1
|
Xu W, Peng X, Li Y, Zeng X, Yan W, Wang C, Wang CR, Chen S, Xu C, Tang X. OsSNDP4, a Sec14-nodulin Domain Protein, is Required for Pollen Development in Rice. RICE (NEW YORK, N.Y.) 2024; 17:54. [PMID: 39207611 PMCID: PMC11362464 DOI: 10.1186/s12284-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Pollen is encased in a robust wall that shields the male gametophyte from various stresses and aids in pollination. The pollen wall consists of gametophyte-derived intine and sporophyte-derived exine. The exine is mainly composed of sporopollenin, which is biopolymers of aliphatic lipids and phenolics. The process of exine formation has been the subject of extensive research, yet the underlying molecular mechanisms remain elusive. In this study, we identified a rice mutant of the OsSNDP4 gene that is impaired in pollen development. We demonstrated that OsSNDP4, a putative Sec14-nodulin domain protein, exhibits a preference for binding to phosphatidylinositol (3)-phosphate [PI(3)P], a lipid primarily found in endosomal and vacuolar membranes. The OsSNDP4 protein was detected in association with the endoplasmic reticulum (ER), vacuolar membranes, and the nucleus. OsSNDP4 expression was detected in all tested organs but was notably higher in anthers during exine development. Loss of OsSNDP4 function led to abnormal vacuole dynamics, inhibition in Ubisch body development, and premature degradation of cellular contents and organelles in the tapetal cells. Microspores from the ossndp4 mutant plant displayed abnormal exine formation, abnormal vacuole enlargement, and ultimately, pollen abortion. RNA-seq assay revealed that genes involved in the biosynthesis of fatty acid and secondary metabolites, the biosynthesis of lipid polymers, and exosome formation were enriched among the down-regulated genes in the mutant anthers, which correlated with the morphological defects observed in the mutant anthers. Base on these findings, we propose that OsSNDP4 regulates pollen development by binding to PI(3)P and influencing the dynamics of membrane systems. The involvement of membrane systems in the regulation of sporopollenin biosynthesis, Ubisch body formation, and exine formation provides a novel mechanism regulating pollen wall development.
Collapse
Affiliation(s)
- Weitao Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinhuang Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cheng Rui Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shunquan Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China.
| |
Collapse
|
2
|
Xiao R, Youngjun O, Zhang X, Thi NN, Lu H, Hwang I. Osmotic stress-induced localisation switch of CBR1 from mitochondria to the endoplasmic reticulum triggers ATP production via β-oxidation to respond to osmotic shock. PLANT, CELL & ENVIRONMENT 2023; 46:3420-3432. [PMID: 37469026 DOI: 10.1111/pce.14671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Drought and high salinity are major environmental factors that reduce plant growth and development, leading to loss of plant productivity in agriculture. Under these stress conditions, photosynthesis is greatly suppressed despite the high cellular energy cost of stress response processes. Currently, the process that allows plants to secure the energy required for osmotic stress responses remains elusive. Here, we provide evidence that cytochrome b5 reductase 1 (CBR1), a cytochrome b5 reductase, plays an important role in ATP production in response to NaCl and dehydration stresses. Overexpression and loss of function of CBR1 led to enhanced resistance and sensitivity, respectively, to osmotic stress. Upon exposure to osmotic stress, CBR1 was localised to the endoplasmic reticulum (ER) instead of to mitochondria, where it was localised under normal conditions. Transgenic plants overexpressing ER-targeted CBR1 showed enhanced resistance to osmotic stress. Moreover, CBR1-ER and CBR1-OX plants, had higher levels of ATP and unsaturated fatty acids under osmotic stress. However, these effects were abrogated by thioridazine and 2-deoxy glucose, inhibitors of β-oxidation and glycolysis, respectively. Based on these results, we propose that ER-localised CBR1 triggers ATP production via the production and β-oxidation of polyunsaturated fatty acids under osmotic stress.
Collapse
Affiliation(s)
- Ruixue Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Oh Youngjun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Xiuxiu Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - NguyenThO Nguyen Thi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Hai Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
3
|
Ru B, Hao X, Li W, Peng Q, Miao J, Liu X. A Novel FYVE Domain-Containing Protein Kinase, PsZFPK1, Plays a Critical Role in Vegetative Growth, Sporangium Formation, Oospore Production, and Virulence in Phytophthora sojae. J Fungi (Basel) 2023; 9:709. [PMID: 37504698 PMCID: PMC10381902 DOI: 10.3390/jof9070709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Proteins containing both FYVE and serine/threonine kinase catalytic (STKc) domains are exclusive to protists. However, the biological function of these proteins in oomycetes has rarely been reported. In the Phytophthora sojae genome database, we identified five proteins containing FYVE and STKc domains, which we named PsZFPK1, PsZFPK2, PsZFPK3, PsZFPK4, and PsZFPK5. In this study, we characterized the biological function of PsZFPK1 using a CRISPR/Cas9-mediated gene replacement system. Compared with the wild-type strain, P6497, the PsZFPK1-knockout mutants exhibited significantly reduced growth on a nutrient-rich V8 medium, while a more pronounced defect was observed on a nutrient-poor Plich medium. The PsZFPK1-knockout mutants also showed a significant increase in sporangium production. Furthermore, PsZFPK1 was found to be essential for oospore production and complete virulence but dispensable for the stress response in P. sojae. The N-terminal region, FYVE and STKc domains, and T602 phosphorylation site were found to be vital for the function of PsZFPK1. Conversely, these domains were not required for the localization of PsZFPK1 protein in the cytoplasm. Our results demonstrate that PsZFPK1 plays a critical role in vegetative growth, sporangium formation, oospore production, and virulence in P. sojae.
Collapse
Affiliation(s)
- Binglu Ru
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Xinchang Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Wenhao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Qin Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| |
Collapse
|
4
|
Lee J, Moon B, Lee DW, Hwang I. Translation rate underpins specific targeting of N-terminal transmembrane proteins to mitochondria. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36897023 DOI: 10.1111/jipb.13475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Protein biogenesis is a complex process, and complexity is greatly increased in eukaryotic cells through specific targeting of proteins to different organelles. To direct targeting, organellar proteins carry an organelle-specific targeting signal for recognition by organelle-specific import machinery. However, the situation is confusing for transmembrane domain (TMD)-containing signal-anchored (SA) proteins of various organelles because TMDs function as an endoplasmic reticulum (ER) targeting signal. Although ER targeting of SA proteins is well understood, how they are targeted to mitochondria and chloroplasts remains elusive. Here, we investigated how the targeting specificity of SA proteins is determined for specific targeting to mitochondria and chloroplasts. Mitochondrial targeting requires multiple motifs around and within TMDs: a basic residue and an arginine-rich region flanking the N- and C-termini of TMDs, respectively, and an aromatic residue in the C-terminal side of the TMD that specify mitochondrial targeting in an additive manner. These motifs play a role in slowing down the elongation speed during translation, thereby ensuring mitochondrial targeting in a co-translational manner. By contrast, the absence of any of these motifs individually or together causes at varying degrees chloroplast targeting that occurs in a post-translational manner.
Collapse
Affiliation(s)
- Junho Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Byeongho Moon
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, South Korea
- Department Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, South Korea
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| |
Collapse
|
5
|
Zeng W, Ren J, Yang G, Jiang C, Dong L, Sun Q, Hu Y, Li W, He Q. Porcine Epidemic Diarrhea Virus and Its nsp14 Suppress ER Stress Induced GRP78. Int J Mol Sci 2023; 24:ijms24054936. [PMID: 36902365 PMCID: PMC10003387 DOI: 10.3390/ijms24054936] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the α-coronavirus genus, can cause vomiting, diarrhea, and dehydration in piglets. Neonatal piglets infected with PEDV have a mortality rate as high as 100%. PEDV has caused substantial economic losses to the pork industry. Endoplasmic reticulum (ER) stress, which can alleviate the accumulation of unfolded or misfolded proteins in ER, involves in coronavirus infection. Previous studies have indicated that ER stress could inhibit the replication of human coronaviruses, and some human coronaviruses in turn could suppress ER stress-related factors. In this study, we demonstrated that PEDV could interact with ER stress. We determined that ER stress could potently inhibit the replication of GⅠ, GⅡ-a, and GⅡ-b PEDV strains. Moreover, we found that these PEDV strains can dampen the expression of the 78 kDa glucose-regulated protein (GRP78), an ER stress marker, while GRP78 overexpression showed antiviral activity against PEDV. Among different PEDV proteins, PEDV non-structural protein 14 (nsp14) was revealed to play an essential role in the inhibition of GRP78 by PEDV, and its guanine-N7-methyltransferase domain is necessary for this role. Further studies show that both PEDV and its nsp14 negatively regulated host translation, which could account for their inhibitory effects against GRP78. In addition, we found that PEDV nsp14 could inhibit the activity of GRP78 promotor, helping suppress GRP78 transcription. Our results reveal that PEDV possesses the potential to antagonize ER stress, and suggest that ER stress and PEDV nsp14 could be the targets for developing anti-PEDV drugs.
Collapse
Affiliation(s)
- Wei Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingping Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Gan Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Changsheng Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaofang Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
6
|
Early signaling events in the heat stress response of Pyropia haitanensis revealed by phosphoproteomic and lipidomic analyses. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Woo S, Moon B, Hwang I. Both metaxin and Tom20 together with two mitochondria-specific motifs support mitochondrial targeting of dual-targeting AtSufE1. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1596-1613. [PMID: 35713200 DOI: 10.1111/jipb.13312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Plant cells have two endosymbiotic organelles, chloroplasts, and mitochondria. These organelles perform specific functions that depend on organelle-specific proteins. The majority of chloroplast and mitochondrial proteins are specifically imported by the transit peptide and presequence, respectively. However, a significant number of proteins are also dually targeted to these two organelles. Currently, it is not fully understood how proteins are dually targeted to both chloroplasts and mitochondria. In this study, the mechanism underlying mitochondrial targeting of dual targeting AtSufE1 in Arabidopsis was elucidated. The N-terminal fragment containing 80 residues of AtSufE1 (AtSufE1N80) was sufficient to confer dual targeting of reporter protein, AtSufE1N80:GFP, in protoplasts. Two sequence motifs, two arginine residues at 15th and 21st positions, and amino acid (aa) sequence motif AKTLLLRPLK from the 31st to 40th aa position, were responsible for targeting to mitochondria a portion of reporter proteins amid the chloroplast targeting. The sequence motif PSEVPFRRT from the 41st to 50th aa position constitutes a common motif for targeting to both chloroplasts and mitochondria. For mitochondrial import of AtSufE1:N80, Metaxin played a critical role. In addition, BiFC and protein pull-down experiments showed that AtSufE1N80 specifically interacts with import receptors, Metaxin and Tom20. The interaction of AtSufE1N80 with Metaxin was required for the interaction with Tom20. Based on these results, we propose that mitochondrial targeting of dual-targeting AtSufE1 is mediated by both mitochondria-specific and common sequence motifs in the signal sequence through the interaction with import receptors, Metaxin and Tom20, in a successive manner.
Collapse
Affiliation(s)
- Seungjin Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Byeongho Moon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| |
Collapse
|
8
|
Bernat-Silvestre C, Ma Y, Johnson K, Ferrando A, Aniento F, Marcote MJ. Characterization of Arabidopsis Post-Glycosylphosphatidylinositol Attachment to Proteins Phospholipase 3 Like Genes. FRONTIERS IN PLANT SCIENCE 2022; 13:817915. [PMID: 35222477 PMCID: PMC8874281 DOI: 10.3389/fpls.2022.817915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Lipid remodeling of Glycosylphosphatidylinositol (GPI) anchors is required for their maturation and may influence the localization and function of GPI-anchored proteins (GPI-APs). Maturation of GPI-anchors is well characterized in animals and fungi but very little is known about this process in plants. In yeast, the GPI-lipid remodeling occurs entirely at the ER and is initiated by the remodeling enzyme Bst1p (Post-Glycosylphosphatidylinositol Attachment to Proteins inositol deacylase 1 -PGAP1- in mammals and Arabidopsis). Next, the remodeling enzyme Per1p (Post-Glycosylphosphatidylinositol Attachment to Proteins phospholipase 3 -PGAP3- in mammals) removes a short, unsaturated fatty acid of phosphatidylinositol (PI) that is replaced with a very long-chain saturated fatty acid or ceramide to complete lipid remodeling. In mammals, lipid remodeling starts at the ER and is completed at the Golgi apparatus. Studies of the Arabidopsis PGAP1 gene showed that the lipid remodeling of the GPI anchor is critical for the final localization of GPI-APs. Here we characterized loss-of-function mutants of Arabidopsis Per1/PGAP3 like genes (AtPGAP3A and AtPGAP3B). Our results suggest that PGAP3A function is required for the efficient transport of GPI-anchored proteins from the ER to the plasma membrane/cell wall. In addition, loss of function of PGAP3A increases susceptibility to salt and osmotic stresses that may be due to the altered localization of GPI-APs in this mutant. Furthermore, PGAP3B complements a yeast strain lacking PER1 gene suggesting that PGAP3B and Per1p are functional orthologs. Finally, subcellular localization studies suggest that PGAP3A and PGAP3B cycle between the ER and the Golgi apparatus.
Collapse
Affiliation(s)
- Cesar Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - Yingxuan Ma
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora, VIC, Australia
| | - Kim Johnson
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora, VIC, Australia
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Valencia, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|
9
|
Lee J, Hanh Nguyen H, Park Y, Lin J, Hwang I. Spatial regulation of RBOHD via AtECA4-mediated recycling and clathrin-mediated endocytosis contributes to ROS accumulation during salt stress response but not flg22-induced immune response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:816-830. [PMID: 34797009 DOI: 10.1111/tpj.15593] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Various environmental stresses can induce production of reactive oxygen species (ROS) to turn on signaling for proper responses to those stresses. Plasma membrane (PM)-localized respiratory burst oxidase homologs (RBOHs), in particular RBOHD, produce ROS via the post-translational activation upon abiotic and biotic stresses. Although the mechanisms of RBOHD activation upon biotic stress have been elucidated in detail, it remains elusive how salinity stress activates RBOHD. Here, we present evidence that trafficking of PM-localized RBOHD to endosomes and then its recycling back to the PM is critical for ROS accumulation upon salinity stress. ateca4 plants that were defective in recycling of proteins from endosomes to the PM and clc2-1 and chc2-1 plants that were defective in endocytosis showed a defect in salinity stress-induced ROS production. In addition, ateca4 plants showed a defect in transient accumulation of GFP:RBOHD to the PM at the early stage of salinity stress. By contrast, ateca4 plants showed no defect in the increase in the ROS level and accumulation of RBOHD to the PM upon flg22 treatment as wild-type plants. Based on these observations, we propose that factors involved in the trafficking machinery such as AtECA4 and clathrin are important players in salt stress-induced, but not flg22-induced, ROS accumulation.
Collapse
Affiliation(s)
- Jihyeong Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Hong Hanh Nguyen
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Youngmin Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Bioapplications, Pohang, Korea
| | - Jinxing Lin
- Key Lab of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 10083, China
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| |
Collapse
|
10
|
Chen W, Chi Y, Zhang J, Bai B, Ji X, Shen Y. MtWRP1, a Novel Fabacean Specific Gene, Regulates Root Nodulation and Plant Growth in Medicago truncatula. Genes (Basel) 2022; 13:genes13020193. [PMID: 35205237 PMCID: PMC8871812 DOI: 10.3390/genes13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Fabaceans symbiotically interact with nitrogen-fixing rhizobacteria to form root nodules. Some fabacean specific proteins play important roles in the symbiosis. WRKY-related Protein (WRP) is a novel fabacean specific protein, whose functions have not been well characterized. In this study, MtWRP1 was functionally characterized in Medicago truncatula. It contains a WRKY domain at C-terminal and a novel transmembrane (TM) domain at N-terminal, and its WRKY domain was highly similar to the N-terminal WRKY domain of the group I WRKY proteins. The TM domain was highly homologous to the eukaryotic cytochrome b561 (Cytb561) proteins from birds. Subcellular localization revealed that MtWRP1 was targeted to the Golgi apparatus through the novel TM domain. MtWRP1 was highly expressed in roots and nodules, suggesting its possible roles in the regulation of root growth and nodulation. Both MtWRP1-overexpression transgenic M. truncatula and MtWRP1 mutants showed altered root nodulation and plant growth performance. Specifically, the formation of root nodules was significantly reduced in the absence of MtWRP1. These results demonstrated that MtWRP1 plays critical roles in root nodulation and plant growth.
Collapse
|
11
|
Bernat-Silvestre C, Sánchez-Simarro J, Ma Y, Montero-Pau J, Johnson K, Aniento F, Marcote MJ. AtPGAP1 functions as a GPI inositol-deacylase required for efficient transport of GPI-anchored proteins. PLANT PHYSIOLOGY 2021; 187:2156-2173. [PMID: 34618080 PMCID: PMC8644293 DOI: 10.1093/plphys/kiab384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 05/19/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) play an important role in a variety of plant biological processes including growth, stress response, morphogenesis, signaling, and cell wall biosynthesis. The GPI anchor contains a lipid-linked glycan backbone that is synthesized in the endoplasmic reticulum (ER) where it is subsequently transferred to the C-terminus of proteins containing a GPI signal peptide by a GPI transamidase. Once the GPI anchor is attached to the protein, the glycan and lipid moieties are remodeled. In mammals and yeast, this remodeling is required for GPI-APs to be included in Coat Protein II-coated vesicles for their ER export and subsequent transport to the cell surface. The first reaction of lipid remodeling is the removal of the acyl chain from the inositol group by Bst1p (yeast) and Post-GPI Attachment to Proteins Inositol Deacylase 1 (PGAP1, mammals). In this work, we have used a loss-of-function approach to study the role of PGAP1/Bst1 like genes in plants. We have found that Arabidopsis (Arabidopsis thaliana) PGAP1 localizes to the ER and likely functions as the GPI inositol-deacylase that cleaves the acyl chain from the inositol ring of the GPI anchor. In addition, we show that PGAP1 function is required for efficient ER export and transport to the cell surface of GPI-APs.
Collapse
Affiliation(s)
- César Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Spain
| | - Judit Sánchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Spain
| | - Yingxuan Ma
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Javier Montero-Pau
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Spain
| | - Kim Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Spain
- Author for communication: (M.J.M), (F.A)
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Spain
- Author for communication: (M.J.M), (F.A)
| |
Collapse
|
12
|
Liu J, Zhu L, Wang B, Wang H, Khan I, Zhang S, Wen J, Ma C, Dai C, Tu J, Shen J, Yi B, Fu T. BnA1.CER4 and BnC1.CER4 are redundantly involved in branched primary alcohols in the cuticle wax of Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3051-3067. [PMID: 34120211 DOI: 10.1007/s00122-021-03879-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
The mutations BnA1.CER4 and BnC1.CER4 produce disordered wax crystals types and alter the composition of epidermal wax, causing increased cuticular permeability and sclerotium resistance. The aerial surfaces of land plants are coated with a cuticle, comprised of cutin and wax, which is a hydrophobic barrier for preventing uncontrolled water loss and environmental damage. However, the mechanisms by which cuticle components are formed are still unknown in Brassica napus L. and were therefore assessed here. BnA1.CER4 and BnC1.CER4, encoding fatty acyl-coenzyme A reductases localizing to the endoplasmic reticulum and highly expressed in leaves, were identified and functionally characterized. Expression of BnA1.CER4 and BnC1.CER4 cDNA in yeast (Saccharomyces cerevisiae) induced the accumulation of primary alcohols with chain lengths of 26 carbons. The mutant line Nilla glossy2 exhibited reduced wax crystal types, and wax composition analysis showed that the levels of branched primary alcohols were decreased, whereas those of the other branched components were increased. Further analysis showed that the mutant had reduced water retention but enhanced resistance to Sclerotinia sclerotiorum. Collectively, our study reports that BnA1.CER4 and BnC1.CER4 are fatty acyl-coenzyme A reductase genes in B. napus with a preference for branched substrates that participate in the biosynthesis of anteiso-primary alcohols.
Collapse
Affiliation(s)
- Jie Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lixia Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Benqi Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Imran Khan
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuqin Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
13
|
Lei Y, Zhang X, Xu Q, Liu S, Li C, Jiang H, Lin H, Kong E, Liu J, Qi S, Li H, Xu W, Lu K. Autophagic elimination of ribosomes during spermiogenesis provides energy for flagellar motility. Dev Cell 2021; 56:2313-2328.e7. [PMID: 34428398 DOI: 10.1016/j.devcel.2021.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 02/05/2023]
Abstract
How autophagy initiation is regulated and what the functional significance of this regulation is are unknown. Here, we characterized the role of yeast Vac8 in autophagy initiation through recruitment of PIK3C3-C1 to the phagophore assembly site (PAS). This recruitment is dependent on the palmitoylation of Vac8 and on its middle ARM domains for binding PIK3C3-C1. Vac8-mediated anchoring of PIK3C3-C1 promotes PtdIns3P generation at the PAS and recruitment of the PtdIns3P binding protein Atg18-Atg2. The mouse homolog of Vac8, ARMC3, is conserved and functions in autophagy in mouse testes. Mice lacking ARMC3 have normal viability but show complete male infertility. Proteomic analysis indicated that the autophagic degradation of cytosolic ribosomes was blocked in ARMC3-deficient spermatids, which caused low energy levels of mitochondria and motionless flagella. These studies uncovered a function of Vac8/ARMC3 in PtdIns3-kinase anchoring at the PAS and its physical significance in mammalian spermatogenesis with a germ tissue-specific autophagic function.
Collapse
Affiliation(s)
- Yuqing Lei
- Department of Pathology, West China Second University Hospital, State Key Laboratory of Biotherapy, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Xueguang Zhang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Qingjia Xu
- Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiyan Liu
- Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunxia Li
- Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing 100191, China; Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China
| | - Haocheng Lin
- Department of Urology, Peking University Third Hospital, Beijing 100191, China; Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing 100191, China
| | - Eryan Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiaming Liu
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huihui Li
- Department of Pathology, West China Second University Hospital, State Key Laboratory of Biotherapy, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu 610041, China.
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Kefeng Lu
- Department of Neurology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
An FYVE-Domain-Containing Protein, PsFP1, Is Involved in Vegetative Growth, Oxidative Stress Response and Virulence of Phytophthora sojae. Int J Mol Sci 2021; 22:ijms22126601. [PMID: 34202990 PMCID: PMC8233823 DOI: 10.3390/ijms22126601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
Proteins that contain the FYVE zinc-finger domain are recruited to PtdIns3P-containing membranes, participating in numerous biological processes such as membrane trafficking, cytoskeletal regulation, and receptor signaling. However, the genome-wide distribution, evolution, and biological functions of FYVE-containing proteins are rarely reported for oomycetes. By genome mining of Phytophthora sojae, two proteins (PsFP1 and PsFP2) with a combination of the FYVE domain and the PX domain (a major phosphoinositide binding module) were found. To clarify the functions of PsFP1 and PsFP2, the CRISPR/Cas9-mediated gene replacement system was used to knock out the two genes respectively. Only heterozygous deletion mutants of PsFP1 were recovered, and the expression level of PsFP1 in the heterozygous knockout transformants was significantly down-regulated. These PsFP1 mutants showed a decrease in mycelial growth and pathogenicity and were more sensitive to hydrogen peroxide. These phenotypes were recovered to the level of wild-type by overexpression PsFP1 gene in the PsFP1 heterozygous knockout transformant. In contrast, deletion of PsFP2 had no significant effect on vegetative growth, asexual and sexual reproduction, pathogenicity, or oxidative stress sensitivity. PsFP1 was primarily localized in vesicle-like structures and both the FYVE and PX domains are important for its localization. Overall, our results indicate that PsFP1 plays an important role in the vegetative growth and virulence of P. sojae.
Collapse
|
15
|
Kamal MM, Ishikawa S, Takahashi F, Suzuki K, Kamo M, Umezawa T, Shinozaki K, Kawamura Y, Uemura M. Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold. Int J Mol Sci 2020; 21:E8631. [PMID: 33207747 PMCID: PMC7696906 DOI: 10.3390/ijms21228631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
Cold stress is one of the major factors limiting global crop production. For survival at low temperatures, plants need to sense temperature changes in the surrounding environment. How plants sense and respond to the earliest drop in temperature is still not clearly understood. The plasma membrane and its adjacent extracellular and cytoplasmic sites are the first checkpoints for sensing temperature changes and the subsequent events, such as signal generation and solute transport. To understand how plants respond to early cold exposure, we used a mass spectrometry-based phosphoproteomic method to study the temporal changes in protein phosphorylation events in Arabidopsis membranes during 5 to 60 min of cold exposure. The results revealed that brief cold exposures led to rapid phosphorylation changes in the proteins involved in cellular ion homeostasis, solute and protein transport, cytoskeleton organization, vesical trafficking, protein modification, and signal transduction processes. The phosphorylation motif and kinase-substrate network analysis also revealed that multiple protein kinases, including RLKs, MAPKs, CDPKs, and their substrates, could be involved in early cold signaling. Taken together, our results provide a first look at the cold-responsive phosphoproteome changes of Arabidopsis membrane proteins that can be a significant resource to understand how plants respond to an early temperature drop.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
| | - Shinnosuke Ishikawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan; (S.I.); (T.U.)
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba 305-0074, Japan; (F.T.); (K.S.)
| | - Ko Suzuki
- Department of Biochemistry, Iwate Medical University, Yahaba 028-3694, Japan; (K.S.); (M.K.)
| | - Masaharu Kamo
- Department of Biochemistry, Iwate Medical University, Yahaba 028-3694, Japan; (K.S.); (M.K.)
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 184-8588, Japan; (S.I.); (T.U.)
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba 305-0074, Japan; (F.T.); (K.S.)
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan; (M.M.K.); (Y.K.)
- Department of Plant-Bioscience, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
16
|
Bernat-Silvestre C, De Sousa Vieira V, Sanchez-Simarro J, Pastor-Cantizano N, Hawes C, Marcote MJ, Aniento F. p24 Family Proteins Are Involved in Transport to the Plasma Membrane of GPI-Anchored Proteins in Plants. PLANT PHYSIOLOGY 2020; 184:1333-1347. [PMID: 32900981 PMCID: PMC7608175 DOI: 10.1104/pp.20.00880] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/26/2020] [Indexed: 05/04/2023]
Abstract
p24 proteins are a family of type-I membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi apparatus via Coat Protein I (COPI)- and COPII-coated vesicles. These proteins have been proposed to function as cargo receptors, but the identity of putative cargos in plants is still elusive. We previously generated an Arabidopsis (Arabidopsis thaliana) quadruple loss-of-function mutant affecting p24 genes from the δ-1 subclass of the p24 delta subfamily (p24δ3δ4δ5δ6 mutant). This mutant also had reduced protein levels of other p24 family proteins and was found to be sensitive to salt stress. Here, we used this mutant to test the possible involvement of p24 proteins in the transport to the plasma membrane of glycosylphosphatidylinositol (GPI)-anchored proteins. We found that GPI-anchored proteins mostly localized to the ER in p24δ3δ4δ5δ6 mutant cells, in contrast to plasma membrane proteins with other types of membrane attachment. The plasma membrane localization of GPI-anchored proteins was restored in the p24δ3δ4δ5δ6 mutant upon transient expression of a single member of the p24 δ-1 subclass, RFP-p24δ5, which was dependent on the coiled-coil domain in p24δ5. The coiled-coil domain was also important for a direct interaction between p24δ5 and the GPI-anchored protein arabinogalactan protein4 (AGP4). These results suggest that Arabidopsis p24 proteins are involved in ER export and transport to the plasma membrane of GPI-anchored proteins.
Collapse
Affiliation(s)
- César Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| | - Vanessa De Sousa Vieira
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, OX3 0BP Oxford, United Kingdom
| | - Judit Sanchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| | - Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, OX3 0BP Oxford, United Kingdom
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universitat de València, 46010 València, Spain
| |
Collapse
|
17
|
Pak Dek MS, Padmanabhan P, Tiwari K, Todd JF, Paliyath G. Structural and functional characterization of Solanum lycopersicum phosphatidylinositol 3-kinase C2 domain. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:180-192. [PMID: 31972387 DOI: 10.1016/j.plaphy.2020.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are characterized by the presence of a C2 domain at the N-terminal end (class I, III); or at both the N-terminal and C-terminal ends (class II), sometimes including a Plextrin homology domain and/or a Ras domain. Plant PI3Ks are analogous to the class III mammalian PI3K. An N-terminal fragment (~170 aa) of the tomato PI3K regulatory domain including the C2 domain, was cloned and expressed in a bacterial system. This protein was purified to homogeneity and its physicochemical properties analyzed. The purified protein showed strong binding with monophosphorylated phosphatidylinositols, and the binding was dependent on calcium ion concentration and pH. In the overall tertiary structure of PI3K, C2 domain showed unique characteristics, having three antiparallel beta-sheets, hydrophobic regions, acidic as well as alkaline motifs, that can enable its membrane binding upon activation. To elucidate the functional significance of C2 domain, transgenic tobacco plants expressing the C2 domain of PI3K were generated. Transgenic plants showed defective pollen development and disrupted seed set. Flowers from the PI3K-C2 transgenic plants showed delayed wilting, and a decrease in ethylene production. It is likely that introduction of the PI3K-C2 segment may have interfered with the normal binding of PI3K to the membrane, delaying the onset of membrane lipid catabolism that lead to senescence.
Collapse
Affiliation(s)
- Mohd Sabri Pak Dek
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Priya Padmanabhan
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Krishnaraj Tiwari
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - James F Todd
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Ontario Ministry of Agriculture, Food and Rural Affairs, Simcoe Research Station, Ontario, Canada
| | - Gopinadhan Paliyath
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
18
|
Lu S, Yu J, Ma L, Dou D. Two phosphatidylinositol 3-kinase components are involved in interactions between Nicotiana benthamiana and Phytophthora by regulating pathogen effectors and host cell death. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:293-302. [PMID: 32054565 DOI: 10.1071/fp19155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Phosphatidylinositol 3-phosphate (PtdIns(3)P) has been reported to regulate different physiological processes in plants. PtdIns(3)P is synthesised by the phosphatidylinositol 3-kinase (PI3K) complex which includes common subunits of vacuolar protein sorting (VPS)15, VPS30 and VPS34. Here, we characterised the roles of the important genes NbVPS15, -30 and -34 encoding PI3K components during interactions between Nicotiana benthamiana and Phytophthora pathogens. NbVPS15 and NbVPS34 were upregulated during infection, and plants deficient in these two genes displayed higher resistance to two different Phytophthora pathogens. Silencing NbVPS15 and NbVPS34 decreased the content of PtdIns(3)P in plant cells and the stability of three RxLR (containing the characteristic amino-terminal motif of arginine-X-leucine-arginine, X is any amino acid) effectors. Furthermore, NbVPS15, -30 and -34 were essential for autolysosome formation during Phytophthora capsici infection and limiting programmed cell death (PCD) induced by effectors and elicitors. Taken together, these findings suggest that NbVPS15 and NbVPS34 play a critical role in the resistance of N. benthamiana to Phytophthora pathogens by regulating PtdIns(3)P contents and host PCD.
Collapse
Affiliation(s)
- Shan Lu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; and Corresponding author.
| | - Jia Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lina Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Zhu D, Zhang M, Gao C, Shen J. Protein trafficking in plant cells: Tools and markers. SCIENCE CHINA-LIFE SCIENCES 2019; 63:343-363. [DOI: 10.1007/s11427-019-9598-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
|
20
|
Madina MH, Rahman MS, Zheng H, Germain H. Vacuolar membrane structures and their roles in plant-pathogen interactions. PLANT MOLECULAR BIOLOGY 2019; 101:343-354. [PMID: 31621005 DOI: 10.1007/s11103-019-00921-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Short review focussing on the role and targeting of vacuolar substructure in plant immunity and pathogenesis. Plants lack specialized immune cells, therefore each plant cell must defend itself against invading pathogens. A typical plant defense strategy is the hypersensitive response that results in host cell death at the site of infection, a process largely regulated by the vacuole. In plant cells, the vacuole is a vital organelle that plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. It shows divergent membranous structures that are continuously transforming. Recent technical advances in visualization and live-cell imaging have significantly altered our view of the vacuolar structures and their dynamics. Understanding the active nature of the vacuolar structures and the mechanisms of vacuole-mediated defense responses is of great importance in understanding plant-pathogen interactions. In this review, we present an overview of the current knowledge about the vacuole and its internal structures, as well as their role in plant-microbe interactions. There is so far limited information on the modulation of the vacuolar structures by pathogens, but recent research has identified the vacuole as a possible target of microbial interference.
Collapse
Affiliation(s)
- Mst Hur Madina
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Md Saifur Rahman
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada.
| |
Collapse
|
21
|
Rubilar-Hernández C, Osorio-Navarro C, Cabello F, Norambuena L. PI4KIII β Activity Regulates Lateral Root Formation Driven by Endocytic Trafficking to the Vacuole. PLANT PHYSIOLOGY 2019; 181:112-126. [PMID: 31285293 PMCID: PMC6716240 DOI: 10.1104/pp.19.00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 06/01/2023]
Abstract
Lateral roots (LRs) increase the contact area of the root with the rhizosphere and thereby improve water and nutrient uptake from the soil. LRs are generated either via a developmentally controlled mechanism or through induction by external stimuli, such as water and nutrient availability. Auxin regulates LR organogenesis via transcriptional activation by an auxin complex receptor. Endocytic trafficking to the vacuole positively regulates LR organogenesis independently of the auxin complex receptor in Arabidopsis (Arabidopsis thaliana). Here, we demonstrate that phosphatidylinositol 4-phosphate (PI4P) biosynthesis regulated by the phosphatidylinositol 4-kinases PI4KIIIβ1 and PI4KIIIβ2 is essential for the LR organogenesis driven by endocytic trafficking to the vacuole. Stimulation with Sortin2, a biomodulator that promotes protein targeting to the vacuole, altered PI4P abundance at both the plasma membrane and endosomal compartments, a process dependent on PI4K activity. These findings suggest that endocytic trafficking to the vacuole regulated by the enzymatic activities of PI4KIIIβ1 and PI4KIIIβ2 participates in a mechanism independent of the auxin complex receptor that regulates LR organogenesis in Arabidopsis. Surprisingly, loss-of-function of PI4KIIIβ1 and PI4KIIIβ2 induced both LR primordium formation and endocytic trafficking toward the vacuole. This LR primordium induction was alleviated by exogenous PI4P, suggesting that PI4KIIIβ1 and PI4KIIIβ2 activity constitutively negatively regulates LR primordium formation. Overall, this research demonstrates a dual role of PI4KIIIβ1 and PI4KIIIβ2 in LR primordium formation in Arabidopsis.
Collapse
Affiliation(s)
- Carlos Rubilar-Hernández
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Claudio Osorio-Navarro
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Francisca Cabello
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Centre, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Huang S, Zhang A, Jin JB, Zhao B, Wang TJ, Wu Y, Wang S, Liu Y, Wang J, Guo P, Ahmad R, Liu B, Xu ZY. Arabidopsis histone H3K4 demethylase JMJ17 functions in dehydration stress response. THE NEW PHYTOLOGIST 2019; 223:1372-1387. [PMID: 31038749 DOI: 10.1111/nph.15874] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Under dehydration in plants, antagonistic activities of histone 3 lysine 4 (H3K4) methyltransferase and histone demethylase maintain a dynamic and homeostatic state of gene expression by orientating transcriptional reprogramming toward growth or stress tolerance. However, the histone demethylase that specifically controls histone methylation homeostasis under dehydration stress remains unknown. Here, we document that a histone demethylase, JMJ17, belonging to the KDM5/JARID1 family, plays crucial roles in response to dehydration stress and abscisic acid (ABA) in Arabidopsis thaliana. jmj17 loss-of-function mutants displayed dehydration stress tolerance and ABA hypersensitivity in terms of stomatal closure. JMJ17 specifically demethylated H3K4me1/2/3 via conserved iron-binding amino acids in vitro and in vivo. Moreover, H3K4 demethylase activity of JMJ17 was required for dehydration stress response. Systematic combination of genome-wide chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) and RNA-sequencing (RNA-seq) analyses revealed that a loss-of-function mutation in JMJ17 caused an ectopic increase in genome-wide H3K4me3 levels and activated a plethora of dehydration stress-responsive genes. Importantly, JMJ17 bound directly to the chromatin of OPEN STOMATA 1 (OST1) and demethylated H3K4me3 for the regulation of OST1 mRNA abundance, thereby modulating the dehydration stress response. Our results demonstrate a new function of a histone demethylase under dehydration stress in plants.
Collapse
Affiliation(s)
- Shuangzhan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jing Bo Jin
- Key Laboratory of Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Bo Zhao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yifan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Shuang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Rafiq Ahmad
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
23
|
Wu L, Sadhukhan A, Kobayashi Y, Ogo N, Tokizawa M, Agrahari RK, Ito H, Iuchi S, Kobayashi M, Asai A, Koyama H. Involvement of phosphatidylinositol metabolism in aluminum-induced malate secretion in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3329-3342. [PMID: 30977815 DOI: 10.1093/jxb/erz179] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/03/2019] [Indexed: 05/27/2023]
Abstract
To identify the upstream signaling of aluminum-induced malate secretion through aluminum-activated malate transporter 1 (AtALMT1), a pharmacological assay using inhibitors of human signal transduction pathways was performed. Early aluminum-induced transcription of AtALMT1 and other aluminum-responsive genes was significantly suppressed by phosphatidylinositol 4-kinase (PI4K) and phospholipase C (PLC) inhibitors, indicating that the PI4K-PLC metabolic pathway activates early aluminum signaling. Inhibitors of phosphatidylinositol 3-kinase (PI3K) and PI4K reduced aluminum-activated malate transport by AtALMT1, suggesting that both the PI3K and PI4K metabolic pathways regulate this process. These results were validated using T-DNA insertion mutants of PI4K and PI3K-RNAi lines. A human protein kinase inhibitor, putatively inhibiting homologous calcineurin B-like protein-interacting protein kinase and/or Ca-dependent protein kinase in Arabidopsis, suppressed late-phase aluminum-induced expression of AtALMT1, which was concomitant with the induction of an AtALMT1 repressor, WRKY46, and suppression of an AtALMT1 activator, Calmodulin-binding transcription activator 2 (CAMTA2). In addition, a human deubiquitinase inhibitor suppressed aluminum-activated malate transport, suggesting that deubiquitinases can regulate this process. We also found a reduction of aluminum-induced citrate secretion in tobacco by applying inhibitors of PI3K and PI4K. Taken together, our results indicated that phosphatidylinositol metabolism regulates organic acid secretion in plants under aluminum stress.
Collapse
Affiliation(s)
- Liujie Wu
- Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Ayan Sadhukhan
- Applied Biological Sciences, Gifu University, Gifu, Japan
| | | | - Naohisa Ogo
- Graduate Division of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | - Hiroki Ito
- Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Satoshi Iuchi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Masatomo Kobayashi
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Akira Asai
- Graduate Division of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | |
Collapse
|
24
|
Zheng L, Chen Y, Ding D, Zhou Y, Ding L, Wei J, Wang H. Endoplasmic reticulum-localized UBC34 interaction with lignin repressors MYB221 and MYB156 regulates the transactivity of the transcription factors in Populus tomentosa. BMC PLANT BIOLOGY 2019; 19:97. [PMID: 30866808 PMCID: PMC6416899 DOI: 10.1186/s12870-019-1697-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/27/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Regulation of lignin biosynthesis is known to occur at the level of transcription factors (TFs), of which R2R3-MYB family members have been proposed to play a central role via the AC cis-elements. Despite the important roles of TFs in lignin biosynthesis, the post-translational regulation of these TFs, particularly their ubiquitination regulation, has not been thoroughly explored. RESULTS We describe the discovery of a Populus tomentosa E2 ubiquitin-conjugating enzyme 34 (PtoUBC34), which is involved in the post-translational regulation of transactivation activity of lignin-associated transcriptional repressors PtoMYB221 and PtoMYB156. PtoUBC34 is localized at the endoplasmic reticulum (ER) membrane where it interacts with transcriptional repressors PtoMYB221 and PtoMYB156. This specific interaction allows for the translocation of TFs PtoMYB221 and PtoMYB156 to the ER and reduces their repression activity in a PtoUBC34 abundance-dependent manner. By taking a molecular biology approach with quantitative real-time polymerase chain reaction (qRT-PCR) analysis, we found that PtoUBC34 is expressed in all aboveground tissues of trees in P. tomentosa, and in particular, it is ubiquitous in all distinct differentiation stages across wood formation, including phloem differentiation, cambium maintaining, early and developing xylem differentiation, secondary cell wall thickening, and programmed cell death. Additionally, we discovered that PtoUBC34 is induced by treatment with sodium chloride and heat shock. CONCLUSIONS Our data suggest a possible mechanism by which lignin biosynthesis is regulated by ER-localized PtoUBC34 in poplar, probably through the ER-associated degradation (ERAD) of lignin-associated repressors PtoMYB221 and PtoMYB156.
Collapse
Affiliation(s)
- Lin Zheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
| | - Yajuan Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
| | - Dong Ding
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
| | - Ying Zhou
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
| | - Liping Ding
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
| | - Jianhua Wei
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
| | - Hongzhi Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097 People’s Republic of China
| |
Collapse
|
25
|
Filipin EP, Pereira DT, Ouriques LC, Bouzon ZL, Simioni C. Participation of actin filaments, myosin and phosphatidylinositol 3-kinase in the formation and polarisation of tetraspore germ tube of Gelidium floridanum (Rhodophyta, Florideophyceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:352-360. [PMID: 30472775 DOI: 10.1111/plb.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
This study aimed to examine the evidence of direct interaction among actin, myosin and phosphatidylinositol 3-kinase (PI3K) in the polarisation and formation of the tetraspore germ tube of Gelidium floridanum. After release, tetraspores were exposed to cytochalasin B, latrunculin B, LY294002 and BDM for a period of 6 h. In control samples, formation of the germ tube occurred after the experimental period, with cellulose formation and elongated chloroplasts moving through the tube region in the presence of F-actin. In the presence of cytochalasin B, an inhibitor of F-actin, latrunculin B, an inhibitor of G-actin, and BDM, a myosin inhibitor, tetraspores showed no formation of the germ tube or cellulose. Spherical-shaped chloroplasts were observed in the central region with a few F-actin filaments in the periphery of the cytoplasm. Tetraspores treated with LY294002, a PI3K inhibitor, showed no formation of the tube at the highest concentrations. Polarisation of cytoplasmic contents did not occur, only cellulose formation. It was concluded that F-actin directs the cell wall components and contributes to the maintenance of chloroplast shape and elongation during germ tube formation. PI3K plays a fundamental role in signalling for the asymmetric polarisation of F-actin. Thus, F-actin regulates the polarisation and germination processes of tetraspores of G. floridanum.
Collapse
Affiliation(s)
- E P Filipin
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - D T Pereira
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - L C Ouriques
- Central Laboratory of Electron Microscopy, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Z L Bouzon
- Central Laboratory of Electron Microscopy, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - C Simioni
- Postdoctoral Research of Postgraduate Program in Cell Biology and Development, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
26
|
Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of Jatropha Curcas Seedling under Chilling Stress. Int J Mol Sci 2019; 20:ijms20010208. [PMID: 30626061 PMCID: PMC6337099 DOI: 10.3390/ijms20010208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 01/10/2023] Open
Abstract
As a promising energy plant for biodiesel, Jatropha curcas is a tropical and subtropical shrub and its growth is affected by one of major abiotic stress, chilling. Therefore, we adopt the phosphoproteomic analysis, physiological measurement and ultrastructure observation to illustrate the responsive mechanism of J. curcas seedling under chilling (4 °C) stress. After chilling for 6 h, 308 significantly changed phosphoproteins were detected. Prolonged the chilling treatment for 24 h, obvious physiological injury can be observed and a total of 332 phosphoproteins were examined to be significantly changed. After recovery (28 °C) for 24 h, 291 phosphoproteins were varied at the phosphorylation level. GO analysis showed that significantly changed phosphoproteins were mainly responsible for cellular protein modification process, transport, cellular component organization and signal transduction at the chilling and recovery periods. On the basis of protein-protein interaction network analysis, phosphorylation of several protein kinases, such as SnRK2, MEKK1, EDR1, CDPK, EIN2, EIN4, PI4K and 14-3-3 were possibly responsible for cross-talk between ABA, Ca2+, ethylene and phosphoinositide mediated signaling pathways. We also highlighted the phosphorylation of HOS1, APX and PIP2 might be associated with response to chilling stress in J. curcas seedling. These results will be valuable for further study from the molecular breeding perspective.
Collapse
|
27
|
Geem KR, Kim DH, Lee DW, Kwon Y, Lee J, Kim JH, Hwang I. Jasmonic acid-inducible TSA1 facilitates ER body formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:267-280. [PMID: 30267434 DOI: 10.1111/tpj.14112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 05/28/2023]
Abstract
Members of the Brassicales contain an organelle, the endoplasmic reticulum (ER) body, which is derived from the ER. Recent studies have shed light on the biogenesis of the ER body and its physiological role in plants. However, formation of the ER body and its physiological role are not fully understood. Here, we investigated the physiological role of TSK-associating protein 1 (TSA1), a close homolog of NAI2 that is involved in ER body formation, and provide evidence that it is involved in ER body biogenesis under wound-related stress conditions. TSA1 is N-glycosylated and localizes to the ER body as a luminal protein. TSA1 was highly induced by the plant hormone, methyl jasmonate (MeJA). Ectopic expression of TSA1:GFP induced ER body formation in root tissues of transgenic Arabidopsis thaliana and in leaf tissues of Nicotiana benthamiana. TSA1 and NAI2 formed a heterocomplex and showed an additive effect on ER body formation in N. benthamiana. MeJA treatment induced ER body formation in leaf tissues of nai2 and tsa1 plants, but not nai2/tsa1 double-mutant plants. However, constitutive ER body formation was altered in young seedlings of nai2 plants but not tsa1 plants. Based on these results, we propose that TSA1 plays a critical role in MeJA-induced ER body formation in plants.
Collapse
Affiliation(s)
- Kyoung Rok Geem
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yun Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Junho Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Jeong Hee Kim
- Department of Biochemistry and Molecular Biology, College of Dentistry, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 130-701, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
28
|
Liu Y, Zhang A, Yin H, Meng Q, Yu X, Huang S, Wang J, Ahmad R, Liu B, Xu ZY. Trithorax-group proteins ARABIDOPSIS TRITHORAX4 (ATX4) and ATX5 function in abscisic acid and dehydration stress responses. THE NEW PHYTOLOGIST 2018; 217:1582-1597. [PMID: 29250818 DOI: 10.1111/nph.14933] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/02/2017] [Indexed: 05/10/2023]
Abstract
Trithorax-group proteins (TrxGs) play essential regulatory roles in chromatin modification to activate transcription. Although TrxGs have been shown to be extensively involved in the activation of developmental genes, how the specific TrxGs function in the dehydration and abscisic acid (ABA)-mediated modulation of downstream gene expression remains unknown. Here, we report that two evolutionarily conserved Arabidopsis thaliana TrxGs, ARABIDOPSIS TRITHORAX4 (ATX4) and ATX5, play essential roles in the drought stress response. atx4 and atx5 single loss-of-function mutants showed drought stress-tolerant and ABA-hypersensitive phenotypes during seed germination and seedling development, while the atx4 atx5 double mutant displayed further exacerbation of the phenotypes. Genome-wide RNA-sequencing analyses showed that ATX4 and ATX5 regulate the expression of genes functioning in dehydration stress. Intriguingly, ABA-HYPERSENSITIVE GERMINATION 3 (AHG3), an essential negative regulator of ABA signaling, acts genetically downstream of ATX4 and ATX5 in response to ABA. ATX4 and ATX5 directly bind to the AHG3 locus and trimethylate histone H3 of Lys 4 (H3K4). Moreover, ATX4 and ATX5 occupancies at AHG3 are dramatically increased under ABA treatment, and are also essential for RNA polymerase II (RNAPII) occupancies. Our findings reveal novel molecular functions of A. thaliana TrxGs in dehydration stress and ABA responses.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Hao Yin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Qingxiang Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaoming Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Shuangzhan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Rafiq Ahmad
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
29
|
Takagi J, Uemura T. Use of Brefeldin A and Wortmannin to Dissect Post-Golgi Organelles Related to Vacuolar Transport in Arabidopsis thaliana. Methods Mol Biol 2018; 1789:155-165. [PMID: 29916078 DOI: 10.1007/978-1-4939-7856-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eukaryotic cells comprise various organelles surrounded by the membrane. Each organelle is characterized by unique proteins and lipids and has its own specific functions. Single membrane-bounded organelles, including the Golgi apparatus, endosomes, and vacuoles are connected by membrane trafficking. Identifying the organelle localization of a protein of interest is essential for determining the proteins physiological functions. Here, we describe methods for determining protein subcellular localization using the inhibitors brefeldin A and wortmannin in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Junpei Takagi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
30
|
Ricachenevsky FK, Punshon T, Lee S, Oliveira BHN, Trenz TS, Maraschin FDS, Hindt MN, Danku J, Salt DE, Fett JP, Guerinot ML. Elemental Profiling of Rice FOX Lines Leads to Characterization of a New Zn Plasma Membrane Transporter, OsZIP7. FRONTIERS IN PLANT SCIENCE 2018; 9:865. [PMID: 30018622 PMCID: PMC6037872 DOI: 10.3389/fpls.2018.00865] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/04/2018] [Indexed: 05/07/2023]
Abstract
Iron (Fe) and zinc (Zn) are essential micronutrients required for proper development in both humans and plants. Rice (Oryza sativa L.) grains are the staple food for nearly half of the world's population, but a poor source of metals such as Fe and Zn. Populations that rely on milled cereals are especially prone to Fe and Zn deficiencies, the most prevalent nutritional deficiencies in humans. Biofortification is a cost-effective solution for improvement of the nutritional quality of crops. However, a better understanding of the mechanisms underlying grain accumulation of mineral nutrients is required before this approach can achieve its full potential. Characterization of gene function is more time-consuming in crops than in model species such as Arabidopsis thaliana. Aiming to more quickly characterize rice genes related to metal homeostasis, we applied the concept of high throughput elemental profiling (ionomics) to Arabidopsis lines heterologously expressing rice cDNAs driven by the 35S promoter, named FOX (Full Length Over-eXpressor) lines. We screened lines expressing candidate genes that could be used in the development of biofortified grain. Among the most promising candidates, we identified two lines ovexpressing the metal cation transporter OsZIP7. OsZIP7 expression in Arabidopsis resulted in a 25% increase in shoot Zn concentrations compared to non-transformed plants. We further characterized OsZIP7 and showed that it is localized to the plasma membrane and is able to complement Zn transport defective (but not Fe defective) yeast mutants. Interestingly, we showed that OsZIP7 does not transport Cd, which is commonly transported by ZIP proteins. Importantly, OsZIP7-expressing lines have increased Zn concentrations in their seeds. Our results indicate that OsZIP7 is a good candidate for developing Zn biofortified rice. Moreover, we showed the use of heterologous expression of genes from crops in A. thaliana as a fast method for characterization of crop genes related to the ionome and potentially useful in biofortification strategies.
Collapse
Affiliation(s)
- Felipe K. Ricachenevsky
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Biologia, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
- *Correspondence: Felipe K. Ricachenevsky,
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Sichul Lee
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, South Korea
| | - Ben Hur N. Oliveira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thomaz S. Trenz
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maria N. Hindt
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - John Danku
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - David E. Salt
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Janette P. Fett
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
31
|
Roustan V, Weckwerth W. Quantitative Phosphoproteomic and System-Level Analysis of TOR Inhibition Unravel Distinct Organellar Acclimation in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2018; 9:1590. [PMID: 30546371 PMCID: PMC6280106 DOI: 10.3389/fpls.2018.01590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/15/2018] [Indexed: 05/13/2023]
Abstract
Rapamycin is an inhibitor of the evolutionary conserved Target of Rapamycin (TOR) kinase which promotes and coordinates translation with cell growth and division. In heterotrophic organisms, TOR regulation is based on intra- and extracellular stimuli such as amino acids level and insulin perception. However, how plant TOR pathways have evolved to integrate plastid endosymbiosis is a remaining question. Despite the close association of the TOR signaling with the coordination between protein turn-over and growth, proteome and phosphoproteome acclimation to a rapamycin treatment have not yet been thoroughly investigated in Chlamydomonas reinhardtii. In this study, we have used in vivo label-free phospho-proteomic analysis to profile both protein and phosphorylation changes at 0, 24, and 48 h in Chlamydomonas cells treated with rapamycin. Using multivariate statistics we highlight the impact of TOR inhibition on both the proteome and the phosphoproteome. Two-way ANOVA distinguished differential levels of proteins and phosphoproteins in response either to culture duration and rapamycin treatment or combined effects. Finally, protein-protein interaction networks and functional enrichment analysis underlined the relation between plastid and mitochondrial metabolism. Prominent changes of proteins involved in sulfur, cysteine, and methionine as well as nucleotide metabolism on the one hand, and changes in the TCA cycle on the other highlight the interplay of chloroplast and mitochondria metabolism. Furthermore, TOR inhibition revealed changes in the endomembrane trafficking system. Phosphoproteomics data, on the other hand, highlighted specific differentially regulated phosphorylation sites for calcium-regulated protein kinases as well as ATG7, S6K, and PP2C. To conclude we provide a first combined Chlamydomonas proteomics and phosphoproteomics dataset in response to TOR inhibition, which will support further investigations.
Collapse
Affiliation(s)
- Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
- *Correspondence: Wolfram Weckwerth,
| |
Collapse
|
32
|
Huang CY, Huang AHC. Unique Motifs and Length of Hairpin in Oleosin Target the Cytosolic Side of Endoplasmic Reticulum and Budding Lipid Droplet. PLANT PHYSIOLOGY 2017; 174:2248-2260. [PMID: 28611060 PMCID: PMC5543949 DOI: 10.1104/pp.17.00366] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/06/2017] [Indexed: 05/20/2023]
Abstract
Plant cytosolic lipid droplets (LDs) are covered with a layer of phospholipids and oleosin and were extensively studied before those in mammals and yeast. Oleosin has short amphipathic N- and C-terminal peptides flanking a conserved 72-residue hydrophobic hairpin, which penetrates and stabilizes the LD Oleosin is synthesized on endoplasmic reticulum (ER) and extracts ER-budding LDs to cytosol. To delineate the mechanism of oleosin targeting ER-LD, we have expressed modified-oleosin genes in Physcomitrella patens for transient expression and tobacco (Nicotiana tabacum) BY2 cells for stable transformation. The results have identified oleosin motifs for targeting ER-LD and oleosin as the sole molecule responsible for budding-LD entering cytosol. Both the N-terminal and C-terminal peptides are not required for the targeting. The hairpin, including its entire length, initial N-portion residues, and hairpin-loop of three Pro and one Ser residues, as well as the absence of an N-terminal ER-targeting peptide, are necessary for oleosin targeting ER and moving onto budding LDs and extracting them to cytosol. In a reverse approach, eliminations of these necessities allow the modified oleosin to enter the ER lumen and extract budding LDs to the ER lumen. Modified oleosin with an added vacuole signal peptide transports the ER-luminal LDs to vacuoles. The overall findings define the mechanism of oleosin targeting ER-LDs and extracting budding LDs to the cytosol as well as reveal potential applications.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Anthony H C Huang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| |
Collapse
|
33
|
Dek MSP, Padmanabhan P, Sherif S, Subramanian J, Paliyath AG. Upregulation of Phosphatidylinositol 3-Kinase (PI3K) Enhances Ethylene Biosynthesis and Accelerates Flower Senescence in Transgenic Nicotiana tabacum L. Int J Mol Sci 2017; 18:E1533. [PMID: 28714880 PMCID: PMC5536021 DOI: 10.3390/ijms18071533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) is a key enzyme that phosphorylates phosphatidylinositol at 3'-hydroxyl position of the inositol head group initiating the generation of several phosphorylated phosphatidylinositols, collectively referred to as phosphoinositides. The function of PI3K in plant senescence and ethylene signal transduction process was studied by expression of Solanum lycopersicum PI3K in transgenic Nicotiana tabacum, and delineating its effect on flower senescence. Detached flowers of transgenic tobacco plants with overexpressed Sl-PI3K (OX) displayed accelerated senescence and reduced longevity, when compared to the flowers of wild type plants. Flowers from PI3K-overexpressing plants showed enhanced ethylene production and upregulated expression of 1-aminocyclopropane-1-carboxylic acid oxidase 1 (ACO1). Real time polymerase chain reaction (PCR) analysis showed that PI3K was expressed at a higher level in OX flowers than in the control. Seedlings of OX-lines also demonstrated a triple response phenotype with characteristic exaggerated apical hook, shorter hypocotyls and increased sensitivity to 1-aminocyclopropane-1-carboxylate than the control wild type seedlings. In floral tissue from OX-lines, Solanum lycopersicum phosphatidylinositol 3-kinase green fluorescent protein (PI3K-GFP) chimera protein was localized primarily in stomata, potentially in cytoplasm and membrane adjacent to stomatal pores in the guard cells. Immunoblot analysis of PI3K expression in OX lines demonstrated increased protein level compared to the control. Results of the present study suggest that PI3K plays a crucial role in senescence by enhancing ethylene biosynthesis and signaling.
Collapse
Affiliation(s)
- Mohd Sabri Pak Dek
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Malaysia.
| | - Priya Padmanabhan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Sherif Sherif
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada.
- Virginia Agricultural Research and Extension Centre, VirginiaTech, Winchester, VA 22602, USA.
| | | | | |
Collapse
|
34
|
Lee MH, Yoo YJ, Kim DH, Hanh NH, Kwon Y, Hwang I. The Prenylated Rab GTPase Receptor PRA1.F4 Contributes to Protein Exit from the Golgi Apparatus. PLANT PHYSIOLOGY 2017; 174:1576-1594. [PMID: 28487479 PMCID: PMC5490915 DOI: 10.1104/pp.17.00466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 05/28/2023]
Abstract
Prenylated Rab acceptor1 (PRA1) functions in the recruitment of prenylated Rab proteins to their cognate organelles. Arabidopsis (Arabidopsis thaliana) contains a large number of proteins belonging to the AtPRA1 family. However, their physiological roles remain largely unknown. Here, we investigated the physiological role of AtPRA1.F4, a member of the AtPRA1 family. A T-DNA insertion knockdown mutant of AtPRA1.F4, atpra1.f4, was smaller in stature than parent plants and possessed shorter roots, whereas transgenic plants overexpressing HA:AtPRA1.F4 showed enhanced development of secondary roots and root hairs. However, both overexpression and knockdown plants exhibited increased sensitivity to high-salt stress, lower vacuolar Na+/K+-ATPase and plasma membrane ATPase activities, lower and higher pH in the vacuole and apoplast, respectively, and highly vesiculated Golgi apparatus. HA:AtPRA1.F4 localized to the Golgi apparatus and assembled into high-molecular-weight complexes. atpra1.f4 plants displayed a defect in vacuolar trafficking, which was complemented by low but not high levels of HA:AtPRA1.F4 Overexpression of HA:AtPRA1.F4 also inhibited protein trafficking at the Golgi apparatus, albeit differentially depending on the final destination or type of protein: trafficking of vacuolar proteins, plasma membrane proteins, and trans-Golgi network (TGN)-localized SYP61 was strongly inhibited; trafficking of TGN-localized SYP51 was slightly inhibited; and trafficking of secretory proteins and TGN-localized SYP41 was negligibly or not significantly inhibited. Based on these results, we propose that Golgi-localized AtPRA1.F4 is involved in the exit of many but not all types of post-Golgi proteins from the Golgi apparatus. Additionally, an appropriate level of AtPRA1.F4 is crucial for its function at the Golgi apparatus.
Collapse
Affiliation(s)
- Myoung Hui Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yun-Joo Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Dae Heon Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Nguyen Hong Hanh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yun Kwon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
35
|
Pečenková T, Pleskot R, Žárský V. Subcellular Localization of Arabidopsis Pathogenesis-Related 1 (PR1) Protein. Int J Mol Sci 2017; 18:E825. [PMID: 28406455 PMCID: PMC5412409 DOI: 10.3390/ijms18040825] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/02/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022] Open
Abstract
The Arabidopsisthaliana pathogenesis-related 1 (PR1) is an important defense protein, so far it has only been detected in extracellular space and its subcellular sorting and transport remain unexplained. Using a green fluorescent protein (GFP) tagged full length, as well as a C-terminus truncated version of PR1, we observed that when expressed ectopically in Nicotiana benthamiana leaves, PR1 co-localizes only partially with Golgi markers, and much more prominently with the late endosome (LE)/multivesicular body (MVB) FYVE marker. The C-truncated version PR1ΔC predominantly localized to the endoplasmic reticulum (ER). The same localizations were found for stable Arabidopsis transformants with expression of PR1 and PR1ΔC driven by the native promoter. We conclude that the A. thaliana PR1 (AtPR1) undergoes an unconventional secretion pathway, starting from the C-terminus-dependent sorting from the ER, and utilizing further transportation via phosphatidyl-inositol-3-phosphate (PI(3)P) positive LE/MVB-like vesicles. The homology model of the PR1 structure shows that the cluster of positively charged amino acid residues (arginines 60, 67, 137, and lysine 135) could indeed interact with negatively charged phospholipids of cellular membranes. It remains to be resolved whether Golgi and LE/MVB localization reflects an alternative sorting or trafficking succession, and what the role of lipid interactions in it will be.
Collapse
Affiliation(s)
- Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 165 02 Prague 6, Czech Republic.
| | - Roman Pleskot
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 165 02 Prague 6, Czech Republic.
| | - Viktor Žárský
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Vinicna 5, 128 44 Prague 2, Czech Republic.
| |
Collapse
|
36
|
Pečenková T, Pleskot R, Žárský V. Subcellular Localization of Arabidopsis Pathogenesis-Related 1 (PR1) Protein. Int J Mol Sci 2017. [PMID: 28406455 DOI: 10.3390/ijms1804082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The Arabidopsisthaliana pathogenesis-related 1 (PR1) is an important defense protein, so far it has only been detected in extracellular space and its subcellular sorting and transport remain unexplained. Using a green fluorescent protein (GFP) tagged full length, as well as a C-terminus truncated version of PR1, we observed that when expressed ectopically in Nicotiana benthamiana leaves, PR1 co-localizes only partially with Golgi markers, and much more prominently with the late endosome (LE)/multivesicular body (MVB) FYVE marker. The C-truncated version PR1ΔC predominantly localized to the endoplasmic reticulum (ER). The same localizations were found for stable Arabidopsis transformants with expression of PR1 and PR1ΔC driven by the native promoter. We conclude that the A. thaliana PR1 (AtPR1) undergoes an unconventional secretion pathway, starting from the C-terminus-dependent sorting from the ER, and utilizing further transportation via phosphatidyl-inositol-3-phosphate (PI(3)P) positive LE/MVB-like vesicles. The homology model of the PR1 structure shows that the cluster of positively charged amino acid residues (arginines 60, 67, 137, and lysine 135) could indeed interact with negatively charged phospholipids of cellular membranes. It remains to be resolved whether Golgi and LE/MVB localization reflects an alternative sorting or trafficking succession, and what the role of lipid interactions in it will be.
Collapse
Affiliation(s)
- Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 165 02 Prague 6, Czech Republic.
| | - Roman Pleskot
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 165 02 Prague 6, Czech Republic.
| | - Viktor Žárský
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Vinicna 5, 128 44 Prague 2, Czech Republic.
| |
Collapse
|
37
|
Xu L, Zeisler V, Schreiber L, Gao J, Hu K, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T. Overexpression of the Novel Arabidopsis Gene At5g02890 Alters Inflorescence Stem Wax Composition and Affects Phytohormone Homeostasis. FRONTIERS IN PLANT SCIENCE 2017; 8:68. [PMID: 28184233 PMCID: PMC5266714 DOI: 10.3389/fpls.2017.00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/12/2017] [Indexed: 05/08/2023]
Abstract
The cuticle is composed of cutin and cuticular wax. It covers the surfaces of land plants and protects them against environmental damage. At5g02890 encodes a novel protein in Arabidopsis thaliana. In the current study, protein sequence analysis showed that At5g02890 is highly conserved in the Brassicaceae. Arabidopsis lines overexpressing At5g02890 (OE-At5g02890 lines) and an At5g02890 orthologous gene from Brassica napus (OE-Bn1 lines) exhibited glossy stems. Chemical analysis revealed that overexpression of At5g02890 caused significant reductions in the levels of wax components longer than 28 carbons (C28) in inflorescence stems, whereas the levels of wax molecules of chain length C28 or shorter were significantly increased. Transcriptome analysis indicated that nine of 11 cuticular wax synthesis-related genes with different expression levels in OE-At5g02890 plants are involved in very-long-chain fatty acid (VLCFA) elongation. At5g02890 is localized to the endoplasmic reticulum (ER), which is consistent with its function in cuticular wax biosynthesis. These results demonstrate that the overexpression of At5g02890 alters cuticular wax composition by partially blocking VLCFA elongation of C28 and higher. In addition, detailed analysis of differentially expressed genes associated with plant hormones and endogenous phytohormone levels in wild-type and OE-At5g02890 plants indicated that abscisic acid (ABA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile) biosynthesis, as well as polar auxin transport, were also affected by overexpression of At5g02890. Taken together, these findings indicate that overexpression of At5g02890 affects both cuticular wax biosynthesis and phytohormone homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Liping Xu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Viktoria Zeisler
- Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Bin Yi
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
38
|
Xia S, Wang Z, Zhang H, Hu K, Zhang Z, Qin M, Dun X, Yi B, Wen J, Ma C, Shen J, Fu T, Tu J. Altered Transcription and Neofunctionalization of Duplicated Genes Rescue the Harmful Effects of a Chimeric Gene in Brassica napus. THE PLANT CELL 2016; 28:2060-2078. [PMID: 27559024 PMCID: PMC5059798 DOI: 10.1105/tpc.16.00281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/19/2016] [Accepted: 08/24/2016] [Indexed: 05/04/2023]
Abstract
Chimeric genes contribute to the evolution of diverse functions in plants and animals. However, new chimeric genes also increase the risk of developmental defects. Here, we show that the chimeric gene Brassica napus male sterile 4 (Bnams4b ) is responsible for genic male sterility in the widely used canola line 7365A (Bnams3 ms3ms4bms4b ). Bnams4b originated via exon shuffling ∼4.6 million years ago. It causes defects in the normal functions of plastids and induces aborted anther formation and/or albino leaves and buds. Evidence of the age of the mutation, its tissue expression pattern, and its sublocalization indicated that it coevolved with BnaC9.Tic40 (BnaMs3). In Arabidopsis thaliana, Bnams4b results in complete male sterility that can be rescued by BnaC9.Tic40, suggesting that BnaC9.Tic40 might restore fertility through effects on protein level. Another suppressor gene, Bnams4a , rescues sterility by reducing the level of transcription of Bnams4b Our results suggest that Brassica plants have coevolved altered transcription patterns and neofunctionalization of duplicated genes that can block developmental defects resulting from detrimental chimeric genes.
Collapse
Affiliation(s)
- Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhixin Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Maomao Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoling Dun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
39
|
Nagpal A, Ndamukong I, Hassan A, Avramova Z, Baluška F. Subcellular localizations of Arabidopsis myotubularins MTM1 and MTM2 suggest possible functions in vesicular trafficking between ER and cis-Golgi. JOURNAL OF PLANT PHYSIOLOGY 2016; 200:45-52. [PMID: 27340857 DOI: 10.1016/j.jplph.2016.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
The two Arabidopsis genes AtMTM1 and AtMTM2 encode highly similar phosphoinositide 3-phosphatases from the myotubularin family. Despite the high-level conservation of structure and biochemical activities, their physiological roles have significantly diverged. The nature of a membrane and the concentrations of their membrane-anchored substrates (PtdIns3P or PtdIns3,5P2) and/or products (PtdIns5P and PtdIns) are considered critical for determining the functional specificity of myotubularins. We have performed comprehensive analyses of the subcellular localization of AtMTM1 and AtMTM2 using a variety of specific constructs transiently expressed in Nicotiana benthamiana leaf epidermal cells under the control of 35S promoter. AtMTM1 co-localized preferentially with cis-Golgi membranes, while AtMTM2 associated predominantly with ER membranes. In a stark contrast with animal/human MTMs, neither AtMTM1 nor AtMTM2 co-localizes with early or late endosomes or with TGN/EE compartments, making them unlikely participants in the endosomal trafficking system. Localization of the AtMTM2 is sensitive to cold and osmotic stress challenges. In contrast to animal myotubularins, Arabidopsis myotubularins do not associate with endosomes. Our results suggest that Arabidopsis myotubularins play a role in the vesicular trafficking between ER exit sites and cis-Golgi elements. The significance of these results is discussed also in the context of stress biology and plant autophagy.
Collapse
Affiliation(s)
| | - Ivan Ndamukong
- School of Biological Sciences, UNL, Lincoln NE, 68588, United States
| | - Ammar Hassan
- IZMB, University of Bonn, Kirschalle 1, 53115 Bonn, Germany
| | - Zoya Avramova
- School of Biological Sciences, UNL, Lincoln NE, 68588, United States.
| | | |
Collapse
|
40
|
Li Y, Provenzano S, Bliek M, Spelt C, Appelhagen I, Machado de Faria L, Verweij W, Schubert A, Sagasser M, Seidel T, Weisshaar B, Koes R, Quattrocchio F. Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification. THE NEW PHYTOLOGIST 2016; 211:1092-107. [PMID: 27214749 DOI: 10.1111/nph.14008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/07/2016] [Indexed: 05/21/2023]
Abstract
Petunia mutants (Petunia hybrida) with blue flowers defined a novel vacuolar proton pump consisting of two interacting P-ATPases, PH1 and PH5, that hyper-acidify the vacuoles of petal cells. PH5 is similar to plasma membrane H(+) P3A -ATPase, whereas PH1 is the only known eukaryoticP3B -ATPase. As there were no indications that this tonoplast pump is widespread in plants, we investigated the distribution and evolution of PH1 and PH5. We combined database mining and phylogenetic and synteny analyses of PH1- and PH5-like proteins from all kingdoms with functional analyses (mutant complementation and intracellular localization) of homologs from diverse angiosperms. We identified functional PH1 and PH5 homologs in divergent angiosperms. PH5 homologs evolved from plasma membrane P3A -ATPases, acquiring an N-terminal tonoplast-sorting sequence and new cellular function before angiosperms appeared. PH1 is widespread among seed plants and related proteins are found in some groups of bacteria and fungi and in one moss, but is absent in most algae, suggesting that its evolution involved several cases of gene loss and possibly horizontal transfer events. The distribution of PH1 and PH5 in the plant kingdom suggests that vacuolar acidification by P-ATPases appeared in gymnosperms before flowers. This implies that, next to flower color determination, vacuolar hyper-acidification is required for yet unknown processes.
Collapse
Affiliation(s)
- Yanbang Li
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH, Amsterdam, the Netherlands
- Department of Molecular and Cell Biology, VU-University, De Boelelaan 1081, 1071 HK, Amsterdam, the Netherlands
| | - Sofia Provenzano
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH, Amsterdam, the Netherlands
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Mattijs Bliek
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH, Amsterdam, the Netherlands
- Department of Molecular and Cell Biology, VU-University, De Boelelaan 1081, 1071 HK, Amsterdam, the Netherlands
| | - Cornelis Spelt
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH, Amsterdam, the Netherlands
- Department of Molecular and Cell Biology, VU-University, De Boelelaan 1081, 1071 HK, Amsterdam, the Netherlands
| | - Ingo Appelhagen
- Genome Research, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Laura Machado de Faria
- Department of Molecular and Cell Biology, VU-University, De Boelelaan 1081, 1071 HK, Amsterdam, the Netherlands
| | - Walter Verweij
- Department of Molecular and Cell Biology, VU-University, De Boelelaan 1081, 1071 HK, Amsterdam, the Netherlands
| | - Andrea Schubert
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095, Grugliasco, Italy
| | - Martin Sagasser
- Genome Research, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Thorsten Seidel
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld University, 33501, Bielefeld, Germany
| | - Bernd Weisshaar
- Genome Research, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Ronald Koes
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH, Amsterdam, the Netherlands
- Department of Molecular and Cell Biology, VU-University, De Boelelaan 1081, 1071 HK, Amsterdam, the Netherlands
| | - Francesca Quattrocchio
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098XH, Amsterdam, the Netherlands
- Department of Molecular and Cell Biology, VU-University, De Boelelaan 1081, 1071 HK, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Qin M, Tian T, Xia S, Wang Z, Song L, Yi B, Wen J, Shen J, Ma C, Fu T, Tu J. Heterodimer Formation of BnPKSA or BnPKSB with BnACOS5 Constitutes a Multienzyme Complex in Tapetal Cells and is Involved in Male Reproductive Development in Brassica napus. PLANT & CELL PHYSIOLOGY 2016; 57:1643-56. [PMID: 27335346 DOI: 10.1093/pcp/pcw092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/29/2016] [Indexed: 05/07/2023]
Abstract
Multienzyme associations localized to specific subcellular sites are involved in several critical functions in cellular metabolism, such as plant survival and reproduction. To date, few multienzyme complexes involved in male fertility have been examined in Brassica napus Here, we reported that in B. napus, the members of a multienzyme complex work in an interaction pattern different from that in Arabidopsis thaliana for sporopollenin biosynthesis. 7365A, a male-sterile mutant with a relatively smooth anther cuticle, was found to have a dramatic reduction in both cutin monomers and wax composition. Proteomic comparison between the mutant 7365A and wild-type 7365B showed down-regulation of three sporopollenin biosynthetic enzymes, namely BnPKSA, BnPKSB and BnTKPR; these enzymes were tightly co-expressed with BnACOS5. BnPKSA and BnPKSB showed similar expression patterns but distinct accumulation levels, suggesting that they had partially distinct functions during sporopollenin biosynthesis. In vitro and in vivo analyses demonstrated that BnPKSB directly interacted with BnPKSA and BnACOS5, but no such interactions were found in the present investigation for BnTKPR1. Interestingly, the interaction between PKSA and PKSB has not been discovered in Arabidopsis, which may indicate a new interaction representing an additional efficient regulation method in B. napus Taken together, we propose that BnPKSA and BnPKSB may comprise a heterodimer combined with BnACOS5, constituting a sporopollenin metabolon in tapetal cells that is related to male reproductive development in B. napus.
Collapse
Affiliation(s)
- Maomao Qin
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiantian Tian
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengqian Xia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhixin Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Song
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
42
|
Yoo YJ, Lee HK, Han W, Kim DH, Lee MH, Jeon J, Lee DW, Lee J, Lee Y, Lee J, Kim JS, Cho Y, Han JK, Hwang I. Interactions between Transmembrane Helices within Monomers of the Aquaporin AtPIP2;1 Play a Crucial Role in Tetramer Formation. MOLECULAR PLANT 2016; 9:1004-1017. [PMID: 27142778 DOI: 10.1016/j.molp.2016.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/15/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
Aquaporin (AQP) is a water channel protein found in various subcellular membranes of both prokaryotic and eukaryotic cells. The physiological functions of AQPs have been elucidated in many organisms. However, understanding their biogenesis remains elusive, particularly regarding how they assemble into tetramers. Here, we investigated the amino acid residues involved in the tetramer formation of the Arabidopsis plasma membrane AQP AtPIP2;1 using extensive amino acid substitution mutagenesis. The mutant proteins V41A/E44A, F51A/L52A, F87A/I91A, F92A/I93A, V95A/Y96A, and H216A/L217A, harboring alanine substitutions in the transmembrane (TM) helices of AtPIP2;1 polymerized into multiple oligomeric complexes with a variable number of subunits greater than four. Moreover, these mutant proteins failed to traffic to the plasma membrane, instead of accumulating in the endoplasmic reticulum (ER). Structure-based modeling revealed that these residues are largely involved in interactions between TM helices within monomers. These results suggest that inter-TM interactions occurring both within and between monomers play crucial roles in tetramer formation in the AtPIP2;1 complex. Moreover, the assembly of AtPIP2;1 tetramers is critical for their trafficking from the ER to the plasma membrane, as well as water permeability.
Collapse
Affiliation(s)
- Yun-Joo Yoo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Hyun Kyung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Wonhee Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon 57922, Korea
| | - Myoung Hui Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jouhyun Jeon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Junho Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yongjik Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Juhun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jin Seok Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yunje Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jin-Kwan Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
43
|
Salt stress induces internalization of plasma membrane aquaporin into the vacuole in Arabidopsis thaliana. Biochem Biophys Res Commun 2016; 474:742-746. [DOI: 10.1016/j.bbrc.2016.05.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/22/2022]
|
44
|
Naramoto S, Dainobu T, Tokunaga H, Kyozuka J, Fukuda H. Cellular and developmental function of ACAP type ARF-GAP proteins are diverged in plant cells. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2016; 33:309-314. [PMID: 31274992 PMCID: PMC6565945 DOI: 10.5511/plantbiotechnology.16.0309a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/09/2016] [Indexed: 05/29/2023]
Abstract
Vesicle transport is crucial for various cellular functions and development of multicellular organisms. ARF-GAP is one of the key regulators of vesicle transport and is diverse family of proteins. Arabidopsis has 15 ARF-GAP proteins and four members are classified as ACAP type ARF-GAP proteins. Our previous study identified that VASCULAR NETWORK DEFECTIVE3 (VAN3), an ACAP ARF-GAP, played crucial roles in leaf vascular formation. However, it remains question how other members of plant ACAP ARF-GAPs function in cellular and developmental processes. To characterize these, we analyzed spatial expression pattern and subcellular localization of VAN3 and three other ACAPs, so called VAN3-like proteins (VALs). Expression pattern analysis revealed that they were expressed in distinctive developmental processes. Subcellular localization analysis in protoplast cells indicated that in contrast to VAN3, which localizes on trans-Golgi networks/early endosomes (TGNs/EEs), VAL1 and VAL2 were localized on ARA6-labelled endosomes, and VAL3 resided mainly in the cytoplasm. These results indicated that VAN3 and VALs are differently expressed in a tissue level and function in different intracellular compartments, in spite of their significant sequence similarities. These findings suggested functional divergence among plant ACAPs. Cellular localizations of all members of animal ACAP proteins are identical. Therefore our findings also suggested that plant evolved ACAP proteins in plant specific manner.
Collapse
Affiliation(s)
- Satoshi Naramoto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Tomoko Dainobu
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hiroki Tokunaga
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Junko Kyozuka
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
45
|
Lampugnani ER, Ho YY, Moller IE, Koh PL, Golz JF, Bacic A, Newbigin E. A Glycosyltransferase from Nicotiana alata Pollen Mediates Synthesis of a Linear (1,5)-α-L-Arabinan When Expressed in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:1962-74. [PMID: 26850276 PMCID: PMC4825119 DOI: 10.1104/pp.15.02005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/04/2016] [Indexed: 05/09/2023]
Abstract
The walls of Nicotiana alata pollen tubes contain a linear arabinan composed of (1,5)-α-linked arabinofuranose residues. Although generally found as a side chain on the backbone of the pectic polysaccharide rhamnogalacturonan I, the arabinan in N. alata pollen tubes is considered free, as there is no detectable rhamnogalacturonan I in these walls. Carbohydrate-specific antibodies detected arabinan epitopes at the tip and along the shank of N. alata pollen tubes that are predominantly part of the primary layer of the bilayered wall. A sequence related to ARABINAN DEFICIENT1 (AtARAD1), a presumed arabinan arabinosyltransferase from Arabidopsis (Arabidopsis thaliana), was identified by searching an N alata pollen transcriptome. Transcripts for this ARAD1-like sequence, which we have named N. alata ARABINAN DEFICIENT-LIKE1 (NaARADL1), accumulate in various tissues, most abundantly in the pollen grain and tube, and encode a protein that is a type II membrane protein with its catalytic carboxyl terminus located in the Golgi lumen. The NaARADL1 protein can form homodimers when transiently expressed in Nicotiana benthamiana leaves and heterodimers when coexpressed with AtARAD1 The expression of NaARADL1 in Arabidopsis led to plants with more arabinan in their walls and that also exuded a guttation fluid rich in arabinan. Chemical and enzymatic characterization of the guttation fluid showed that a soluble, linear α-(1,5)-arabinan was the most abundant polymer present. These results are consistent with NaARADL1 having an arabinan (1,5)-α-arabinosyltransferase activity.
Collapse
Affiliation(s)
- Edwin R Lampugnani
- Plant Cell Biology Research Centre, School of BioSciences (E.R.L., Y.Y.H., I.E.M., P.-L.K., A.B., E.N.), and School of BioSciences (J.F.G.), University of Melbourne, Melbourne, Victoria, 3010 Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (E.R.L., Y.Y.H., I.E.M., A.B.)
| | - Yin Ying Ho
- Plant Cell Biology Research Centre, School of BioSciences (E.R.L., Y.Y.H., I.E.M., P.-L.K., A.B., E.N.), and School of BioSciences (J.F.G.), University of Melbourne, Melbourne, Victoria, 3010 Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (E.R.L., Y.Y.H., I.E.M., A.B.)
| | - Isabel E Moller
- Plant Cell Biology Research Centre, School of BioSciences (E.R.L., Y.Y.H., I.E.M., P.-L.K., A.B., E.N.), and School of BioSciences (J.F.G.), University of Melbourne, Melbourne, Victoria, 3010 Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (E.R.L., Y.Y.H., I.E.M., A.B.)
| | - Poh-Ling Koh
- Plant Cell Biology Research Centre, School of BioSciences (E.R.L., Y.Y.H., I.E.M., P.-L.K., A.B., E.N.), and School of BioSciences (J.F.G.), University of Melbourne, Melbourne, Victoria, 3010 Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (E.R.L., Y.Y.H., I.E.M., A.B.)
| | - John F Golz
- Plant Cell Biology Research Centre, School of BioSciences (E.R.L., Y.Y.H., I.E.M., P.-L.K., A.B., E.N.), and School of BioSciences (J.F.G.), University of Melbourne, Melbourne, Victoria, 3010 Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (E.R.L., Y.Y.H., I.E.M., A.B.)
| | - Antony Bacic
- Plant Cell Biology Research Centre, School of BioSciences (E.R.L., Y.Y.H., I.E.M., P.-L.K., A.B., E.N.), and School of BioSciences (J.F.G.), University of Melbourne, Melbourne, Victoria, 3010 Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (E.R.L., Y.Y.H., I.E.M., A.B.)
| | - Ed Newbigin
- Plant Cell Biology Research Centre, School of BioSciences (E.R.L., Y.Y.H., I.E.M., P.-L.K., A.B., E.N.), and School of BioSciences (J.F.G.), University of Melbourne, Melbourne, Victoria, 3010 Australia; andAustralian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (E.R.L., Y.Y.H., I.E.M., A.B.)
| |
Collapse
|
46
|
Liu J, Ji Y, Zhou J, Xing D. Phosphatidylinositol 3-Kinase Promotes Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence. PLANT PHYSIOLOGY 2016; 170:1714-31. [PMID: 26739232 PMCID: PMC4775102 DOI: 10.1104/pp.15.00744] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/05/2016] [Indexed: 05/09/2023]
Abstract
PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence.
Collapse
Affiliation(s)
- Jian Liu
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.)
| | - Yingbin Ji
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.)
| | - Jun Zhou
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.)
| | - Da Xing
- MOE Key Laboratory of Laser Life Science, and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China (J.L., Y.J., J.Z., D. X.).
| |
Collapse
|
47
|
Park KY, Kim EY, Lee W, Kim TY, Kim WT. Expression, subcellular localization, and enzyme activity of a recombinant human extra-cellular superoxide dismutase in tobacco (Nicotiana benthamiana L.). Protein Expr Purif 2016; 119:69-74. [PMID: 26611610 DOI: 10.1016/j.pep.2015.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 12/15/2022]
Abstract
Human extracellular superoxide dismutase (hEC-SOD) is an enzyme that scavenges reactive oxygen species (ROS). Because of its antioxidant activity, hEC-SOD has been used as a therapeutic protein to treat skin disease and arthritis in mammalian systems. In this study, codon-optimized hEC-SOD was expressed in tobacco (Nicotiana benthamiana L.) via a plant-based transient protein expression system. Plant expression binary vectors containing full-length hEC-SOD (f-hEC-SOD) and modified hEC-SOD (m-hEC-SOD), in which the signal peptide and heparin-binding domain were deleted, were constructed for the cytosolic-, endoplasmic reticulum (ER)-, and chloroplast-localizations in tobacco leaf mesophyll cells. The results demonstrated that f-hEC-SOD was more efficiently expressed in the cytosolic fractions than in the ER or chloroplasts of tobacco cells. Our data further indicated that differently localized f-hEC-SOD and m-hEC-SOD displayed SOD enzyme activities, suggesting that the hEC-SODs expressed by plants may be functionally active. The f-hEC-SOD was expressed up to 3.8% of the total leaf soluble protein and the expression yield was calculated to be 313.7 μg f-hEC-SOD per g fresh weight of leaf. Overall, our results reveal that it was possible to express catalytically active hEC-SODs by means of a transient plant expression system in tobacco leaf cells.
Collapse
Affiliation(s)
- Ki Youl Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Eun Yu Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Tae-Yoon Kim
- Laboratory of Dermatology-immunology, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
48
|
Li CL, Wang M, Wu XM, Chen DH, Lv HJ, Shen JL, Qiao Z, Zhang W. THI1, a Thiamine Thiazole Synthase, Interacts with Ca2+-Dependent Protein Kinase CPK33 and Modulates the S-Type Anion Channels and Stomatal Closure in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:1090-104. [PMID: 26662273 PMCID: PMC4734576 DOI: 10.1104/pp.15.01649] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/09/2015] [Indexed: 05/06/2023]
Abstract
Thiamine is required for both plant growth and development. Here, the involvement of a thiamine thiazole synthase, THI1, has been demonstrated in both guard cell abscisic acid (ABA) signaling and the drought response in Arabidopsis (Arabidopsis thaliana). THI1 overexpressors proved to be more sensitive to ABA than the wild type with respect to both the activation of guard cell slow type anion channels and stomatal closure; this effectively reduced the rate of water loss from the plant and thereby enhanced its level of drought tolerance. A yeast two-hybrid strategy was used to screen a cDNA library from epidermal strips of leaves for THI1 regulatory factors, and identified CPK33, a Ca(2+)-dependent protein kinase, as interactor with THI1 in a plasma membrane-delimited manner. Loss-of-function cpk33 mutants were hypersensitive to ABA activation of slow type anion channels and ABA-induced stomatal closure, while the CPK33 overexpression lines showed opposite phenotypes. CPK33 kinase activity was essential for ABA-induced stomatal closure. Consistent with their contrasting regulatory role over stomatal closure, THI1 suppressed CPK33 kinase activity in vitro. Together, our data reveal a novel regulatory role of thiamine thiazole synthase to kinase activity in guard cell signaling.
Collapse
Affiliation(s)
- Chun-Long Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Mei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Xiao-Meng Wu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Dong-Hua Chen
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Hong-Jun Lv
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Jian-Lin Shen
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Zhu Qiao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| |
Collapse
|
49
|
Hong D, Jeon BW, Kim SY, Hwang JU, Lee Y. The ROP2-RIC7 pathway negatively regulates light-induced stomatal opening by inhibiting exocyst subunit Exo70B1 in Arabidopsis. THE NEW PHYTOLOGIST 2016; 209:624-35. [PMID: 26451971 DOI: 10.1111/nph.13625] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/30/2015] [Indexed: 05/03/2023]
Abstract
Stomata are the tiny valves on the plant surface that mediate gas exchange between the plant and its environment. Stomatal opening needs to be tightly regulated to facilitate CO2 uptake and prevent excess water loss. Plant Rho-type (ROP) GTPase 2 (ROP2) is a molecular component of the system that negatively regulates light-induced stomatal opening. Previously, ROP-interactive Cdc42- and Rac-interactive binding motif-containing protein 7 (RIC7) was suggested to function downstream of ROP2. However, the underlying molecular mechanism remains unknown. To understand the mechanism by which RIC7 regulates light-induced stomatal opening, we analyzed the stomatal responses of ric7 mutant Arabidopsis plants and identified the target protein of RIC7 using a yeast two-hybrid screen. Light-induced stomatal opening was promoted by ric7 knockout, whereas it was inhibited by RIC7 overexpression, indicating that RIC7 negatively regulates stomatal opening in Arabidopsis. RIC7 interacted with exocyst subunit Exo70 family protein B1 (Exo70B1), a component of the vesicle trafficking machinery. RIC7 and Exo70B1 localized to the plasma membrane region under light or constitutively active ROP2 conditions. The knockout mutant of Exo70B1 and ric7/exo70b1 exhibited retarded light-induced stomatal opening. Our results suggest that ROP2 and RIC7 suppress excess stomatal opening by inhibiting Exo70B1, which most likely participates in the vesicle trafficking required for light-induced stomatal opening.
Collapse
Affiliation(s)
- Daewoong Hong
- Division of Molecular Life Sciences, POSTECH, Pohang, 790-784, Korea
| | - Byeong Wook Jeon
- Division of Molecular Life Sciences, POSTECH, Pohang, 790-784, Korea
| | - Soo Young Kim
- Departments of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Korea
| | - Jae-Ung Hwang
- Division of Molecular Life Sciences, POSTECH, Pohang, 790-784, Korea
| | - Youngsook Lee
- Division of Molecular Life Sciences, POSTECH, Pohang, 790-784, Korea
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, 790-784, Korea
| |
Collapse
|
50
|
Foissner I, Sommer A, Hoeftberger M, Hoepflinger MC, Absolonova M. Is Wortmannin-Induced Reorganization of the trans-Golgi Network the Key to Explain Charasome Formation? FRONTIERS IN PLANT SCIENCE 2016; 7:756. [PMID: 27375631 PMCID: PMC4891338 DOI: 10.3389/fpls.2016.00756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Wortmannin, a fungal metabolite and an inhibitor of phosphatidylinositol-3 (PI3) and phosphatidylinositol-4 (PI4) kinases, is widely used for the investigation and dissection of vacuolar trafficking routes and for the identification of proteins located at multivesicular bodies (MVBs). In this study, we applied wortmannin on internodal cells of the characean green alga Chara australis. Wortmannin was used at concentrations of 25 and 50 μM which, unlike in other cells, arrested neither constitutive, nor wounding-induced endocytosis via coated vesicles. Wortmannin caused the formation of "mixed compartments" consisting of MVBs and membranous tubules which were probably derived from the trans-Golgi network (TGN) and within these compartments MVBs fused into larger organelles. Most interestingly, wortmannin also caused pronounced changes in the morphology of the TGNs. After transient hypertrophy, the TGNs lost their coat and formed compact, three-dimensional meshworks of anastomosing tubules containing a central core. These meshworks had a size of up to 4 μm and a striking resemblance to charasomes, which are convoluted plasma membrane domains, and which serve to increase the area available for transporters. Our findings indicate that similar mechanisms are responsible for the formation of charasomes and the wortmannin-induced reorganization of the TGN. We hypothesize that both organelles grow because of a disturbance of clathrin-dependent membrane retrieval due to inhibition of PI3 and/or PI4 kinases. This leads to local inhibition of clathrin-mediated endocytosis during charasome formation in untreated cells and to inhibition of vesicle release from the TGN in wortmannin-treated cells, respectively. The morphological resemblance between charasomes and wortmannin-modified TGN compartments suggests that homologous proteins are involved in membrane curvature and organelle architecture.
Collapse
|