1
|
Haemmerle MW, Scota AV, Khosravifar M, Varney MJ, Sen S, Good AL, Yang X, Wells KL, Sussel L, Rozo AV, Doliba NM, Ghanem LR, Stoffers DA. RNA-binding protein PCBP2 regulates pancreatic β cell function and adaptation to glucose. J Clin Invest 2024; 134:e172436. [PMID: 38950317 PMCID: PMC11178539 DOI: 10.1172/jci172436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 04/23/2024] [Indexed: 07/03/2024] Open
Abstract
Glucose plays a key role in shaping pancreatic β cell function. Thus, deciphering the mechanisms by which this nutrient stimulates β cells holds therapeutic promise for combating β cell failure in type 2 diabetes (T2D). β Cells respond to hyperglycemia in part by rewiring their mRNA metabolism, yet the mechanisms governing these changes remain poorly understood. Here, we identify a requirement for the RNA-binding protein PCBP2 in maintaining β cell function basally and during sustained hyperglycemic challenge. PCBP2 was induced in primary mouse islets incubated with elevated glucose and was required to adapt insulin secretion. Transcriptomic analysis of primary Pcbp2-deficient β cells revealed impacts on basal and glucose-regulated mRNAs encoding core components of the insulin secretory pathway. Accordingly, Pcbp2-deficient β cells exhibited defects in calcium flux, insulin granule ultrastructure and exocytosis, and the amplification pathway of insulin secretion. Further, PCBP2 was induced by glucose in primary human islets, was downregulated in islets from T2D donors, and impacted genes commonly altered in islets from donors with T2D and linked to single-nucleotide polymorphisms associated with T2D. Thus, these findings establish a paradigm for PCBP2 in governing basal and glucose-adaptive gene programs critical for shaping the functional state of β cells.
Collapse
Affiliation(s)
- Matthew W. Haemmerle
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrea V. Scota
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mina Khosravifar
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew J. Varney
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sabyasachi Sen
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Austin L. Good
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaodun Yang
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Lori Sussel
- Department of Pediatrics and
- Department of Cell & Developmental Biology, and
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrea V. Rozo
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicolai M. Doliba
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Louis R. Ghanem
- Division of Gastroenterology, Hepatology and Nutrition Division, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Erdős B, O'Donovan SD, Adriaens ME, Gijbels A, Trouwborst I, Jardon KM, Goossens GH, Afman LA, Blaak EE, van Riel NAW, Arts ICW. Leveraging continuous glucose monitoring for personalized modeling of insulin-regulated glucose metabolism. Sci Rep 2024; 14:8037. [PMID: 38580749 PMCID: PMC11371931 DOI: 10.1038/s41598-024-58703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
Continuous glucose monitoring (CGM) is a promising, minimally invasive alternative to plasma glucose measurements for calibrating physiology-based mathematical models of insulin-regulated glucose metabolism, reducing the reliance on in-clinic measurements. However, the use of CGM glucose, particularly in combination with insulin measurements, to develop personalized models of glucose regulation remains unexplored. Here, we simultaneously measured interstitial glucose concentrations using CGM as well as plasma glucose and insulin concentrations during an oral glucose tolerance test (OGTT) in individuals with overweight or obesity to calibrate personalized models of glucose-insulin dynamics. We compared the use of interstitial glucose with plasma glucose in model calibration, and evaluated the effects on model fit, identifiability, and model parameters' association with clinically relevant metabolic indicators. Models calibrated on both plasma and interstitial glucose resulted in good model fit, and the parameter estimates associated with metabolic indicators such as insulin sensitivity measures in both cases. Moreover, practical identifiability of model parameters was improved in models estimated on CGM glucose compared to plasma glucose. Together these results suggest that CGM glucose may be considered as a minimally invasive alternative to plasma glucose measurements in model calibration to quantify the dynamics of glucose regulation.
Collapse
Affiliation(s)
- Balázs Erdős
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands.
- Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering, Oslo, Norway.
| | - Shauna D O'Donovan
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Michiel E Adriaens
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Anouk Gijbels
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Inez Trouwborst
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kelly M Jardon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Natal A W van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ilja C W Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Yu F, Pituch KA, Maxfield M, Baena E, Geda YE, Pruzin JJ, Coon DW, Shaibi GQ. The associations between type 2 diabetes and plasma biomarkers of Alzheimer's disease in the Health and Aging Brain Study: Health Disparities (HABS-HD). PLoS One 2024; 19:e0295749. [PMID: 38558059 PMCID: PMC10984470 DOI: 10.1371/journal.pone.0295749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/28/2023] [Indexed: 04/04/2024] Open
Abstract
Alzheimer's disease (AD) affects Latinos disproportionately. One of the reasons underlying this disparity may be type 2 diabetes (T2D) that is a risk factor for AD. The purpose of this study was to examine the associations of T2D and AD blood biomarkers and the differences in these associations between Mexican Americans and non-Hispanic Whites. This study was a secondary analysis of baseline data from the observational Health and Aging Brain Study: Health Disparities (HABS-HD) that investigated factors underlying health disparities in AD in Mexican Americans in comparison to non-Hispanic Whites. HABS-HD participants were excluded if they had missing data or were large outliers (z-scores >|4|) on a given AD biomarker. Fasting blood glucose and glycosylated hemoglobin (HbA1c) levels were measured from clinical labs. T2D was diagnosed by licensed clinicians. Plasma amyloid-beta 42 and 40 (Aβ42/42) ratio, total tau (t-tau), and neurofilament light (NfL) were measured via ultra-sensitive Simoa assays. The sample sizes were 1,552 for Aβ42/40 ratio, 1,570 for t-tau, and 1,553 for NfL. Mexican Americans were younger (66.6±8.7 vs. 69.5±8.6) and had more female (64.9% female vs. 55.1%) and fewer years of schooling (9.5±4.6 vs. 15.6±2.5) than non-Hispanic Whites. Mexican Americans differed significantly from non-Hispanic Whites in blood glucose (113.5±36.6 vs. 99.2±17.0) and HbA1c (6.33±1.4 vs. 5.51±0.6) levels, T2D diagnosis (35.3% vs. 11.1%), as well as blood Aβ42/40 ratio (.051±.012 vs. .047±.011), t-tau (2.56±.95 vs. 2.33±.90), and NfL levels (16.3±9.5 vs. 20.3±10.3). Blood glucose, blood HbA1c, and T2D diagnosis were not related to Aβ42/40 ratio and t-tau but explained 3.7% of the variation in NfL (p < .001). Blood glucose and T2D diagnosis were not, while HbA1c was positively (b = 2.31, p < .001, β = 0.26), associated with NfL among Mexican Americans. In contrast, blood glucose, HbA1c, and T2D diagnosis were negatively (b = -0.09, p < .01, β = -0.26), not (b = 0.34, p = .71, β = 0.04), and positively (b = 3.32, p < .01, β = 0.33) associated with NfL, respectively in non-Hispanic Whites. To conclude, blood glucose and HbA1c levels and T2D diagnosis are associated with plasma NfL levels, but not plasma Aβ and t-tau levels. These associations differ in an ethnicity-specific manner and need to be further studied as a potential mechanism underlying AD disparities.
Collapse
Affiliation(s)
- Fang Yu
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Keenan A. Pituch
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Molly Maxfield
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Elsa Baena
- Clinical Neuropsychology Department, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Yonas E. Geda
- Department of Neurology and the Franke Neursciene Education Center, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Jeremy J. Pruzin
- Department of Neurology, Banner Alzheimer’s Institute, Phoenix, Arizona, United States of America
| | - David W. Coon
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Gabriel Q. Shaibi
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | | |
Collapse
|
4
|
Lin H, Suzuki K, Smith N, Li X, Nalbach L, Fuentes S, Spigelman AF, Dai XQ, Bautista A, Ferdaoussi M, Aggarwal S, Pepper AR, Roma LP, Ampofo E, Li WH, MacDonald PE. A role and mechanism for redox sensing by SENP1 in β-cell responses to high fat feeding. Nat Commun 2024; 15:334. [PMID: 38184650 PMCID: PMC10771529 DOI: 10.1038/s41467-023-44589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Pancreatic β-cells respond to metabolic stress by upregulating insulin secretion, however the underlying mechanisms remain unclear. Here we show, in β-cells from overweight humans without diabetes and mice fed a high-fat diet for 2 days, insulin exocytosis and secretion are enhanced without increased Ca2+ influx. RNA-seq of sorted β-cells suggests altered metabolic pathways early following high fat diet, where we find increased basal oxygen consumption and proton leak, but a more reduced cytosolic redox state. Increased β-cell exocytosis after 2-day high fat diet is dependent on this reduced intracellular redox state and requires the sentrin-specific SUMO-protease-1. Mice with either pancreas- or β-cell-specific deletion of this fail to up-regulate exocytosis and become rapidly glucose intolerant after 2-day high fat diet. Mechanistically, redox-sensing by the SUMO-protease requires a thiol group at C535 which together with Zn+-binding suppresses basal protease activity and unrestrained β-cell exocytosis, and increases enzyme sensitivity to regulation by redox signals.
Collapse
Affiliation(s)
- Haopeng Lin
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong, China
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Xi Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Lisa Nalbach
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Sonia Fuentes
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Xiao-Qing Dai
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Mourad Ferdaoussi
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Saloni Aggarwal
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Wen-Hong Li
- Departments of Cell Biology and Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390-9039, USA
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
5
|
Wortham M, Liu F, Harrington AR, Fleischman JY, Wallace M, Mulas F, Mallick M, Vinckier NK, Cross BR, Chiou J, Patel NA, Sui Y, McGrail C, Jun Y, Wang G, Jhala US, Schüle R, Shirihai OS, Huising MO, Gaulton KJ, Metallo CM, Sander M. Nutrient regulation of the islet epigenome controls adaptive insulin secretion. J Clin Invest 2023; 133:e165208. [PMID: 36821378 PMCID: PMC10104905 DOI: 10.1172/jci165208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Adaptation of the islet β cell insulin-secretory response to changing insulin demand is critical for blood glucose homeostasis, yet the mechanisms underlying this adaptation are unknown. Here, we have shown that nutrient-stimulated histone acetylation plays a key role in adapting insulin secretion through regulation of genes involved in β cell nutrient sensing and metabolism. Nutrient regulation of the epigenome occurred at sites occupied by the chromatin-modifying enzyme lysine-specific demethylase 1 (Lsd1) in islets. β Cell-specific deletion of Lsd1 led to insulin hypersecretion, aberrant expression of nutrient-response genes, and histone hyperacetylation. Islets from mice adapted to chronically increased insulin demand exhibited shared epigenetic and transcriptional changes. Moreover, we found that genetic variants associated with type 2 diabetes were enriched at LSD1-bound sites in human islets, suggesting that interpretation of nutrient signals is genetically determined and clinically relevant. Overall, these studies revealed that adaptive insulin secretion involves Lsd1-mediated coupling of nutrient state to regulation of the islet epigenome.
Collapse
Affiliation(s)
- Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Fenfen Liu
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Austin R. Harrington
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Johanna Y. Fleischman
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Martina Wallace
- Department of Bioengineering, UCSD, La Jolla, California, USA
| | - Francesca Mulas
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Medhavi Mallick
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Nicholas K. Vinckier
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Benjamin R. Cross
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Joshua Chiou
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Nisha A. Patel
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Yinghui Sui
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Carolyn McGrail
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Yesl Jun
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Gaowei Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Ulupi S. Jhala
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | - Roland Schüle
- Department of Urology, University of Freiburg Medical Center, Freiburg, Germany
| | - Orian S. Shirihai
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Mark O. Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, and Physiology and Membrane Biology, School of Medicine, UCD, Davis, California, USA
| | - Kyle J. Gaulton
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| | | | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center and
| |
Collapse
|
6
|
Aamodt KI, Powers AC. Peeling the onion: another layer in the regulation of insulin secretion. J Clin Invest 2023; 133:e169718. [PMID: 37066881 PMCID: PMC10104890 DOI: 10.1172/jci169718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Insulin secretion by pancreatic β cells is a dynamic and highly regulated process due to the central importance of insulin in enabling efficient utilization and storage of glucose. Multiple regulatory layers enable β cells to adapt to acute changes in nutrient availability as well as chronic changes in metabolic demand. While epigenetic factors have been well established as regulators of chronic β cell adaptations to insulin resistance, their role in acute adaptations in response to nutrient stimulation has been relatively unexplored. In this issue of the JCI, Wortham et al. report that short-term dynamic changes in histone modifications regulated insulin secretion and acute β cell adaptations in response to fasting and feeding cycles. These findings highlight the importance of investigating whether other epigenetic mechanisms may contribute to acute physiologic adaptations in β cells.
Collapse
Affiliation(s)
- Kristie I. Aamodt
- Department of Pediatrics, Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Islet Cell and Regenerative Biology Section, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Alvin C. Powers
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Yoon JH, Hwang J, Son SU, Choi J, You SW, Park H, Cha SY, Maeng S. How Can Insulin Resistance Cause Alzheimer's Disease? Int J Mol Sci 2023; 24:3506. [PMID: 36834911 PMCID: PMC9966425 DOI: 10.3390/ijms24043506] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cognitive decline. Despite worldwide efforts to find a cure, no proper treatment has been developed yet, and the only effective countermeasure is to prevent the disease progression by early diagnosis. The reason why new drug candidates fail to show therapeutic effects in clinical studies may be due to misunderstanding the cause of AD. Regarding the cause of AD, the most widely known is the amyloid cascade hypothesis, in which the deposition of amyloid beta and hyperphosphorylated tau is the cause. However, many new hypotheses were suggested. Among them, based on preclinical and clinical evidence supporting a connection between AD and diabetes, insulin resistance has been pointed out as an important factor in the development of AD. Therefore, by reviewing the pathophysiological background of brain metabolic insufficiency and insulin insufficiency leading to AD pathology, we will discuss how can insulin resistance cause AD.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - JooHyun Hwang
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sung Un Son
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Junhyuk Choi
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Seung-Won You
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Hyunwoo Park
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Health Park Co., Ltd., Seoul 02447, Republic of Korea
| | - Seung-Yun Cha
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Sungho Maeng
- Age-Tech Service Convergence Major, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
- Department of Comprehensive Health Science, Graduate School of East–West Medical Science, Kyung Hee University, Yongin-si 17104, Republic of Korea
| |
Collapse
|
8
|
Yan Z, Zong Y, Zhang C, Han Z, Wu L, Qin L, Liu T. Exploring the role of Tibetan medicinal formula Qishiwei Zhenzhu Pills (Ranasampel) against diabetes mellitus-linked cognitive impairment of db/db mice through serum pharmacochemistry and microarray data analysis. Front Aging Neurosci 2022; 14:1033128. [PMID: 36620773 PMCID: PMC9814129 DOI: 10.3389/fnagi.2022.1033128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background Diabetes cognitive impairment (DCI) is a common diabetic central nervous system disorder that severely affects the quality of life of patients. Qishiwei Zhenzhu Pills (Ranasampel) is a valuable Tibetan medicine formula with the ability to improve cerebral blood vessels, protect nerves and improve learning and memory, which has also been widely verified in clinical and basic research. Currently, the prevention and treatment of DCI are still in the exploratory research stage, and the use of Ranasampel will provide new ideas and insights for its treatment. Objective This study is to explore the absorbed components in serum derived from Ranasampel using serum pharmacochemistry, then identify the potential mechanism of Ranasampel for the treatment of DCI through bioinformatics and microarray data validation. Methods The UPLC-Q-Exactive MS/MS-based serum pharmacochemistry method was conducted to identify the main active components in serum containing Ranasampel. Then, these components were used to predict the possible biological targets of Ranasampel and explore the potential targets in treating DCI by overlapping with differentially expressed genes (DEGs) screened from Gene Expression Omnibus datasets. Afterward, the protein-protein interaction network, enrichment analyses, hub gene identification, and co-expression analysis were used to study the potential mechanism of Ranasampel. Particularly, the hub genes and co-expression transcription factors were further validated using hippocampal expression profiles of db/db mice treated with Ranasampel, while the Morris water-maze test and H&E staining were used to assess the spatial learning and memory behaviors and histopathological changes. Results Totally, 40 compounds derived from Ranasampel had been identified by serum sample analysis, and 477 genes related to these identified compounds in Ranasampel, 110 overlapping genes were collected by the intersection of Ranasampel target genes and DEGs. Further comprehensive analysis and verification emphasized that the mechanism of Ranasampel treatment of DCI may be related to the improvement of learning and memory function as well as insulin resistance, hyperglycemia-induced neuronal damage, and neuroinflammation. Conclusion This study provided useful strategies to explore the potential material basis for compound prescriptions such as Ranasampel. These hub genes and common pathways also provided new ideas for further study of therapeutic targets of DCI and the pharmacological mechanism of Ranasampel.
Collapse
Affiliation(s)
- Zhiyi Yan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China,Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghua Zong
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China,Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Chengfei Zhang
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Zekun Han
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health-Cultivation, Ministry of Education of the People’s Republic of China, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Tonghua Liu,
| |
Collapse
|
9
|
Gelbach PE, Zheng D, Fraser SE, White KL, Graham NA, Finley SD. Kinetic and data-driven modeling of pancreatic β-cell central carbon metabolism and insulin secretion. PLoS Comput Biol 2022; 18:e1010555. [PMID: 36251711 PMCID: PMC9612825 DOI: 10.1371/journal.pcbi.1010555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Abstract
Pancreatic β-cells respond to increased extracellular glucose levels by initiating a metabolic shift. That change in metabolism is part of the process of glucose-stimulated insulin secretion and is of particular interest in the context of diabetes. However, we do not fully understand how the coordinated changes in metabolic pathways and metabolite products influence insulin secretion. In this work, we apply systems biology approaches to develop a detailed kinetic model of the intracellular central carbon metabolic pathways in pancreatic β-cells upon stimulation with high levels of glucose. The model is calibrated to published metabolomics datasets for the INS1 823/13 cell line, accurately capturing the measured metabolite fold-changes. We first employed the calibrated mechanistic model to estimate the stimulated cell's fluxome. We then used the predicted network fluxes in a data-driven approach to build a partial least squares regression model. By developing the combined kinetic and data-driven modeling framework, we gain insights into the link between β-cell metabolism and glucose-stimulated insulin secretion. The combined modeling framework was used to predict the effects of common anti-diabetic pharmacological interventions on metabolite levels, flux through the metabolic network, and insulin secretion. Our simulations reveal targets that can be modulated to enhance insulin secretion. The model is a promising tool to contextualize and extend the usefulness of metabolomics data and to predict dynamics and metabolite levels that are difficult to measure in vitro. In addition, the modeling framework can be applied to identify, explain, and assess novel and clinically-relevant interventions that may be particularly valuable in diabetes treatment.
Collapse
Affiliation(s)
- Patrick E. Gelbach
- Department of Biomedical Engineering, USC, Los Angeles, California, United States of America
| | - Dongqing Zheng
- Mork Family Department of Chemical Engineering and Materials Science, USC, Los Angeles, California, United States of America
| | - Scott E. Fraser
- Translational Imaging Center, University of Southern California, Los Angeles, California, United States of America
| | - Kate L. White
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center, USC, Los Angeles, California, United States of America
| | - Nicholas A. Graham
- Mork Family Department of Chemical Engineering and Materials Science, USC, Los Angeles, California, United States of America
| | - Stacey D. Finley
- Department of Biomedical Engineering, USC, Los Angeles, California, United States of America
- Mork Family Department of Chemical Engineering and Materials Science, USC, Los Angeles, California, United States of America
- Department of Quantitative and Computational Biology, USC, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
The ability to maintain normoglycaemia, through glucose-sensitive insulin release, is a key aspect of postnatal beta cell function. However, terminally differentiated beta cell identity does not necessarily imply functional maturity. Beta cell maturation is therefore a continuation of beta cell development, albeit a process that occurs postnatally in mammals. Although many important features have been identified in the study of beta cell maturation, as of yet no unified mechanistic model of beta cell functional maturity exists. Here, we review recent findings about the underlying mechanisms of beta cell functional maturation. These findings include systemic hormonal and nutritional triggers that operate through energy-sensing machinery shifts within beta cells, resulting in primed metabolic states that allow for appropriate glucose trafficking and, ultimately, insulin release. We also draw attention to the expansive synergistic nature of these pathways and emphasise that beta cell maturation is dependent on overlapping regulatory and metabolic networks.
Collapse
Affiliation(s)
- Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Chandramoorthy HC, Dera AA, Al-Hakami A, Eid RA, Patel A, Mahmoud Faris N, Devaraj A, Kumar A, Alshahrani MY, Zaman GS, Rajagopalan P. Glucose and oleic acid mediate cellular alterations in GLP-1-induced insulin-positive differentiating UCBMSCs. J Food Biochem 2022; 46:e14087. [PMID: 35246864 DOI: 10.1111/jfbc.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Coordinated effects of glucose and oleic acid on glucagon-like peptide-1 (GLP-1) mediated differentiation of insulin-positive differentiating umbilical cord mesenchymal stromal cells (dUCBMSCs) was studied using a co-culture of NCI-H716 (GLP-1+) and UCBMSCs (insulin+). The addition of 2.5 mM glucose increased the proliferation of NCI-H716 cells by 30% and induced transformation of UCBMSCs into insulin-secreting cells in 18 days as compared to 22 days in control cells. Oleic acid (25 μM) showed decrease in cell proliferation, autophagy, and apoptosis in NCI-H716 cells while no effect was observed in dUCBMSCs. Prolonged glucose and oleic acid resulted in apoptosis and cell cycle changes in dUCBMSCs after day 18 while higher concentrations resulted in cell death. Additionally, the expression of FAS and ACC mRNA was observed in NCI-H716 and dUCBMSCs post 24-hr addition of glucose and/or oleic acid. Absorption of oleic acid was high in NCI-H716 compared to dUCBMSCs. Taken together, optimal concentrations of glucose and oleic acid could be a key factor in stimulating intrinsic GLP-1, which in turn stimulates differentiating MSCs in a glucose-dependent manner. PRACTICAL APPLICATIONS: The aim of this article was to study whether differentiating or differentiated MSCs after mobilization or post-transplant would require optimal glucose and oleic acid to naturally stimulate intrinsic GLP-1, or otherwise, the high or long-term overload of glucose or oleic acid could result in inhibition of differentiated cells resulting in failure of insulin secretion.
Collapse
Affiliation(s)
- Harish C Chandramoorthy
- Centre for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Al-Hakami
- Centre for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayyub Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Nouraldeen Mahmoud Faris
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Anantharam Devaraj
- Centre for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar
- Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Gaffar S Zaman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
12
|
Jetton TL, Flores-Bringas P, Leahy JL, Gupta D. SetD7 (Set7/9) is a novel target of PPARγ that promotes the adaptive pancreatic β-cell glycemic response. J Biol Chem 2021; 297:101250. [PMID: 34592314 PMCID: PMC8526774 DOI: 10.1016/j.jbc.2021.101250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
Loss of functional pancreatic β-cell mass leads to type 2 diabetes (T2D), attributable to modified β-cell-dependent adaptive gene expression patterns. SetD7 is a histone methyltransferase enriched in pancreatic islets that mono- and dimethylates histone-3-lysine-4 (H3K4), promoting euchromatin modifications, and also maintains the regulation of key β-cell function and survival genes. However, the transcriptional regulation of this important epigenetic modifier is unresolved. Here we identified the nuclear hormone receptor peroxisome proliferator-activated receptor-gamma (PPARγ) as a major transcriptional regulator of SetD7 and provide evidence for direct binding and functionality of PPARγ in the SetD7 promoter region. Furthermore, constitutive shRNA-mediated PPARγ knockdown in INS-1 β-cells or pancreas-specific PPARγ deletion in mice led to downregulation of SetD7 expression as well as its nuclear enrichment. The relevance of the SetD7-PPARγ interaction in β-cell adaptation was tested in normoglycemic 60% partial pancreatectomy (Px) and hyperglycemic 90% Px rat models. Whereas a synergistic increase in islet PPARγ and SetD7 expression was observed upon glycemic adaptation post-60% Px, in hyperglycemic 90% Px rats, islet PPARγ, and PPARγ targets SetD7 and Pdx1 were downregulated. PPARγ agonist pioglitazone treatment in 90% Px rats partially restored glucose homeostasis and β-cell mass and enhanced expression of SetD7 and Pdx1. Collectively, these data provide evidence that the SetD7-PPARγ interaction serves as an important element of the adaptive β-cell response.
Collapse
Affiliation(s)
- Thomas L Jetton
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Patricio Flores-Bringas
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - John L Leahy
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Dhananjay Gupta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.
| |
Collapse
|
13
|
Mohan R, Jo S, Lockridge A, Ferrington DA, Murray K, Eschenlauer A, Bernal-Mizrachi E, Fujitani Y, Alejandro EU. OGT Regulates Mitochondrial Biogenesis and Function via Diabetes Susceptibility Gene Pdx1. Diabetes 2021; 70:2608-2625. [PMID: 34462257 PMCID: PMC8564412 DOI: 10.2337/db21-0468] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022]
Abstract
O-GlcNAc transferase (OGT), a nutrient sensor sensitive to glucose flux, is highly expressed in the pancreas. However, the role of OGT in the mitochondria of β-cells is unexplored. In this study, we identified the role of OGT in mitochondrial function in β-cells. Constitutive deletion of OGT (βOGTKO) or inducible ablation in mature β-cells (iβOGTKO) causes distinct effects on mitochondrial morphology and function. Islets from βOGTKO, but not iβOGTKO, mice display swollen mitochondria, reduced glucose-stimulated oxygen consumption rate, ATP production, and glycolysis. Alleviating endoplasmic reticulum stress by genetic deletion of Chop did not rescue the mitochondrial dysfunction in βOGTKO mice. We identified altered islet proteome between βOGTKO and iβOGTKO mice. Pancreatic and duodenal homeobox 1 (Pdx1) was reduced in in βOGTKO islets. Pdx1 overexpression increased insulin content and improved mitochondrial morphology and function in βOGTKO islets. These data underscore the essential role of OGT in regulating β-cell mitochondrial morphology and bioenergetics. In conclusion, OGT couples nutrient signal and mitochondrial function to promote normal β-cell physiology.
Collapse
Affiliation(s)
- Ramkumar Mohan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Amber Lockridge
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, MN
| | - Kevin Murray
- University of Minnesota Informatics Institute, University of Minnesota Medical School, Minneapolis, MN
| | - Arthur Eschenlauer
- University of Minnesota Informatics Institute, University of Minnesota Medical School, Minneapolis, MN
| | - Ernesto Bernal-Mizrachi
- Miami VA Healthcare System, Miami, FL
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miami, FL
| | - Yoshio Fujitani
- Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
14
|
In Vitro Disease Models of the Endocrine Pancreas. Biomedicines 2021; 9:biomedicines9101415. [PMID: 34680532 PMCID: PMC8533367 DOI: 10.3390/biomedicines9101415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The ethical constraints and shortcomings of animal models, combined with the demand to study disease pathogenesis under controlled conditions, are giving rise to a new field at the interface of tissue engineering and pathophysiology, which focuses on the development of in vitro models of disease. In vitro models are defined as synthetic experimental systems that contain living human cells and mimic tissue- and organ-level physiology in vitro by taking advantage of recent advances in tissue engineering and microfabrication. This review provides an overview of in vitro models and focuses specifically on in vitro disease models of the endocrine pancreas and diabetes. First, we briefly review the anatomy, physiology, and pathophysiology of the human pancreas, with an emphasis on islets of Langerhans and beta cell dysfunction. We then discuss different types of in vitro models and fundamental elements that should be considered when developing an in vitro disease model. Finally, we review the current state and breakthroughs in the field of pancreatic in vitro models and conclude with some challenges that need to be addressed in the future development of in vitro models.
Collapse
|
15
|
Understanding the Long-Lasting Effects of Fetal Nutrient Restriction versus Exposure to an Obesogenic Diet on Islet-Cell Mass and Function. Metabolites 2021; 11:metabo11080514. [PMID: 34436455 PMCID: PMC8401811 DOI: 10.3390/metabo11080514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Early life represents a window of phenotypic plasticity. Thus, exposure of the developing fetus to a compromised nutritional environment can have long term consequences for their health. Indeed, undernutrition or maternal intake of an obesogenic diet during pregnancy leads to a heightened risk of type 2 diabetes (T2D) and obesity in her offspring in adult life. Given that abnormalities in beta-cell function are crucial in delineating the risk of T2D, studies have investigated the impact of these exposures on islet morphology and beta-cell function in the offspring in a bid to understand why they are more at risk of T2D. Interestingly, despite the contrasting maternal metabolic phenotype and, therefore, intrauterine environment associated with undernutrition versus high-fat feeding, there are a number of similarities in the genes/biological pathways that are disrupted in offspring islets leading to changes in function. Looking to the future, it will be important to define the exact mechanisms involved in mediating changes in the gene expression landscape in islet cells to determine whether the road to T2D development is the same or different in those exposed to different ends of the nutritional spectrum.
Collapse
|
16
|
In Situ Neutral System Synthesis, Spectroscopic, and Biological Interpretations of Magnesium(II), Calcium(II), Chromium(III), Zinc(II), Copper(II) and Selenium(IV) Sitagliptin Complexes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18158030. [PMID: 34360322 PMCID: PMC8345415 DOI: 10.3390/ijerph18158030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022]
Abstract
Magnesium(II), calcium(II), chromium(III), zinc(II), copper(II), and selenium(IV) sitagliptin (STG) complexes—with the general formulas [Mg(STG)2(Cl)2]·6H2O, [Ca(STG)2(Cl)2], [Cr(STG)2(Cl)2]Cl.6H2O, [Zn(STG)2(Cl)2], [Cu(STG)2(Cl)2]·2H2O, and [Se(STG)2(Cl)2]Cl2, respectively—were designed and synthesized by the chemical reactions between metal(II, III, and IV) chloride salts with an STG ligand in situ methanol solvent in a 1:2 stoichiometric ratio (metal:ligand). Tentative structures of the complexes were proposed based on elemental analysis, molar conductance, magnetic moments, thermogravimetric analysis, and spectral (infrared, electronic, and 1H NMR) data. The particle size and morphological investigation were checked on the bases of scanning electron microscopy, transmission electron microscopy, and X-ray powder diffraction analyses. All the Mg2+, Ca2+, Cr3+, Zn2+, Cu2+, and Se4+ complexes were found to be six-coordinated, wherein the STG ligands act as bidentate chelating agents. This study demonstrates that pancreatic tissues are affected by the induction of experimental diabetes mellitus and clarifies the potential of the synthesized STG complexes, which was found to more significantly improve insulin secretion and the pancreatic and glycometabolic complications of diabetic rats than STG alone.
Collapse
|
17
|
Wortham M, Sander M. Transcriptional mechanisms of pancreatic β-cell maturation and functional adaptation. Trends Endocrinol Metab 2021; 32:474-487. [PMID: 34030925 PMCID: PMC8259463 DOI: 10.1016/j.tem.2021.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Pancreatic β-cells secrete insulin commensurate to circulating nutrient levels to maintain normoglycemia. The ability of β-cells to couple insulin secretion to nutrient stimuli is acquired during a postnatal maturation process. In mature β-cells the insulin secretory response adapts to changes in nutrient state. Both β-cell maturation and functional adaptation rely on the interplay between extracellular cues and cell type-specific transcriptional programs. Here we review emerging evidence that developmental and homeostatic regulation of β-cell function involves collaboration between lineage-determining and signal-dependent transcription factors (LDTFs and SDTFs, respectively). A deeper understanding of β-cell SDTFs and their cognate signals would delineate mechanisms of β-cell maturation and functional adaptation, which has direct implications for diabetes therapies and for generating mature β-cells from stem cells.
Collapse
Affiliation(s)
- Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Matteo G, Hoyeck MP, Blair HL, Zebarth J, Rick KRC, Williams A, Gagné R, Buick JK, Yauk CL, Bruin JE. Prolonged Low-Dose Dioxin Exposure Impairs Metabolic Adaptability to High-Fat Diet Feeding in Female but Not Male Mice. Endocrinology 2021; 162:bqab050. [PMID: 33693622 PMCID: PMC8101695 DOI: 10.1210/endocr/bqab050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Indexed: 12/17/2022]
Abstract
CONTEXT Human studies consistently show an association between exposure to persistent organic pollutants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, aka "dioxin"), and increased diabetes risk. We previously showed that a single high-dose TCDD exposure (20 µg/kg) decreased plasma insulin levels in male and female mice in vivo, but effects on glucose homeostasis were sex-dependent. OBJECTIVE The current study assessed whether prolonged exposure to a physiologically relevant low-dose of TCDD impacts glucose homeostasis and/or the islet phenotype in a sex-dependent manner in chow-fed or high-fat diet (HFD)-fed mice. METHODS Male and female mice were exposed to 20 ng/kg/d TCDD 2×/week for 12 weeks and simultaneously fed standard chow or a 45% HFD. Glucose homeostasis was assessed by glucose and insulin tolerance tests, and glucose-induced plasma insulin levels were measured in vivo. Histological analysis was performed on pancreas from male and female mice, and islets were isolated from females for TempO-Seq transcriptomic analysis. RESULTS Low-dose TCDD exposure did not lead to adverse metabolic consequences in chow-fed male or female mice, or in HFD-fed males. However, TCDD accelerated the onset of HFD-induced hyperglycemia and impaired glucose-induced plasma insulin levels in females. TCDD caused a modest increase in islet area in males but reduced the percent beta cell area within islets in females. TempO-Seq analysis suggested abnormal changes to endocrine and metabolic pathways in female TCDDHFD islets. CONCLUSION Our data suggest that prolonged low-dose TCDD exposure has minimal effects on glucose homeostasis and islet morphology in chow-fed male and female mice but promotes maladaptive metabolic responses in HFD-fed females.
Collapse
Affiliation(s)
- Geronimo Matteo
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Myriam P Hoyeck
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Hannah L Blair
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Julia Zebarth
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Kayleigh R C Rick
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Rémi Gagné
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Julie K Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
- Department of Biology, University of Ottawa, Ontario, KIN 6N5, Canada
| | - Jennifer E Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
19
|
Guo J, Zhang Y, Li B, Wang C. In utero exposure to phenanthrene induced islet cell dysfunction in adult mice: Sex differences in the effects and potential causes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145295. [PMID: 33513515 DOI: 10.1016/j.scitotenv.2021.145295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Epidemiological studies show that the burden of polycyclic aromatic hydrocarbons in human body is associated with the occurrence of insulin resistance and diabetes. In the present study, pregnant mice were exposed to phenanthrene (Phe) at doses of 0, 60 and 600 μg/kg body weight of by gavage once every 3 days. The female F1 mice at 120 days of age showed no change in their fasting glucose levels (FGLs) but exhibited significantly decreased homeostasis model assessment (HOMA) β-cell (49% and 43%) and significantly downregulated pancreatic proinsulin gene (ins2) transcription. The downregulation of transcription factors, such as PDX1, PAX4 and FGF21, indicated impaired development and function of β-cells. The significantly reduced α-cell mass in 60 and 600 μg/kg groups, and the significantly downregulated expression of proglucagon gene gcg and ARX in the 600 μg/kg group suggested that the development and function of α-cells had been impacted. The males exhibited significantly increased FGLs (1.14- and 1.15-fold) in Phe exposed treatments and significantly elevated HOMA β-cell (3.15-fold) in the 600 μg/kg group. Upregulated ins2 transcription and FGF21 protein in male mice prenatally exposed to 600 μg/kg Phe suggested that these animals appeared compensatory enhancement in β-cell function. The reduced serum estradiol levels and downregulated pancreatic estrogen receptor α and β were responsible for the dysfunction of β-cells in the females. In the males, the significantly elevated androgen levels in the 600 μg/kg group might be related to the upregulated ins2 transcription, and the increased expression of pancreatic FGF21 further demonstrated the enhancement of β-cell potential. The results will be helpful for assessing the risk of developing diabetes in adulthood after prenatal exposure to phenanthrene.
Collapse
Affiliation(s)
- Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Bingshui Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
20
|
Xu T, Wang B, Wang X, Yang S, Cao L, Qiu W, Cheng M, Liu W, Yu L, Zhou M, Wang D, Ma J, Chen W. Associations of urinary carbon disulfide metabolite with oxidative stress, plasma glucose and risk of diabetes among urban adults in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115959. [PMID: 33250290 DOI: 10.1016/j.envpol.2020.115959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Carbon disulfide (CS2) has been reported to induce disorder of glucose metabolism. However, the associations of CS2 exposure with plasma glucose levels and risk of diabetes have not been explored in general population, and the underlying mechanisms remain unclear. We aim to examine the relationships between CS2 exposure and fasting plasma glucose (FPG) levels, as well as diabetes, and assess the potential role of oxidative stress among the abovementioned relationships in Chinese general adults. The concentrations of urinary biomarkers of CS2 exposure (2-thiothiazolidin-4-carboxylic acid, TTCA), and biomarkers for lipid peroxidation (8-isoprostane, 8-iso-PGF2α) and DNA oxidative damage (8-oxo-7,8-dihydro-20-deoxyguanosine, 8-OHdG) were measured among 3338 urban adults from the Wuhan-Zhuhai cohort. Additionally, FPG levels were tested promptly. Generalized linear models and logistic regression models were used to quantify the associations among urinary TTCA, oxidative damage markers, FPG levels and diabetes risk. Mediation analysis was employed to estimate the role of oxidative damage markers in the association between urinary TTCA and FPG levels. We discovered a significant relationship between urinary TTCA and FPG levels with regression coefficient of 0.080 (95% CI: 0.002,0.157). Besides, the risk of diabetes was positively related to urinary TTCA (OR:1.282, 95% CI: 1.055,1.558), particularly among those who did not exercise regularly. Each 1% increase of urinary TTCA concentration was associated with a 0.096% and 0.037% increase in urinary 8-iso-PGF2α and 8-OHdG, respectively. Moreover, we found an upward trend of FPG level as urinary 8-iso-PGF2α gradually increased (Ptrend<0.05), and urinary 8-iso-PGF2α mediated 21.12% of the urinary TTCA-associated FPG increment. Our findings indicated that urinary CS2 metabolite was associated with increased FPG levels and diabetes risk in general population. Lipid peroxidation partly mediated the association of urinary CS2 metabolite with FPG levels.
Collapse
Affiliation(s)
- Tao Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Qiu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
21
|
MacFarlane EM, Bruin JE. Human Pluripotent Stem Cells: A Unique Tool for Toxicity Testing in Pancreatic Progenitor and Endocrine Cells. Front Endocrinol (Lausanne) 2021; 11:604998. [PMID: 33542706 PMCID: PMC7851047 DOI: 10.3389/fendo.2020.604998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes prevalence is increasing worldwide, and epidemiological studies report an association between diabetes incidence and environmental pollutant exposure. There are >84,000 chemicals in commerce, many of which are released into the environment without a clear understanding of potential adverse health consequences. While in vivo rodent studies remain an important tool for testing chemical toxicity systemically, we urgently need high-throughput screening platforms in biologically relevant models to efficiently prioritize chemicals for in depth toxicity analysis. Given the increasing global burden of obesity and diabetes, identifying chemicals that disrupt metabolism should be a high priority. Pancreatic endocrine cells are key regulators of systemic metabolism, yet often overlooked as a target tissue in toxicology studies. Immortalized β-cell lines and primary human, porcine, and rodent islets are widely used for studying the endocrine pancreas in vitro, but each have important limitations in terms of scalability, lifespan, and/or biological relevance. Human pluripotent stem cell (hPSC) culture is a powerful tool for in vitro toxicity testing that addresses many of the limitations with other β-cell models. Current in vitro differentiation protocols can efficiently generate glucose-responsive insulin-secreting β-like cells that are not fully mature, but still valuable for high-throughput toxicity screening in vitro. Furthermore, hPSCs can be applied as a model of developing pancreatic endocrine cells to screen for chemicals that influence endocrine cell formation during critical windows of differentiation. Given their versatility, we recommend using hPSCs to identify potential β-cell toxins, which can then be prioritized as chemicals of concern for metabolic disruption.
Collapse
Affiliation(s)
| | - Jennifer E. Bruin
- Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
22
|
Kehm R, Jähnert M, Deubel S, Flore T, König J, Jung T, Stadion M, Jonas W, Schürmann A, Grune T, Höhn A. Redox homeostasis and cell cycle activation mediate beta-cell mass expansion in aged, diabetes-prone mice under metabolic stress conditions: Role of thioredoxin-interacting protein (TXNIP). Redox Biol 2020; 37:101748. [PMID: 33128997 PMCID: PMC7589534 DOI: 10.1016/j.redox.2020.101748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Overnutrition contributes to insulin resistance, obesity and metabolic stress, initiating a loss of functional beta-cells and diabetes development. Whether these damaging effects are amplified in advanced age is barely investigated. Therefore, New Zealand Obese (NZO) mice, a well-established model for the investigation of human obesity-associated type 2 diabetes, were fed a metabolically challenging diet with a high-fat, carbohydrate restricted period followed by a carbohydrate intervention in young as well as advanced age. Interestingly, while young NZO mice developed massive hyperglycemia in response to carbohydrate feeding, leading to beta-cell dysfunction and cell death, aged counterparts compensated the increased insulin demand by persistent beta-cell function and beta-cell mass expansion. Beta-cell loss in young NZO islets was linked to increased expression of thioredoxin-interacting protein (TXNIP), presumably initiating an apoptosis-signaling cascade via caspase-3 activation. In contrast, islets of aged NZOs exhibited a sustained redox balance without changes in TXNIP expression, associated with higher proliferative potential by cell cycle activation. These findings support the relevance of a maintained proliferative potential and redox homeostasis for preserving islet functionality under metabolic stress, with the peculiarity that this adaptive response emerged with advanced age in diabetes-prone NZO mice. Differential expression of redox and cell cycle genes in young and aged islets. Increased TXNIP expression is associated with the induction of beta-cell apoptosis. Islets of aged mice maintained redox homeostasis and proliferative potential. Aging under diet-induced metabolic stress does not amplify beta-cell failure.
Collapse
Affiliation(s)
- Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| | - Stefanie Deubel
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tanina Flore
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Jeannette König
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14458, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
23
|
Vanderkruk B, Hoffman BG. Metabolism as a central regulator of β-cell chromatin state. FEBS J 2020; 288:3683-3693. [PMID: 32926557 DOI: 10.1111/febs.15562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic β-cells are critical mediators of glucose homeostasis in the body, and proper cellular nutrient metabolism is critical to β-cell function. Several interacting signaling networks that uniquely control β-cell metabolism produce essential substrates and co-factors for catalytic reactions, including reactions that modify chromatin. Chromatin modifications, in turn, regulate gene expression. The reactions that modify chromatin are therefore well-positioned to adjust gene expression programs according to nutrient availability. It follows that dysregulation of nutrient metabolism in β-cells may impact chromatin state and gene expression through altering the availability of these substrates and co-factors. Metabolic disorders such as type 2 diabetes (T2D) can significantly alter metabolite levels in cells. This suggests that a driver of β-cell dysfunction during T2D may be the altered availability of substrates or co-factors necessary to maintain β-cell chromatin state. Induced changes in the β-cell chromatin modifications may then lead to dysregulation of gene expression, in turn contributing to the downward cascade of events that leads to the loss of functional β-cell mass, and loss of glucose homeostasis, that occurs in T2D.
Collapse
Affiliation(s)
- Ben Vanderkruk
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Brad G Hoffman
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
de Toledo M, Lopez-Mejia IC, Cavelier P, Pratlong M, Barrachina C, Gromada X, Annicotte JS, Tazi J, Chavey C. Lamin C Counteracts Glucose Intolerance in Aging, Obesity, and Diabetes Through β-Cell Adaptation. Diabetes 2020; 69:647-660. [PMID: 32005707 DOI: 10.2337/db19-0377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022]
Abstract
Aging-dependent changes in tissue function are associated with the development of metabolic diseases. However, the molecular connections linking aging, obesity, and diabetes remain unclear. Lamin A, lamin C, and progerin, products of the Lmna gene, have antagonistic functions on energy metabolism and life span. Lamin C, albeit promoting obesity, increases life span, suggesting that this isoform is crucial for maintaining healthy conditions under metabolic stresses. Because β-cell loss during obesity or aging leads to diabetes, we investigated the contribution of lamin C to β-cell function in physiopathological conditions. We demonstrate that aged lamin C only-expressing mice (Lmna LCS/LCS ) become obese but remain glucose tolerant due to adaptive mechanisms including increased β-cell mass and insulin secretion. Triggering diabetes in young mice revealed that Lmna LCS/LCS animals normalize their fasting glycemia by both increasing insulin secretion and regenerating β-cells. Genome-wide analyses combined to functional analyses revealed an increase of mitochondrial biogenesis and global translational rate in Lmna LCS/LCS islets, two major processes involved in insulin secretion. Altogether, our results demonstrate for the first time that the sole expression of lamin C protects from glucose intolerance through a β-cell-adaptive transcriptional program during metabolic stresses, highlighting Lmna gene processing as a new therapeutic target for diabetes treatment.
Collapse
Affiliation(s)
- Marion de Toledo
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | | | - Patricia Cavelier
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Marine Pratlong
- Montpellier GenomiX, Biocampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Célia Barrachina
- Montpellier GenomiX, Biocampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Xavier Gromada
- Université Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199, European Genomic Institute for Diabetes, Lille, France
| | - Jean-Sébastien Annicotte
- Université Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199, European Genomic Institute for Diabetes, Lille, France
| | - Jamal Tazi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Carine Chavey
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
25
|
Carter SD, Hampton CM, Langlois R, Melero R, Farino ZJ, Calderon MJ, Li W, Wallace CT, Tran NH, Grassucci RA, Siegmund SE, Pemberton J, Morgenstern TJ, Eisenman L, Aguilar JI, Greenberg NL, Levy ES, Yi E, Mitchell WG, Rice WJ, Wigge C, Pilli J, George EW, Aslanoglou D, Courel M, Freyberg RJ, Javitch JA, Wills ZP, Area-Gomez E, Shiva S, Bartolini F, Volchuk A, Murray SA, Aridor M, Fish KN, Walter P, Balla T, Fass D, Wolf SG, Watkins SC, Carazo JM, Jensen GJ, Frank J, Freyberg Z. Ribosome-associated vesicles: A dynamic subcompartment of the endoplasmic reticulum in secretory cells. SCIENCE ADVANCES 2020; 6:eaay9572. [PMID: 32270040 PMCID: PMC7112762 DOI: 10.1126/sciadv.aay9572] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/13/2020] [Indexed: 05/21/2023]
Abstract
The endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo-electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic β-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species. We show that RAVs exist as distinct, highly dynamic structures separate from the intact ER reticular architecture that interact with mitochondria via direct intermembrane contacts. These findings describe a new ER subcompartment within cells.
Collapse
Affiliation(s)
- Stephen D. Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cheri M. Hampton
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Robert Langlois
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Roberto Melero
- Biocomputing Unit, Centro Nacional de Biotecnología–CSIC, Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael J. Calderon
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Callen T. Wallace
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ngoc Han Tran
- HHMI, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert A. Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Stephanie E. Siegmund
- Department of Cellular, Molecular and Biophysical Studies, Columbia University Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Travis J. Morgenstern
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Leanna Eisenman
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jenny I. Aguilar
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Nili L. Greenberg
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Elana S. Levy
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Edward Yi
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - William G. Mitchell
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | | | | | - Jyotsna Pilli
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Emily W. George
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Despoina Aslanoglou
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Maïté Courel
- CNRS-UMR7622, Institut de Biologie Paris-Seine, Université Pierre & Marie Curie, 75252 Paris, France
| | - Robin J. Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jonathan A. Javitch
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Zachary P. Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Allen Volchuk
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sandra A. Murray
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Meir Aridor
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kenneth N. Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter Walter
- HHMI, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon G. Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - José María Carazo
- Biocomputing Unit, Centro Nacional de Biotecnología–CSIC, Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Grant J. Jensen
- HHMI, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
Nicholas LM, Nagao M, Kusinski LC, Fernandez-Twinn DS, Eliasson L, Ozanne SE. Exposure to maternal obesity programs sex differences in pancreatic islets of the offspring in mice. Diabetologia 2020; 63:324-337. [PMID: 31773193 PMCID: PMC6946752 DOI: 10.1007/s00125-019-05037-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Obesity during pregnancy increases offspring type 2 diabetes risk. Given that nearly half of women of child-bearing age in many populations are currently overweight/obese, it is key that we improve our understanding of the impact of the in utero/early life environment on offspring islet function. Whilst a number of experimental studies have examined the effect of maternal obesity on offspring islet architecture and/or function, it has not previously been delineated whether these changes are independent of other confounding risk factors such as obesity, postnatal high-fat-feeding and ageing. Thus, we aimed to study the impact of exposure to maternal obesity on offspring islets in young, glucose-tolerant male and female offspring. METHODS Female C57BL/6J mice were fed ad libitum either chow or obesogenic diet prior to and throughout pregnancy and lactation. Offspring were weaned onto a chow diet and remained on this diet until the end of the study. An IPGTT was performed on male and female offspring at 7 weeks of age. At 8 weeks of age, pancreatic islets were isolated from offspring for measurement of insulin secretion and content, mitochondrial respiration, ATP content, reactive oxygen species levels, beta and alpha cell mass, granule and mitochondrial density (by transmission electron microscopy), and mRNA and protein expression by real-time RT-PCR and Western blotting, respectively. RESULTS Glucose tolerance was similar irrespective of maternal diet and offspring sex. However, blood glucose was lower (p < 0.001) and plasma insulin higher (p < 0.05) in female offspring of obese dams 15 min after glucose administration. This was associated with higher glucose- (p < 0.01) and leucine/glutamine-stimulated (p < 0.05) insulin secretion in these offspring. Furthermore, there was increased mitochondrial respiration (p < 0.01) and density (p < 0.05) in female offspring of obese dams compared with same-sex controls. Expression of mitochondrial and nuclear-encoded components of the electron transport chain, L-type Ca2+ channel subtypes that play a key role in stimulus-secretion coupling [Cacna1d (p < 0.05)], and oestrogen receptor α (p < 0.05) was also increased in islets from these female offspring of obese dams. Moreover, cleaved caspase-3 expression and BAX:Bcl-2 were decreased (p < 0.05) reflecting reduced susceptibility to apoptosis. In contrast, in male offspring, glucose and leucine/glutamine-stimulated insulin secretion was comparable between treatment groups. There was, however, compromised mitochondrial respiration characterised by decreased ATP synthesis-driven respiration (p < 0.05) and increased uncoupled respiration (p < 0.01), reduced docked insulin granules (p < 0.001), decreased Cacna1c (p < 0.001) and Cacna1d (p < 0.001) and increased cleaved caspase-3 expression (p < 0.05). CONCLUSIONS/INTERPRETATION Maternal obesity programs sex differences in offspring islet function. Islets of female but not male offspring appear to be primed to cope with a nutritionally-rich postnatal environment, which may reflect differences in future type 2 diabetes risk.
Collapse
Affiliation(s)
- Lisa M Nicholas
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| | - Mototsugu Nagao
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, CRC, Skåne University Hospital, Malmö, Sweden
| | - Laura C Kusinski
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Lena Eliasson
- Unit of Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, CRC, Skåne University Hospital, Malmö, Sweden
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
27
|
Pinheiro-Machado E, Gurgul-Convey E, Marzec MT. Immunometabolism in type 2 diabetes mellitus: tissue-specific interactions. Arch Med Sci 2020; 19:895-911. [PMID: 37560741 PMCID: PMC10408029 DOI: 10.5114/aoms.2020.92674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/23/2019] [Indexed: 08/11/2023] Open
Abstract
The immune system is frequently described in the context of its protective function against infections and its role in the development of autoimmunity. For more than a decade, the interactions between the immune system and metabolic processes have been reported, in effect creating a new research field, termed immunometabolism. Accumulating evidence supports the hypothesis that the development of metabolic diseases may be linked to inflammation, and reflects, in some cases, the activation of immune responses. As such, immunometabolism is defined by 1) inflammation as a driver of disease development and/or 2) metabolic processes stimulating cellular differentiation of the immune components. In this review, the main factors capable of altering the immuno-metabolic communication leading to the development and establishment of obesity and diabetes are comprehensively presented. Tissue-specific immune responses suggested to impair metabolic processes are described, with an emphasis on the adipose tissue, gut, muscle, liver, and pancreas.
Collapse
Affiliation(s)
- Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Michal T. Marzec
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Wang X, Wu J, Wu Y, Wang M, Wang Z, Wu T, Chen D, Tang X, Qin X, Wu Y, Hu Y. Pleiotropic Effects of a KCNQ1 Variant on Lipid Profiles and Type 2 Diabetes: A Family-Based Study in China. J Diabetes Res 2020; 2020:8278574. [PMID: 32016123 PMCID: PMC6982365 DOI: 10.1155/2020/8278574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The genetic variant rs2237895, located in the Potassium Voltage-Gated Channel Subfamily Q Member 1 (KCNQ1) gene, has been replicated to be associated with type 2 diabetes mellitus (T2DM) susceptibility, but the relationship with lipids is conflicting. Furthermore, the common genetic predisposition to T2DM and lipids was not fully detected. METHODS In total, 5839 individuals (2220 were T2DM patients) across 2885 families were included. The effect of rs2237895 on T2DM and lipids was estimated using linear regression and logistic regression models after adjustment for multiple covariates. Mediation analysis was then used to test whether KCNQ1 participated in T2DM pathogenesis via lipid-mediated pathways. RESULTS Per allele-C of rs2237895 was associated with 17% (11-23%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%. CONCLUSION KCNQ1 had pleiotropic effects on lipids and T2DM, and the unexpected genetic effect on association of HDL-C with T2DM was observed, indicating the different pathways to lipids and T2DM. Further research studies are needed to verify potential biological mechanisms.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Junhui Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Zijing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Xun Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Xueying Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- Medical Informatics Center, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
29
|
Shawky LM, Morsi AA, El Bana E, Hanafy SM. The Biological Impacts of Sitagliptin on the Pancreas of a Rat Model of Type 2 Diabetes Mellitus: Drug Interactions with Metformin. BIOLOGY 2019; 9:E6. [PMID: 31881657 PMCID: PMC7167819 DOI: 10.3390/biology9010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
Sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, is a beneficial class of antidiabetic drugs. However, a major debate about the risk of developing pancreatitis is still existing. The aim of the work was to study the histological and immunohistochemical effects of sitagliptin on both endocrine and exocrine pancreases in a rat model of type 2 diabetes mellitus and to correlate these effects with the biochemical findings. Moreover, a possible synergistic effect of sitagliptin, in combination with metformin, was also evaluated. Fifty adult male rats were used and assigned into five equal groups. Group 1 served as control. Group 2 comprised of untreated diabetic rats. Group 3 diabetic rats received sitagliptin. Group 4 diabetic rats received metformin. Group 5 diabetic rats received both combined. Treatments were given for 4 weeks after the induction of diabetes. Blood samples were collected for biochemical assay before the sacrification of rats. Pancreases were removed, weighed, and were processed for histological and immunohistochemical examination. In the untreated diabetic group, the islets appeared shrunken with disturbed architecture and abnormal immunohistochemical reactions for insulin, caspase-3, and inducible nitric oxide synthase (iNOS). The biochemical findings were also disturbed. Morphometrically, there was a significant decrease in the islet size and islet number. Treatment with sitagliptin, metformin, and their combination showed an improvement, with the best response in the combined approach. No evidence of pancreatic injury was identified in the sitagliptin-treated groups. In conclusion, sitagliptin had a cytoprotective effect on beta-cell damage. Furthermore, the data didn't indicate any detrimental effects of sitagliptin on the exocrine pancreas.
Collapse
Affiliation(s)
- Lamiaa M. Shawky
- Department of Histology and Cell Biology, Benha Faculty of Medicine, Benha University, Benha 13511, Egypt;
| | - Ahmed A. Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt
| | - Eman El Bana
- Department of Anatomy, Benha Faculty of Medicine, Benha University, Benha 13511, Egypt;
| | - Safaa Masoud Hanafy
- Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11865, Egypt;
| |
Collapse
|
30
|
Chaperones may cause the focus of diabetes autoimmunity on distinct (pro)insulin peptides. J Autoimmun 2019; 105:102304. [PMID: 31327552 DOI: 10.1016/j.jaut.2019.102304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
It is still an enigma why T cell autoreactivity in type 1 diabetes targets few beta cell antigens only. Among these, one primary autoantigen is pro(insulin). Autoimmune T cells preferentially recognise three epitopes on the proinsulin molecule, of which the peptide region B:11-23 is the dominant one. Interestingly, the three regions superimpose with binding sites of the chaperone hsp70, the region B:11-23 being the strongest binding one. Absence of an intact core region B:15-17 prevents autoimmune diabetes in NOD as well as binding of hsp70. A role of hsp70 in selecting autoimmune epitopes is supported by the ability of this and other chaperones to deliver bound peptides to MHC class I and II molecules for efficient antigen presentation. Binding of hsp70 to receptors on antigen presenting cells such as TLR4 results in costimulatory signals for T cell activation. Strongest effects are seen for the mixture of hsp70 with the peptide B:11-23. Thus, hsp70 may assist in proinsulin epitope selection and efficient presentation to autoreactive T cells. The concept of chaperone guided immune reactivity may also apply to other autoimmune diseases.
Collapse
|
31
|
Effects of Hydroalcoholic Flower Extract of Marigold (Calendula officinalis) on the Biochemical and Histological Parameters in STZ-Induced Diabetic Rats. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.55456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
32
|
Rosen ED, Kaestner KH, Natarajan R, Patti ME, Sallari R, Sander M, Susztak K. Epigenetics and Epigenomics: Implications for Diabetes and Obesity. Diabetes 2018; 67:1923-1931. [PMID: 30237160 PMCID: PMC6463748 DOI: 10.2337/db18-0537] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022]
Abstract
The American Diabetes Association convened a research symposium, "Epigenetics and Epigenomics: Implications for Diabetes and Obesity" on 17-19 November 2017. International experts in genetics, epigenetics, computational biology, and physiology discussed the current state of understanding of the relationships between genetics, epigenetics, and environment in diabetes and examined existing evidence for the role of epigenetic factors in regulating metabolism and the risk of diabetes and its complications. The authors summarize the presentations, which highlight how the complex interactions between genes and environment may in part be mediated through epigenetic changes and how information about nutritional and other environmental stimuli can be transmitted to the next generation. In addition, the authors present expert consensus on knowledge gaps and research recommendations for the field.
Collapse
Affiliation(s)
- Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Klaus H Kaestner
- Department of Genetics and Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Mary-Elizabeth Patti
- Harvard Medical School, Boston, MA
- Research Division, Joslin Diabetes Center, Boston, MA
| | | | - Maike Sander
- University of California, San Diego, La Jolla, CA
| | - Katalin Susztak
- Department of Genetics and Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
33
|
Liu M, Weiss MA, Arunagiri A, Yong J, Rege N, Sun J, Haataja L, Kaufman RJ, Arvan P. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab 2018; 20 Suppl 2:28-50. [PMID: 30230185 PMCID: PMC6463291 DOI: 10.1111/dom.13378] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Insulin synthesis in pancreatic β-cells is initiated as preproinsulin. Prevailing glucose concentrations, which oscillate pre- and postprandially, exert major dynamic variation in preproinsulin biosynthesis. Accompanying upregulated translation of the insulin precursor includes elements of the endoplasmic reticulum (ER) translocation apparatus linked to successful orientation of the signal peptide, translocation and signal peptide cleavage of preproinsulin-all of which are necessary to initiate the pathway of proper proinsulin folding. Evolutionary pressures on the primary structure of proinsulin itself have preserved the efficiency of folding ("foldability"), and remarkably, these evolutionary pressures are distinct from those protecting the ultimate biological activity of insulin. Proinsulin foldability is manifest in the ER, in which the local environment is designed to assist in the overall load of proinsulin folding and to favour its disulphide bond formation (while limiting misfolding), all of which is closely tuned to ER stress response pathways that have complex (beneficial, as well as potentially damaging) effects on pancreatic β-cells. Proinsulin misfolding may occur as a consequence of exuberant proinsulin biosynthetic load in the ER, proinsulin coding sequence mutations, or genetic predispositions that lead to an altered ER folding environment. Proinsulin misfolding is a phenotype that is very much linked to deficient insulin production and diabetes, as is seen in a variety of contexts: rodent models bearing proinsulin-misfolding mutants, human patients with Mutant INS-gene-induced Diabetes of Youth (MIDY), animal models and human patients bearing mutations in critical ER resident proteins, and, quite possibly, in more common variety type 2 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202 IN USA
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Jing Yong
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Nischay Rege
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Jinhong Sun
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| |
Collapse
|
34
|
Lee J, Ma K, Moulik M, Yechoor V. Untimely oxidative stress in β-cells leads to diabetes - Role of circadian clock in β-cell function. Free Radic Biol Med 2018; 119:69-74. [PMID: 29458148 PMCID: PMC5910243 DOI: 10.1016/j.freeradbiomed.2018.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022]
Abstract
Diabetes results from a loss of β-cell function. With the number of people with diabetes reaching epidemic proportions globally, understanding mechanisms that are contributing to this increasing prevalence is critical. One such factor has been circadian disruption, with shift-work, light pollution, jet-lag, increased screen time, all acting as potential contributory factors. Though circadian disruption has been epidemiologically associated with diabetes and other metabolic disorders for many decades, it is only recently that there has been a better understanding of the underlying molecular mechanisms. Experimental circadian disruption, via manipulation of environmental or genetic factors using gene-deletion mouse models, has demonstrated the importance of circadian rhythms in whole body metabolism. Genetic disruption of core clock genes, specifically in the β-cells in mice, have, now demonstrated the importance of the intrinsic β-cell clock in regulating function. Recent work has also shown the interaction of the circadian clock and enhancers in β-cells, indicating a highly integrated regulation of transcription and cellular function by the circadian clock. Disruption of either the whole body or only the β-cell clock leads to significant impairment of mitochondrial function, uncoupling, impaired vesicular transport, oxidative stress in β-cells and finally impaired glucose-stimulated insulin secretion and diabetes. In this review, we explore the role of the circadian clock in mitigating oxidative stress and preserving β-cell function.
Collapse
Affiliation(s)
- J Lee
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, 200 Lothrop, BST-1058W, Pittsburgh, PA 15261, United States
| | - K Ma
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| | - M Moulik
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Pittsburgh and University of Pittsburgh, Pittsburgh, PA, United States
| | - V Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, 200 Lothrop, BST-1058W, Pittsburgh, PA 15261, United States.
| |
Collapse
|
35
|
Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 2018; 14:168-181. [PMID: 29377010 DOI: 10.1038/nrneurol.2017.185] [Citation(s) in RCA: 885] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Considerable overlap has been identified in the risk factors, comorbidities and putative pathophysiological mechanisms of Alzheimer disease and related dementias (ADRDs) and type 2 diabetes mellitus (T2DM), two of the most pressing epidemics of our time. Much is known about the biology of each condition, but whether T2DM and ADRDs are parallel phenomena arising from coincidental roots in ageing or synergistic diseases linked by vicious pathophysiological cycles remains unclear. Insulin resistance is a core feature of T2DM and is emerging as a potentially important feature of ADRDs. Here, we review key observations and experimental data on insulin signalling in the brain, highlighting its actions in neurons and glia. In addition, we define the concept of 'brain insulin resistance' and review the growing, although still inconsistent, literature concerning cognitive impairment and neuropathological abnormalities in T2DM, obesity and insulin resistance. Lastly, we review evidence of intrinsic brain insulin resistance in ADRDs. By expanding our understanding of the overlapping mechanisms of these conditions, we hope to accelerate the rational development of preventive, disease-modifying and symptomatic treatments for cognitive dysfunction in T2DM and ADRDs alike.
Collapse
|
36
|
Glendinning JI, Frim YG, Hochman A, Lubitz GS, Basile AJ, Sclafani A. Glucose elicits cephalic-phase insulin release in mice by activating K ATP channels in taste cells. Am J Physiol Regul Integr Comp Physiol 2017; 312:R597-R610. [PMID: 28148491 DOI: 10.1152/ajpregu.00433.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/25/2022]
Abstract
The taste of sugar elicits cephalic-phase insulin release (CPIR), which limits the rise in blood glucose associated with meals. Little is known, however, about the gustatory mechanisms that trigger CPIR. We asked whether oral stimulation with any of the following taste stimuli elicited CPIR in mice: glucose, sucrose, maltose, fructose, Polycose, saccharin, sucralose, AceK, SC45647, or a nonmetabolizable sugar analog. The only taste stimuli that elicited CPIR were glucose and the glucose-containing saccharides (sucrose, maltose, Polycose). When we mixed an α-glucosidase inhibitor (acarbose) with the latter three saccharides, the mice no longer exhibited CPIR. This revealed that the carbohydrates were hydrolyzed in the mouth, and that the liberated glucose triggered CPIR. We also found that increasing the intensity or duration of oral glucose stimulation caused a corresponding increase in CPIR magnitude. To identify the components of the glucose-specific taste-signaling pathway, we examined the necessity of Calhm1, P2X2+P2X3, SGLT1, and Sur1. Among these proteins, only Sur1 was necessary for CPIR. Sur1 was not necessary, however, for taste-mediated attraction to sugars. Given that Sur1 is a subunit of the ATP-sensitive K+ channel (KATP) channel and that this channel functions as a part of a glucose-sensing pathway in pancreatic β-cells, we asked whether the KATP channel serves an analogous role in taste cells. We discovered that oral stimulation with drugs known to increase (glyburide) or decrease (diazoxide) KATP signaling produced corresponding changes in glucose-stimulated CPIR. We propose that the KATP channel is part of a novel signaling pathway in taste cells that mediates glucose-induced CPIR.
Collapse
Affiliation(s)
- John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, New York;
| | - Yonina G Frim
- Department of Biology, Barnard College, Columbia University, New York, New York
| | - Ayelet Hochman
- Department of Biology, Barnard College, Columbia University, New York, New York
| | - Gabrielle S Lubitz
- Department of Biology, Barnard College, Columbia University, New York, New York
| | - Anthony J Basile
- Department of Biology, Barnard College, Columbia University, New York, New York.,Institute of Human Nutrition, Columbia University, New York, New York; and
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College of City University of New York, Brooklyn, New York
| |
Collapse
|
37
|
Carboneau BA, Breyer RM, Gannon M. Regulation of pancreatic β-cell function and mass dynamics by prostaglandin signaling. J Cell Commun Signal 2017; 11:105-116. [PMID: 28132118 DOI: 10.1007/s12079-017-0377-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/16/2017] [Indexed: 01/09/2023] Open
Abstract
Prostaglandins (PGs) are signaling lipids derived from arachidonic acid (AA), which is metabolized by cyclooxygenase (COX)-1 or 2 and class-specific synthases to generate PGD2, PGE2, PGF2α, PGI2 (prostacyclin), and thromboxane A2. PGs signal through G-protein coupled receptors (GPCRs) and are important modulators of an array of physiological functions, including systemic inflammation and insulin secretion from pancreatic islets. The role of PGs in β-cell function has been an active area of interest, beginning in the 1970s. Early studies demonstrated that PGE2 inhibits glucose-stimulated insulin secretion (GSIS), although more recent studies have questioned this inhibitory action of PGE2. The PGE2 receptor EP3 and one of the G-proteins that couples to EP3, GαZ, have been identified as negative regulators of β-cell proliferation and survival. Conversely, PGI2 and its receptor, IP, play a positive role in the β-cell by enhancing GSIS and preserving β-cell mass in response to the β-cell toxin streptozotocin (STZ). In comparison to PGE2 and PGI2, little is known about the function of the remaining PGs within islets. In this review, we discuss the roles of PGs, particularly PGE2 and PGI2, PG receptors, and downstream signaling events that alter β-cell function and regulation of β-cell mass.
Collapse
Affiliation(s)
- Bethany A Carboneau
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA.,Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, USA
| | - Maureen Gannon
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA. .,Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA. .,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA. .,Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|