1
|
Wang S, Yang B, Liang Y, Zou X, Xu M, Zhao C, Wang Y, Ni B, Zhu P, Jiang Y. Overexpression of Umellularia californica FatB thioesterase affects plant growth and lipid metabolome leading to improved drought tolerance in Arabidopsis and tomato. FRONTIERS IN PLANT SCIENCE 2025; 15:1446210. [PMID: 39866321 PMCID: PMC11757637 DOI: 10.3389/fpls.2024.1446210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/09/2024] [Indexed: 01/28/2025]
Abstract
Frequent and extreme drought exerts profound effects on vegetation growth and production worldwide. It is imperative to identify key genes that regulate plant drought resistance and to investigate their underlying mechanisms of action. Long-chain fatty acids and their derivatives have been demonstrated to participate in various stages of plant growth and stress resistance; however, the effects of medium-chain fatty acids on related functions have not been thoroughly studied. Here, we integrate lipidomic, transcriptomic, and genetic analyses to elucidate the roles of the medium-chain acyl-acyl carrier protein thioesterase of Umellularia californica FatB (UcFatB) in drought tolerance and plant growth. Arabidopsis and tomato transgenic lines overexpressing UcFatB showed that the medium chain fatty acids mainly affect the male reproductive process of plant development. Transcriptomic and non-targeted lipid metabolomic combination analysis revealed significant changes in lauric acid-related metabolic pathways, as evidenced by increased phosphatidylcholine accumulation and upregulated stress-response gene expression. Consistent with the thicker waxy cutin layer and increased membrane integrity, UcFatB-overexpression enhanced drought tolerance in both Arabidopsis and tomato. Furthermore, methyl laurate and phosphatidylcholine application improved tomato drought resistance and fruit yield. These findings provide new insights into the potential genetic resources and cost-effective chemicals for enhancing drought resistance in crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yina Jiang
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
2
|
Hao Y, Luo H, Wang Z, Lu C, Ye X, Wang H, Miao L. Research progress on the mechanisms of fruit glossiness in cucumber. Gene 2024; 927:148626. [PMID: 38830516 DOI: 10.1016/j.gene.2024.148626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Cucumber (Cucumis sativus L.) is an important horticultural crop in China. Consumer requirements for aesthetically pleasing appearances of horticultural crops are gradually increasing, and cucumbers having a good visual appearance, as well as flavor, are important for breeding and industry development. The gloss of cucumber fruit epidermis is an important component of its appeal, and the wax layer on the fruit surface plays important roles in plant growth and forms a powerful barrier against external biotic and abiotic stresses. The wax of the cucumber epidermis is mainly composed of alkanes, and the luster of cucumber fruit is mainly determined by the alkane and silicon contents of the epidermis. Several genes, transcription factors, and transporters affect the synthesis of ultra-long-chain fatty acids and change the silicon content, further altering the gloss of the epidermis. However, the specific regulatory mechanisms are not clear. Here, progress in research on the luster of cucumber fruit epidermis from physiological, biochemical, and molecular regulatory perspectives are reviewed. Additionally, future research avenues in the field are discussed.
Collapse
Affiliation(s)
- Yiyang Hao
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Haiyan Luo
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zhiyi Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chuanlong Lu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xiaolong Ye
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Huasen Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China.
| | - Li Miao
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
3
|
Chen X, Han C, Yang R, Wang X, Ma J, Wang Y. Influence of the transcription factor ABI5 on growth and development in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154316. [PMID: 39098091 DOI: 10.1016/j.jplph.2024.154316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
ABA-insensitive 5 (ABI5) belongs to the basic leucine zipper class of transcription factors and is named for being the fifth identified Arabidopsis mutant unresponsive to ABA. To understand the influence of ABI5 in its active state on downstream gene expression and plant growth and development, we overexpressed the full-length ABI5 (A.t.MX-4) and the active forms of ABI5 with deleted transcriptional repression domains (A.t.MX-1, A.t.MX-2, and A.t.MX-3). Compared with the wild type, A.t.MX-1, A.t.MX-2, and A.t.MX-3 exhibited an increase in rosette leaf number and size, earlier flowering, increased thousand-seed weight, and significantly enhanced drought resistance. Thirty-five upregulated/downregulated proteins in the A.t.MX-1 were identified by proteomic analysis, and these proteins were involved in ABA biosynthesis and degradation, abiotic stress, fatty acid synthesis, and energy metabolism. These proteins participate in the regulation of plant drought resistance, flowering timing, and seed size at the levels of transcription and post-translational modification.
Collapse
Affiliation(s)
- Xin Chen
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Changze Han
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Rongrong Yang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Xinwen Wang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China.
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China.
| |
Collapse
|
4
|
Zhi QQ, Chen Y, Hu H, Huang WQ, Bao GG, Wan XR. Physiological and transcriptome analyses reveal tissue-specific responses of Leucaena plants to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108926. [PMID: 38996715 DOI: 10.1016/j.plaphy.2024.108926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Leucaena leucocephala (Leucaena) is a leguminous tree widely cultivated in tropical and subtropical regions due to its strong environmental suitability for abiotic stresses, especially drought. However, the molecular mechanisms and key pathways involved in Leucaena's drought response require further elucidation. Here, we comparatively analyzed the physiological and early transcriptional responses of Leucaena leaves and roots under drought stress simulated by polyethylene glycol (PEG) treatments. Drought stress induced physiological changes in Leucaena seedlings, including decreases in relative water content (RWC) and increases in relative electrolyte leakage (REL), malondialdehyde (MDA), proline contents as well as antioxidant enzyme activities. In response to drought stress, 6461 and 8295 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. In both tissues, the signaling transduction pathway of plant hormones was notably the most enriched. Specifically, abscisic acid (ABA) biosynthesis and signaling related genes (NCED, PP2C, SnRK2 and ABF) were strongly upregulated particularly in leaves. The circadian rhythm, DNA replication, alpha-linolenic acid metabolism, and secondary metabolites biosynthesis related pathways were repressed in leaves, while the glycolysis/gluconeogenesis and alpha-linolenic acid metabolism and amino acid biosynthesis processes were promoted in roots. Furthermore, heterologous overexpression of Leucaena drought-inducible genes (PYL5, PP2CA, bHLH130, HSP70 and AUX22D) individually in yeast increased the tolerance to drought and heat stresses. Overall, these results deepen our understanding of the tissue-specific mechanisms of Leucaena in response to drought and provide target genes for future drought-tolerance breeding engineering in crops.
Collapse
Affiliation(s)
- Qing-Qing Zhi
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ying Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Han Hu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wen-Qi Huang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ge-Gen Bao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Xiao-Rong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
5
|
Bonarota MS, Kosma D, Barrios-Masias FH. Physiological characterization of the tomato cutin mutant cd1 under salinity and nitrogen stress. PLANTA 2024; 260:64. [PMID: 39073466 DOI: 10.1007/s00425-024-04494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
MAIN CONCLUSION We identified tomato leaf cuticle and root suberin monomers that play a role in the response to nitrogen deficiency and salinity stress and discuss their potential agronomic value for breeding. The plant cuticle plays a key role in plant-water relations, and cuticle's agronomic value in plant breeding programs is currently under investigation. In this study, the tomato cutin mutant cd1, with altered fruit cuticle, was physiologically characterized under two nitrogen treatments and three salinity levels. We evaluated leaf wax and cutin load and composition, root suberin, stomatal conductance, photosynthetic rate, partial factor productivity from applied N, flower and fruit number, fruit size and cuticular transpiration, and shoot and root biomass. Both nitrogen and salinity treatments altered leaf cuticle and root suberin composition, regardless of genotype (cd1 or M82). Compared with M82, the cd1 mutant showed lower shoot biomass and reduced partial factor productivity from applied N under all treatments. Under N depletion, cd1 showed altered leaf wax composition, but was comparable to the WT under sufficient N. Under salt treatment, cd1 showed an increase in leaf wax and cutin monomers. Root suberin content of cd1 was lower than M82 under control conditions but comparable under higher salinity levels. The tomato mutant cd1 had a higher fruit cuticular transpiration rate, and lower fruit surface area compared to M82. These results show that the cd1 mutation has complex effects on plant physiology, and growth and development beyond cutin deficiency, and offer new insights on the potential agronomic value of leaf cuticle and root suberin for tomato breeding.
Collapse
Affiliation(s)
- Maria-Sole Bonarota
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV, USA
| | - Dylan Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Felipe H Barrios-Masias
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV, USA.
| |
Collapse
|
6
|
Wang WN, Wei YT, Zhao ST, Yu FH, Wang JW, Gu CY, Liu XR, Sai N, Zhu JL, Wang QM, Bao QX, Mu XR, Liu YX, Loake GJ, Jiang JH, Meng LS. ABSCISIC ACID-INSENSITIVE 5-KIP-RELATED PROTEIN 1-SHOOT MERISTEMLESS modulates reproductive development of Arabidopsis. PLANT PHYSIOLOGY 2024; 195:2309-2322. [PMID: 38466216 DOI: 10.1093/plphys/kiae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
Soil (or plant) water deficit accelerates plant reproduction. However, the underpinning molecular mechanisms remain unknown. By modulating cell division/number, ABSCISIC ACID-INSENSITIVE 5 (ABI5), a key bZIP (basic (region) leucine zippers) transcription factor, regulates both seed development and abiotic stress responses. The KIP-RELATED PROTEIN (KRP) cyclin-dependent kinases (CDKs) play an essential role in controlling cell division, and SHOOT MERISTEMLESS (STM) plays a key role in the specification of flower meristem identity. Here, our findings show that abscisic acid (ABA) signaling and/or metabolism in adjust reproductive outputs (such as rosette leaf number and open flower number) under water-deficient conditions in Arabidopsis (Arabidopsis thaliana) plants. Reproductive outputs increased under water-sufficient conditions but decreased under water-deficient conditions in the ABA signaling/metabolism mutants abscisic acid2-1 (aba2-1), aba2-11, abscisic acid insensitive3-1 (abi3-1), abi4-1, abi5-7, and abi5-8. Further, under water-deficient conditions, ABA induced-ABI5 directly bound to the promoter of KRP1, which encodes a CDK that plays an essential role in controlling cell division, and this binding subsequently activated KRP1 expression. In turn, KRP1 physically interacted with STM, which functions in the specification of flower meristem identity, promoting STM degradation. We further demonstrate that reproductive outputs are adjusted by the ABI5-KRP1-STM molecular module under water-deficient conditions. Together, our findings reveal the molecular mechanism by which ABA signaling and/or metabolism regulate reproductive development under water-deficient conditions. These findings provide insights that may help guide crop yield improvement under water deficiency.
Collapse
Affiliation(s)
- Wan-Ni Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yu-Ting Wei
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Sheng-Ting Zhao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Fu-Huan Yu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jing-Wen Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Cheng-Yue Gu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xin-Ran Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Na Sai
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jin-Lei Zhu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Qi-Meng Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Qin-Xin Bao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xin-Rong Mu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yu-Xin Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Gary J Loake
- Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Edinburgh University, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
- Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, King's Buildings, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Ji-Hong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
- Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Edinburgh University, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
| | - Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
- Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Edinburgh University, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, China
| |
Collapse
|
7
|
Ma Y, Chang W, Li Y, Xu J, Song Y, Yao X, Wang L, Sun Y, Guo L, Zhang H, Liu X. Plant cuticles repress organ initiation and development during skotomorphogenesis in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100850. [PMID: 38409782 PMCID: PMC11211553 DOI: 10.1016/j.xplc.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/11/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
After germination in the dark, plants produce a shoot apical hook and closed cotyledons to protect the quiescent shoot apical meristem (SAM), which is critical for seedling survival during skotomorphogenesis. The factors that coordinate these processes, particularly SAM repression, remain enigmatic. Plant cuticles, multilayered structures of lipid components on the outermost surface of the aerial epidermis of all land plants, provide protection against desiccation and external environmental stresses. Whether and how cuticles regulate plant development are still unclear. Here, we demonstrate that mutants of BODYGUARD1 (BDG1) and long-chain acyl-CoA synthetase2 (LACS2), key genes involved in cutin biosynthesis, produce a short hypocotyl with an opened apical hook and cotyledons in which the SAM is activated during skotomorphogenesis. Light signaling represses expression of BDG1 and LACS2, as well as cutin biosynthesis. Transcriptome analysis revealed that cuticles are critical for skotomorphogenesis, particularly for the development and function of chloroplasts. Genetic and molecular analyses showed that decreased HOOKLESS1 expression results in apical hook opening in the mutants. When hypoxia-induced expression of LITTLE ZIPPER2 at the SAM promotes organ initiation in the mutants, the de-repressed expression of cell-cycle genes and the cytokinin response induce the growth of true leaves. Our results reveal previously unrecognized developmental functions of the plant cuticle during skotomorphogenesis and demonstrate a mechanism by which light initiates photomorphogenesis through dynamic regulation of cuticle synthesis to induce coordinated and systemic changes in organ development and growth during the skotomorphogenesis-to-photomorphogenesis transition.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Wenwen Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yongpeng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yongli Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Xinmiao Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yu Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
8
|
Wang C, Lei J, Jin X, Chai S, Jiao C, Yang X, Wang L. A Sweet Potato MYB Transcription Factor IbMYB330 Enhances Tolerance to Drought and Salt Stress in Transgenic Tobacco. Genes (Basel) 2024; 15:693. [PMID: 38927629 PMCID: PMC11202548 DOI: 10.3390/genes15060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
MYB transcription factors (TFs) play vital roles in plant growth, development, and response to adversity. Although the MYB gene family has been studied in many plant species, there is still little known about the function of R2R3 MYB TFs in sweet potato in response to abiotic stresses. In this study, an R2R3 MYB gene, IbMYB330 was isolated from sweet potato (Ipomoea batatas). IbMYB330 was ectopically expressed in tobacco and the functional characterization was performed by overexpression in transgenic plants. The IbMYB330 protein has a 268 amino acid sequence and contains two highly conserved MYB domains. The molecular weight and isoelectric point of IbMYB330 are 29.24 kD and 9.12, respectively. The expression of IbMYB330 in sweet potato is tissue-specific, and levels in the root were significantly higher than that in the leaf and stem. It showed that the expression of IbMYB330 was strongly induced by PEG-6000, NaCl, and H2O2. Ectopic expression of IbMYB330 led to increased transcript levels of stress-related genes such as SOD, POD, APX, and P5CS. Moreover, compared to the wild-type (WT), transgenic tobacco overexpression of IbMYB330 enhanced the tolerance to drought and salt stress treatment as CAT activity, POD activity, proline content, and protein content in transgenic tobacco had increased, while MDA content had decreased. Taken together, our study demonstrated that IbMYB330 plays a role in enhancing the resistance of sweet potato to stresses. These findings lay the groundwork for future research on the R2R3-MYB genes of sweet potato and indicates that IbMYB330 may be a candidate gene for improving abiotic stress tolerance in crops.
Collapse
Affiliation(s)
- Chong Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
- Crop Institute of Jiangxi Academy Agricultural Sciences, Nanchang 330200, China
| | - Jian Lei
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| | - Xiaojie Jin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| | - Shasha Chai
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| | - Chunhai Jiao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| | - Xinsun Yang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Lianjun Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (C.W.); (J.L.); (X.J.); (S.C.); (C.J.)
| |
Collapse
|
9
|
Wang W, Zhang T, Liu C, Liu C, Jiang Z, Zhang Z, Ali S, Li Z, Wang J, Sun S, Chen Q, Zhang Q, Xie L. A DNA demethylase reduces seed size by decreasing the DNA methylation of AT-rich transposable elements in soybean. Commun Biol 2024; 7:613. [PMID: 38773248 PMCID: PMC11109123 DOI: 10.1038/s42003-024-06306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Understanding how to increase soybean yield is crucial for global food security. The genetic and epigenetic factors influencing seed size, a major crop yield determinant, are not fully understood. We explore the role of DNA demethylase GmDMEa in soybean seed size. Our research indicates that GmDMEa negatively correlates with soybean seed size. Using CRISPR-Cas9, we edited GmDMEa in the Dongnong soybean cultivar, known for small seeds. Modified plants had larger seeds and greater yields without altering plant architecture or seed nutrition. GmDMEa preferentially demethylates AT-rich transposable elements, thus activating genes and transcription factors associated with the abscisic acid pathway, which typically decreases seed size. Chromosomal substitution lines confirm that these modifications are inheritable, suggesting a stable epigenetic method to boost seed size in future breeding. Our findings provide insights into epigenetic seed size control and suggest a strategy for improving crop yields through the epigenetic regulation of crucial genes. This work implies that targeted epigenetic modification has practical agricultural applications, potentially enhancing food production without compromising crop quality.
Collapse
Affiliation(s)
- Wanpeng Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Chunyu Liu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Chunyan Liu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhenfeng Jiang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhaohan Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shahid Ali
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Zhuozheng Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Jiang Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shanwen Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, China.
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China.
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Linan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China.
- The Center for Basic Forestry Research, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China.
| |
Collapse
|
10
|
Ciceoi R, Asanica A, Luchian V, Iordachescu M. Genomic Analysis of Romanian Lycium Genotypes: Exploring BODYGUARD Genes for Stress Resistance Breeding. Int J Mol Sci 2024; 25:2130. [PMID: 38396806 PMCID: PMC10889844 DOI: 10.3390/ijms25042130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Goji berries, long valued in Traditional Chinese Medicine and Asian cuisine for their wide range of medicinal benefits, are now considered a 'superfruit' and functional food worldwide. Because of growing demand, Europe and North America are increasing their goji berry production, using goji berry varieties that are not originally from these regions. European breeding programs are focusing on producing Lycium varieties adapted to local conditions and market demands. By 2023, seven varieties of goji berries were successfully registered in Romania, developed using germplasm that originated from sources outside the country. A broader project focused on goji berry breeding was initiated in 2014 at USAMV Bucharest. In the present research, five cultivated and three wild L. barbarum genotypes were compared to analyse genetic variation at the whole genome level. In addition, a case study presents the differences in the genomic coding sequences of BODYGUARD (BDG) 3 and 4 genes from chromosomes 4, 8, and 9, which are involved in cuticle-related resistance. All three BDG genes show distinctive differences between the cultivated and wild-type genotypes at the SNP level. In the BDG 4 gene located on chromosome 8, 69% of SNPs differentiate the wild from the cultivated genotypes, while in BDG 3 on chromosome 4, 64% of SNPs could tell the difference between the wild and cultivated goji berry. The research also uncovered significant SNP and InDel differences between cultivated and wild genotypes, in the entire genome, providing crucial insights for goji berry breeders to support the development of goji berry cultivation in Romania.
Collapse
Affiliation(s)
- Roxana Ciceoi
- Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Bd., 011464 Bucharest, Romania;
| | - Adrian Asanica
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Bd., 011464 Bucharest, Romania; (A.A.); (V.L.)
| | - Vasilica Luchian
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Bd., 011464 Bucharest, Romania; (A.A.); (V.L.)
| | - Mihaela Iordachescu
- Research Center for Studies of Food Quality and Agricultural Products, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Bd., 011464 Bucharest, Romania;
| |
Collapse
|
11
|
Cai J, Zhang Y, He R, Jiang L, Qu Z, Gu J, Yang J, Legascue MF, Wang ZY, Ariel F, Adelson DL, Zhu Y, Wang D. LncRNA DANA1 promotes drought tolerance and histone deacetylation of drought responsive genes in Arabidopsis. EMBO Rep 2024; 25:796-812. [PMID: 38177920 PMCID: PMC10897447 DOI: 10.1038/s44319-023-00030-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Although many long noncoding RNAs have been discovered in plants, little is known about their biological function and mode of action. Here we show that the drought-induced long intergenic noncoding RNA DANA1 interacts with the L1p/L10e family member protein DANA1-INTERACTING PROTEIN 1 (DIP1) in the cell nucleus of Arabidopsis, and both DANA1 and DIP1 promote plant drought resistance. DANA1 and DIP1 increase histone deacetylase HDA9 binding to the CYP707A1 and CYP707A2 loci. DIP1 further interacts with PWWP3, a member of the PEAT complex that associates with HDA9 and has histone deacetylase activity. Mutation of DANA1 enhances CYP707A1 and CYP707A2 acetylation and expression resulting in impaired drought tolerance, in agreement with dip1 and pwwp3 mutant phenotypes. Our results demonstrate that DANA1 is a positive regulator of drought response and that DANA1 works jointly with the novel chromatin-related factor DIP1 on epigenetic reprogramming of the plant transcriptome during the response to drought.
Collapse
Affiliation(s)
- Jingjing Cai
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Yongdi Zhang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Liyun Jiang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Zhipeng Qu
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, SA, Australia
| | - Jinbao Gu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, 510316, Guangdong, China
| | - Jun Yang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - María Florencia Legascue
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, 510316, Guangdong, China
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - David L Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, SA, Australia
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, 330031, Jiangxi, China.
| |
Collapse
|
12
|
Rumyantseva NI, Valieva AI, Kostyukova YA, Ageeva MV. The Effect of Leaf Plasticity on the Isolation of Apoplastic Fluid from Leaves of Tartary Buckwheat Plants Grown In Vivo and In Vitro. PLANTS (BASEL, SWITZERLAND) 2023; 12:4048. [PMID: 38068682 PMCID: PMC10707844 DOI: 10.3390/plants12234048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 10/19/2024]
Abstract
Vacuum infiltration-centrifugation (VIC) is the most reproducible technique for the isolation of apoplast washing fluid (AWF) from leaves, but its effectiveness depends on the infiltration-centrifugation conditions and the anatomical and physiological peculiarities of leaves. This study aimed to elaborate an optimal procedure for AWF isolation from the leaves of Tartary buckwheat grown in in vivo and in vitro conditions and reveal the leaf anatomical and physiological traits that could contribute to the effectiveness of AWF isolation. Here, it was demonstrated that leaves of buckwheat plants grown in vitro could be easier infiltrated, were less sensitive to higher forces of centrifugation (900× g and 1500× g), and produced more AWF yield and apoplastic protein content than in vivo leaves at the same forces of centrifugation (600× g and 900× g). The extensive study of the morphological, anatomical, and ultrastructural characteristics of buckwheat leaves grown in different conditions revealed that in vitro leaves exhibited significant plasticity in a number of interconnected morphological, anatomical, and physiological features, generally driven by high RH and low lighting; some of them, such as the reduced thickness and increased permeability of the cuticle of the epidermal cells, large intercellular spaces, increase in the size of stomata and in the area of stomatal pores, higher stomata index, drop in density, and area of calcium oxalate druses, are beneficial to the effectiveness of VIC. The size of stomata pores, which were almost twice as large in in vitro leaves as those in in vivo ones, was the main factor contributing to the isolation of AWF free of chlorophyll contamination. The opening of stomata pores by artificially created humid conditions reduced damage to the in vivo leaves and improved the VIC of them. For Fagopyrum species, this is the first study to develop a VIC technique for AWF isolation from leaves.
Collapse
Affiliation(s)
- Natalya I. Rumyantseva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
- Department of Botany and Plant Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Russia
| | - Alfia I. Valieva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| | - Yulia A. Kostyukova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| | - Marina V. Ageeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| |
Collapse
|
13
|
Jolliffe JB, Pilati S, Moser C, Lashbrooke JG. Beyond skin-deep: targeting the plant surface for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6468-6486. [PMID: 37589495 PMCID: PMC10662250 DOI: 10.1093/jxb/erad321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
The above-ground plant surface is a well-adapted tissue layer that acts as an interface between the plant and its surrounding environment. As such, its primary role is to protect against desiccation and maintain the gaseous exchange required for photosynthesis. Further, this surface layer provides a barrier against pathogens and herbivory, while attracting pollinators and agents of seed dispersal. In the context of agriculture, the plant surface is strongly linked to post-harvest crop quality and yield. The epidermal layer contains several unique cell types adapted for these functions, while the non-lignified above-ground plant organs are covered by a hydrophobic cuticular membrane. This review aims to provide an overview of the latest understanding of the molecular mechanisms underlying crop cuticle and epidermal cell formation, with focus placed on genetic elements contributing towards quality, yield, drought tolerance, herbivory defence, pathogen resistance, pollinator attraction, and sterility, while highlighting the inter-relatedness of plant surface development and traits. Potential crop improvement strategies utilizing this knowledge are outlined in the context of the recent development of new breeding techniques.
Collapse
Affiliation(s)
- Jenna Bryanne Jolliffe
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Stefania Pilati
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Claudio Moser
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, 38098, Italy
| | - Justin Graham Lashbrooke
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
14
|
Lian Y, Lian C, Wang L, Li Z, Yuan G, Xuan L, Gao H, Wu H, Yang T, Wang C. SUPPRESSOR OF MAX2 LIKE 6, 7, and 8 Interact with DDB1 BINDING WD REPEAT DOMAIN HYPERSENSITIVE TO ABA DEFICIENT 1 to Regulate the Drought Tolerance and Target SUCROSE NONFERMENTING 1 RELATED PROTEIN KINASE 2.3 to Abscisic Acid Response in Arabidopsis. Biomolecules 2023; 13:1406. [PMID: 37759806 PMCID: PMC10526831 DOI: 10.3390/biom13091406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
SUPPRESSOR OF MAX2-LIKE 6, 7, and 8 (SMXL6,7,8) function as repressors and transcription factors of the strigolactone (SL) signaling pathway, playing an important role in the development and stress tolerance in Arabidopsis thaliana. However, the molecular mechanism by which SMXL6,7,8 negatively regulate drought tolerance and ABA response remains largely unexplored. In the present study, the interacting protein and downstream target genes of SMXL6,7,8 were investigated. Our results showed that the substrate receptor for the CUL4-based E3 ligase DDB1-BINDING WD-REPEAT DOMAIN (DWD) HYPERSENSITIVE TO ABA DEFICIENT 1 (ABA1) (DWA1) physically interacted with SMXL6,7,8. The degradation of SMXL6,7,8 proteins were partially dependent on DWA1. Disruption of SMXL6,7,8 resulted in increased drought tolerance and could restore the drought-sensitive phenotype of the dwa1 mutant. In addition, SMXL6,7,8 could directly bind to the promoter of SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASE 2.3 (SnRK2.3) to repress its transcription. The mutations in SnRK2.2/2.3 significantly suppressed the hypersensitivity of smxl6/7/8 to ABA-mediated inhibition of seed germination. Conclusively, SMXL6,7,8 interact with DWA1 to negatively regulate drought tolerance and target ABA-response genes. These data provide insights into drought tolerance and ABA response in Arabidopsis via the SMXL6,7,8-mediated SL signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tao Yang
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, China; (Y.L.); (C.L.); (L.W.); (Z.L.); (G.Y.); (L.X.); (H.G.); (H.W.)
| | - Chongying Wang
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 Tianshui Road, Lanzhou 730000, China; (Y.L.); (C.L.); (L.W.); (Z.L.); (G.Y.); (L.X.); (H.G.); (H.W.)
| |
Collapse
|
15
|
Zhang P, He R, Yang J, Cai J, Qu Z, Yang R, Gu J, Wang ZY, Adelson DL, Zhu Y, Cao X, Wang D. The long non-coding RNA DANA2 positively regulates drought tolerance by recruiting ERF84 to promote JMJ29-mediated histone demethylation. MOLECULAR PLANT 2023; 16:1339-1353. [PMID: 37553833 DOI: 10.1016/j.molp.2023.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/15/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Tens of thousands of long non-coding RNAs have been uncovered in plants, but few of them have been comprehensively studied for their biological function and molecular mechanism of their mode of action. Here, we show that the Arabidopsis long non-coding RNA DANA2 interacts with an AP2/ERF transcription factor ERF84 in the cell nucleus and then affects the transcription of JMJ29 that encodes a Jumonji C domain-containing histone H3K9 demethylase. Both RNA sequencing (RNA-seq) and genetic analyses demonstrate that DANA2 positively regulates drought stress responses through JMJ29. JMJ29 positively regulates the expression of ERF15 and GOLS2 by modulation of H3K9me2 demethylation. Accordingly, mutation of JMJ29 causes decreased ERF15 and GOLS2 expression, resulting in impaired drought tolerance, in agreement with drought-sensitive phenotypes of dana2 and erf84 mutants. Taken together, these results demonstrate that DANA2 is a positive regulator of drought response and works jointly with the transcriptional activator ERF84 to modulate JMJ29 expression in plant response to drought.
Collapse
Affiliation(s)
- Pengxiang Zhang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China
| | - Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China
| | - Jun Yang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China
| | - Jingjing Cai
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China
| | - Zhipeng Qu
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Rongxin Yang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China
| | - Jinbao Gu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangdong 510316, China
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangdong 510316, China
| | - David L Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Jiangxi 330031, China.
| |
Collapse
|
16
|
Yang J, He R, Qu Z, Gu J, Jiang L, Zhan X, Gao Y, Adelson DL, Li S, Wang ZY, Zhu Y, Wang D. Long noncoding RNA ARTA controls ABA response through MYB7 nuclear trafficking in Arabidopsis. Dev Cell 2023:S1534-5807(23)00236-8. [PMID: 37290444 DOI: 10.1016/j.devcel.2023.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/27/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
In eukaryotes, transcription factors are a crucial element in the regulation of gene expression, and nuclear translocation is the key to the function of transcription factors. Here, we show that the long intergenic noncoding RNA ARTA interacts with an importin β-like protein, SAD2, through a long noncoding RNA-binding region embedded in the carboxyl terminal, and then it blocks the import of the transcription factor MYB7 into the nucleus. Abscisic acid (ABA)-induced ARTA expression can positively regulate ABI5 expression by fine-tuning MYB7 nuclear trafficking. Therefore, the mutation of arta represses ABI5 expression, resulting in desensitization to ABA, thereby reducing Arabidopsis drought tolerance. Our results demonstrate that lncRNA can hijack a nuclear trafficking receptor to modulate the nuclear import of a transcription factor during plant responses to environmental stimuli.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhipeng Qu
- Department of Molecular and Biomedical Science, School of Biological Sciences, the University of Adelaide, South Australia 5005, Australia
| | - Jinbao Gu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences 510316, Guangdong, China
| | - Liyun Jiang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ying Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - David L Adelson
- Department of Molecular and Biomedical Science, School of Biological Sciences, the University of Adelaide, South Australia 5005, Australia
| | - Sisi Li
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences 510316, Guangdong, China
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
17
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
18
|
Yang Y, Shi J, Chen L, Xiao W, Yu J. ZmEREB46, a maize ortholog of Arabidopsis WAX INDUCER1/SHINE1, is involved in the biosynthesis of leaf epicuticular very-long-chain waxes and drought tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111256. [PMID: 35696901 DOI: 10.1016/j.plantsci.2022.111256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 06/15/2023]
Abstract
The aerial surfaces of plants are covered by a layer of cuticular wax that is composed of long-chain hydrocarbon compounds for protection against adverse environmental conditions. The current study identified a maize (Zea mays L.) APETALA2/ethylene-responsive element-binding protein (AP2/EREBP)-type transcription factor, ZmEREB46. Ectopic expression of ZmEREB46 in Arabidopsis increased the accumulation of epicuticular wax on the leaves and enhanced the drought tolerance of plants. The amounts of C24/C32 fatty acids, C32/C34 aldehydes, C32/C34 1-alcohols and C31 alkanes in zmereb46 (ZmEREB46 knockout mutant) leaves were reduced. The amount of leaf total epicuticular wax decreased approximately 50% in zmereb46. Compared to wild-type LH244 leaves, the cuticle permeability of zmereb46 leaves was increased, which resulted from decreased epicuticular wax load and a thinner cuticle layer. ZmEREB46 had transcriptional activation activity and directly bound to promoter regions of ZmCER2, ZmCER3.2 and ZmKCS1. The zmereb46 seedlings also exhibited reduced drought tolerance. These results, and the observations in ZmEREB46-overexpressing lines, suggest that ZmEREB46 is involved in cuticular metabolism by influencing the biosynthesis of very-long-chain waxes and participates in the cutin biosynthesis pathway. These results are helpful to further analyze the regulatory network of wax accumulation in maize.
Collapse
Affiliation(s)
- Yue Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing 100193, China; China Tobacco Jiangsu Industry CO., Ltd, Jiangsu 210011, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Limei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhan Xiao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing 100193, China; Chengdu Shishi High School, Sichuan 610052, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Chemical Profiling of Limonium vulgare Mill. Using UHPLC-DAD-ESI/MS2 and GC-MS Analysis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Limonium vulgare Mill. is a plant growing widely in harsh environments, such as salt marshes, for which a chemical profile is still unknown, although some interesting bioactivities were already reported. So, this halophyte chemical profile must be established to find the possible bioactive compounds, valorize the species, and contribute to the salt marsh’s exploitation. This work set the chemical profile of L. vulgare’s aerial parts (leaves and inflorescences) using UHPLC-DAD-ESI/MS2 and GC-MS analysis. The lipophilic profile showed a richness in fatty acids, alkanes, and terpenoids, β-sitosterol being the major compound in inflorescences in the fruiting stage (0.822 ± 0.015 mg/g of the dry plant) and leaves (0.534 ± 0.017 mg/g of the dry plant). In contrast, in the inflorescences in the flowering stage, the major compound is nonacosane (0.228 ± 0.001 mg/g of the dry plant). The polyphenolic profile demonstrates that L. vulgare produces several flavonoids from which quercetin and myricetin can be highlighted; in particular, myricetin derivatives are prevalent in all extracts. Amongst the flavonoids, myricetin 3-rhamnoside is the most abundant in the inflorescences in the flowering stage (6.35 ± 0.05 mg/g of the dry plant), myricetin in leaves (9.69 ± 0.11 mg/g of the dry plant), and in the inflorescences in the fruiting stage baicalin presents the highest amount (5.15 ± 0.07 mg/g of the dry plant). This is the first report on L. vulgare’s chemical profile and the results indicate that this species is an exciting source of bioactive compounds, suggesting it has a use to produce nutraceuticals and/or pharmaceuticals.
Collapse
|
20
|
A Small Gtp-Binding Protein GhROP3 Interacts with GhGGB Protein and Negatively Regulates Drought Tolerance in Cotton (Gossypium hirsutum L.). PLANTS 2022; 11:plants11121580. [PMID: 35736735 PMCID: PMC9227279 DOI: 10.3390/plants11121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
As a plant-specific Rho-like small G protein, the ROP (Rho-related GTPase of plants) protein regulates the growth and development of plants and various stress responses in the form of molecular switches. Drought is a major abiotic stress that limits cotton yield and fiber quality. In this study, virus-induced gene silencing (VIGS) technology was used to analyze the biological function of GhROP3 in cotton drought stress tolerance. Meanwhile, we used yeast two-hybrid and bimolecular fluorescence complementation assays to examine the interaction between GhROP3 and GhGGB. GhROP3 has a high expression level in cotton true leaves and roots, and responds to drought, high salt, cold, heat stress, and exogenous abscisic acid (ABA) and auxin (IAA) treatments. Silencing GhROP3 improved the drought tolerance of cotton. The water loss rates (WLR) of detached leaves significantly reduced in silenced plants. Also, the relative water content (RWC) and total contents of chlorophyll (Chl) and proline (Pro) of leaves after drought stress and the activities of three antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) significantly increased, whereas the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) significantly reduced. In the leaves of silenced plants, the expression of genes related to ABA synthesis and its related pathway was significantly upregulated, and the expression of decomposition-related GhCYP707A gene and genes related to IAA synthesis and its related pathways was significantly downregulated. It indicated that GhROP3 was a negative regulator of cotton response to drought by participating in the negative regulation of the ABA signaling pathway and the positive regulation of the IAA signaling pathway. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that the GhROP3 protein interacted with the GhGGB protein in vivo and in vitro. This study provided a theoretical basis for the in-depth investigation of the drought resistance–related molecular mechanism of the GhROP3 gene and the biological function of the GhGGB gene.
Collapse
|
21
|
Zhao H, Li Z, Wang Y, Wang J, Xiao M, Liu H, Quan R, Zhang H, Huang R, Zhu L, Zhang Z. Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:468-484. [PMID: 34664356 PMCID: PMC8882776 DOI: 10.1111/pbi.13729] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 05/09/2023]
Abstract
Cell wall polysaccharide biosynthesis enzymes play important roles in plant growth, development and stress responses. The functions of cell wall polysaccharide synthesis enzymes in plant growth and development have been well studied. In contrast, their roles in plant responses to environmental stress are poorly understood. Previous studies have demonstrated that the rice cell wall cellulose synthase-like D4 protein (OsCSLD4) is involved in cell wall polysaccharide synthesis and is important for rice growth and development. This study demonstrated that the OsCSLD4 function-disrupted mutant nd1 was sensitive to salt stress, but insensitive to abscisic acid (ABA). The expression of some ABA synthesis and response genes was repressed in nd1 under both normal and salt stress conditions. Exogenous ABA can restore nd1-impaired salt stress tolerance. Moreover, overexpression of OsCSLD4 can enhance rice ABA synthesis gene expression, increase ABA content and improve rice salt tolerance, thus implying that OsCSLD4-regulated rice salt stress tolerance is mediated by ABA synthesis. Additionally, nd1 decreased rice tolerance to osmotic stress, but not ion toxic tolerance. The results from the transcriptome analysis showed that more osmotic stress-responsive genes were impaired in nd1 than salt stress-responsive genes, thus indicating that OsCSLD4 is involved in rice salt stress response through an ABA-induced osmotic response pathway. Intriguingly, the disruption of OsCSLD4 function decreased grain width and weight, while overexpression of OsCSLD4 increased grain width and weight. Taken together, this study demonstrates a novel plant salt stress adaptation mechanism by which crops can coordinate salt stress tolerance and yield.
Collapse
Affiliation(s)
- Hui Zhao
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Zixuan Li
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Yayun Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Jiayi Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Minggang Xiao
- Biotechnology Research InstituteHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Hai Liu
- Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Ruidang Quan
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Haiwen Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Rongfeng Huang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Li Zhu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Zhijin Zhang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- National Key Facility of Crop Gene Resources and Genetic ImprovementBeijingChina
| |
Collapse
|
22
|
Zhang R, Zhi H, Li Y, Guo E, Feng G, Tang S, Guo W, Zhang L, Jia G, Diao X. Response of Multiple Tissues to Drought Revealed by a Weighted Gene Co-Expression Network Analysis in Foxtail Millet [ Setaria italica (L.) P. Beauv.]. FRONTIERS IN PLANT SCIENCE 2022; 12:746166. [PMID: 35095942 PMCID: PMC8790073 DOI: 10.3389/fpls.2021.746166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Characterization of drought-tolerance mechanisms during the jointing stage in foxtail millet under water-limited conditions is essential for improving the grain yield of this C4 crop species. In this trial, two drought-tolerant and two drought-sensitive cultivars were examined using transcriptomic dissections of three tissues (root, stem, and leaf) under naturally occurring water-limited conditions. We detected a total of 32,170 expressed genes and characterized 13,552 differentially expressed genes (DEGs) correlated with drought treatment. The majority of DEGs were identified in the root tissue, followed by leaf and stem tissues, and the number of DEGs identified in the stems of drought-sensitive cultivars was about two times higher than the drought-tolerant ones. A total of 127 differentially expressed transcription factors (DETFs) with different drought-responsive patterns were identified between drought-tolerant and drought-sensitive genotypes (including MYB, b-ZIP, ERF, and WRKY). Furthermore, a total of 34 modules were constructed for all expressed genes using a weighted gene co-expression network analysis (WGCNA), and seven modules were closely related to the drought treatment. A total of 1,343 hub genes (including RAB18, LEA14, and RD22) were detected in the drought-related module, and cell cycle and DNA replication-related transcriptional pathways were identified as vital regulators of drought tolerance in foxtail millet. The results of this study provide a comprehensive overview of how Setaria italica copes with drought-inflicted environments during the jointing stage through transcriptional regulating strategies in different organs and lays a foundation for the improvement of drought-tolerant cereal cultivars through genomic editing approaches in the future.
Collapse
Affiliation(s)
- Renliang Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhui Li
- Research Institute of Millet, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Erhu Guo
- Research Institute of Millet, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Guojun Feng
- Research Institute of Grain Crop, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Sha Tang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixia Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linlin Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guanqing Jia
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianmin Diao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Berrío RT, Nelissen H, Inzé D, Dubois M. Increasing yield on dry fields: molecular pathways with growing potential. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:323-341. [PMID: 34695266 PMCID: PMC7612350 DOI: 10.1111/tpj.15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 05/02/2023]
Abstract
Drought stress constitutes one of the major constraints to agriculture all over the world, and its devastating effect is only expected to increase in the following years due to climate change. Concurrently, the increasing food demand in a steadily growing population requires a proportional increase in yield and crop production. In the past, research aimed to increase plant resilience to severe drought stress. However, this often resulted in stunted growth and reduced yield under favorable conditions or moderate drought. Nowadays, drought tolerance research aims to maintain plant growth and yield under drought conditions. Overall, recently deployed strategies to engineer drought tolerance in the lab can be classified into a 'growth-centered' strategy, which focuses on keeping growth unaffected by the drought stress, and a 'drought resilience without growth penalty' strategy, in which the main aim is still to boost drought resilience, while limiting the side effects on plant growth. In this review, we put the scope on these two strategies and some molecular players that were successfully engineered to generate drought-tolerant plants: abscisic acid, brassinosteroids, cytokinins, ethylene, ROS scavenging genes, strigolactones, and aquaporins. We discuss how these pathways participate in growth and stress response regulation under drought. Finally, we present an overview of the current insights and future perspectives in the development of new strategies to improve drought tolerance in the field.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hilde Nelissen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Corresponding Author: Dirk Inzé VIB Center for Plant Systems Biology Ghent University, Department of Plant Biotechnology Technologiepark 71 B-9052 Ghent (Belgium) Tel.: +32 9 3313800; Fax: +32 9 3313809;
| | - Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
24
|
Elevating fruit carotenoid content in apple (Malus x domestica Borkh). Methods Enzymol 2022; 671:63-98. [DOI: 10.1016/bs.mie.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Ji J, Cao W, Tong L, Fang Z, Zhang Y, Zhuang M, Wang Y, Yang L, Lv H. Identification and validation of an ECERIFERUM2- LIKE gene controlling cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:4055-4066. [PMID: 34546379 DOI: 10.1007/s00122-021-03947-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
A single nucleotide mutation of BoCER2 is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was developed for marker-assisted selection of glossiness. TL28-1 is a novel spontaneous wax-deficient mutant with a glossy phenotype identified from cabbage. In this study, the genetic analysis suggested that the wax-deficient trait of TL28-1 was controlled by a single recessive gene. All wax monomers longer than 28 carbons were significantly decreased in TL28-1. Fine-mapping results showed that the wax-deficient locus wdtl28 was located at an 80-kb interval between BOL01-20 and BOL01-24 markers on chromosome 1. According to the genome annotation of B. oleracea, the ECERIFERUM2- LIKE (CER2-LIKE) gene, BoCER2, was identified as the candidate gene. Phylogenetic analysis showed that BoCER2 and other CER2-LIKEs from vascular plants formed a clade within the BAHD superfamily of acyltransferases. The BoCER2 transcript was detected in various tissues, including stem, leaf, flower, and silique, but not in the cabbage roots. Subcellular localization indicated that BoCER2 protein functions in the endoplasmic reticulum. Further sequence analysis showed that a single nucleotide mutation (G to A) is present in the BoCER2 coding sequence in TL28-1, leading to a stop codon (TGA), hence premature translation termination. Linkage analysis showed that the homozygotic mutational BoCER2 co-segregated with wax deficiency. Moreover, the complementation test suggested that BoCER2 from wild type can rescue the wax deficiency of TL28-1. These results indicate that BoCER2 mutation hinders the elongation of very-long-chain fatty acid precursors in TL28-1, leading to wax deficiency. The allele-specific KASP marker designed in this study could be effective for marker-assisted selection of glossiness.
Collapse
Affiliation(s)
- Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Wenxue Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Long Tong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China.
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, China.
| |
Collapse
|
26
|
Brookbank BP, Patel J, Gazzarrini S, Nambara E. Role of Basal ABA in Plant Growth and Development. Genes (Basel) 2021; 12:genes12121936. [PMID: 34946886 PMCID: PMC8700873 DOI: 10.3390/genes12121936] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/01/2023] Open
Abstract
Abscisic acid (ABA) regulates various aspects of plant physiology, including promoting seed dormancy and adaptive responses to abiotic and biotic stresses. In addition, ABA plays an im-portant role in growth and development under non-stressed conditions. This review summarizes phenotypes of ABA biosynthesis and signaling mutants to clarify the roles of basal ABA in growth and development. The promotive and inhibitive actions of ABA in growth are characterized by stunted and enhanced growth of ABA-deficient and insensitive mutants, respectively. Growth regulation by ABA is both promotive and inhibitive, depending on the context, such as concentrations, tissues, and environmental conditions. Basal ABA regulates local growth including hyponastic growth, skotomorphogenesis and lateral root growth. At the cellular level, basal ABA is essential for proper chloroplast biogenesis, central metabolism, and expression of cell-cycle genes. Basal ABA also regulates epidermis development in the shoot, by inhibiting stomatal development, and deposition of hydrophobic polymers like a cuticular wax layer covering the leaf surface. In the root, basal ABA is involved in xylem differentiation and suberization of the endodermis. Hormone crosstalk plays key roles in growth and developmental processes regulated by ABA. Phenotypes of ABA-deficient and insensitive mutants indicate prominent functions of basal ABA in plant growth and development.
Collapse
Affiliation(s)
- Benjamin P. Brookbank
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
| | - Jasmin Patel
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Sonia Gazzarrini
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
- Correspondence: (S.G.); (E.N.)
| | - Eiji Nambara
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON M3S 3G5, Canada; (B.P.B.); (J.P.)
- Correspondence: (S.G.); (E.N.)
| |
Collapse
|
27
|
Reproductive Stage Drought Tolerance in Wheat: Importance of Stomatal Conductance and Plant Growth Regulators. Genes (Basel) 2021; 12:genes12111742. [PMID: 34828346 PMCID: PMC8623834 DOI: 10.3390/genes12111742] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Drought stress requires plants to adjust their water balance to maintain tissue water levels. Isohydric plants (‘water-savers’) typically achieve this through stomatal closure, while anisohydric plants (‘water-wasters’) use osmotic adjustment and maintain stomatal conductance. Isohydry or anisohydry allows plant species to adapt to different environments. In this paper we show that both mechanisms occur in bread wheat (Triticum aestivum L.). Wheat lines with reproductive drought-tolerance delay stomatal closure and are temporarily anisohydric, before closing stomata and become isohydric at higher threshold levels of drought stress. Drought-sensitive wheat is isohydric from the start of the drought treatment. The capacity of the drought-tolerant line to maintain stomatal conductance correlates with repression of ABA synthesis in spikes and flag leaves. Gene expression profiling revealed major differences in the drought response in spikes and flag leaves of both wheat lines. While the isohydric drought-sensitive line enters a passive growth mode (arrest of photosynthesis, protein translation), the tolerant line mounts a stronger stress defence response (ROS protection, LEA proteins, cuticle synthesis). The drought response of the tolerant line is characterised by a strong response in the spike, displaying enrichment of genes involved in auxin, cytokinin and ethylene metabolism/signalling. While isohydry may offer advantages for longer term drought stress, anisohydry may be more beneficial when drought stress occurs during the critical stages of wheat spike development, ultimately improving grain yield.
Collapse
|
28
|
Liu S, Tong M, Zhao L, Li X, Kunst L. The ARRE RING-Type E3 Ubiquitin Ligase Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis thaliana by Controlling ECERIFERUM1 and ECERIFERUM3 Protein Levels. FRONTIERS IN PLANT SCIENCE 2021; 12:752309. [PMID: 34764971 PMCID: PMC8576476 DOI: 10.3389/fpls.2021.752309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 06/01/2023]
Abstract
The outer epidermal cell walls of plant shoots are covered with a cuticle, a continuous lipid structure that provides protection from desiccation, UV light, pathogens, and insects. The cuticle is mostly composed of cutin and cuticular wax. Cuticular wax synthesis is synchronized with surface area expansion during plant development and is associated with plant responses to biotic and abiotic stresses. Cuticular wax deposition is tightly regulated by well-established transcriptional and post-transcriptional regulatory mechanisms, as well as post-translationally via the ubiquitin-26S proteasome system (UPS). The UPS is highly conserved in eukaryotes and involves the covalent attachment of polyubiquitin chains to the target protein by an E3 ligase, followed by the degradation of the modified protein by the 26S proteasome. A large number of E3 ligases are encoded in the Arabidopsis genome, but only a few have been implicated in the regulation of cuticular wax deposition. In this study, we have conducted an E3 ligase reverse genetic screen and identified a novel RING-type E3 ubiquitin ligase, AtARRE, which negatively regulates wax biosynthesis in Arabidopsis. Arabidopsis plants overexpressing AtARRE exhibit glossy stems and siliques, reduced fertility and fusion between aerial organs. Wax load and wax compositional analyses of AtARRE overexpressors showed that the alkane-forming branch of the wax biosynthetic pathway is affected. Co-expression of AtARRE and candidate target proteins involved in alkane formation in both Nicotiana benthamiana and stable Arabidopsis transgenic lines demonstrated that AtARRE controls the levels of wax biosynthetic enzymes ECERIFERUM1 (CER1) and ECERIFERUM3 (CER3). CER1 has also been confirmed to be a ubiquitination substrate of the AtARRE E3 ligase by an in vivo ubiquitination assay using a reconstituted Escherichia coli system. The AtARRE gene is expressed throughout the plant, with the highest expression detected in fully expanded rosette leaves and oldest stem internodes. AtARRE gene expression can also be induced by exposure to pathogens. These findings reveal that wax biosynthesis in mature plant tissues and in response to pathogen infection is controlled post-translationally.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Meixuezi Tong
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Lifang Zhao
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Ljerka Kunst
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Liu J, Zhu L, Wang B, Wang H, Khan I, Zhang S, Wen J, Ma C, Dai C, Tu J, Shen J, Yi B, Fu T. BnA1.CER4 and BnC1.CER4 are redundantly involved in branched primary alcohols in the cuticle wax of Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3051-3067. [PMID: 34120211 DOI: 10.1007/s00122-021-03879-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The mutations BnA1.CER4 and BnC1.CER4 produce disordered wax crystals types and alter the composition of epidermal wax, causing increased cuticular permeability and sclerotium resistance. The aerial surfaces of land plants are coated with a cuticle, comprised of cutin and wax, which is a hydrophobic barrier for preventing uncontrolled water loss and environmental damage. However, the mechanisms by which cuticle components are formed are still unknown in Brassica napus L. and were therefore assessed here. BnA1.CER4 and BnC1.CER4, encoding fatty acyl-coenzyme A reductases localizing to the endoplasmic reticulum and highly expressed in leaves, were identified and functionally characterized. Expression of BnA1.CER4 and BnC1.CER4 cDNA in yeast (Saccharomyces cerevisiae) induced the accumulation of primary alcohols with chain lengths of 26 carbons. The mutant line Nilla glossy2 exhibited reduced wax crystal types, and wax composition analysis showed that the levels of branched primary alcohols were decreased, whereas those of the other branched components were increased. Further analysis showed that the mutant had reduced water retention but enhanced resistance to Sclerotinia sclerotiorum. Collectively, our study reports that BnA1.CER4 and BnC1.CER4 are fatty acyl-coenzyme A reductase genes in B. napus with a preference for branched substrates that participate in the biosynthesis of anteiso-primary alcohols.
Collapse
Affiliation(s)
- Jie Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lixia Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Benqi Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Imran Khan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuqin Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
30
|
Liang B, Sun Y, Wang J, Zheng Y, Zhang W, Xu Y, Li Q, Leng P. Tomato protein phosphatase 2C influences the onset of fruit ripening and fruit glossiness. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2403-2418. [PMID: 33345282 DOI: 10.1093/jxb/eraa593] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Abscisic acid (ABA) plays a vital role in coordinating physiological processes during fresh fruit ripening. Binding of ABA to receptors facilitates the interaction and inhibition of type 2C phosphatase (PP2C) co-receptors. However, the exact mechanism of PP2C during fruit ripening is unclear. In this study, we determined the role of the tomato ABA co-receptor type 2C phosphatase SlPP2C3, a negative regulator of ABA signaling and fruit ripening. SlPP2C3 selectively interacted with monomeric ABA receptors and SlSnRK2.8 kinase in both yeast and tobacco epidermal cells. Expression of SlPP2C3 was ABA-inducible, which was negatively correlated with fruit ripening. Tomato plants with suppressed SlPP2C3 expression exhibited enhanced sensitivity to ABA, while plants overexpressing SlPP2C3 were less sensitive to ABA. Importantly, lack of SlPP2C3 expression accelerated the onset of fruit ripening and affected fruit glossiness by altering the outer epidermis structure. There was a significant difference in the expression of cuticle-related genes in the pericarp between wild-type and SlPP2C3-suppressed lines based on RNA sequencing (RNA-seq) analysis. Taken together, our findings demonstrate that SlPP2C3 plays an important role in the regulation of fruit ripening and fruit glossiness in tomato.
Collapse
Affiliation(s)
- Bin Liang
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Yufei Sun
- College of Horticulture, China Agricultural University, Beijing, PR China
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Juan Wang
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Yu Zheng
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Wenbo Zhang
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Yandan Xu
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Qian Li
- College of Horticulture, China Agricultural University, Beijing, PR China
| | - Ping Leng
- College of Horticulture, China Agricultural University, Beijing, PR China
| |
Collapse
|
31
|
Zhang Q, Zhou W, Li B, Li L, Fu M, Zhou L, Yu X, Wang D, Wang Z. Genome-Wide Analysis and the Expression Pattern of the ERF Gene Family in Hypericum perforatum. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10010133. [PMID: 33440756 PMCID: PMC7827068 DOI: 10.3390/plants10010133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Hypericum perforatum is a well-known medicinal herb currently used as a remedy for depression as it contains many high levels of secondary metabolites. The ethylene response factor (ERF) family encodes transcriptional regulators with multiple functions that play a vital role in the diverse developmental and physiological processes of plants, which can protect plants from various stresses by regulating the expression of genes. Although the function of several ERF genes from other plants has been further confirmed, H. perforatum is the first sequenced species in Malpighiales, and no information regarding the ERFs has been reported thus far. In this study, a total of 101 ERF genes were identified from H. perforatum. A systematic and thorough bioinformatic analysis of the ERF family was performed using the genomic database of H. perforatum. According to the phylogenetic tree analysis, HpERFs were further classified into 11 subfamilies. Gene ontology (GO) analysis suggested that most of the HpERFs likely participate in the biological processes of plants. The cis-elements were mainly divided into five categories, associated with the regulation of gene transcription, response to various stresses, and plant development. Further analysis of the expression patterns showed that the stress-responsive HpERFs responded to different treatments. This work systematically analyzed HpERFs using the genome sequences of H. perforatum. Our results provide a theoretical basis for further investigation of the function of stress-related ERFs in H. perforatum.
Collapse
|
32
|
Kim JS, Kidokoro S, Shinozaki K, Yamaguchi-Shinozaki K. DNA demethylase ROS1 prevents inheritable DREB1A/CBF3 repression by transgene-induced promoter methylation in the Arabidopsis ice1-1 mutant. PLANT MOLECULAR BIOLOGY 2020; 104:575-582. [PMID: 33000386 DOI: 10.1007/s11103-020-01061-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
In the ros1-defective mutant, DREB1A repression by the transgene-induced promoter methylation of ice1-1 became inheritable across generations even in the absence of the causative transgene NICE1. Transgene silencing (TGS) is a widely observed event during plant bioengineering, which is presented as a gradual decrease in ectopic gene expression across generations and occasionally coupled with endogenous gene silencing based on DNA sequence similarity. TGS is known to be established by guided DNA methylation machinery. However, the machinery underlying gene recovery from TGS has not been fully elucidated. We previously reported that in ice1-1 outcross descendants, the expressional repression and recovery of DREB1A/CBF3 were instantly achieved by a newly discovered NICE1 transgene, instead of the formerly proposed ice1-1 mutation in the ICE1 gene. The plants harboring NICE1 produced small RNAs targeting and causing the DREB1A promoter to be hypermethylated and silenced. To analyze the role of the plant-specific active DNA demethylase REPRESSOR OF SILENCING 1 (ROS1) in instant DREB1A recovery, we propagated the NICE1-segregating population upon ros1 dysfunction and evaluated the gene expression and DNA methylation levels of DREB1A through generations. Our results showed that the epigenetic DREB1A repression was substantially sustained in subsequent generations even without NICE1 and stably inherited across generations. Consistent with the gene expression results, only incomplete DNA methylation removal was detected in the same generations. These results indicate that a novel inheritable epiallele emerged by the ros1 dysfunction. Overall, our study reveals the important role of ROS1 in the inheritability of TGS-associated gene repression.
Collapse
Affiliation(s)
- June-Sik Kim
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki, 305-0074, Japan
| | - Satoshi Kidokoro
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo, 156-8502, Japan.
| |
Collapse
|
33
|
Liao P, Ray S, Boachon B, Lynch JH, Deshpande A, McAdam S, Morgan JA, Dudareva N. Cuticle thickness affects dynamics of volatile emission from petunia flowers. Nat Chem Biol 2020; 17:138-145. [PMID: 33077978 DOI: 10.1038/s41589-020-00670-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 02/02/2023]
Abstract
The plant cuticle is the final barrier for volatile organic compounds (VOCs) to cross for release to the atmosphere, yet its role in the emission process is poorly understood. Here, using a combination of reverse-genetic and chemical approaches, we demonstrate that the cuticle imposes substantial resistance to VOC mass transfer, acting as a sink/concentrator for VOCs and hence protecting cells from the potentially toxic internal accumulation of these hydrophobic compounds. Reduction in cuticle thickness has differential effects on individual VOCs depending on their volatility, and leads to their internal cellular redistribution, a shift in mass transfer resistance sources and altered VOC synthesis. These results reveal that the cuticle is not simply a passive diffusion barrier for VOCs to cross, but plays the aforementioned complex roles in the emission process as an integral member of the overall VOC network.
Collapse
Affiliation(s)
- Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Shaunak Ray
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Benoît Boachon
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,BVpam FRE 3727, Université de Lyon, Université Jean Monnet Saint-Etienne, CNRS, Saint-Etienne, France
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Arnav Deshpande
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Scott McAdam
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - John A Morgan
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.,Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA. .,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA. .,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
34
|
Borisova-Mubarakshina MM, Vetoshkina DV, Naydov IA, Rudenko NN, Zhurikova EM, Balashov NV, Ignatova LK, Fedorchuk TP, Ivanov BN. Regulation of the size of photosystem II light harvesting antenna represents a universal mechanism of higher plant acclimation to stress conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:959-969. [PMID: 32564779 DOI: 10.1071/fp19362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
We investigated acclimatory responses of Arabidopsis plants to drought and salinity conditions before the appearance of obvious signs of damage caused by these factors. We detected changes indicating an increase in the reduction level of the chloroplast plastoquinone pool (PQ pool) 5-7 days after introduction of the stress factors. After 10-14 days, a decrease in the size of PSII light harvesting antenna was observed in plants under conditions of drought and salinity. This was confirmed by a decrease in content of PSII antenna proteins and by downregulation of gene expression levels of these proteins under the stress conditions. No changes in values of performance index and maximum quantum yield of PSII were detected. Under drought and salinity, the content of hydrogen peroxide in leaves was higher than in control leaves. Thus, we propose that reduction of the size of PSII antenna represents one of the universal mechanisms of acclimation of higher plants to stress factors and the downsizing already begins to manifest under mild stress conditions. Both the PQ pool reduction state and the hydrogen peroxide content are important factors needed for the observed rearrangement.
Collapse
Affiliation(s)
- Maria M Borisova-Mubarakshina
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation; and Corresponding author.
| | - Daria V Vetoshkina
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation
| | - Ilya A Naydov
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation
| | - Natalia N Rudenko
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation
| | - Elena M Zhurikova
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation
| | - Nikolai V Balashov
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation; and Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation
| | - Lyudmila K Ignatova
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation
| | - Tatyana P Fedorchuk
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation
| | - Boris N Ivanov
- Institute of Basic Biological Problems RAS, Institutskaya st. 2, Pushchino, 142290, Moscow region, Russian Federation
| |
Collapse
|
35
|
Faustino MV, Faustino MAF, Silva H, Silva AMS, Pinto DCGA. Lipophilic Metabolites of
Spartina maritima
and
Puccinellia maritima
Involved in Their Tolerance to Salty Environments. Chem Biodivers 2020; 17:e2000316. [DOI: 10.1002/cbdv.202000316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Maria V. Faustino
- LAQV-REQUIMTE Department of Chemistry University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| | - Maria A. F. Faustino
- LAQV-REQUIMTE Department of Chemistry University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| | - Helena Silva
- CESAM Department of Biology University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE Department of Chemistry University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE Department of Chemistry University of Aveiro Campus de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
36
|
Abscisic Acid Biosynthesis and Signaling in Plants: Key Targets to Improve Water Use Efficiency and Drought Tolerance. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186322] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The observation of a much-improved fitness of wild-type plants over abscisic acid (ABA)-deficient mutants during drought has led researchers from all over to world to perform experiments aiming at a better understanding of how this hormone modulates the physiology of plants under water-limited conditions. More recently, several promising approaches manipulating ABA biosynthesis and signaling have been explored to improve water use efficiency and confer drought tolerance to major crop species. Here, we review recent progress made in the last decade on (i) ABA biosynthesis, (ii) the roles of ABA on plant-water relations and on primary and secondary metabolisms during drought, and (iii) the regulation of ABA levels and perception to improve water use efficiency and drought tolerance in crop species.
Collapse
|
37
|
Cardoso AA, Brodribb TJ, Kane CN, DaMatta FM, McAdam SAM. Osmotic adjustment and hormonal regulation of stomatal responses to vapour pressure deficit in sunflower. AOB PLANTS 2020; 12:plaa025. [PMID: 32665827 PMCID: PMC7346309 DOI: 10.1093/aobpla/plaa025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/11/2020] [Indexed: 05/14/2023]
Abstract
Dynamic variation of the stomatal pore in response to changes in leaf-air vapour pressure difference (VPD) constitutes a critical regulation of daytime gas exchange. The stomatal response to VPD has been associated with both foliage abscisic acid (ABA) and leaf water potential (Ψ l ); however, causation remains a matter of debate. Here, we seek to separate hydraulic and hormonal control of stomatal aperture by manipulating the osmotic potential of sunflower leaves. In addition, we test whether stomatal responses to VPD in an ABA-deficient mutant (w-1) of sunflower are similar to the wild type. Stomatal apertures during VPD transitions were closely linked with foliage ABA levels in sunflower plants with contrasting osmotic potentials. In addition, we observed that the inability to synthesize ABA at high VPD in w-1 plants was associated with no dynamic or steady-state stomatal response to VPD. These results for sunflower are consistent with a hormonal, ABA-mediated stomatal responses to VPD rather than a hydraulic-driven stomatal response to VPD.
Collapse
Affiliation(s)
- Amanda A Cardoso
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Cade N Kane
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Corresponding author’s e-mail address:
| |
Collapse
|
38
|
Yang T, Lian Y, Kang J, Bian Z, Xuan L, Gao Z, Wang X, Deng J, Wang C. The SUPPRESSOR of MAX2 1 (SMAX1)-Like SMXL6, SMXL7 and SMXL8 Act as Negative Regulators in Response to Drought Stress in Arabidopsis. ACTA ACUST UNITED AC 2020; 61:1477-1492. [DOI: 10.1093/pcp/pcaa066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022]
Abstract
Abstract
Drought represents a major threat to crop growth and yields. Strigolactones (SLs) contribute to regulating shoot branching by targeting the SUPPRESSOR OF MORE AXILLARY GROWTH2 (MAX2)-LIKE6 (SMXL6), SMXL7 and SMXL8 for degradation in a MAX2-dependent manner in Arabidopsis. Although SLs are implicated in plant drought response, the functions of the SMXL6, 7 and 8 in the SL-regulated plant response to drought stress have remained unclear. Here, we performed transcriptomic, physiological and biochemical analyses of smxl6, 7, 8 and max2 plants to understand the basis for SMXL6/7/8-regulated drought response. We found that three D53 (DWARF53)-Like SMXL members, SMXL6, 7 and 8, are involved in drought response as the smxl6smxl7smxl8 triple mutants showed markedly enhanced drought tolerance compared to wild type (WT). The smxl6smxl7smxl8 plants exhibited decreased leaf stomatal index, cuticular permeability and water loss, and increased anthocyanin biosynthesis during dehydration. Moreover, smxl6smxl7smxl8 were hypersensitive to ABA-induced stomatal closure and ABA responsiveness during and after germination. In addition, RNA-sequencing analysis of the leaves of the D53-like smxl mutants, SL-response max2 mutant and WT plants under normal and dehydration conditions revealed an SMXL6/7/8-mediated network controlling plant adaptation to drought stress via many stress- and/or ABA-responsive and SL-related genes. These data further provide evidence for crosstalk between ABA- and SL-dependent signaling pathways in regulating plant responses to drought. Our results demonstrate that SMXL6, 7 and 8 are vital components of SL signaling and are negatively involved in drought responses, suggesting that genetic manipulation of SMXL6/7/8-dependent SL signaling may provide novel ways to improve drought resistance.
Collapse
Affiliation(s)
- Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuke Lian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jihong Kang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhiyuan Bian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lijuan Xuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhensheng Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xinyu Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianming Deng
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Chongying Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
39
|
The Role of Stress-Responsive Transcription Factors in Modulating Abiotic Stress Tolerance in Plants. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060788] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abiotic stresses, such as drought, high temperature, and salinity, affect plant growth and productivity. Furthermore, global climate change may increase the frequency and severity of abiotic stresses, suggesting that development of varieties with improved stress tolerance is critical for future sustainable crop production. Improving stress tolerance requires a detailed understanding of the hormone signaling and transcriptional pathways involved in stress responses. Abscisic acid (ABA) and jasmonic acid (JA) are key stress-response hormones in plants, and some stress-responsive transcription factors such as ABFs and MYCs function as direct components of ABA and JA signaling, playing a pivotal role in plant tolerance to abiotic stress. In addition, extensive studies have identified other stress-responsive transcription factors belonging to the NAC, AP2/ERF, MYB, and WRKY families that mediate plant response and tolerance to abiotic stress. These suggest that transcriptional regulation of stress-responsive genes is an essential step to determine the mechanisms underlying plant stress responses and tolerance to abiotic stress, and that these transcription factors may be important targets for development of crops with enhanced abiotic stress tolerance. In this review, we briefly describe the mechanisms underlying plant abiotic stress responses, focusing on ABA and JA metabolism and signaling pathways. We then summarize the diverse array of transcription factors involved in plant responses to abiotic stress, while noting their potential applications for improvement of stress tolerance.
Collapse
|
40
|
Kidokoro S, Kim JS, Ishikawa T, Suzuki T, Shinozaki K, Yamaguchi-Shinozaki K. DREB1A/CBF3 Is Repressed by Transgene-Induced DNA Methylation in the Arabidopsis ice1 -1 Mutant. THE PLANT CELL 2020; 32:1035-1048. [PMID: 32034036 PMCID: PMC7145508 DOI: 10.1105/tpc.19.00532] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/17/2019] [Accepted: 02/03/2020] [Indexed: 05/22/2023]
Abstract
DREB1/CBFs are key transcription factors involved in plant cold stress adaptation. The expression of DREB1/CBFs triggers a cold-responsive transcriptional cascade, after which many stress tolerance genes are expressed. Thus, elucidating the mechanisms of cold stress-inducible DREB1/CBF expression is important to understand the molecular mechanisms of plant cold stress responses and tolerance. We analyzed the roles of a transcription factor, INDUCER OF CBF EXPRESSION1 (ICE1), that is well known as an important transcriptional activator in the cold-inducible expression of DREB1A/CBF3 in Arabidopsis (Arabidopsis thaliana). ice1-1 is a widely accepted mutant allele known to abolish cold-inducible DREB1A expression, and this evidence has strongly supported ICE1-DREB1A regulation for many years. However, in ice1-1 outcross descendants, we unexpectedly discovered that ice1-1 DREB1A repression was genetically independent of the ice1-1 allele ICE1(R236H). Moreover, neither ICE1 overexpression nor double loss-of-function mutation of ICE1 and its homolog SCRM2 altered DREB1A expression. Instead, a transgene locus harboring a reporter gene in the ice1-1 genome was responsible for altering DREB1A expression. The DREB1A promoter was hypermethylated due to the transgene. We showed that DREB1A repression in ice1-1 results from transgene-induced silencing and not genetic regulation by ICE1. The ICE1(R236H) mutation has also been reported as scrm-D, which confers constitutive stomatal differentiation. The scrm-D phenotype and the expression of a stomatal differentiation marker gene were confirmed to be linked to the ICE1(R236H) mutation. We propose that the current ICE1-DREB1 regulatory model should be revalidated without the previous assumptions.
Collapse
Affiliation(s)
- Satoshi Kidokoro
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - June-Sik Kim
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki 305-0074, Japan
| | - Tomona Ishikawa
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Kasugai, Aichi, 478-8501, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
41
|
Abstract
Plants balance their competing requirements for growth and stress tolerance via a sophisticated regulatory circuitry that controls responses to the external environments. We have identified a plant-specific gene, COST1 (constitutively stressed 1), that is required for normal plant growth but negatively regulates drought resistance by influencing the autophagy pathway. An Arabidopsis thaliana cost1 mutant has decreased growth and increased drought tolerance, together with constitutive autophagy and increased expression of drought-response genes, while overexpression of COST1 confers drought hypersensitivity and reduced autophagy. The COST1 protein is degraded upon plant dehydration, and this degradation is reduced upon treatment with inhibitors of the 26S proteasome or autophagy pathways. The drought resistance of a cost1 mutant is dependent on an active autophagy pathway, but independent of other known drought signaling pathways, indicating that COST1 acts through regulation of autophagy. In addition, COST1 colocalizes to autophagosomes with the autophagosome marker ATG8e and the autophagy adaptor NBR1, and affects the level of ATG8e protein through physical interaction with ATG8e, indicating a pivotal role in direct regulation of autophagy. We propose a model in which COST1 represses autophagy under optimal conditions, thus allowing plant growth. Under drought, COST1 is degraded, enabling activation of autophagy and suppression of growth to enhance drought tolerance. Our research places COST1 as an important regulator controlling the balance between growth and stress responses via the direct regulation of autophagy.
Collapse
|
42
|
Zhang D, Yang H, Wang X, Qiu Y, Tian L, Qi X, Qu LQ. Cytochrome P450 family member CYP96B5 hydroxylates alkanes to primary alcohols and is involved in rice leaf cuticular wax synthesis. THE NEW PHYTOLOGIST 2020; 225:2094-2107. [PMID: 31618451 DOI: 10.1111/nph.16267] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/09/2019] [Indexed: 05/24/2023]
Abstract
Odd-numbered primary alcohols are components of plant cuticular wax, but their biosynthesis remains unknown. We isolated a rice wax crystal-sparse leaf 5 (WSL5) gene using a map-based cloning strategy. The function of WSL5 was illustrated by overexpression and knockout in rice, heterologous expression in Arabidopsis and transient expression in tobacco leaves. WSL5 is predicted to encode a cytochrome P450 family member CYP96B5. The wsl5 mutant lacked crystalloid platelets on the surface of cuticle membrane, and its cuticle membrane was thicker than that of the wild-type. The wsl5 mutant is more tolerant to drought stress. The load of C23 -C33 alkanes increased, whereas the C29 primary alcohol reduced significantly in wsl5 mutant and WSL5 knockout transgenic plants. Overexpression of WSL5 increased the C29 primary alcohol and decreased alkanes in rice leaves. Heterologous expression of WSL5 increased the C29 primary alcohol and decreased alkanes, secondary alcohol, and ketone in Arabidopsis stem wax. Transient expression of WSL5 in tobacco leaves also increased the production C29 primary alcohol. WSL5 catalyzes the terminal hydroxylation of alkanes, yielding odd-numbered primary alcohols, and is involved in the formation of epidermal wax crystals on rice leaf, affecting drought sensitivity.
Collapse
Affiliation(s)
- Du Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Huifang Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaochen Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yijian Qiu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
43
|
Romero P, Lafuente MT. Abscisic Acid Deficiency Alters Epicuticular Wax Metabolism and Morphology That Leads to Increased Cuticle Permeability During Sweet Orange ( Citrus sinensis) Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:594184. [PMID: 33362823 PMCID: PMC7755607 DOI: 10.3389/fpls.2020.594184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/11/2020] [Indexed: 05/07/2023]
Abstract
Citrus fruit ripening is coupled with the synthesis and deposition of epicuticular waxes, which reduces water loss during fruit postharvest storage. Although abscisic acid (ABA) is a major regulator of citrus fruit ripening, whether ABA mediates epicuticular wax formation during this process remains poorly understood. We investigated the implication of ABA in cuticle properties and epicuticular wax metabolism, composition, and morphology by comparing the Navelate orange [Citrus sinensis (L.) Osbeck] and its ABA biosynthesis-impaired mutant Pinalate in four ripening stages. ABA deficiency had minor effects on cuticle thickness and epicuticular wax load, but correlated with cuticle permeability. ABA content aligned with mostly fatty acids accumulation in both cultivars, and also with specific alkane, terpenoid, and aldehyde constituents in the parental fruit. In turn, cuticle permeability correlated with the fatty acid profile during fruit ripening in the Navelate and Pinalate, and with primary alcohols, terpenoids, and aldehydes, but only in the mutant fruit. Low ABA levels increased the susceptibility of waxes to crack and were lost from the epicuticular layer. The RNA-seq analysis highlighted the differential regulation of a list of 87 cuticle-related genes between genotypes and ripening stages. Changes in the gene expression of the selected genes in both cultivars were consistent with the content of the aliphatics and terpenoid fractions during ripening. The results suggest a role for ABA in the regulation of fatty acid content and primary alcohol composition, and point out the importance of alkane and triterpenoid for controlling water permeance through fruit cuticles.
Collapse
|
44
|
Yang W, Ruan M, Xiang M, Deng A, Du J, Xiao C. Overexpression of a pectin methylesterase gene PtoPME35 from Populus tomentosa influences stomatal function and drought tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 2019; 523:416-422. [PMID: 31870548 DOI: 10.1016/j.bbrc.2019.12.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 11/25/2022]
Abstract
Poplar is a superior forestation species with high adaptability. The woody tissue of poplar is mainly derived from cell wall. Cell wall formation determines cell shape and woody growth. Pectin is rich in primary cell wall, but it is also involved in the regulation of wood formation. In our study, we cloned a gene from poplar (Populus tomentos), designed as PtoPME35, which encodes a putative pectin methylesterase. PtoPME35 has higher sequence similarity with Arabidopsis AtPME35. Gene expression analysis shows that PtoPME35 has a constitutive expression pattern in multiple tissues, with the highest expression in stem. Subcellular localization result indicates that PtoPME35 is localized to the cell wall. To elucidate the biological function of PtoPME35 in vivo, we generated overexpression plants in poplar and Arabidopsis. The degree of pectin methylesterification is decreased in PtoPME35-overexpressing transgenic poplar, although no obvious phenotypes were displayed. In PtoPME35-overexpressing Arabidopsis plants, stomatal opening is inhibited and water loss rate is decreased under the drought condition. Moreover, the expression levels of drought-stress responsive genes were higher with mannitol treatment in PtoPME35-overexpressing Arabidopsis plants than in wild type controls. Accordingly, these results suggest that PtoPME35 may regulate osmotic stress responses by modulating stomatal functions.
Collapse
Affiliation(s)
- Wen Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China.
| | - Mei Ruan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Min Xiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Aiwen Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Juan Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China.
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
45
|
Natural Root Cellular Variation in Responses to Osmotic Stress in Arabidopsis thaliana Accessions. Genes (Basel) 2019; 10:genes10120983. [PMID: 31795411 PMCID: PMC6969899 DOI: 10.3390/genes10120983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/06/2023] Open
Abstract
Arabidopsis naturally occurring populations have allowed for the identification of considerable genetic variation remodeled by adaptation to different environments and stress conditions. Water is a key resource that limits plant growth, and its availability is initially sensed by root tissues. The root’s ability to adjust its physiology and morphology under water deficit makes this organ a useful model to understand how plants respond to water stress. Here, we used hyperosmotic shock stress treatments in different Arabidopsis accessions to analyze the root cell morphological responses. We found that osmotic stress conditions reduced root growth and root apical meristem (RAM) size, promoting premature cell differentiation without affecting the stem cell niche morphology. This phenotype was accompanied by a cluster of small epidermal and cortex cells with radial expansion and root hairs at the transition to the elongation zone. We also found this radial expansion with root hairs when plants are grown under hypoosmotic conditions. Finally, root growth was less affected by osmotic stress in the Sg-2 accession followed by Ws, Cvi-0, and Col-0; however, after a strong osmotic stress, Sg-2 and Cvi-0 were the most resilience accessions. The sensitivity differences among these accessions were not explained by stress-related gene expression. This work provides new cellular insights on the Arabidopsis root phenotypic variability and plasticity to osmotic stress.
Collapse
|
46
|
Chen C, Liu H, Wang C, Liu Z, Liu X, Zou L, Zhao H, Yan Y, Shi J, Chen S. Metabolomics characterizes metabolic changes of Apocyni Veneti Folium in response to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:187-196. [PMID: 31585397 DOI: 10.1016/j.plaphy.2019.09.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 05/09/2023]
Abstract
Apocyni Veneti Folium (AVF) has been raised great interest in the antioxidant properties recently for the preservation of human health. However, little research was found on the integrate metabolites except our previous investigation on the variations of the bioactive constituents. To understand the salt-tolerant mechanisms of the halophyte, metabolomic platform based on ultra-fast liquid chromatography tandem triple time-of-flight mass/mass spectrometer was applied in this study. The results showed that metabolic profiles were separated and differentiated among groups based on multivariate statistical analysis; different metabolites belonged to various chemical classes. Besides, phenylpropanoid pathway and terpenoid biosynthesis were disturbed in all salt-stressed AVF and low salt-treated group appeared to be better than other samples in terms of relative contents (peak areas) of the wide variety of bioactive components and physiological variations of photosynthetic pigments, osmotic homeostasis, lipid peroxidation product and antioxidative enzymes. This study may provide additional insight into the salt-tolerant mechanisms and the quality assessment of AVF in a holistic level based on the plant metabolomics.
Collapse
Affiliation(s)
- Cuihua Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Huimin Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chengcheng Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zixiu Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, 210023, China.
| | - Lisi Zou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying Yan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyu Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
47
|
Cui F, Wu W, Wang K, Zhang Y, Hu Z, Brosché M, Liu S, Overmyer K. Cell death regulation but not abscisic acid signaling is required for enhanced immunity to Botrytis in Arabidopsis cuticle-permeable mutants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5971-5984. [PMID: 31328223 PMCID: PMC6812726 DOI: 10.1093/jxb/erz345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 05/21/2023]
Abstract
Prevailing evidence indicates that abscisic acid (ABA) negatively influences immunity to the fungal pathogen Botrytis cinerea in most but not all cases. ABA is required for cuticle biosynthesis, and cuticle permeability enhances immunity to Botrytis via unknown mechanisms. This complex web of responses obscures the role of ABA in Botrytis immunity. Here, we addressed the relationships between ABA sensitivity, cuticle permeability, and Botrytis immunity in the Arabidopsis thaliana ABA-hypersensitive mutants protein phosphatase2c quadruple mutant (pp2c-q) and enhanced response to aba1 (era1-2). Neither pp2c-q nor era1-2 exhibited phenotypes predicted by the known roles of ABA; conversely, era1-2 had a permeable cuticle and was Botrytis resistant. We employed RNA-seq analysis in cuticle-permeable mutants of differing ABA sensitivities and identified a core set of constitutively activated genes involved in Botrytis immunity and susceptibility to biotrophs, independent of ABA signaling. Furthermore, botrytis susceptible1 (bos1), a mutant with deregulated cell death and enhanced ABA sensitivity, suppressed the Botrytis immunity of cuticle permeable mutants, and this effect was linearly correlated with the extent of spread of wound-induced cell death in bos1. Overall, our data demonstrate that Botrytis immunity conferred by cuticle permeability can be genetically uncoupled from PP2C-regulated ABA sensitivity, but requires negative regulation of a parallel ABA-dependent cell-death pathway.
Collapse
Affiliation(s)
- Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Correspondence: or
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Kai Wang
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Yuan Zhang
- Library of Donghu Campus, Zhejiang A&F University, Lin’an, Hangzhou, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, China
- Correspondence: or
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
Overexpression of VIRE2-INTERACTING PROTEIN2 in Arabidopsis regulates genes involved in Agrobacterium-mediated plant transformation and abiotic stresses. Sci Rep 2019; 9:13503. [PMID: 31534160 PMCID: PMC6751215 DOI: 10.1038/s41598-019-49590-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/19/2019] [Indexed: 11/23/2022] Open
Abstract
Arabidopsis VIRE2-INTERACTING PROTEIN2 (VIP2) was previously described as a protein with a NOT domain, and Arabidopsis vip2 mutants are recalcitrant to Agrobacterium-mediated root transformation. Here we show that VIP2 is a transcription regulator and the C-terminal NOT2 domain of VIP2 interacts with VirE2. Interestingly, AtVIP2 overexpressor lines in Arabidopsis did not show an improvement in Agrobacterium-mediated stable root transformation, but the transcriptome analysis identified 1,634 differentially expressed genes compared to wild-type. These differentially expressed genes belonged to various functional categories such as membrane proteins, circadian rhythm, signaling, response to stimulus, regulation of plant hypersensitive response, sequence-specific DNA binding transcription factor activity and transcription regulatory region binding. In addition to regulating genes involved in Agrobacterium-mediated plant transformation, AtVIP2 overexpressor line showed differential expression of genes involved in abiotic stresses. The majority of the genes involved in abscisic acid (ABA) response pathway, containing the Abscisic Acid Responsive Element (ABRE) element within their promoters, were down-regulated in AtVIP2 overexpressor lines. Consistent with this observation, AtVIP2 overexpressor lines were more susceptible to ABA and other abiotic stresses. Based on the above findings, we hypothesize that VIP2 not only plays a role in Agrobacterium-mediated plant transformation but also acts as a general transcriptional regulator in plants.
Collapse
|
49
|
Rojas M, Jimenez-Bremont F, Villicaña C, Carreón-Palau L, Arredondo-Vega BO, Gómez-Anduro G. Involvement of OpsLTP1 from Opuntia streptacantha in abiotic stress adaptation and lipid metabolism. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:816-829. [PMID: 31138396 DOI: 10.1071/fp18280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Plant lipid transfer proteins (LTPs) exhibit the ability to transfer lipids between membranes in vitro, and have been implicated in diverse physiological processes associated to plant growth, reproduction, development, biotic and abiotic stress responses. However, their mode of action is not yet fully understood. To explore the functions of the OpsLTP1 gene encoding a LTP from cactus pear Opuntia streptacantha Lem., we generated transgenic Arabidopsis thaliana (L.) Heynh. plants to overexpress OpsLTP1 and contrasted our results with the loss-of-function mutant ltp3 from A. thaliana under abiotic stress conditions. The ltp3 mutant seeds showed impaired germination under salt and osmotic treatments, in contrast to OpsLTP1 overexpressing lines that displayed significant increases in germination rate. Moreover, stress recovery assays showed that ltp3 mutant seedlings were more sensitive to salt and osmotic treatments than wild-type plants suggesting that AtLTP3 is required for stress-induced responses, while the OpsLTP1 overexpressing line showed no significant differences. In addition, OpsLTP1 overexpressing and ltp3 mutant seeds stored lower amount of total lipids compared with wild-type seeds, showing changes primarily on 16C and 18C fatty acids. However, ltp3 mutant also lead changes in lipid profile and no over concrete lipids which may suggest a compensatory activation of other LTPs. Interestingly, linoleic acid (18:2ω6) was consistently increased in neutral, galactoglycerolipids and phosphoglycerolipids of OpsLTP1 overexpressing line indicating a role of OpsLTP1 in the modulation of lipid composition in A. thaliana.
Collapse
Affiliation(s)
- Mario Rojas
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Francisco Jimenez-Bremont
- Instituto Potosino de Investigación Científica y Tecnológica. Camino a la Presa San José 2055, Col. Lomas 4 sección CP. 78216, San Luis Potosí, S.L.P., México
| | - Claudia Villicaña
- CONACYT-Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km. 5.5, Apartado Postal 32-A. C. P. 80110, Culiacán, Sinaloa, México
| | - Laura Carreón-Palau
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Bertha Olivia Arredondo-Vega
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México
| | - Gracia Gómez-Anduro
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México; and Corresponding author.
| |
Collapse
|
50
|
Nonogaki H. Seed germination and dormancy: The classic story, new puzzles, and evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:541-563. [PMID: 30565406 DOI: 10.1111/jipb.12762] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/17/2018] [Indexed: 05/18/2023]
Abstract
This review highlights recent progresses in seed germination and dormancy research. Research on the weakening of the endosperm during germination, which is almost a classic theme in seed biology, was resumed by α-xylosidase studies. Strong genetic evidence was presented to suggest that the quality control of xyloglucan biosynthesis in the endosperm (and the embryo) plays a critical role in germination. Further analyses on the endosperm and the adjacent layers have suggested that the cutin coat in the endosperm-testa interphase negatively affects germination while the endosperm-embryo interphase produces a sheath that facilitates germination. These progresses significantly advanced our understanding of seed germination mechanisms. A breakthrough in dormancy research, on the other hand, revealed the unique abscisic acid signaling pathway that is regulated by DELAY OF GERMINATION1 (DOG1). The detailed analysis of DOG1 expression uncovered the intriguing story of reciprocal regulation of the sense-antisense pair, which generated new questions. Recent studies also suggested that the DOG1 function is not limited to dormancy but extended through general seed maturation, which provokes questions about the evolution of DOG1 family proteins. Seed biology is becoming more exciting with the classic stories being revitalized and new puzzles emerging from the frontier.
Collapse
|