1
|
Wang Q, De Vriese K, Desmet S, Wang R, Luklová M, Liu Q, Pollier J, Lu Q, Schlag S, Vetter W, Goossens A, Russinova E, Goeminne G, Geelen D, Beeckman T, Vanneste S. The selective estrogen receptor modulator clomiphene inhibits sterol biosynthesis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1131-1146. [PMID: 39680055 DOI: 10.1093/jxb/erae481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Sterols are produced via complex, multistep biosynthetic pathways involving similar enzymatic conversions in plants, animals, and fungi, yielding a variety of sterol metabolites with slightly different chemical properties to exert diverse and specific functions. A tremendously diverse landscape of sterols, and sterol-derived compounds can be found across the plant kingdom, determining a wide spectrum of functions. Resolving the underlying biosynthetic pathways is thus instrumental to understanding the function and use of these molecules. In only a few plants, sterol biosynthesis has been studied using mutants. In non-model species, a pharmacological approach is required. However, this relies on only a few inhibitors. Here, we investigated a collection of inhibitors of mammalian cholesterol biosynthesis to identify new inhibitors of plant sterol biosynthesis. We showed that imidazole-type fungicides, bifonazole, clotrimazole, and econazole, inhibited the obtusifoliol 14α-demethylase CYP51 in plants. Moreover, we found that the selective estrogen receptor modulator, clomiphene, inhibited sterol biosynthesis in part by inhibiting the plant-specific cyclopropyl-cycloisomerase CPI1. These results demonstrate that rescreening of inhibitors of animal sterol biosynthesis is an easy approach for identifying novel inhibitors of plant sterol biosynthesis. The molecules used in this study expand the range of inhibitors for studying and manipulating sterol biosynthesis in the plant kingdom.
Collapse
Affiliation(s)
- Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Sandrien Desmet
- VIB Metabolomics Core Ghent, Technologiepark 71, B-9052 Ghent, Belgium
| | - Ren Wang
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Markéta Luklová
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Qianqian Liu
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jacob Pollier
- VIB Metabolomics Core Ghent, Technologiepark 71, B-9052 Ghent, Belgium
| | - Qing Lu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Sarah Schlag
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Geert Goeminne
- VIB Metabolomics Core Ghent, Technologiepark 71, B-9052 Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
- Department of Plants and Crops, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
2
|
Heilmann M, Heilmann I. Getting attached to membranes-How plant signaling networks employ PtdIns(4,5)P2. PLANT PHYSIOLOGY 2025; 197:kiae393. [PMID: 39056549 DOI: 10.1093/plphys/kiae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024]
Abstract
In eukaryotes, a small subset of membrane lipids, the phosphoinositides (PIs), exert regulatory effects on membrane-associated processes with profound impact on the organism, and PIs are relevant also for the physiology and development of plants. The PI, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) has emerged as an important regulatory player in plants, and in recent years this lipid has received substantial attention. This Update Review focuses on our current understanding of how PtdIns(4,5)P2 exerts its regulatory functions, how biosynthesis and degradation of this important regulatory lipid are controlled, and how PtdIns(4,5)P2 is linked to upstream and downstream elements within plant signalling networks.
Collapse
Affiliation(s)
- Mareike Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles-Tanford Protein Science Center, 06120 Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles-Tanford Protein Science Center, 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Langley CA, Dietzen PA, Emerman M, Tenthorey JL, Malik HS. Antiviral Mx proteins have an ancient origin and widespread distribution among eukaryotes. Proc Natl Acad Sci U S A 2025; 122:e2416811122. [PMID: 39854241 PMCID: PMC11789081 DOI: 10.1073/pnas.2416811122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Mx proteins, first identified in mammals, encode potent antiviral activity against a wide range of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), which mediate critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. Despite their crucial role, the evolutionary origins of Mx proteins are poorly understood. Through comprehensive phylogenomic analyses with progressively expanded taxonomic sampling, we demonstrate that Mx proteins predate the interferon signaling system in vertebrates. Our analyses find an ancient monophyletic DSP lineage in eukaryotes that groups vertebrate and invertebrate Mx proteins with fungal MxF proteins, the largely uncharacterized plant and algal Dynamin 4A/4C proteins, and representatives from several other eukaryotic lineages, suggesting that Mx-like proteins date back close to the origin of Eukarya. Our phylogenetic analyses also find host-encoded and nucleocytoplasmic large DNA viruses-encoded DSPs interspersed in four distinct DSP lineages, indicating recurrent viral theft of host DSPs. Our analyses thus reveal an ancient history of viral and antiviral functions encoded by the Dynamin superfamily in eukaryotes.
Collapse
Affiliation(s)
- Caroline A. Langley
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Peter A. Dietzen
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Jeannette L. Tenthorey
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
- Cellular Molecular Pharmacology Department, University of California San Francisco, San Francisco, CA94143
| | - Harmit S. Malik
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
- HHMI, Fred Hutchinson Cancer Center, Seattle, WA98109
| |
Collapse
|
4
|
Narasimhan M, Jahnke N, Kallert F, Bahafid E, Böhmer F, Hartmann L, Simon R. Macromolecular tool box to elucidate CLAVATA3/EMBRYO SURROUNDING REGION-RELATED-RLK binding, signaling, and downstream effects. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5438-5456. [PMID: 38717932 PMCID: PMC11389835 DOI: 10.1093/jxb/erae206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/07/2024] [Indexed: 09/13/2024]
Abstract
Plant peptides communicate by binding to a large family of receptor-like kinases (RLKs), and they share a conserved binding mechanism, which may account for their promiscuous interaction with several RLKs. In order to understand the in vivo binding specificity of the CLAVATA3/EMBRYO SURROUNDING REGION-RELATED peptide family in Arabidopsis, we have developed a novel set of CLAVATA3 (CLV3)-based peptide tools. After carefully evaluating the CLE peptide binding characteristics, using solid phase synthesis process, we modified the CLV3 peptide and attached a fluorophore and a photoactivable side group. We observed that the labeled CLV3 shows binding specificity within the CLAVATA1 clade of RLKs while avoiding the distantly related PEP RECEPTOR clade, thus resolving the contradictory results obtained previously by many in vitro methods. Furthermore, we observed that the RLK-bound CLV3 undergoes clathrin-mediated endocytosis and is trafficked to the vacuole via ARA7 (a Rab GTPase)-labeled endosomes. Additionally, modifying CLV3 for light-controlled activation enabled spatial and temporal control over CLE signaling. Hence, our CLV3 macromolecular toolbox can be used to study rapid cell specific down-stream effects. Given the conserved binding properties, in the future our toolbox can also be used as a template to modify other CLE peptides.
Collapse
Affiliation(s)
- Madhumitha Narasimhan
- Institute for Developmental Genetics, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Nina Jahnke
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Felix Kallert
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Elmehdi Bahafid
- Institute for Developmental Genetics, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Franziska Böhmer
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
- Institute of Macromolecular Chemistry, University Freiburg, Stefan-Meier-Straße 31, D-79104 Freiburg, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
- Institute for Developmental Genetics and Cluster of Excellence in Plant Sciences, Heinrich Heine University, Universitätstraße 1, D-40225 Düsseldorf, North Rhine Westphalia, Germany
| |
Collapse
|
5
|
Langley CA, Dietzen PA, Emerman M, Tenthorey JL, Malik HS. Antiviral Mx proteins have an ancient origin and widespread distribution among eukaryotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606855. [PMID: 39149278 PMCID: PMC11326297 DOI: 10.1101/2024.08.06.606855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
First identified in mammals, Mx proteins are potent antivirals against a broad swathe of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), mediating critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. And yet, the evolutionary origins of Mx proteins are poorly understood. Using a series of phylogenomic analyses with stepwise increments in taxonomic coverage, we show that Mx proteins predate the interferon signaling system in vertebrates. Our analyses find an ancient monophyletic DSP lineage in eukaryotes that groups vertebrate and invertebrate Mx proteins with previously undescribed fungal MxF proteins, the relatively uncharacterized plant and algal Dynamin 4A/4C proteins, and representatives from several early-branching eukaryotic lineages. Thus, Mx-like proteins date back close to the origin of Eukarya. Our phylogenetic analyses also reveal that host-encoded and NCLDV (nucleocytoplasmic large DNA viruses)-encoded DSPs are interspersed in four distinct DSP lineages, indicating recurrent viral theft of host DSPs. Our analyses thus reveal an ancient history of viral and antiviral functions encoded by the Dynamin superfamily in eukaryotes.
Collapse
Affiliation(s)
- Caroline A. Langley
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
| | - Peter A. Dietzen
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jeannette L. Tenthorey
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
- Cellular Molecular Pharmacology, University of California San Francisco, San Francisco, CA
| | - Harmit S. Malik
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
6
|
Johnson A. Mechanistic divergences of endocytic clathrin-coated vesicle formation in mammals, yeasts and plants. J Cell Sci 2024; 137:jcs261847. [PMID: 39161994 PMCID: PMC11361644 DOI: 10.1242/jcs.261847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Clathrin-coated vesicles (CCVs), generated by clathrin-mediated endocytosis (CME), are essential eukaryotic trafficking organelles that transport extracellular and plasma membrane-bound materials into the cell. In this Review, we explore mechanisms of CME in mammals, yeasts and plants, and highlight recent advances in the characterization of endocytosis in plants. Plants separated from mammals and yeast over 1.5 billion years ago, and plant cells have distinct biophysical parameters that can influence CME, such as extreme turgor pressure. Plants can therefore provide a wider perspective on fundamental processes in eukaryotic cells. We compare key mechanisms that drive CCV formation and explore what these mechanisms might reveal about the core principles of endocytosis across the tree of life. Fascinatingly, CME in plants appears to more closely resemble that in mammalian cells than that in yeasts, despite plants being evolutionarily further from mammals than yeast. Endocytic initiation appears to be highly conserved across these three systems, requiring similar protein domains and regulatory processes. Clathrin coat proteins and their honeycomb lattice structures are also highly conserved. However, major differences are found in membrane-bending mechanisms. Unlike in mammals or yeast, plant endocytosis occurs independently of actin, highlighting that mechanistic assumptions about CME across different systems should be made with caution.
Collapse
Affiliation(s)
- Alexander Johnson
- Division of Anatomy, Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna 1090, Austria
- Medical Imaging Cluster (MIC), Medical University of Vienna, Vienna 1090, Austria
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
7
|
Allen H, Davis B, Patel J, Gu Y. Dot Scanner: open-source software for quantitative live-cell imaging in planta. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1689-1698. [PMID: 38310596 DOI: 10.1111/tpj.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
Confocal microscopy has greatly aided our understanding of the major cellular processes and trafficking pathways responsible for plant growth and development. However, a drawback of these studies is that they often rely on the manual analysis of a vast number of images, which is time-consuming, error-prone, and subject to bias. To overcome these limitations, we developed Dot Scanner, a Python program for analyzing the densities, lifetimes, and displacements of fluorescently tagged particles in an unbiased, automated, and efficient manner. Dot Scanner was validated by performing side-by-side analysis in Fiji-ImageJ of particles involved in cellulose biosynthesis. We found that the particle densities and lifetimes were comparable in both Dot Scanner and Fiji-ImageJ, verifying the accuracy of Dot Scanner. Dot Scanner largely outperforms Fiji-ImageJ, since it suffers far less selection bias when calculating particle lifetimes and is much more efficient at distinguishing between weak signals and background signal caused by bleaching. Not only does Dot Scanner obtain much more robust results, but it is a highly efficient program, since it automates much of the analyses, shortening workflow durations from weeks to minutes. This free and accessible program will be a highly advantageous tool for analyzing live-cell imaging in plants.
Collapse
Affiliation(s)
- Holly Allen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Brian Davis
- Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jenna Patel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
8
|
Allen H, Zhu X, Li S, Gu Y. The TRAPPIII subunit, Trs85, has a dual role in the trafficking of cellulose synthase complexes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1475-1485. [PMID: 38402593 DOI: 10.1111/tpj.16688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Plant cell walls are essential for defining plant growth and development, providing structural support to the main body and responding to abiotic and biotic cues. Cellulose, the main structural polymer of plant cell walls, is synthesized at the plasma membrane by cellulose synthase complexes (CSCs). The construction and transport of CSCs to and from the plasma membrane is poorly understood but is known to rely on the coordinated activity of cellulose synthase-interactive protein 1 (CSI1), a key regulator of CSC trafficking. In this study, we found that Trs85, a TRAPPIII complex subunit, interacted with CSI1 in vitro. Using functional genetics and live-cell imaging, we have shown that trs85-1 mutants have reduced cellulose content, stimulated CSC delivery, an increased population of static CSCs and deficient clathrin-mediated endocytosis in the primary cell wall. Overall, our findings suggest that Trs85 has a dual role in the trafficking of CSCs, by negatively regulating the exocytosis and clathrin-mediated endocytosis of CSCs.
Collapse
Affiliation(s)
- Holly Allen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Xiaoyu Zhu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Shundai Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
9
|
Adamowski M, Randuch M, Matijević I, Narasimhan M, Friml J. SH3Ps recruit auxilin-like vesicle uncoating factors for clathrin-mediated endocytosis. Cell Rep 2024; 43:114195. [PMID: 38717900 DOI: 10.1016/j.celrep.2024.114195] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/09/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Clathrin-mediated endocytosis (CME) is an essential process of cargo uptake operating in all eukaryotes. In animals and yeast, BAR-SH3 domain proteins, endophilins and amphiphysins, function at the conclusion of CME to recruit factors for vesicle scission and uncoating. Arabidopsis thaliana contains the BAR-SH3 domain proteins SH3P1-SH3P3, but their role is poorly understood. Here, we identify SH3Ps as functional homologs of endophilin/amphiphysin. SH3P1-SH3P3 bind to discrete foci at the plasma membrane (PM), and SH3P2 recruits late to a subset of clathrin-coated pits. The SH3P2 PM recruitment pattern is nearly identical to its interactor, a putative uncoating factor, AUXILIN-LIKE1. Notably, SH3P1-SH3P3 are required for most of AUXILIN-LIKE1 recruitment to the PM. This indicates a plant-specific modification of CME, where BAR-SH3 proteins recruit auxilin-like uncoating factors rather than the uncoating phosphatases, synaptojanins. SH3P1-SH3P3 act redundantly in overall CME with the plant-specific endocytic adaptor TPLATE complex but not due to an SH3 domain in its TASH3 subunit.
Collapse
Affiliation(s)
- Maciek Adamowski
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Marek Randuch
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Ivana Matijević
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Madhumitha Narasimhan
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
10
|
Zhuang X, Li R, Jiang L. A century journey of organelles research in the plant endomembrane system. THE PLANT CELL 2024; 36:1312-1333. [PMID: 38226685 PMCID: PMC11062446 DOI: 10.1093/plcell/koae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
We are entering an exciting century in the study of the plant organelles in the endomembrane system. Over the past century, especially within the past 50 years, tremendous advancements have been made in the complex plant cell to generate a much clearer and informative picture of plant organelles, including the molecular/morphological features, dynamic/spatial behavior, and physiological functions. Importantly, all these discoveries and achievements in the identification and characterization of organelles in the endomembrane system would not have been possible without: (1) the innovations and timely applications of various state-of-art cell biology tools and technologies for organelle biology research; (2) the continuous efforts in developing and characterizing new organelle markers by the plant biology community; and (3) the landmark studies on the identification and characterization of the elusive organelles. While molecular aspects and results for individual organelles have been extensively reviewed, the development of the techniques for organelle research in plant cell biology is less appreciated. As one of the ASPB Centennial Reviews on "organelle biology," here we aim to take a journey across a century of organelle biology research in plants by highlighting the important tools (or landmark technologies) and key scientists that contributed to visualize organelles. We then highlight the landmark studies leading to the identification and characterization of individual organelles in the plant endomembrane systems.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
11
|
Khalid M, Ali F, Alghamdi W, Alzahrani A, Alsini R, Alzahrani A. An ensemble computational model for prediction of clathrin protein by coupling machine learning with discrete cosine transform. J Biomol Struct Dyn 2024:1-9. [PMID: 38498362 DOI: 10.1080/07391102.2024.2329777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
Clathrin protein (CP) plays a pivotal role in numerous cellular processes, including endocytosis, signal transduction, and neuronal function. Dysregulation of CP has been associated with a spectrum of diseases. Given its involvement in various cellular functions, CP has garnered significant attention for its potential applications in drug design and medicine, ranging from targeted drug delivery to addressing viral infections, neurological disorders, and cancer. The accurate identification of CP is crucial for unraveling its function and devising novel therapeutic strategies. Computational methods offer a rapid, cost-effective, and less labor-intensive alternative to traditional identification methods, making them especially appealing for high-throughput screening. This paper introduces CL-Pred, a novel computational method for CP identification. CL-Pred leverages three feature descriptors: Dipeptide Deviation from Expected Mean (DDE), Bigram Position Specific Scoring Matrix (BiPSSM), and Position Specific Scoring Matrix-Tetra Slice-Discrete Cosine Transform (PSSM-TS-DCT). The model is trained using three classifiers: Support Vector Machine (SVM), Extremely Randomized Tree (ERT), and Light eXtreme Gradient Boosting (LiXGB). Notably, the LiXGB-based model achieves outstanding performance, demonstrating accuracies of 94.63% and 93.65% on the training and testing datasets, respectively. The proposed CL-Pred method is poised to significantly advance our comprehension of clathrin-mediated endocytosis, cellular physiology, and disease pathogenesis. Furthermore, it holds promise for identifying potential drug targets across a spectrum of diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Majdi Khalid
- Department of Computer Science and Artificial Intelligence, College of Computing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farman Ali
- Sarhad University of Science and Information Technology Peshawar, Mardan Campus, Mardan, Pakistan
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman Alzahrani
- Department of Information System and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Raed Alsini
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Alzahrani
- College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Nouraei S, Mia MS, Liu H, Turner NC, Khan JM, Yan G. Proteomic analysis of near-isogenic lines reveals key biomarkers on wheat chromosome 4B conferring drought tolerance. THE PLANT GENOME 2024; 17:e20343. [PMID: 37199103 DOI: 10.1002/tpg2.20343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/05/2023] [Accepted: 03/27/2023] [Indexed: 05/19/2023]
Abstract
Drought is a major constraint for wheat production that is receiving increased attention due to global climate change. This study conducted isobaric tags for relative and absolute quantitation proteomic analysis on near-isogenic lines to shed light on the underlying mechanism of qDSI.4B.1 quantitative trait loci (QTL) on the short arm of chromosome 4B conferring drought tolerance in wheat. Comparing tolerant with susceptible isolines, 41 differentially expressed proteins were identified to be responsible for drought tolerance with a p-value of < 0.05 and fold change >1.3 or <0.7. These proteins were mainly enriched in hydrogen peroxide metabolic activity, reactive oxygen species metabolic activity, photosynthetic activity, intracellular protein transport, cellular macromolecule localization, and response to oxidative stress. Prediction of protein interactions and pathways analysis revealed the interaction between transcription, translation, protein export, photosynthesis, and carbohydrate metabolism as the most important pathways responsible for drought tolerance. The five proteins, including 30S ribosomal protein S15, SRP54 domain-containing protein, auxin-repressed protein, serine hydroxymethyltransferase, and an uncharacterized protein with encoding genes on 4BS, were suggested as candidate proteins responsible for drought tolerance in qDSI.4B.1 QTL. The gene coding SRP54 protein was also one of the differentially expressed genes in our previous transcriptomic study.
Collapse
Affiliation(s)
- Sina Nouraei
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Md Sultan Mia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Primary Industries and Regional Development, South Perth, Western Australia, Australia
| | - Hui Liu
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Neil C Turner
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Javed M Khan
- Proteomics International, Crawley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Crawley, Western Australia, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
13
|
Adamowski M, Matijević I, Friml J. Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. eLife 2024; 13:e68993. [PMID: 38381485 PMCID: PMC10881123 DOI: 10.7554/elife.68993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.
Collapse
Affiliation(s)
- Maciek Adamowski
- Institute of Science and Technology AustriaKlosterneuburgAustria
- Plant Breeding and Acclimatization Institute – National Research InstituteBłoniePoland
| | - Ivana Matijević
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Jiří Friml
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
14
|
Hirano T, Ebine K, Ueda T, Higaki T, Watanabe-Nakayama T, Konno H, Takigawa-Imamura H, Sato MH. The SYP123-VAMP727 SNARE complex delivers secondary cell wall components for root hair shank hardening in Arabidopsis. THE PLANT CELL 2023; 35:4347-4365. [PMID: 37713604 PMCID: PMC10689195 DOI: 10.1093/plcell/koad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/17/2023]
Abstract
The extended tubular shape of root hairs is established by tip growth and concomitant hardening. Here, we demonstrate that a syntaxin of plants (SYP)123-vesicle-associated membrane protein (VAMP)727-dependent secretion system delivers secondary cell wall components for hardening the subapical zone and shank of Arabidopsis (Arabidopsis thaliana) root hairs. We found increased SYP123 localization at the plasma membrane (PM) of the subapical and shank zones compared with the tip region in elongating root hairs. Inhibition of phosphatidylinositol (PtdIns)(3,5)P2 production impaired SYP123 localization at the PM and SYP123-mediated root hair shank hardening. Moreover, root hair elongation in the syp123 mutant was insensitive to a PtdIns(3,5)P2 synthesis inhibitor. SYP123 interacts with both VAMP721 and VAMP727. syp123 and vamp727 mutants exhibited reduced shank cell wall stiffness due to impaired secondary cell wall component deposition. Based on these results, we conclude that SYP123 is involved in VAMP721-mediated conventional secretion for root hair elongation as well as in VAMP727-mediated secretory functions for the delivery of secondary cell wall components to maintain root hair tubular morphology.
Collapse
Affiliation(s)
- Tomoko Hirano
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, Sokendai, Okazaki, Aichi 444-8585, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, Sokendai, Okazaki, Aichi 444-8585, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
| | | | - Hiroki Konno
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | | | - Masa H Sato
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
15
|
Pan T, Liu Y, Hu X, Li P, Lin C, Tang Y, Tang W, Liu Y, Guo L, Kim C, Fang J, Lin H, Wu Z, Blumwald E, Wang S. Stress-induced endocytosis from chloroplast inner envelope membrane is mediated by CHLOROPLAST VESICULATION but inhibited by GAPC. Cell Rep 2023; 42:113208. [PMID: 37792531 DOI: 10.1016/j.celrep.2023.113208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 06/16/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Clathrin-mediated vesicular formation and trafficking are responsible for molecular cargo transport and signal transduction among organelles. Our previous study shows that CHLOROPLAST VESICULATION (CV)-containing vesicles (CVVs) are generated from chloroplasts for chloroplast degradation under abiotic stress. Here, we show that CV interacts with the clathrin heavy chain (CHC) and induces vesicle budding toward the cytosol from the chloroplast inner envelope membrane. In the defective mutants of CHC2 and the dynamin-encoding DRP1A, CVV budding and releasing from chloroplast are impeded. The mutations of CHC2 inhibit CV-induced chloroplast degradation and hypersensitivity to water stress. Moreover, CV-CHC2 interaction is impaired by the oxidized GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPC). GAPC1 overexpression suppresses CV-mediated chloroplast degradation and hypersensitivity to water stress, while CV silencing alleviates the hypersensitivity of the gapc1gapc2 plant to water stress. Together, our work identifies a pathway of clathrin-assisted CVV budding outward from chloroplast, which is involved in chloroplast degradation and stress response.
Collapse
Affiliation(s)
- Ting Pan
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangxuan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xufan Hu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Pengwei Li
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Lin
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yuying Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei Tang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yongsheng Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Fang
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Honghui Lin
- Ministry of Education, Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Zhihua Wu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
16
|
Pukyšová V, Sans Sánchez A, Rudolf J, Nodzyński T, Zwiewka M. Arabidopsis flippase ALA3 is required for adjustment of early subcellular trafficking in plant response to osmotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4959-4977. [PMID: 37353222 PMCID: PMC10498020 DOI: 10.1093/jxb/erad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/23/2023] [Indexed: 06/25/2023]
Abstract
To compensate for their sessile lifestyle, plants developed several responses to exogenous changes. One of the previously investigated and not yet fully understood adaptations occurs at the level of early subcellular trafficking, which needs to be rapidly adjusted to maintain cellular homeostasis and membrane integrity under osmotic stress conditions. To form a vesicle, the membrane needs to be deformed, which is ensured by multiple factors, including the activity of specific membrane proteins, such as flippases from the family of P4-ATPases. The membrane pumps actively translocate phospholipids from the exoplasmic/luminal to the cytoplasmic membrane leaflet to generate curvature, which might be coupled with recruitment of proteins involved in vesicle formation at specific sites of the donor membrane. We show that lack of the AMINOPHOSPHOLIPID ATPASE3 (ALA3) flippase activity caused defects at the plasma membrane and trans-Golgi network, resulting in altered endocytosis and secretion, processes relying on vesicle formation and movement. The mentioned cellular defects were translated into decreased intracellular trafficking flexibility failing to adjust the root growth on osmotic stress-eliciting media. In conclusion, we show that ALA3 cooperates with ARF-GEF BIG5/BEN1 and ARF1A1C/BEX1 in a similar regulatory pathway to vesicle formation, and together they are important for plant adaptation to osmotic stress.
Collapse
Affiliation(s)
- Vendula Pukyšová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Adrià Sans Sánchez
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Rudolf
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ 625 00, Brno, Czech Republic
| |
Collapse
|
17
|
Liu C, Mentzelopoulou A, Papagavriil F, Ramachandran P, Perraki A, Claus L, Barg S, Dörmann P, Jaillais Y, Johnen P, Russinova E, Gizeli E, Schaaf G, Moschou PN. SEC14-like condensate phase transitions at plasma membranes regulate root growth in Arabidopsis. PLoS Biol 2023; 21:e3002305. [PMID: 37721949 PMCID: PMC10538751 DOI: 10.1371/journal.pbio.3002305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/28/2023] [Accepted: 08/20/2023] [Indexed: 09/20/2023] Open
Abstract
Protein function can be modulated by phase transitions in their material properties, which can range from liquid- to solid-like; yet, the mechanisms that drive these transitions and whether they are important for physiology are still unknown. In the model plant Arabidopsis, we show that developmental robustness is reinforced by phase transitions of the plasma membrane-bound lipid-binding protein SEC14-like. Using imaging, genetics, and in vitro reconstitution experiments, we show that SEC14-like undergoes liquid-like phase separation in the root stem cells. Outside the stem cell niche, SEC14-like associates with the caspase-like protease separase and conserved microtubule motors at unique polar plasma membrane interfaces. In these interfaces, SEC14-like undergoes processing by separase, which promotes its liquid-to-solid transition. This transition is important for root development, as lines expressing an uncleavable SEC14-like variant or mutants of separase and associated microtubule motors show similar developmental phenotypes. Furthermore, the processed and solidified but not the liquid form of SEC14-like interacts with and regulates the polarity of the auxin efflux carrier PINFORMED2. This work demonstrates that robust development can involve liquid-to-solid transitions mediated by proteolysis at unique plasma membrane interfaces.
Collapse
Affiliation(s)
- Chen Liu
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Andriani Mentzelopoulou
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Fotini Papagavriil
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Prashanth Ramachandran
- Department of Organismal Biology, Physiological Botany, Linnean Centre for Plant Biology, Uppsala University, Uppsala, Sweden
| | - Artemis Perraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Lucas Claus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Ghent, Belgium
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, Lyon, France
| | - Philipp Johnen
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Ghent, Belgium
| | - Electra Gizeli
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Panagiotis Nikolaou Moschou
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
18
|
Oliveira-Garcia E, Tamang TM, Park J, Dalby M, Martin-Urdiroz M, Rodriguez Herrero C, Vu AH, Park S, Talbot NJ, Valent B. Clathrin-mediated endocytosis facilitates the internalization of Magnaporthe oryzae effectors into rice cells. THE PLANT CELL 2023:koad094. [PMID: 36976907 DOI: 10.1093/plcell/koad094] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Fungi and oomycetes deliver effectors into living plant cells to suppress defenses and control plant processes needed for infection. Little is known about the mechanism by which these pathogens translocate effector proteins across the plasma membrane into the plant cytoplasm. The blast fungus Magnaporthe oryzae secretes cytoplasmic effectors into a specialized biotrophic interfacial complex (BIC) before translocation. Here we show that cytoplasmic effectors within BICs are packaged into punctate membranous effector compartments that are occasionally observed in the host cytoplasm. Live cell imaging with fluorescently labeled proteins in rice (Oryza sativa) showed that these effector puncta colocalize with the plant plasma membrane and with CLATHRIN LIGHT CHAIN 1, a component of clathrin-mediated endocytosis (CME). Inhibiting CME using virus-induced gene silencing and chemical treatments resulted in cytoplasmic effectors in swollen BICs lacking effector puncta. By contrast, fluorescent marker co-localization, gene silencing and chemical inhibitor studies failed to support a major role for clathrin-independent endocytosis in effector translocation. Effector localization patterns indicated that cytoplasmic effector translocation occurs underneath appressoria before invasive hyphal growth. Taken together, this study provides evidence that cytoplasmic effector translocation is mediated by clathrin-mediated endocytosis in BICs and suggests a role for M. oryzae effectors in co-opting plant endocytosis.
Collapse
Affiliation(s)
- Ely Oliveira-Garcia
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Tej Man Tamang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Jungeun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Melinda Dalby
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Clara Rodriguez Herrero
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - An Hong Vu
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
19
|
Light Microscopy Technologies and the Plant Cytoskeleton. Methods Mol Biol 2023; 2604:337-352. [PMID: 36773248 DOI: 10.1007/978-1-0716-2867-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The cytoskeleton is a dynamic and diverse subcellular filament network, and as such microscopy is an essential technology to enable researchers to study and characterize these systems. Microscopy has a long history of observing the plant world not least as the subject where Robert Hooke coined the term "cell" in his publication Micrographia. From early observations of plant morphology to today's advanced super-resolution technologies, light microscopy is the indispensable tool for the plant cell biologist. In this mini review, we will discuss some of the major modalities used to examine the plant cytoskeleton and the theory behind them.
Collapse
|
20
|
Gao YQ, Chao DY. Localization and circulation: vesicle trafficking in regulating plant nutrient homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1350-1363. [PMID: 36321185 DOI: 10.1111/tpj.16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nutrient homeostasis is essential for plant growth and reproduction. Plants, therefore, have evolved tightly regulated mechanisms for the uptake, translocation, distribution, and storage of mineral nutrients. Considering that inorganic nutrient transport relies on membrane-based transporters and channels, vesicle trafficking, one of the fundamental cell biological processes, has become a hotspot of plant nutrition studies. In this review, we summarize recent advances in the study of how vesicle trafficking regulates nutrient homeostasis to contribute to the adaptation of plants to heterogeneous environments. We also discuss new perspectives on future studies, which may inspire researchers to investigate new approaches to improve the human diet and health by changing the nutrient quality of crops.
Collapse
Affiliation(s)
- Yi-Qun Gao
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
21
|
Leibman-Markus M, Schuster S, Vasquez-Soto B, Bar M, Avni A, Pizarro L. Dynamin-Related Proteins Enhance Tomato Immunity by Mediating Pattern Recognition Receptor Trafficking. MEMBRANES 2022; 12:membranes12080760. [PMID: 36005675 PMCID: PMC9415932 DOI: 10.3390/membranes12080760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
Pattern recognition receptor (PRR) trafficking to the plasma membrane and endocytosis plays a crucial role in pattern triggered immunity (PTI). Dynamin-related proteins (DRPs) participate in endocytosis and recycling. In Arabidopsis, DRP1 and DRP2 are involved in plasma membrane scission during endocytosis. They are required for the PRR FLS2 endocytosis induction and PTI activation after elicitation with flg22, the MAMP recognized by FLS2. In tomato, SlDRP2A regulates the PRR LeEIX2 endocytosis and PTI activation in response to EIX, the MAMP recognized by LeEIX2. However, it is unknown if other DRPs participate in these processes. Taking advantage of bioinformatics tools, we selected SlDRP2B among the eight DRP2 tomato orthologues to study its functionality in trafficking and plant immunity. Through transient expression of SlDRP1B and its dominant-negative mutant on Nicotiana benthamiana and Nicotiana tabacum, we analyzed SlDRP1B function. We observed that SlDRP1B is physically associated with the LeEIX2 and modifies LeEIX2 trafficking, increasing its presence in endosomes. An enhancement of EIX-elicitated defense responses accompanies the role of SlDRP1B on LeEIX endocytosis. In addition, SlDRP1B overexpression enhanced flg22-elicited defense response. With these results, we conclude that SlDRP1B regulates PRR trafficking and, therefore, plant immunity, similarly to the SlDRP2A role.
Collapse
Affiliation(s)
- Meirav Leibman-Markus
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Silvia Schuster
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
| | - Beatriz Vasquez-Soto
- Institute of Agri-Food, Animal and Environmental Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile;
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Adi Avni
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
| | - Lorena Pizarro
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
- Institute of Agri-Food, Animal and Environmental Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile;
- Correspondence: ; Tel.: +56-233-286-050
| |
Collapse
|
22
|
Sinclair R, Hsu G, Davis D, Chang M, Rosquete M, Iwasa JH, Drakakaki G. Plant cytokinesis and the construction of new cell wall. FEBS Lett 2022; 596:2243-2255. [PMID: 35695093 DOI: 10.1002/1873-3468.14426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Cytokinesis in plants is fundamentally different from that in animals and fungi. In plant cells, a cell plate forms through the fusion of cytokinetic vesicles and then develops into the new cell wall, partitioning the cytoplasm of the dividing cell. The formation of the cell plate entails multiple stages that involve highly orchestrated vesicle accumulation, fusion, and membrane maturation, which occur concurrently with the timely deposition of polysaccharides such as callose, cellulose, and cross-linking glycans. This review summarizes the major stages in cytokinesis, endomembrane components involved in cell plate assembly and its transition to a new cell wall. An animation that can be widely used for educational purposes further summarizes the process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Grace Hsu
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Destiny Davis
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Lawrence Berkeley National Lab, Emeryville, CA, 94608, USA
| | - Mingqin Chang
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Michel Rosquete
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Janet H Iwasa
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Georgia Drakakaki
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
23
|
Dahhan DA, Bednarek SY. Advances in structural, spatial, and temporal mechanics of plant endocytosis. FEBS Lett 2022; 596:2269-2287. [PMID: 35674447 DOI: 10.1002/1873-3468.14420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022]
Abstract
Endocytic trafficking underlies processes essential for plant growth and development, including the perception of and response to abiotic and extracellular stimuli, post-Golgi and exocytic trafficking, and cytokinesis. Protein adaptors and regulatory factors of clathrin-mediated endocytosis that contribute to the formation of endocytic clathrin-coated vesicles are evolutionarily conserved. Yet, work of the last ten years has identified differences between the endocytic mechanisms of plants and Opisthokonts involving the endocytic adaptor TPLATE complex, the requirement of actin during CME, and the function of clathrin-independent endocytosis in the uptake of plant-specific plasma membrane proteins. Here, we review clathrin-mediated and -independent pathways in plants and describe recent advances enabled by new proteomic and imaging methods, and conditional perturbation of endocytosis. In addition, we summarize the formation and trafficking of clathrin-coated vesicles based on temporal and structural data garnered from high-resolution quantitative imaging studies. Finally, new information about the cross-talk between endocytosis and other endomembrane trafficking pathways and organelles will also be discussed.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
24
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 PMCID: PMC9134090 DOI: 10.1093/plcell/koac071] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
| | | | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | | | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
25
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 DOI: 10.1101/2021.09.16.460678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Gregory D Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
26
|
Tran TM, Chng CP, Pu X, Ma Z, Han X, Liu X, Yang L, Huang C, Miao Y. Potentiation of plant defense by bacterial outer membrane vesicles is mediated by membrane nanodomains. THE PLANT CELL 2022; 34:395-417. [PMID: 34791473 PMCID: PMC8846181 DOI: 10.1093/plcell/koab276] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/14/2021] [Indexed: 05/04/2023]
Abstract
Outer membrane vesicles (OMVs) are released from the outer membranes of Gram-negative bacteria during infection and modulate host immunity during host-pathogen interactions. The mechanisms by which OMVs are perceived by plants and affect host immunity are unclear. Here, we used the pathogen Xanthomonas campestris pv. campestris to demonstrate that OMV-plant interactions at the Arabidopsis thaliana plasma membrane (PM) modulate various host processes, including endocytosis, innate immune responses, and suppression of pathogenesis by phytobacteria. The lipid phase of OMVs is highly ordered and OMVs directly insert into the Arabidopsis PM, thereby enhancing the plant PM's lipid order; this also resulted in strengthened plant defenses. Strikingly, the integration of OMVs into the plant PM is host nanodomain- and remorin-dependent. Using coarse-grained simulations of molecular dynamics, we demonstrated that OMV integration into the plant PM depends on the membrane lipid order. Our computational simulations further showed that the saturation level of the OMV lipids could fine-tune the enhancement of host lipid order. Our work unraveled the mechanisms underlying the ability of OMVs produced by a plant pathogen to insert into the host PM, alter host membrane properties, and modulate plant immune responses.
Collapse
Affiliation(s)
- Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| | - Xiaoming Pu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Xiaolin Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
- School of Medicine, Southern University of Science and Technology, China
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
27
|
Colin L, Martin-Arevalillo R, Bovio S, Bauer A, Vernoux T, Caillaud MC, Landrein B, Jaillais Y. Imaging the living plant cell: From probes to quantification. THE PLANT CELL 2022; 34:247-272. [PMID: 34586412 PMCID: PMC8774089 DOI: 10.1093/plcell/koab237] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
At the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification. Live imaging collectively involves all the techniques aimed at imaging live samples. It is a rapidly evolving field, with countless new techniques, probes, and dyes being continuously developed. Some of these new methods or reagents are readily amenable to image plant samples, while others are not and require specific modifications for the plant field. Here, we review some recent advances in live imaging of plant cells. In particular, we discuss the solutions that plant biologists use to live image membrane-bound organelles, cytoskeleton components, hormones, and the mechanical properties of cells or tissues. We not only consider the imaging techniques per se, but also how the construction of new fluorescent probes and analysis pipelines are driving the field of plant cell biology.
Collapse
Affiliation(s)
- Leia Colin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
- LYMIC-PLATIM imaging and microscopy core facility, Univ Lyon, SFR Biosciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL-50 Avenue Tony Garnier, 69007 Lyon, France
| | - Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
28
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
29
|
Belda-Palazón B, Rodriguez PL. Microscopic Imaging of Endosomal Trafficking of ABA Receptors. Methods Mol Biol 2022; 2462:59-69. [PMID: 35152380 DOI: 10.1007/978-1-0716-2156-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The abscisic acid (ABA) is a key hormone for stress tolerance. The balance between growth/development and stress responses is crucial for the optimal course of plant life meaning that plants need to control the timing and extent of ABA pathway activation. In this regard, protein turnover regulation by means of both the ubiquitin-proteasome system (UPS) and non-26S proteasome endomembrane trafficking pathways, plays a critical role in the regulation of ABA signaling activation and deactivation. Over the last few years, the ubiquitination of ABA receptors PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) at the plasma membrane by the RING between RING fingers (RBR)-type E3 ligase RING FINGER OF SEED LONGEVITY1 (RSL1) triggering their internalization through the clathrin-mediated endocytosis (CME) pathway, followed by their endosomal trafficking and delivery to the vacuole for degradation, was reported. For this process, the direct role of some components of the endosomal sorting complex required for transport (ESCRT) machinery, that is, FYVE DOMAIN-CONTAINING PROTEIN 1 (FYVE1)/FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1) and VACUOLAR PROTEIN SORTING23A (VPS23A) members of ESCRT-I complex, and ALG-2 INTERACTING PROTEIN-X (ALIX) associated protein of ESCRT-III, was reported. In this chapter, we will detail two methods for imaging endosomal trafficking of ABA receptor proteins by confocal microscopy: (a) colocalization of GFP-PYL4 (also known as RCAR10) and CLATHRIN LIGHT CHAIN 2 (CLC2)-mOrange in clathrin-coated vesicles in Nicotiana benthamiana leaf cells and (b) localization of GFP-PYL4 into Wortmannin (WM)-enlarged late endosomes in Arabidopsis thaliana root cells.
Collapse
Affiliation(s)
- Borja Belda-Palazón
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal.
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
30
|
Das J, Tiwari M, Subramanyam D. Clathrin Light Chains: Not to Be Taken so Lightly. Front Cell Dev Biol 2022; 9:774587. [PMID: 34970544 PMCID: PMC8712872 DOI: 10.3389/fcell.2021.774587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/12/2021] [Indexed: 01/31/2023] Open
Abstract
Clathrin is a cytosolic protein involved in the intracellular trafficking of a wide range of cargo. It is composed of three heavy chains and three light chains that together form a triskelion, the subunit that polymerizes to form a clathrin coated vesicle. In addition to its role in membrane trafficking, clathrin is also involved in various cellular and biological processes such as chromosomal segregation during mitosis and organelle biogenesis. Although the role of the heavy chains in regulating important physiological processes has been well documented, we still lack a complete understanding of how clathrin light chains regulate membrane traffic and cell signaling. This review highlights the importance and contributions of clathrin light chains in regulating clathrin assembly, vesicle formation, endocytosis of selective receptors and physiological and developmental processes.
Collapse
Affiliation(s)
- Jyoti Das
- National Centre for Cell Science, Pune, India.,Savitribai Phule Pune University, Pune, India
| | - Mahak Tiwari
- National Centre for Cell Science, Pune, India.,Savitribai Phule Pune University, Pune, India
| | | |
Collapse
|
31
|
Johnson A, Dahhan DA, Gnyliukh N, Kaufmann WA, Zheden V, Costanzo T, Mahou P, Hrtyan M, Wang J, Aguilera-Servin J, van Damme D, Beaurepaire E, Loose M, Bednarek SY, Friml J. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proc Natl Acad Sci U S A 2021; 118:e2113046118. [PMID: 34907016 PMCID: PMC8691179 DOI: 10.1073/pnas.2113046118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 01/08/2023] Open
Abstract
Clathrin-mediated endocytosis is the major route of entry of cargos into cells and thus underpins many physiological processes. During endocytosis, an area of flat membrane is remodeled by proteins to create a spherical vesicle against intracellular forces. The protein machinery which mediates this membrane bending in plants is unknown. However, it is known that plant endocytosis is actin independent, thus indicating that plants utilize a unique mechanism to mediate membrane bending against high-turgor pressure compared to other model systems. Here, we investigate the TPLATE complex, a plant-specific endocytosis protein complex. It has been thought to function as a classical adaptor functioning underneath the clathrin coat. However, by using biochemical and advanced live microscopy approaches, we found that TPLATE is peripherally associated with clathrin-coated vesicles and localizes at the rim of endocytosis events. As this localization is more fitting to the protein machinery involved in membrane bending during endocytosis, we examined cells in which the TPLATE complex was disrupted and found that the clathrin structures present as flat patches. This suggests a requirement of the TPLATE complex for membrane bending during plant clathrin-mediated endocytosis. Next, we used in vitro biophysical assays to confirm that the TPLATE complex possesses protein domains with intrinsic membrane remodeling activity. These results redefine the role of the TPLATE complex and implicate it as a key component of the evolutionarily distinct plant endocytosis mechanism, which mediates endocytic membrane bending against the high-turgor pressure in plant cells.
Collapse
Affiliation(s)
| | - Dana A Dahhan
- Department of Biochemistry, Hector F. DeLuca Laboratories, University of Wisconsin-Madison, Madison, WI 53706
| | | | | | - Vanessa Zheden
- Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Tommaso Costanzo
- Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Pierre Mahou
- CNRS, INSERM, Laboratory for Optics and Biosciences Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Mónika Hrtyan
- Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Jie Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | - Daniël van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Emmanuel Beaurepaire
- CNRS, INSERM, Laboratory for Optics and Biosciences Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Martin Loose
- Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Sebastian Y Bednarek
- Department of Biochemistry, Hector F. DeLuca Laboratories, University of Wisconsin-Madison, Madison, WI 53706
| | - Jiří Friml
- Institute of Science and Technology, 3400 Klosterneuburg, Austria;
| |
Collapse
|
32
|
Martinière A, Zelazny E. Membrane nanodomains and transport functions in plant. PLANT PHYSIOLOGY 2021; 187:1839-1855. [PMID: 35235669 PMCID: PMC8644385 DOI: 10.1093/plphys/kiab312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/16/2021] [Indexed: 05/25/2023]
Abstract
Far from a homogeneous environment, biological membranes are highly structured with lipids and proteins segregating in domains of different sizes and dwell times. In addition, membranes are highly dynamics especially in response to environmental stimuli. Understanding the impact of the nanoscale organization of membranes on cellular functions is an outstanding question. Plant channels and transporters are tightly regulated to ensure proper cell nutrition and signaling. Increasing evidence indicates that channel and transporter nano-organization within membranes plays an important role in these regulation mechanisms. Here, we review recent advances in the field of ion, water, but also hormone transport in plants, focusing on protein organization within plasma membrane nanodomains and its cellular and physiological impacts.
Collapse
Affiliation(s)
| | - Enric Zelazny
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
33
|
Both Clathrin-Mediated and Membrane Microdomain-Associated Endocytosis Contribute to the Cellular Adaptation to Hyperosmotic Stress in Arabidopsis. Int J Mol Sci 2021; 22:ijms222212534. [PMID: 34830417 PMCID: PMC8621756 DOI: 10.3390/ijms222212534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
As sessile organisms, plants must directly deal with an often complex and adverse environment in which hyperosmotic stress is one of the most serious abiotic factors, challenging cellular physiology and integrity. The plasma membrane (PM) is the hydrophobic barrier between the inside and outside environments of cells and is considered a central compartment in cellular adaptation to diverse stress conditions through dynamic PM remodeling. Endocytosis is a powerful method for rapid remodeling of the PM. In animal cells, different endocytic pathways are activated in response to osmotic stress, while only a few reports are related to the endocytosis response pathway and involve a mechanism in plant cells upon hyperosmotic stress. In this study, using different endocytosis inhibitors, the microdomain-specific dye di-4-ANEPPDHQ, variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), and confocal microscopy, we discovered that internalized Clathrin Light Chain-Green Fluorescent Protein (CLC-GFP) increased under hyperosmotic conditions, accompanied by decreased fluorescence intensity of CLC-GFP at the PM. CLC-GFP tended to have higher diffusion coefficients and a fraction of CLC-GFP molecules underwent slower diffusion upon hyperosmotic stress. Meanwhile, an increased motion range of CLC-GFP was found under hyperosmotic treatment compared with the control. In addition, the order of the PM decreased, but the order of the endosome increased when cells were in hyperosmotic conditions. Hence, our results demonstrated that clathrin-mediated endocytosis and membrane microdomain-associated endocytosis both participate in the adaptation to hyperosmotic stress. These findings will help to further understand the role and the regulatory mechanism involved in plant endocytosis in helping plants adapt to osmotic stress.
Collapse
|
34
|
Hu T, Yin S, Sun J, Linghu Y, Ma J, Pan J, Wang C. Clathrin light chains regulate hypocotyl elongation by affecting the polarization of the auxin transporter PIN3 in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1922-1936. [PMID: 34478221 DOI: 10.1111/jipb.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2021] [Indexed: 05/26/2023]
Abstract
PIN-FORMED (PIN)-dependent directional auxin transport is crucial for plant development. Although the redistribution of auxin mediated by the polarization of PIN3 plays key roles in modulating hypocotyl cell expansion, how PIN3 becomes repolarized to the proper sites within hypocotyl cells is poorly understood. We previously generated the clathrin light chain clc2-1 clc3-1 double mutant in Arabidopsis thaliana and found that it has an elongated hypocotyl phenotype compared to the wild type. Here, we performed genetic, cell biology, and pharmacological analyses combined with live-cell imaging to elucidate the molecular mechanism underlying the role of clathrin light chains in hypocotyl elongation. Our analyses indicated that the defects of the double mutant enhanced auxin maxima in epidermal cells, thus, promoting hypocotyl elongation. PIN3 relocated to the lateral sides of hypocotyl endodermal cells in clc2-1 clc3-1 mutants to redirect auxin toward the epidermal cell layers. Moreover, the loss of function of PIN3 largely suppressed the long hypocotyl phenotype of the clc2-1 clc3-1 double mutant, as did treatment with auxin transport inhibitors. Based on these data, we propose that clathrin modulates PIN3 abundance and polarity to direct auxin flux and inhibit cell elongation in the hypocotyl, providing novel insights into the regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Tianwei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shoupeng Yin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jingbo Sun
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuting Linghu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiaqi Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- College of Life Sciences, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
35
|
Yan X, Wang Y, Xu M, Dahhan DA, Liu C, Zhang Y, Lin J, Bednarek SY, Pan J. Cross-talk between clathrin-dependent post-Golgi trafficking and clathrin-mediated endocytosis in Arabidopsis root cells. THE PLANT CELL 2021; 33:3057-3075. [PMID: 34240193 PMCID: PMC8462817 DOI: 10.1093/plcell/koab180] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 05/26/2023]
Abstract
Coupling of post-Golgi and endocytic membrane transport ensures that the flow of materials to/from the plasma membrane (PM) is properly balanced. The mechanisms underlying the coordinated trafficking of PM proteins in plants, however, are not well understood. In plant cells, clathrin and its adaptor protein complexes, AP-2 and the TPLATE complex (TPC) at the PM, and AP-1 at the trans-Golgi network/early endosome (TGN/EE), function in clathrin-mediated endocytosis (CME) and post-Golgi trafficking. Here, we utilized mutants with defects in clathrin-dependent post-Golgi trafficking and CME, in combination with other cytological and pharmacological approaches, to further investigate the machinery behind the coordination of protein delivery and recycling to/from the TGN/EE and PM in Arabidopsis (Arabidopsis thaliana) root cells. In mutants with defective AP-2-/TPC-dependent CME, we determined that clathrin and AP-1 recruitment to the TGN/EE as well as exocytosis are significantly impaired. Likewise, defects in AP-1-dependent post-Golgi trafficking and pharmacological inhibition of exocytosis resulted in the reduced association of clathrin and AP-2/TPC subunits with the PM and a reduction in the internalization of cargoes via CME. Together, these results suggest that post-Golgi trafficking and CME are coupled via modulation of clathrin and adaptor protein complex recruitment to the TGN/EE and PM.
Collapse
Affiliation(s)
- Xu Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yutong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mei Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dana A. Dahhan
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Chan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Sebastian Y. Bednarek
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
36
|
Ito Y, Esnay N, Fougère L, Platre MP, Cordelières F, Jaillais Y, Boutté Y. Inhibition of Very Long Chain Fatty Acids Synthesis Mediates PI3P Homeostasis at Endosomal Compartments. Int J Mol Sci 2021; 22:ijms22168450. [PMID: 34445155 PMCID: PMC8395082 DOI: 10.3390/ijms22168450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
A main characteristic of sphingolipids is the presence of a very long chain fatty acid (VLCFA) whose function in cellular processes is not yet fully understood. VLCFAs of sphingolipids are involved in the intracellular traffic to the vacuole and the maturation of early endosomes into late endosomes is one of the major pathways for vacuolar traffic. Additionally, the anionic phospholipid phosphatidylinositol-3-phosphate (PtdIns (3)P or PI3P) is involved in protein sorting and recruitment of small GTPase effectors at late endosomes/multivesicular bodies (MVBs) during vacuolar trafficking. In contrast to animal cells, PI3P mainly localizes to late endosomes in plant cells and to a minor extent to a discrete sub-domain of the plant's early endosome (EE)/trans-Golgi network (TGN) where the endosomal maturation occurs. However, the mechanisms that control the relative levels of PI3P between TGN and MVBs are unknown. Using metazachlor, an inhibitor of VLCFA synthesis, we found that VLCFAs are involved in the TGN/MVB distribution of PI3P. This effect is independent from either synthesis of PI3P by PI3-kinase or degradation of PI(3,5)P2 into PI3P by the SUPPRESSOR OF ACTIN1 (SAC1) phosphatase. Using high-resolution live cell imaging microscopy, we detected transient associations between TGNs and MVBs but VLCFAs are not involved in those interactions. Nonetheless, our results suggest that PI3P might be transferable from TGN to MVBs and that VLCFAs act in this process.
Collapse
Affiliation(s)
- Yoko Ito
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France; (Y.I.); (N.E.); (L.F.)
| | - Nicolas Esnay
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France; (Y.I.); (N.E.); (L.F.)
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Louise Fougère
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France; (Y.I.); (N.E.); (L.F.)
| | - Matthieu Pierre Platre
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, 69342 Lyon, France; (M.P.P.); (Y.J.)
- Plant Molecular and Cellular Biology Laboratory and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Fabrice Cordelières
- Bordeaux Imaging Center, Université de Bordeaux, CNRS, 33000 Bordeaux, France;
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRAE, 69342 Lyon, France; (M.P.P.); (Y.J.)
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France; (Y.I.); (N.E.); (L.F.)
- Correspondence:
| |
Collapse
|
37
|
Narasimhan M, Gallei M, Tan S, Johnson A, Verstraeten I, Li L, Rodriguez L, Han H, Himschoot E, Wang R, Vanneste S, Sánchez-Simarro J, Aniento F, Adamowski M, Friml J. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. PLANT PHYSIOLOGY 2021; 186:1122-1142. [PMID: 33734402 PMCID: PMC8195513 DOI: 10.1093/plphys/kiab134] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/23/2021] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network, rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using total internal reflection fluorescence microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus, contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments.
Collapse
Affiliation(s)
| | - Michelle Gallei
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Shutang Tan
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Alexander Johnson
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lanxin Li
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Huibin Han
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Ellie Himschoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Judit Sánchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Maciek Adamowski
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| |
Collapse
|
38
|
Fratini M, Krishnamoorthy P, Stenzel I, Riechmann M, Matzner M, Bacia K, Heilmann M, Heilmann I. Plasma membrane nano-organization specifies phosphoinositide effects on Rho-GTPases and actin dynamics in tobacco pollen tubes. THE PLANT CELL 2021; 33:642-670. [PMID: 33955493 PMCID: PMC8136918 DOI: 10.1093/plcell/koaa035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/23/2020] [Indexed: 05/04/2023]
Abstract
Pollen tube growth requires coordination of cytoskeletal dynamics and apical secretion. The regulatory phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is enriched in the subapical plasma membrane of pollen tubes of Arabidopsis thaliana and tobacco (Nicotiana tabacum) and can influence both actin dynamics and secretion. How alternative PtdIns(4,5)P2 effects are specified is unclear. In tobacco pollen tubes, spinning disc microscopy (SD) reveals dual distribution of a fluorescent PtdIns(4,5)P2-reporter in dynamic plasma membrane nanodomains vs. apparent diffuse membrane labeling, consistent with spatially distinct coexisting pools of PtdIns(4,5)P2. Several PI4P 5-kinases (PIP5Ks) can generate PtdIns(4,5)P2 in pollen tubes. Despite localizing to one membrane region, the PIP5Ks AtPIP5K2-EYFP and NtPIP5K6-EYFP display distinctive overexpression effects on cell morphologies, respectively related to altered actin dynamics or membrane trafficking. When analyzed by SD, AtPIP5K2-EYFP associated with nanodomains, whereas NtPIP5K6-EYFP localized diffusely. Chimeric AtPIP5K2-EYFP and NtPIP5K6-EYFP variants with reciprocally swapped membrane-associating domains evoked reciprocally shifted effects on cell morphology upon overexpression. Overall, active PI4P 5-kinase variants stabilized actin when targeted to nanodomains, suggesting a role of nanodomain-associated PtdIns(4,5)P2 in actin regulation. This notion is further supported by interaction and proximity of nanodomain-associated AtPIP5K2 with the Rho-GTPase NtRac5, and by its functional interplay with elements of Rho of plants signaling. Plasma membrane nano-organization may thus aid the specification of PtdIns(4,5)P2 functions to coordinate cytoskeletal dynamics and secretion.
Collapse
Affiliation(s)
- Marta Fratini
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Praveen Krishnamoorthy
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Irene Stenzel
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mara Riechmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Monique Matzner
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Kirsten Bacia
- Department of Biophysical Chemistry, Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mareike Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
39
|
Doumane M, Lebecq A, Colin L, Fangain A, Stevens FD, Bareille J, Hamant O, Belkhadir Y, Munnik T, Jaillais Y, Caillaud MC. Inducible depletion of PI(4,5)P 2 by the synthetic iDePP system in Arabidopsis. NATURE PLANTS 2021; 7:587-597. [PMID: 34007035 PMCID: PMC7610831 DOI: 10.1038/s41477-021-00907-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/25/2021] [Indexed: 05/04/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a low-abundance membrane lipid essential for plasma membrane function1,2. In plants, mutations in phosphatidylinositol 4-phosphate (PI4P) 5-kinases (PIP5K) suggest that PI(4,5)P2 production is involved in development, immunity and reproduction3-5. However, phospholipid synthesis is highly intricate6. It is thus likely that steady-state depletion of PI(4,5)P2 triggers confounding indirect effects. Furthermore, inducible tools available in plants allow PI(4,5)P2 to increase7-9 but not decrease, and no PIP5K inhibitors are available. Here, we introduce iDePP (inducible depletion of PI(4,5)P2 in plants), a system for the inducible and tunable depletion of PI(4,5)P2 in plants in less than three hours. Using this strategy, we confirm that PI(4,5)P2 is critical for various aspects of plant development, including root growth, root-hair elongation and organ initiation. We show that PI(4,5)P2 is required to recruit various endocytic proteins, including AP2-µ, to the plasma membrane, and thus to regulate clathrin-mediated endocytosis. Finally, we find that inducible PI(4,5)P2 perturbation impacts the dynamics of the actin cytoskeleton as well as microtubule anisotropy. Together, we propose that iDePP is a simple and efficient genetic tool to test the importance of PI(4,5)P2 in given cellular or developmental responses, and also to evaluate the importance of this lipid in protein localization.
Collapse
Affiliation(s)
- Mehdi Doumane
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Alexis Lebecq
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Léia Colin
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Aurélie Fangain
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Floris D Stevens
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Joseph Bareille
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Teun Munnik
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| |
Collapse
|
40
|
Cui Y, Zhao Y, Lu Y, Su X, Chen Y, Shen Y, Lin J, Li X. In vivo single-particle tracking of the aquaporin AtPIP2;1 in stomata reveals cell type-specific dynamics. PLANT PHYSIOLOGY 2021; 185:1666-1681. [PMID: 33569600 PMCID: PMC8133650 DOI: 10.1093/plphys/kiab007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/23/2020] [Indexed: 05/20/2023]
Abstract
Aquaporins such as the plasma membrane intrinsic proteins (PIPs) allow water to move through cell membranes and are vital for stomatal movement in plants. Despite their importance, the dynamic changes in aquaporins during water efflux and influx have not been directly observed in real time in vivo. Here, to determine which factors regulate these changes during the bidirectional translocation of water, we examined aquaporin dynamics during the stomatal immune response to the bacterial flagellin-derived peptide flg22. The Arabidopsis (Arabidopsis thaliana) aquaporin mutant pip2;1 showed defects in the flg22-induced stomatal response. Variable-angle total internal reflection fluorescence microscopy revealed that the movement dynamics and dwell times of AQ6]GFP-AtPIP2;1 in guard cells and subsidiary cells exhibited cell type-specific dependencies on flg22. The cytoskeleton, rather than the cell wall, was the major factor regulating AtPIP2;1 dynamics, although both the cytoskeleton and cell wall might form bounded domains that restrict the diffusion of AtPIP2;1 in guard cells and subsidiary cells. Finally, our analysis revealed the different roles of cortical actin and microtubules in regulating AtPIP2;1 dynamics in guard cells, as well as subsidiary cells, under various conditions. Our observations shed light on the heterogeneous mechanisms that regulate membrane protein dynamics in plants in response to pathogens.
Collapse
Affiliation(s)
- Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Yanxia Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingbai Shen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
- Author for communication:
| |
Collapse
|
41
|
Single-particle tracking photoactivated localization microscopy of membrane proteins in living plant tissues. Nat Protoc 2021; 16:1600-1628. [PMID: 33627844 DOI: 10.1038/s41596-020-00471-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023]
Abstract
Super-resolution microscopy techniques have pushed the limit of optical imaging to unprecedented spatial resolutions. However, one of the frontiers in nanoscopy is its application to intact living organisms. Here we describe the implementation and application of super-resolution single-particle tracking photoactivated localization microscopy (sptPALM) to probe single-molecule dynamics of membrane proteins in live roots of the model plant Arabidopsis thaliana. We first discuss the advantages and limitations of sptPALM for studying the diffusion properties of membrane proteins and compare this to fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS). We describe the technical details for handling and imaging the samples for sptPALM, with a particular emphasis on the specificity of imaging plant cells, such as their thick cell walls or high degree of autofluorescence. We then provide a practical guide from data collection to image analyses. In particular, we introduce our sptPALM_viewer software and describe how to install and use it for analyzing sptPALM experiments. Finally, we report an R statistical analysis pipeline to analyze and compare sptPALM experiments. Altogether, this protocol should enable plant researchers to perform sptPALM using a benchmarked reproducible protocol. Routinely, the procedure takes 3-4 h of imaging followed by 3-4 d of image processing and data analysis.
Collapse
|
42
|
Guan L, Yang S, Li S, Liu Y, Liu Y, Yang Y, Qin G, Wang H, Wu T, Wang Z, Feng X, Wu Y, Zhu JK, Li X, Li L. AtSEC22 Regulates Cell Morphogenesis via Affecting Cytoskeleton Organization and Stabilities. FRONTIERS IN PLANT SCIENCE 2021; 12:635732. [PMID: 34149743 PMCID: PMC8211912 DOI: 10.3389/fpls.2021.635732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/01/2021] [Indexed: 05/03/2023]
Abstract
The plant cytoskeleton forms a stereoscopic network that regulates cell morphogenesis. The cytoskeleton also provides tracks for trafficking of vesicles to the target membrane. Fusion of vesicles with the target membrane is promoted by SNARE proteins, etc. The vesicle-SNARE, Sec22, regulates membrane trafficking between the ER and Golgi in yeast and mammals. Arabidopsis AtSEC22 might also regulate early secretion and is essential for gametophyte development. However, the role of AtSEC22 in plant development is unclear. To clarify the role of AtSEC22 in the regulation of plant development, we isolated an AtSEC22 knock-down mutant, atsec22-4, and found that cell morphogenesis and development were seriously disturbed. atsec22-4 exhibited shorter primary roots (PRs), dwarf plants, and partial abortion. More interestingly, the atsec22-4 mutant had less trichomes with altered morphology, irregular stomata, and pavement cells, suggesting that cell morphogenesis was perturbed. Further analyses revealed that in atsec22-4, vesicle trafficking was blocked, resulting in the trapping of proteins in the ER and collapse of structures of the ER and Golgi apparatus. Furthermore, AtSEC22 defects resulted in impaired organization and stability of the cytoskeleton in atsec22-4. Our findings revealed essential roles of AtSEC22 in membrane trafficking and cytoskeleton dynamics during plant development.
Collapse
Affiliation(s)
- Li Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Shurui Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shenglin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yu Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Guochen Qin
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Zhigang Wang
- School of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
- *Correspondence: Lixin Li,
| |
Collapse
|
43
|
Tan S, Di Donato M, Glanc M, Zhang X, Klíma P, Liu J, Bailly A, Ferro N, Petrášek J, Geisler M, Friml J. Non-steroidal Anti-inflammatory Drugs Target TWISTED DWARF1-Regulated Actin Dynamics and Auxin Transport-Mediated Plant Development. Cell Rep 2020; 33:108463. [PMID: 33264621 DOI: 10.1016/j.celrep.2020.108463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/18/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
The widely used non-steroidal anti-inflammatory drugs (NSAIDs) are derivatives of the phytohormone salicylic acid (SA). SA is well known to regulate plant immunity and development, whereas there have been few reports focusing on the effects of NSAIDs in plants. Our studies here reveal that NSAIDs exhibit largely overlapping physiological activities to SA in the model plant Arabidopsis. NSAID treatments lead to shorter and agravitropic primary roots and inhibited lateral root organogenesis. Notably, in addition to the SA-like action, which in roots involves binding to the protein phosphatase 2A (PP2A), NSAIDs also exhibit PP2A-independent effects. Cell biological and biochemical analyses reveal that many NSAIDs bind directly to and inhibit the chaperone activity of TWISTED DWARF1, thereby regulating actin cytoskeleton dynamics and subsequent endosomal trafficking. Our findings uncover an unexpected bioactivity of human pharmaceuticals in plants and provide insights into the molecular mechanism underlying the cellular action of this class of anti-inflammatory compounds.
Collapse
Affiliation(s)
- Shutang Tan
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Martin Di Donato
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Matouš Glanc
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
| | - Xixi Zhang
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Petr Klíma
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jie Liu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Noel Ferro
- University of Bonn, Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, 53115 Bonn, Germany
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic; The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Markus Geisler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
44
|
Liu D, Kumar R, Claus LAN, Johnson AJ, Siao W, Vanhoutte I, Wang P, Bender KW, Yperman K, Martins S, Zhao X, Vert G, Van Damme D, Friml J, Russinova E. Endocytosis of BRASSINOSTEROID INSENSITIVE1 Is Partly Driven by a Canonical Tyr-Based Motif. THE PLANT CELL 2020; 32:3598-3612. [PMID: 32958564 PMCID: PMC7610300 DOI: 10.1105/tpc.20.00384] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/25/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Clathrin-mediated endocytosis (CME) and its core endocytic machinery are evolutionarily conserved across all eukaryotes. In mammals, the heterotetrameric adaptor protein complex-2 (AP-2) sorts plasma membrane (PM) cargoes into vesicles via the recognition of motifs based on Tyr or di-Leu in their cytoplasmic tails. However, in plants, very little is known about how PM proteins are sorted for CME and whether similar motifs are required. In Arabidopsis (Arabidopsis thaliana), the brassinosteroid (BR) receptor BR INSENSITIVE1 (BRI1) undergoes endocytosis, which depends on clathrin and AP-2. Here, we demonstrate that BRI1 binds directly to the medium AP-2 subunit (AP2M). The cytoplasmic domain of BRI1 contains five putative canonical surface-exposed Tyr-based endocytic motifs. The Tyr-to-Phe substitution in Y898KAI reduced BRI1 internalization without affecting its kinase activity. Consistently, plants carrying the BRI1Y898F mutation were hypersensitive to BRs. Our study demonstrates that AP-2-dependent internalization of PM proteins via the recognition of functional Tyr motifs also operates in plants.
Collapse
Affiliation(s)
- Derui Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Rahul Kumar
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Lucas A N Claus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Wei Siao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Isabelle Vanhoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Peng Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Kyle W Bender
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sara Martins
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Xiuyang Zhao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
45
|
Johnson A, Gnyliukh N, Kaufmann WA, Narasimhan M, Vert G, Bednarek SY, Friml J. Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis. J Cell Sci 2020; 133:jcs248062. [PMID: 32616560 DOI: 10.1242/jcs.248062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) is a crucial cellular process implicated in many aspects of plant growth, development, intra- and intercellular signaling, nutrient uptake and pathogen defense. Despite these significant roles, little is known about the precise molecular details of how CME functions in planta To facilitate the direct quantitative study of plant CME, we review current routinely used methods and present refined, standardized quantitative imaging protocols that allow the detailed characterization of CME at multiple scales in plant tissues. These protocols include: (1) an efficient electron microscopy protocol for the imaging of Arabidopsis CME vesicles in situ, thus providing a method for the detailed characterization of the ultrastructure of clathrin-coated vesicles; (2) a detailed protocol and analysis for quantitative live-cell fluorescence microscopy to precisely examine the temporal interplay of endocytosis components during single CME events; (3) a semi-automated analysis to allow the quantitative characterization of global internalization of cargos in whole plant tissues; and (4) an overview and validation of useful genetic and pharmacological tools to interrogate the molecular mechanisms and function of CME in intact plant samples.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alexander Johnson
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Nataliia Gnyliukh
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Walter A Kaufmann
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, 31320 Auzeville Tolosane, France
| | | | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
46
|
Zhang J, Mazur E, Balla J, Gallei M, Kalousek P, Medveďová Z, Li Y, Wang Y, Prát T, Vasileva M, Reinöhl V, Procházka S, Halouzka R, Tarkowski P, Luschnig C, Brewer PB, Friml J. Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nat Commun 2020; 11:3508. [PMID: 32665554 PMCID: PMC7360611 DOI: 10.1038/s41467-020-17252-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 06/15/2020] [Indexed: 11/27/2022] Open
Abstract
Directional transport of the phytohormone auxin is a versatile, plant-specific mechanism regulating many aspects of plant development. The recently identified plant hormones, strigolactones (SLs), are implicated in many plant traits; among others, they modify the phenotypic output of PIN-FORMED (PIN) auxin transporters for fine-tuning of growth and developmental responses. Here, we show in pea and Arabidopsis that SLs target processes dependent on the canalization of auxin flow, which involves auxin feedback on PIN subcellular distribution. D14 receptor- and MAX2 F-box-mediated SL signaling inhibits the formation of auxin-conducting channels after wounding or from artificial auxin sources, during vasculature de novo formation and regeneration. At the cellular level, SLs interfere with auxin effects on PIN polar targeting, constitutive PIN trafficking as well as clathrin-mediated endocytosis. Our results identify a non-transcriptional mechanism of SL action, uncoupling auxin feedback on PIN polarity and trafficking, thereby regulating vascular tissue formation and regeneration.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Ewa Mazur
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032, Katowice, Poland
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), 62500, Brno, Czech Republic
| | - Jozef Balla
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
- Department of Plant Biology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Michelle Gallei
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria
| | - Petr Kalousek
- Department of Plant Biology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Zuzana Medveďová
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Yang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaping Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tomáš Prát
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria
| | - Mina Vasileva
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria
| | - Vilém Reinöhl
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Stanislav Procházka
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Rostislav Halouzka
- Central Laboratories and Research Support, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Petr Tarkowski
- Central Laboratories and Research Support, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Wien, Austria
| | - Philip B Brewer
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Precinct, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria.
| |
Collapse
|
47
|
Wang J, Mylle E, Johnson A, Besbrugge N, De Jaeger G, Friml J, Pleskot R, Van Damme D. High Temporal Resolution Reveals Simultaneous Plasma Membrane Recruitment of TPLATE Complex Subunits. PLANT PHYSIOLOGY 2020; 183:986-997. [PMID: 32321842 PMCID: PMC7333705 DOI: 10.1104/pp.20.00178] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/31/2020] [Indexed: 05/19/2023]
Abstract
The TPLATE complex (TPC) is a key endocytic adaptor protein complex in plants. TPC in Arabidopsis (Arabidopsis thaliana) contains six evolutionarily conserved subunits and two plant-specific subunits (AtEH1/Pan1 and AtEH2/Pan1) which, although cytoplasmic proteins, are not associated with the hexameric subcomplex in the cytoplasm. To investigate the dynamic assembly of the octameric TPC at the plasma membrane (PM), we performed state-of-the-art dual-color live-cell imaging at physiological and lowered temperatures. Lowering the temperature slowed down endocytosis, thereby enhancing the temporal resolution of the differential recruitment of endocytic components. Under both normal and lowered temperature conditions, the core TPC subunit TPLATE and the AtEH/Pan1 proteins exhibited simultaneous recruitment at the PM. These results, together with colocalization analysis of different TPC subunits, allow us to conclude that the TPC in plant cells is not recruited to the PM sequentially but as an octameric complex.
Collapse
Affiliation(s)
- Jie Wang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Evelien Mylle
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Alexander Johnson
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Nienke Besbrugge
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Roman Pleskot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Daniel Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
48
|
Dragwidge JM, VAN Damme D. Visualising endocytosis in plants: past, present, and future. J Microsc 2020; 280:104-110. [PMID: 32441767 DOI: 10.1111/jmi.12926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/28/2022]
Abstract
Chris Hawes had a lively fascination for the immensely complex organisation of the endomembrane system, including the process of endocytosis. This is the method by which eukaryotic cells internalise membrane proteins, lipids, carbohydrates, and cell wall enzymes from the cell surface through membrane bound vesicles. Endocytosis occurs progressively, starting with early membrane deformation, scission, and finally the release of the vesicle into the cytoplasm. Next to secretion, endocytosis allows the cell to control the proteome composition of its inner and outer surface membrane and as such, its communication with the outside world. Whereas endocytosis was initially considered theoretically impossible in plants due to their high turgor pressure, it is now established as essential for plant life. Furthermore, endocytosis remains a highly active field of research, both in yeast, animal, and plant model systems. Over the past three decades, the tools and techniques used to visualise, quantify, and characterise endocytosis have resulted in an increasingly higher spatiotemporal understanding of this process. Here we provide a brief history of plant endocytosis research from the time when Chris Hawes was investigating the process, to the current state-of-the-art in the field. We will end this chapter with a discussion on some promising future developments for plant endocytosis research. LAY DESCRIPTION: Endocytosis is a key process whereby eukaryotic cells can selectively take up membrane proteins, extracellular material and lipids. As this process controls the abundance and protein composition of the plasma membrane, it also controls the communication of the cell with the outside world. Whereas endocytosis was initially considered theoretically impossible in plants due to their high turgor pressure, it is now established as essential for plant life. Today, endocytosis remains a highly active field of research, both in yeast, animal, and plant model systems. Endocytosis was one of the favourite research topics of Chris Hawes, which is why this mini-review is part of the Festschrift issue in his honour. We provide here a brief history of plant endocytosis research from the time when Chris Hawes was investigating the process, to the current state-of-the-art in the field. Over the past three decades, the tools and techniques that were developed to visualise, quantify, and characterise endocytosis have allowed to achieve an increasingly higher spatiotemporal understanding of this process. We end this chapter with a discussion on some promising future developments for plant endocytosis research.
Collapse
Affiliation(s)
- J M Dragwidge
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - D VAN Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
49
|
Zhang X, Adamowski M, Marhava P, Tan S, Zhang Y, Rodriguez L, Zwiewka M, Pukyšová V, Sánchez AS, Raxwal VK, Hardtke CS, Nodzyński T, Friml J. Arabidopsis Flippases Cooperate with ARF GTPase Exchange Factors to Regulate the Trafficking and Polarity of PIN Auxin Transporters. THE PLANT CELL 2020; 32:1644-1664. [PMID: 32193204 PMCID: PMC7203944 DOI: 10.1105/tpc.19.00869] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 05/13/2023]
Abstract
Cell polarity is a fundamental feature of all multicellular organisms. PIN auxin transporters are important cell polarity markers that play crucial roles in a plethora of developmental processes in plants. Here, to identify components involved in cell polarity establishment and maintenance in plants, we performed a forward genetic screening of PIN2:PIN1-HA;pin2 Arabidopsis (Arabidopsis thaliana) plants, which ectopically express predominantly basally localized PIN1 in root epidermal cells, leading to agravitropic root growth. We identified the regulator of PIN polarity 12 (repp12) mutation, which restored gravitropic root growth and caused a switch in PIN1-HA polarity from the basal to apical side of root epidermal cells. Next Generation Sequencing and complementation experiments established the causative mutation of repp12 as a single amino acid exchange in Aminophospholipid ATPase3 (ALA3), a phospholipid flippase predicted to function in vesicle formation. repp12 and ala3 T-DNA mutants show defects in many auxin-regulated processes, asymmetric auxin distribution, and PIN trafficking. Analysis of quintuple and sextuple mutants confirmed the crucial roles of ALA proteins in regulating plant development as well as PIN trafficking and polarity. Genetic and physical interaction studies revealed that ALA3 functions together with the ADP ribosylation factor GTPase exchange factors GNOM and BIG3 in regulating PIN polarity, trafficking, and auxin-mediated development.
Collapse
Affiliation(s)
- Xixi Zhang
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Maciek Adamowski
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Petra Marhava
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Shutang Tan
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Yuzhou Zhang
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno CZ-625 00, Czech Republic
| | - Vendula Pukyšová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno CZ-625 00, Czech Republic
| | - Adrià Sans Sánchez
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno CZ-625 00, Czech Republic
| | - Vivek Kumar Raxwal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno CZ-625 00, Czech Republic
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno CZ-625 00, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
50
|
Narasimhan M, Johnson A, Prizak R, Kaufmann WA, Tan S, Casillas-Pérez B, Friml J. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife 2020; 9:52067. [PMID: 31971511 PMCID: PMC7012609 DOI: 10.7554/elife.52067] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the plasma membrane but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes.
Collapse
Affiliation(s)
| | - Alexander Johnson
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roshan Prizak
- Institute of Science and Technology Austria, Klosterneuburg, Austria.,Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Shutang Tan
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|