1
|
Gao X, Li SJ, Cai JP. Human Peripheral Blood Leukocyte Transcriptome-Based Aging Clock Reveals Acceleration of Aging by Bacterial or Viral Infections. J Gerontol A Biol Sci Med Sci 2025; 80:glaf054. [PMID: 40089807 DOI: 10.1093/gerona/glaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Indexed: 03/17/2025] Open
Abstract
The aging of the population is a global concern. In the post-coronavirus disease 2019 (COVID-19) pandemic era, there are no effective methods to identify aging acceleration due to infection. In this study, we conducted whole-transcriptome sequencing on peripheral blood samples from 35 healthy individuals (22-88 years old). By analyzing the changes in mRNA, lncRNA, and miRNA expression, we investigated the characteristics of transcriptome alterations during the aging process. ceRNA networks were constructed, and 10 genes (CD248, PHGDH, SFXN2, MXRA8, NOG, TTC24, PHYKPL, CACHD1, BPGM, and TWF1) were identified as potential aging markers and used to construct an aging clock. Moreover, our aging clock categorized individuals into slow-, average-, and quick-aging groups, highlighting a link between accelerated aging and infection-related clinical parameters. Pseudotime analysis further revealed 2 distinct aging trajectories, corroborating the variations in the aging rate identified by the aging clock. Furthermore, we validated the results using the OEP001041 data set (277 healthy individuals aged 17-75), and data sets comprising patients with infectious diseases (n = 1 558). Our study revealed that infection accelerates aging via increased inflammation and oxidative stress in infectious disease patients. Besides, the aging clock exhibited alterations after infection, highlighting its potential for assessing the aging rate after patient recovery. In conclusion, our study introduces a novel aging clock to assess the aging rate in healthy individuals and those with infections, revealing a strong link between accelerated aging and infections through inflammation and oxidative stress. These findings offer valuable insights into aging mechanisms and potential strategies for healthy aging.
Collapse
Affiliation(s)
- Xin Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Si-Jia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Kuznetsov NV, Statsenko Y, Ljubisavljevic M. An Update on Neuroaging on Earth and in Spaceflight. Int J Mol Sci 2025; 26:1738. [PMID: 40004201 PMCID: PMC11855577 DOI: 10.3390/ijms26041738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Over 400 articles on the pathophysiology of brain aging, neuroaging, and neurodegeneration were reviewed, with a focus on epigenetic mechanisms and numerous non-coding RNAs. In particular, this review the accent is on microRNAs, the discovery of whose pivotal role in gene regulation was recognized by the 2024 Nobel Prize in Physiology or Medicine. Aging is not a gradual process that can be easily modeled and described. Instead, multiple temporal processes occur during aging, and they can lead to mosaic changes that are not uniform in pace. The rate of change depends on a combination of external and internal factors and can be boosted in accelerated aging. The rate can decrease in decelerated aging due to individual structural and functional reserves created by cognitive, physical training, or pharmacological interventions. Neuroaging can be caused by genetic changes, epigenetic modifications, oxidative stress, inflammation, lifestyle, and environmental factors, which are especially noticeable in space environments where adaptive changes can trigger aging-like processes. Numerous candidate molecular biomarkers specific to neuroaging need to be validated to develop diagnostics and countermeasures.
Collapse
Affiliation(s)
- Nik V. Kuznetsov
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
| | - Yauhen Statsenko
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Milos Ljubisavljevic
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (Y.S.); (M.L.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Biga PR, Duan JE, Young TE, Marks JR, Bronikowski A, Decena LP, Randolph EC, Pavuluri AG, Li G, Fang Y, Wilkinson GS, Singh G, Nigrin NT, Larschan EN, Lonski AJ, Riddle NC. Hallmarks of aging: A user's guide for comparative biologists. Ageing Res Rev 2025; 104:102616. [PMID: 39643212 DOI: 10.1016/j.arr.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Since the first description of a set of characteristics of aging as so-called hallmarks or pillars in 2013/2014, these characteristics have served as guideposts for the research in aging biology. They have been examined in a range of contexts, across tissues, in response to disease conditions or environmental factors, and served as a benchmark for various anti-aging interventions. While the hallmarks of aging were intended to capture generalizable characteristics of aging, they are derived mostly from studies of rodents and humans. Comparative studies of aging including species from across the animal tree of life have great promise to reveal new insights into the mechanistic foundations of aging, as there is a great diversity in lifespan and age-associated physiological changes. However, it is unclear how well the defined hallmarks of aging apply across diverse species. Here, we review each of the twelve hallmarks of aging defined by Lopez-Otin in 2023 with respect to the availability of data from diverse species. We evaluate the current methods used to assess these hallmarks for their potential to be adapted for comparative studies. Not unexpectedly, we find that the data supporting the described hallmarks of aging are restricted mostly to humans and a few model systems and that no data are available for many animal clades. Similarly, not all hallmarks can be easily assessed in diverse species. However, for at least half of the hallmarks, there are methods available today that can be employed to fill this gap in knowledge, suggesting that these studies can be prioritized while methods are developed for comparative study of the remaining hallmarks.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jingyue E Duan
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tristan E Young
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie R Marks
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Anne Bronikowski
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Louis P Decena
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Eric C Randolph
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ananya G Pavuluri
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Guangsheng Li
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | | - Gunjan Singh
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nathan T Nigrin
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Andrew J Lonski
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Vo GTT, Nguyen KKH, Kim BS. Evaluation of the Role of PnuC Gene in Enhancing Nicotinamide Mononucleotide Synthesis. Biotechnol Appl Biochem 2025. [PMID: 39865734 DOI: 10.1002/bab.2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/22/2024] [Indexed: 01/28/2025]
Abstract
The PnuC gene plays a crucial role in the complex processes related to the absorption and synthesis of the nicotinamide mononucleotide (NMN) precursor. NMN, a nicotinamide adenine dinucleotide (NAD+) precursor, is important for cellular energy metabolism, DNA repair, and antiaging. This study focuses on elucidating the precursor absorption mechanism and the specific function of the PnuC gene in encoding membrane transport proteins, as well as its impact on the regulation and dynamics of NMN within the cell. This understanding aims to provide insights into its potential effects on metabolic balance, illustrated through two NAD+ biosynthesis pathways based on renewable and readily available cytoplasmic resources, assessing the potential of PnuC gene expression in clarifying complex interactions within regulation mechanisms. Enhanced expression analysis of the PnuC gene has initiated discussions on its potential applications in treating aging-related diseases and dysfunctions, contributing to cellular health maintenance.
Collapse
Affiliation(s)
- Giang Thi Thu Vo
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Khang Khoa Hoang Nguyen
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
5
|
Barzilai DA. Mikhail 'Misha' Blagosklonny's enduring legacy in geroscience: the hyperfunction theory and the therapeutic potential of rapamycin. Aging (Albany NY) 2025; 17:1-15. [PMID: 39808121 PMCID: PMC11810056 DOI: 10.18632/aging.206189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The untimely passing of Dr. Mikhail "Misha" Blagosklonny has left a lasting void in geroscience and oncology. This review examines his profound contributions, focusing on his pioneering the Hyperfunction Theory and his advocacy for rapamycin, an mTOR inhibitor, as a therapeutic agent for lifespan extension. Contrary to traditional damage-centric models, the Hyperfunction Theory rejects damage accumulation as the primary driver of aging. Instead, it redefines aging as a quasi-programmed process driven by the persistent, excessive activity of growth-promoting pathways beyond their developmental roles, leading to age-related pathologies. We explore how Blagosklonny's insights predict rapamycin's ability to decelerate aging by modulating excessive mTOR signaling, supported by empirical evidence across multiple physiological systems, including immune, cardiovascular, cognitive, and oncologic health. His forward-thinking approach, advocating for the cautious clinical use of rapamycin and suggesting personalized, preventive, and combination therapy strategies, has catalyzed interest in translational geroscience. This review synthesizes Blagosklonny's legacy, presenting rapamycin as a foundational pharmacological intervention with potential in managing age-related decline and extending healthspan, and underlines his impact in shifting aging research from theoretical frameworks to actionable interventions. Blagosklonny's work remains an enduring inspiration, paving the way toward treating aging as a modifiable condition.
Collapse
Affiliation(s)
- David A. Barzilai
- Geneva College of Longevity Science, Geneva 1204, Switzerland
- Healthspan Coaching LLC, Barzilai Longevity Consulting, Boston, MA 02111, USA
| |
Collapse
|
6
|
Recinella L, Libero ML, Brunetti L, Acquaviva A, Chiavaroli A, Orlando G, Granata R, Salvatori R, Leone S. Effects of growth hormone-releasing hormone deficiency in mice beyond growth. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09936-3. [PMID: 39695049 DOI: 10.1007/s11154-024-09936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
This paper provides a critical overview on GHRH and its deficiency, discussing its multiple roles in both central and peripheral tissues. Genetically engineered mice have been instrumental in elucidating the multifaceted roles of GHRH and GH, each offering unique insights into the physiological and pathological roles of these hormones, although in many of these models dissecting the direct effect of GHRH from the effect of GH is not possible. Key findings highlight the effects of GHRH deficiency on emotional behavior, including anxiety and depression, its impact on memory and learning capabilities, as well as on adipose tissue, immune system, inflammation and pain.
Collapse
Affiliation(s)
- Lucia Recinella
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
| | - Alessandra Acquaviva
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Salvatori
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sheila Leone
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
7
|
Marín Penella G. The Epistemic Policies of Anti-Ageing Medicines in the European Union. HEALTH CARE ANALYSIS 2024:10.1007/s10728-024-00497-9. [PMID: 39560904 DOI: 10.1007/s10728-024-00497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
Anti-ageing medicines are products intended to extend lifespan and healthspan in humans that have a good potential use in public health policies. In the European Union, their development, production and consumption are dependent on regulatory science performed by the European Medicines Agency and its associated epistemic policies. They impose, among other things, an unfavourable burden of proof, a strict standard of proof and meta-methodological constrictions related to some theoretical issues. This results in a distribution of errors that tends to reduce false positives while increasing false negatives, leading to a set of social consequences that are generally accepted when the focus is placed on conventional medicines. However, when the same epistemic policies are applied to anti-ageing medicines, the distribution of errors is imbalanced, and undesirable outcomes like research discouragement and waiting time extensions appear. Three possible strategies that policymakers could implement to unblock the situation are presented for future reflection: the consideration of ageing as a disease, the application of methodological asymmetry and the use of biomarkers during clinical research.
Collapse
Affiliation(s)
- Guillermo Marín Penella
- Department of Philosophy and Social Work, Faculty of Philosophy and Letters, University of the Balearic Islands, Carretera de Valldemossa Km. 7, 5, Palma de Mallorca, 07071, Spain.
| |
Collapse
|
8
|
Dai Z, Zhang H, Sui X, Wu F, Zhang C, Fan Z, Wang H, Guo Y, Yang C, Jiang S, Wang L, Xin B, Li Y. Analysis of physiological and biochemical changes and metabolic shifts during 21-Day fasting hypometabolism. Sci Rep 2024; 14:28550. [PMID: 39557965 PMCID: PMC11574170 DOI: 10.1038/s41598-024-80049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
This study aimed to evaluate the impact of prolonged fasting on the physiological and biochemical alterations and metabolic shifts in healthy adults and to provide experimental data and theoretical support for the hypometabolic state induced by prolonged fasting. Thirteen volunteers were selected through public recruitment to undergo a 21-day complete fasting experiment. The experimental period lasted 34 days, including a 3-day baseline, 21-day completing fasting, 5-day calorie restriction and 5-day full recovery diet. Physiological indicators such as body weight, blood pressure, blood glucose, blood ketones, and blood uric acid were evaluated along with resting metabolic rate, routine blood tests, liver function, and heart function indexes employing traditional approaches. During the 21-day complete fasting period, there was a significant decrease in body weight (average - 14.96 ± 1.55%), a reduction in blood glucose (average - 21.63 ± 0.058%), an increase in blood ketones (from baseline 0.1 ± 0.04 mmol/L to 6.61 ± 1.25 mmol/L) and blood uric acid (from baseline 385.38 ± 57.78 µmol/L to 866.31 ± 172.01 µmol/L), a continuous decline in resting energy expenditure (average - 20.3 ± 11.13%), and the respiratory quotient tending towards fat metabolism. Most of the items in the complete blood count and liver indicators remained stable and within the normal range. Heart function showed functional adaptive changes without structural damage. Prolonged fasting can reduce the body's resting energy expenditure and adapt to body weight loss through physiological regulatory mechanisms without adverse effects on basic physiological functions or the structure of important organs. Under medical supervision, healthy adults can safely engage in prolonged fasting for up to 21 days with metabolic adaption and no damage to pivotal organ, which could provide potential technical support for human health and survival strategies in extreme conditions such as food shortages during long-duration manned spaceflight.
Collapse
Affiliation(s)
- Zhongquan Dai
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China.
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Xiukun Sui
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Cheng Zhang
- Engineering Research Center of Human Circadian Rhythm and Sleep, Space Science and Technology Institute, 518117, Shenzhen, China
| | - Zhiqi Fan
- Engineering Research Center of Human Circadian Rhythm and Sleep, Space Science and Technology Institute, 518117, Shenzhen, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Siyu Jiang
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Linjie Wang
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Bingmu Xin
- Engineering Research Center of Human Circadian Rhythm and Sleep, Space Science and Technology Institute, 518117, Shenzhen, China.
| | - Yinghui Li
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China.
| |
Collapse
|
9
|
Hao Y, Han K, Wang T, Yu J, Ding H, Dao F. Exploring the potential of epigenetic clocks in aging research. Methods 2024; 231:37-44. [PMID: 39251102 DOI: 10.1016/j.ymeth.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024] Open
Abstract
The process of aging is a notable risk factor for numerous age-related illnesses. Hence, a reliable technique for evaluating biological age or the pace of aging is crucial for understanding the aging process and its influence on the progression of disease. Epigenetic alterations are recognized as a prominent biomarker of aging, and epigenetic clocks formulated on this basis have been shown to provide precise estimations of chronological age. Extensive research has validated the effectiveness of epigenetic clocks in determining aging rates, identifying risk factors for aging, evaluating the impact of anti-aging interventions, and predicting the emergence of age-related diseases. This review provides a detailed overview of the theoretical principles underlying the development of epigenetic clocks and their utility in aging research. Furthermore, it explores the existing obstacles and possibilities linked to epigenetic clocks and proposes potential avenues for future studies in this field.
Collapse
Affiliation(s)
- Yuduo Hao
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kaiyuan Han
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ting Wang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Junwen Yu
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Fuying Dao
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
10
|
Qiu X, Lu Y, Mu C, Tang P, Liu Y, Huang Y, Luo H, Liu JY, Li X. The Biomarkers in Extreme Longevity: Insights Gained from Metabolomics and Proteomics. Int J Med Sci 2024; 21:2725-2744. [PMID: 39512690 PMCID: PMC11539388 DOI: 10.7150/ijms.98778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 11/15/2024] Open
Abstract
The pursuit of extreme longevity is a popular topic. Advanced technologies such as metabolomics and proteomics have played a crucial role in unraveling complex molecular interactions and identifying novel longevity-related biomarkers in long-lived individuals. This review summarizes key longevity-related biomarkers identified through metabolomics, including high levels of omega-3 polyunsaturated fatty acids (PUFAs), short-chain fatty acids (SCFAs) and sphingolipids, as well as low levels of tryptophan. Proteomics analyses have highlighted longevity-related proteins such as apolipoprotein E (APOE) and pleiotrophin (PTN), along with lower S-nitrosylated and higher glycosylated proteins found from post-translational modification proteomics as potential biomarkers. We discuss the molecular mechanisms that could support the above biomarkers' potential for healthy longevity, including metabolic regulation, immune homeostasis maintenance, and resistance to cellular oxidative stress. Moreover, multi-omics studies of various long-lived cohorts are encompassed, focusing on how the integration of various omics technologies has contributed to the understanding of longevity. This comprehensive review aims to provide new biological insights and pave the way for promoting health span.
Collapse
Affiliation(s)
- Xiaorou Qiu
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Yixian Lu
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Chao Mu
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Peihua Tang
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Yueli Liu
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Yongmei Huang
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Hui Luo
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Anesthesia Department of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemeng Li
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| |
Collapse
|
11
|
Diniz DG, Bento-Torres J, da Costa VO, Carvalho JPR, Tomás AM, Galdino de Oliveira TC, Soares FC, de Macedo LDED, Jardim NYV, Bento-Torres NVO, Anthony DC, Brites D, Picanço Diniz CW. The Hidden Dangers of Sedentary Living: Insights into Molecular, Cellular, and Systemic Mechanisms. Int J Mol Sci 2024; 25:10757. [PMID: 39409085 PMCID: PMC11476792 DOI: 10.3390/ijms251910757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
With the aging of the global population, neurodegenerative diseases are emerging as a major public health issue. The adoption of a less sedentary lifestyle has been shown to have a beneficial effect on cognitive decline, but the molecular mechanisms responsible are less clear. Here we provide a detailed analysis of the complex molecular, cellular, and systemic mechanisms underlying age-related cognitive decline and how lifestyle choices influence these processes. A review of the evidence from animal models, human studies, and postmortem analyses emphasizes the importance of integrating physical exercise with cognitive, multisensory, and motor stimulation as part of a multifaceted approach to mitigating cognitive decline. We highlight the potential of these non-pharmacological interventions to address key aging hallmarks, such as genomic instability, telomere attrition, and neuroinflammation, and underscore the need for comprehensive and personalized strategies to promote cognitive resilience and healthy aging.
Collapse
Affiliation(s)
- Daniel Guerreiro Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Seção de Hepatologia, Belém 66.093-020, Pará, Brazil;
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - João Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Victor Oliveira da Costa
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Josilayne Patricia Ramos Carvalho
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Alessandra Mendonça Tomás
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Samabaia, Universidade Federal de Goiás (EBTT), CEPAE, Goiânia 74.001-970, Goiás, Brazil
| | - Thaís Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Faculdade de Ceilândia, Ceilândia, Universidade de Brasília, Brasília 72.220-900, Brazil
| | - Fernanda Cabral Soares
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Liliane Dias e Dias de Macedo
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
| | - Naina Yuki Vieira Jardim
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| | - Natáli Valim Oliver Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Dora Brites
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Medicines, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| |
Collapse
|
12
|
Molière A, Park JYC, Goyala A, Vayndorf EM, Zhang B, Hsiung KC, Jung Y, Kwon S, Statzer C, Meyer D, Nguyen R, Chadwick J, Thompson MA, Schumacher B, Lee SJV, Essmann CL, MacArthur MR, Kaeberlein M, David D, Gems D, Ewald CY. Improved resilience and proteostasis mediate longevity upon DAF-2 degradation in old age. GeroScience 2024; 46:5015-5036. [PMID: 38900346 PMCID: PMC11335714 DOI: 10.1007/s11357-024-01232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Little is known about the possibility of reversing age-related biological changes when they have already occurred. To explore this, we have characterized the effects of reducing insulin/IGF-1 signaling (IIS) during old age. Reduction of IIS throughout life slows age-related decline in diverse species, most strikingly in the nematode Caenorhabditis elegans. Here we show that even at advanced ages, auxin-induced degradation of DAF-2 in single tissues, including neurons and the intestine, is still able to markedly increase C. elegans lifespan. We describe how reversibility varies among senescent changes. While senescent pathologies that develop in mid-life were not reversed, there was a rejuvenation of the proteostasis network, manifesting as a restoration of the capacity to eliminate otherwise intractable protein aggregates that accumulate with age. Moreover, resistance to several stressors was restored. These results support several new conclusions. (1) Loss of resilience is not solely a consequence of pathologies that develop in earlier life. (2) Restoration of proteostasis and resilience by inhibiting IIS is a plausible cause of the increase in lifespan. And (3), most interestingly, some aspects of the age-related transition from resilience to frailty can be reversed to a certain extent. This raises the possibility that the effect of IIS and related pathways on resilience and frailty during aging in higher animals might possess some degree of reversibility.
Collapse
Affiliation(s)
- Adrian Molière
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Elena M Vayndorf
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Kuei Ching Hsiung
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - David Meyer
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Richard Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | | | | | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University Hospital and University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Clara L Essmann
- Bioinformatics and Molecular Genetics, Institute of Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79108, Freiburg, Germany
| | - Michael R MacArthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195-7470, USA
| | | | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
13
|
Hamaguchi R, Isowa M, Narui R, Morikawa H, Okamoto T, Wada H. How Does Cancer Occur? How Should It Be Treated? Treatment from the Perspective of Alkalization Therapy Based on Science-Based Medicine. Biomedicines 2024; 12:2197. [PMID: 39457509 PMCID: PMC11504456 DOI: 10.3390/biomedicines12102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
This review article investigates the relationship between mitochondrial dysfunction and cancer progression, emphasizing the metabolic shifts that promote tumor growth. Mitochondria are crucial for cellular energy production, but they also play a significant role in cancer progression by promoting glycolysis even under oxygen-rich conditions, a phenomenon known as the Warburg effect. This metabolic reprogramming enables cancer cells to maintain an alkaline internal pH and an acidic external environment, which are critical for their proliferation and survival in hypoxic conditions. The article also explores the acidic tumor microenvironment (TME), a consequence of intensive glycolytic activity and proton production by cancer cells. This acidic milieu enhances the invasiveness and metastatic potential of cancer cells and contributes to increased resistance to chemotherapy. Alkalization therapy, which involves neutralizing this acidity through dietary modifications and the administration of alkalizing agents such as sodium bicarbonate, is highlighted as an effective strategy to counteract these adverse conditions and impede cancer progression. Integrating insights from science-based medicine, the review evaluates the effectiveness of alkalization therapy across various cancer types through clinical assessments. Science-based medicine, which utilizes inductive reasoning from observed clinical outcomes, lends support to the hypothesis of metabolic reprogramming in cancer treatment. By addressing both metabolic and environmental disruptions, this review suggests that considering cancer as primarily a metabolic disorder could lead to more targeted and effective treatment strategies, potentially improving outcomes for patients with advanced-stage cancers.
Collapse
Affiliation(s)
- Reo Hamaguchi
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Masahide Isowa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Ryoko Narui
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Hiromasa Morikawa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Hiromi Wada
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (R.H.); (M.I.); (R.N.); (H.M.)
| |
Collapse
|
14
|
Ege T, Tao L, North BJ. The Role of Molecular and Cellular Aging Pathways on Age-Related Hearing Loss. Int J Mol Sci 2024; 25:9705. [PMID: 39273652 PMCID: PMC11396656 DOI: 10.3390/ijms25179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Aging, a complex process marked by molecular and cellular changes, inevitably influences tissue and organ homeostasis and leads to an increased onset or progression of many chronic diseases and conditions, one of which is age-related hearing loss (ARHL). ARHL, known as presbycusis, is characterized by the gradual and irreversible decline in auditory sensitivity, accompanied by the loss of auditory sensory cells and neurons, and the decline in auditory processing abilities associated with aging. The extended human lifespan achieved by modern medicine simultaneously exposes a rising prevalence of age-related conditions, with ARHL being one of the most significant. While our understanding of the molecular basis for aging has increased over the past three decades, a further understanding of the interrelationship between the key pathways controlling the aging process and the development of ARHL is needed to identify novel targets for the treatment of AHRL. The dysregulation of molecular pathways (AMPK, mTOR, insulin/IGF-1, and sirtuins) and cellular pathways (senescence, autophagy, and oxidative stress) have been shown to contribute to ARHL. However, the mechanistic basis for these pathways in the initiation and progression of ARHL needs to be clarified. Therefore, understanding how longevity pathways are associated with ARHL will directly influence the development of therapeutic strategies to treat or prevent ARHL. This review explores our current understanding of the molecular and cellular mechanisms of aging and hearing loss and their potential to provide new approaches for early diagnosis, prevention, and treatment of ARHL.
Collapse
Affiliation(s)
| | - Litao Tao
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
15
|
Sui X, Jiang S, Zhang H, Wu F, Wang H, Yang C, Guo Y, Wang L, Li Y, Dai Z. The influence of extended fasting on thyroid hormone: local and differentiated regulatory mechanisms. Front Endocrinol (Lausanne) 2024; 15:1443051. [PMID: 39253586 PMCID: PMC11381305 DOI: 10.3389/fendo.2024.1443051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The hypometabolism induced by fasting has great potential in maintaining health and improving survival in extreme environments, among which thyroid hormone (TH) plays an important role in the adaptation and the formation of new energy metabolism homeostasis during long-term fasting. In the present review, we emphasize the potential of long-term fasting to improve physical health and emergency rescue in extreme environments, introduce the concept and pattern of fasting and its impact on the body's energy metabolism consumption. Prolonged fasting has more application potential in emergency rescue in special environments. The changes of THs caused by fasting, including serum biochemical characteristics, responsiveness of the peripheral and central hypothalamus-pituitary-thyroid (HPT) axis, and differential changes of TH metabolism, are emphasized in particular. It was proposed that the variability between brain and liver tissues in THs uptake, deiodination activation and inactivation is the key regulatory mechanism for the cause of peripheral THs decline and central homeostasis. While hypothalamic tanycytes play a pivotal role in the fine regulation of the HPT negative feedback regulation during long-term fasting. The study progress of tanycytes on thyrotropin-releasing hormone (TRH) release and deiodination is described in detail. In conclusion, the combination of the decrease of TH metabolism in peripheral tissues and stability in the central HPT axis maintains the basal physiological requirement and new energy metabolism homeostasis to adapt to long-term food scarcity. The molecular mechanisms of this localized and differential regulation will be a key research direction for developing measures for hypometabolic applications in extreme environment.
Collapse
Affiliation(s)
- Xiukun Sui
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Siyu Jiang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Linjie Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
16
|
Maimaiti A, Ma J, Hao C, Han D, Wang Y, Wang Z, Abudusalamu R. DNA methylation-estimated phenotypes, telomere length and risk of ischemic stroke: epigenetic age acceleration of screening and a Mendelian randomization study. Aging (Albany NY) 2024; 16:11970-11993. [PMID: 39159130 PMCID: PMC11386914 DOI: 10.18632/aging.206072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Aging is a complex biological process that may be accelerated in certain pathological conditions. DNA methylation age (DNAmAge) has emerged as a biomarker for biological age, which can differ from chronological age. This research peels back the layers of the relationship between fast-forward aging and ischemic stroke, poking and prodding the potential two-way causal influences between stroke and biological aging indicators. METHODS We analyzed a cohort of ischemic stroke patients, comparing DNAmAge with chronological age to measure age acceleration. We assessed variations in age acceleration among stroke subtypes and between sexes. Using Mendelian randomization, we examined the causal links between stroke, aging biomarkers like telomere length, and age acceleration's effect on stroke risk. RESULTS Our investigation reveals a pronounced association between ischemic stroke and age acceleration, most notably in patients with cardioembolic strokes, who exhibited a striking median difference of 9 years between DNAmAge and chronological age. Furthermore, age acceleration differed significantly across stroke subtypes and was higher in women than in men. In terms of causality, MR analysis indicated a modest negative effect of stroke on telomere length, but no causal effect of age phenotypes on stroke or its subtypes. However, some indication of a potential causal effect of ischemic stroke on PhenoAge acceleration was observed. CONCLUSION The study provides insight into the relationship between DNAmAge and ischemic stroke, particularly cardioembolic stroke, and suggests possible gender differences. These insights carry profound clinical significance and set stage for future investigations into the entwined pathways of stroke and accelerated aging.
Collapse
Affiliation(s)
- Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Jianhua Ma
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Chenguang Hao
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Dengfeng Han
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Yongxin Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Zengliang Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| | - Rena Abudusalamu
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, China
| |
Collapse
|
17
|
Matin M, Joshi T, Wang D, Tzvetkov NT, Matin FB, Wierzbicka A, Jóźwik A, Horbańczuk JO, Atanasov AG. Effects of Ginger ( Zingiber officinale) on the Hallmarks of Aging. Biomolecules 2024; 14:940. [PMID: 39199328 PMCID: PMC11352747 DOI: 10.3390/biom14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Ginger (Zingiber officinale Roscoe) is broadly used as a traditional remedy and food ingredient, and numerous preclinical and clinical studies have demonstrated health benefits in a range of age-related disorders. Moreover, longevity-promoting effects have been demonstrated in several (preclinical) research models. With this work, we aimed to comprehensively review the reported effects of ginger and its bioactive constituents on the twelve established hallmarks of aging, with the ultimate goal of gaining a deeper understanding of the potential for future interventions in the area of longevity-extension and counteracting of aging-related diseases. The reviewed literature supports the favorable effects of ginger and some of its constituents on all twelve hallmarks of aging, with a particularly high number of animal research studies indicating counteraction of nutrient-sensing dysregulations, mitochondrial dysfunction, chronic inflammation, and dysbiosis. On this background, validation in human clinical trials is still insufficient or is entirely missing, with the exception of some studies indicating positive effects on deregulated nutrient-sensing, chronic inflammation, and dysbiosis. Thus, the existing body of literature clearly supports the potential of ginger to be further studied in clinical trials as a supplement for the promotion of both lifespan and health span.
Collapse
Affiliation(s)
- Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University, Nainital 263002, India;
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Farhan Bin Matin
- Department of Pharmacy, East West University, Aftabnagar, Dhaka 1212, Bangladesh;
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
18
|
Tam LM, Bushnell T. Deciphering the aging process through single-cell cytometric technologies. Cytometry A 2024; 105:621-638. [PMID: 38847116 PMCID: PMC12147454 DOI: 10.1002/cyto.a.24852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 03/20/2025]
Abstract
The advent of single-cell cytometric technologies, in conjunction with advances in single-cell biology, has significantly propelled forward the field of geroscience, enhancing our comprehension of the mechanisms underlying age-related diseases. Given that aging is a primary risk factor for numerous chronic health conditions, investigating the dynamic changes within the physiological landscape at the granularity of single cells is crucial for elucidating the molecular foundations of biological aging. Utilizing hallmarks of aging as a conceptual framework, we review current literature to delineate the progression of single-cell cytometric techniques and their pivotal applications in the exploration of molecular alterations associated with aging. We next discuss recent advancements in single-cell cytometry in terms of the development in instrument, software, and reagents, highlighting its promising and critical role in driving future breakthrough discoveries in aging research.
Collapse
Affiliation(s)
- Lok Ming Tam
- Center for Advanced Research Technologies, University of Rochester Medical Center, Rochester, New York, USA
| | - Timothy Bushnell
- Center for Advanced Research Technologies, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
19
|
Neves VCM, Savchenko V, Daly J, Sharpe P. Periodontal ageing and its management via pharmacological glucose modulation. FRONTIERS IN DENTAL MEDICINE 2024; 5:1415960. [PMID: 39917674 PMCID: PMC11797871 DOI: 10.3389/fdmed.2024.1415960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/12/2024] [Indexed: 02/09/2025] Open
Abstract
Periodontal disease (PD), a widespread non-communicable disease, affects over 90% of the global population with no known cure. Current management strategies focus on the stabilisation of disease progression, which is successfully achieved to a limited extent. Yet the never-ending battle between bacteria and the gingiva involves a complex interplay between genetic, microbial and environmental factors, demanding innovative approaches to improve the prevention and stabilisation of this disease. Glucose is the body's source of energy and research has shown that dysregulation of the glucose metabolism impacts PD establishment and progression, as well as the development of systemic non-communicable diseases. Metformin, a drug known for its efficacy in diabetes treatment via controlling glucose metabolism, also demonstrated cardioprotective effects, increased longevity, and anti-inflammatory properties. Metformin has been used in gel format in clinical trials for non-surgical treatment of PD, however, its systemic use in normoglycemic individuals with PD is less explored. A recent study presented compelling evidence of metformin's preventive potential, impacting PD and markers of systemic health involved in metabolic health linked to improvement of lifespan. Therefore, this review discusses the aspects of ageing as a concept in the periodontium and the potential benefits of modulating glucose metabolism through metformin to prevent PD, indirectly preventing systemic conditions involved in multi-morbidity, addressing a critical gap in current management. It also examines the choice between implementation of behaviour change and/or medication as a strategy to add to current oral hygiene strategies. Finally, it discusses the ethical implications of prescribing systemic medication in dentistry.
Collapse
Affiliation(s)
- Vitor C. M. Neves
- Restorative Dentistry Unit, the School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| | - Viktor Savchenko
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, United Kingdom
- Department of Civil Law Disciplines, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - James Daly
- Bristol Dental Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Paul Sharpe
- Centre for Craniofacial and Regenerative Biology, FoDOCS, King’s College London, London, United Kingdom
- Institute of Animal Physiology and Genetics, Brno, Czech Republic
| |
Collapse
|
20
|
Burdusel D, Coman C, Ancuta D, Hermann DM, Doeppner TR, Gresita A, Popa‐Wagner A. Translatability of life-extending pharmacological treatments between different species. Aging Cell 2024; 23:e14208. [PMID: 38797976 PMCID: PMC11258477 DOI: 10.1111/acel.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Anti-aging research has made significant strides in identifying treatments capable of extending lifespan across a range of organisms, from simple invertebrates to mammals. This review showcases the current state of anti-aging interventions, highlighting the lifespan extensions observed in animal models through various treatments and the challenges encountered in translating these findings to humans. Despite promising results in lower organisms, the translation of anti-aging treatments to human applications presents a considerable challenge. This discrepancy can be attributed to the increasing complexity of biological systems, species-specific metabolic and genetic differences, and the redundancy of metabolic pathways linked to longevity. Our review focuses on analyzing these challenges, offering insights into the efficacy of anti-aging mechanisms across species and identifying key barriers to their translation into human treatments. By synthesizing current knowledge and identifying gaps in translatability, this review aims to underscore the importance of advancing these therapies for human benefit. Bridging this gap is essential to assess the potential of such treatments in extending the human healthspan.
Collapse
Affiliation(s)
- Daiana Burdusel
- Doctoral SchoolUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
- Chair of Vascular Neurology and Dementia, Department of NeurologyUniversity Hospital EssenEssenGermany
| | - Cristin Coman
- Cantacuzino National Medical Military Institute for Research and DevelopmentBucharestRomania
| | - Diana–Larisa Ancuta
- Cantacuzino National Medical Military Institute for Research and DevelopmentBucharestRomania
| | - Dirk M. Hermann
- Chair of Vascular Neurology and Dementia, Department of NeurologyUniversity Hospital EssenEssenGermany
| | - Thorsten R. Doeppner
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
- Department of NeurologyUniversity of Giessen Medical SchoolGiessenGermany
| | - Andrei Gresita
- Department of Biomedical SciencesNew York Institute of Technology, College of Osteopathic MedicineOld WestburyNew YorkUSA
| | - Aurel Popa‐Wagner
- Doctoral SchoolUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
- Chair of Vascular Neurology and Dementia, Department of NeurologyUniversity Hospital EssenEssenGermany
| |
Collapse
|
21
|
Steinwand S, Stacher Hörndli C, Ferris E, Emery J, Gonzalez Murcia JD, Cristina Rodriguez A, Leydsman TC, Chaix A, Thomas A, Davey C, Gregg C. Conserved Noncoding Cis-Elements Associated with Hibernation Modulate Metabolic and Behavioral Adaptations in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600851. [PMID: 38979203 PMCID: PMC11230392 DOI: 10.1101/2024.06.26.600851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Our study elucidates functional roles for conserved cis-elements associated with the evolution of mammalian hibernation. Genomic analyses found topologically associated domains (TADs) that disproportionately accumulated convergent genomic changes in hibernators, including the TAD for the Fat Mass & Obesity (Fto) locus. Some hibernation-linked cis-elements in this TAD form regulatory contacts with multiple neighboring genes. Knockout mice for these cis-elements exhibit Fto, Irx3, and Irx5 gene expression changes, impacting hundreds of genes downstream. Profiles of pre-torpor, torpor, and post-torpor phenotypes found distinct roles for each cis-element in metabolic control, while a high caloric diet uncovered different obesogenic effects. One cis-element promoting a lean phenotype influences foraging behaviors throughout life, affecting specific behavioral sequences. Thus, convergent evolution in hibernators pinpoints functional genetic mechanisms of mammalian metabolic control.
Collapse
Affiliation(s)
- Susan Steinwand
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | | | - Elliott Ferris
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | - Jared Emery
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | | | | | - Tyler C. Leydsman
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah; Salt Lake City, 84105, USA
| | - Alun Thomas
- Division of Epidemiology, University of Utah; Salt Lake City, 84105, USA
- Study Design and Biostatistics Center, University of Utah; Salt Lake City, 84105, USA
| | - Crystal Davey
- Mutation Generation & Detection Core Facility, University of Utah; Salt Lake City, 84105, USA
| | - Christopher Gregg
- Department of Neurobiology, University of Utah; Salt Lake City, 84105, USA
- Department of Human Genetics, University of Utah; Salt Lake City, 84105, USA
| |
Collapse
|
22
|
Ho TJ, Shanmugam T, Liao PH, Shibu MA, Chen WST, Lin KH, Lu SY, Kuo CH, Kuo WW, Huang CY. Renal protective effects of Alpinate Oxyphyllae Fructus and mesenchymal stem cells co-treatment against D- galactose induced renal deterioration. Int J Med Sci 2024; 21:1491-1499. [PMID: 38903928 PMCID: PMC11186433 DOI: 10.7150/ijms.96007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Age-related structural and functional changes in the kidney can eventually lead to development of chronic kidney disease, which is one of the leading causes of mortality among elderly people. For effective management of age-related kidney complications, it is important to identify new therapeutic interventions with minimal side-effects. The present study was designed to evaluate the synergistic effect of a traditional Chinese herb, Alpinate Oxyphyllae Fructus (AOF), and adipose-derived mesenchymal stem cells (ADMSCs) in ameliorating D-galactose (D-gal)-induced renal aging phenotypes in WKY rats. The study findings showed that D-gal-induced alteration in the kidney morphology was partly recovered by the AOF and ADMSC co-treatment. Moreover, the AOF and ADMSC co-treatment reduced the expression of proinflammatory mediators (NFkB, IL-6, and Cox2) and increased the expression of redox regulators (Nrf2 and HO-1) in the kidney, which were otherwise augmented by the D-gal treatment. Regarding kidney cell death, the AOF and ADMSC co-treatment was found to abolish the proapoptotic effects of D-gal by downregulating Bax and Bad expressions and inhibiting caspase 3 activation. Taken together, the study findings indicate that the AOF and ADMSC co-treatment protect the kidney from D-gal-induced aging by reducing cellular inflammation and oxidative stress and inhibiting renal cell death. This study can open up a new path toward developing novel therapeutic interventions using both AOF and ADMSC to effectively manage age-related renal deterioration.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tamilselvi Shanmugam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Po-Hsiang Liao
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - William Shao-Tsu Chen
- Department of Psychiatry, Tzu Chi General Hospital, 707, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of pharmacy, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
23
|
García-Barranquero P, Llorca Albareda J, Díaz-Cobacho G. Is ageing undesirable? An ethical analysis. JOURNAL OF MEDICAL ETHICS 2024; 50:413-419. [PMID: 37286333 DOI: 10.1136/jme-2022-108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
The technical possibilities of biomedicine open up the opportunity to intervene in ageing itself with the aim of mitigating, reducing or eliminating it. However, before undertaking these changes or rejecting them outright, it is necessary to ask ourselves if what would be lost by doing so really has much value. This article will analyse the desirability of ageing from an individual point of view, without circumscribing this question to the desirability or undesirability of death. First, we will present the three most widely used arguments to reject biomedical interventions against ageing. We will argue that only the last of these arguments provides a consistent answer to the question of the desirability of ageing. Second, we will show that the third argument falls prey to a conceptual confusion that we will call the paradox of ageing: although ageing entails negative health effects, it leads to a life stage with valuable goods. Both valuations, one positive and the other negative, refer to two different dimensions of ageing: the chronological and the biological. We will defend that, by not adequately distinguishing these two types of ageing, it does not become apparent that all the valuable goods exclusive to ageing derive only from its chronological dimension. Third, we will argue that, if we just conceive ageing biologically, it is undesirable. We will elaborate on the two kinds of undesirable effects biological ageing has: direct and indirect. Finally, we will respond to potential objections by adducing that these are insufficient to weaken our argument.
Collapse
Affiliation(s)
- Pablo García-Barranquero
- Department of Philosophy (Logic and Philosophy of Science), Universidad de Malaga, Malaga, Spain
| | | | | |
Collapse
|
24
|
Salama RM, Eissa N, Doghish AS, Abulsoud AI, Abdelmaksoud NM, Mohammed OA, Abdel Mageed SS, Darwish SF. Decoding the secrets of longevity: unraveling nutraceutical and miRNA-Mediated aging pathways and therapeutic strategies. FRONTIERS IN AGING 2024; 5:1373741. [PMID: 38605867 PMCID: PMC11007187 DOI: 10.3389/fragi.2024.1373741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
MicroRNAs (miRNAs) are short RNA molecules that are not involved in coding for proteins. They have a significant function in regulating gene expression after the process of transcription. Their participation in several biological processes has rendered them appealing subjects for investigating age-related disorders. Increasing data indicates that miRNAs can be influenced by dietary variables, such as macronutrients, micronutrients, trace minerals, and nutraceuticals. This review examines the influence of dietary factors and nutraceuticals on the regulation of miRNA in relation to the process of aging. We examine the present comprehension of miRNA disruption in age-related illnesses and emphasize the possibility of dietary manipulation as a means of prevention or treatment. Consolidating animal and human research is essential to validate the significance of dietary miRNA control in living organisms, despite the abundance of information already provided by several studies. This review elucidates the complex interaction among miRNAs, nutrition, and aging, offering valuable insights into promising areas for further research and potential therapies for age-related disorders.
Collapse
Affiliation(s)
- Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
| | - Ahmed I. Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| |
Collapse
|
25
|
Vrettos I, Anagnostopoulos F, Voukelatou P, Kyvetos A, Theotoka D, Niakas D. Does Old Age Comprise Distinct Subphases? Evidence from an Analysis of the Relationship between Age and Activities of Daily Living, Comorbidities, and Geriatric Syndromes. Ann Geriatr Med Res 2024; 28:65-75. [PMID: 38229437 PMCID: PMC10982449 DOI: 10.4235/agmr.23.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Older individuals are usually treated as a homogenous group despite evidence that old age consists of distinct subphases. This observational study including 493 older patients aimed to identify differences among age subgroups of older persons. Receiver operating characteristic (ROC) curve analysis was then applied to identify the optimal age cutoff points to distinguish those age groups. METHODS Data were collected on the demographics of older patients, their medical and medication histories, dependence on activities of daily living (ADLs), and instrumental activities of daily living (IADLs). Non-parametric tests (Kruskal-Wallis and Mann-Whitney U tests) and ROC curves were used for statistical analysis. RESULTS The 65-79 and ≥80 years of age groups showed distinct frailty status, comorbidity, and dependency in ADLs. The median age to remain completely independent in IADLs was 76-79 years, while the median age for being free from geriatric syndromes was slightly higher (77-80 years) and reached 82 years for the absence of delirium, falls, and swallowing problems. In the ROC analysis, the optimal cutoff ages for the presence of frailty, cognitive impairment, and dependency in ADLs were 80-82 years. CONCLUSION The 65-79 and ≥80 years of age groups differed significantly in numerous parameters, underscoring the need to address these distinct age groups differently, both for applying medical therapies and interventions, as well as for conducting health research.
Collapse
Affiliation(s)
- Ioannis Vrettos
- 2nd Department of Internal Medicine, General and Oncology Hospital of Kifissia “Agioi Anargyroi”, Athens, Greece
| | | | - Panagiota Voukelatou
- 2nd Department of Internal Medicine, General and Oncology Hospital of Kifissia “Agioi Anargyroi”, Athens, Greece
| | - Andreas Kyvetos
- 2nd Department of Internal Medicine, General and Oncology Hospital of Kifissia “Agioi Anargyroi”, Athens, Greece
| | - Despoina Theotoka
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, USA
| | - Dimitris Niakas
- Department of Health Economics, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
26
|
Paukkonen I, Törrönen EN, Lok J, Schwab U, El-Nezami H. The impact of intermittent fasting on gut microbiota: a systematic review of human studies. Front Nutr 2024; 11:1342787. [PMID: 38410639 PMCID: PMC10894978 DOI: 10.3389/fnut.2024.1342787] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
Background Intermittent fasting (IF) has gained popularity in interventions targeting overweight, obesity and metabolic syndrome. IF may affect the gut microbiome composition and therefore have various effects on gut microbiome mediated functions in humans. Research on the effects of IF on human gut microbiome is limited. Therefore, the objective of this systematic review was to determine how different types of IF affect the human gut microbiome. Methods A literature search was conducted for studies investigating the association of different types of IF and gut microbiota richness, alpha and beta diversity, and composition in human subjects. Databases included Cochrane Library (RRID:SCR_013000), PubMed (RRID:SCR_004846), Scopus (RRID:SCR_022559) and Web of Science (RRID:SCR_022706). A total of 1,332 studies were retrieved, of which 940 remained after removing duplicates. Ultimately, a total of 8 studies were included in the review. The included studies were randomized controlled trials, quasi-experimental studies and pilot studies implementing an IF intervention (time-restricted eating, alternate day fasting or 5:2 diet) in healthy subjects or subjects with any disease. Results Most studies found an association between IF and gut microbiota richness, diversity and compositional changes. There was heterogeneity in the results, and bacteria which were found to be statistically significantly affected by IF varied widely depending on the study. Conclusion The findings in this systematic review suggest that IF influences gut microbiota. It seems possible that IF can improve richness and alpha diversity. Due to the substantial heterogeneity of the results, more research is required to validate these findings and clarify whether the compositional changes might be beneficial to human health. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021241619.
Collapse
Affiliation(s)
- Isa Paukkonen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Elli-Noora Törrönen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johnson Lok
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Hani El-Nezami
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Molecular and Cell Biology Research Area, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
27
|
Lin X, Gao Y. A bibliometric analysis of the Fasting-Mimicking Diet. Front Nutr 2024; 11:1328450. [PMID: 38321992 PMCID: PMC10844425 DOI: 10.3389/fnut.2024.1328450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
The Fasting-Mimicking Diet (FMD) is a nutritional strategy that involves significantly reducing calorie intake for a specific period to mimic the physiological effects of fasting while still providing the body with nutrition. Our study aimed to conduct a bibliometric study to explore the latest publishing trends and areas of intense activity within the sphere of FMD. We extracted data on FMD publications from the Web of Science Core Collection (WOSCC) database. The bibliometric analysis was conducted by WOSCC Online Analysis Platform and VOSviewer 1.6.16. In total, there were 169 publications by 945 authors from 342 organizations and 25 countries/regions, and published in 111 journals. The most productive country, organization, author, and journal were the United States, the University of Southern California, Valter D. Longo, and Nutrients, respectively. The first high-cited document was published in Ageing Research Reviews and authored by Mattson et al. In this study, they discuss the various health benefits of FMD including improved metabolic health, weight management, and even potential effects on delaying aging processes and reducing the risk of chronic diseases. In conclusion, our study is the first bibliometric analysis of the FMD. The main research hotspots and frontiers were FMD for cancer, FMD for metabolic-related diseases, and FMD for cognitive improvement. FMD may have some potential benefits for multiple diseases which should be further investigated.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Hangzhou, Zhejiang, China
| | - Yue Gao
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Li Y, Berliocchi L, Li Z, Rasmussen LJ. Interactions between mitochondrial dysfunction and other hallmarks of aging: Paving a path toward interventions that promote healthy old age. Aging Cell 2024; 23:e13942. [PMID: 37497653 PMCID: PMC10776122 DOI: 10.1111/acel.13942] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Current research on human aging has largely been guided by the milestone paper "hallmarks of aging," which were first proposed in the seminal 2013 paper by Lopez-Otin et al. Most studies have focused on one aging hallmark at a time, asking whether the underlying molecular perturbations are sufficient to drive the aging process and its associated phenotypes. More recently, researchers have begun to investigate whether aging phenotypes are driven by concurrent perturbations in molecular pathways linked to not one but to multiple hallmarks of aging and whether they present different patterns in organs and systems over time. Indeed, preliminary results suggest that more complex interactions between aging hallmarks must be considered and addressed, if we are to develop interventions that successfully promote healthy aging and/or delay aging-associated dysfunction and diseases. Here, we summarize some of the latest work and views on the interplay between hallmarks of aging, with a specific focus on mitochondrial dysfunction. Indeed, this represents a significant example of the complex crosstalk between hallmarks of aging and of the effects that an intervention targeted to a specific hallmark may have on the others. A better knowledge of these interconnections, of their cause-effect relationships, of their spatial and temporal sequence, will be very beneficial for the whole aging research field and for the identification of effective interventions in promoting healthy old age.
Collapse
Affiliation(s)
- Yuan Li
- Department of Cellular and Molecular Medicine, Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| | - Laura Berliocchi
- Department of Cellular and Molecular Medicine, Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
- Department of Health SciencesUniversity Magna Græcia of CatanzaroCatanzaroItaly
| | - Zhiquan Li
- Department of Cellular and Molecular Medicine, Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy AgingUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
29
|
Caruso C, Accardi G, Aiello A, Candore G. Hormetic Effects of Phytochemicals with Anti-Ageing Properties. Subcell Biochem 2024; 107:205-215. [PMID: 39693026 DOI: 10.1007/978-3-031-66768-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
In the fields of biology and medicine, hormesis is defined as the adaptive response of cells and organisms to moderate and usually intermittent stress. Examples include radiation, pharmaceutical agents, as well as dietary and lifestyle factors such as calorie restriction and physical exercise. However, in the present chapter, we will focus on the hormetic role of certain phytochemicals, compounds that naturally occur in plants, playing roles in plant colour, flavour, and disease resistance, with nutraceutical properties. Indeed, these compounds exhibit health-promoting, disease-preventing, or medicinal properties, mostly through a hormetic mechanism.
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
30
|
Pappolla MA, Wu P, Fang X, Poeggeler B, Sambamurti K, Wisniewski T, Perry G. Stem Cell Interventions in Neurology: From Bench to Bedside. J Alzheimers Dis 2024; 101:S395-S416. [PMID: 39422938 DOI: 10.3233/jad-230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Stem cell therapies are progressively redefining the treatment landscape for a spectrum of neurological and age-related disorders. This review discusses the molecular and functional attributes of stem cells, emphasizing the roles of neural stem cells and mesenchymal stem cells in the context of neurological diseases such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and Alzheimer's disease. The review also explores the potential of stem cells in addressing the aging process. The paper analyzes stem cells' intrinsic properties of self-renewal, differentiation, and paracrine effects, alongside the importance of laboratory-modified stem cells like induced pluripotent stem cells and transgenic stem cells. Insights into disease-specific stem cell treatments are offered, reviewing both successes and challenges in the field. This includes the translational difficulties from rodent studies to human trials. The review concludes by acknowledging the uncharted territories that warrant further investigation, emphasizing the potential roles of stem cell-derived exosomes and indole-related molecules, and aiming at providing a basic understanding of stem cell therapies.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Wu
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Faculty of Biology and Psychology, Georg August University Göttingen, Gütersloh, Germany
| | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology, and Psychiatry, New York University Alzheimer's Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
31
|
Majumdar V, Manjunath NK, Snigdha A, Chakraborty P, Majumdar R. Study protocol on effectiveness of yoga practice on composite biomarker age predictors (yBioAge) in an elderly Indian cohort- two-armed open label randomized controlled trial. BMC Geriatr 2023; 23:864. [PMID: 38102561 PMCID: PMC10724948 DOI: 10.1186/s12877-023-04517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION The recent development of robust indices to quantify biological aging, along with the dynamic epidemiological transitions of population aging generate the unmet need to examine the extent up to which potential interventions can delay, halt or temporarily modulate aging trajectories. METHODS AND ANALYSIS The study is a two-armed, open label randomised controlled trial. We aim to recruit 166 subjects, aged 60-75 years from the residential communities and old age clubs in Bangalore city, India, who will undergo randomisation into intervention or control arms (1:1). Intervention will include yoga sessions tailored for the older adults, 1 h per day for 5 days a week, spread for 12 months. Data would be collected at the baseline, 26th week and 52nd week. The primary outcome of the study is estimation in biological age with yoga practice. The secondary outcomes will include cardinal mechanistic indicators of aging- telomere length, interleukin-6 (IL-6), tumor necrosis factor receptor II (TNF-RII), high sensitivity c-reactive protein (hsCRP)], insulin signaling [insulin and IGF1], renal function [cystatin], senescence [growth differentiating factor 15 (GDF-15)] and cardiovascular function [N-terminal B-type natriuretic peptides (NT-proBNP)]. Analyses will be by intention-to-treat model. ETHICS & DISSEMINATION The study is approved by the Institutional Ethics Committee of Swami Vivekananda Yoga Anusandhana Samsthana University, Bangalore (ID:RES/IEC-SVYASA/242/2022). Written informed consent will be obtained from each participant prior to inclusion. TRIAL REGISTRATION NUMBER CTRI/2022/07/044442.
Collapse
Affiliation(s)
- Vijaya Majumdar
- Division of Life Science, Molecular Bioscience Lab, Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore, Karnataka, 560105, India.
| | - N K Manjunath
- Division of Life Science, Molecular Bioscience Lab, Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore, Karnataka, 560105, India
| | - Atmakur Snigdha
- Division of Life Science, Molecular Bioscience Lab, Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore, Karnataka, 560105, India
| | - Prosenjeet Chakraborty
- Division of Life Science, Molecular Bioscience Lab, Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore, Karnataka, 560105, India
| | - Robin Majumdar
- Indian Institute of Information Technology, Bangalore, Karnataka, 560100, India
| |
Collapse
|
32
|
Popovic N, Ždralević M, Vujosevic S, Radunović M, Adžić Zečević A, Rovčanin Dragović I, Vukčević B, Popovic T, Radulović L, Vuković T, Eraković J, Lazović R, Radunović M. Retinal microvascular complexity as a putative biomarker of biological age: a pilot study. Biogerontology 2023; 24:971-985. [PMID: 37572202 DOI: 10.1007/s10522-023-10057-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
Physiological changes associated with aging increase the risk for the development of age-related diseases. This increase is non-specific to the type of age-related disease, although each disease develops through a unique pathophysiologic mechanism. People who age at a faster rate develop age-related diseases earlier in their life. They have an older "biological age" compared to their "chronological age". Early detection of individuals with accelerated aging would allow timely intervention to postpone the onset of age-related diseases. This would increase their life expectancy and their length of good quality life. The goal of this study was to investigate whether retinal microvascular complexity could be used as a biomarker of biological age. Retinal images of 68 participants ages ranging from 19 to 82 years were collected in an observational cross-sectional study. Twenty of the old participants had age-related diseases such as hypertension, type 2 diabetes, and/or Alzheimer's dementia. The rest of the participants were healthy. Retinal images were captured by a hand-held, non-mydriatic fundus camera and quantification of the microvascular complexity was performed by using Sholl's, box-counting fractal, and lacunarity analysis. In the healthy subjects, increasing chronological age was associated with lower retinal microvascular complexity measured by Sholl's analysis. Decreased box-counting fractal dimension was present in old patients, and this decrease was 2.1 times faster in participants who had age-related diseases (p = 0.047). Retinal microvascular complexity could be a promising new biomarker of biological age. The data from this study is the first of this kind collected in Montenegro. It is freely available for use.
Collapse
Affiliation(s)
- Natasa Popovic
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro.
| | - Maša Ždralević
- Institute for Advanced Studies, University of Montenegro, Podgorica, Montenegro
| | - Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
| | | | - Antoaneta Adžić Zečević
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
- Clinical Center of Montenegro, Podgorica, Montenegro
| | | | | | - Tomo Popovic
- Faculty for Information Systems and Technologies, University of Donja Gorica, Podgorica, Montenegro
| | - Ljiljana Radulović
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
- Clinical Center of Montenegro, Podgorica, Montenegro
| | | | | | - Ranko Lazović
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
- Clinical Center of Montenegro, Podgorica, Montenegro
| | - Miodrag Radunović
- Faculty of Medicine, University of Montenegro, Podgorica, Montenegro
- Clinical Center of Montenegro, Podgorica, Montenegro
| |
Collapse
|
33
|
Ruan Z, Li D, Huang D, Liang M, Xu Y, Qiu Z, Chen X. Relationship between an ageing measure and chronic obstructive pulmonary disease, lung function: a cross-sectional study of NHANES, 2007-2010. BMJ Open 2023; 13:e076746. [PMID: 37918922 PMCID: PMC10626813 DOI: 10.1136/bmjopen-2023-076746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVES Chronic obstructive pulmonary disease (COPD) is a disease associated with ageing. However, actual age does not accurately reflect the degree of biological ageing. Phenotypic age (PhenoAge) is a new indicator of biological ageing, and phenotypic age minus actual age is known as phenotypic age acceleration (PhenoAgeAccel). This research aimed to analyse the relationship between PhenoAgeAccel and lung function and COPD. DESIGN A cross-sectional study. PARTICIPANTS Data for the study were obtained from the National Health and Nutrition Examination Survey (NHANES) 2007-2010. We defined people with forced expiratory volume in 1 s/forced vital capacity <0.70 after inhaled bronchodilators as COPD and the rest of the population as non-COPD. Adults aged 40 years or older were enrolled in the study. PRIMARY AND SECONDARY OUTCOME MEASURES Linear and logistic regression were used to investigate the relationship between PhenoAgeAccel, lung function and COPD. Subgroup analysis was performed by gender, age, ethnicity and smoking index COPD. In addition, we analysed the relationship between the smoking index, respiratory symptoms and PhenoAgeAccel. Multiple models were used to reduce confounding bias. RESULTS 5397 participants were included in our study, of which 1042 had COPD. Compared with PhenoAgeAccel Quartile1, Quartile 4 had a 52% higher probability of COPD; elevated PhenoAgeAccel was also significantly associated with reduced lung function. Further subgroup analysis showed that high levels of PhenoAgeAccel had a more significant effect on lung function in COPD, older adults and whites (P for interaction <0.05). Respiratory symptoms and a high smoking index were related to higher indicators of ageing. CONCLUSIONS Our study found that accelerated ageing is associated with the development of COPD and impaired lung function. Smoking cessation and anti-ageing therapy have potential significance in COPD.
Collapse
Affiliation(s)
- Zhishen Ruan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dan Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Di Huang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Minghao Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifei Xu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhanjun Qiu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xianhai Chen
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
34
|
Ontiveros CO, Murray CE, Crossland G, Curiel TJ. Considerations and Approaches for Cancer Immunotherapy in the Aging Host. Cancer Immunol Res 2023; 11:1449-1461. [PMID: 37769157 PMCID: PMC11287796 DOI: 10.1158/2326-6066.cir-23-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
Advances in cancer immunotherapy are improving treatment successes in many distinct cancer types. Nonetheless, most tumors fail to respond. Age is the biggest risk for most cancers, and the median population age is rising worldwide. Advancing age is associated with manifold alterations in immune cell types, abundance, and functions, rather than simple declines in these metrics, the consequences of which remain incompletely defined. Our understanding of the effects of host age on immunotherapy mechanisms, efficacy, and adverse events remains incomplete. A deeper understanding of age effects in all these areas is required. Most cancer immunotherapy preclinical studies examine young subjects and fail to assess age contributions, a remarkable deficit given the known importance of age effects on immune cells and factors mediating cancer immune surveillance and immunotherapy efficacy. Notably, some cancer immunotherapies are more effective in aged versus young hosts, while others fail despite efficacy in the young. Here, we review our current understanding of age effects on immunity and associated nonimmune cells, the tumor microenvironment, cancer immunotherapy, and related adverse effects. We highlight important knowledge gaps and suggest areas for deeper enquiries, including in cancer immune surveillance, treatment response, adverse event outcomes, and their mitigation.
Collapse
Affiliation(s)
- Carlos O. Ontiveros
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
| | - Clare E. Murray
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
| | - Grace Crossland
- Graduate School of Microbiology and Immunology, Dartmouth, Hanover, NH 03755
- The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Tyler J. Curiel
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
- Graduate School of Microbiology and Immunology, Dartmouth, Hanover, NH 03755
- The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Dartmouth Health and Dartmouth Cancer Center, Lebanon, NH 03756
| |
Collapse
|
35
|
Corrales P, Martin‐Taboada M, Vivas‐García Y, Torres L, Ramirez‐Jimenez L, Lopez Y, Horrillo D, Vila‐Bedmar R, Barber‐Cano E, Izquierdo‐Lahuerta A, Peña‐Chilet M, Martínez C, Dopazo J, Ros M, Medina‐Gomez G. microRNAs-mediated regulation of insulin signaling in white adipose tissue during aging: Role of caloric restriction. Aging Cell 2023; 22:e13919. [PMID: 37403257 PMCID: PMC10652342 DOI: 10.1111/acel.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 07/06/2023] Open
Abstract
Caloric restriction is a non-pharmacological intervention known to ameliorate the metabolic defects associated with aging, including insulin resistance. The levels of miRNA expression may represent a predictive tool for aging-related alterations. In order to investigate the role of miRNAs underlying insulin resistance in adipose tissue during the early stages of aging, 3- and 12-month-old male animals fed ad libitum, and 12-month-old male animals fed with a 20% caloric restricted diet were used. In this work we demonstrate that specific miRNAs may contribute to the impaired insulin-stimulated glucose metabolism specifically in the subcutaneous white adipose tissue, through the regulation of target genes implicated in the insulin signaling cascade. Moreover, the expression of these miRNAs is modified by caloric restriction in middle-aged animals, in accordance with the improvement of the metabolic state. Overall, our work demonstrates that alterations in posttranscriptional gene expression because of miRNAs dysregulation might represent an endogenous mechanism by which insulin response in the subcutaneous fat depot is already affected at middle age. Importantly, caloric restriction could prevent this modulation, demonstrating that certain miRNAs could constitute potential biomarkers of age-related metabolic alterations.
Collapse
Affiliation(s)
- Patricia Corrales
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular BiologyUniversidad Rey Juan Carlos, AlcorconMadridSpain
| | - Marina Martin‐Taboada
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular BiologyUniversidad Rey Juan Carlos, AlcorconMadridSpain
| | - Yurena Vivas‐García
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular BiologyUniversidad Rey Juan Carlos, AlcorconMadridSpain
- Metabolism and Cell Signalling LaboratorySpanish National Cancer Research CentreMadridSpain
| | - Lucia Torres
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular BiologyUniversidad Rey Juan Carlos, AlcorconMadridSpain
| | | | - Yamila Lopez
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular BiologyUniversidad Rey Juan Carlos, AlcorconMadridSpain
| | - Daniel Horrillo
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular BiologyUniversidad Rey Juan Carlos, AlcorconMadridSpain
| | - Rocio Vila‐Bedmar
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular BiologyUniversidad Rey Juan Carlos, AlcorconMadridSpain
| | - Eloisa Barber‐Cano
- Genomics and Genetics UnitCentro de Investigación Príncipe FelipeValenciaSpain
| | - Adriana Izquierdo‐Lahuerta
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular BiologyUniversidad Rey Juan Carlos, AlcorconMadridSpain
| | - Maria Peña‐Chilet
- Platform for Computational Medicine, Fundación Progreso y SaludSevillaSpain
- Systems and Computational Medicine Unit, Biomedical Institute of Seville (IBiS)SevillaSpain
- Plataforma BiER, Consorcio de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER)SevillaSpain
| | - Carmen Martínez
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular BiologyUniversidad Rey Juan Carlos, AlcorconMadridSpain
| | - Joaquín Dopazo
- Platform for Computational Medicine, Fundación Progreso y SaludSevillaSpain
- Systems and Computational Medicine Unit, Biomedical Institute of Seville (IBiS)SevillaSpain
- Plataforma BiER, Consorcio de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER)SevillaSpain
| | - Manuel Ros
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular BiologyUniversidad Rey Juan Carlos, AlcorconMadridSpain
| | - Gema Medina‐Gomez
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular BiologyUniversidad Rey Juan Carlos, AlcorconMadridSpain
| |
Collapse
|
36
|
Venn-Watson S, Schork NJ. Pentadecanoic Acid (C15:0), an Essential Fatty Acid, Shares Clinically Relevant Cell-Based Activities with Leading Longevity-Enhancing Compounds. Nutrients 2023; 15:4607. [PMID: 37960259 PMCID: PMC10649853 DOI: 10.3390/nu15214607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Pentadecanoic acid (C15:0) is an essential odd-chain saturated fatty acid with broad activities relevant to protecting cardiometabolic, immune, and liver health. C15:0 activates AMPK and inhibits mTOR, both of which are core components of the human longevity pathway. To assess the potential for C15:0 to enhance processes associated with longevity and healthspan, we used human cell-based molecular phenotyping assays to compare C15:0 with three longevity-enhancing candidates: acarbose, metformin, and rapamycin. C15:0 (n = 36 activities in 10 of 12 cell systems) and rapamycin (n = 32 activities in 12 of 12 systems) had the most clinically relevant, dose-dependent activities. At their optimal doses, C15:0 (17 µM) and rapamycin (9 µM) shared 24 activities across 10 cell systems, including anti-inflammatory (e.g., lowered MCP-1, TNFα, IL-10, IL-17A/F), antifibrotic, and anticancer activities, which are further supported by previously published in vitro and in vivo studies. Paired with prior demonstrated abilities for C15:0 to target longevity pathways, hallmarks of aging, aging rate biomarkers, and core components of type 2 diabetes, heart disease, cancer, and nonalcoholic fatty liver disease, our results support C15:0 as an essential nutrient with activities equivalent to, or surpassing, leading longevity-enhancing candidate compounds.
Collapse
Affiliation(s)
- Stephanie Venn-Watson
- Epitracker Inc., San Diego, CA 92106, USA
- Seraphina Therapeutics, Inc., San Diego, CA 92106, USA;
| | - Nicholas J. Schork
- Seraphina Therapeutics, Inc., San Diego, CA 92106, USA;
- Translational Genomics Research Institute (TGen), City of Hope, Phoenix, AZ 85004, USA
| |
Collapse
|
37
|
Zhang K, Ma Y, Luo Y, Song Y, Xiong G, Ma Y, Sun X, Kan C. Metabolic diseases and healthy aging: identifying environmental and behavioral risk factors and promoting public health. Front Public Health 2023; 11:1253506. [PMID: 37900047 PMCID: PMC10603303 DOI: 10.3389/fpubh.2023.1253506] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Aging is a progressive and irreversible pathophysiological process that manifests as the decline in tissue and cellular functions, along with a significant increase in the risk of various aging-related diseases, including metabolic diseases. While advances in modern medicine have significantly promoted human health and extended human lifespan, metabolic diseases such as obesity and type 2 diabetes among the older adults pose a major challenge to global public health as societies age. Therefore, understanding the complex interaction between risk factors and metabolic diseases is crucial for promoting well-being and healthy aging. This review article explores the environmental and behavioral risk factors associated with metabolic diseases and their impact on healthy aging. The environment, including an obesogenic environment and exposure to environmental toxins, is strongly correlated with the rising prevalence of obesity and its comorbidities. Behavioral factors, such as diet, physical activity, smoking, alcohol consumption, and sleep patterns, significantly influence the risk of metabolic diseases throughout aging. Public health interventions targeting modifiable risk factors can effectively promote healthier lifestyles and prevent metabolic diseases. Collaboration between government agencies, healthcare providers and community organizations is essential for implementing these interventions and creating supportive environments that foster healthy aging.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yujie Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guoji Xiong
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
38
|
Neves VCM, Satie Okajima L, Elbahtety E, Joseph S, Daly J, Menon A, Fan D, Volkyte A, Mainas G, Fung K, Dhami P, Pelegrine AA, Sharpe P, Nibali L, Ide M. Repurposing Metformin for periodontal disease management as a form of oral-systemic preventive medicine. J Transl Med 2023; 21:655. [PMID: 37814261 PMCID: PMC10563330 DOI: 10.1186/s12967-023-04456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/19/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Despite the improvements in treatment over the last decades, periodontal disease (PD) affects millions of people around the world and the only treatment available is based on controlling microbial load. Diabetes is known to increase the risk of PD establishment and progression, and recently, glucose metabolism modulation by pharmaceutical or dietarian means has been emphasised as a significant modulator of non-communicable disease development. METHODS The impact of pharmaceutically controlling glucose metabolism in non-diabetic animals and humans (REBEC, UTN code: U1111-1276-1942) was investigated by repurposing Metformin, as a mean to manage periodontal disease and its associated systemic risk factors. RESULTS We found that glucose metabolism control via use of Metformin aimed at PD management resulted in significant prevention of bone loss during induced periodontal disease and age-related bone loss in vivo. Metformin also influenced the bacterial species present in the oral environment and impacted the metabolic epithelial and stromal responses to bacterial dysbiosis at a single cell level. Systemically, Metformin controlled blood glucose levels and age-related weight gain when used long-term. Translationally, our pilot randomized control trial indicated that systemic Metformin was safe to use in non-diabetic patients and affected the periodontal tissues. During the medication window, patients showed stable levels of systemic blood glucose, lower circulating hsCRP and lower insulin levels after periodontal treatment when compared to placebo. Finally, patients treated with Metformin had improved periodontal parameters when compared to placebo treated patients. CONCLUSION This is the first study to demonstrate that systemic interventions using Metformin in non-diabetic individuals aimed at PD prevention have oral-systemic effects constituting a possible novel form of preventive medicine for oral-systemic disease management.
Collapse
Affiliation(s)
- Vitor C M Neves
- Centre for Craniofacial and Regenerative Biology, FoDOCS, King's College London, London, UK.
- Periodontology Unit, Centre for Host-Microbiome Interactions, FoDOCS, King's College London, London, UK.
| | - Luciana Satie Okajima
- Department of Periodontology and Implantology, School of Dentistry, São Leopoldo Mandic, Campinas, Brazil
| | - Eyad Elbahtety
- Centre for Craniofacial and Regenerative Biology, FoDOCS, King's College London, London, UK
| | - Susan Joseph
- Periodontology Unit, Centre for Host-Microbiome Interactions, FoDOCS, King's College London, London, UK
| | - James Daly
- Centre for Craniofacial and Regenerative Biology, FoDOCS, King's College London, London, UK
| | - Athul Menon
- NIHR BRC Genomics Research Platform, Guy's and St Thomas' NHS Foundation Trust, King's College London School of Medicine, London, UK
| | - Di Fan
- Centre for Craniofacial and Regenerative Biology, FoDOCS, King's College London, London, UK
| | - Ayste Volkyte
- Periodontology Unit, Centre for Host-Microbiome Interactions, FoDOCS, King's College London, London, UK
| | - Giuseppe Mainas
- Periodontology Unit, Centre for Host-Microbiome Interactions, FoDOCS, King's College London, London, UK
| | - Kathy Fung
- NIHR BRC Genomics Research Platform, Guy's and St Thomas' NHS Foundation Trust, King's College London School of Medicine, London, UK
| | - Pawan Dhami
- NIHR BRC Genomics Research Platform, Guy's and St Thomas' NHS Foundation Trust, King's College London School of Medicine, London, UK
| | - Andre A Pelegrine
- Department of Periodontology and Implantology, School of Dentistry, São Leopoldo Mandic, Campinas, Brazil
| | - Paul Sharpe
- Centre for Craniofacial and Regenerative Biology, FoDOCS, King's College London, London, UK
- Institute of Animal Physiology and Genetics, Brno, Czech Republic
| | - Luigi Nibali
- Periodontology Unit, Centre for Host-Microbiome Interactions, FoDOCS, King's College London, London, UK
| | - Mark Ide
- Periodontology Unit, Centre for Host-Microbiome Interactions, FoDOCS, King's College London, London, UK
| |
Collapse
|
39
|
Gothandapani D, Makpol S. Effects of Vitamin E on the Gut Microbiome in Ageing and Its Relationship with Age-Related Diseases: A Review of the Current Literature. Int J Mol Sci 2023; 24:14667. [PMID: 37834115 PMCID: PMC10572321 DOI: 10.3390/ijms241914667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Ageing is inevitable in all living organisms and is associated with physical deterioration, disease and eventually death. Dysbiosis, which is the alteration of the gut microbiome, occurs in individuals during ageing, and plenty of studies support that gut dysbiosis is responsible for the progression of different types of age-related diseases. The economic burden of age-linked health issues increases as ageing populations increase. Hence, an improvement in disease prevention or therapeutic approaches is urgently required. In recent years, vitamin E has garnered significant attention as a promising therapeutic approach for delaying the ageing process and potentially impeding the development of age-related disease. Nevertheless, more research is still required to understand how vitamin E affects the gut microbiome and how it relates to age-related diseases. Therefore, we gathered and summarized recent papers in this review that addressed the impact of the gut microbiome on age-related disease, the effect of vitamin E on age-related disease along with the role of vitamin E on the gut microbiome and the relationship with age-related diseases which are caused by ageing. Based on the studies reported, different bacteria brought on various age-related diseases with either increased or decreased relative abundances. Some studies have also reported the positive effects of vitamin E on the gut microbiome as beneficial bacteria and metabolites increase with vitamin E supplementation. This demonstrates how vitamin E is vital as it affects the gut microbiome positively to delay ageing and the progression of age-related diseases. The findings discussed in this review will provide a simplified yet deeper understanding for researchers studying ageing, the gut microbiome and age-related diseases, allowing them to develop new preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
40
|
Moqri M, Herzog C, Poganik JR, Justice J, Belsky DW, Higgins-Chen A, Moskalev A, Fuellen G, Cohen AA, Bautmans I, Widschwendter M, Ding J, Fleming A, Mannick J, Han JDJ, Zhavoronkov A, Barzilai N, Kaeberlein M, Cummings S, Kennedy BK, Ferrucci L, Horvath S, Verdin E, Maier AB, Snyder MP, Sebastiano V, Gladyshev VN. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell 2023; 186:3758-3775. [PMID: 37657418 PMCID: PMC11088934 DOI: 10.1016/j.cell.2023.08.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/03/2023]
Abstract
With the rapid expansion of aging biology research, the identification and evaluation of longevity interventions in humans have become key goals of this field. Biomarkers of aging are critically important tools in achieving these objectives over realistic time frames. However, the current lack of standards and consensus on the properties of a reliable aging biomarker hinders their further development and validation for clinical applications. Here, we advance a framework for the terminology and characterization of biomarkers of aging, including classification and potential clinical use cases. We discuss validation steps and highlight ongoing challenges as potential areas in need of future research. This framework sets the stage for the development of valid biomarkers of aging and their ultimate utilization in clinical trials and practice.
Collapse
Affiliation(s)
- Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA; Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
| | - Jesse R Poganik
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamie Justice
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel W Belsky
- Department of Epidemiology, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Alexey Moskalev
- Institute of Biogerontology, Lobachevsky University, Nizhny Novgorod, Russia
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany; School of Medicine, University College Dublin, Dublin, Ireland
| | - Alan A Cohen
- Department of Environmental Health Sciences, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ivan Bautmans
- Gerontology Department, Vrije Universiteit Brussel, Brussels, Belgium; Frailty in Ageing Research Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria; Department of Women's Cancer, EGA Institute for Women's Health, University College London, London, UK; Department of Women's and Children's Health, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden
| | - Jingzhong Ding
- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Jing-Dong Jackie Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, China
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Steven Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Brian K Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Andrea B Maier
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
| | - Michael P Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Duran-Ortiz S, Young JA, List EO, Basu R, Krejsa J, Kearns JK, Berryman DE, Kopchick JJ. GHR disruption in mature adult mice alters xenobiotic metabolism gene expression in the liver. Pituitary 2023; 26:437-450. [PMID: 37353704 DOI: 10.1007/s11102-023-01331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Lifelong reduction of growth hormone (GH) action extends lifespan and improves healthspan in mice. Moreover, congenital inactivating mutations of GH receptor (GHR) in mice and humans impart resistance to age-associated cancer, diabetes, and cognitive decline. To investigate the consequences of GHR disruption at an adult age, we recently ablated the GHR at 6-months of age in mature adult (6mGHRKO) mice. We found that both, male and female 6mGHRKO mice have reduced oxidative damage, with males 6mGHRKO showing improved insulin sensitivity and cancer resistance. Importantly, 6mGHRKO females have an extended lifespan compared to controls. OBJECTIVE AND METHODS To investigate the possible mechanisms leading to health improvements, we performed RNA sequencing using livers from male and female 6mGHRKO mice and controls. RESULTS We found that disrupting GH action at an adult age reduced the gap in liver gene expression between males and females, making gene expression between sexes more similar. However, there was still a 6-fold increase in the number of differentially expressed genes when comparing male 6mGHRKO mice vs controls than in 6mGHRKO female vs controls, suggesting that GHR ablation affects liver gene expression more in males than in females. Finally, we found that lipid metabolism and xenobiotic metabolism pathways are activated in the liver of 6mGHRKO mice. CONCLUSION The present study shows for the first time the specific hepatic gene expression profile, cellular pathways, biological processes and molecular mechanisms that are driven by ablating GH action at a mature adult age in males and females. Importantly, these results and future studies on xenobiotic metabolism may help explain the lifespan extension seen in 6mGHRKO mice.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Jonathan A Young
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Jackson Krejsa
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - John K Kearns
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
42
|
Grigorian Shamagian L, Rogers RG, Luther K, Angert D, Echavez A, Liu W, Middleton R, Antes T, Valle J, Fourier M, Sanchez L, Jaghatspanyan E, Mariscal J, Zhang R, Marbán E. Rejuvenating effects of young extracellular vesicles in aged rats and in cellular models of human senescence. Sci Rep 2023; 13:12240. [PMID: 37507448 PMCID: PMC10382547 DOI: 10.1038/s41598-023-39370-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Rejuvenation of an old organism was achieved in heterochronic parabiosis experiments, implicating different soluble factors in this effect. Extracellular vesicles (EVs) are the secretory effectors of many cells, including cardiosphere-derived cells (CDCs) with demonstrated anti-senescent effect. 1. To determine the role of EVs (versus other blood fractions) on the rejuvenating effect of the young blood. 2. To evaluate the anti-aging properties of therapeutically administered EVs secreted by young-CDCs in an old organism. Neonatal blood fractioned in 4 components (whole blood, serum, EV-depleted serum and purified EVs) was used to treat old human cardiac stromal cells (CSPCs). CDCs were generated from neonatal rat hearts and the secreted CDC-EVs were purified. CDC-EVs were then tested in naturally-aged rats, using monthly injections over 4-months period. For validation in human samples, pediatric CDC-EVs were tested in aged human CSPCs and progeric fibroblasts. While the purified EVs reproduced the rejuvenating effects of the whole blood, CSPCs treated with EV-depleted serum exhibited the highest degree of senescence. Treatment with young CDC-EVs induce structural and functional improvements in the heart, lungs, skeletal muscle, and kidneys of old rats, while favorably modulating glucose metabolism and anti-senescence pathways. Lifespan was prolonged. EVs secreted by young CDCs exert broad-ranging anti-aging effects in aged rodents and in cellular models of human senescence. Our work not only identifies CDC-EVs as possible therapeutic candidates for a wide range of age-related pathologies, but also raises the question of whether EVs function as endogenous modulators of senescence.
Collapse
Affiliation(s)
- Lilian Grigorian Shamagian
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA.
- Servicio de Cardiología, Hospital Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, c/O'Donnell 48-50 (planta -1), 28009, Madrid, Spain.
- CIBERCV, ISCIII, Madrid, Spain.
| | - Russell G Rogers
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Kristin Luther
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - David Angert
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Antonio Echavez
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Weixin Liu
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Ryan Middleton
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Travis Antes
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Jackelyn Valle
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Mario Fourier
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Liz Sanchez
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Eva Jaghatspanyan
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Javier Mariscal
- Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Rui Zhang
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Eduardo Marbán
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| |
Collapse
|
43
|
Zhang H, Zhang Z, Lin H. Research progress on the reduced neural repair ability of aging Schwann cells. Front Cell Neurosci 2023; 17:1228282. [PMID: 37545880 PMCID: PMC10398339 DOI: 10.3389/fncel.2023.1228282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Peripheral nerve injury (PNI) is associated with delayed repair of the injured nerves in elderly patients, resulting in loss of nerve function, chronic pain, muscle atrophy, and permanent disability. Therefore, the mechanism underlying the delayed repair of peripheral nerves in aging patients should be investigated. Schwann cells (SCs) play a crucial role in repairing PNI and regulating various nerve-repair genes after injury. SCs also promote peripheral nerve repair through various modalities, including mediating nerve demyelination, secreting neurotrophic factors, establishing Büngner bands, clearing axon and myelin debris, and promoting axon remyelination. However, aged SCs undergo structural and functional changes, leading to demyelination and dedifferentiation disorders, decreased secretion of neurotrophic factors, impaired clearance of axonal and myelin debris, and reduced capacity for axon remyelination. As a result, aged SCs may result in delayed repair of nerves after injury. This review article aimed to examine the mechanism underlying the diminished neural repair ability of aging SCs.
Collapse
|
44
|
Schulze A, Zimmermann A, Kainz K, Egger NB, Bauer MA, Madeo F, Carmona-Gutierrez D. Assessing chronological aging in Saccharomyces cerevisiae. Methods Cell Biol 2023; 181:87-108. [PMID: 38302246 DOI: 10.1016/bs.mcb.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Chronological age represents the time that passes between birth and a given date. To understand the complex network of factors contributing to chronological lifespan, a variety of model organisms have been implemented. One of the best studied organisms is the yeast Saccharomyces cerevisiae, which has greatly contributed toward identifying conserved biological mechanisms that act on longevity. Here, we discuss high- und low-throughput protocols to monitor and characterize chronological lifespan and chronological aging-associated cell death in S. cerevisiae. Included are propidium iodide staining with the possibility to quantitatively assess aging-associated cell death via flow cytometry or qualitative assessments via microscopy, cell viability assessment through plating and cell counting and cell death characterization via propidium iodide/AnnexinV staining and subsequent flow cytometric analysis or microscopy. Importantly, all of these methods combined give a clear picture of the chronological lifespan under different conditions or genetic backgrounds and represent a starting point for pharmacological or genetic interventions.
Collapse
Affiliation(s)
- Adina Schulze
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Nadine B Egger
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria A Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| | | |
Collapse
|
45
|
Alinezhad‐Namaghi M, Eslami S, Nematy M, Rezvani R, Khoshnasab A, Bonakdaran S, Philippou E, Norouzy A. Association of time-restricted feeding, arterial age, and arterial stiffness in adults with metabolic syndrome. Health Sci Rep 2023; 6:e1385. [PMID: 37408869 PMCID: PMC10318230 DOI: 10.1002/hsr2.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/07/2023] Open
Abstract
Background Time-restricted feeding (TRF) is a kind of intermittent fasting defined as eating and drinking only during a certain number of hours in a day. It has been suggested that intermittent fasting may improve cardiovascular risk factors. This study evaluated the association of TRF and arterial stiffness, using pulse wave velocity (PWV), pulse wave analysis, and arterial age in metabolic syndrome participants. Methods A cohort study was carried out among metabolic syndrome adults who were followed over the Ramadan fasting period (used as a model of TRF since food was only allowed for about 8 h/day). The subjects were divided into Ramadan fasting and Ramadan nonfasting groups. The aortic PWV and central aortic pressure waveform were measured. Central systolic pressure, central pulse pressure, and indices of arterial compliance, such as augmentation pressure and augmentation index (AIx), were determined from waveform analysis. Results Ninety-five adults (31.57% female, age: 45.46 ± 9.10 years) with metabolic syndrome (based on the International Diabetes Federation definition) participated in this study. Ramadan fasting and Ramadan nonfasting groups were including 80 and 15 individuals respectively. A significant reduction was seen in PWV (0.29 m/s), central systolic pressure (4.03 mmHg), central pulse pressure (2.43 mmHg), central augmentation pressure (1.88 mmHg), and central AIx (2.47) in the Ramadan fasting group (p = 0.014, p < 0.001, p = 0.001, p = 0.003, and p = 0.036 respectively). There were no significant changes in these indices among the Ramadan nonfasting group. Conclusions This study suggested that TRF reduces arterial age and improves arterial stiffness among people with metabolic syndrome. This might be considered a beneficial nutrition strategy for extending healthspan (and perhaps longevity).
Collapse
Affiliation(s)
- Maryam Alinezhad‐Namaghi
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Saeid Eslami
- Pharmaceutical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mohsen Nematy
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Reza Rezvani
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Adeleh Khoshnasab
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Shokoofeh Bonakdaran
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Elena Philippou
- Department of Life and Health Sciences, School of Sciences and EngineeringUniversity of NicosiaCyprus
- Department of Nutritional SciencesKing's CollegeLondonUK
| | - Abdolreza Norouzy
- Nutrition Department, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
46
|
Knufinke M, MacArthur MR, Ewald CY, Mitchell SJ. Sex differences in pharmacological interventions and their effects on lifespan and healthspan outcomes: a systematic review. FRONTIERS IN AGING 2023; 4:1172789. [PMID: 37305228 PMCID: PMC10249017 DOI: 10.3389/fragi.2023.1172789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
With an increasing aging population, the burden of age-related diseases magnifies. To alleviate this burden, geroprotection has been an area of intense research focus with the development of pharmacological interventions that target lifespan and/or healthspan. However, there are often sex differences, with compounds mostly tested in male animals. Given the importance of considering both sexes in preclinical research, this neglects potential benefits for the female population, as interventions tested in both sexes often show clear sexual dimorphisms in their biological responses. To further understand the prevalence of sex differences in pharmacological geroprotective intervention studies, we performed a systematic review of the literature according to the PRISMA guidelines. Seventy-two studies met our inclusion criteria and were classified into one of five subclasses: FDA-repurposed drugs, novel small molecules, probiotics, traditional Chinese medicine, and antioxidants, vitamins, or other dietary supplements. Interventions were analyzed for their effects on median and maximal lifespan and healthspan markers, including frailty, muscle function and coordination, cognitive function and learning, metabolism, and cancer. With our systematic review, we found that twenty-two out of sixty-four compounds tested were able to prolong both lifespan and healthspan measures. Focusing on the use of female and male mice, and on comparing their outcomes, we found that 40% of studies only used male mice or did not clarify the sex. Notably, of the 36% of pharmacologic interventions that did use both male and female mice, 73% of these studies showed sex-specific outcomes on healthspan and/or lifespan. These data highlight the importance of studying both sexes in the search for geroprotectors, as the biology of aging is not the same in male and female mice. Systematic Review Registration: [website], identifier [registration number].
Collapse
Affiliation(s)
| | | | - Collin Y. Ewald
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
47
|
Tuo W, Wang S, Shi Y, Cao W, Liu Y, Su Y, Xiu M, He J. Angelica sinensis polysaccharide extends lifespan and ameliorates aging-related diseases via insulin and TOR signaling pathways, and antioxidant ability in Drosophila. Int J Biol Macromol 2023; 241:124639. [PMID: 37121419 DOI: 10.1016/j.ijbiomac.2023.124639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Angelica sinensis polysaccharide (ASP) is one of the principal active components of Angelica sinensis (AS) that is widely used in natural medicine and has various pharmacological activities, including antioxidant, anti-inflammatory, and enhancing immunity. However, its pharmacological role of anti-aging needs to be clarified. Here, we detected the beneficial effect and mechanism of ASP on healthy aging and aging-related diseases using the Drosophila melanogaster model. The results showed that oral administration of ASP remarkably extended lifespan, increased reproduction, improved climbing ability, and increased resistance to starvation and oxidative stress in aged flies, mainly via inhibiting insulin signaling (IIS) and TOR signaling and boosting antioxidant ability. Further, ASP supplementation protected against aging-induced intestinal homeostasis imbalance via inhibiting intestinal stem cells (ISCs) hyperproliferation and oxidative damage, improved sleep disorders via rescuing sleep rhythm in aged flies, and had a neuroprotective effect on Aβ42 transgenic flies. Taken together, our findings shed light on the possibility that ASP could increase lifespan, improve healthy aging, and ultimately reduce the incidence of age-related illnesses. It holds promise as a candidate for anti-aging intervention and treatment for aging-associated disorders.
Collapse
Affiliation(s)
- Wenjuan Tuo
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shuwei Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yan Shi
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Wangjie Cao
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China
| | - Yun Su
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China.
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China.
| |
Collapse
|
48
|
Khan J, Pernicova I, Nisar K, Korbonits M. Mechanisms of ageing: growth hormone, dietary restriction, and metformin. Lancet Diabetes Endocrinol 2023; 11:261-281. [PMID: 36848915 DOI: 10.1016/s2213-8587(23)00001-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
Tackling the mechanisms underlying ageing is desirable to help to extend the duration and improve the quality of life. Life extension has been achieved in animal models by suppressing the growth hormone-insulin-like growth factor 1 (IGF-1) axis and also via dietary restriction. Metformin has become the focus of increased interest as a possible anti-ageing drug. There is some overlap in the postulated mechanisms of how these three approaches could produce anti-ageing effects, with convergence on common downstream pathways. In this Review, we draw on evidence from both animal models and human studies to assess the effects of suppression of the growth hormone-IGF-1 axis, dietary restriction, and metformin on ageing.
Collapse
Affiliation(s)
- Jansher Khan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ida Pernicova
- Endocrinology and Metabolic Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Kiran Nisar
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
49
|
Kaiser KA, Kadish I, van Groen T, Smith DL, Dickinson S, Henschel B, Parker ES, Brown AW, Allison DB. The effect of a pharmaceutical ghrelin agonist on lifespan in C57BL/6J male mice: A controlled experiment. Aging Cell 2023; 22:e13787. [PMID: 36734122 PMCID: PMC10086516 DOI: 10.1111/acel.13787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Interventions for animal lifespan extension like caloric restriction (CR) have identified physiologic and biochemical pathways related to hunger and energy-sensing status as possible contributors, but mechanisms have not been fully elucidated. Prior studies using ghrelin agonists show greater food intake but no effect on lifespan in rodent models. This experiment in male C57BL/6J mice tested the influence of ghrelin agonism for perceived hunger, in the absence of CR, on longevity. Mice aged 4 weeks were allowed to acclimate for 2 weeks prior to being assigned (N = 60/group). Prior to lights off daily (12:12 cycle), animals were fed a ghrelin agonist pill (LY444711; Eli Lilly) or a placebo control (Ctrl) until death. Treatment (GhrAg) animals were pair-fed daily based on the group mean food intake consumed by Ctrl (ad libitum feeding) the prior week. Results indicate an increased lifespan effect (log-rank p = 0.0032) for GhrAg versus placebo Ctrl, which weighed significantly more than GhrAg (adjusted for baseline weight). Further studies are needed to determine the full scope of effects of this ghrelin agonist, either directly via increased ghrelin receptor signaling or indirectly via other hypothalamic, systemic, or tissue-specific mechanisms.
Collapse
Affiliation(s)
- Kathryn A. Kaiser
- Department of Health Behavior, School of Public HealthUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Inga Kadish
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Daniel L. Smith
- Department of Nutrition Sciences, School of Health ProfessionsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Stephanie Dickinson
- Department of Epidemiology and Biostatistics, School of Public HealthIndiana University‐BloomingtonBloomingtonIndianaUSA
| | - Beate Henschel
- Department of Epidemiology and Biostatistics, School of Public HealthIndiana University‐BloomingtonBloomingtonIndianaUSA
| | - Erik S. Parker
- Department of Epidemiology and Biostatistics, School of Public HealthIndiana University‐BloomingtonBloomingtonIndianaUSA
| | - Andrew W. Brown
- Department of BiostatisticsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - David B. Allison
- Department of Epidemiology and Biostatistics, School of Public HealthIndiana University‐BloomingtonBloomingtonIndianaUSA
| |
Collapse
|
50
|
Herrera JJ, Pifer K, Louzon S, Leander D, Fiehn O, Day SM, Miller RA, Garratt M. Early or Late-Life Treatment With Acarbose or Rapamycin Improves Physical Performance and Affects Cardiac Structure in Aging Mice. J Gerontol A Biol Sci Med Sci 2023; 78:397-406. [PMID: 36342748 PMCID: PMC9977253 DOI: 10.1093/gerona/glac221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmacological treatments can extend the life span of mice. For optimal translation in humans, treatments should improve health during aging, and demonstrate efficacy when started later in life. Acarbose (ACA) and rapamycin (RAP) extend life span in mice when treatment is started early or later in life. Both drugs can also improve some indices of healthy aging, although there has been little systematic study of whether health benefits accrue differently depending on the age at which treatment is started. Here we compare the effects of early (4 months) versus late (16 months) onset ACA or RAP treatment on physical function and cardiac structure in genetically heterogeneous aged mice. ACA or RAP treatment improve rotarod acceleration and endurance capacity compared to controls, with effects that are largely similar in mice starting treatment from early or late in life. Compared to controls, cardiac hypertrophy is reduced by ACA or RAP in both sexes regardless of age at treatment onset. ACA has a greater effect on the cardiac lipidome than RAP, and the effects of early-life treatment are recapitulated by late-life treatment. These results indicate that late-life treatment with these drugs provide at least some of the benefits of life long treatment, although some of the benefits occur only in males, which could lead to sex differences in health outcomes later in life.
Collapse
Affiliation(s)
- Jonathan J Herrera
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kaitlyn Pifer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sean Louzon
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Danielle Leander
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Oliver Fiehn
- Genome Center, University of California Davis, Davis, California, USA
| | - Sharlene M Day
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|