlings, which remarkably was completely repressed within 6 h after light exposure. In conclusion, we propose that dark-induced carbon starvation, natural senescence and specific mitochondrial stresses are key triggers of mitophagy in plants.Abbreviations: AA: antimycin A; ATG: AuToPhagy related; ConA: concanamycin A; DIS: dark-induced senescence; Dox: doxycycline; FCCP: carbonyl cyanide-p-trifluoromethoxyphenylhydrazone; GFP: green fluorescent protein; IDH1: isocitrate dehydrogenase 1; MB: MitoBlock-6; Mito-GFP: transgenic Arabidopsis line expressing a mitochondrially targeted protein fused to GFP; mtETC: mitochondrial electron transport chain; OXPHOS: oxidative phosphorylation; PQC: protein quality control; TOM20: Translocase of Outer Membrane 20.
Collapse
Affiliation(s)
| | - Olivier Van Aken
- Department of Biology, Lund University, Lund, Sweden,CONTACT Olivier Van Aken Molecular Cell Biology, Department of Biology, Lund, Sweden
| |
Collapse
|
15
|
Liu M, Guo C, Xie K, Chen K, Chen J, Wang Y, Wang X. A cross-species co-functional gene network underlying leaf senescence. HORTICULTURE RESEARCH 2022; 10:uhac251. [PMID: 36643763 PMCID: PMC9832971 DOI: 10.1093/hr/uhac251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The complex leaf senescence process is governed by various levels of transcriptional and translational regulation. Several features of the leaf senescence process are similar across species, yet the extent to which the molecular mechanisms underlying the process of leaf senescence are conserved remains unclear. Currently used experimental approaches permit the identification of individual pathways that regulate various physiological and biochemical processes; however, the large-scale regulatory network underpinning intricate processes like leaf senescence cannot be built using these methods. Here, we discovered a series of conserved genes involved in leaf senescence in a common horticultural crop (Solanum lycopersicum), a monocot plant (Oryza sativa), and a eudicot plant (Arabidopsis thaliana) through analyses of the evolutionary relationships and expression patterns among genes. Our analyses revealed that the genetic basis of leaf senescence is largely conserved across species. We also created a multi-omics workflow using data from more than 10 000 samples from 85 projects and constructed a leaf senescence-associated co-functional gene network with 2769 conserved, high-confidence functions. Furthermore, we found that the mitochondrial unfolded protein response (UPRmt) is the central biological process underlying leaf senescence. Specifically, UPRmt responds to leaf senescence by maintaining mitostasis through a few cross-species conserved transcription factors (e.g. NAC13) and metabolites (e.g. ornithine). The co-functional network built in our study indicates that UPRmt figures prominently in cross-species conserved mechanisms. Generally, the results of our study provide new insights that will aid future studies of leaf senescence.
Collapse
Affiliation(s)
- Moyang Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaocheng Guo
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Xie
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yudong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Cohen M, Hertweck K, Itkin M, Malitsky S, Dassa B, Fischer AM, Fluhr R. Enhanced proteostasis, lipid remodeling, and nitrogen remobilization define barley flag leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6816-6837. [PMID: 35918065 DOI: 10.1093/jxb/erac329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is a developmental process allowing nutrient remobilization to sink organs. We characterized flag leaf senescence at 7, 14, and 21 d past anthesis in two near-isogenic barley lines varying in the allelic state of the HvNAM1 transcription factor gene, which influences senescence timing. Metabolomics and microscopy indicated that, as senescence progressed, thylakoid lipids were transiently converted to neutral lipids accumulating in lipid droplets. Senescing leaves also exhibited an accumulation of sugars including glucose, while nitrogen compounds (nucleobases, nucleotides, and amino acids) decreased. RNA-Seq analysis suggested lipid catabolism via β-oxidation and the glyoxylate cycle, producing carbon skeletons and feeding respiration as a replacement of the diminished carbon supply from photosynthesis. Comparison of the two barley lines highlighted a more prominent up-regulation of heat stress transcription factor- and chaperone-encoding genes in the late-senescing line, suggesting a role for these genes in the control of leaf longevity. While numerous genes with putative roles in nitrogen remobilization were up-regulated in both lines, several peptidases, nucleases, and nitrogen transporters were more highly induced in the early-senescing line; this finding identifies processes and specific candidates which may affect nitrogen remobilization from senescing barley leaves, downstream of the HvNAM1 transcription factor.
Collapse
Affiliation(s)
- Maja Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Kendra Hertweck
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas M Fischer
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Costa EC, Oliveira DC, Isaias RMS. Parasitoid impairment on the galling Lopesia sp. activity reflects on the cytological and histochemical profiles of the globoid bivalve-shaped gall on Mimosa gemmulata. PROTOPLASMA 2022; 259:1585-1597. [PMID: 35384493 DOI: 10.1007/s00709-022-01756-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Gall cytological and histochemical features established by the constant feeding activity of the associated gall inducer may be changed due to the attack of parasitoids. We accessed two tri-trophic systems involving the globoid bivalve-shaped gall on Mimosa gemmulata Barneby (Fabaceae) and its galling undescribed species of Lopesia (Diptera: Cecidomyiidae), which may be ectoparasitized by Torymus sp. (Hymenoptera: Torymidae) or endoparasitized by a polyembryonic Platygastridae (Hymenoptera), as models of study. The ectoparasitoid species paralyzes and kills Lopesia sp. larva, which stops the feeding stimuli, while the endoparasitoid larvae feed in Lopesia sp. larva body and keep it alive for a certain time. Our hypothesis is that the time lapse of Lopesia sp. feeding impairment by the two parasitoids will cause distinct cytological and histochemical responses in the ecto- and endoparasitized galls compared to the non-parasitized condition. In both parasitoidism cases, the impairment of the feeding activity of the galling Lopesia sp. directs the common storage and nutritive cells toward a similar process of induced cell death, involving cell collapse and loss of membrane integrity. The cell metabolism is maintained mainly by mitochondria, and by the translocation of lipids from the common storage tissue, via plasmodesmata, through the living sclereids of the mechanical zone toward the nutritive tissue. Accordingly, the parasitoid impairment on the feeding activity of Lopesia sp. larvae causes precocious senescence, but similar cytological alterations, and no impact over the histochemical profiles, regarding lipids, reactive oxygen species, and secondary metabolites, which support gall metabolism along the parasitoid cycles.
Collapse
Affiliation(s)
- Elaine C Costa
- Laboratório de Anatomia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Denis C Oliveira
- Laboratório de Anatomia, Desenvolvimento Vegetal E Interações, Instituto de Biologia, Universidade Federal de Uberlândia, Campus Umuarama, Rua Ceará s/n, Uberlândia, Minas Gerais, 38402-018, Brazil
| | - Rosy M S Isaias
- Laboratório de Anatomia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
18
|
Ruberti C, Feitosa-Araujo E, Xu Z, Wagner S, Grenzi M, Darwish E, Lichtenauer S, Fuchs P, Parmagnani AS, Balcerowicz D, Schoenaers S, de la Torre C, Mekkaoui K, Nunes-Nesi A, Wirtz M, Vissenberg K, Van Aken O, Hause B, Costa A, Schwarzländer M. MCU proteins dominate in vivo mitochondrial Ca2+ uptake in Arabidopsis roots. THE PLANT CELL 2022; 34:4428-4452. [PMID: 35938694 PMCID: PMC9614509 DOI: 10.1093/plcell/koac242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Ca2+ signaling is central to plant development and acclimation. While Ca2+-responsive proteins have been investigated intensely in plants, only a few Ca2+-permeable channels have been identified, and our understanding of how intracellular Ca2+ fluxes is facilitated remains limited. Arabidopsis thaliana homologs of the mammalian channel-forming mitochondrial calcium uniporter (MCU) protein showed Ca2+ transport activity in vitro. Yet, the evolutionary complexity of MCU proteins, as well as reports about alternative systems and unperturbed mitochondrial Ca2+ uptake in knockout lines of MCU genes, leave critical questions about the in vivo functions of the MCU protein family in plants unanswered. Here, we demonstrate that MCU proteins mediate mitochondrial Ca2+ transport in planta and that this mechanism is the major route for fast Ca2+ uptake. Guided by the subcellular localization, expression, and conservation of MCU proteins, we generated an mcu triple knockout line. Using Ca2+ imaging in living root tips and the stimulation of Ca2+ transients of different amplitudes, we demonstrated that mitochondrial Ca2+ uptake became limiting in the triple mutant. The drastic cell physiological phenotype of impaired subcellular Ca2+ transport coincided with deregulated jasmonic acid-related signaling and thigmomorphogenesis. Our findings establish MCUs as a major mitochondrial Ca2+ entry route in planta and link mitochondrial Ca2+ transport with phytohormone signaling.
Collapse
Affiliation(s)
| | - Elias Feitosa-Araujo
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | - Zhaolong Xu
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
- Jiangsu Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | | | - Matteo Grenzi
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
| | - Essam Darwish
- Department of Biology, Lund University, Lund, 22362, Sweden
- Agricultural Botany Department, Faculty of Agriculture, Plant Physiology Section, Cairo University, Giza, 12613, Egypt
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | | | | | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, D-68167, Germany
| | - Khansa Mekkaoui
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Markus Wirtz
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Heidelberg, D-69120, Germany
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
- Department of Agriculture, Plant Biochemistry and Biotechnology Lab, Hellenic Mediterranean University, Heraklion, 71410, Greece
| | | | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Alex Costa
- Authors for correspondence: (A.C); (M.S.)
| | | |
Collapse
|
19
|
Barros JAS, Cavalcanti JHF, Pimentel KG, Medeiros DB, Silva JCF, Condori-Apfata JA, Lapidot-Cohen T, Brotman Y, Nunes-Nesi A, Fernie AR, Avin-Wittenberg T, Araújo WL. The significance of WRKY45 transcription factor in metabolic adjustments during dark-induced leaf senescence. PLANT, CELL & ENVIRONMENT 2022; 45:2682-2695. [PMID: 35818668 DOI: 10.1111/pce.14393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Plants are constantly exposed to environmental changes that affect their performance. Metabolic adjustments are crucial to controlling energy homoeostasis and plant survival, particularly during stress. Under carbon starvation, coordinated reprogramming is initiated to adjust metabolic processes, which culminate in premature senescence. Notwithstanding, the regulatory networks that modulate transcriptional control during low energy remain poorly understood. Here, we show that the WRKY45 transcription factor is highly induced during both developmental and dark-induced senescence. The overexpression of Arabidopsis WRKY45 resulted in an early senescence phenotype characterized by a reduction of maximum photochemical efficiency of photosystem II and chlorophyll levels in the later stages of darkness. The detailed metabolic characterization showed significant changes in amino acids coupled with the accumulation of organic acids in WRKY45 overexpression lines during dark-induced senescence. Furthermore, the markedly upregulation of alternative oxidase (AOX1a, AOX1d) and electron transfer flavoprotein/ubiquinone oxidoreductase (ETFQO) genes suggested that WRKY45 is associated with a dysregulation of mitochondrial signalling and the activation of alternative respiration rather than amino acids catabolism regulation. Collectively our results provided evidence that WRKY45 is involved in the plant metabolic reprogramming following carbon starvation and highlight the potential role of WRKY45 in the modulation of mitochondrial signalling pathways.
Collapse
Affiliation(s)
- Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - João Henrique F Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá, Amazonas, Brazil
| | - Karla G Pimentel
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - David B Medeiros
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - José C F Silva
- Departamento de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jorge A Condori-Apfata
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Taly Lapidot-Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
20
|
Pesquera M, Martinez J, Maillot B, Wang K, Hofmann M, Raia P, Loubéry S, Steensma P, Hothorn M, Fitzpatrick TB. Structural and functional studies of Arabidopsis thaliana triphosphate tunnel metalloenzymes reveal roles for additional domains. J Biol Chem 2022; 298:102438. [PMID: 36049521 PMCID: PMC9582702 DOI: 10.1016/j.jbc.2022.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022] Open
Abstract
Triphosphate tunnel metalloenzymes (TTMs) are found in all biological kingdoms and have been characterized in microorganisms and animals. Members of the TTM family have divergent biological functions and act on a range of triphosphorylated substrates (RNA, thiamine triphosphate, and inorganic polyphosphate). TTMs in plants have received considerably less attention and are unique in that some homologs harbor additional domains including a P-loop kinase and transmembrane domain. Here, we report on structural and functional aspects of the multimodular TTM1 and TTM2 of Arabidopsis thaliana. Our tissue and cellular microscopy studies show that both AtTTM1 and AtTTM2 are expressed in actively dividing (meristem) tissue and are tail-anchored proteins at the outer mitochondrial membrane, mediated by the single C-terminal transmembrane domain, supporting earlier studies. In addition, we reveal from crystal structures of AtTTM1 in the presence and absence of a nonhydrolyzable ATP analog a catalytically incompetent TTM tunnel domain tightly interacting with the P-loop kinase domain that is locked in an inactive conformation. Our structural comparison indicates that a helical hairpin may facilitate movement of the TTM domain, thereby activating the kinase. Furthermore, we conducted genetic studies to show that AtTTM2 is important for the developmental transition from the vegetative to the reproductive phase in Arabidopsis, whereas its closest paralog AtTTM1 is not. We demonstrate through rational design of mutations based on the 3D structure that both the P-loop kinase and TTM tunnel modules of AtTTM2 are required for the developmental switch. Together, our results provide insight into the structure and function of plant TTM domains.
Collapse
Affiliation(s)
- Marta Pesquera
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Jacobo Martinez
- Structural Plant Biology, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Benoît Maillot
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Kai Wang
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Manuel Hofmann
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Pierre Raia
- Structural Plant Biology, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Sylvain Loubéry
- Plant Imaging Unit, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Priscille Steensma
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Michael Hothorn
- Structural Plant Biology, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland.
| | - Teresa B Fitzpatrick
- Vitamins & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
21
|
Liebsch D, Juvany M, Li Z, Wang HL, Ziolkowska A, Chrobok D, Boussardon C, Wen X, Law SR, Janečková H, Brouwer B, Lindén P, Delhomme N, Stenlund H, Moritz T, Gardeström P, Guo H, Keech O. Metabolic control of arginine and ornithine levels paces the progression of leaf senescence. PLANT PHYSIOLOGY 2022; 189:1943-1960. [PMID: 35604104 PMCID: PMC9342962 DOI: 10.1093/plphys/kiac244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/11/2022] [Indexed: 06/12/2023]
Abstract
Leaf senescence can be induced by stress or aging, sometimes in a synergistic manner. It is generally acknowledged that the ability to withstand senescence-inducing conditions can provide plants with stress resilience. Although the signaling and transcriptional networks responsible for a delayed senescence phenotype, often referred to as a functional stay-green trait, have been actively investigated, very little is known about the subsequent metabolic adjustments conferring this aptitude to survival. First, using the individually darkened leaf (IDL) experimental setup, we compared IDLs of wild-type (WT) Arabidopsis (Arabidopsis thaliana) to several stay-green contexts, that is IDLs of two functional stay-green mutant lines, oresara1-2 (ore1-2) and an allele of phytochrome-interacting factor 5 (pif5), as well as to leaves from a WT plant entirely darkened (DP). We provide compelling evidence that arginine and ornithine, which accumulate in all stay-green contexts-likely due to the lack of induction of amino acids (AAs) transport-can delay the progression of senescence by fueling the Krebs cycle or the production of polyamines (PAs). Secondly, we show that the conversion of putrescine to spermidine (SPD) is controlled in an age-dependent manner. Thirdly, we demonstrate that SPD represses senescence via interference with ethylene signaling by stabilizing the ETHYLENE BINDING FACTOR1 and 2 (EBF1/2) complex. Taken together, our results identify arginine and ornithine as central metabolites influencing the stress- and age-dependent progression of leaf senescence. We propose that the regulatory loop between the pace of the AA export and the progression of leaf senescence provides the plant with a mechanism to fine-tune the induction of cell death in leaves, which, if triggered unnecessarily, can impede nutrient remobilization and thus plant growth and survival.
Collapse
Affiliation(s)
- Daniela Liebsch
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
| | - Marta Juvany
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
| | - Zhonghai Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hou-Ling Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Agnieszka Ziolkowska
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
| | - Daria Chrobok
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
| | - Clément Boussardon
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
| | - Xing Wen
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Simon R Law
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
| | - Helena Janečková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 783 71 Olomouc, Czech Republic
| | - Bastiaan Brouwer
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
| | - Pernilla Lindén
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden
| | - Hans Stenlund
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden
- Novo Nordisk Centre for Basic Metabolic Research, University of Copenhagen, D-2200 Copenhagen N, Denmark
| | - Per Gardeström
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
| | - Hongwei Guo
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Olivier Keech
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
22
|
Mahmood K, Torres-Jerez I, Krom N, Liu W, Udvardi MK. Transcriptional Programs and Regulators Underlying Age-Dependent and Dark-Induced Senescence in Medicago truncatula. Cells 2022; 11:cells11091570. [PMID: 35563875 PMCID: PMC9103780 DOI: 10.3390/cells11091570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
In forage crops, age-dependent and stress-induced senescence reduces forage yield and quality. Therefore, delaying leaf senescence may be a way to improve forage yield and quality as well as plant resilience to stresses. Here, we used RNA-sequencing to determine the molecular bases of age-dependent and dark-induced leaf senescence in Medicago truncatula. We identified 6845 differentially expressed genes (DEGs) in M3 leaves associated with age-dependent leaf senescence. An even larger number (14219) of DEGs were associated with dark-induced senescence. Upregulated genes identified during age-dependent and dark-induced senescence were over-represented in oxidation–reduction processes and amino acid, carboxylic acid and chlorophyll catabolic processes. Dark-specific upregulated genes also over-represented autophagy, senescence and cell death. Mitochondrial functions were strongly inhibited by dark-treatment while these remained active during age-dependent senescence. Additionally, 391 DE transcription factors (TFs) belonging to various TF families were identified, including a core set of 74 TFs during age-dependent senescence while 759 DE TFs including a core set of 338 TFs were identified during dark-induced senescence. The heterologous expression of several senescence-induced TFs belonging to NAC, WKRY, bZIP, MYB and HD-zip TF families promoted senescence in tobacco leaves. This study revealed the dynamics of transcriptomic responses to age- and dark-induced senescence in M. truncatula and identified senescence-associated TFs that are attractive targets for future work to control senescence in forage legumes.
Collapse
Affiliation(s)
- Kashif Mahmood
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
| | - Ivone Torres-Jerez
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
| | - Nick Krom
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
| | - Wei Liu
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX 76201, USA
| | - Michael K. Udvardi
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
- Centre for Crop Science, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
23
|
Fuchs P, Bohle F, Lichtenauer S, Ugalde JM, Feitosa Araujo E, Mansuroglu B, Ruberti C, Wagner S, Müller-Schüssele SJ, Meyer AJ, Schwarzländer M. Reductive stress triggers ANAC017-mediated retrograde signaling to safeguard the endoplasmic reticulum by boosting mitochondrial respiratory capacity. THE PLANT CELL 2022; 34:1375-1395. [PMID: 35078237 PMCID: PMC9125394 DOI: 10.1093/plcell/koac017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/18/2021] [Indexed: 05/16/2023]
Abstract
Redox processes are at the heart of universal life processes, such as metabolism, signaling, or folding of secreted proteins. Redox landscapes differ between cell compartments and are strictly controlled to tolerate changing conditions and to avoid cell dysfunction. While a sophisticated antioxidant network counteracts oxidative stress, our understanding of reductive stress responses remains fragmentary. Here, we observed root growth impairment in Arabidopsis thaliana mutants of mitochondrial alternative oxidase 1a (aox1a) in response to the model thiol reductant dithiothreitol (DTT). Mutants of mitochondrial uncoupling protein 1 (ucp1) displayed a similar phenotype indicating that impaired respiratory flexibility led to hypersensitivity. Endoplasmic reticulum (ER) stress was enhanced in the mitochondrial mutants and limiting ER oxidoreductin capacity in the aox1a background led to synergistic root growth impairment by DTT, indicating that mitochondrial respiration alleviates reductive ER stress. The observations that DTT triggered nicotinamide adenine dinucleotide (NAD) reduction in vivo and that the presence of thiols led to electron transport chain activity in isolated mitochondria offer a biochemical framework of mitochondrion-mediated alleviation of thiol-mediated reductive stress. Ablation of transcription factor Arabidopsis NAC domain-containing protein17 (ANAC017) impaired the induction of AOX1a expression by DTT and led to DTT hypersensitivity, revealing that reductive stress tolerance is achieved by adjusting mitochondrial respiratory capacity via retrograde signaling. Our data reveal an unexpected role for mitochondrial respiratory flexibility and retrograde signaling in reductive stress tolerance involving inter-organelle redox crosstalk.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Finja Bohle
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Elias Feitosa Araujo
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - Berivan Mansuroglu
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Cristina Ruberti
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
| | - Stephan Wagner
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, D-48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113 Bonn, Germany
| |
Collapse
|
24
|
Zentgraf U, Andrade-Galan AG, Bieker S. Specificity of H 2O 2 signaling in leaf senescence: is the ratio of H 2O 2 contents in different cellular compartments sensed in Arabidopsis plants? Cell Mol Biol Lett 2022; 27:4. [PMID: 34991444 PMCID: PMC8903538 DOI: 10.1186/s11658-021-00300-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023] Open
Abstract
Leaf senescence is an integral part of plant development and is driven by endogenous cues such as leaf or plant age. Developmental senescence aims to maximize the usage of carbon, nitrogen and mineral resources for growth and/or for the sake of the next generation. This requires efficient reallocation of the resources out of the senescing tissue into developing parts of the plant such as new leaves, fruits and seeds. However, premature senescence can be induced by severe and long-lasting biotic or abiotic stress conditions. It serves as an exit strategy to guarantee offspring in an unfavorable environment but is often combined with a trade-off in seed number and quality. In order to coordinate the very complex process of developmental senescence with environmental signals, highly organized networks and regulatory cues have to be in place. Reactive oxygen species, especially hydrogen peroxide (H2O2), are involved in senescence as well as in stress signaling. Here, we want to summarize the role of H2O2 as a signaling molecule in leaf senescence and shed more light on how specificity in signaling might be achieved. Altered hydrogen peroxide contents in specific compartments revealed a differential impact of H2O2 produced in different compartments. Arabidopsis lines with lower H2O2 levels in chloroplasts and cytoplasm point to the possibility that not the actual contents but the ratio between the two different compartments is sensed by the plant cells.
Collapse
Affiliation(s)
- Ulrike Zentgraf
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany.
| | - Ana Gabriela Andrade-Galan
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Stefan Bieker
- ZMBP (Centre of Plant Molecular Biology), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| |
Collapse
|
25
|
Pandey S, Kumari A, Singh P, Gupta KJ. Isolation and Measurement of Respiration and Structural Studies of Purified Mitochondria from Heterotrophic Plant Tissues. Curr Protoc 2021; 1:e326. [PMID: 34919353 DOI: 10.1002/cpz1.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are the power houses of eukaryotic cells. These organelles contain various oxidoreductase complexes. Electron transfer from different reducing equivalents channeled via these complexes drives proton translocation across the inner mitochondrial membrane, leading to ATP generation. Plant mitochondria contain alternative NAD(P)H dehydrogenases, alternative oxidase, and uncoupling protein, and TCA cycle enzymes are located in their matrix. Apart from ATP production, mitochondria are also involved in synthesis of vitamins and cofactors and participate in fatty acid, nucleotide, photorespiratory, and antioxidant metabolism. Recent emerging evidence suggests that mitochondria play a role in redox signaling and generation of reactive oxygen and nitrogen species. For mitochondrial studies, it is essential to isolate physiologically active mitochondria with good structural integrity. In this article, we explain a detailed procedure for isolation of mitochondria from various heterotrophic tissues, such as germinating chickpea seeds, potato tubers, and cauliflower florets. This procedure requires discontinuous Percoll gradient centrifugation and can give a good yield of mitochondria, in the range of 4 to 8 mg per 50 g tissue with active respiratory capacity. After MitoTracker staining, isolated mitochondria can be visualized by using a confocal microscope. The structure of mitochondria can be monitored by scanning electron microscopy. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Isolation of mitochondria from germinating chickpea seeds, potato tubers, and cauliflower florets Basic Protocol 2: Quantification of mitochondrial protein concentration by Bradford assay Basic Protocol 3: Quantification of mitochondrial respiration using single-channel free-radical analyzer Basic Protocol 4: Staining of mitochondria and confocal imaging Basic Protocol 5: Visualization of isolated mitochondria under scanning electron microscope.
Collapse
Affiliation(s)
- Sonika Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Pooja Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
26
|
Lei S, Yu G, Rossi S, Yu J, Huang B. LpNOL-knockdown suppression of heat-induced leaf senescence in perennial ryegrass involving regulation of amino acid and organic acid metabolism. PHYSIOLOGIA PLANTARUM 2021; 173:1979-1991. [PMID: 34455589 DOI: 10.1111/ppl.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The nonyellow COLORING 1-like gene (NOL) is known for its roles in accelerating leaf senescence, but the underlying metabolic mechanisms for heat-induced leaf senescence remain unclear. The objectives of this study were to identify metabolites and associated metabolic pathways regulated by knockdown of NOL in perennial ryegrass (Lolium perenne) and to determine the metabolic mechanisms of NOL controlling heat-induced leaf senescence. Wild-type (WT; cv. "Pinnacle") and two lines (Noli-1 and Noli-2) of perennial ryegrass with LpNOL knockdown were exposed to heat stress at 35/33°C (day/night) or nonstress control temperatures at 25/22°C (day/night) for 30 days in growth chambers. Leaf electrolyte leakage, chlorophyll (Chl) content, photochemical efficiency (Fv /Fm ), and net photosynthetic rate (Pn) were measured as physiological indicators of leaf senescence, while gas chromatography-mass spectrometry was performed to identify metabolites regulated by LpNOL. Knockdown of LpNOL suppressed heat-induced leaf senescence and produced a stay-green phenotype in perennial ryegrass, as manifested by increased Chl content, photochemical efficiency, net photosynthetic rate, and cell membrane stability in Noli-1 and Noli-2. Five metabolites (valine, malic acid, threonic acid, shikimic acid, chlorogenic acid) were uniquely upregulated in LpNOL plants exposed to heat stress, and six metabolites (aspartic acid, glutamic acid, 5-oxoproline, phenylalanine, proline, tartaric acid) exhibited more pronounced increases in their content in LpNOL plants than the WT. LpNOL could regulate heat-induced leaf senescence in perennial ryegrass through metabolic reprogramming in the pathways of respiration, secondary metabolism, antioxidant metabolism, and protein synthesis.
Collapse
Affiliation(s)
- Shuhan Lei
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Guohui Yu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Stephanie Rossi
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Jinjing Yu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
27
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
28
|
Karia P, Yoshioka K, Moeder W. Multiple phosphorylation events of the mitochondrial membrane protein TTM1 regulate cell death during senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:766-780. [PMID: 34409658 DOI: 10.1111/tpj.15470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The role of mitochondria in programmed cell death (PCD) during animal growth and development is well documented, but much less is known for plants. We previously showed that the Arabidopsis thaliana triphosphate tunnel metalloenzyme (TTM) proteins TTM1 and TTM2 are tail-anchored proteins that localize in the mitochondrial outer membrane and participate in PCD during senescence and immunity, respectively. Here, we show that TTM1 is specifically involved in senescence induced by abscisic acid (ABA). Moreover, phosphorylation of TTM1 by multiple mitogen-activated protein (MAP) kinases regulates its function and turnover. A combination of proteomics and in vitro kinase assays revealed three major phosphorylation sites of TTM1 (Ser10, Ser437, and Ser490). Ser437, which is phosphorylated upon perception of senescence cues such as ABA and prolonged darkness, is phosphorylated by the MAP kinases MPK3 and MPK4, and Ser437 phosphorylation is essential for TTM1 function in senescence. These MPKs, together with three additional MAP kinases (MPK1, MPK7, and MPK6), also phosphorylate Ser10 and Ser490, marking TTM1 for protein turnover, which likely prevents uncontrolled cell death. Taken together, our results show that multiple MPKs regulate the function and turnover of the mitochondrial protein TTM1 during senescence-associated cell death, revealing a novel link between mitochondria and PCD.
Collapse
Affiliation(s)
- Purva Karia
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
29
|
Broda M, Khan K, O’Leary B, Pružinská A, Lee CP, Millar AH, Van Aken O. Increased expression of ANAC017 primes for accelerated senescence. PLANT PHYSIOLOGY 2021; 186:2205-2221. [PMID: 33914871 PMCID: PMC8331134 DOI: 10.1093/plphys/kiab195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/02/2021] [Indexed: 05/06/2023]
Abstract
Recent studies in Arabidopsis (Arabidopsis thaliana) have reported conflicting roles for NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), a transcription factor regulating mitochondria-to-nuclear signaling, and its closest paralog NAC DOMAIN CONTAINING PROTEIN 16 (ANAC016), in leaf senescence. By synchronizing senescence in individually darkened leaves of knockout and overexpressing mutants from these contrasting studies, we demonstrate that elevated ANAC017 expression consistently causes accelerated senescence and cell death. A time-resolved transcriptome analysis revealed that senescence-associated pathways such as autophagy are not constitutively activated in ANAC017 overexpression lines, but require a senescence-stimulus to trigger accelerated induction. ANAC017 transcript and ANAC017-target genes are constitutively upregulated in ANAC017 overexpression lines, but surprisingly show a transient "super-induction" 1 d after senescence induction. This induction of ANAC017 and its target genes is observed during the later stages of age-related and dark-induced senescence, indicating the ANAC017 pathway is also activated in natural senescence. In contrast, knockout mutants of ANAC017 showed lowered senescence-induced induction of ANAC017 target genes during the late stages of dark-induced senescence. Finally, promoter binding analyses show that the ANAC016 promoter sequence is directly bound by ANAC017, so ANAC016 likely acts downstream of ANAC017 and is directly transcriptionally controlled by ANAC017 in a feed-forward loop during late senescence.
Collapse
Affiliation(s)
- Martyna Broda
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Kasim Khan
- Department of Biology, Lund University, Lund 22362, Sweden
| | - Brendan O’Leary
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Adriana Pružinská
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Biology, Lund University, Lund 22362, Sweden
- Author for communication:
| |
Collapse
|
30
|
Dellero Y, Mauve C, Jossier M, Hodges M. The Impact of Photorespiratory Glycolate Oxidase Activity on Arabidopsis thaliana Leaf Soluble Amino Acid Pool Sizes during Acclimation to Low Atmospheric CO 2 Concentrations. Metabolites 2021; 11:metabo11080501. [PMID: 34436442 PMCID: PMC8399254 DOI: 10.3390/metabo11080501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/17/2023] Open
Abstract
Photorespiration is a metabolic process that removes toxic 2-phosphoglycolate produced by the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. It is essential for plant growth under ambient air, and it can play an important role under stress conditions that reduce CO2 entry into the leaf thus enhancing photorespiration. The aim of the study was to determine the impact of photorespiration on Arabidopsis thaliana leaf amino acid metabolism under low atmospheric CO2 concentrations. To achieve this, wild-type plants and photorespiratory glycolate oxidase (gox) mutants were given either short-term (4 h) or long-term (1 to 8 d) low atmospheric CO2 concentration treatments and leaf amino acid levels were measured and analyzed. Low CO2 treatments rapidly decreased net CO2 assimilation rate and triggered a broad reconfiguration of soluble amino acids. The most significant changes involved photorespiratory Gly and Ser, aromatic and branched-chain amino acids as well as Ala, Asp, Asn, Arg, GABA and homoSer. While the Gly/Ser ratio increased in all Arabidopsis lines between air and low CO2 conditions, low CO2 conditions led to a higher increase in both Gly and Ser contents in gox1 and gox2.2 mutants when compared to wild-type and gox2.1 plants. Results are discussed with respect to potential limiting enzymatic steps with a special emphasis on photorespiratory aminotransferase activities and the complexity of photorespiration.
Collapse
Affiliation(s)
- Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Institute for Research for Agriculture, Food and Environment (INRAE), Institut Agro, Univ Rennes, 35653 Le Rheu, France
- Correspondence: (Y.D.); (M.H.)
| | - Caroline Mauve
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, National Committee of Scientific Research (CNRS), National Institute for Research for Agriculture, Food and Environment (INRAE), Université d’Evry, Université de Paris, 91190 Gif-sur-Yvette, France; (C.M.); (M.J.)
| | - Mathieu Jossier
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, National Committee of Scientific Research (CNRS), National Institute for Research for Agriculture, Food and Environment (INRAE), Université d’Evry, Université de Paris, 91190 Gif-sur-Yvette, France; (C.M.); (M.J.)
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, National Committee of Scientific Research (CNRS), National Institute for Research for Agriculture, Food and Environment (INRAE), Université d’Evry, Université de Paris, 91190 Gif-sur-Yvette, France; (C.M.); (M.J.)
- Correspondence: (Y.D.); (M.H.)
| |
Collapse
|
31
|
Melandri G, AbdElgawad H, Floková K, Jamar DC, Asard H, Beemster GTS, Ruyter-Spira C, Bouwmeester HJ. Drought tolerance in selected aerobic and upland rice varieties is driven by different metabolic and antioxidative responses. PLANTA 2021; 254:13. [PMID: 34173050 PMCID: PMC8233253 DOI: 10.1007/s00425-021-03659-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/08/2021] [Indexed: 05/14/2023]
Abstract
Sugar-mediated osmotic acclimation and a strong antioxidative response reduce drought-induced biomass loss at the vegetative stage in rice. A clear understanding of the physiological and biochemical adaptations to water limitation in upland and aerobic rice can help to identify the mechanisms underlying their tolerance to low water availability. In this study, three indica rice varieties-IR64 (lowland), Apo (aerobic), and UPL Ri-7 (upland)-, that are characterized by contrasting levels of drought tolerance, were exposed to drought at the vegetative stage. Drought-induced changes in biomass, leaf metabolites and oxidative stress markers/enzyme activities were analyzed in each variety at multiple time points. The two drought-tolerant varieties, Apo and UPL Ri-7 displayed a reduced water use in contrast to the susceptible variety IR64 that displayed high water consumption and consequent strong leaf dehydration upon drought treatment. A sugar-mediated osmotic acclimation in UPL Ri-7 and a strong antioxidative response in Apo were both effective in limiting the drought-induced biomass loss in these two varieties, while biomass loss was high in IR64, also after recovery. A qualitative comparison of these results with the ones of a similar experiment conducted in the field at the reproductive stage showed that only Apo, which also in this stage showed the highest antioxidant power, was able to maintain a stable grain yield under stress. Our results show that different metabolic and antioxidant adaptations confer drought tolerance to aerobic and upland rice varieties in the vegetative stage. The effectiveness of these adaptations differs between developmental stages. Unraveling the genetic control of these mechanisms might be exploited in breeding for new rice varieties adapted to water-limited environments.
Collapse
Affiliation(s)
- Giovanni Melandri
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- School of Plant Sciences, The University of Arizona, Tucson, AZ, USA
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), University of Antwerp, Antwerp, Belgium
- Department of Botany, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Kristýna Floková
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Palacký University, Olomouc, Czech Republic
| | - Diaan C Jamar
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Han Asard
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), University of Antwerp, Antwerp, Belgium
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), University of Antwerp, Antwerp, Belgium
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands.
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
32
|
Van Aken O. Mitochondrial redox systems as central hubs in plant metabolism and signaling. PLANT PHYSIOLOGY 2021; 186:36-52. [PMID: 33624829 PMCID: PMC8154082 DOI: 10.1093/plphys/kiab101] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/11/2021] [Indexed: 05/06/2023]
Abstract
Plant mitochondria are indispensable for plant metabolism and are tightly integrated into cellular homeostasis. This review provides an update on the latest research concerning the organization and operation of plant mitochondrial redox systems, and how they affect cellular metabolism and signaling, plant development, and stress responses. New insights into the organization and operation of mitochondrial energy systems such as the tricarboxylic acid cycle and mitochondrial electron transport chain (mtETC) are discussed. The mtETC produces reactive oxygen and nitrogen species, which can act as signals or lead to cellular damage, and are thus efficiently removed by mitochondrial antioxidant systems, including Mn-superoxide dismutase, ascorbate-glutathione cycle, and thioredoxin-dependent peroxidases. Plant mitochondria are tightly connected with photosynthesis, photorespiration, and cytosolic metabolism, thereby providing redox-balancing. Mitochondrial proteins are targets of extensive post-translational modifications, but their functional significance and how they are added or removed remains unclear. To operate in sync with the whole cell, mitochondria can communicate their functional status via mitochondrial retrograde signaling to change nuclear gene expression, and several recent breakthroughs here are discussed. At a whole organism level, plant mitochondria thus play crucial roles from the first minutes after seed imbibition, supporting meristem activity, growth, and fertility, until senescence of darkened and aged tissue. Finally, plant mitochondria are tightly integrated with cellular and organismal responses to environmental challenges such as drought, salinity, heat, and submergence, but also threats posed by pathogens. Both the major recent advances and outstanding questions are reviewed, which may help future research efforts on plant mitochondria.
Collapse
Affiliation(s)
- Olivier Van Aken
- Department of Biology, Lund University, Lund, Sweden
- Author for communication:
| |
Collapse
|
33
|
Dellero Y, Jossier M, Bouchereau A, Hodges M, Leport L. Leaf Phenological Stages of Winter Oilseed Rape ( Brassica napus L.) Have Conserved Photosynthetic Efficiencies but Contrasted Intrinsic Water Use Efficiencies at High Light Intensities. FRONTIERS IN PLANT SCIENCE 2021; 12:659439. [PMID: 33936148 PMCID: PMC8083057 DOI: 10.3389/fpls.2021.659439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Leaf senescence in source leaves leads to the active degradation of chloroplast components [photosystems, chlorophylls, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)] and plays a key role in the efficient remobilization of nutrients toward sink tissues. However, the progression of leaf senescence can differentially modify the photosynthetic properties of source leaves depending on plant species. In this study, the photosynthetic and respiratory properties of four leaf ranks of oilseed rape describing leaf phenological stages having different sink-source activities were analyzed. To achieve this, photosynthetic pigments, total soluble proteins, Rubisco amounts, and the light response of chlorophyll fluorescence parameters coupled to leaf gas exchanges and leaf water content were measured. Photosynthetic CO2 assimilation and electron transfer rates, Rubisco and chlorophyll levels per leaf area were gradually decreased between young, mature and senescent leaves but they remained highly correlated at saturating light intensities. However, senescent leaves of oilseed rape had a lower intrinsic water use efficiency compared to young and mature leaves at saturating light intensities that was mainly due to higher stomatal conductance and transpiration rate with respect to stomatal density and net CO2 assimilation. The results are in favor of a concerted degradation of chloroplast components but a contrasted regulation of water status between leaves of different phenological stages of winter oilseed rape.
Collapse
Affiliation(s)
- Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro, Université Rennes, Le Rheu, France
| | - Mathieu Jossier
- Université Paris-Saclay, NAtional Committee of Scientific Research (CNRS), National Research Institute for Agriculture, Food and Environment (INRAE), Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Alain Bouchereau
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro, Université Rennes, Le Rheu, France
| | - Michael Hodges
- Université Paris-Saclay, NAtional Committee of Scientific Research (CNRS), National Research Institute for Agriculture, Food and Environment (INRAE), Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Laurent Leport
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro, Université Rennes, Le Rheu, France
| |
Collapse
|
34
|
Przybyla-Toscano J, Christ L, Keech O, Rouhier N. Iron-sulfur proteins in plant mitochondria: roles and maturation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2014-2044. [PMID: 33301571 DOI: 10.1093/jxb/eraa578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups ensuring electron transfer reactions, activating substrates for catalytic reactions, providing sulfur atoms for the biosynthesis of vitamins or other cofactors, or having protein-stabilizing effects. Hence, metalloproteins containing these cofactors are essential for numerous and diverse metabolic pathways and cellular processes occurring in the cytoplasm. Mitochondria are organelles where the Fe-S cluster demand is high, notably because the activity of the respiratory chain complexes I, II, and III relies on the correct assembly and functioning of Fe-S proteins. Several other proteins or complexes present in the matrix require Fe-S clusters as well, or depend either on Fe-S proteins such as ferredoxins or on cofactors such as lipoic acid or biotin whose synthesis relies on Fe-S proteins. In this review, we have listed and discussed the Fe-S-dependent enzymes or pathways in plant mitochondria including some potentially novel Fe-S proteins identified based on in silico analysis or on recent evidence obtained in non-plant organisms. We also provide information about recent developments concerning the molecular mechanisms involved in Fe-S cluster synthesis and trafficking steps of these cofactors from maturation factors to client apoproteins.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, INRAE, IAM, Nancy, France
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
35
|
Heinemann B, Künzler P, Eubel H, Braun HP, Hildebrandt TM. Estimating the number of protein molecules in a plant cell: protein and amino acid homeostasis during drought. PLANT PHYSIOLOGY 2021; 185:385-404. [PMID: 33721903 PMCID: PMC8133651 DOI: 10.1093/plphys/kiaa050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/17/2020] [Indexed: 05/21/2023]
Abstract
During drought stress, cellular proteostasis on the one hand and amino acid homeostasis on the other hand are severely challenged, because the decrease in photosynthesis induces massive proteolysis, leading to drastic changes in both the proteome and the free amino acid pool. Thus, we selected progressive drought stress in Arabidopsis (Arabidopsis thaliana) as a model to investigate on a quantitative level the balance between protein and free amino acid homeostasis. We analyzed the mass composition of the leaf proteome based on proteomics datasets, and estimated how many protein molecules are present in a plant cell and its subcellular compartments. In addition, we calculated stress-induced changes in the distribution of individual amino acids between the free and protein-bound pools. Under control conditions, an average Arabidopsis mesophyll cell contains about 25 billion protein molecules, of which 80% are localized in chloroplasts. Severe water deficiency leads to degradation of more than 40% of the leaf protein mass, and thus causes a drastic shift in distribution toward the free amino acid pool. Stress-induced proteolysis of just half of the 340 million RubisCO hexadecamers present in the chloroplasts of a single mesophyll cell doubles the cellular content of free amino acids. A major fraction of the amino acids released from proteins is channeled into synthesis of proline, which is a compatible osmolyte. Complete oxidation of the remaining fraction as an alternative respiratory substrate can fully compensate for the lack of photosynthesis-derived carbohydrates for several hours.
Collapse
Affiliation(s)
- Björn Heinemann
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Patrick Künzler
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Holger Eubel
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Tatjana M Hildebrandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
- Address for communication:
| |
Collapse
|
36
|
Jiang L, Yoshida T, Stiegert S, Jing Y, Alseekh S, Lenhard M, Pérez-Alfocea F, Fernie AR. Multi-omics approach reveals the contribution of KLU to leaf longevity and drought tolerance. PLANT PHYSIOLOGY 2021; 185:352-368. [PMID: 33721894 PMCID: PMC8133585 DOI: 10.1093/plphys/kiaa034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/05/2020] [Indexed: 05/05/2023]
Abstract
KLU, encoded by a cytochrome P450 CYP78A family gene, generates an important-albeit unknown-mobile signal that is distinct from the classical phytohormones. Multiple lines of evidence suggest that KLU/KLU-dependent signaling functions in several vital developmental programs, including leaf initiation, leaf/floral organ growth, and megasporocyte cell fate. However, the interactions between KLU/KLU-dependent signaling and the other classical phytohormones, as well as how KLU influences plant physiological responses, remain poorly understood. Here, we applied in-depth, multi-omics analysis to monitor transcriptome and metabolome dynamics in klu-mutant and KLU-overexpressing Arabidopsis plants. By integrating transcriptome sequencing data and primary metabolite profiling alongside phytohormone measurements, our results showed that cytokinin signaling, with its well-established function in delaying leaf senescence, was activated in KLU-overexpressing plants. Consistently, KLU-overexpressing plants exhibited significantly delayed leaf senescence and increased leaf longevity, whereas the klu-mutant plants showed early leaf senescence. In addition, proline biosynthesis and catabolism were enhanced following KLU overexpression owing to increased expression of genes associated with proline metabolism. Furthermore, KLU-overexpressing plants showed enhanced drought-stress tolerance and reduced water loss. Collectively, our work illustrates a role for KLU in positively regulating leaf longevity and drought tolerance by synergistically activating cytokinin signaling and promoting proline metabolism. These data promote KLU as a potential ideal genetic target to improve plant fitness.
Collapse
Affiliation(s)
- Liang Jiang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sofia Stiegert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
| | - Yue Jing
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Michael Lenhard
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
| | - Francisco Pérez-Alfocea
- Department of Plant Nutrition, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Genetics, University of Potsdam, 14469 Potsdam, Germany
- Author for communication:
| |
Collapse
|
37
|
Paluch-Lubawa E, Stolarska E, Sobieszczuk-Nowicka E. Dark-Induced Barley Leaf Senescence - A Crop System for Studying Senescence and Autophagy Mechanisms. FRONTIERS IN PLANT SCIENCE 2021; 12:635619. [PMID: 33790925 PMCID: PMC8005711 DOI: 10.3389/fpls.2021.635619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/23/2021] [Indexed: 06/02/2023]
Abstract
This review synthesizes knowledge on dark-induced barley, attached, leaf senescence (DILS) as a model and discusses the possibility of using this crop system for studying senescence and autophagy mechanisms. It addresses the recent progress made in our understanding of DILS. The following aspects are discussed: the importance of chloroplasts as early targets of DILS, the role of Rubisco as the largest repository of recoverable nitrogen in leaves senescing in darkness, morphological changes of these leaves other than those described for chloroplasts and metabolic modifications associated with them, DILS versus developmental leaf senescence transcriptomic differences, and finally the observation that in DILS autophagy participates in the circulation of cell components and acts as a quality control mechanism during senescence. Despite the progression of macroautophagy, the symptoms of degradation can be reversed. In the review, the question also arises how plant cells regulate stress-induced senescence via autophagy and how the function of autophagy switches between cell survival and cell death.
Collapse
|
38
|
Gandin A, Dizengremel P, Jolivet Y. Integrative role of plant mitochondria facing oxidative stress: The case of ozone. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:202-210. [PMID: 33385703 DOI: 10.1016/j.plaphy.2020.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/18/2020] [Indexed: 05/27/2023]
Abstract
Ozone is a secondary air pollutant, which causes oxidative stress in plants by producing reactive oxygen species (ROS) starting by an external attack of leaf apoplast. ROS have a dual role, acting as signaling molecules, regulating different physiological processes and response to stress, but also inducing oxidative damage. The production of ROS in plant cells is compartmented and regulated by scavengers and specific enzyme pathways. Chronic doses of ozone are known to trigger an important increase of the respiratory process while decreasing photosynthesis. Mitochondria, which normally operate with usual levels of intracellular ROS, would have to play a prominent role to cope with an enhanced ozone-derived ROS production. It is thus needed to compile the available literature on the effects of ozone on mitochondria to precise their strategy facing oxidative stress. An overview of the mitochondrial fate in three steps is proposed, i) starting with the initial responses of the mitochondria for alleviating the overproduction of ROS by the enhancement of existing antioxidant metabolism and adjustments of the electron transport chain, ii) followed by the setting up of detoxifying processes through exchanges between mitochondria and the cell, and iii) ending by an accelerated senescence initiated by mitochondrial membrane permeability and leading to programmed cell death.
Collapse
Affiliation(s)
- Anthony Gandin
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France
| | - Pierre Dizengremel
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France.
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, Silva, F-54000, Nancy, France
| |
Collapse
|
39
|
Cervela-Cardona L, Yoshida T, Zhang Y, Okada M, Fernie A, Mas P. Circadian Control of Metabolism by the Clock Component TOC1. FRONTIERS IN PLANT SCIENCE 2021; 12:683516. [PMID: 34194455 PMCID: PMC8238050 DOI: 10.3389/fpls.2021.683516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/18/2021] [Indexed: 05/11/2023]
Abstract
Photosynthesis in chloroplasts during the day and mitochondrial respiration during the night execute nearly opposing reactions that are coordinated with the internal cellular status and the external conditions. Here, we describe a mechanism by which the Arabidopsis clock component TIMING OF CAB EXPRESSION1 (TOC1) contributes to the diurnal regulation of metabolism. Proper expression of TOC1 is important for sustaining cellular energy and for the diel and circadian oscillations of sugars, amino acids and tricarboxylic acid (TCA) cycle intermediates. TOC1 binds to the promoter of the TCA-related gene FUMARASE 2 to repress its expression at night, which results in decreased fumarate accumulation in TOC1 over-expressing plants and increased in toc1-2 mutant. Genetic interaction studies confirmed that over-expression of FUMARASE 2 in TOC1 over-expressing plants alleviates the molecular and physiological energy-deprivation phenotypes of TOC1 over-expressing plants. Thus, we propose that the tandem TOC1-FUMARASE 2 is one of the mechanisms that contribute to the regulation of plant metabolism during the day and night.
Collapse
Affiliation(s)
- Luis Cervela-Cardona
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Center of Plant Systems Biology and Plant Biotechnology, Plovdiv, Bulgaria
| | - Masaaki Okada
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Alisdair Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Center of Plant Systems Biology and Plant Biotechnology, Plovdiv, Bulgaria
| | - Paloma Mas
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- *Correspondence: Paloma Mas,
| |
Collapse
|
40
|
Han HL, Liu J, Feng XJ, Zhang M, Lin QF, Wang T, Qi SL, Xu T, Hua XJ. SSR1 is involved in maintaining the function of mitochondria electron transport chain and iron homeostasis upon proline treatment in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153325. [PMID: 33271443 DOI: 10.1016/j.jplph.2020.153325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Although increasing intracellular proline under stressed condition could help the plants survive, treating plant with high level of proline under normal condition could be inhibitory to plant growth. Among other possible mechanisms, proline-induced mitochondrial reactive oxygen species (ROS) production due to electron overflow in mitochondria electron transport chain (mETC) caused by elevated proline degradation may contribute to the proline toxicity. However, direct evidences are still elusive. Here, we reported a functional characterization of SSR1, encoding a protein localized in mitochondria matrix, in maintaining the function of mETC through analyzing the proline hypersensitive phenotype of an Arabidopsis mutant ssr1-1 with a truncated SSR1 protein. Our analysis demonstrated that upon proline treatment, there were higher mitochondrial ROS, lower ATP content, reduced activity of mETC complex I and II, and reduced iron content in ssr1-1, in comparison to the wild type. Therefore, SSR1 is involved in maintaining normal capacity of mETC in transporting electrons in a way that related to iron homeostasis. Our results also supported that normal mETC activity is required for alleviating the proline toxicity.
Collapse
Affiliation(s)
- Hui Ling Han
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jie Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xuan Jun Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Min Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Qing Fang Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Ting Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, Jiangxi, 334001, China.
| | - Shi Lian Qi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Tao Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| | - Xue Jun Hua
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
41
|
Serrano-Bueno G, Sánchez de Medina Hernández V, Valverde F. Photoperiodic Signaling and Senescence, an Ancient Solution to a Modern Problem? FRONTIERS IN PLANT SCIENCE 2021; 12:634393. [PMID: 33777070 PMCID: PMC7988197 DOI: 10.3389/fpls.2021.634393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/12/2021] [Indexed: 05/22/2023]
Abstract
The length of the day (photoperiod) is a robust seasonal signal originated by earth orbital and translational movements, a resilient external cue to the global climate change, and a predictable hint to initiate or complete different developmental programs. In eukaryotic algae, the gene expression network that controls the cellular response to photoperiod also regulates other basic physiological functions such as starch synthesis or redox homeostasis. Land plants, evolving in a novel and demanding environment, imbued these external signals within the regulatory networks controlling organogenesis and developmental programs. Unlike algae that largely have to deal with cellular physical cues, within the course of evolution land plants had to transfer this external information from the receiving organs to the target tissues, and mobile signals such as hormones were recruited and incorporated in the regulomes. Control of senescence by photoperiod, as suggested in this perspective, would be an accurate way to feed seasonal information into a newly developed function (senescence) using an ancient route (photoperiodic signaling). This way, the plant would assure that two coordinated aspects of development such as flowering and organ senescence were sequentially controlled. As in the case of senescence, there is growing evidence to support the idea that harnessing the reliability of photoperiod regulation over other, more labile signaling pathways could be used as a robust breeding tool to enhance plants against the harmful effects of climate change.
Collapse
|
42
|
Ghifari AS, Teixeira PF, Kmiec B, Pružinská A, Glaser E, Murcha MW. A mitochondrial prolyl aminopeptidase PAP2 releases N-terminal proline and regulates proline homeostasis during stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1182-1194. [PMID: 32920905 DOI: 10.1111/tpj.14987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Most mitochondrial proteins are synthesised in the cytosol and targeted into the organelle via N-terminal targeting peptides that are cleaved upon import. The free targeting peptide is subsequently processed in a stepwise manner, with single amino acids released as final products. Here, we have characterised a proline-cleaving aminopeptidase in Arabidopsis thaliana, prolyl aminopeptidase-2 (PAP2, At3g61540). Activity assays show that PAP2 has a preferred activity to hydrolyse N-terminal proline. Protein localisation studies revealed that PAP2 is exclusively targeted to mitochondria. Characterisation of pap2 mutants show defective pollen, enhanced dark-induced senescence and increased susceptibility to abiotic stresses, which are likely attributed to a reduced level of accumulated free proline. Taken together, these results demonstrate the role of PAP2 in proline cleavage from mitochondrial peptides and proline homeostasis, which is required for the development of male gametophyte, tolerance to abiotic stresses, and leaf senescence.
Collapse
Affiliation(s)
- Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Adriana Pružinská
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| |
Collapse
|
43
|
Liu P, Weng R, Xu Y, Feng Y, He L, Qian Y, Qiu J. Metabolic Changes in Different Tissues of Garlic Plant during Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12467-12475. [PMID: 33084326 DOI: 10.1021/acs.jafc.0c04178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The accumulation, distribution, and transportation of nutrients in different tissues of garlic during growth are unclear. Thereby, five tissues (leaf, pseudostem, bulb wrapper, clove skin, and clove) collected at 7 weeks were subjected to metabolomics analysis. A total of 84 biomarkers were identified during garlic plant growth. Most organosulfur compounds, amino acids, and dipeptides were upregulated in the clove, while a reversed trend was observed in other tissues. In addition, nucleotides and alkaloids increased because of senescence in the last 2 weeks except for the clove. The results also indicated that the garlic plant at an early stage is an ideal vegetable that is rich in nutrients. When the leaves began to wither, most nutrients were transported from other tissues to cloves, and the content of 7 total flavor precursors and 20 total amino acids in the clove increased by 113% and 65% after week 5, respectively. Therefore, delayed harvest may improve the nutritional quality of garlic bulbs.
Collapse
Affiliation(s)
- Pingxiang Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, People's Republic of China
| | - Rui Weng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, People's Republic of China
| | - Yanyang Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, People's Republic of China
| | - Yue Feng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, People's Republic of China
| | - Linjuan He
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, People's Republic of China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, People's Republic of China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, People's Republic of China
| |
Collapse
|
44
|
Barros JAS, Siqueira JAB, Cavalcanti JHF, Araújo WL, Avin-Wittenberg T. Multifaceted Roles of Plant Autophagy in Lipid and Energy Metabolism. TRENDS IN PLANT SCIENCE 2020; 25:1141-1153. [PMID: 32565020 DOI: 10.1016/j.tplants.2020.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Together with sugars and proteins, lipids constitute the main carbon reserves in plants. Lipids are selectively recycled and catabolized for energy production during development and in response to environmental stresses. Autophagy is a major catabolic pathway, operating in the recycling of cellular components in eukaryotes. Although the autophagic degradation of lipids has been mainly characterized in mammals and yeast, growing evidence has highlighted the role of autophagy in several aspects of lipid metabolism in plants. Here, we summarize recent findings focusing on autophagy functions in lipid droplet (LD) metabolism. We further provide novel insights regarding the relevance of autophagy in the maintenance and clearance of mitochondria and peroxisomes and its consequences for proper lipid usage and energy homeostasis in plants.
Collapse
Affiliation(s)
- Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil; Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - João A B Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - João H F Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá, Amazonas, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel.
| |
Collapse
|
45
|
Characterization of In Vivo Function(s) of Members of the Plant Mitochondrial Carrier Family. Biomolecules 2020; 10:biom10091226. [PMID: 32846873 PMCID: PMC7565455 DOI: 10.3390/biom10091226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Although structurally related, mitochondrial carrier family (MCF) proteins catalyze the specific transport of a range of diverse substrates including nucleotides, amino acids, dicarboxylates, tricarboxylates, cofactors, vitamins, phosphate and H+. Despite their name, they do not, however, always localize to the mitochondria, with plasma membrane, peroxisomal, chloroplast and thylakoid and endoplasmic reticulum localizations also being reported. The existence of plastid-specific MCF proteins is suggestive that the evolution of these proteins occurred after the separation of the green lineage. That said, plant-specific MCF proteins are not all plastid-localized, with members also situated at the endoplasmic reticulum and plasma membrane. While by no means yet comprehensive, the in vivo function of a wide range of these transporters is carried out here, and we discuss the employment of genetic variants of the MCF as a means to provide insight into their in vivo function complementary to that obtained from studies following their reconstitution into liposomes.
Collapse
|
46
|
Mitochondrial Inheritance in Phytopathogenic Fungi-Everything Is Known, or Is It? Int J Mol Sci 2020; 21:ijms21113883. [PMID: 32485941 PMCID: PMC7312866 DOI: 10.3390/ijms21113883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are important organelles in eukaryotes that provide energy for cellular processes. Their function is highly conserved and depends on the expression of nuclear encoded genes and genes encoded in the organellar genome. Mitochondrial DNA replication is independent of the replication control of nuclear DNA and as such, mitochondria may behave as selfish elements, so they need to be controlled, maintained and reliably inherited to progeny. Phytopathogenic fungi meet with special environmental challenges within the plant host that might depend on and influence mitochondrial functions and services. We find that this topic is basically unexplored in the literature, so this review largely depends on work published in other systems. In trying to answer elemental questions on mitochondrial functioning, we aim to introduce the aspect of mitochondrial functions and services to the study of plant-microbe-interactions and stimulate phytopathologists to consider research on this important organelle in their future projects.
Collapse
|
47
|
Sink/Source Balance of Leaves Influences Amino Acid Pools and Their Associated Metabolic Fluxes in Winter Oilseed Rape ( Brassica napus L.). Metabolites 2020; 10:metabo10040150. [PMID: 32295054 PMCID: PMC7240945 DOI: 10.3390/metabo10040150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 11/18/2022] Open
Abstract
Nitrogen remobilization processes from source to sink tissues in plants are determinant for seed yield and their implementation results in a complete reorganization of the primary metabolism during sink/source transition. Here, we decided to characterize the impact of the sink/source balance on amino acid metabolism in the leaves of winter oilseed rape grown at the vegetative stage. We combined a quantitative metabolomics approach with an instationary 15N-labeling experiment by using [15N]L-glycine as a metabolic probe on leaf ranks with a gradual increase in their source status. We showed that the acquisition of the source status by leaves was specifically accompanied by a decrease in asparagine, glutamine, proline and S-methyl-l-cysteine sulphoxide contents and an increase in valine and threonine contents. Dynamic analysis of 15N enrichment and concentration of amino acids revealed gradual changes in the dynamics of amino acid metabolism with respect to the sink/source status of leaf ranks. Notably, nitrogen assimilation into valine, threonine and proline were all decreased in source leaves compared to sink leaves. Overall, our results suggested a reduction in de novo amino acid biosynthesis during sink/source transition at the vegetative stage.
Collapse
|
48
|
Dellero Y, Heuillet M, Marnet N, Bellvert F, Millard P, Bouchereau A. Sink/Source Balance of Leaves Influences Amino Acid Pools and Their Associated Metabolic Fluxes in Winter Oilseed Rape ( Brassica napus L.). Metabolites 2020; 10:metabo10040150. [PMID: 32295054 DOI: 10.15454/1i9pet] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 05/27/2023] Open
Abstract
Nitrogen remobilization processes from source to sink tissues in plants are determinant for seed yield and their implementation results in a complete reorganization of the primary metabolism during sink/source transition. Here, we decided to characterize the impact of the sink/source balance on amino acid metabolism in the leaves of winter oilseed rape grown at the vegetative stage. We combined a quantitative metabolomics approach with an instationary 15N-labeling experiment by using [15N]L-glycine as a metabolic probe on leaf ranks with a gradual increase in their source status. We showed that the acquisition of the source status by leaves was specifically accompanied by a decrease in asparagine, glutamine, proline and S-methyl-l-cysteine sulphoxide contents and an increase in valine and threonine contents. Dynamic analysis of 15N enrichment and concentration of amino acids revealed gradual changes in the dynamics of amino acid metabolism with respect to the sink/source status of leaf ranks. Notably, nitrogen assimilation into valine, threonine and proline were all decreased in source leaves compared to sink leaves. Overall, our results suggested a reduction in de novo amino acid biosynthesis during sink/source transition at the vegetative stage.
Collapse
Affiliation(s)
- Younès Dellero
- Department Plant Biology and Breeding, Agrocampus Ouest, Institute for Genetics, Environment and Plant Protection, French National Research Institute for Agriculture, Food and Environment, University of Rennes II, 35653 Le Rheu, France
| | - Maud Heuillet
- Department Plant Biology and Breeding, Department Microbiology and Food Chain, INSA, TBI, French National Center for Scientific Research, French National Research Institute for Agriculture, Food and Environment, University of Toulouse, 31400 Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, 33140 Toulouse, France
| | - Nathalie Marnet
- Department Plant Biology and Breeding and Department Transform, Agrocampus Ouest, Plateau de Profilage Métabolique et Métabolique (P2M2), Biopolymers Interactions Assemblies, Institute for Genetics, Environment and Plant Protection, French National Research Institute for Agriculture, Food and Environment, University of Rennes II, 35653 Le Rheu, France
| | - Floriant Bellvert
- Department Plant Biology and Breeding, Department Microbiology and Food Chain, INSA, TBI, French National Center for Scientific Research, French National Research Institute for Agriculture, Food and Environment, University of Toulouse, 31400 Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, 33140 Toulouse, France
| | - Pierre Millard
- Department Plant Biology and Breeding, Department Microbiology and Food Chain, INSA, TBI, French National Center for Scientific Research, French National Research Institute for Agriculture, Food and Environment, University of Toulouse, 31400 Toulouse, France
| | - Alain Bouchereau
- Department Plant Biology and Breeding, Agrocampus Ouest, Institute for Genetics, Environment and Plant Protection, French National Research Institute for Agriculture, Food and Environment, University of Rennes II, 35653 Le Rheu, France
- Department Plant Biology and Breeding and Department Transform, Agrocampus Ouest, Plateau de Profilage Métabolique et Métabolique (P2M2), Biopolymers Interactions Assemblies, Institute for Genetics, Environment and Plant Protection, French National Research Institute for Agriculture, Food and Environment, University of Rennes II, 35653 Le Rheu, France
| |
Collapse
|
49
|
Dellero Y, Clouet V, Marnet N, Pellizzaro A, Dechaumet S, Niogret MF, Bouchereau A. Leaf status and environmental signals jointly regulate proline metabolism in winter oilseed rape. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2098-2111. [PMID: 31807778 PMCID: PMC7242077 DOI: 10.1093/jxb/erz538] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 05/03/2023]
Abstract
Proline metabolism is an essential component of plant adaptation to multiple environmental stress conditions that is also known to participate in specific developmental phases, particularly in reproductive organs. Recent evidence suggested a possible role for proline catabolism in Brassica napus for nitrogen remobilization processes from source leaves at the vegetative stage. Here, we investigate transcript levels of Δ1-PYRROLINE-5-CARBOXYLATE SYNTHASE (P5CS) and PROLINE DEHYDROGENASE (ProDH) genes at the vegetative stage with respect to net proline biosynthesis and degradation fluxes in leaves having a different sink/source balance. We showed that the underexpression of three P5CS1 genes in source leaves was accompanied by a reduced commitment of de novo assimilated 15N towards proline biosynthesis and an overall depletion of free proline content. We found that the expression of ProDH genes was strongly induced by carbon starvation conditions (dark-induced senescence) compared with early senescing leaves. Our results suggested a role for proline catabolism in B. napus, but acting only at a late stage of senescence. In addition, we also identified some P5CS and ProDH genes that were differentially expressed during multiple processes (leaf status, dark to light transition, and stress response).
Collapse
Affiliation(s)
- Younes Dellero
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
- Correspondence:
| | - Vanessa Clouet
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Nathalie Marnet
- Plateau de Profilage Métabolique et Métabolique (P2M2), INRA-IGEPP and INRA-BIA, Le Rheu, France
| | - Anthoni Pellizzaro
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Sylvain Dechaumet
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Marie-Françoise Niogret
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Alain Bouchereau
- INRA, UMR 1349 Institut de Génétique, Environnement et Protection des Plantes, INRA, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| |
Collapse
|
50
|
Durian G, Jeschke V, Rahikainen M, Vuorinen K, Gollan PJ, Brosché M, Salojärvi J, Glawischnig E, Winter Z, Li S, Noctor G, Aro EM, Kangasjärvi J, Overmyer K, Burow M, Kangasjärvi S. PROTEIN PHOSPHATASE 2A-B' γ Controls Botrytis cinerea Resistance and Developmental Leaf Senescence. PLANT PHYSIOLOGY 2020; 182:1161-1181. [PMID: 31659127 PMCID: PMC6997707 DOI: 10.1104/pp.19.00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/14/2019] [Indexed: 05/22/2023]
Abstract
Plants optimize their growth and survival through highly integrated regulatory networks that coordinate defensive measures and developmental transitions in response to environmental cues. Protein phosphatase 2A (PP2A) is a key signaling component that controls stress reactions and growth at different stages of plant development, and the PP2A regulatory subunit PP2A-B'γ is required for negative regulation of pathogenesis responses and for maintenance of cell homeostasis in short-day conditions. Here, we report molecular mechanisms by which PP2A-B'γ regulates Botrytis cinerea resistance and leaf senescence in Arabidopsis (Arabidopsis thaliana). We extend the molecular functionality of PP2A-B'γ to a protein kinase-phosphatase interaction with the defense-associated calcium-dependent protein kinase CPK1 and present indications this interaction may function to control CPK1 activity. In presenescent leaf tissues, PP2A-B'γ is also required to negatively control the expression of salicylic acid-related defense genes, which have recently proven vital in plant resistance to necrotrophic fungal pathogens. In addition, we find the premature leaf yellowing of pp2a-b'γ depends on salicylic acid biosynthesis via SALICYLIC ACID INDUCTION DEFICIENT2 and bears the hallmarks of developmental leaf senescence. We propose PP2A-B'γ age-dependently controls salicylic acid-related signaling in plant immunity and developmental leaf senescence.
Collapse
Affiliation(s)
- Guido Durian
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Verena Jeschke
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Moona Rahikainen
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Katariina Vuorinen
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Peter J Gollan
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Erich Glawischnig
- Chair of Genetics, Department of Plant Sciences, Technical University of Munich, D-85354 Freising, Germany
| | - Zsófia Winter
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Shengchun Li
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, The Institut National de la Recherche Agronomique, Université Paris-sud 11, Université Paris-Saclay, 91405 Orsay, France
| | - Graham Noctor
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, The Institut National de la Recherche Agronomique, Université Paris-sud 11, Université Paris-Saclay, 91405 Orsay, France
| | - Eva-Mari Aro
- Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | | |
Collapse
|