1
|
Manurung THP, Sitohang IBS, Agustin T. Staphylococcus caprae and Staphylococcus epidermidis define the skin microbiome among different grades of acne vulgaris. Arch Dermatol Res 2024; 317:156. [PMID: 39738874 DOI: 10.1007/s00403-024-03581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 01/02/2025]
Abstract
Acne vulgaris (AV) has been associated with Cutibacterium acnes (C. acnes) colonization in sebaceous follicles. However, recent studies have revealed the role of skin microbiome dysbiosis in acne pathogenesis. AV grading, which is classified by the sum of noninflammatory and inflammatory lesions, is essential in making clinical decisions about AV management. Henceforth, a better understanding of the skin microorganism profile in AV is needed. Our purpose was to compare microbiome profiles between different grades of AV severity. The microbiome samples were collected by swabbing from 108 participants with various AV grades in accordance with the classification from Lehmann. The V3-V4 regions of the 16 S rRNA gene were sequenced and analysed. The difference in the percentage of C. acnes among different grades of AV severity was not significant. However, the proportion of Staphylococcus epidermidis (S. epidermidis) was significantly greater in severe AV than in mild AV (0,3 vs. 0,1%; p = 0,046). The difference in the Shannon index between the groups was not remarkable. Several skin commensals were also found in the samples. However, only the proportion of Staphylococcus caprae (S. caprae) was significantly greater in mild AV than in moderate and severe AV (1.5% vs. 0.7% vs. 1.1%, p = 0.004). These results indicate that the degree of AV severity may be distinguished from the degree of dysbiosis associated with changes in skin commensal microorganisms, specifically S. epidermidis and S. caprae. This study was registered at ClinicalTrials.gov on April 28, 2023, under registration number NCT05838534.
Collapse
Affiliation(s)
- Teguh Hopkop Putera Manurung
- Faculty of Medicine, Department of Dermatology and Venereology, University of Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Irma Bernadette S Sitohang
- Faculty of Medicine, Department of Dermatology and Venereology, University of Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Triana Agustin
- Faculty of Medicine, Department of Dermatology and Venereology, University of Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
2
|
Gowda CM, Wairkar S. Azelaic acid-based lyotropic liquid crystals gel for acne vulgaris: Formulation optimization, antimicrobial activity and dermatopharmacokinetic study. Int J Pharm 2024; 667:124879. [PMID: 39490554 DOI: 10.1016/j.ijpharm.2024.124879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The proposed study aimed to develop a topical gel containing azelaic acid (AZA)-based lyotropic liquid crystals (LLCs) for the treatment of acne vulgaris. AZA-based LLCs were optimized by varying Poloxamer-407 and polyvinyl alcohol concentration using a central composite design, which showed that both independent variables had a significant effect on the formulation. The highest desirable trial of AZA-based LLCs (Batch-7) containing 300 mg poloxamer-407 and 100 mg polyvinyl alcohol depicted the particle size, zeta potential, and entrapment efficiency of 184.2 nm, -16.1 mV, and 79.96 %, respectively. TEM images confirmed the globular vesicles of LLCs, and ATR-FTIR and DSC results confirmed the compatibility of formulation excipients. In vitro, the release of AZA, AZA-based LLCs, AZA-based LLC gel, and marketed gel showed a release of 23.29, 95.24, 91.07 and 59.88 %, respectively, after 24 h in phosphate buffer pH 6.8. Ex vivo release of AZA-based LLC gel displayed an 86.56 % release after 24 h. The antimicrobial activity of AZA-based LLC gel exhibited a comparable efficacy with marketed gel against Cutibacterium acnes, Staphylococcus epidermis and Staphylococcus aureus. The acute dermal irritation study indicated excellent safety and skin compatibility of AZA-based LLC gel without any erythema and edema. The dermatopharmacokinetic study displayed an enhanced drug retention for AZA-based LLC gel (146.121 ± 21.13 µg/cm2) than marketed gel (58.58 ± 15.95 µg/cm2) in the dermal layer, which would improve its therapeutic effect. These outcomes proved that AZA-based LLC gel has the potential to enhance skin penetration and retention for effective management of acne vulgaris.
Collapse
Affiliation(s)
- Charan M Gowda
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai. Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai. Maharashtra 400056, India.
| |
Collapse
|
3
|
Rizk SK, Farag AGA, Shaeir SMA. A study of granulysin and pentraxin 3 genetic polymorphisms and their contribution to acne susceptibility. Arch Dermatol Res 2024; 316:691. [PMID: 39412662 DOI: 10.1007/s00403-024-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
This study aims to examine the genetic polymorphisms of the granulysin (GNLY) and pentraxin 3 (PTX3) genes and their association with acne in Egypt. Acne vulgaris is classified as a disorder of the pilosebaceous unit. Clinical, histological, and immunological findings indicate that inflammation is involved in every stage of acne development. GNLY and PTX3 are both involved in the body's immune system and may play a role in the pathophysiology of acne. This case-control study included 180 participants who have acne and 180 healthy controls. Real-time PCR was used to genotype GNLY rs7908 and PTX3 rs2305619 polymorphisms. Genotype occurrence and allelic spreading for both single nucleotide polymorphisms (SNP) are in Hardy-Weinberg equilibrium. Regarding rs7908, no statistical difference was observed in the genotype and allele distributions between acne patients and controls. On the other hand, rs2305619 showed a statistical difference in the genotype and allele distributions between acne patients and controls, with a marked prevalence of the GG group and G allele in acne patients. Our study revealed a significant link between the PTX3 rs2305619 and acne susceptibility in Egypt, with the AG + GG genotype strongly predicting acne. In contrast, the GNYL rs7908 polymorphism was not associated with acne. These results highlight a genetic component to acne and suggest that PTX3 rs2305619 could be a key marker for understanding acne susceptibility.
Collapse
Affiliation(s)
- Sara Kamal Rizk
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt.
| | - Azza Gaber Antar Farag
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | | |
Collapse
|
4
|
Zhu Y, Liu W, Wang M, Wang X, Wang S. Causal roles of skin and gut microbiota in skin appendage disorders suggested by genetic study. Front Immunol 2024; 15:1427276. [PMID: 39318631 PMCID: PMC11419992 DOI: 10.3389/fimmu.2024.1427276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Objectives There is evidence from observational studies that human microbiota is linked to skin appendage Disorders (SADs). Nevertheless, the causal association between microbiota and SADs is yet to be fully clarified. Methods A comprehensive two-sample Mendelian randomization (MR) was first performed to determine the causal effect of skin and gut microbiota on SADs. A total of 294 skin taxa and 211 gut taxa based on phylum, class, order, family, genus, and ASV level information were identified. Summary data of SADs and eight subtypes (acne vulgaris, hidradenitis suppurativa, alopecia areata, rogenic alopecia, rosacea, rhinophyma, seborrhoeic dermatitis, and pilonidal cyst) were obtained from the FinnGen consortium. We performed bidirectional MR to determine whether the skin and gut microbiota are causally associated with multiple SADs. Furthermore, sensitivity analysis was conducted to examine horizontal pleiotropy and heterogeneity. Results A total of 65 and 161 causal relationships between genetic liability in the skin and gut microbiota with SADs were identified, respectively. Among these, we separately found 5 and 11 strong causal associations that passed Bonferroni correction in the skin and gut microbiota with SADs. Several skin bacteria, such as Staphylococcus, Streptococcus, and Propionibacterium, were considered associated with multiple SADs. As gut probiotics, Bifidobacteria and Lactobacilli were associated with a protective effect on SAD risk. There was no significant heterogeneity in instrumental variables or horizontal pleiotropy. Conclusions Our MR analysis unveiled bidirectional causal relationships between SADs and the gut and skin microbiota, and had the potential to offer novel perspectives on the mechanistic of microbiota-facilitated dermatosis.
Collapse
Affiliation(s)
- Yuhang Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wanguo Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mei Wang
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Sibo Wang
- Department of Neurology, Center for Neuroscience, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Pagac MP, Gempeler M, Campiche R. A New Generation of Postbiotics for Skin and Scalp: In Situ Production of Lipid Metabolites by Malassezia. Microorganisms 2024; 12:1711. [PMID: 39203553 PMCID: PMC11357556 DOI: 10.3390/microorganisms12081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Effects of pre- and probiotics on intestinal health are well researched and microbiome-targeting solutions are commercially available. Even though a trend to appreciate the presence of certain microbes on the skin is seeing an increase in momentum, our understanding is limited as to whether the utilization of skin-resident microbes for beneficial effects holds the same potential as the targeted manipulation of the gut microflora. Here, we present a selection of molecular mechanisms of cross-communication between human skin and the skin microbial community and the impact of these interactions on the host's cutaneous health with implications for the development of skin cosmetic and therapeutic solutions. Malassezia yeasts, as the main fungal representatives of the skin microfloral community, interact with the human host skin via lipid mediators, of which several are characterized by exhibiting potent anti-inflammatory activities. This review therefore puts a spotlight on Malassezia and provides a comprehensive overview of the current state of knowledge about these fungal-derived lipid mediators and their capability to reduce aesthetical and sensory burdens, such as redness and itching, commonly associated with inflammatory skin conditions. Finally, several examples of current skin microbiome-based interventions for cosmetic solutions are discussed, and models are presented for the use of skin-resident microbes as endogenous bio-manufacturing platforms for the in situ supplementation of the skin with beneficial metabolites.
Collapse
Affiliation(s)
- Martin Patrick Pagac
- DSM-Firmenich, Perfumery & Beauty, Wurmisweg 576, CH-4303 Kaiseraugst, Switzerland; (M.G.); (R.C.)
| | | | | |
Collapse
|
6
|
Gan Y, Zhang J, Qi F, Hu Z, Sweren E, Reddy SK, Chen L, Feng X, Grice EA, Garza LA, Wang G. Commensal microbe regulation of skin cells in disease. Cell Host Microbe 2024; 32:1264-1279. [PMID: 39146798 PMCID: PMC11457753 DOI: 10.1016/j.chom.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Human skin is the host to various commensal microbes that constitute a substantial microbial community. The reciprocal communication between these microbial inhabitants and host cells upholds both the morphological and functional attributes of the skin layers, contributing indispensably to microenvironmental and tissue homeostasis. Thus, disruption of the skin barrier or imbalances in the microbial communities can exert profound effects on the behavior of host cells. This influence, mediated by the microbes themselves or their metabolites, manifests in diverse outcomes. In this review, we examine existing knowledge to provide insight into the nuanced behavior exhibited by the microbiota on skin cells in health and disease states. These interactions provide insight into potential cellular targets for future microbiota-based therapies to prevent and treat skin disease.
Collapse
Affiliation(s)
- Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Fangfang Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Evan Sweren
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sashank K Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xinyi Feng
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Elizabeth A Grice
- Department of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Luis A Garza
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| |
Collapse
|
7
|
Maître M, Gravier E, Simcic-Mori A, Géniès C, Mias C, Alvarez-Georges S, Noustens A, Bouyer K, Bessou-Touya S, Carballido F, Duplan H. Characterization of the forehead skin microbiome in the early phase of acne. J Eur Acad Dermatol Venereol 2024; 38 Suppl 7:3-11. [PMID: 39051132 DOI: 10.1111/jdv.20203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/27/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The skin microbiota is known to be imbalanced in acne vulgaris, but the changes occurring during the early stages of acne onset remain poorly described. OBJECTIVES To characterize the skin microbiome of subclinical stages of acne in adults and adolescents. METHODS The composition and diversity of the microbiota from non-lesional skin on the forehead of subjects with mild-to-moderate acne were compared to the ones from non-acne subjects. Analyses of skin swab samples were performed using high-throughput sequencing of the V1-V3 regions of the bacterial 16S ribosomal RNA gene, the tuf gene fragment of Staphylococcus species and the internal transcribed spacer (ITS1) region of the fungal rRNA gene to determine the relative abundance, alpha-diversity and beta-diversity of bacteria and fungi. RESULTS Compared with non-acne subjects, acne subjects had a higher abundance of Cutibacterium (72.4% vs. 57.8%) and lower abundances of Corynebacterium (2.8% vs. 4.8%) and Streptococcus (1.4% vs. 3.2%). Bacterial alpha- and beta-diversity indices also differed significantly between the two groups, reflecting differences in richness, evenness, abundance and phylogenetic distance between bacterial populations. Differences were also observed at the level of Staphylococcus species: S. capitis was predominant in skin samples from non-acne subjects (46.7%), whereas S. epidermidis was the most abundant Staphylococcus species in non-lesional forehead skin areas of acne subjects (44.2%). Conversely, no significant between-group differences were found for fungi, with Malasseziales being the predominant order in both subject groups. CONCLUSION Dysbiosis was observed very early in subclinical acne stages of the forehead skin, with the overall abundance, richness and evenness of the bacterial population being lower in acne than in non-acne skin samples. Dysbiosis was also found at the level of Staphylococcus species. The development of acne lesions could therefore be prevented by using a skin care product that rebalances facial skin microbiota at very early stages.
Collapse
Affiliation(s)
- M Maître
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - E Gravier
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - A Simcic-Mori
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - C Géniès
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - C Mias
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - S Alvarez-Georges
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - A Noustens
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - K Bouyer
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - S Bessou-Touya
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| | - F Carballido
- Laboratoires A-Derma, Pierre Fabre Dermo-Cosmétique, Lavaur, France
| | - H Duplan
- Pierre Fabre Dermo-Cosmétique and Personal Care, Research & Development, Toulouse, France
| |
Collapse
|
8
|
Kim HJ, Kim YH. Exploring Acne Treatments: From Pathophysiological Mechanisms to Emerging Therapies. Int J Mol Sci 2024; 25:5302. [PMID: 38791344 PMCID: PMC11121268 DOI: 10.3390/ijms25105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Acne vulgaris is a common dermatological condition that can present across different ages but predominantly affects adolescents and young adults. Characterized by various lesion types, the pathogenesis of acne is complex, involving genetic, hormonal, microbial, and inflammatory factors. This review comprehensively addresses current and emerging acne management strategies, emphasizing both topical and systemic treatments, procedural therapies, and dietary modifications. Key topical agents include retinoids, benzoyl peroxide, antibiotics, and other specialized compounds. Systemic options like antibiotics, hormonal therapies, and retinoids offer significant therapeutic benefits, particularly for moderate to severe cases. Procedural treatments such as laser devices, photodynamic therapy, chemical peels, and intralesional injections present viable alternatives for reducing acne symptoms and scarring. Emerging therapies focus on novel biologics, bacteriophages, probiotics, and peptides, providing promising future options. This review underscores the importance of personalized approaches to treatment due to the multifaceted nature of acne, highlighting the potential of innovative therapies for improving patient outcomes.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
9
|
Xu CCY, Lemoine J, Albert A, Whirter ÉM, Barrett RDH. Community assembly of the human piercing microbiome. Proc Biol Sci 2023; 290:20231174. [PMID: 38018103 PMCID: PMC10685111 DOI: 10.1098/rspb.2023.1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Predicting how biological communities respond to disturbance requires understanding the forces that govern their assembly. We propose using human skin piercings as a model system for studying community assembly after rapid environmental change. Local skin sterilization provides a 'clean slate' within the novel ecological niche created by the piercing. Stochastic assembly processes can dominate skin microbiomes due to the influence of environmental exposure on local dispersal, but deterministic processes might play a greater role within occluded skin piercings if piercing habitats impose strong selection pressures on colonizing species. Here we explore the human ear-piercing microbiome and demonstrate that community assembly is predominantly stochastic but becomes significantly more deterministic with time, producing increasingly diverse and ecologically complex communities. We also observed changes in two dominant and medically relevant antagonists (Cutibacterium acnes and Staphylococcus epidermidis), consistent with competitive exclusion induced by a transition from sebaceous to moist environments. By exploiting this common yet uniquely human practice, we show that skin piercings are not just culturally significant but also represent ecosystem engineering on the human body. The novel habitats and communities that skin piercings produce may provide general insights into biological responses to environmental disturbances with implications for both ecosystem and human health.
Collapse
Affiliation(s)
- Charles C. Y. Xu
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Juliette Lemoine
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Avery Albert
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
- Trottier Space Institute, McGill University, Montreal, Quebec, Canada H3A 2A7
| | | | - Rowan D. H. Barrett
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| |
Collapse
|
10
|
Lee JY, Kim S, Kim D, Cho Y, Kim KP. The influence of dietary patterns on skin bacterial diversity, composition, and co-occurrence relationships at forearm and neck sites of healthy Korean adults. J Appl Microbiol 2023; 134:lxad211. [PMID: 37699790 DOI: 10.1093/jambio/lxad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
AIMS Diet and nutrition are important aspects of skin physiology and health. However, the influence of diet on the bacterial flora of different skin sites is not well understood. Therefore, we investigated the relationship between dietary patterns (DPs) and skin bacterial flora on the forearm (a dry site) and the neck (a sebaceous site) of healthy Korean adults. METHODS AND RESULTS In metagenomics analysis, Shannon and Simpson indices were higher on the forearm than on the neck and were negatively correlated with the two dominant species, Cutibacterium acnes and Staphylococcus epidermidis, on two skin sites. In addition, the Simpson index of the forearm was positively associated with DP1 (characterized by a high intake of vegetables, mushrooms, meat, fish and shellfish, seaweed, and fat and oil), while that on the neck was negatively associated with DP2 (characterized by a high intake of fast food). A high intake of DP1 was associated with a lower abundance of dominant species, including C. acnes, and higher degrees of the co-occurrence network, whereas a high intake of DP2 was associated with the opposite pattern. CONCLUSIONS Specific diets may impact both skin bacterial diversity and composition, as well as the co-occurrence of bacteria, which may vary across different skin sites.
Collapse
Affiliation(s)
- Ju-Young Lee
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Seayonn Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Dongkyu Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Yunhi Cho
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Kun-Pyo Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
11
|
Leignadier J, Drago M, Lesouhaitier O, Barreau M, Dashi A, Worsley O, Attia-Vigneau J. Lysine-Dendrimer, a New Non-Aggressive Solution to Rebalance the Microbiota of Acne-Prone Skin. Pharmaceutics 2023; 15:2083. [PMID: 37631297 PMCID: PMC10459463 DOI: 10.3390/pharmaceutics15082083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Acne is a chronic inflammatory skin disease that affects the quality of life of patients. Several treatments exist for acne, but their effectiveness tends to decrease over time due to increasing resistance to treatment and associated side effects. To circumvent these issues, a new approach has emerged that involves combating the pathogen Cutibacterium acnes while maintaining the homeostasis of the skin microbiome. Recently, it was shown that the use of a G2 lysine dendrigraft (G2 dendrimer) could specifically decrease the C. acnes phylotype (IAI) involved in acne, compared to non-acne-causing C. acnes (phylotype II) bacteria. In the present study, we demonstrate that the efficacy of this technology is related to its 3D structure, which, in contrast to the linear form, significantly decreases the inflammation factor (IL-8) linked to acne. In addition, our in-vitro data confirm the specific activity of the G2 dendrimer: after treatment of bacterial cultures and biofilms, the G2 dendrimer affected neither non-acneic C. acnes nor commensal bacteria of the skin (Staphylococcus epidermidis, S. hominis, and Corynebacterium minutissimum). In parallel, comparative in-vitro and in-vivo studies with traditional over-the-counter molecules showed G2's effects on the survival of commensal bacteria and the reduction of acne outbreaks. Finally, metagenomic analysis of the cutaneous microbiota of volunteers who applied a finished cosmetic product containing the G2 dendrimer confirmed the ability of G2 to rebalance cutaneous acne microbiota dysbiosis while maintaining commensal bacteria. These results confirm the value of using this G2 dendrimer to gently prevent the appearance of acne vulgaris while respecting the cutaneous microbiota.
Collapse
Affiliation(s)
- Julie Leignadier
- Lucas Meyer Cosmetics, 195 Route d’Espagne, 31036 Toulouse, France;
| | - Marie Drago
- Shiseido EMEA, 56A Rue du Faubourg St Honoré, 75008 Paris, France;
| | - Olivier Lesouhaitier
- Research Unit Bacterial Communication and Anti-Infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France; (O.L.); (M.B.)
| | - Magalie Barreau
- Research Unit Bacterial Communication and Anti-Infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France; (O.L.); (M.B.)
| | - Albert Dashi
- Sequential Skin Ltd., 85 Great Portland Street, London W1W 7LT, UK; (A.D.); (O.W.)
| | - Oliver Worsley
- Sequential Skin Ltd., 85 Great Portland Street, London W1W 7LT, UK; (A.D.); (O.W.)
| | | |
Collapse
|
12
|
Kim SK, Lee M, Lee YQ, Lee HJ, Rho M, Kim Y, Seo JY, Youn SH, Hwang SJ, Kang NG, Lee CH, Park SY, Lee DY. Genome-scale metabolic modeling and in silico analysis of opportunistic skin pathogen Cutibacterium acnes. Front Cell Infect Microbiol 2023; 13:1099314. [PMID: 37520435 PMCID: PMC10374032 DOI: 10.3389/fcimb.2023.1099314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Cutibacterium acnes, one of the most abundant skin microbes found in the sebaceous gland, is known to contribute to the development of acne vulgaris when its strains become imbalanced. The current limitations of acne treatment using antibiotics have caused an urgent need to develop a systematic strategy for selectively targeting C. acnes, which can be achieved by characterizing their cellular behaviors under various skin environments. To this end, we developed a genome-scale metabolic model (GEM) of virulent C. acnes, iCA843, based on the genome information of a relevant strain from ribotype 5 to comprehensively understand the pathogenic traits of C. acnes in the skin environment. We validated the model qualitatively by demonstrating its accuracy prediction of propionate and acetate production patterns, which were consistent with experimental observations. Additionally, we identified unique biosynthetic pathways for short-chain fatty acids in C. acnes compared to other GEMs of acne-inducing skin pathogens. By conducting constraint-based flux analysis under endogenous carbon sources in human skin, we discovered that the Wood-Werkman cycle is highly activated under acnes-associated skin condition for the regeneration of NAD, resulting in enhanced propionate production. Finally, we proposed potential anti-C. acnes targets by using the model-guided systematic framework based on gene essentiality analysis and protein sequence similarity search with abundant skin microbiome taxa.
Collapse
Affiliation(s)
- Su-Kyung Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Minouk Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Yi Qing Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Hyun Jun Lee
- Department of Biomedical Informatics, Hanyang University, Seoul, Republic of Korea
| | - Mina Rho
- Department of Biomedical Informatics, Hanyang University, Seoul, Republic of Korea
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
| | - Yunkwan Kim
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Jung Yeon Seo
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Sung Hun Youn
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Seung Jin Hwang
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Nae Gyu Kang
- R&D Center, LG Household & Healthcare (LG H&H), Seoul, Republic of Korea
| | - Choong-Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
13
|
Carvalho MJ, S Oliveira AL, Santos Pedrosa S, Pintado M, Pinto-Ribeiro I, Madureira AR. Skin Microbiota and the Cosmetic Industry. MICROBIAL ECOLOGY 2023; 86:86-96. [PMID: 35809121 DOI: 10.1007/s00248-022-02070-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Skin harbors an important microbial ecosystem - the skin microbiota that is in homeostasis with its host and is beneficial for human health. Cosmetic products have the potential to interfere with this microbial community; therefore their impact should be assessed. The aim of this review is to highlight the importance of skin microbiota in the cosmetic industry. Several studies determined that cosmetic ingredients have the potential to disrupt the skin microbiota equilibrium leading to the development of skin diseases and dysregulation of immune response. These studies led their investigation by using different methodologies and models, concluding that methods must be chosen according to the aim of the study, the skin site to be evaluated, and the target population of the cosmetics. Overall, it is crucial to test the impact of cosmetics in the skin microbiota and to stablish standard procedures, as well as specific criteria that allow to classify a cosmetic product as skin microbiota friendly.
Collapse
Affiliation(s)
- Maria João Carvalho
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana L S Oliveira
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Sílvia Santos Pedrosa
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Manuela Pintado
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Inês Pinto-Ribeiro
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
- Amyris Bio Products Portugal Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Ana Raquel Madureira
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
14
|
Huang C, Zhuo F, Han B, Li W, Jiang B, Zhang K, Jian X, Chen Z, Li H, Huang H, Dou X, Yu B. The updates and implications of cutaneous microbiota in acne. Cell Biosci 2023; 13:113. [PMID: 37344849 DOI: 10.1186/s13578-023-01072-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Acne is a chronic inflammatory skin disorder that profoundly impacts the quality of life of patients worldwide. While it is predominantly observed in adolescents, it can affect individuals across all age groups. Acne pathogenesis is believed to be a result of various endogenous and exogenous factors, but the precise mechanisms remain elusive. Recent studies suggest that dysbiosis of the skin microbiota significantly contributes to acne development. Specifically, Cutibacterium acnes, the dominant resident bacterial species implicated in acne, plays a critical role in disease progression. Various treatments, including topical benzoyl peroxide, systemic antibiotics, and photodynamic therapy, have demonstrated beneficial effects on the skin microbiota composition in acne patients. Of particular interest is the therapeutic potential of probiotics in acne, given its direct influence on the skin microbiota. This review summarizes the alterations in skin microbiota associated with acne, provides insight into its pathogenic role in acne, and emphasizes the potential of therapeutic interventions aimed at restoring microbial homeostasis for acne management.
Collapse
Affiliation(s)
- Cong Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Fan Zhuo
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Baoquan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Wenting Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Bin Jiang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Kaoyuan Zhang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xingling Jian
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Zhenzhen Chen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Hui Li
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Haiyan Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xia Dou
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
15
|
Nascimento T, Gomes D, Simões R, da Graça Miguel M. Tea Tree Oil: Properties and the Therapeutic Approach to Acne-A Review. Antioxidants (Basel) 2023; 12:1264. [PMID: 37371994 DOI: 10.3390/antiox12061264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Acne vulgaris is an inflammatory dermatological pathology that affects mostly young people. However, it can also appear in adulthood, mainly in women. It has a high psychosocial impact, not only at the time of active lesions but also due to the consequences of lesions such as scarring and hyperpigmentation. Several factors are involved in the physiopathology of acne and the constant search for active ingredients is a reality, namely phytotherapeutic ingredients. Tea tree oil is an essential oil extracted from Melaleuca alternifolia (Maiden & Betch) Cheel with known antibacterial, anti-inflammatory, and antioxidant properties, making it a candidate for the treatment of acne. This review aims to describe the various properties of tea tree oil that make it a possible ingredient to use in the treatment of acne and to present several human studies that have evaluated the efficacy and safety of using tea tree oil in the treatment of acne. It can be concluded that tea tree oil has good antibacterial, anti-inflammatory, and antioxidant properties that result in a decrease in the number of inflammatory lesions, mainly papules, and pustules. However, given the diversity of study designs, it is not possible to draw concrete conclusions on the efficacy and safety of this oil in the treatment of acne.
Collapse
Affiliation(s)
- Tânia Nascimento
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), Campus de Gambelas, Edifício 2, 8005-139 Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, Edifício 2, 8005-139 Faro, Portugal
| | - Diana Gomes
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ricardo Simões
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria da Graça Miguel
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Mediterranean Institute for Agriculture, Environment and Development, Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
16
|
Mias C, Mengeaud V, Bessou-Touya S, Duplan H. Recent advances in understanding inflammatory acne: Deciphering the relationship between Cutibacterium acnes and Th17 inflammatory pathway. J Eur Acad Dermatol Venereol 2023; 37 Suppl 2:3-11. [PMID: 36729400 DOI: 10.1111/jdv.18794] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Acne vulgaris is a common chronic inflammatory skin disease of the pilosebaceous units. Four factors contribute to acne: hyperseborrhea and dysseborrhea, follicular hyperkeratinisation, skin microbiome dysbiosis and local immuno-inflammation. Recent key studies have highlighted a better understanding of the important role of Cutibacterium acnes (C. acnes) in the development of acne. Three major findings in the last decade include: (1) the ability of C. acnes to self-organize in a biofilm associated with a more virulent activity, (2) the loss of the C. acnes phylotype diversity and (3) the central role of the Th17 pathway in acne inflammation. Indeed, there is a close link between C. acnes and the activation of the Th17 immuno-inflammatory pathway at the initiation of acne development. These mechanisms are directly linked to the loss of C. acnes phylotype diversity during acne, with a predominance of the pro-pathogenic phylotype IA1. This specifically contributes to the induction of the Th17-mediated immuno-inflammatory response involving skin cells, such as keratinocytes, monocytes and sebocytes. These advancements have led to new insights into the underlying mechanisms which can be harnessed to develop novel treatments and diagnostic biomarkers. A major disadvantage of traditional treatment with topical antibiotics is that they induce cutaneous dysbiosis and antimicrobial resistance. Thus, future treatments would no longer aim to 'kill' C. acnes, but to maintain the skin microbiota balance allowing for tissue homeostasis, specifically, the restoration of C. acnes phylotype diversity. Here, we provide an overview of some of the key processes involved in the pathogenesis of acne, with a focus on the prominent role of C. acnes and the Th17-inflammatory pathways involved.
Collapse
Affiliation(s)
- Céline Mias
- Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France
| | | | | | - Hélène Duplan
- Pierre Fabre Dermo-Cosmétique and Personal Care, Toulouse, France
| |
Collapse
|
17
|
Bilal H, Xiao Y, Khan MN, Chen J, Wang Q, Zeng Y, Lin X. Stabilization of Acne Vulgaris-Associated Microbial Dysbiosis with 2% Supramolecular Salicylic Acid. Pharmaceuticals (Basel) 2023; 16:ph16010087. [PMID: 36678584 PMCID: PMC9864713 DOI: 10.3390/ph16010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Facial microbiota dysbiosis is an important factor in causing acne vulgaris. The present study aimed to analyze the effect of 2% Supramolecular Salicylic Acid (SSA) on acne-associated facial bacteria. In the current study, 30 acne vulgaris patients (treated with 2% SSA for eight weeks) and ten volunteers with no facial acne were selected. Samples from acne patients (before and after treatment) and volunteers (not treated) were analyzed via high throughput sequencing, Deblur algorithm, and R microbiome package. After treatment with 2% SSA, the total lesion count and global acne grading system (GAGS) score reduced significantly (p < 0.001). Metagenomic sequencing analysis revealed that the pre-treated acne group had low α and deviated β diversity compared to the control and post-treated acne groups. Due to the treatment with 2% SSA, α diversity index was increased and β diversity was stabilized significantly (p < 0.001). The relative abundance of bacterial genera in the pre-treated acne group was uneven and had a high proportion of Staphylococcus, Ralstonia, and Streptococcus. The proportion of these three genera was significantly decreased in the post-treated group, and overall bacteria genera distribution tends toward the healthy individual. It is concluded that 2% SSA normalizes the microbial communities associated with the skin.
Collapse
Affiliation(s)
- Hazrat Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yuanyuan Xiao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Dermatology, People’s Hospital of Deyang City, Deyang 618000, China
| | - Muhammad Nadeem Khan
- Faculty of Biological Sciences, Department of Microbiology, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Jinyu Chen
- Department of Dermatology, Chengdu Second People’s Hospital, Chengdu 610017, China
| | - Qian Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Medical, Surgical and Experimental Sciences, University of Sassari—Neurology Unit, Azienza Ospedaliera Universitaria (AOU), 07100 Sassari, Italy
| | - Yuebin Zeng
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Correspondence: (Y.Z.); (X.L.)
| | - Xinyu Lin
- Department of Dermatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Correspondence: (Y.Z.); (X.L.)
| |
Collapse
|
18
|
Guo Y, Zeng M, Yuan Y, Yuan M, Chen Y, Yu H, Liu R, Ruan Z, Xie Q, Jiao X, Lu T. Photodynamic therapy treats acne by altering the composition of the skin microbiota. Skin Res Technol 2023; 29:e13269. [PMID: 36704881 PMCID: PMC9838775 DOI: 10.1111/srt.13269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Acne is the eighth-most prevalent inflammatory skin disease with no optimal treatment. Photodynamic therapy (PDT) is an effective treatment for severe acne. AIMS The effect of PDT on the composition and diversity of skin microflora in severe acne patients was studied. MATERIALS AND METHODS A total of 18 patients with severe acne and 8 healthy individuals were selected for this study. Patients were treated with 5-aminolevulinic acid-mediated PDT once a week three times in total; the skin microbiome was measured by 16S ribosomal RNA gene sequencing before and after treatment (1 week after each PDT). RESULTS The microflora composition was different between healthy controls and patients, and between patients before and after treatment. Alpha diversity indices were lower in patients than those in control. There were 15 bacterial genera with high relative abundance that had noticeable changes during treatment. At the genus level,particularly Cutibacterium acnes (C. acnes formerly Propionibacterium acnes), there was no statistically significant difference among different group. The abundances of Staphylococcus epidermidis and Staphylococcus aureus were low. DISCUSSION The microbial composition is different between severe acne patients acne patients and healthy individuals. The therapeutic efficacy of severe acne treated with PDT is associated with the composition and diversity of skin microbiota. CONCLUSION The skin microbial composition changes after PDT treatment. PDT is an effective method for the treatment of severe acne.
Collapse
Affiliation(s)
- Yangmin Guo
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Department of DermatologyHuizhou Dermatology HospitalHuizhouChina
| | - Mi Zeng
- Department of Cell Biology and GeneticsShantou University Medical CollegeShantouChina
| | - Yumeng Yuan
- Department of Cell Biology and GeneticsShantou University Medical CollegeShantouChina
| | - Mengsi Yuan
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yanxia Chen
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Haoyang Yu
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Ruimin Liu
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Zhijie Ruan
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Qingdong Xie
- Department of Cell Biology and GeneticsShantou University Medical CollegeShantouChina
| | - Xiaoyang Jiao
- Department of Cell Biology and GeneticsShantou University Medical CollegeShantouChina
| | - Tao Lu
- Department of DermatologyFirst Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
19
|
Skin dysbiosis and Cutibacterium acnes biofilm in inflammatory acne lesions of adolescents. Sci Rep 2022; 12:21104. [PMID: 36473894 PMCID: PMC9727105 DOI: 10.1038/s41598-022-25436-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Acne vulgaris is a common inflammatory disorder affecting more than 80% of young adolescents. Cutibacterium acnes plays a role in the pathogenesis of acne lesions, although the mechanisms are poorly understood. The study aimed to explore the microbiome at different skin sites in adolescent acne and the role of biofilm production in promoting the growth and persistence of C. acnes isolates. Microbiota analysis showed a significantly lower alpha diversity in inflammatory lesions (LA) than in non-inflammatory (NI) lesions of acne patients and healthy subjects (HS). Differences at the species level were driven by the overabundance of C. acnes on LA than NI and HS. The phylotype IA1 was more represented in the skin of acne patients than in HS. Genes involved in lipids transport and metabolism, as well as potential virulence factors associated with host-tissue colonization, were detected in all IA1 strains independently from the site of isolation. Additionally, the IA1 isolates were more efficient in early adhesion and biomass production than other phylotypes showing a significant increase in antibiotic tolerance. Overall, our data indicate that the site-specific dysbiosis in LA and colonization by virulent and highly tolerant C. acnes phylotypes may contribute to acne development in a part of the population, despite the universal carriage of the microorganism. Moreover, new antimicrobial agents, specifically targeting biofilm-forming C. acnes, may represent potential treatments to modulate the skin microbiota in acne.
Collapse
|
20
|
Marasca C, Ruggiero A, Cacciapuoti S, Fabbrocini G, Annunziata MC. Probiotic supplement combined with topical therapy in the treatment of mild to moderate acne: results from an Italian single centre interventional study. Ital J Dermatol Venerol 2022; 157:510-514. [PMID: 36177779 DOI: 10.23736/s2784-8671.22.07361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Acne is a chronic inflammatory disease of the pilosebaceous unit resulting from different cofactors. The alteration of the skin microbiome has recently been revealed to play a role in acne pathogenesis. Concerns with side effects of available systemic treatment for acne resulted in a greater focus on topical therapies, such as topical azelaic acid which showed to be an effective and safe treatment option for acne. The aim of our study was to evaluate the efficacy of a new treatment protocol for acne based on an oral supplement composed of biotin and 3 strains of lactic ferments combined with a topical gel composed of azelaic acid, hydroxypinacolone retinoate, and α-hydroxy acids. METHODS An Italian single-center interventional study was performed enrolling patients suffering from mild-to-moderate-acne. Patients were treated with a supplement based on biotin and 3 strains of lactic ferments, combined with a topical gel product (azelaic-acid, hydroxypinacolone retinoate, and α-hydroxy acids). All enrolled patients were scheduled for a total of 2 visits, a baseline visit (V0) and a follow-up visit after 60 days of treatment (V1). RESULTS A total of 30 patients were enrolled in the study. Between V0 (baseline) and V1 (60 days), there was a reduction of 37.4% in the GAGS Score, 40.7% in the SEBUTAPEtm Score, and 18% in the TEWL Score, and an increment of 44% in the T-Blue Test Score. No cases of serious AEs were reported in our experience. CONCLUSIONS Our results confirmed the promising therapeutic role of a probiotic supplement associated with topical therapy in the treatment of mild to moderate acne.
Collapse
Affiliation(s)
- Claudio Marasca
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Angelo Ruggiero
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy -
| | - Sara Cacciapuoti
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Gabriella Fabbrocini
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria C Annunziata
- Section of Dermatology, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Shao X, Chen Y, Zhang L, Zhang Y, Ariyawati A, Chen T, Chen J, Liu L, Pu Y, Li Y, Chen J. Effect of 30% Supramolecular Salicylic Acid Peel on Skin Microbiota and Inflammation in Patients with Moderate-to-Severe Acne Vulgaris. Dermatol Ther (Heidelb) 2022; 13:155-168. [PMID: 36350527 PMCID: PMC9823178 DOI: 10.1007/s13555-022-00844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Thirty-percent supramolecular salicylic acid (SSA), a modified salicylic acid preparation, is a safe and effective treatment for moderate-to-severe acne vulgaris (AV). However, its mechanism of action remains unclear. We aimed to analyze the role of 30% SSA peels on skin microbiota and inflammation in patients with moderate-to-severe AV. METHODS A total of 28 patients were enrolled and received 30% SSA peels biweekly for 2 months. The Global Acne Grading System (GAGS) score, skin water content, transepidermal water loss (TEWL), pH, and sebum levels were assessed. Skin microbial samples and perilesional skin biopsies were obtained at the onset and 2 weeks after treatment completion. Samples were characterized using a high-throughput sequencing approach targeting a portion of the bacterial 16S ribosomal RNA gene. RESULTS After treatment, patients showed a significant improvement in their GAGS score and skin barrier indicators (P < 0.05). The GAGS score was positively associated with both the sebum concentration (R = 0.3, P = 0.027) and pH (R = 0.39, P = 0.003). Increased expression of caveolin-1 and decreased expression of interleukin (IL)-1a, IL-6, IL-17, transforming growth factor beta, and toll-like receptor 2 were observed in the skin tissue after treatment. The richness and evenness of the cutaneous microbiome decreased after treatment and the Staphylococcus proportion decreased significantly (P < 0.05), whereas the Propionibacterium proportion tended to decrease (P = 0.066). CONCLUSIONS On the basis of analyses of the skin barrier and microbiota, we speculate that the 30% SSA peel may have a therapeutic effect in patients with moderate-to-severe AV by improving the skin microenvironment and modulating the skin microbiome, thus reducing local inflammation.
Collapse
Affiliation(s)
- Xinyi Shao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Yangmei Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Lingzhao Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Yujie Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Asoka Ariyawati
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Tingqiao Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Jiayi Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Lin Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Yihuan Pu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Yuxin Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| |
Collapse
|
22
|
Diuvenji EV, Nevolina ED, Mart’yanov SV, Zhurina MA, Kalmantaeva OV, Makarova MA, Botchkova EA, Firstova VV, Plakunov VK, Gannesen AV. Binary Biofilms of Staphylococcus aureus 209P and Kytococcus schroeteri H01: Dualistic Role of Kytococci and Cell Adhesion Alterations in the Presence of the A-Type Natriuretic Peptide. Microbiology (Reading) 2022. [DOI: 10.1134/s002626172260118x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
23
|
Olunoiki E, Rehner J, Bischoff M, Koshel E, Vogt T, Reichrath J, Becker SL. Characteristics of the Skin Microbiome in Selected Dermatological Conditions: A Narrative Review. Life (Basel) 2022; 12:life12091420. [PMID: 36143456 PMCID: PMC9503882 DOI: 10.3390/life12091420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
The skin is the largest and outermost organ of the human body. The microbial diversity of the skin can be influenced by several variable factors such as physiological state, lifestyle, and geographical locations. Recent years have seen increased interest in research aiming at an improved understanding of the relationship between the human microbiota and several diseases. Albeit understudied, interesting correlations between the skin microbiota and several dermatological conditions have been observed. Studies have shown that a decrease or increase in the abundance of certain microbial communities can be implicated in several dermatological pathologies. This narrative review (i) examines the role of the skin microbiota in the maintenance of skin homeostasis and health, (ii) provides examples on how some common skin diseases (acne inversa, candidiasis, psoriasis) are associated with the dysbiosis of microbial communities, and (iii) describes how recent research approaches used in skin microbiome studies may lead to improved, more sensitive diagnostics and individual therapeutics in the foreseeable future.
Collapse
Affiliation(s)
- Esther Olunoiki
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
- “Solution Chemistry of Advanced Materials and Technologies” (SCAMT) Institute, ITMO University, 191002 St. Petersburg, Russia
| | - Jacqueline Rehner
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Elena Koshel
- “Solution Chemistry of Advanced Materials and Technologies” (SCAMT) Institute, ITMO University, 191002 St. Petersburg, Russia
| | - Thomas Vogt
- Department of Dermatology, Venereology, Allergology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Jörg Reichrath
- Department of Dermatology, Venereology, Allergology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Sören L. Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
- Correspondence: ; Tel.: +49-6841-16-23900
| |
Collapse
|
24
|
Ianiri G, LeibundGut-Landmann S, Dawson TL. Malassezia: A Commensal, Pathogen, and Mutualist of Human and Animal Skin. Annu Rev Microbiol 2022; 76:757-782. [PMID: 36075093 DOI: 10.1146/annurev-micro-040820-010114] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identified in the late nineteenth century as a single species residing on human skin, Malassezia is now recognized as a diverse genus comprising 18 species inhabiting not only skin but human gut, hospital environments, and even deep-sea sponges. All cultivated Malassezia species are lipid dependent, having lost genes for lipid synthesis and carbohydrate metabolism. The surging interest in Malassezia results from development of tools to improve sampling, culture, identification, and genetic engineering, which has led to findings implicating it in numerous skin diseases, Crohn disease, and pancreatic cancer. However, it has become clear that Malassezia plays a multifaceted role in human health, with mutualistic activity in atopic dermatitis and a preventive effect against other skin infections due to its potential to compete with skin pathogens such as Candida auris. Improved understanding of complex microbe-microbe and host-microbe interactions will be required to define Malassezia's role in human and animal health and disease so as to design targeted interventions.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- Department of Agricultural, Environmental, and Food Sciences, University of Molise, Campobasso, Italy
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Faculty of Vetsuisse, and Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Thomas L Dawson
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore; .,Department of Drug Discovery, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
25
|
Qiu Z, Zhu Z, Liu X, Chen B, Yin H, Gu C, Fang X, Zhu R, Yu T, Mi W, Zhou H, Zhou Y, Yao X, Li W. A dysregulated sebum-microbial metabolite-IL-33 axis initiates skin inflammation in atopic dermatitis. J Exp Med 2022; 219:213396. [PMID: 35977109 PMCID: PMC9375142 DOI: 10.1084/jem.20212397] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/12/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022] Open
Abstract
Microbial dysbiosis in the skin has been implicated in the pathogenesis of atopic dermatitis (AD); however, whether and how changes in the skin microbiome initiate skin inflammation, or vice versa, remains poorly understood. Here, we report that the levels of sebum and its microbial metabolite, propionate, were lower on the skin surface of AD patients compared with those of healthy individuals. Topical propionate application attenuated skin inflammation in mice with MC903-induced AD-like dermatitis by inhibiting IL-33 production in keratinocytes, an effect that was mediated through inhibition of HDAC and regulation of the AhR signaling pathway. Mice lacking sebum spontaneously developed AD-like dermatitis, which was improved by topical propionate application. A proof-of-concept clinical study further demonstrated the beneficial therapeutic effects of topical propionate application in AD patients. In summary, we have uncovered that the dysregulated sebum-microbial metabolite-IL-33 axis might play an initiating role in AD-related skin inflammation, thereby highlighting novel therapeutic strategies for the treatment of AD.
Collapse
Affiliation(s)
- Zhuoqiong Qiu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, PR China
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Baichao Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, PR China,Department of Dermatology, Kaifeng People’s Hospital, Kaifeng, PR China
| | - Huibin Yin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Chaoying Gu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Xiaokai Fang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Ronghui Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Tianze Yu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Hong Zhou
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei, PR China
| | - Yufeng Zhou
- Children’s Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China,Xu Yao:
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China,Correspondence to Wei Li:
| |
Collapse
|
26
|
Genomic and Phenotypic Characterization of Cutibacterium acnes Bacteriophages Isolated from Acne Patients. Antibiotics (Basel) 2022; 11:antibiotics11081041. [PMID: 36009910 PMCID: PMC9404880 DOI: 10.3390/antibiotics11081041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
Cutibacterium acnes is a pathogen that can cause acne vulgaris, sarcoidosis, endodontic lesions, eye infections, prosthetic joint infections, and prostate cancer. Recently, bacteriophage (phage) therapy has been developed as an alternative to antibiotics. In this study, we attempted to isolate 15 phages specific to C. acnes from 64 clinical samples obtained from patients with acne vulgaris. Furthermore, we sequenced the genomes of these three phages. Bioinformatic analysis revealed that the capsid and tape measure proteins are strongly hydrophobic. To efficiently solubilize the phage particles, we measured the adsorption rate, one-step growth curve, and phage stability using an SMT2 buffer containing Tween 20. Here, we report the genotypic and phenotypic characteristics of the novel C. acnes-specific phages.
Collapse
|
27
|
Farfán J, Gonzalez JM, Vives M. The immunomodulatory potential of phage therapy to treat acne: a review on bacterial lysis and immunomodulation. PeerJ 2022; 10:e13553. [PMID: 35910763 PMCID: PMC9332329 DOI: 10.7717/peerj.13553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/17/2022] [Indexed: 01/17/2023] Open
Abstract
Background Characterized by an inflammatory pathogenesis, acne is the most common skin disorder worldwide. Altered sebum production, abnormal proliferation of keratinocytes, and microbiota dysbiosis represented by disbalance in Cutibacterium acnes population structure, have a synergic effect on inflammation of acne-compromised skin. Although the role of C. acnes as a single factor in acne development is still under debate, it is known that skin and skin-resident immune cells recognize this bacterium and produce inflammatory markers as a result. Control of the inflammatory response is frequently the target for acne treatment, using diverse chemical or physical agents including antibiotics. However, some of these treatments have side effects that compromise patient adherence and drug safety and in the case of antibiotics, it has been reported C. acnes resistance to these molecules. Phage therapy is an alternative to treat antibiotic-resistant bacterial strains and have been recently proposed as an immunomodulatory therapy. Here, we explore this perspective about phage therapy for acne, considering the potential immunomodulatory role of phages. Methodology Literature review was performed using four different databases (Europe PubMed Central-ePMC, Google Scholar, PubMed, and ScienceDirect). Articles were ordered and selected according to their year of publication, number of citations, and quartile of the publishing journal. Results The use of lytic bacteriophages to control bacterial infections has proven its promising results, and anti-inflammatory effects have been found for some bacteriophages and phage therapy. These effects can be related to bacterial elimination or direct interaction with immune cells that result in the regulation of pro-inflammatory cytokines. Studies on C. acnes bacteriophages have investigated their lytic activity, genomic structure, and stability on different matrices. However, studies exploring the potential of immunomodulation of these bacteriophages are still scarce. Conclusions C. acnes bacteriophages, as well as other phages, may have direct immunomodulatory effects that are yet to be fully elucidated. To our knowledge, to the date that this review was written, there are only two studies that investigate anti-inflammatory properties for C. acnes bacteriophages. In those studies, it has been evidenced reduction of pro-inflammatory response to C. acnes inoculation in mice after bacteriophage application. Nevertheless, these studies were conducted in mice, and the interaction with the immune response was not described. Phage therapy to treat acne can be a suitable therapeutic alternative to C. acnes control, which in turn can aid to restore the skin's balance of microbiota. By controlling C. acnes colonization, C. acnes bacteriophages can reduce inflammatory reactions triggered by this bacterium.
Collapse
Affiliation(s)
- Juan Farfán
- Biological Sciences Department, Faculty of Science, Universidad de Los Andes, Bogotá, Bogotá D.C., Colombia
| | - John M. Gonzalez
- School of Medicine, Universidad de Los Andes, Bogotá, Bogotá D.C., Colombia
| | - Martha Vives
- Biological Sciences Department, Faculty of Science, Universidad de Los Andes, Bogotá, Bogotá D.C., Colombia
| |
Collapse
|
28
|
Burton M, Krumbeck JA, Wu G, Tang S, Prem A, Gupta AK, Dawson TL. The adult microbiome of healthy and otitis patients: Definition of the core healthy and diseased ear microbiomes. PLoS One 2022; 17:e0262806. [PMID: 35073343 PMCID: PMC8786117 DOI: 10.1371/journal.pone.0262806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/05/2022] [Indexed: 12/31/2022] Open
Abstract
Otitis media (OM) and externa (OE) are painful, recurrent ear conditions. As most otitis publications focus on the bacterial content of childhood ears, there remains a dearth of information regarding the adult ear microbiome including both bacteria and fungi. This study compares the outer ear microbiome of healthy adults to adults affected by OE and OM using both intergenic-transcribed-spacer (ITS) and 16S-rDNA sequencing. The adult ear core microbiome consists of the prokaryote Cutibacterium acnes and the eukaryotic Malassezia arunalokei, M. globosa, and M. restricta. The healthy ear mycobiome is dominated by Malassezia and can be divided into two groups, one dominated by M. arunalokei, the other by M. restricta. Microbiome diversity and biomass varied significantly between healthy and diseased ears, and analyses reveal the presence of a potential mutualistic, protective effect of Malassezia species and C. acnes. The healthy ear core microbiome includes the bacteria Staphylococcus capitis and S. capitis/caprae, while the diseased ear core is composed of known bacterial and fungal pathogens including Aspergillus sp., Candida sp., Pseudomonas aeruginosa, S. aureus, and Corynebacterium jeikeium. The data presented highlight the need for early detection of the cause of otitis to direct more appropriate, efficient treatments. This will improve patient outcomes and promote improved antimicrobial stewardship.
Collapse
Affiliation(s)
- Maria Burton
- Zymo Research Corporation, Irvine, CA, United States of America
| | | | - Guangxi Wu
- Zymo Research Corporation, Irvine, CA, United States of America
| | - Shuiquan Tang
- Zymo Research Corporation, Irvine, CA, United States of America
| | - Aishani Prem
- Zymo Research Corporation, Irvine, CA, United States of America
| | - Aditya K. Gupta
- Mediprobe Research Inc., London, ON, Canada and University of Toronto, Toronto, ON, Canada
| | - Thomas L. Dawson
- Skin Research Institute, Singapore, Singapore
- Dept of Drug Discovery, College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States of America
| |
Collapse
|
29
|
Mahmud MR, Akter S, Tamanna SK, Mazumder L, Esti IZ, Banerjee S, Akter S, Hasan MR, Acharjee M, Hossain MS, Pirttilä AM. Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes 2022; 14:2096995. [PMID: 35866234 PMCID: PMC9311318 DOI: 10.1080/19490976.2022.2096995] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/08/2023] Open
Abstract
The human intestine hosts diverse microbial communities that play a significant role in maintaining gut-skin homeostasis. When the relationship between gut microbiome and the immune system is impaired, subsequent effects can be triggered on the skin, potentially promoting the development of skin diseases. The mechanisms through which the gut microbiome affects skin health are still unclear. Enhancing our understanding on the connection between skin and gut microbiome is needed to find novel ways to treat human skin disorders. In this review, we systematically evaluate current data regarding microbial ecology of healthy skin and gut, diet, pre- and probiotics, and antibiotics, on gut microbiome and their effects on skin health. We discuss potential mechanisms of the gut-skin axis and the link between the gut and skin-associated diseases, such as psoriasis, atopic dermatitis, acne vulgaris, rosacea, alopecia areata, and hidradenitis suppurativa. This review will increase our understanding of the impacts of gut microbiome on skin conditions to aid in finding new medications for skin-associated diseases.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | | | | |
Collapse
|
30
|
Zakis DR, Paulissen E, Kornete L, Kaan AMM, Nicu EA, Zaura E. The evidence for placental microbiome and its composition in healthy pregnancies: A systematic review. J Reprod Immunol 2021; 149:103455. [PMID: 34883392 DOI: 10.1016/j.jri.2021.103455] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/11/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To assess the available scientific evidence regarding the placental microbial composition of a healthy pregnancy, the quality of this evidence, and the potential relation between placental and oral microbiome. MATERIALS AND METHODS Data sources: MEDLINE and EMBASE up to August 1, 2019. STUDY ELIGIBILITY CRITERIA Human subjects; healthy women; term deliveries; healthy normal birth weight; assessment of microorganisms (bacteria) in placental tissue; full research papers in English. The quality of the included studies was assessed by a modified Joanna Briggs Institute checklist for analytical cross-sectional studies. RESULTS 57 studies passed the inclusion criteria. Of these, 33 had a high risk of quality bias (e.g., insufficient infection control, lack of negative controls, poor description of the healthy cases). The remaining 24 studies had a low (N = 12) to moderate (N = 12) risk of bias and were selected for in-depth analysis. Of these 24 studies, 22 reported microorganisms in placental tissues, where Lactobacillus (11 studies), Ureaplasma (7), Fusobacterium (7), Staphylococcus (7), Prevotella (6) and Streptococcus (6) were among the most frequently identified genera. Methylobacterium (4), Propionibacterium (3), Pseudomonas (3) and Escherichia (2), among others, although frequently reported in placental samples, were often reported as contaminants in studies that used negative controls. CONCLUSIONS The results support the existence of a low biomass placental microbiota in healthy pregnancies. Some of the microbial taxa found in the placenta might have an oral origin. The high risk of quality bias for the majority of the included studies indicates that the results of individual papers should be interpreted with caution.
Collapse
Affiliation(s)
- Davis R Zakis
- Department of Conservative Dentistry and Oral Health, Faculty of Dentistry, Rīga Stradiņš University, Latvia; Department of Cariology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Eva Paulissen
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Liga Kornete
- Faculty of Medicine, Rīga Stradiņš University, Latvia
| | - A M Marije Kaan
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Elena A Nicu
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Cobian N, Garlet A, Hidalgo-Cantabrana C, Barrangou R. Comparative Genomic Analyses and CRISPR-Cas Characterization of Cutibacterium acnes Provide Insights Into Genetic Diversity and Typing Applications. Front Microbiol 2021; 12:758749. [PMID: 34803983 PMCID: PMC8595920 DOI: 10.3389/fmicb.2021.758749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
Cutibacterium acnes is an important member of the human skin microbiome and plays a critical role in skin health and disease. C. acnes encompasses different phylotypes that have been found to be associated with different skin phenotypes, suggesting a genetic basis for their impact on skin health. Here, we present a comprehensive comparative analysis of 255 C. acnes genomes to provide insights into the species genetic diversity and identify unique features that define various phylotypes. Results revealed a relatively small and open pan genome (6,240 genes) with a large core genome (1,194 genes), and three distinct phylogenetic clades, with multiple robust sub-clades. Furthermore, we identified several unique gene families driving differences between distinct C. acnes clades. Carbohydrate transporters, stress response mechanisms and potential virulence factors, potentially involved in competitive growth and host colonization, were detected in type I strains, which are presumably responsible for acne. Diverse type I-E CRISPR-Cas systems and prophage sequences were detected in select clades, providing insights into strain divergence and adaptive differentiation. Collectively, these results enable to elucidate the fundamental differences among C. acnes phylotypes, characterize genetic elements that potentially contribute to type I-associated dominance and disease, and other key factors that drive the differentiation among clades and sub-clades. These results enable the use of comparative genomics analyses as a robust method to differentiate among the C. acnes genotypes present in the skin microbiome, opening new avenues for the development of biotherapeutics to manipulate the skin microbiota.
Collapse
Affiliation(s)
- Natalia Cobian
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | | | - Claudio Hidalgo-Cantabrana
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
32
|
Nakase K, Koizumi J, Midorikawa R, Yamasaki K, Tsutsui M, Aoki S, Nasu Y, Hirai Y, Nakaminami H, Noguchi N. Cutibacterium acnes phylogenetic type IC and II isolated from patients with non-acne diseases exhibit high-level biofilm formation. Int J Med Microbiol 2021; 311:151538. [PMID: 34649133 DOI: 10.1016/j.ijmm.2021.151538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Cutibacterium (formerly Propionibacterium) acnes is an important for not only exacerbating factor of acne vulgaris but also pathogen of surgical site infections (SSIs) in orthopedics and plastic surgery. Although biofilm-forming (BF) C. acnes are associated with intractable SSI, characteristics of these strains were still unknown. Here, we explored detailed molecular epidemiological features of BF C. acnes isolated as causative pathogen of infectious diseases. Phylogenetic types of 205 C. acnes strains isolated between 2013 and 2018 from 18 clinical departments of a university hospital in Japan were determined by single-locus sequence type (SLST). Clade H (traditional type IC) and K (type II) which are less relevant with healthy skin and acne vulgaris, were detected in 26.8% (55/205) and 16.1% (33/205) of the strains, respectively. The incidence of them was significantly higher than that of acne patients (H and K, each 2.9%, P < 0.05). In addition, SLST distribution of C. acnes strains differed by each department and isolation site. When biofilm formation was quantified, 51 strains (24.9%) were defined as high-BF strains. Notably, most high-BF strains were classified into the strains of clade H (56.4%, 31/55) and clade K (54.4%, 18/33), and these strains were frequently found in the strains isolated from patients of medical emergency center and plastic surgery. Similarly, high-BF strains were frequently found among the isolates from blood (35.7%) and catheters (30.0%), with a high proportion belonging to clades H and K. Compared to C. acnes strains isolated from acne patients, antimicrobial-resistant strains were less identified in non-acne patients. Our findings showed that pathogenicity of C. acnes strains differs by their phylogenetic types. Furthermore, we showed clade H and K have the ability of high biofilm formation and suggest that these strains have potential to become a risk factor for SSI.
Collapse
Affiliation(s)
- Keisuke Nakase
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Juri Koizumi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ren Midorikawa
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kento Yamasaki
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Miho Tsutsui
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Sae Aoki
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yutaka Nasu
- Department of Infectious Diseases, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo 193-0944, Japan
| | - Yuji Hirai
- Department of Infectious Diseases, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo 193-0944, Japan
| | - Hidemasa Nakaminami
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Norihisa Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
33
|
Ambaw YA, Pagac MP, Irudayaswamy AS, Raida M, Bendt AK, Torta FT, Wenk MR, Dawson TL. Host/ Malassezia Interaction: A Quantitative, Non-Invasive Method Profiling Oxylipin Production Associates Human Skin Eicosanoids with Malassezia. Metabolites 2021; 11:700. [PMID: 34677414 PMCID: PMC8538739 DOI: 10.3390/metabo11100700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Malassezia are common components of human skin, and as the dominant human skin eukaryotic microbe, they take part in complex microbe-host interactions. Other phylogenetically related fungi (including within Ustilagomycotina) communicate with their plant host through bioactive oxygenated polyunsaturated fatty acids, generally known as oxylipins, by regulating the plant immune system to increase their virulence. Oxylipins are similar in structure and function to human eicosanoids, which modulate the human immune system. This study reports the development of a highly sensitive mass-spectrometry-based method to capture and quantify bioactive oxygenated polyunsaturated fatty acids from the human skin surface and in vitro Malassezia cultures. It confirms that Malassezia are capable of synthesizing eicosanoid-like lipid mediators in vitro in a species dependent manner, many of which are found on human skin. This method enables sensitive identification and quantification of bioactive lipid mediators from human skin that may be derived from metabolic pathways shared between skin and its microbial residents. This enables better cross-disciplinary and detailed studies to dissect the interaction between Malassezia and human skin, and to identify potential intervention points to promote or abrogate inflammation and to improve human skin health.
Collapse
Affiliation(s)
- Yohannes Abere Ambaw
- Precision Medicine Translational Research Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; (Y.A.A.); (F.T.T.); (M.R.W.)
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore; (M.R.); (A.K.B.)
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA 02138, USA
| | - Martin P. Pagac
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (M.P.P.); (A.S.I.)
| | - Antony S. Irudayaswamy
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (M.P.P.); (A.S.I.)
| | - Manfred Raida
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore; (M.R.); (A.K.B.)
| | - Anne K. Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore; (M.R.); (A.K.B.)
| | - Federico T. Torta
- Precision Medicine Translational Research Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; (Y.A.A.); (F.T.T.); (M.R.W.)
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore; (M.R.); (A.K.B.)
| | - Markus R. Wenk
- Precision Medicine Translational Research Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; (Y.A.A.); (F.T.T.); (M.R.W.)
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore; (M.R.); (A.K.B.)
| | - Thomas L. Dawson
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (M.P.P.); (A.S.I.)
- Center for Cell Death, Injury & Regeneration, Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
34
|
Scalp Microbiome and Sebum Composition in Japanese Male Individuals with and without Androgenetic Alopecia. Microorganisms 2021; 9:microorganisms9102132. [PMID: 34683453 PMCID: PMC8536999 DOI: 10.3390/microorganisms9102132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
The skin microbiome and sebum may be associated with inflammation-related diseases of the scalp. To assess the pathogenesis and progression of androgenetic alopecia (AGA), we analyzed the composition of sebum and the bacterial and fungal microbiomes of the scalps of 118 Japanese male individuals with and without AGA, then discussed their roles in the pathogenesis of AGA. Sebum triglyceride and palmitic acid contents were higher in the AGA group than in the non-AGA group. Malassezia restricta, a lipophilic fungus that consumes palmitic acid, was abundant on the scalps of patients with AGA. Cutibacterium, Corynebacterium, and Staphylococcus were the most common genera in both groups, and patients with AGA exhibited scalp dysbiosis (increased abundance of Cutibacterium and decreased abundance of Corynebacterium). Our findings suggest that both sebum and the bacterial and fungal microbiomes of the scalp may be involved in the development of AGA.
Collapse
|
35
|
Yang Y, Tao S, Zeng R, Zheng H, Ge Y. Modulation of skin microbiome in acne patients by aminolevulinic acid-photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102556. [PMID: 34600122 DOI: 10.1016/j.pdpdt.2021.102556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Aminolevulinic acid-photodynamic therapy (ALA-PDT) has been an effective treatment for moderate to severe acne. However, the effect of ALA-PDT on skin microbiome in acne patients should also be examined.. AIM To examine the composition, diversity, and resilience of skin microbiome in acne patients before and after ALA-PDT. METHOD A prospective study was conducted on five patients with moderate to severe acne. All patients underwent a 5% ALA-PDT at a two-week interval for four sessions. Epidermal and follicular samples of acne patients were acquired for 16S rRNA gene amplicon metasequencing at baseline and before the final session. RESULT ALA-PDT inhibited Cutibacterium acnes of follicular microbiome in acne. Follicular residential bacteria, mainly Bacillus and Lactococcus, rose in abundance after PDT. ALA-PDT increased the diversity of skin microbiome in acne and clustered follicular microbiome toward epidermal microbiome, both taxonomically and functionally. CONCLUSION ALA-PDT exerts its therapeutic effect on acne partially through inhibiting C. acnes and modulating the composition and potential function of skin microbiome in acne.
Collapse
Affiliation(s)
- Yin Yang
- Department of Cosmetic Laser Surgery, Hospital for Skin Disease and Institute of Dermatology, Peking Union Medical College & Chinese Academy of Medical Sciences (CAMS), Nanjing 210042, China
| | - Shiqin Tao
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Rong Zeng
- Department of Cosmetic Laser Surgery, Hospital for Skin Disease and Institute of Dermatology, Peking Union Medical College & Chinese Academy of Medical Sciences (CAMS), Nanjing 210042, China
| | - Huiying Zheng
- Department of Cosmetic Laser Surgery, Hospital for Skin Disease and Institute of Dermatology, Peking Union Medical College & Chinese Academy of Medical Sciences (CAMS), Nanjing 210042, China
| | - Yiping Ge
- Department of Cosmetic Laser Surgery, Hospital for Skin Disease and Institute of Dermatology, Peking Union Medical College & Chinese Academy of Medical Sciences (CAMS), Nanjing 210042, China.
| |
Collapse
|
36
|
Pistone D, Meroni G, Panelli S, D’Auria E, Acunzo M, Pasala AR, Zuccotti GV, Bandi C, Drago L. A Journey on the Skin Microbiome: Pitfalls and Opportunities. Int J Mol Sci 2021; 22:9846. [PMID: 34576010 PMCID: PMC8469928 DOI: 10.3390/ijms22189846] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
The human skin microbiota is essential for maintaining homeostasis and ensuring barrier functions. Over the years, the characterization of its composition and taxonomic diversity has reached outstanding goals, with more than 10 million bacterial genes collected and cataloged. Nevertheless, the study of the skin microbiota presents specific challenges that need to be addressed in study design. Benchmarking procedures and reproducible and robust analysis workflows for increasing comparability among studies are required. For various reasons and because of specific technical problems, these issues have been investigated in gut microbiota studies, but they have been largely overlooked for skin microbiota. After a short description of the skin microbiota, the review tackles methodological aspects and their pitfalls, covering NGS approaches and high throughput culture-based techniques. Recent insights into the "core" and "transient" types of skin microbiota and how the manipulation of these communities can prevent or combat skin diseases are also covered. Finally, this review includes an overview of the main dermatological diseases, the changes in the microbiota composition associated with them, and the recommended skin sampling procedures. The last section focuses on topical and oral probiotics to improve and maintain skin health, considering their possible applications for skin diseases.
Collapse
Affiliation(s)
- Dario Pistone
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Gabriele Meroni
- Department of Biomedical Surgical and Dental Sciences-One Health Unit, University of Milan, 20133 Milan, Italy;
| | - Simona Panelli
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
| | - Enza D’Auria
- Department of Pediatrics, Children’s Hospital Vittore Buzzi, University of Milan, 20154 Milan, Italy; (E.D.); (M.A.)
| | - Miriam Acunzo
- Department of Pediatrics, Children’s Hospital Vittore Buzzi, University of Milan, 20154 Milan, Italy; (E.D.); (M.A.)
| | - Ajay Ratan Pasala
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
| | - Gian Vincenzo Zuccotti
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (S.P.); (A.R.P.); (G.V.Z.)
- Department of Pediatrics, Children’s Hospital Vittore Buzzi, University of Milan, 20154 Milan, Italy; (E.D.); (M.A.)
| | - Claudio Bandi
- Pediatric Clinical Research Center “Invernizzi”, Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Lorenzo Drago
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| |
Collapse
|
37
|
Rademacher F, Gläser R, Harder J. Antimicrobial peptides and proteins: Interaction with the skin microbiota. Exp Dermatol 2021; 30:1496-1508. [PMID: 34310774 DOI: 10.1111/exd.14433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
The cutaneous microbiota comprises all living skin microorganisms. There is increasing evidence that the microbiota plays a crucial role in skin homeostasis. Accordingly, a dysbiosis of the microbiota may trigger cutaneous inflammation. The need for a balanced microbiota requires specific regulatory mechanisms that control and shape the microbiota. In this review, we highlight the present knowledge suggesting that antimicrobial peptides (AMPs) may exert a substantial influence on the microbiota by controlling their growth. This is supported by own data showing the differential influence of principal skin-derived AMPs on commensal staphylococci. Vice versa, we also illuminate how the cutaneous microbiota interacts with skin-derived AMPs by modulating AMP expression and how microbiota members protect themselves from the antimicrobial activity of AMPs. Taken together, the current picture suggests that a fine-tuned and well-balanced AMP-microbiota interplay on the skin surface may be crucial for skin health.
Collapse
Affiliation(s)
| | - Regine Gläser
- Department of Dermatology, Kiel University, Kiel, Germany
| | - Jürgen Harder
- Department of Dermatology, Kiel University, Kiel, Germany
| |
Collapse
|
38
|
Characterization of Oral Microbiota in Cats: Novel Insights on the Potential Role of Fungi in Feline Chronic Gingivostomatitis. Pathogens 2021; 10:pathogens10070904. [PMID: 34358054 PMCID: PMC8308807 DOI: 10.3390/pathogens10070904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/04/2023] Open
Abstract
Previous studies have suggested the involvement of viral and bacterial components in the initiation and progression of feline chronic gingivostomatitis (FCGS), but the role of fungi remains entirely unknown. This pilot study aimed to investigate the bacteriome and mycobiome in feline oral health and disease. Physical exams, including oral health assessment, of privately owned, clinically healthy (CH) cats (n = 14) and cats affected by FCGS (n = 14) were performed. Using a sterile swab, oral tissue surfaces of CH and FCGS cats were sampled and submitted for 16S rRNA and ITS-2 next-generation DNA sequencing. A high number of fungal species (n = 186) was detected, with Malassezia restricta, Malassezia arunalokei, Cladosporium penidielloides/salinae, and Aspergillaceae sp. being significantly enriched in FCGS samples, and Saccharomyces cerevisiae in CH samples. The bacteriome was significantly distinct between groups, and significant inter-kingdom interactions were documented. Bergeyella zoohelcum was identified as a potential biomarker of a healthy feline oral microbiome. These data suggest that fungi might play a role in the etiology and pathogenesis of FCGS, and that oral health should not simply be regarded as the absence of microbial infections. Instead, it may be viewed as the biological interactions between bacterial and fungal populations that coexist to preserve a complex equilibrium in the microenvironment of the mouth. Additional investigations are needed to improve our understanding of the feline oral ecosystem and the potential interactions between viruses, bacteria, and fungi in FCGS.
Collapse
|
39
|
Espinoza-Monje M, Campos J, Alvarez Villamil E, Jerez A, Dentice Maidana S, Elean M, Salva S, Kitazawa H, Villena J, García-Cancino A. Characterization of Weissella viridescens UCO-SMC3 as a Potential Probiotic for the Skin: Its Beneficial Role in the Pathogenesis of Acne Vulgaris. Microorganisms 2021; 9:1486. [PMID: 34361921 PMCID: PMC8307422 DOI: 10.3390/microorganisms9071486] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022] Open
Abstract
Previously, we isolated lactic acid bacteria from the slime of the garden snail Helix aspersa Müller and selected Weissella viridescens UCO-SMC3 because of its ability to inhibit in vitro the growth of the skin-associated pathogen Cutibacterium acnes. The present study aimed to characterize the antimicrobial and immunomodulatory properties of W. viridescens UCO-SMC3 and to demonstrate its beneficial effect in the treatment of acne vulgaris. Our in vitro studies showed that the UCO-SMC3 strain resists adverse gastrointestinal conditions, inhibits the growth of clinical isolates of C. acnes, and reduces the adhesion of the pathogen to keratinocytes. Furthermore, in vivo studies in a mice model of C. acnes infection demonstrated that W. viridescens UCO-SMC3 beneficially modulates the immune response against the skin pathogen. Both the oral and topical administration of the UCO-SCM3 strain was capable of reducing the replication of C. acnes in skin lesions and beneficially modulating the inflammatory response. Of note, orally administered W. viridescens UCO-SMC3 induced more remarkable changes in the immune response to C. acnes than the topical treatment. However, the topical administration of W. viridescens UCO-SMC3 was more efficient than the oral treatment to reduce pathogen bacterial loads in the skin, and effects probably related to its ability to inhibit and antagonize the adhesion of C. acnes. Furthermore, a pilot study in acne volunteers demonstrated the capacity of a facial cream containing the UCO-SMC3 strain to reduce acne lesions. The results presented here encourage further mechanistic and clinical investigations to characterize W. viridescens UCO-SMC3 as a probiotic for acne vulgaris treatment.
Collapse
Affiliation(s)
- Marcela Espinoza-Monje
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Jorge Campos
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Eduardo Alvarez Villamil
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Alonso Jerez
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| | - Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), CP 4000 Tucuman, Argentina; (E.A.V.); (S.D.M.); (M.E.); (S.S.)
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, 4030000 Concepcion, Chile; (M.E.-M.); (J.C.); (A.J.)
| |
Collapse
|
40
|
Kurokawa I, Layton AM, Ogawa R. Updated Treatment for Acne: Targeted Therapy Based on Pathogenesis. Dermatol Ther (Heidelb) 2021; 11:1129-1139. [PMID: 34115308 PMCID: PMC8322376 DOI: 10.1007/s13555-021-00552-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
Previous approaches to acne management have focused on the four main factors implicated in acne, namely, androgen-mediated sebogenesis (considered integral to acne), hyperkeratinization, colonization with Cutibacterium acnes, and inflammation related to both innate and adaptive mechanisms. Recent advances have facilitated potential novel approaches to acne management, as the pathophysiology and the immunological aspects related to acne and wound healing have evolved. Particular targets that have been shown to be closely involved in acne pathophysiology and wound healing include interleukin (IL)-1β, IL-17, IL-23, and tumor necrosis factor alpha (TNFα). Biological antibodies targeting IL-1β, IL-17, IL-23, and TNFα could provide novel approaches for treating severe acne and related disorders. Acne is primarily a disease associated with sebogenesis. Monosaturated free acids are important components. Insulin growth factor 1 (IGF-1) promotes the proliferation and differentiation of sebocytes and IL-1β. Research into the microbiome may also provide insights into potential future therapeutic options for acne. Scars, both atrophic and hypertrophic, are common sequelae to acne. Risk factors associated with the development of acne scars include genetic, systemic, local, and lifestyle factors. Pro-inflammatory cytokines have been shown to play a crucial role in the development of acne-induced hypertrophic scars. Treatment for extensive inflammatory keloid scarring is limited. Surgery and postoperative radiotherapy are two possible options. Transforming growth factor-β (TGFβ), IL-6, matrix metalloproteinase (MMP), IGF-1, and B cells are found in keloid or hypertrophic scar tissues. Biological antibodies targeting these cytokines may be a potential strategy for the prevention and treatment of this type of scar in the future. Future treatment for acne should embrace approaches that target the main etiological factors of acne. In particular, specific emphasis on aggressive treatment in the acute inflammatory phase to reduce the likelihood of scarring and other clinical sequelae, such as pigmentary changes would be highly desirable. Treatment for established acne-induced sequelae should also be considered.
Collapse
Affiliation(s)
- Ichiro Kurokawa
- Department of Dermatology, Meiwa Hospital, 4-31, Agenaruo-cho, Nishinomiya, Hyogo, 663-8186, Japan.
| | - Alison M Layton
- Department of Dermatology, Harrogate and District Foundation Trust, Lancaster Park Road, Harrogate, HG2 7SX, UK
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
41
|
Angiolella L, Rojas F, Mussin J, Greco R, Sosa MDLA, Zalazar L, Giusiano G. Biofilm formation, adherence, and hydrophobicity of M. sympodialis, M. globosa, and M. slooffiae from clinical isolates and normal skinVirulence factors of M. sympodialis, M. globosa and M. slooffiae. Med Mycol 2021; 58:1162-1168. [PMID: 32242627 DOI: 10.1093/mmy/myaa017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
The genus Malassezia comprises a heterogeneous group of species that cause similar pathologies. Malassezia yeasts were considered as the most abundant skin eukaryotes of the total skin mycobiome. The ability of this fungus to colonize or infect is determined by complex interactions between the fungal cell and its virulence factors. This study aims to evaluate in vitro the hydrophobicity levels, the adherence capacity on a polystyrene surface and the ability to form biofilm of 19 isolates, including M. sympodialis, M. globosa, and M. slooffiae, from healthy subjects and from dermatological disorders. Cellular surface hydrophobicity levels were determined by two-phase system. The biofilm formation was determined by tetrazolium salt (XTT) reduction assay and by Scanning Electron Microscopy (SEM). Strain dependence was observed in all virulence factors studied. All isolates of M. sympodialis, M. globosa, and M. slooffiae demonstrated their ability to form biofilm at variable capacities. SEM observations confirmed a variable extracellular matrix after 48 hours of biofilm formation. All isolates of M. globosa were highly adherent and/or hydrophobic as well as biofilm producers. In contrast, M. slooffiae was the least biofilm producer. No significant differences between virulence factors were demonstrated for M. sympodialis, either as clinical isolate or as inhabitant of human microbiota. Results of this work together with the previous M. furfur research confirm that the most frequently Malassezia species isolated from normal subject's skin and patients with dermatosis, form biofilm with different capacities. The study of these virulence factors is important to highlight differences between Malassezia species and to determine their involvement in pathological processes.
Collapse
Affiliation(s)
- Letizia Angiolella
- Department of Public Health and Infectious Diseases. University of Rome "Sapienza", Italy. Piazzale Aldo Moro 5, 00100 Roma, Italy
| | - Florencia Rojas
- Departamento Micologia, Instituto de Medicina Regional, Facultad de Medicina, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| | - Javier Mussin
- Departamento Micologia, Instituto de Medicina Regional, Facultad de Medicina, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| | - Rosa Greco
- Department of Public Health and Infectious Diseases. University of Rome "Sapienza", Italy. Piazzale Aldo Moro 5, 00100 Roma, Italy
| | - María de Los Angeles Sosa
- Departamento Micologia, Instituto de Medicina Regional, Facultad de Medicina, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| | - Laura Zalazar
- Facultad de Ciencias Económicas, Universidad Nacional del Nordeste, Resistencia, Argentina
| | - Gustavo Giusiano
- Departamento Micologia, Instituto de Medicina Regional, Facultad de Medicina, Universidad Nacional del Nordeste, CONICET, Resistencia, Argentina
| |
Collapse
|
42
|
Lousada MB, Lachnit T, Edelkamp J, Rouillé T, Ajdic D, Uchida Y, Di Nardo A, Bosch TCG, Paus R. Exploring the human hair follicle microbiome. Br J Dermatol 2021; 184:802-815. [PMID: 32762039 DOI: 10.1111/bjd.19461] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
Abstract
Human hair follicles (HFs) carry complex microbial communities that differ from the skin surface microbiota. This likely reflects that the HF epithelium differs from the epidermal barrier in that it provides a moist, less acidic, and relatively ultraviolet light-protected environment, part of which is immune-privileged, thus facilitating microbial survival. Here we review the current understanding of the human HF microbiome and its potential physiological and pathological functions, including in folliculitis, acne vulgaris, hidradenitis suppurativa, alopecia areata and cicatricial alopecias. While reviewing the main human HF bacteria (such as Propionibacteria, Corynebacteria, Staphylococci and Streptococci), viruses, fungi and parasites as human HF microbiome constituents, we advocate a broad view of the HF as an integral part of the human holobiont. Specifically, we explore how the human HF may manage its microbiome via the regulated production of antimicrobial peptides (such as cathelicidin, psoriasin, RNAse7 and dermcidin) by HF keratinocytes, how the microbiome may impact on cytokine and chemokine release from the HF, and examine hair growth-modulatory effects of antibiotics, and ask whether the microbiome affects hair growth in turn. We highlight major open questions and potential novel approaches to the management of hair diseases by targeting the HF microbiome.
Collapse
Affiliation(s)
- M B Lousada
- Monasterium Laboratory, Münster, Germany
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - T Lachnit
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - J Edelkamp
- Monasterium Laboratory, Münster, Germany
| | - T Rouillé
- Monasterium Laboratory, Münster, Germany
| | - D Ajdic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Y Uchida
- Monasterium Laboratory, Münster, Germany
| | - A Di Nardo
- Department of Dermatology, University of California, San Diego, CA, USA
| | - T C G Bosch
- Zoological Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - R Paus
- Monasterium Laboratory, Münster, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| |
Collapse
|
43
|
Vijaya Chandra SH, Srinivas R, Dawson TL, Common JE. Cutaneous Malassezia: Commensal, Pathogen, or Protector? Front Cell Infect Microbiol 2021; 10:614446. [PMID: 33575223 PMCID: PMC7870721 DOI: 10.3389/fcimb.2020.614446] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
The skin microbial community is a multifunctional ecosystem aiding prevention of infections from transient pathogens, maintenance of host immune homeostasis, and skin health. A better understanding of the complex milieu of microbe-microbe and host-microbe interactions will be required to define the ecosystem's optimal function and enable rational design of microbiome targeted interventions. Malassezia, a fungal genus currently comprising 18 species and numerous functionally distinct strains, are lipid-dependent basidiomycetous yeasts and integral components of the skin microbiome. The high proportion of Malassezia in the skin microbiome makes understanding their role in healthy and diseased skin crucial to development of functional skin health knowledge and understanding of normal, healthy skin homeostasis. Over the last decade, new tools for Malassezia culture, detection, and genetic manipulation have revealed not only the ubiquity of Malassezia on skin but new pathogenic roles in seborrheic dermatitis, psoriasis, Crohn's disease, and pancreatic ductal carcinoma. Application of these tools continues to peel back the layers of Malassezia/skin interactions, including clear examples of pathogenicity, commensalism, and potential protective or beneficial activities creating mutualism. Our increased understanding of host- and microbe-specific interactions should lead to identification of key factors that maintain skin in a state of healthy mutualism or, in turn, initiate pathogenic changes. These approaches are leading toward development of new therapeutic targets and treatment options. This review discusses recent developments that have expanded our understanding of Malassezia's role in the skin microbiome, with a focus on its multiple roles in health and disease as commensal, pathogen, and protector.
Collapse
Affiliation(s)
| | - Ramasamy Srinivas
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Thomas L Dawson
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Drug Discovery, College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States
| | - John E Common
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
44
|
Nakamura K, O'Neill AM, Williams MR, Cau L, Nakatsuji T, Horswill AR, Gallo RL. Short chain fatty acids produced by Cutibacterium acnes inhibit biofilm formation by Staphylococcus epidermidis. Sci Rep 2020; 10:21237. [PMID: 33277548 PMCID: PMC7718897 DOI: 10.1038/s41598-020-77790-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Biofilm formation by bacterial pathogens is associated with numerous human diseases and can confer resistance to both antibiotics and host defenses. Many strains of Staphylococcus epidermidis are capable of forming biofilms and are important human pathogens. Since S. epidermidis coexists with abundant Cutibacteria acnes on healthy human skin and does not typically form a biofilm in this environment, we hypothesized that C. acnes may influence biofilm formation of S. epidermidis. Culture supernatants from C. acnes and other species of Cutibacteria inhibited S. epidermidis but did not inhibit biofilms by Pseudomonas aeruginosa or Bacillus subtilis, and inhibited biofilms by S. aureus to a lesser extent. Biofilm inhibitory activity exhibited chemical properties of short chain fatty acids known to be produced from C. acnes. The addition of the pure short chain fatty acids propionic, isobutyric or isovaleric acid to S. epidermidis inhibited biofilm formation and, similarly to C. acnes supernatant, reduced polysaccharide synthesis by S. epidermidis. Both short chain fatty acids and C. acnes culture supernatant also increased sensitivity of S. epidermidis to antibiotic killing under biofilm-forming conditions. These observations suggest the presence of C. acnes in a diverse microbial community with S. epidermidis can be beneficial to the host and demonstrates that short chain fatty acids may be useful to limit formation of a biofilm by S. epidermidis.
Collapse
Affiliation(s)
- Kouki Nakamura
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Alan M O'Neill
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Michael R Williams
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Laura Cau
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
- SILAB, R&D Department, Brive, France
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, USA
| | - Richard L Gallo
- Department of Dermatology, University of California San Diego, 9500 Gillman Dr. #0869, La Jolla, CA, 92093, USA.
| |
Collapse
|
45
|
Zouboulis CC, Yoshida GJ, Wu Y, Xia L, Schneider MR. Sebaceous gland: Milestones of 30‐year modelling research dedicated to the “brain of the skin”. Exp Dermatol 2020; 29:1069-1079. [DOI: 10.1111/exd.14184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology Dessau Medical Center Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg Dessau Germany
| | - Go J. Yoshida
- Department of Immunological Diagnosis Juntendo University School of Medicine Bunkyo‐ku, Tokyo Japan
| | - Yaojiong Wu
- Shenzhen Key Laboratory of Health Sciences and Technology Tsinghua Shenzhen International Graduate School and Tsinghua‐Berkeley Shenzhen Institute Tsinghua University Beijing China
| | - Longqing Xia
- Department of Dermatology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Marlon R. Schneider
- German Federal Institute for Risk Assessment (BfR) German Centre for the Protection of Laboratory Animals (Bf3R) Berlin Germany
| |
Collapse
|
46
|
Abstract
Our understanding of the role of Cutibacterium acnes in the pathophysiology of acne has recently undergone a paradigm shift: rather than C. acnes hyperproliferation, it is the loss of balance between the different C. acnes phylotypes, together with a dysbiosis of the skin microbiome, which results in acne development. The loss of diversity of C. acnes phylotypes acts as a trigger for innate immune system activation, leading to cutaneous inflammation. A predominance of C. acnes phylotype IA1 has been observed, with a more virulent profile in acne than in normal skin. Other bacteria, mainly Staphylococcus epidermis, are also implicated in acne. S. epidermidis and C. acnes interact and are critical for the regulation of skin homeostasis. Recent studies also showed that the gut microbiome is involved in acne, through interactions with the skin microbiome. As commonly used topical and systemic antibiotics induce cutaneous dysbiosis, our new understanding of acne pathophysiology has prompted a change in direction for acne treatment. In the future, the development of individualized acne therapies will allow targeting of the pathogenic strains, leaving the commensal strains intact. Such alternative treatments, involving modifications of the microbiome, will form the next generation of ‘ecobiological’ anti-inflammatory treatments.
Collapse
Affiliation(s)
- Brigitte Dréno
- Dermatology Department, CHU Nantes, CIC 1413, CRCINA, University Nantes, Nantes, France
- CIC 1413, CRCINA, U1232, Nantes, France
| | | | - Amir Khammari
- Dermatology Department, CHU Nantes, CIC 1413, CRCINA, University Nantes, Nantes, France
- CIC 1413, CRCINA, U1232, Nantes, France
| | - Stéphane Corvec
- Bacteriology and Hygiene Unit, Biology Institute, Nantes, France
- CRCINA, U1232, Nantes, France
| |
Collapse
|
47
|
Chen P, He G, Qian J, Zhan Y, Xiao R. Potential role of the skin microbiota in Inflammatory skin diseases. J Cosmet Dermatol 2020; 20:400-409. [PMID: 32562332 DOI: 10.1111/jocd.13538] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammatory skin diseases include a variety of skin diseases, such as seborrheic dermatitis, acne, atopic dermatitis, psoriasis and so on, which are more common and tend to have a significant impact on patients' quality of life. Inflammatory skin diseases often result in physical or psychological distress; however, the pathogenesis of these diseases have not been clearly elucidated. Many factors are involved in the pathogenesis of inflammatory skin diseases, including heredity, environment, immunity, epidermal barrier, mental disorders, infection and so on. In recent years, skin microbiota has been shown to play an important role in inflammatory skin diseases. AIMS To elaborate on the specific mechanisms of inflammatory skin diseases induced by microbiota dysbiosis. METHODS We introduce the function and influence of skin microbiota in inflammatory skin diseases from the following aspects: Immunity, epigenetics, epidermal barrier and treatment. RESULTS Skin microbiota can affect many aspects of the host, such as Immunity, epigenetics, epidermal barrier, and it plays an important role in the pathogenesis of inflammatory skin diseases. CONCLUSION Skin microbiota is extremely important for maintaining the health of skin and the dysbiosis of skin microbiota is an important pathogenesis of inflammatory skin diseases.
Collapse
Affiliation(s)
- Pan Chen
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangwen He
- Research and Development Department, Hunan Yujia Cosmetics Manufacturing Co., Ltd, Changsha, China
| | - Jingru Qian
- Research and Development Department, Hunan Yujia Cosmetics Manufacturing Co., Ltd, Changsha, China
| | - Yi Zhan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
48
|
Zheng Y, Liang H, Zhou M, Song L, He C. Skin bacterial structure of young females in China: The relationship between skin bacterial structure and facial skin types. Exp Dermatol 2020; 30:1366-1374. [PMID: 32347582 DOI: 10.1111/exd.14105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Skin microbiota are involved in the skin physiological functions and are also affected by the skin physiological characteristics. OBJECTIVE To better understand the skin microbial characteristics of facial cheek skin and the relationship with skin physiological characteristics. METHODS By bacterial 16S rRNA gene sequencing, the authors studied the facial cheek skin microbial characteristics of 85 cases of young women aged 18-25 years. RESULTS Healthy young woman's cheek skin bacterial composition was relatively stable. Dry skin has high bacterial diversity and richness, and oily skin has low bacterial diversity and richness. Cutibacterium was significantly enriched in oily skin and was significantly negatively correlated with other genera such as Streptococcus (r > 0.5). There were significant positive correlations among other genera of enrichment in dry and neutral skin such as Streptococcus and Rothia (r > 0.8). Skin sebum level was significantly negatively correlated with bacterial alpha diversity index. The combined abundance of Cutibacterium acnes and Staphylococcus epidermidis was significantly positively correlated with sebum secretion (r > 0.5). CONCLUSIONS The skin sebum secretion and bacterial interaction were the important factors driving the young females' cheek skin bacterial community structure.
Collapse
Affiliation(s)
- Yumei Zheng
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic of China National Light Industry, School of Science, Beijing Technology and Business University, Beijing, China
| | - Haiyun Liang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic of China National Light Industry, School of Science, Beijing Technology and Business University, Beijing, China
| | - Mingyue Zhou
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic of China National Light Industry, School of Science, Beijing Technology and Business University, Beijing, China
| | - Liya Song
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic of China National Light Industry, School of Science, Beijing Technology and Business University, Beijing, China
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development, School of Science Beijing Technology and Business University, Beijing, China.,Key Laboratory of Cosmetic of China National Light Industry, School of Science, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
49
|
Zhou M, Yang M, Zheng Y, Dong K, Song L, He C, Liu W, Wang Y, Jia Y. Skin surface lipidomics revealed the correlation between lipidomic profile and grade in adolescent acne. J Cosmet Dermatol 2020; 19:3349-3356. [DOI: 10.1111/jocd.13374] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Mingyue Zhou
- Beijing Key Laboratory of Plant Resources Research and Development School of Science Beijing Technology and Business University Beijing China
- Key Laboratory of Cosmetic of China National Light Industry School of Science Beijing Technology and Business University Beijing China
| | - Manli Yang
- Beijing Key Laboratory of Plant Resources Research and Development School of Science Beijing Technology and Business University Beijing China
- Key Laboratory of Cosmetic of China National Light Industry School of Science Beijing Technology and Business University Beijing China
| | - Yumei Zheng
- Beijing Key Laboratory of Plant Resources Research and Development School of Science Beijing Technology and Business University Beijing China
- Key Laboratory of Cosmetic of China National Light Industry School of Science Beijing Technology and Business University Beijing China
| | - Kun Dong
- Beijing Key Laboratory of Plant Resources Research and Development School of Science Beijing Technology and Business University Beijing China
- Key Laboratory of Cosmetic of China National Light Industry School of Science Beijing Technology and Business University Beijing China
| | - Liya Song
- Beijing Key Laboratory of Plant Resources Research and Development School of Science Beijing Technology and Business University Beijing China
- Key Laboratory of Cosmetic of China National Light Industry School of Science Beijing Technology and Business University Beijing China
| | - Congfen He
- Beijing Key Laboratory of Plant Resources Research and Development School of Science Beijing Technology and Business University Beijing China
- Key Laboratory of Cosmetic of China National Light Industry School of Science Beijing Technology and Business University Beijing China
| | - Wei Liu
- Department of Dermatology The General Hospital of Air Force Beijing China
| | - Yiyu Wang
- Department of Dermatology The General Hospital of Air Force Beijing China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development School of Science Beijing Technology and Business University Beijing China
- Key Laboratory of Cosmetic of China National Light Industry School of Science Beijing Technology and Business University Beijing China
| |
Collapse
|
50
|
Poh SE, Goh JPZ, Fan C, Chua W, Gan SQ, Lim PLK, Sharma B, Leavesley DI, Dawson TL, Li H. Identification of Malassezia furfur Secreted Aspartyl Protease 1 (MfSAP1) and Its Role in Extracellular Matrix Degradation. Front Cell Infect Microbiol 2020; 10:148. [PMID: 32328468 PMCID: PMC7161080 DOI: 10.3389/fcimb.2020.00148] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Malassezia is the most abundant eukaryotic microbial genus on human skin. Similar to many human-residing fungi, Malassezia has high metabolic potential and secretes a plethora of hydrolytic enzymes that can potentially modify and structure the external skin environment. Here we show that the dominant secreted Malassezia protease isolated from cultured Malassezia furfur is an aspartyl protease that is secreted and active at all phases of culture growth. We observed that this protease, herein named as MfSAP1 (M. furfur secreted aspartyl protease 1) has a broader substrate cleavage profile and higher catalytic efficiency than the previously reported protease homolog in Malassezia globosa. We demonstrate that MfSAP1 is capable of degrading a wide range of human skin associated extracellular matrix (ECM) proteins and ECM isolated directly from keratinocytes and fibroblasts. Using a 3-D wound model with primary keratinocytes grown on human de-epidermized dermis, we show that MfSAP1 protease can potentially interfere with wound re-epithelization in an acute wound model. Taken together, our work demonstrates that Malassezia proteases have host-associated substrates and play important roles in cutaneous wound healing.
Collapse
Affiliation(s)
- Si En Poh
- Molecular Engineering Lab, Institute of Bioengineering and Nanotechnology, Agency for Science Technology and Research, Singapore, Singapore
| | - Joleen P Z Goh
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Chen Fan
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Wisely Chua
- Molecular Engineering Lab, Institute of Bioengineering and Nanotechnology, Agency for Science Technology and Research, Singapore, Singapore
| | - Shi Qi Gan
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Priscilla Lay Keng Lim
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Bhavya Sharma
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - David I Leavesley
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Thomas L Dawson
- Skin Research Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.,School of Pharmacy, Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, United States
| | - Hao Li
- Molecular Engineering Lab, Institute of Bioengineering and Nanotechnology, Agency for Science Technology and Research, Singapore, Singapore
| |
Collapse
|