1
|
Dong X, Shao J, Wu X, Dong J, Tang P. Lipidomic profiling reveals the protective mechanism of nitrogen-controlled atmosphere on brown rice quality during storage. Food Chem 2025; 473:143081. [PMID: 39884227 DOI: 10.1016/j.foodchem.2025.143081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Rice, a globally important staple, requires effective preservation methods to maintain its quality during extended storage. This study explored the efficacy of nitrogen-controlled atmosphere (NCA) storage in preserving the quality of brown rice during a one-year period using UHPLC-MS/MS based lipidomic profiling. A total of 1013 lipids were identified and categorized into five main groups. Specific lipids including triglycerides (TG), diglycerides (DG), phosphatidylethanolamines (PE), cardiolipins (CL), and ceramides (Cer), were highlighted as potential biomarkers for assessing rice rancidity. NCA storage significantly suppressed lipase and lipoxygenase activities, reducing lipid hydrolysis and oxidation to effectively delayed rice quality deterioration. Furthermore, NCA regulated glycerolipid and glycerophospholipid metabolisms, promoting lipid remodeling while reducing the degradation of TGs and phospholipids. This regulation preserved cellular membrane integrity, limited fatty acid release, and mitigate rancidity and quality loss during storage. These findings elucidate the mechanism by which NCA storage delays deterioration and extends the stored rice shelf-life.
Collapse
Affiliation(s)
- Xue Dong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Jin Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Xueyou Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Jialin Dong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Peian Tang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
2
|
Li Z, Yao Z, Ruan M, Wang R, Ye Q, Wan H, Zhou G, Cheng Y, Guo S, Liu C, Liu C. The PLA Gene Family in Tomato: Identification, Phylogeny, and Functional Characterization. Genes (Basel) 2025; 16:130. [PMID: 40004459 DOI: 10.3390/genes16020130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Phospholipase A (PLA) enzymes catalyze the hydrolysis of glycerophospholipids, releasing free fatty acids and lysophospholipids that play vital roles in plant growth, development, and stress responses. METHODS This study identified and analyzed SlPLA genes through bioinformatics and further explored the function of PLA genes under cold stress through virus-induced gene silencing (VIGS) experiments. RESULTS This study systematically characterized the SlPLA gene family in tomato, identifying 80 genes distributed across 12 chromosomes. Phylogenetic analysis categorized these genes into three groups: pPLA, PLA1, and PLA2. Conserved motifs and gene structure analysis revealed distinct patterns, with some genes lacking untranslated regions (UTRs), which suggests functional diversification. Promoter analysis indicated that SlPLA genes are regulated by light, hormones, and stress-related elements, particularly cold stress. RNA-seq data and qRT-PCR results indicated the differential expression of SlPLA genes across various tissues in tomato cultivars (Heinz and Micro-Tom). Under cold stress, certain SlPLA genes, especially SlPLA1-2, were up-regulated, suggesting their involvement in cold tolerance. Silencing SlPLA1-2 resulted in increased membrane damage, elevated malondialdehyde (MDA) levels, higher electrolyte leakage, and a lower expression of cold-responsive genes within the ICE1-CBF-COR pathway and jasmonic acid (JA) biosynthesis. CONCLUSIONS This study discovered 80 SlPLA genes in tomato across 12 chromosomes, categorizing them into pPLA, PLA1, and PLA2 via phylogenetic analysis. The qRT-PCR analysis identified that SlPLA1-2 was strongly induced by cold stress, and further experiments regarding genetics and physiology revealed that SlPLA1-2 boosts the cold tolerance of tomato by affecting the CBF signaling pathway and JA biosynthesis, offering insights for future stress-resilience breeding.
Collapse
Affiliation(s)
- Zixing Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhuping Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Zhejiang Xianghu Laboratory, Hangzhou 311258, China
| | - Shangjing Guo
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Chaochao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China
- Zhejiang Xianghu Laboratory, Hangzhou 311258, China
| | - Chenxu Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
3
|
Zhang X, Zhang X, Fu Y, Cui Y, Wu N, Li Y, Yang Z, Zhang C, Song H, He G, Sang X. HTT1, a Stearoyl-Acyl Carrier Protein Desaturase Involved Unsaturated Fatty Acid Biosynthesis, Affects Rice Heat Tolerance. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39757551 DOI: 10.1111/pce.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/29/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Elucidating the mechanisms underlying heat tolerance in rice (Oryza Sativa. L) is vital for adapting this crop to rising global temperature while increasing yields. Here, we identified a rice mutant, high temperature tolerance 1 (htt1), with high survival rates under heat stress. HTT1 encodes a chloroplast-localized stearoyl-acyl carrier protein (ACP) desaturase involved in the biosynthesis of unsaturated fatty acids, converting C18:0 to C18:1 fatty acid. Overexpression and knockout rice lines provided evidence that HTT1 negatively regulates the response to heat stress. In the htt1 mutant, a G-to-A base substitution in HTT1 impairs unsaturated fatty acid biosynthesis, remodelling the lipid content of cellular membranes and in particular increasing diglyceride contents, which improves membrane stability under heat stress. HTT1 was differentially expressed in all tissues analyzed and was inhibited by heat. Yeast one-hybrid and dual-luciferase reporter assays showed that OsHsfA2d binds to the promoter of HTT1, inhibiting its expression. Different HTT1 alleles were identified between the two Asian cultivated rice subspecies, indica and japonica, potentially facilitating their adaptation to different environmental temperature. Taken together, these findings demonstrate that HTT1 is a previously unidentified negative regulator of heat tolerance and a potential target gene for the improvement of heat adaptability in rice.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xuefei Zhang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yao Fu
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yixin Cui
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Nai Wu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Yangyang Li
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhenglin Yang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Changwei Zhang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hongyuan Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Guanghua He
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xianchun Sang
- Chongqing Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Shomo ZD, Li F, Smith CN, Edmonds SR, Roston RL. From sensing to acclimation: The role of membrane lipid remodeling in plant responses to low temperatures. PLANT PHYSIOLOGY 2024; 196:1737-1757. [PMID: 39028871 DOI: 10.1093/plphys/kiae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Low temperatures pose a dramatic challenge to plant viability. Chilling and freezing disrupt cellular processes, forcing metabolic adaptations reflected in alterations to membrane compositions. Understanding the mechanisms of plant cold tolerance is increasingly important due to anticipated increases in the frequency, severity, and duration of cold events. This review synthesizes current knowledge on the adaptive changes of membrane glycerolipids, sphingolipids, and phytosterols in response to cold stress. We delve into key mechanisms of low-temperature membrane remodeling, including acyl editing and headgroup exchange, lipase activity, and phytosterol abundance changes, focusing on their impact at the subcellular level. Furthermore, we tabulate and analyze current gycerolipidomic data from cold treatments of Arabidopsis, maize, and sorghum. This analysis highlights congruencies of lipid abundance changes in response to varying degrees of cold stress. Ultimately, this review aids in rationalizing observed lipid fluctuations and pinpoints key gaps in our current capacity to fully understand how plants orchestrate these membrane responses to cold stress.
Collapse
Affiliation(s)
- Zachery D Shomo
- University of Nebraska-Lincoln, Department of Biochemistry and Center for Plant Science Innovation, Lincoln, NE 68516, USA
| | - Fangyi Li
- University of Nebraska-Lincoln, Department of Biochemistry and Center for Plant Science Innovation, Lincoln, NE 68516, USA
| | - Cailin N Smith
- University of Nebraska-Lincoln, Department of Biochemistry and Center for Plant Science Innovation, Lincoln, NE 68516, USA
| | | | - Rebecca L Roston
- University of Nebraska-Lincoln, Department of Biochemistry and Center for Plant Science Innovation, Lincoln, NE 68516, USA
| |
Collapse
|
5
|
Coulon D, Nacir H, Bahammou D, Jouhet J, Bessoule JJ, Fouillen L, Bréhélin C. Roles of plastoglobules and lipid droplets in leaf neutral lipid accumulation during senescence and nitrogen deprivation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6542-6562. [PMID: 38995052 DOI: 10.1093/jxb/erae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024]
Abstract
Upon abiotic stress or senescence, the size and/or abundance of plastid-localized plastoglobules and cytosolic lipid droplets, both compartments devoted to neutral lipid storage, increase in leaves. Meanwhile, plant lipid metabolism is also perturbed, notably with the degradation of thylakoidal monogalactosyldiacylglycerol (MGDG) and the accumulation of neutral lipids. Although these mechanisms are probably linked, they have never been jointly studied, and the respective roles of plastoglobules and lipid droplets in the plant response to stress are totally unknown. To address this question, we determined and compared the glycerolipid composition of both lipid droplets and plastoglobules, followed their formation in response to nitrogen starvation, and studied the kinetics of lipid metabolism in Arabidopsis leaves. Our results demonstrated that plastoglobules preferentially store phytyl-esters, while triacylglycerols (TAGs) and steryl-esters accumulated within lipid droplets. Thanks to a pulse-chase labeling approach and lipid analyses of the fatty acid desaturase 2 (fad2) mutant, we showed that MGDG-derived C18:3 fatty acids were exported to lipid droplets, while MGDG-derived C16:3 fatty acids were stored within plastoglobules. The export of lipids from plastids to lipid droplets was probably facilitated by the physical contact occurring between both organelles, as demonstrated by our electron tomography study. The accumulation of lipid droplets and neutral lipids was transient, suggesting that stress-induced TAGs were remobilized during the plant recovery phase by a mechanism that remains to be explored.
Collapse
Affiliation(s)
- Denis Coulon
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Houda Nacir
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Delphine Bahammou
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Juliette Jouhet
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Laboratoire de Physiologie Cellulaire et Végétale, F-38000 Grenoble, France
| | - Jean-Jacques Bessoule
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Laëtitia Fouillen
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| | - Claire Bréhélin
- Université Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140 Villenave d'Ornon, France
| |
Collapse
|
6
|
Striesow J, Welle M, Busch LM, Bekeschus S, Wende K, Stöhr C. Hypoxia increases triacylglycerol levels and unsaturation in tomato roots. BMC PLANT BIOLOGY 2024; 24:909. [PMID: 39350052 PMCID: PMC11441241 DOI: 10.1186/s12870-024-05578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Plants are designed to endure stress, but increasingly extreme weather events are testing the limits. Events like flooding result in submergence of plant organs, triggering an energy crisis due to hypoxia and threaten plant growth and productivity. Lipids are relevant as building blocks and energy vault and are substantially intertwined with primary metabolism, making them an ideal readout for plant stress. RESULTS By high resolution mass spectrometry, a distinct, hypoxia-related lipid composition of Solanum lycopersicum root tissue was observed. Out of 491 lipid species, 11 were exclusively detected in this condition. Among the lipid classes observed, glycerolipids and glycerophospholipids dominated by far (78%). Differences between the lipidomic profiles of both analyzed conditions were significantly driven by changes in the abundance of triacylglycerols (TGs) whereas sitosterol esters, digalactosyldiacylglycerols, and phosphatidylcholine play a significantly negligible role in separation. Alongside, an increased level of polyunsaturation was observed in the fatty acid chains, with 18:2 and 18:3 residues showing a significant increase. Of note, hexadecatetraenoic acid (16:4) was identified in hypoxia condition samples. Changes in gene expression of enzymes related to lipid metabolism corroborate the above findings. CONCLUSION To our knowledge, this is the first report on a hypoxia-induced increase in TG content in tomato root tissue, closing a knowledge gap in TG abiotic stress response. The results suggest that the increase in TGs and TG polyunsaturation degree are common features of hypoxic response in plant roots.
Collapse
Affiliation(s)
- Johanna Striesow
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Marcel Welle
- Institute of Botany & Landscape Ecology, Greifswald University, Soldmannstr. 15, 17489, Greifswald, Germany.
| | - Larissa Milena Busch
- Department of Functional Genomics, Greifswald University Medical Center, Felix-Hausdorff- Str. 8, 17489, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - Christine Stöhr
- Institute of Botany & Landscape Ecology, Greifswald University, Soldmannstr. 15, 17489, Greifswald, Germany
| |
Collapse
|
7
|
Yang M, Xu X, Lei H, Yang Z, Xie X, Gong Z. Polyunsaturated triacylglycerol accumulation mainly attributes to turnover of de novo-synthesized membrane lipids in stress-induced starchless Chlamydomonas. PLANT CELL REPORTS 2024; 43:240. [PMID: 39317879 DOI: 10.1007/s00299-024-03334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
KEY MESSAGE Assembly of PUFA-attached TAGs is intimately correlated to turnover of newly formed membrane lipids in starch-deficient Chlamydomonas exposed to high light and nitrogen stress under air-aerated mixotrophic conditions. Triacylglycerols (TAGs) rich in polyunsaturated fatty acids (PUFAs) in microalgae have attracted extensive attention due to its promising application in nutraceuticals and other high-value compounds. Previous studies revealed that PUFAs accumulated in TAG primarily derived from the dominant membrane lipids, monogalactosyldiacylglycerolipid, digalactosyldiacylglycerol and diacylglycerol-N,N,N-trimethylhomoserine (DGTS), in the model alga Chlamydomonas reinhardtii. However, their respective contribution to PUFA-attached TAG integration has not been clearly deciphered, particularly in starchless Chlamydomonas that hyper-accumulates TAG. In this study, the starchless C. reinhardtii BAFJ5 was mixotrophically cultivated in photobioreactors aerated with air (0.04% CO2), and we monitored the dynamic changes in growth, cellular carbon and nitrogen content, photosynthetic activity, biochemical compositions, and glycerolipid remodeling under high light and nitrogen starvation conditions. The results indicated that multiple PUFAs continually accumulated in total lipids and TAG, and the primary distributors of these PUFAs gradually shifted from membrane lipids to TAG in stress-induced BAFJ5. The stoichiometry analyses showed that the PUFA-attached TAG assembly attributed to turnover of not only the major glycerolipids, but also the phospholipids, phosphatidylethanolamine (PE) and phosphatidylglycerol. Specifically, the augmented C16:3n3 and C18:3n3 in TAG mainly originated from de novo-synthesized galactolipids, while the cumulative C18:3n6 and C18:4n3 in TAG were intimately correlated with conversion of the newly formed DGTS and PE. These findings emphasized significance of PUFA-attached TAG formation dependent on turnover of de novo assembled membrane lipids in starch-deficient Chlamydomonas, beneficial for enhanced production of value-added lipids in microalgae.
Collapse
Affiliation(s)
- Miao Yang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Xinyue Xu
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Hengping Lei
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Ziyi Yang
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Xi Xie
- Key Laboratory of Conservation and Exploitation of Aquatic Germplasm Resource Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Zheng Gong
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
8
|
Sah SK, Fan J, Blanford J, Shanklin J, Xu C. Physiological Functions of Phospholipid:Diacylglycerol Acyltransferases. PLANT & CELL PHYSIOLOGY 2024; 65:863-871. [PMID: 37702708 DOI: 10.1093/pcp/pcad106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Triacylglycerol (TAG) is among the most energy dense storage forms of reduced carbon in living systems. TAG metabolism plays critical roles in cellular energy balance, lipid homeostasis, cell growth and stress responses. In higher plants, microalgae and fungi, TAG is assembled by acyl-CoA-dependent and acyl-CoA-independent pathways catalyzed by diacylglycerol (DAG) acyltransferase and phospholipid:DAG acyltransferase (PDAT), respectively. This review contains a summary of the current understanding of the physiological functions of PDATs. Emphasis is placed on their role in lipid remodeling and lipid homeostasis in response to abiotic stress or perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
9
|
Muthan B, Wang J, Welti R, Kosma DK, Yu L, Deo B, Khatiwada S, Vulavala VKR, Childs KL, Xu C, Durrett TP, Sanjaya SA. Mechanisms of Spirodela polyrhiza tolerance to FGD wastewater-induced heavy-metal stress: Lipidomics, transcriptomics, and functional validation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133951. [PMID: 38492385 DOI: 10.1016/j.jhazmat.2024.133951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Unlike terrestrial angiosperm plants, the freshwater aquatic angiosperm duckweed (Spirodela polyrhiza) grows directly in water and has distinct responses to heavy-metal stress. Plantlets accumulate metabolites, including lipids and carbohydrates, under heavy-metal stress, but how they balance metabolite levels is unclear, and the gene networks that mediate heavy-metal stress responses remain unknown. Here, we show that heavy-metal stress induced by flue gas desulfurization (FGD) wastewater reduces chlorophyll contents, inhibits growth, reduces membrane lipid biosynthesis, and stimulates membrane lipid degradation in S. polyrhiza, leading to triacylglycerol and carbohydrate accumulation. In FGD wastewater-treated plantlets, the degraded products of monogalactosyldiacylglycerol, primarily polyunsaturated fatty acids (18:3), were incorporated into triacylglycerols. Genes involved in early fatty acid biosynthesis, β-oxidation, and lipid degradation were upregulated while genes involved in cuticular wax biosynthesis were downregulated by treatment. The transcription factor gene WRINKLED3 (SpWRI3) was upregulated in FGD wastewater-treated plantlets, and its ectopic expression increased tolerance to FGD wastewater in transgenic Arabidopsis (Arabidopsis thaliana). Transgenic Arabidopsis plants showed enhanced glutathione and lower malondialdehyde contents under stress, suggesting that SpWRI3 functions in S. polyrhiza tolerance of FGD wastewater-induced heavy-metal stress. These results provide a basis for improving heavy metal-stress tolerance in plants for industrial applications.
Collapse
Affiliation(s)
- Bagyalakshmi Muthan
- Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Ruth Welti
- Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bikash Deo
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Subhiksha Khatiwada
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Vijaya K R Vulavala
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Sanju A Sanjaya
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA.
| |
Collapse
|
10
|
Shomo ZD, Mahboub S, Vanviratikul H, McCormick M, Tulyananda T, Roston RL, Warakanont J. All members of the Arabidopsis DGAT and PDAT acyltransferase families operate during high and low temperatures. PLANT PHYSIOLOGY 2024; 195:685-697. [PMID: 38386316 DOI: 10.1093/plphys/kiae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The accumulation of triacylglycerol (TAG) in vegetative tissues is necessary to adapt to changing temperatures. It has been hypothesized that TAG accumulation is required as a storage location for maladaptive membrane lipids. The TAG acyltransferase family has five members (DIACYLGLYCEROL ACYLTRANSFERSE1/2/3 and PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1/2), and their individual roles during temperature challenges have either been described conflictingly or not at all. Therefore, we used Arabidopsis (Arabidopsis thaliana) loss of function mutants in each acyltransferase to investigate the effects of temperature challenge on TAG accumulation, plasma membrane integrity, and temperature tolerance. All mutants were tested under one high- and two low-temperature regimens, during which we quantified lipids, assessed temperature sensitivity, and measured plasma membrane electrolyte leakage. Our findings revealed reduced effectiveness in TAG production during at least one temperature regimen for all acyltransferase mutants compared to the wild type, resolved conflicting roles of pdat1 and dgat1 by demonstrating their distinct temperature-specific actions, and uncovered that plasma membrane integrity and TAG accumulation do not always coincide, suggesting a multifaceted role of TAG beyond its conventional lipid reservoir function during temperature stress.
Collapse
Affiliation(s)
- Zachery D Shomo
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Samira Mahboub
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | - Mason McCormick
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Tatpong Tulyananda
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Rebecca L Roston
- Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jaruswan Warakanont
- Department of Botany, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
11
|
Yang T, Niu Q, Dai H, Tian X, Ma J, Pritchard HW, Lin L, Yang X. The transcription factor MYB1 activates DGAT2 transcription to promote triacylglycerol accumulation in sacha inchi (Plukenetia volubilis L.) leaves under heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108517. [PMID: 38503190 DOI: 10.1016/j.plaphy.2024.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/17/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
Triacylglycerol (TAG) accumulation is frequently triggered in vegetative tissues experiencing heat stress, which may increases plant basal plant thermo-tolerance by sequestering the toxic lipid intermediates that contribute to membrane damage or cell death under stress conditions. However, stress-responsive TAG biosynthesis and the underlying regulatory mechanisms are not fully understood. Here, we investigated the lipidomic and transcriptomic landscape under heat stress in the leaves of sacha inchi (Plukenetia volubilis L.), an important oilseed crop in tropical regions. Under heat stress (45 °C), the content of polyunsaturated TAGs (e.g., TAG18:2 and TAG18:3) and total TAGs were significantly higher, while those of unsaturated sterol esters, including ZyE 28:4, SiE 18:2 and SiE 18:3, were dramatically lower. Transcriptome analysis showed that the expression of PvDGAT2-2, encoding a type II diacylglycerol acyltransferase (DGAT) that is critical for TAG biosynthesis, was substantially induced under heat stress. We confirmed the function of PvDGAT2-2 in TAG production by complementing a yeast mutant defective in TAG biosynthesis. Importantly, we also identified the heat-induced transcription factor PvMYB1 as an upstream activator of PvDGAT2-2 transcription. Our findings on the molecular mechanism leading to TAG biosynthesis in leaves exposed to heat stress have implications for improving the biotechnological production of TAGs in vegetative tissues, offering an alternative to seeds.
Collapse
Affiliation(s)
- Tianquan Yang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Qian Niu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Huan Dai
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiaoling Tian
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
| | - Junchao Ma
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Hugh W Pritchard
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Liang Lin
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Xiangyun Yang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
12
|
Zhao P, Sun L, Zhang S, Jiao B, Wang J, Ma C. Integrated Transcriptomics and Metabolomics Analysis of Two Maize Hybrids (ZD309 and XY335) under Heat Stress at the Flowering Stage. Genes (Basel) 2024; 15:189. [PMID: 38397179 PMCID: PMC10887930 DOI: 10.3390/genes15020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
High temperature around flowering has a serious impact on the growth and development of maize. However, few maize genes related to flowering under heat stress have been confirmed, and the regulatory mechanism is unclear. To reveal the molecular mechanism of heat tolerance in maize, two maize hybrids, ZD309 and XY335, with different heat resistance, were selected to perform transcriptome and metabolomics analysis at the flowering stage under heat stress. In ZD309, 314 up-regulated and 463 down-regulated differentially expressed genes (DEGs) were detected, while 168 up-regulated and 119 down-regulated DEGs were identified in XY335. By comparing the differential gene expression patterns of ZD309 and XY335, we found the "frontloaded" genes which were less up-regulated in heat-tolerant maize during high temperature stress. They included heat tolerance genes, which may react faster at the protein level to provide resilience to instantaneous heat stress. A total of 1062 metabolites were identified via metabolomics analysis. Lipids, saccharides, and flavonoids were found to be differentially expressed under heat stress, indicating these metabolites' response to high temperature. Our study will contribute to the identification of heat tolerance genes in maize, therefore contributing to the breeding of heat-tolerant maize varieties.
Collapse
Affiliation(s)
- Pu Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Lei Sun
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Siqi Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Bo Jiao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Jiao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| | - Chunhong Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Science/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (P.Z.); (L.S.); (S.Z.); (B.J.); (J.W.)
| |
Collapse
|
13
|
Hu H, Jia Y, Hao Z, Ma G, Xie Y, Wang C, Ma D. Lipidomics-based insights into the physiological mechanism of wheat in response to heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108190. [PMID: 37988880 DOI: 10.1016/j.plaphy.2023.108190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/06/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Lipids are the main components of plant cell biofilms and play a crucial role in plant growth, Understanding the modulation in lipid profiles under heat stress can contribute to understanding the heat tolerance mechanisms in wheat leaves. In the current study, two wheat cultivars with different heat tolerance levels were treated with optimum temperature (OT) and high temperature (HT) at the flowering stage, and the antioxidant enzyme activity in the leaves and the grain yield were determined. Further, lipidomics was studied to determine the changes in lipid composition in the leaves. The heat-tolerant cultivar ZM7698 exhibited higher antioxidant enzyme activity and lower malondialdehyde and H2O2 contents. High-temperature stress led to the remodeling of lipid profile in the two cultivars. The relative proportion of digalactosyl diacylglycerol (DGDG) and phosphatidylinositol (PI) components increased in the heat-tolerant cultivar under high-temperature stress, while it was decreased in the heat-sensitive cultivar. The lipid unsaturation levels of sulfoquinovosyl diacylglycerol (SQDG), monogalactosyl monoacylglycerol (MGMG), and phosphatidic acid (PA) decreased significantly in the heat-tolerant cultivar under high-temperature stress. The increase in unsaturation of monogalactosyl diacylglycerol (MGDG) and phosphatidylethanolamine (PE) in the heat-tolerant cultivar under high-temperature stress was lower than in the heat-sensitive cultivar. In addition, a high sitosterol/stigmasterol (SiE/StE) ratio was observed in heat-tolerant cultivar under high-temperature stress. Taken together, these results revealed that a heat-tolerant cultivar could enhance its ability to resist heat stress by modulating the composition and ratio of the lipid components and decreasing lipid unsaturation levels in wheat.
Collapse
Affiliation(s)
- Haizhou Hu
- National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuku Jia
- National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zirui Hao
- National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Geng Ma
- National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yingxin Xie
- National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenyang Wang
- National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Dongyun Ma
- National Wheat Technology Innovation Center, Henan Agricultural University, Zhengzhou, 450046, China; College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
14
|
Kan Y, Mu XR, Gao J, Lin HX, Lin Y. The molecular basis of heat stress responses in plants. MOLECULAR PLANT 2023; 16:1612-1634. [PMID: 37740489 DOI: 10.1016/j.molp.2023.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Global warming impacts crop production and threatens food security. Elevated temperatures are sensed by different cell components. Temperature increases are classified as either mild warm temperatures or excessively hot temperatures, which are perceived by distinct signaling pathways in plants. Warm temperatures induce thermomorphogenesis, while high-temperature stress triggers heat acclimation and has destructive effects on plant growth and development. In this review, we systematically summarize the heat-responsive genetic networks in Arabidopsis and crop plants based on recent studies. In addition, we highlight the strategies used to improve grain yield under heat stress from a source-sink perspective. We also discuss the remaining issues regarding the characteristics of thermosensors and the urgency required to explore the basis of acclimation under multifactorial stress combination.
Collapse
Affiliation(s)
- Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiao-Rui Mu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Youshun Lin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Chen Z, Jasinska W, Ashraf M, Rosental L, Hong J, Zhang D, Brotman Y, Shi J. Lipidomic insights into the response of Arabidopsis sepals to mild heat stress. ABIOTECH 2023; 4:224-237. [PMID: 37970465 PMCID: PMC10638258 DOI: 10.1007/s42994-023-00103-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 11/17/2023]
Abstract
Arabidopsis sepals coordinate flower opening in the morning as ambient temperature rises; however, the underlying molecular mechanisms are poorly understood. Mutation of one heat shock protein encoding gene, HSP70-16, impaired sepal heat stress responses (HSR), disrupting lipid metabolism, especially sepal cuticular lipids, leading to abnormal flower opening. To further explore, to what extent, lipids play roles in this process, in this study, we compared lipidomic changes in sepals of hsp70-16 and vdac3 (mutant of a voltage-dependent anion channel, VDAC3, an HSP70-16 interactor) grown under both normal (22 °C) and mild heat stress (27 °C, mild HS) temperatures. Under normal temperature, neither hsp70-16 nor vdac3 sepals showed significant changes in total lipids; however, vdac3 but not hsp70-16 sepals exhibited significant reductions in the ratios of all detected 11 lipid classes, except the monogalactosyldiacylglycerols (MGDGs). Under mild HS temperature, hsp70-16 but not vdac3 sepals showed dramatic reduction in total lipids. In addition, vdac3 sepals exhibited a significant accumulation of plastidic lipids, especially sulfoquinovosyldiacylglycerols (SQDGs) and phosphatidylglycerols (PGs), whereas hsp70-16 sepals had a significant accumulation of triacylglycerols (TAGs) and simultaneous dramatic reductions in SQDGs and phospholipids (PLs), such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and phosphatidylserines (PSs). These findings revealed that the impact of mild HS on sepal lipidome is influenced by genetic factors, and further, that HSP70-16 and VDAC3 differently affect sepal lipidomic responses to mild HS. Our studies provide a lipidomic insight into functions of HSP and VDAC proteins in the plant's HSR, in the context of floral development. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00103-x.
Collapse
Affiliation(s)
- Zican Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Weronika Jasinska
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, 84105 Israel
| | - Muhammad Ashraf
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Leah Rosental
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, 84105 Israel
| | - Jung Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, 84105 Israel
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
16
|
Sharma P, Lakra N, Goyal A, Ahlawat YK, Zaid A, Siddique KHM. Drought and heat stress mediated activation of lipid signaling in plants: a critical review. FRONTIERS IN PLANT SCIENCE 2023; 14:1216835. [PMID: 37636093 PMCID: PMC10450635 DOI: 10.3389/fpls.2023.1216835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Lipids are a principal component of plasma membrane, acting as a protective barrier between the cell and its surroundings. Abiotic stresses such as drought and temperature induce various lipid-dependent signaling responses, and the membrane lipids respond differently to environmental challenges. Recent studies have revealed that lipids serve as signal mediators forreducing stress responses in plant cells and activating defense systems. Signaling lipids, such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, and N-acylethanolamines, are generated in response to stress. Membrane lipids are essential for maintaining the lamellar stack of chloroplasts and stabilizing chloroplast membranes under stress. However, the effects of lipid signaling targets in plants are not fully understood. This review focuses on the synthesis of various signaling lipids and their roles in abiotic stress tolerance responses, providing an essential perspective for further investigation into the interactions between plant lipids and abiotic stress.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Botany and Plant Physiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Nita Lakra
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Alisha Goyal
- Division of Crop Improvement, Indian Council of Agricultural Research (ICAR)—Central Soil Salinity Research Institute, Karnal, India
| | - Yogesh K. Ahlawat
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Botany, Government Gandhi Memorial (GGM) Science College, Cluster University Jammu, Jammu, India
| | | |
Collapse
|
17
|
Valarmathi R, Mahadeva Swamy HK, Appunu C, Suresha GS, Mohanraj K, Hemaprabha G, Mahadevaiah C, Ulaganathan V. Comparative transcriptome profiling to unravel the key molecular signalling pathways and drought adaptive plasticity in shoot borne root system of sugarcane. Sci Rep 2023; 13:12853. [PMID: 37553413 PMCID: PMC10409851 DOI: 10.1038/s41598-023-39970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023] Open
Abstract
Sugarcane root system comprises of superficial sett roots as well as deeply-penetrating shoot borne roots (SBR) with latter being the permanent root system. In sugarcane, the healthy SBR contributes to a better crop yield and it also helps to produce multiple ratoon crops after the harvest. There is a dearth of in-depth knowledge on SBR system architecture and its functional role in modern day commercial hybrids. A comprehensive phenotypic, anatomical and whole transcriptome profiling, conducted between the commercial sugarcane hybrids and a wild germplasm Erianthus, found a developmental delay in both initiation and establishment of the SBR in commercial hybrid compared to Erianthus. The SBR system in Erianthus proved to be an extensive drought-adaptive root system architecture that significantly contributes to drought tolerance. On the other hand, SBRs in the commercial hybrids showed an irreversible collapse and damage of the root cells under drought stress. The outcomes from the comparative analysis of the transcriptome data showed a significant upregulation of the genes that regulate important stress signalling pathways viz., sugar, calcium, hormone signalling and phenylpropanoid biosynthesis in the SBRs of Erianthus. It was found that through these key signalling pathways, Erianthus SBRs triggered the downstream signalling cascade to impart physiological responses like osmoprotection, modification of the cell walls, detoxification of reactive oxygen species, expression of drought responsive transcription factors, maintenance of cell stability and lateral root development. The current study forms a basis for further exploration of the Shoot Borne Root system as a valuable breeding target to develop drought tolerant sugarcane genotypes.
Collapse
Affiliation(s)
- R Valarmathi
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, India.
| | - H K Mahadeva Swamy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, India
| | - C Appunu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, India
| | - G S Suresha
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, India
| | - K Mohanraj
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, India
| | - G Hemaprabha
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, India
| | - C Mahadevaiah
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, India
| | - V Ulaganathan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, 641007, India
| |
Collapse
|
18
|
Bouchnak I, Coulon D, Salis V, D’Andréa S, Bréhélin C. Lipid droplets are versatile organelles involved in plant development and plant response to environmental changes. FRONTIERS IN PLANT SCIENCE 2023; 14:1193905. [PMID: 37426978 PMCID: PMC10327486 DOI: 10.3389/fpls.2023.1193905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Since decades plant lipid droplets (LDs) are described as storage organelles accumulated in seeds to provide energy for seedling growth after germination. Indeed, LDs are the site of accumulation for neutral lipids, predominantly triacylglycerols (TAGs), one of the most energy-dense molecules, and sterol esters. Such organelles are present in the whole plant kingdom, from microalgae to perennial trees, and can probably be found in all plant tissues. Several studies over the past decade have revealed that LDs are not merely simple energy storage compartments, but also dynamic structures involved in diverse cellular processes like membrane remodeling, regulation of energy homeostasis and stress responses. In this review, we aim to highlight the functions of LDs in plant development and response to environmental changes. In particular, we tackle the fate and roles of LDs during the plant post-stress recovery phase.
Collapse
Affiliation(s)
- Imen Bouchnak
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Denis Coulon
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Vincent Salis
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sabine D’Andréa
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Claire Bréhélin
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| |
Collapse
|
19
|
Yu L, Shen W, Fan J, Sah SK, Mavraganis I, Wang L, Gao P, Gao J, Zheng Q, Meesapyodsuk D, Yang H, Li Q, Zou J, Xu C. A chloroplast diacylglycerol lipase modulates glycerolipid pathway balance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37006186 DOI: 10.1111/tpj.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Two parallel pathways compartmentalized in the chloroplast and the endoplasmic reticulum contribute to thylakoid lipid synthesis in plants, but how these two pathways are coordinated during thylakoid biogenesis and remodeling remains unknown. We report here the molecular characterization of a homologous ADIPOSE TRIGLYCERIDE LIPASE-LIKE gene, previously referred to as ATGLL. The ATGLL gene is ubiquitously expressed throughout development and rapidly upregulated in response to a wide range of environmental cues. We show that ATGLL is a chloroplast non-regioselective lipase with a hydrolytic activity preferentially towards 16:0 of diacylglycerol (DAG). Comprehensive lipid profiling and radiotracer labeling studies revealed a negative correlation of ATGLL expression and the relative contribution of the chloroplast lipid pathway to thylakoid lipid biosynthesis. Additionally, we show that genetic manipulation of ATGLL expression resulted in changes in triacylglycerol levels in leaves. We propose that ATGLL, through affecting the level of prokaryotic DAG in the chloroplast, plays important roles in balancing the two glycerolipid pathways and in maintaining lipid homeostasis in plants.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
- State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shanxi, China
| | - Wenyun Shen
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Ioannis Mavraganis
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Liping Wang
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Peng Gao
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jie Gao
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Qian Zheng
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Dauenpen Meesapyodsuk
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Hui Yang
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Qiang Li
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jitao Zou
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| |
Collapse
|
20
|
Korte P, Unzner A, Damm T, Berger S, Krischke M, Mueller MJ. High triacylglycerol turnover is required for efficient opening of stomata during heat stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36976526 DOI: 10.1111/tpj.16210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/04/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Heat stress triggers the accumulation of triacylglycerols in Arabidopsis leaves, which increases basal thermotolerance. However, how triacylglycerol synthesis is linked to thermotolerance remains unclear and the mechanisms involved remain to be elucidated. It has been shown that triacylglycerol and starch degradation are required to provide energy for stomatal opening induced by blue light at dawn. To investigate whether triacylglycerol turnover is involved in heat-induced stomatal opening during the day, we performed feeding experiments with labeled fatty acids. Heat stress strongly induced both triacylglycerol synthesis and degradation to channel fatty acids destined for peroxisomal ß-oxidation through the triacylglycerol pool. Analysis of mutants defective in triacylglycerol synthesis or peroxisomal fatty acid uptake revealed that triacylglycerol turnover and fatty acid catabolism are required for heat-induced stomatal opening in illuminated leaves. We show that triacylglycerol turnover is continuous (1.2 mol% per min) in illuminated leaves even at 22°C. The ß-oxidation of triacylglycerol-derived fatty acids generates C2 carbon units that are channeled into the tricarboxylic acid pathway in the light. In addition, carbohydrate catabolism is required to provide oxaloacetate as an acceptor for peroxisomal acetyl-CoA and maintain the tricarboxylic acid pathway for energy and amino acid production during the day.
Collapse
Affiliation(s)
- Pamela Korte
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Amelie Unzner
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Theresa Damm
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Susanne Berger
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Martin J Mueller
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| |
Collapse
|
21
|
Skodra C, Michailidis M, Moysiadis T, Stamatakis G, Ganopoulou M, Adamakis IDS, Angelis L, Ganopoulos I, Tanou G, Samiotaki M, Bazakos C, Molassiotis A. Disclosing the molecular basis of salinity priming in olive trees using proteogenomic model discovery. PLANT PHYSIOLOGY 2023; 191:1913-1933. [PMID: 36508356 PMCID: PMC10022641 DOI: 10.1093/plphys/kiac572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 11/11/2022] [Indexed: 05/13/2023]
Abstract
Plant responses to salinity are becoming increasingly understood, however, salt priming mechanisms remain unclear, especially in perennial fruit trees. Herein, we showed that low-salt pre-exposure primes olive (Olea europaea) plants against high salinity stress. We then performed a proteogenomic study to characterize priming responses in olive roots and leaves. Integration of transcriptomic and proteomic data along with metabolic data revealed robust salinity changes that exhibit distinct or overlapping patterns in olive tissues, among which we focused on sugar regulation. Using the multi-crossed -omics data set, we showed that major differences between primed and nonprimed tissues are mainly associated with hormone signaling and defense-related interactions. We identified multiple genes and proteins, including known and putative regulators, that reported significant proteomic and transcriptomic changes between primed and nonprimed plants. Evidence also supported the notion that protein post-translational modifications, notably phosphorylations, carbonylations and S-nitrosylations, promote salt priming. The proteome and transcriptome abundance atlas uncovered alterations between mRNA and protein quantities within tissues and salinity conditions. Proteogenomic-driven causal model discovery also unveiled key interaction networks involved in salt priming. Data generated in this study are important resources for understanding salt priming in olive tree and facilitating proteogenomic research in plant physiology.
Collapse
Affiliation(s)
- Christina Skodra
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi 57001, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi 57001, Greece
| | - Theodoros Moysiadis
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi 570001, Greece
- Department of Computer Science, School of Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus
| | - George Stamatakis
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari 16672, Greece
| | - Maria Ganopoulou
- School of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - Lefteris Angelis
- School of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi 570001, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
| | - Georgia Tanou
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
- Institute of Soil and Water Resources, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari 16672, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi 570001, Greece
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi 57001, Greece
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | | |
Collapse
|
22
|
Hoffmann DY, Shachar-Hill Y. Do betaine lipids replace phosphatidylcholine as fatty acid editing hubs in microalgae? FRONTIERS IN PLANT SCIENCE 2023; 14:1077347. [PMID: 36743481 PMCID: PMC9892843 DOI: 10.3389/fpls.2023.1077347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Acyl editing refers to a deacylation and reacylation cycle on a lipid, which allows for fatty acid desaturation and modification prior to being removed and incorporated into other pools. Acyl editing is an important determinant of glycerolipid synthesis and has been well-characterized in land plants, thus this review begins with an overview of acyl editing in plants. Much less is known about acyl editing in algae, including the extent to which acyl editing impacts lipid synthesis and on which lipid substrate(s) it occurs. This review compares what is known about acyl editing on its major hub phosphatidylcholine (PC) in land plants with the evidence for acyl editing of betaine lipids such as diacylglyceryltrimethylhomoserine (DGTS), the structural analog that replaces PC in several species of microalgae. In land plants, PC is also known to be a major source of fatty acids and diacylglycerol (DAG) for synthesis of the neutral lipid triacylglycerol (TAG). We review the evidence that DGTS contributes substantially to TAG accumulation in algae as a source of fatty acids, but not as a precursor to DAG. We conclude with evidence of acyl editing on other membrane lipid substrates in plants and algae apart from PC or DGTS, and discuss future analyses to elucidate the role of DGTS and other betaine lipids in acyl editing in microalgae.
Collapse
|
23
|
Early signaling events in the heat stress response of Pyropia haitanensis revealed by phosphoproteomic and lipidomic analyses. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Pranneshraj V, Sangha MK, Djalovic I, Miladinovic J, Djanaguiraman M. Lipidomics-Assisted GWAS (lGWAS) Approach for Improving High-Temperature Stress Tolerance of Crops. Int J Mol Sci 2022; 23:ijms23169389. [PMID: 36012660 PMCID: PMC9409476 DOI: 10.3390/ijms23169389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
High-temperature stress (HT) over crop productivity is an important environmental factor demanding more attention as recent global warming trends are alarming and pose a potential threat to crop production. According to the Sixth IPCC report, future years will have longer warm seasons and frequent heat waves. Thus, the need arises to develop HT-tolerant genotypes that can be used to breed high-yielding crops. Several physiological, biochemical, and molecular alterations are orchestrated in providing HT tolerance to a genotype. One mechanism to counter HT is overcoming high-temperature-induced membrane superfluidity and structural disorganizations. Several HT lipidomic studies on different genotypes have indicated the potential involvement of membrane lipid remodelling in providing HT tolerance. Advances in high-throughput analytical techniques such as tandem mass spectrometry have paved the way for large-scale identification and quantification of the enormously diverse lipid molecules in a single run. Physiological trait-based breeding has been employed so far to identify and select HT tolerant genotypes but has several disadvantages, such as the genotype-phenotype gap affecting the efficiency of identifying the underlying genetic association. Tolerant genotypes maintain a high photosynthetic rate, stable membranes, and membrane-associated mechanisms. In this context, studying the HT-induced membrane lipid remodelling, resultant of several up-/down-regulations of genes and post-translational modifications, will aid in identifying potential lipid biomarkers for HT tolerance/susceptibility. The identified lipid biomarkers (LIPIDOTYPE) can thus be considered an intermediate phenotype, bridging the gap between genotype–phenotype (genotype–LIPIDOTYPE–phenotype). Recent works integrating metabolomics with quantitative genetic studies such as GWAS (mGWAS) have provided close associations between genotype, metabolites, and stress-tolerant phenotypes. This review has been sculpted to provide a potential workflow that combines MS-based lipidomics and the robust GWAS (lipidomics assisted GWAS-lGWAS) to identify membrane lipid remodelling related genes and associations which can be used to develop HS tolerant genotypes with enhanced membrane thermostability (MTS) and heat stable photosynthesis (HP).
Collapse
Affiliation(s)
- Velumani Pranneshraj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Manjeet Kaur Sangha
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
- Correspondence: (I.D.); (M.D.)
| | - Jegor Miladinovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000 Novi Sad, Serbia
| | - Maduraimuthu Djanaguiraman
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Correspondence: (I.D.); (M.D.)
| |
Collapse
|
25
|
Wu C, Zhang X, Cui Z, Gou J, Zhang B, Sun X, Xu N. Patatin-like phospholipase A-induced alterations in lipid metabolism and jasmonic acid production affect the heat tolerance of Gracilariopsis lemaneiformis. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105688. [PMID: 35759824 DOI: 10.1016/j.marenvres.2022.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
High temperatures seriously limit the growth and productivity of Gracilariopsis lemaneiformis. By hydrolyzing glycerolipids into lysophospholipids (LPs) and free fatty acids (FFAs), patatin-like phospholipase A (pPLA) plays an important role in stress responses. GlpPLA expression was up-regulated under heat stress, however, the regulation of pPLA in heat tolerance of G. lemaneiformis is unknown. In this study, G. lemaneiformis under heat stress was treated with bromoenololide (BEL), a chemical inhibitor of pPLA, to evaluate the cellular function of pPLA in this species. When pPLA was inhibited through BEL treatment, the sensitivity of G. lemaneiformis to heat stress increased and the biomass and maximum and effective quantum yield of photosystem II decreased. Moreover, BEL treatment resulted in a significant decrease in many lipid molecular species, all of which are mainly composed of 16C, 18C, and 20C fatty acids. Consistently, FFA levels and LPs contents in G. lemaneiformis under BEL treatment showed a significant decrease. The first step in the synthesis of jasmonic acid (JA) is the lipoxygenase (LOX)-mediated oxygenation of linolenic acid (C18:3). BEL treatment decreased JA and C18:3 accumulation and markedly downregulated the expression of GILOX under heat stress. Together, these results indicate that pPLA is closely related to the growth of G. lemaneiformis under heat stress, and pPLA is involved in the lipid metabolism and JA biosynthesis of G. lemaneiformis in response to heat stress. This research broadens the understanding of the heat stress adaptation mechanism of G. lemaneiformis.
Collapse
Affiliation(s)
- Chunmei Wu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xiaoqian Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Zhenhao Cui
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jinhao Gou
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Bo Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
26
|
Young DY, Pang N, Shachar-Hill Y. 13C-labeling reveals how membrane lipid components contribute to triacylglycerol accumulation in Chlamydomonas. PLANT PHYSIOLOGY 2022; 189:1326-1344. [PMID: 35377446 PMCID: PMC9237737 DOI: 10.1093/plphys/kiac154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Lipid metabolism in microalgae has attracted much interest due to potential utilization of lipids as feedstocks for biofuels, nutraceuticals, and other high-value compounds. Chlamydomonas reinhardtii is a model organism for characterizing the synthesis of the neutral lipid triacylglycerol (TAG), from which biodiesel is made. While much of TAG accumulation under N-deprivation is the result of de novo fatty acid (FA) synthesis, recent work has revealed that approximately one-third of FAs, especially polyunsaturated FAs (PUFAs), come from preexisting membrane lipids. Here, we used 13C-isotopic labeling and mass spectrometry to analyze the turnover of glycerol backbones, headgroups, FAs, whole molecules, and molecular fragments of individual lipids. About one-third of the glyceryl backbones in TAG are derived from preexisting membrane lipids, as are approximately one-third of FAs. The different moieties of the major galactolipids turn over synchronously, while the FAs of diacylglyceryltrimethylhomoserine (DGTS), the most abundant extraplastidial lipid, turn over independently of the rest of the molecule. The major plastidic lipid monogalactosyldiacylglycerol (MGDG), whose predominant species is 18:3α/16:4, was previously shown to be a major source of PUFAs for TAG synthesis. This study reveals that MGDG turns over as whole molecules, the 18:3α/16:4 species is present in both DAG and TAG, and the positional distribution of these PUFAs is identical in MGDG, DAG, and TAG. We conclude that headgroup removal with subsequent acylation is the mechanism by which the major MGDG species is converted to TAG during N-deprivation. This has noteworthy implications for engineering the composition of microalgal TAG for food, fuel, and other applications.
Collapse
Affiliation(s)
- Danielle Yvonne Young
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Na Pang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
27
|
Nam JW, Lee HG, Do H, Kim HU, Seo PJ. Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2905-2917. [PMID: 35560201 DOI: 10.1093/jxb/erab554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 06/15/2023]
Abstract
Triacylglycerol (TAG), a major energy reserve in lipid form, accumulates mainly in seeds. Although TAG concentrations are usually low in vegetative tissues because of the repression of seed maturation programs, these programs are derepressed upon the exposure of vegetative tissues to environmental stresses. Metabolic reprogramming of TAG accumulation is driven primarily by transcriptional regulation. A substantial proportion of transcription factors regulating seed TAG biosynthesis also participates in stress-induced TAG accumulation in vegetative tissues. TAG accumulation leads to the formation of lipid droplets and plastoglobules, which play important roles in plant tolerance to environmental stresses. Toxic lipid intermediates generated from environmental-stress-induced lipid membrane degradation are captured by TAG-containing lipid droplets and plastoglobules. This review summarizes recent advances in the transcriptional control of metabolic reprogramming underlying stress-induced TAG accumulation, and provides biological insight into the plant adaptive strategy, linking TAG biosynthesis with plant survival.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hyungju Do
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
28
|
New Insights into the Chloroplast Outer Membrane Proteome and Associated Targeting Pathways. Int J Mol Sci 2022; 23:ijms23031571. [PMID: 35163495 PMCID: PMC8836251 DOI: 10.3390/ijms23031571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Abstract
Plastids are a dynamic class of organelle in plant cells that arose from an ancient cyanobacterial endosymbiont. Over the course of evolution, most genes encoding plastid proteins were transferred to the nuclear genome. In parallel, eukaryotic cells evolved a series of targeting pathways and complex proteinaceous machinery at the plastid surface to direct these proteins back to their target organelle. Chloroplasts are the most well-characterized plastids, responsible for photosynthesis and other important metabolic functions. The biogenesis and function of chloroplasts rely heavily on the fidelity of intracellular protein trafficking pathways. Therefore, understanding these pathways and their regulation is essential. Furthermore, the chloroplast outer membrane proteome remains relatively uncharted territory in our understanding of protein targeting. Many key players in the cytosol, receptors at the organelle surface, and insertases that facilitate insertion into the chloroplast outer membrane remain elusive for this group of proteins. In this review, we summarize recent advances in the understanding of well-characterized chloroplast outer membrane protein targeting pathways as well as provide new insights into novel targeting signals and pathways more recently identified using a bioinformatic approach. As a result of our analyses, we expand the known number of chloroplast outer membrane proteins from 117 to 138.
Collapse
|
29
|
Nakabayashi R. Sample Preparation, Data Acquisition, and Data Analysis for 15N-Labeled and Nonlabeled Monoterpene Indole Alkaloids in Catharanthus roseus. Methods Mol Biol 2022; 2505:59-68. [PMID: 35732936 DOI: 10.1007/978-1-0716-2349-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent approaches developed in metabolomics using liquid chromatography-tandem mass spectrometry (LC-MS/MS) enabled us to assign a part of specialized metabolites in plants. However, the approaches are not good enough for the rest of the metabolites, which are still unknown. To characterize the unknown metabolites, more appropriate and precise approaches need to be developed. Here, a procedure to analyze 15N-labeled and nonlabeled LC-MS/MS data for identification of monoterpene indole alkaloids was developed.
Collapse
Affiliation(s)
- Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
| |
Collapse
|
30
|
Iwai M, Yamada-Oshima Y, Asami K, Kanamori T, Yuasa H, Shimojima M, Ohta H. Recycling of the major thylakoid lipid MGDG and its role in lipid homeostasis in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2021; 187:1341-1356. [PMID: 34618048 PMCID: PMC8566231 DOI: 10.1093/plphys/kiab340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 06/01/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG), the most abundant lipid in thylakoid membranes, is involved in photosynthesis and chloroplast development. MGDG lipase has an important role in lipid remodeling in Chlamydomonas reinhardtii. However, the process related to turnover of the lysogalactolipid that results from MGDG degradation, monogalactosylmonoacylglycerol (MGMG), remains to be clarified. Here we identified a homolog of Arabidopsis thaliana lysophosphatidylcholine acyltransferase (LPCAT) and characterized two independent knockdown (KD) alleles in C. reinhardtii. The enzyme designated as C. reinhardtiiLysolipid Acyltransferase 1 (CrLAT1) has a conserved membrane-bound O-acyl transferase domain. LPCAT from Arabidopsis has a key role in deacylation of phosphatidylcholine (PC). Chlamydomonas reinhardtii, however, lacks PC, and thus we hypothesized that CrLAT1 has some other important function in major lipid flow in this organism. In the CrLAT1 KD mutants, the amount of MGMG was increased, but triacylglycerols (TAGs) were decreased. The proportion of more saturated 18:1 (9) MGDG was lower in the KD mutants than in their parental strain, CC-4533. In contrast, the proportion of MGMG has decreased in the CrLAT1 overexpression (OE) mutants, and the proportion of 18:1 (9) MGDG was higher in the OE mutants than in the empty vector control cells. Thus, CrLAT1 is involved in the recycling of MGDG in the chloroplast and maintains lipid homeostasis in C. reinhardtii.
Collapse
Affiliation(s)
- Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yui Yamada-Oshima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Kota Asami
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takashi Kanamori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hideya Yuasa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
31
|
Chen F, Dong G, Wang F, Shi Y, Zhu J, Zhang Y, Ruan B, Wu Y, Feng X, Zhao C, Yong MT, Holford P, Zeng D, Qian Q, Wu L, Chen Z, Yu Y. A β-ketoacyl carrier protein reductase confers heat tolerance via the regulation of fatty acid biosynthesis and stress signaling in rice. THE NEW PHYTOLOGIST 2021; 232:655-672. [PMID: 34260064 PMCID: PMC9292003 DOI: 10.1111/nph.17619] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/05/2021] [Indexed: 05/11/2023]
Abstract
Heat stress is a major environmental threat affecting crop growth and productivity. However, the molecular mechanisms associated with plant responses to heat stress are poorly understood. Here, we identified a heat stress-sensitive mutant, hts1, in rice. HTS1 encodes a thylakoid membrane-localized β-ketoacyl carrier protein reductase (KAR) involved in de novo fatty acid biosynthesis. Phylogenetic and bioinformatic analysis showed that HTS1 probably originated from streptophyte algae and is evolutionarily conserved in land plants. Thermostable HTS1 is predominantly expressed in green tissues and strongly induced by heat stress, but is less responsive to salinity, cold and drought treatments. An amino acid substitution at A254T in HTS1 causes a significant decrease in KAR enzymatic activity and, consequently, impairs fatty acid synthesis and lipid metabolism in the hts1 mutant, especially under heat stress. Compared to the wild-type, the hts1 mutant exhibited heat-induced higher H2 O2 accumulation, a larger Ca2+ influx to mesophyll cells, and more damage to membranes and chloroplasts. Also, disrupted heat stress signaling in the hts1 mutant depresses the transcriptional activation of HsfA2s and the downstream target genes. We suggest that HTS1 is critical for underpinning membrane stability, chloroplast integrity and stress signaling for heat tolerance in rice.
Collapse
Affiliation(s)
- Fei Chen
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou311121China
| | - Guojun Dong
- State Key Laboratory for Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Fang Wang
- Institute of Insect SciencesZhejiang UniversityHangzhou310058China
| | - Yingqi Shi
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou311121China
| | - Jiayu Zhu
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou311121China
| | - Yanli Zhang
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou311121China
| | - Banpu Ruan
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou311121China
| | - Yepin Wu
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou311121China
| | - Xue Feng
- College of AgronomyQingdao Agricultural UniversityQingdao266109China
| | - Chenchen Zhao
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | - Miing T. Yong
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | - Paul Holford
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | - Dali Zeng
- State Key Laboratory for Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Qian Qian
- State Key Laboratory for Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Limin Wu
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou311121China
| | - Zhong‐Hua Chen
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
| | - Yanchun Yu
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou311121China
| |
Collapse
|
32
|
Biochemical Characterization of 13-Lipoxygenases of Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms221910237. [PMID: 34638573 PMCID: PMC8508710 DOI: 10.3390/ijms221910237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 02/01/2023] Open
Abstract
13-lipoxygenases (13-LOX) catalyze the dioxygenation of various polyunsaturated fatty acids (PUFAs), of which α-linolenic acid (LeA) is converted to 13-S-hydroperoxyoctadeca-9, 11, 15-trienoic acid (13-HPOT), the precursor for the prostaglandin-like plant hormones cis-(+)-12-oxophytodienoic acid (12-OPDA) and methyl jasmonate (MJ). This study aimed for characterizing the four annotated A. thaliana 13-LOX enzymes (LOX2, LOX3, LOX4, and LOX6) focusing on synthesis of 12-OPDA and 4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl] cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid (OCPD). In addition, we performed interaction studies of 13-LOXs with ions and molecules to advance our understanding of 13-LOX. Cell imaging indicated plastid targeting of fluorescent proteins fused to 13-LOXs-N-terminal extensions, supporting the prediction of 13-LOX localization to plastids. The apparent maximal velocity (Vmax app) values for LOX-catalyzed LeA oxidation were highest for LOX4 (128 nmol·s−1·mg protein−1), with a Km value of 5.8 µM. A. thaliana 13-LOXs, in cascade with 12-OPDA pathway enzymes, synthesized 12-OPDA and OCPD from LeA and docosahexaenoic acid, previously shown only for LOX6. The activities of the four isoforms were differently affected by physiologically relevant chemicals, such as Mg2+, Ca2+, Cu2+ and Cd2+, and by 12-OPDA and MJ. As demonstrated for LOX4, 12-OPDA inhibited enzymatic LeA hydroperoxidation, with half-maximal enzyme inhibition at 48 µM. Biochemical interactions, such as the sensitivity of LOX toward thiol-reactive agents belonging to cyclopentenone prostaglandins, are suggested to occur in human LOX homologs. Furthermore, we conclude that 13-LOXs are isoforms with rather specific functional and regulatory enzymatic features.
Collapse
|
33
|
Pathogens and Elicitors Induce Local and Systemic Changes in Triacylglycerol Metabolism in Roots and in Leaves of Arabidopsis thaliana. BIOLOGY 2021; 10:biology10090920. [PMID: 34571797 PMCID: PMC8465621 DOI: 10.3390/biology10090920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Abiotic and biotic stress conditions result in profound changes in plant lipid metabolism. Vegetable oil consists of triacylglycerols, which are important energy and carbon storage compounds in seeds of various plant species. These compounds are also present in vegetative tissue, and levels have been reported to increase with different abiotic stresses in leaves. This work shows that triacylglycerols accumulate in roots and in distal, non-treated leaves upon treatment with a fungal pathogen or lipopolysaccharide (a common bacterial-derived elicitor in animals and plants). Treatment of leaves with a bacterial pathogen or a bacterial effector molecule results in triacylglycerol accumulation in leaves, but not systemically in roots. These results suggest that elicitor molecules are sufficient to induce an increase in triacylglycerol levels, and that unidirectional long-distance signaling from roots to leaves is involved in pathogen and elicitor-induced triacylglycerol accumulation. Abstract Interaction of plants with the environment affects lipid metabolism. Changes in the pattern of phospholipids have been reported in response to abiotic stress, particularly accumulation of triacylglycerols, but less is known about the alteration of lipid metabolism in response to biotic stress and leaves have been more intensively studied than roots. This work investigates the levels of lipids in roots as well as leaves of Arabidopsis thaliana in response to pathogens and elicitor molecules by UPLC-TOF-MS. Triacylglycerol levels increased in roots and systemically in leaves upon treatment of roots with the fungus Verticillium longisporum. Upon spray infection of leaves with the bacterial pathogen Pseudomonas syringae, triacylglycerols accumulated locally in leaves but not in roots. Treatment of roots with a bacterial lipopolysaccharide elicitor induced a strong triacylglycerol accumulation in roots and leaves. Induction of the expression of the bacterial effector AVRRPM1 resulted in a dramatic increase of triacylglycerol levels in leaves, indicating that elicitor molecules are sufficient to induce accumulation of triacylglycerols. These results give insight into local and systemic changes to lipid metabolism in roots and leaves in response to biotic stresses.
Collapse
|
34
|
Klińska S, Kędzierska S, Jasieniecka-Gazarkiewicz K, Banaś A. In Vitro Growth Conditions Boost Plant Lipid Remodelling and Influence Their Composition. Cells 2021; 10:2326. [PMID: 34571973 PMCID: PMC8472737 DOI: 10.3390/cells10092326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Acyl-lipids are vital components for all life functions of plants. They are widely studied using often in vitro conditions to determine inter alia the impact of genetic modifications and the description of biochemical and physiological functions of enzymes responsible for acyl-lipid metabolism. What is currently lacking is knowledge of if these results also hold in real environments-in in vivo conditions. Our study focused on the comparative analysis of both in vitro and in vivo growth conditions and their impact on the acyl-lipid metabolism of Camelina sativa leaves. The results indicate that in vitro conditions significantly decreased the lipid contents and influenced their composition. In in vitro conditions, galactolipid and trienoic acid (16:3 and 18:3) contents significantly declined, indicating the impairment of the prokaryotic pathway. Discrepancies also exist in the case of acyl-CoA:lysophospholipid acyltransferases (LPLATs). Their activity increased about 2-7 times in in vitro conditions compared to in vivo. In vitro conditions also substantially changed LPLATs' preferences towards acyl-CoA. Additionally, the acyl editing process was three times more efficient in in vitro leaves. The provided evidence suggests that the results of acyl-lipid research from in vitro conditions may not completely reflect and be directly applicable in real growth environments.
Collapse
Affiliation(s)
- Sylwia Klińska
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland; (S.K.); (K.J.-G.); (A.B.)
| | | | | | | |
Collapse
|
35
|
Han SH, Kim JY, Lee JH, Park CM. Safeguarding genome integrity under heat stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab355. [PMID: 34343307 DOI: 10.1093/jxb/erab355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Heat stress adversely affects an array of molecular and cellular events in plant cells, such as denaturation of protein and lipid molecules and malformation of cellular membranes and cytoskeleton networks. Genome organization and DNA integrity are also disturbed under heat stress, and accordingly, plants have evolved sophisticated adaptive mechanisms that either protect their genomes from deleterious heat-induced damages or stimulate genome restoration responses. In particular, it is emerging that DNA damage responses are a critical defense process that underlies the acquirement of thermotolerance in plants, during which molecular players constituting the DNA repair machinery are rapidly activated. In recent years, thermotolerance genes that mediate the maintenance of genome integrity or trigger DNA repair responses have been functionally characterized in various plant species. Furthermore, accumulating evidence supports that genome integrity is safeguarded through multiple layers of thermoinduced protection routes in plant cells, including transcriptome adjustment, orchestration of RNA metabolism, protein homeostasis, and chromatin reorganization. In this review, we summarize topical progresses and research trends in understanding how plants cope with heat stress to secure genome intactness. We focus on molecular regulatory mechanisms by which plant genomes are secured against the DNA-damaging effects of heat stress and DNA damages are effectively repaired. We will also explore the practical interface between heat stress response and securing genome integrity in view of developing biotechnological ways of improving thermotolerance in crop species under global climate changes, a worldwide ecological concern in agriculture.
Collapse
Affiliation(s)
- Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
36
|
Yu L, Zhou C, Fan J, Shanklin J, Xu C. Mechanisms and functions of membrane lipid remodeling in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:37-53. [PMID: 33853198 DOI: 10.1111/tpj.15273] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 05/20/2023]
Abstract
Lipid remodeling, defined herein as post-synthetic structural modifications of membrane lipids, play crucial roles in regulating the physicochemical properties of cellular membranes and hence their many functions. Processes affected by lipid remodeling include lipid metabolism, membrane repair, cellular homeostasis, fatty acid trafficking, cellular signaling and stress tolerance. Glycerolipids are the major structural components of cellular membranes and their composition can be adjusted by modifying their head groups, their acyl chain lengths and the number and position of double bonds. This review summarizes recent advances in our understanding of mechanisms of membrane lipid remodeling with emphasis on the lipases and acyltransferases involved in the modification of phosphatidylcholine and monogalactosyldiacylglycerol, the major membrane lipids of extraplastidic and photosynthetic membranes, respectively. We also discuss the role of triacylglycerol metabolism in membrane acyl chain remodeling. Finally, we discuss emerging data concerning the functional roles of glycerolipid remodeling in plant stress responses. Illustrating the molecular basis of lipid remodeling may lead to novel strategies for crop improvement and other biotechnological applications such as bioenergy production.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chao Zhou
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
37
|
Michel EJS, Ponnala L, van Wijk KJ. Tissue-type specific accumulation of the plastoglobular proteome, transcriptional networks, and plastoglobular functions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4663-4679. [PMID: 33884419 DOI: 10.1093/jxb/erab175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
Plastoglobules are dynamic protein-lipid microcompartments in plastids enriched for isoprenoid-derived metabolites. Chloroplast plastoglobules support formation, remodeling, and controlled dismantling of thylakoids during developmental transitions and environmental responses. However, the specific molecular functions of most plastoglobule proteins are still poorly understood. This review harnesses recent co-mRNA expression data from combined microarray and RNA-seq information in ATTED-II on an updated inventory of 34 PG proteins, as well as proteomics data across 30 Arabidopsis tissue types from ATHENA. Hierarchical clustering based on relative abundance for the plastoglobule proteins across non-photosynthetic and photosynthetic tissue types showed their coordinated protein accumulation across Arabidopsis parts, tissue types, development, and senescence. Evaluation of mRNA-based forced networks at different coefficient thresholds identified a central hub with seven plastoglobule proteins and four peripheral modules. Enrichment of specific nuclear transcription factors (e.g. Golden2-like) and support for crosstalk between plastoglobules and the plastid gene expression was observed, and specific ABC1 kinases appear part of a light signaling network. Examples of other specific findings are that FBN7b is involved with upstream steps of tetrapyrrole biosynthesis and that ABC1K9 is involved in starch metabolism. This review provides new insights into the functions of plastoglobule proteins and an improved framework for experimental studies.
Collapse
Affiliation(s)
- Elena J S Michel
- School of Integrative Plant Sciences (SIPS), Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Klaas J van Wijk
- School of Integrative Plant Sciences (SIPS), Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
38
|
Pshenichnikova TA, Osipova SV, Smirnova OG, Leonova IN, Permyakova MD, Permyakov AV, Rudikovskaya EG, Konstantinov DK, Verkhoturov VV, Lohwasser U, Börner A. Regions of Chromosome 2A of Bread Wheat ( Triticum aestivum L.) Associated with Variation in Physiological and Agronomical Traits under Contrasting Water Regimes. PLANTS (BASEL, SWITZERLAND) 2021; 10:1023. [PMID: 34065351 PMCID: PMC8161357 DOI: 10.3390/plants10051023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
Understanding the genetic architecture of drought tolerance is of great importance for overcoming the negative impact of drought on wheat yield. Earlier, we discovered the critical role of chromosome 2A for the drought-tolerant status of wheat spring cultivar Saratovskaya 29. A set of 92 single-chromosome recombinant double haploid (SCRDH) lines were obtained in the genetic background of Saratovskaya 29. The lines carry fragments of chromosome 2A from the drought-sensitive cultivar Yanetzkis Probat. The SCRDH lines were used to identify regions on chromosome 2A associated with the manifestation of physiological and agronomical traits under distinct water supply, and to identify candidate genes that may be associated with adaptive gene networks in wheat. Genotyping was done with Illumina Infinium 15k wheat array using 590 SNP markers with 146 markers being polymorphic. In four identified regions of chromosome 2A, 53 out of 58 QTLs associated with physiological and agronomic traits under contrasting water supply were mapped. Thirty-nine candidate genes were identified, of which 18 were transcription factors. The region 73.8-78.1 cM included the largest number of QTLs and candidate genes. The variation in SNPs associated with agronomical and physiological traits revealed among the SCRDH lines may provide useful information for drought related marker-assisted breeding.
Collapse
Affiliation(s)
| | - Svetlana V. Osipova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033 Irkutsk, Russia; (S.V.O.); (M.D.P.); (A.V.P.); (E.G.R.)
- Faculty of Biology and Soil Science, Irkutsk State University, 664003 Irkutsk, Russia
| | - Olga G. Smirnova
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (O.G.S.); (I.N.L.); (D.K.K.)
| | - Irina N. Leonova
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (O.G.S.); (I.N.L.); (D.K.K.)
| | - Marina D. Permyakova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033 Irkutsk, Russia; (S.V.O.); (M.D.P.); (A.V.P.); (E.G.R.)
| | - Alexey V. Permyakov
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033 Irkutsk, Russia; (S.V.O.); (M.D.P.); (A.V.P.); (E.G.R.)
| | - Elena G. Rudikovskaya
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 664033 Irkutsk, Russia; (S.V.O.); (M.D.P.); (A.V.P.); (E.G.R.)
| | - Dmitrii K. Konstantinov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (O.G.S.); (I.N.L.); (D.K.K.)
| | - Vasiliy V. Verkhoturov
- Institute of Food Engineering and Biotechnology, National Research Irkutsk State Technical University, 664074 Irkutsk, Russia;
| | - Ulrike Lohwasser
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany; (U.L.); (A.B.)
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany; (U.L.); (A.B.)
| |
Collapse
|
39
|
Cook R, Lupette J, Benning C. The Role of Chloroplast Membrane Lipid Metabolism in Plant Environmental Responses. Cells 2021; 10:cells10030706. [PMID: 33806748 PMCID: PMC8005216 DOI: 10.3390/cells10030706] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022] Open
Abstract
Plants are nonmotile life forms that are constantly exposed to changing environmental conditions during the course of their life cycle. Fluctuations in environmental conditions can be drastic during both day–night and seasonal cycles, as well as in the long term as the climate changes. Plants are naturally adapted to face these environmental challenges, and it has become increasingly apparent that membranes and their lipid composition are an important component of this adaptive response. Plants can remodel their membranes to change the abundance of different lipid classes, and they can release fatty acids that give rise to signaling compounds in response to environmental cues. Chloroplasts harbor the photosynthetic apparatus of plants embedded into one of the most extensive membrane systems found in nature. In part one of this review, we focus on changes in chloroplast membrane lipid class composition in response to environmental changes, and in part two, we will detail chloroplast lipid-derived signals.
Collapse
Affiliation(s)
- Ron Cook
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Josselin Lupette
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| |
Collapse
|
40
|
Nishad A, Nandi AK. Recent advances in plant thermomemory. PLANT CELL REPORTS 2021; 40:19-27. [PMID: 32975635 DOI: 10.1007/s00299-020-02604-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/13/2020] [Indexed: 05/04/2023]
Abstract
This review summarizes the process of thermal acquired tolerance in plants and the knowledge gap compared to systemic acquired resistance that a plant shows after pathogen inoculation. Plants are continuously challenged by several biotic stresses such as pests and pathogens, or abiotic stresses like high light, UV radiation, drought, salt, and very high or low temperature. Interestingly, for most stresses, prior exposure makes plants more tolerant during the subsequent exposures, which is often referred to as acclimatization. Research of the last two decades reveals that the memory of most of the stresses is associated with epigenetic changes. Heat stress causes damage to membrane proteins, denaturation and inactivation of various enzymes, and accumulation of reactive oxygen species leading to cell injury and death. Plants are equipped with thermosensors that can recognize certain specific changes and activate protection machinery. Phytochrome and calcium signaling play critical roles in sensing sudden changes in temperature and activate cascades of signaling, leading to the production of heat shock proteins (HSPs) that keep protein-unfolding under control. Heat shock factors (HSFs) are the transcription factors that read the activation of thermosensors and induce the expression of HSPs. Epigenetic modifications of HSFs are likely to be the key component of thermal acquired tolerance (TAT). Despite the advances in understanding the process of thermomemory generation, it is not known whether plants are equipped with systemic activation thermal protection, as happens in the form of systemic acquired resistance (SAR) upon pathogen infection. This review describes the recent advances in the understanding of thermomemory development in plants and the knowledge gap in comparison with SAR.
Collapse
Affiliation(s)
- Anand Nishad
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India.
| |
Collapse
|
41
|
Xie LJ, Zhou Y, Chen QF, Xiao S. New insights into the role of lipids in plant hypoxia responses. Prog Lipid Res 2020; 81:101072. [PMID: 33188800 DOI: 10.1016/j.plipres.2020.101072] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/25/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022]
Abstract
In plants, hypoxia (low-oxygen stress) is induced by soil waterlogging or submergence and this major abiotic stress has detrimental effects on plant growth, development, distribution, and productivity. To survive low-oxygen stress, plants have evolved a set of morphological, physiological, and biochemical adaptations. These adaptations integrate metabolic acclimation and signaling networks allowing plants to endure or escape from low-oxygen environments by altering their metabolism and growth. Lipids are ubiquitously involved in regulating plant responses to hypoxia and post-hypoxic reoxygenation. In particular, the polyunsaturation of long-chain acyl-CoAs regulates hypoxia sensing in plants by modulating acyl-CoA-binding protein-Group VII ethylene response factor dynamics. Moreover, unsaturated very-long-chain ceramide species protect plants from hypoxia-induced cellular damage by regulating the kinase activity of CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway. Finally, the oxylipin jasmonate specifically regulates plant responses to reoxygenation stress by transcriptionally modulating antioxidant biosynthesis. Here we provide an overview of the roles of lipid remodeling and signaling in plant responses to hypoxia/reoxygenation and their effects on the downstream events affecting plant survival. In addition, we highlight the key remaining challenges in this important field.
Collapse
Affiliation(s)
- Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
42
|
Waziri A, Singh DK, Sharma T, Chatterjee S, Purty RS. Genome-wide analysis of PHD finger gene family and identification of potential miRNA and their PHD finger gene specific targets in Oryza sativa indica. Noncoding RNA Res 2020; 5:191-200. [PMID: 33163736 PMCID: PMC7610035 DOI: 10.1016/j.ncrna.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 11/24/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the most important cereal crops for one third of the world population. However, the grain quality as well as yield of rice is severely affected by various abiotic stresses. Environmental stresses affect the expression of various microRNAs (miRNAs) which in turn negatively regulate gene expression at the post-transcriptional level either by degrading the target mRNA genes or suppressing translation in plants. Plant homeo-domain (PHD) finger proteins are known to be involved in the plant response to salinity stress. In the present study, we identified 44 putative OsPHD finger genes in Oryza sativa Indica, using Ensembl Plants Database. Using computational approach, potential miRNAs that target OsPHD finger genes were identified. Out of the 44 OsPHD finger genes only three OsPHD finger genes i.e., OsPHD2, OsPHD35 and OsPHD11, were found to be targeted by five newly identified putative miRNAs i.e., ath-miRf10010-akr, ath-miRf10110-akr, osa-miR1857–3p, osa-miRf10863-akr, and osa-miRf11806-akr. This is the first report of these five identified miRNAs on targeting PHD finger in Oryza sativa Indica. Further, expression analysis of 44 PHD finger genes under salinity was also performed using quantitative Real-Time PCR. The expression profile of 8 genes were found to be differentially regulated, among them two genes were significantly up regulated i.e., OsPHD6 and OsPHD12. In silico protein-protein interaction analysis using STRING database showed interaction of the OsPHD finger proteins with other protein partners that are directly or indirectly involved in development and abiotic stress tolerance. Total of 44 Plant homeo-domain (PHD) finger proteins were identified & classified into 10 groups in Oryza sativa Indica. This is the first report showing 5 newly identified putative miRNAs targeting three OsPHD genes i.e., OsPHD2, 11 and 35. Expression analysis of PHD finger genes showed up-regulation of the 2 genes OsPHD 6 & 12 under salinity stress treatment. Protein-protein network of OsPHDs showed protein partners that are involved in plant growth and abiotic stress tolerance.
Collapse
Affiliation(s)
- Aafrin Waziri
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Deepak Kumar Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Tarun Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Sayan Chatterjee
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| | - Ram Singh Purty
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec-16C, Dwarka, New Delhi, India
| |
Collapse
|
43
|
Xu C, Fan J, Shanklin J. Metabolic and functional connections between cytoplasmic and chloroplast triacylglycerol storage. Prog Lipid Res 2020; 80:101069. [DOI: 10.1016/j.plipres.2020.101069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
|
44
|
Li X, Tieman D, Liu Z, Chen K, Klee HJ. Identification of a lipase gene with a role in tomato fruit short-chain fatty acid-derived flavor volatiles by genome-wide association. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:631-644. [PMID: 32786123 DOI: 10.1111/tpj.14951] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 05/16/2023]
Abstract
Fatty acid-derived volatile organic compounds (FA-VOCs) make significant contributions to tomato (Solanum lycopersicum) fruit flavor and human preferences. Short-chain FA-VOCs (C5 and C6) are among the most abundant and important volatile compounds in tomato fruits. The precursors of these volatiles, linoleic acid (18:2) and linolenic acid (18:3), are derived from cleavage of glycerolipids. However, the initial step in synthesis of these FA-VOCs has not been established. A metabolite-based genome-wide association study combined with genetic mapping and functional analysis identified a gene encoding a novel class III lipase family member, Sl-LIP8, that is associated with accumulation of short-chain FA-VOCs in tomato fruit. In vitro assays indicated that Sl-LIP8 can cleave 18:2 and 18:3 acyl groups from glycerolipids. A CRISPR/Cas9 gene edited Sl-LIP8 mutant had much lower content of multiple fruit short-chain FA-VOCs, validating an important role for this enzyme in the pathway. Sl-LIP8 RNA abundance was correlated with FA-VOC content, consistent with transcriptional regulation of the first step in the pathway. Taken together, our work indicates that glycerolipid turnover by Sl-LIP8 is an important early step in the synthesis of multiple short-chain FA-VOCs.
Collapse
Affiliation(s)
- Xiang Li
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Denise Tieman
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Zimeng Liu
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| | - Harry J Klee
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China
| |
Collapse
|
45
|
Yin Y, Guo Z, Chen K, Tian T, Tan J, Chen X, Chen J, Yang B, Tang S, Peng K, Liu S, Liang Y, Zhang K, Yu L, Li M. Ultra-high α-linolenic acid accumulating developmental defective embryo was rescued by lysophosphatidic acid acyltransferase 2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2151-2167. [PMID: 32573846 DOI: 10.1111/tpj.14889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 05/20/2023]
Abstract
For decades, genetic engineering approaches to produce unusual fatty acids (UFAs) in crops has reached a bottleneck, including reduced seed oil production and seed vigor. Currently, plant models in the field of research are primarily used to investigate defects in oil production and seedling development, while the role of UFAs in embryonic developmental defects remains unknown. In this study, we developed a transgenic Arabidopsis plant model, in which the embryo exhibits severely wrinkled appearance owing to α-linolenic acid (ALA) accumulation. RNA-sequencing analysis in the defective embryo suggested that brassinosteroid synthesis, FA synthesis and photosynthesis were inhibited, while FA degradation, endoplasmic reticulum stress and oxidative stress were activated. Lipidomics analysis showed that ultra-accumulated ALA is released from phosphatidylcholine as a free FA in cells, inducing severe endoplasmic reticulum and oxidative stress. Furthermore, we identified that overexpression of lysophosphatidic acid acyltransferase 2 rescued the defective phenotype. In the rescue line, the pool capacity of the Kennedy pathway was increased, and the esterification of ALA indirectly to triacylglycerol was enhanced to avoid stress. This study provides a plant model that aids in understanding the molecular mechanism of embryonic developmental defects and generates strategies to produce higher levels of UFAs.
Collapse
Affiliation(s)
- Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resource Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China
| | - Zhenyi Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tian Tian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiajun Tan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinfeng Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bing Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuyan Tang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kangfu Peng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Si Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yu Liang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Longjiang Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resource Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
46
|
Degraeve-Guilbault C, Gomez RE, Lemoigne C, Pankansem N, Morin S, Tuphile K, Joubès J, Jouhet J, Gronnier J, Suzuki I, Coulon D, Domergue F, Corellou F. Plastidic Δ6 Fatty-Acid Desaturases with Distinctive Substrate Specificity Regulate the Pool of C18-PUFAs in the Ancestral Picoalga Ostreococcus tauri. PLANT PHYSIOLOGY 2020; 184:82-96. [PMID: 32669420 PMCID: PMC7479901 DOI: 10.1104/pp.20.00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/07/2020] [Indexed: 05/08/2023]
Abstract
Eukaryotic Δ6-desaturases are microsomal enzymes that balance the synthesis of ω-3 and ω-6 C18-polyunsaturated fatty acids (C18-PUFAs) according to their specificity. In several microalgae, including Ostreococcus tauri, plastidic C18-PUFAs are strictly regulated by environmental cues suggesting an autonomous control of Δ6-desaturation of plastidic PUFAs. Here, we identified two putative front-end Δ6/Δ8-desaturases from O tauri that, together with putative homologs, cluster apart from other characterized Δ6-desaturases. Both were plastid-located and unambiguously displayed a Δ6-desaturation activity when overexpressed in the heterologous hosts Nicotiana benthamiana and Synechocystis sp. PCC6803, as in the native host. Detailed lipid analyses of overexpressing lines unveiled distinctive ω-class specificities, and most interestingly pointed to the importance of the lipid head-group and the nonsubstrate acyl-chain for the desaturase efficiency. One desaturase displayed a broad specificity for plastidic lipids and a preference for ω-3 substrates, while the other was more selective for ω-6 substrates and for lipid classes including phosphatidylglycerol as well as the peculiar 16:4-galactolipid species occurring in the native host. Overexpression of both Δ6-desaturases in O tauri prevented the regulation of C18-PUFA under phosphate deprivation and triggered glycerolipid fatty-acid remodeling, without causing any obvious alteration in growth or photosynthesis. Tracking fatty-acid modifications in eukaryotic hosts further suggested the export of plastidic lipids to extraplastidic compartments.
Collapse
Affiliation(s)
- Charlotte Degraeve-Guilbault
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Rodrigo E Gomez
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Cécile Lemoigne
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Nattiwong Pankansem
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Soizic Morin
- Institut National de la Recherche Agronomique, Unité de Recherche Ecosystèmes Aquatiques et Changements Globaux, 33612 Cestas, France
| | - Karine Tuphile
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Juliette Jouhet
- Laboratoire de Biologie Cellulaire et Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique-French Alternative Energies and Atomic Energy Commission-Institut National de la Recherche Agronomique-Université Grenoble Alpes, Interdisciplinary Research Institute of Grenoble, 38054 Grenoble, France
| | - Julien Gronnier
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan
| | - Denis Coulon
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| | - Florence Corellou
- Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Centre National de la Recherche Scientifique-Université de Bordeaux, 33883 Villenave d'Ornon, France
| |
Collapse
|
47
|
Shiva S, Samarakoon T, Lowe KA, Roach C, Vu HS, Colter M, Porras H, Hwang C, Roth MR, Tamura P, Li M, Schrick K, Shah J, Wang X, Wang H, Welti R. Leaf Lipid Alterations in Response to Heat Stress of Arabidopsis thaliana. PLANTS 2020; 9:plants9070845. [PMID: 32635518 PMCID: PMC7412450 DOI: 10.3390/plants9070845] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 01/19/2023]
Abstract
In response to elevated temperatures, plants alter the activities of enzymes that affect lipid composition. While it has long been known that plant leaf membrane lipids become less unsaturated in response to heat, other changes, including polygalactosylation of galactolipids, head group acylation of galactolipids, increases in phosphatidic acid and triacylglycerols, and formation of sterol glucosides and acyl sterol glucosides, have been observed more recently. In this work, by measuring lipid levels with mass spectrometry, we confirm the previously observed changes in Arabidopsis thaliana leaf lipids under three heat stress regimens. Additionally, in response to heat, increased oxidation of the fatty acyl chains of leaf galactolipids, sulfoquinovosyldiacylglycerols, and phosphatidylglycerols, and incorporation of oxidized acyl chains into acylated monogalactosyldiacylglycerols are shown. We also observed increased levels of digalactosylmonoacylglycerols and monogalactosylmonoacylglycerols. The hypothesis that a defect in sterol glycosylation would adversely affect regrowth of plants after a severe heat stress regimen was tested, but differences between wild-type and sterol glycosylation-defective plants were not detected.
Collapse
Affiliation(s)
- Sunitha Shiva
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
- Correspondence: (S.S.); (R.W.)
| | - Thilani Samarakoon
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Kaleb A. Lowe
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Charles Roach
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Hieu Sy Vu
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Madeline Colter
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Hollie Porras
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Caroline Hwang
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Mary R. Roth
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Pamela Tamura
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Maoyin Li
- Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA; (M.L.); (X.W.)
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121-4499, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Jyoti Shah
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA;
| | - Xuemin Wang
- Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA; (M.L.); (X.W.)
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121-4499, USA
| | - Haiyan Wang
- Department of Statistics, Kansas State University, Manhattan, KS 66506-0802, USA;
| | - Ruth Welti
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
- Correspondence: (S.S.); (R.W.)
| |
Collapse
|
48
|
Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen HT, Marmiroli N. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3780-3802. [PMID: 31970395 PMCID: PMC7316970 DOI: 10.1093/jxb/eraa034] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 01/20/2020] [Indexed: 05/21/2023]
Abstract
To ensure the food security of future generations and to address the challenge of the 'no hunger zone' proposed by the FAO (Food and Agriculture Organization), crop production must be doubled by 2050, but environmental stresses are counteracting this goal. Heat stress in particular is affecting agricultural crops more frequently and more severely. Since the discovery of the physiological, molecular, and genetic bases of heat stress responses, cultivated plants have become the subject of intense research on how they may avoid or tolerate heat stress by either using natural genetic variation or creating new variation with DNA technologies, mutational breeding, or genome editing. This review reports current understanding of the genetic and molecular bases of heat stress in crops together with recent approaches to creating heat-tolerant varieties. Research is close to a breakthrough of global relevance, breeding plants fitter to face the biggest challenge of our time.
Collapse
Affiliation(s)
- Michela Janni
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Amendola, Bari, Italy
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
- Lincoln University, Jefferson City, MO, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
- CINSA Interuniversity Consortium for Environmental Sciences, Parma/Venice, Italy
| |
Collapse
|
49
|
Qin F, Lin L, Jia Y, Li W, Yu B. Quantitative Profiling of Arabidopsis Polar Glycerolipids under Two Types of Heat Stress. PLANTS 2020; 9:plants9060693. [PMID: 32485906 PMCID: PMC7356150 DOI: 10.3390/plants9060693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022]
Abstract
At the cellular level, the remodelling of membrane lipids and production of heat shock proteins are the two main strategies whereby plants survive heat stress. Although many studies related to glycerolipids and HSPs under heat stress have been reported separately, detailed alterations of glycerolipids and the role of HSPs in the alterations of glycerolipids still need to be revealed. In this study, we profiled the glycerolipids of wild-type Arabidopsis and its HSP101-deficient mutant hot-1 under two types of heat stress. Our results demonstrated that the alterations of glycerolipids were very similar in wild-type Arabidopsis and hot-1 during heat stress. Although heat acclimation led to a slight decrease of glycerolipids, the decrease of glycerolipids in plants without heat acclimation is more severe under heat shock. The contents of 36:x monogalactosyl diacylglycerol (MGDG) were slightly increased, whereas that of 34:6 MGDG and 34:4 phosphatidylglycerol (PG) were severely decreased during moderate heat stress. Our findings suggested that heat acclimation could reduce the degradation of glycerolipids under heat shock. Synthesis of glycerolipids through the prokaryotic pathway was severely suppressed, whereas that through the eukaryotic pathway was slightly enhanced during moderate heat stress. In addition, HSP101 has a minor effect on the alterations of glycerolipids under heat stress.
Collapse
Affiliation(s)
- Feng Qin
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (F.Q.); (L.L.); (Y.J.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Lin
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (F.Q.); (L.L.); (Y.J.)
| | - Yanxia Jia
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (F.Q.); (L.L.); (Y.J.)
| | - Weiqi Li
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (F.Q.); (L.L.); (Y.J.)
- Correspondence: (W.L.); (B.Y.); Tel.: +86-871-6522-3018 (W.L.)
| | - Buzhu Yu
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (F.Q.); (L.L.); (Y.J.)
- Correspondence: (W.L.); (B.Y.); Tel.: +86-871-6522-3018 (W.L.)
| |
Collapse
|
50
|
Goss R, Latowski D. Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae. FRONTIERS IN PLANT SCIENCE 2020; 11:455. [PMID: 32425962 PMCID: PMC7212465 DOI: 10.3389/fpls.2020.00455] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/27/2020] [Indexed: 05/11/2023]
Abstract
The xanthophyll cycles of higher plants and algae represent an important photoprotection mechanism. Two main xanthophyll cycles are known, the violaxanthin cycle of higher plants, green and brown algae and the diadinoxanthin cycle of Bacillariophyceae, Xanthophyceae, Haptophyceae, and Dinophyceae. The forward reaction of the xanthophyll cycles consists of the enzymatic de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin or diadinoxanthin to diatoxanthin during periods of high light illumination. It is catalyzed by the enzymes violaxanthin or diadinoxanthin de-epoxidase. During low light or darkness the back reaction of the cycle, which is catalyzed by the enzymes zeaxanthin or diatoxanthin epoxidase, restores the epoxidized xanthophylls by a re-introduction of the epoxy groups. The de-epoxidation reaction takes place in the lipid phase of the thylakoid membrane and thus, depends on the nature, three dimensional structure and function of the thylakoid lipids. As the xanthophyll cycle pigments are usually associated with the photosynthetic light-harvesting proteins, structural re-arrangements of the proteins and changes in the protein-lipid interactions play an additional role for the operation of the xanthophyll cycles. In the present review we give an introduction to the lipid and fatty acid composition of thylakoid membranes of higher plants and algae. We introduce the readers to the reaction sequences, enzymes and function of the different xanthophyll cycles. The main focus of the review lies on the lipid dependence of xanthophyll cycling. We summarize the current knowledge about the role of lipids in the solubilization of xanthophyll cycle pigments. We address the importance of the three-dimensional lipid structures for the enzymatic xanthophyll conversion, with a special focus on non-bilayer lipid phases which are formed by the main thylakoid membrane lipid monogalactosyldiacylglycerol. We additionally describe how lipids and light-harvesting complexes interact in the thylakoid membrane and how these interactions can affect the structure of the thylakoids. In a dedicated chapter we offer a short overview of current membrane models, including the concept of membrane domains. We then use these concepts to present a model of the operative xanthophyll cycle as a transient thylakoid membrane domain which is formed during high light illumination of plants or algal cells.
Collapse
Affiliation(s)
- Reimund Goss
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|